A New Framework for Textual Information Mining over Parse Trees. CRESST Report 805
ERIC Educational Resources Information Center
Mousavi, Hamid; Kerr, Deirdre; Iseli, Markus R.
2011-01-01
Textual information mining is a challenging problem that has resulted in the creation of many different rule-based linguistic query languages. However, these languages generally are not optimized for the purpose of text mining. In other words, they usually consider queries as individuals and only return raw results for each query. Moreover they…
A new XML-based query language, CSRML, has been developed for representing chemical substructures, molecules, reaction rules, and reactions. CSRML queries are capable of integrating additional forms of information beyond the simple substructure (e.g., SMARTS) or reaction transfor...
NASA Astrophysics Data System (ADS)
Boulicaut, Jean-Francois; Jeudy, Baptiste
Knowledge Discovery in Databases (KDD) is a complex interactive process. The promising theoretical framework of inductive databases considers this is essentially a querying process. It is enabled by a query language which can deal either with raw data or patterns which hold in the data. Mining patterns turns to be the so-called inductive query evaluation process for which constraint-based Data Mining techniques have to be designed. An inductive query specifies declaratively the desired constraints and algorithms are used to compute the patterns satisfying the constraints in the data. We survey important results of this active research domain. This chapter emphasizes a real breakthrough for hard problems concerning local pattern mining under various constraints and it points out the current directions of research as well.
Graph Mining Meets the Semantic Web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkeun; Sukumar, Sreenivas R; Lim, Seung-Hwan
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluatemore » the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.« less
Ji, Yanqing; Ying, Hao; Tran, John; Dews, Peter; Massanari, R Michael
2016-07-19
Finding highly relevant articles from biomedical databases is challenging not only because it is often difficult to accurately express a user's underlying intention through keywords but also because a keyword-based query normally returns a long list of hits with many citations being unwanted by the user. This paper proposes a novel biomedical literature search system, called BiomedSearch, which supports complex queries and relevance feedback. The system employed association mining techniques to build a k-profile representing a user's relevance feedback. More specifically, we developed a weighted interest measure and an association mining algorithm to find the strength of association between a query and each concept in the article(s) selected by the user as feedback. The top concepts were utilized to form a k-profile used for the next-round search. BiomedSearch relies on Unified Medical Language System (UMLS) knowledge sources to map text files to standard biomedical concepts. It was designed to support queries with any levels of complexity. A prototype of BiomedSearch software was made and it was preliminarily evaluated using the Genomics data from TREC (Text Retrieval Conference) 2006 Genomics Track. Initial experiment results indicated that BiomedSearch increased the mean average precision (MAP) for a set of queries. With UMLS and association mining techniques, BiomedSearch can effectively utilize users' relevance feedback to improve the performance of biomedical literature search.
HC StratoMineR: A Web-Based Tool for the Rapid Analysis of High-Content Datasets.
Omta, Wienand A; van Heesbeen, Roy G; Pagliero, Romina J; van der Velden, Lieke M; Lelieveld, Daphne; Nellen, Mehdi; Kramer, Maik; Yeong, Marley; Saeidi, Amir M; Medema, Rene H; Spruit, Marco; Brinkkemper, Sjaak; Klumperman, Judith; Egan, David A
2016-10-01
High-content screening (HCS) can generate large multidimensional datasets and when aligned with the appropriate data mining tools, it can yield valuable insights into the mechanism of action of bioactive molecules. However, easy-to-use data mining tools are not widely available, with the result that these datasets are frequently underutilized. Here, we present HC StratoMineR, a web-based tool for high-content data analysis. It is a decision-supportive platform that guides even non-expert users through a high-content data analysis workflow. HC StratoMineR is built by using My Structured Query Language for storage and querying, PHP: Hypertext Preprocessor as the main programming language, and jQuery for additional user interface functionality. R is used for statistical calculations, logic and data visualizations. Furthermore, C++ and graphical processor unit power is diffusely embedded in R by using the rcpp and rpud libraries for operations that are computationally highly intensive. We show that we can use HC StratoMineR for the analysis of multivariate data from a high-content siRNA knock-down screen and a small-molecule screen. It can be used to rapidly filter out undesirable data; to select relevant data; and to perform quality control, data reduction, data exploration, morphological hit picking, and data clustering. Our results demonstrate that HC StratoMineR can be used to functionally categorize HCS hits and, thus, provide valuable information for hit prioritization.
EAGLE: 'EAGLE'Is an' Algorithmic Graph Library for Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-01-16
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. Today there is no tools to conduct "graph mining" on RDF standard data sets. We address that need through implementation of popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, degree distribution,more » diversity degree, PageRank, etc.). We implement these algorithms as SPARQL queries, wrapped within Python scripts and call our software tool as EAGLE. In RDF style, EAGLE stands for "EAGLE 'Is an' algorithmic graph library for exploration. EAGLE is like 'MATLAB' for 'Linked Data.'« less
On-Demand Associative Cross-Language Information Retrieval
NASA Astrophysics Data System (ADS)
Geraldo, André Pinto; Moreira, Viviane P.; Gonçalves, Marcos A.
This paper proposes the use of algorithms for mining association rules as an approach for Cross-Language Information Retrieval. These algorithms have been widely used to analyse market basket data. The idea is to map the problem of finding associations between sales items to the problem of finding term translations over a parallel corpus. The proposal was validated by means of experiments using queries in two distinct languages: Portuguese and Finnish to retrieve documents in English. The results show that the performance of our proposed approach is comparable to the performance of the monolingual baseline and to query translation via machine translation, even though these systems employ more complex Natural Language Processing techniques. The combination between machine translation and our approach yielded the best results, even outperforming the monolingual baseline.
Morrison, James J; Hostetter, Jason; Wang, Kenneth; Siegel, Eliot L
2015-02-01
Real-time mining of large research trial datasets enables development of case-based clinical decision support tools. Several applicable research datasets exist including the National Lung Screening Trial (NLST), a dataset unparalleled in size and scope for studying population-based lung cancer screening. Using these data, a clinical decision support tool was developed which matches patient demographics and lung nodule characteristics to a cohort of similar patients. The NLST dataset was converted into Structured Query Language (SQL) tables hosted on a web server, and a web-based JavaScript application was developed which performs real-time queries. JavaScript is used for both the server-side and client-side language, allowing for rapid development of a robust client interface and server-side data layer. Real-time data mining of user-specified patient cohorts achieved a rapid return of cohort cancer statistics and lung nodule distribution information. This system demonstrates the potential of individualized real-time data mining using large high-quality clinical trial datasets to drive evidence-based clinical decision-making.
Digital Workflows for a 3d Semantic Representation of AN Ancient Mining Landscape
NASA Astrophysics Data System (ADS)
Hiebel, G.; Hanke, K.
2017-08-01
The ancient mining landscape of Schwaz/Brixlegg in the Tyrol, Austria witnessed mining from prehistoric times to modern times creating a first order cultural landscape when it comes to one of the most important inventions in human history: the production of metal. In 1991 a part of this landscape was lost due to an enormous landslide that reshaped part of the mountain. With our work we want to propose a digital workflow to create a 3D semantic representation of this ancient mining landscape with its mining structures to preserve it for posterity. First, we define a conceptual model to integrate the data. It is based on the CIDOC CRM ontology and CRMgeo for geometric data. To transform our information sources to a formal representation of the classes and properties of the ontology we applied semantic web technologies and created a knowledge graph in RDF (Resource Description Framework). Through the CRMgeo extension coordinate information of mining features can be integrated into the RDF graph and thus related to the detailed digital elevation model that may be visualized together with the mining structures using Geoinformation systems or 3D visualization tools. The RDF network of the triple store can be queried using the SPARQL query language. We created a snapshot of mining, settlement and burial sites in the Bronze Age. The results of the query were loaded into a Geoinformation system and a visualization of known bronze age sites related to mining, settlement and burial activities was created.
Query-Based Outlier Detection in Heterogeneous Information Networks.
Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei
2015-03-01
Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user's search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks.
Query-Based Outlier Detection in Heterogeneous Information Networks
Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei
2015-01-01
Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user’s search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks. PMID:27064397
Advanced Query and Data Mining Capabilities for MaROS
NASA Technical Reports Server (NTRS)
Wang, Paul; Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Hy, Franklin H.
2013-01-01
The Mars Relay Operational Service (MaROS) comprises a number of tools to coordinate, plan, and visualize various aspects of the Mars Relay network. These levels include a Web-based user interface, a back-end "ReSTlet" built in Java, and databases that store the data as it is received from the network. As part of MaROS, the innovators have developed and implemented a feature set that operates on several levels of the software architecture. This new feature is an advanced querying capability through either the Web-based user interface, or through a back-end REST interface to access all of the data gathered from the network. This software is not meant to replace the REST interface, but to augment and expand the range of available data. The current REST interface provides specific data that is used by the MaROS Web application to display and visualize the information; however, the returned information from the REST interface has typically been pre-processed to return only a subset of the entire information within the repository, particularly only the information that is of interest to the GUI (graphical user interface). The new, advanced query and data mining capabilities allow users to retrieve the raw data and/or to perform their own data processing. The query language used to access the repository is a restricted subset of the structured query language (SQL) that can be built safely from the Web user interface, or entered as freeform SQL by a user. The results are returned in a CSV (Comma Separated Values) format for easy exporting to third party tools and applications that can be used for data mining or user-defined visualization and interpretation. This is the first time that a service is capable of providing access to all cross-project relay data from a single Web resource. Because MaROS contains the data for a variety of missions from the Mars network, which span both NASA and ESA, the software also establishes an access control list (ACL) on each data record in the database repository to enforce user access permissions through a multilayered approach.
Improve Data Mining and Knowledge Discovery Through the Use of MatLab
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali; Martin, Dawn (Elliott); Beil, Robert
2011-01-01
Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(R) (MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its enormous availability of built in functionalities and toolboxes make it suitable to perform numerical computations and simulations as well as a data mining tool. Engineers and scientists can take advantage of the readily available functions/toolboxes to gain wider insight in their perspective data mining experiments.
Improve Data Mining and Knowledge Discovery through the use of MatLab
NASA Technical Reports Server (NTRS)
Shaykahian, Gholan Ali; Martin, Dawn Elliott; Beil, Robert
2011-01-01
Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(TradeMark)(MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its enormous availability of built in functionalities and toolboxes make it suitable to perform numerical computations and simulations as well as a data mining tool. Engineers and scientists can take advantage of the readily available functions/toolboxes to gain wider insight in their perspective data mining experiments.
Development of a Google-based search engine for data mining radiology reports.
Erinjeri, Joseph P; Picus, Daniel; Prior, Fred W; Rubin, David A; Koppel, Paul
2009-08-01
The aim of this study is to develop a secure, Google-based data-mining tool for radiology reports using free and open source technologies and to explore its use within an academic radiology department. A Health Insurance Portability and Accountability Act (HIPAA)-compliant data repository, search engine and user interface were created to facilitate treatment, operations, and reviews preparatory to research. The Institutional Review Board waived review of the project, and informed consent was not required. Comprising 7.9 GB of disk space, 2.9 million text reports were downloaded from our radiology information system to a fileserver. Extensible markup language (XML) representations of the reports were indexed using Google Desktop Enterprise search engine software. A hypertext markup language (HTML) form allowed users to submit queries to Google Desktop, and Google's XML response was interpreted by a practical extraction and report language (PERL) script, presenting ranked results in a web browser window. The query, reason for search, results, and documents visited were logged to maintain HIPAA compliance. Indexing averaged approximately 25,000 reports per hour. Keyword search of a common term like "pneumothorax" yielded the first ten most relevant results of 705,550 total results in 1.36 s. Keyword search of a rare term like "hemangioendothelioma" yielded the first ten most relevant results of 167 total results in 0.23 s; retrieval of all 167 results took 0.26 s. Data mining tools for radiology reports will improve the productivity of academic radiologists in clinical, educational, research, and administrative tasks. By leveraging existing knowledge of Google's interface, radiologists can quickly perform useful searches.
Mining Longitudinal Web Queries: Trends and Patterns.
ERIC Educational Resources Information Center
Wang, Peiling; Berry, Michael W.; Yang, Yiheng
2003-01-01
Analyzed user queries submitted to an academic Web site during a four-year period, using a relational database, to examine users' query behavior, to identify problems they encounter, and to develop techniques for optimizing query analysis and mining. Linguistic analyses focus on query structures, lexicon, and word associations using statistical…
Improving integrative searching of systems chemical biology data using semantic annotation.
Chen, Bin; Ding, Ying; Wild, David J
2012-03-08
Systems chemical biology and chemogenomics are considered critical, integrative disciplines in modern biomedical research, but require data mining of large, integrated, heterogeneous datasets from chemistry and biology. We previously developed an RDF-based resource called Chem2Bio2RDF that enabled querying of such data using the SPARQL query language. Whilst this work has proved useful in its own right as one of the first major resources in these disciplines, its utility could be greatly improved by the application of an ontology for annotation of the nodes and edges in the RDF graph, enabling a much richer range of semantic queries to be issued. We developed a generalized chemogenomics and systems chemical biology OWL ontology called Chem2Bio2OWL that describes the semantics of chemical compounds, drugs, protein targets, pathways, genes, diseases and side-effects, and the relationships between them. The ontology also includes data provenance. We used it to annotate our Chem2Bio2RDF dataset, making it a rich semantic resource. Through a series of scientific case studies we demonstrate how this (i) simplifies the process of building SPARQL queries, (ii) enables useful new kinds of queries on the data and (iii) makes possible intelligent reasoning and semantic graph mining in chemogenomics and systems chemical biology. Chem2Bio2OWL is available at http://chem2bio2rdf.org/owl. The document is available at http://chem2bio2owl.wikispaces.com.
2006-06-01
SPARQL SPARQL Protocol and RDF Query Language SQL Structured Query Language SUMO Suggested Upper Merged Ontology SW... Query optimization algorithms are implemented in the Pellet reasoner in order to ensure querying a knowledge base is efficient . These algorithms...memory as a treelike structure in order for the data to be queried . XML Query (XQuery) is the standard language used when querying XML
RDF-GL: A SPARQL-Based Graphical Query Language for RDF
NASA Astrophysics Data System (ADS)
Hogenboom, Frederik; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay
This chapter presents RDF-GL, a graphical query language (GQL) for RDF. The GQL is based on the textual query language SPARQL and mainly focuses on SPARQL SELECT queries. The advantage of a GQL over textual query languages is that complexity is hidden through the use of graphical symbols. RDF-GL is supported by a Java-based editor, SPARQLinG, which is presented as well. The editor does not only allow for RDF-GL query creation, but also converts RDF-GL queries to SPARQL queries and is able to subsequently execute these. Experiments show that using the GQL in combination with the editor makes RDF querying more accessible for end users.
Hripcsak, George; Knirsch, Charles; Zhou, Li; Wilcox, Adam; Melton, Genevieve B
2007-03-01
Data mining in electronic medical records may facilitate clinical research, but much of the structured data may be miscoded, incomplete, or non-specific. The exploitation of narrative data using natural language processing may help, although nesting, varying granularity, and repetition remain challenges. In a study of community-acquired pneumonia using electronic records, these issues led to poor classification. Limiting queries to accurate, complete records led to vastly reduced, possibly biased samples. We exploited knowledge latent in the electronic records to improve classification. A similarity metric was used to cluster cases. We defined discordance as the degree to which cases within a cluster give different answers for some query that addresses a classification task of interest. Cases with higher discordance are more likely to be incorrectly classified, and can be reviewed manually to adjust the classification, improve the query, or estimate the likely accuracy of the query. In a study of pneumonia--in which the ICD9-CM coding was found to be very poor--the discordance measure was statistically significantly correlated with classification correctness (.45; 95% CI .15-.62).
Mining biomedical images towards valuable information retrieval in biomedical and life sciences
Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas
2016-01-01
Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. PMID:27538578
Applying Query Structuring in Cross-language Retrieval.
ERIC Educational Resources Information Center
Pirkola, Ari; Puolamaki, Deniz; Jarvelin, Kalervo
2003-01-01
Explores ways to apply query structuring in cross-language information retrieval. Tested were: English queries translated into Finnish using an electronic dictionary, and run in a Finnish newspaper databases; effects of compound-based structuring using a proximity operator for translation equivalents of query language compound components; and a…
A Semantic Graph Query Language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, I L
2006-10-16
Semantic graphs can be used to organize large amounts of information from a number of sources into one unified structure. A semantic query language provides a foundation for extracting information from the semantic graph. The graph query language described here provides a simple, powerful method for querying semantic graphs.
Model-based query language for analyzing clinical processes.
Barzdins, Janis; Barzdins, Juris; Rencis, Edgars; Sostaks, Agris
2013-01-01
Nowadays large databases of clinical process data exist in hospitals. However, these data are rarely used in full scope. In order to perform queries on hospital processes, one must either choose from the predefined queries or develop queries using MS Excel-type software system, which is not always a trivial task. In this paper we propose a new query language for analyzing clinical processes that is easily perceptible also by non-IT professionals. We develop this language based on a process modeling language which is also described in this paper. Prototypes of both languages have already been verified using real examples from hospitals.
End-User Use of Data Base Query Language: Pros and Cons.
ERIC Educational Resources Information Center
Nicholes, Walter
1988-01-01
Man-machine interface, the concept of a computer "query," a review of database technology, and a description of the use of query languages at Brigham Young University are discussed. The pros and cons of end-user use of database query languages are explored. (Author/MLW)
Mining the SDSS SkyServer SQL queries log
NASA Astrophysics Data System (ADS)
Hirota, Vitor M.; Santos, Rafael; Raddick, Jordan; Thakar, Ani
2016-05-01
SkyServer, the Internet portal for the Sloan Digital Sky Survey (SDSS) astronomic catalog, provides a set of tools that allows data access for astronomers and scientific education. One of SkyServer data access interfaces allows users to enter ad-hoc SQL statements to query the catalog. SkyServer also presents some template queries that can be used as basis for more complex queries. This interface has logged over 330 million queries submitted since 2001. It is expected that analysis of this data can be used to investigate usage patterns, identify potential new classes of queries, find similar queries, etc. and to shed some light on how users interact with the Sloan Digital Sky Survey data and how scientists have adopted the new paradigm of e-Science, which could in turn lead to enhancements on the user interfaces and experience in general. In this paper we review some approaches to SQL query mining, apply the traditional techniques used in the literature and present lessons learned, namely, that the general text mining approach for feature extraction and clustering does not seem to be adequate for this type of data, and, most importantly, we find that this type of analysis can result in very different queries being clustered together.
Query optimization for graph analytics on linked data using SPARQL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seokyong; Lee, Sangkeun; Lim, Seung -Hwan
2015-07-01
Triplestores that support query languages such as SPARQL are emerging as the preferred and scalable solution to represent data and meta-data as massive heterogeneous graphs using Semantic Web standards. With increasing adoption, the desire to conduct graph-theoretic mining and exploratory analysis has also increased. Addressing that desire, this paper presents a solution that is the marriage of Graph Theory and the Semantic Web. We present software that can analyze Linked Data using graph operations such as counting triangles, finding eccentricity, testing connectedness, and computing PageRank directly on triple stores via the SPARQL interface. We describe the process of optimizing performancemore » of the SPARQL-based implementation of such popular graph algorithms by reducing the space-overhead, simplifying iterative complexity and removing redundant computations by understanding query plans. Our optimized approach shows significant performance gains on triplestores hosted on stand-alone workstations as well as hardware-optimized scalable supercomputers such as the Cray XMT.« less
EquiX-A Search and Query Language for XML.
ERIC Educational Resources Information Center
Cohen, Sara; Kanza, Yaron; Kogan, Yakov; Sagiv, Yehoshua; Nutt, Werner; Serebrenik, Alexander
2002-01-01
Describes EquiX, a search language for XML that combines querying with searching to query the data and the meta-data content of Web pages. Topics include search engines; a data model for XML documents; search query syntax; search query semantics; an algorithm for evaluating a query on a document; and indexing EquiX queries. (LRW)
A Natural Language Interface Concordant with a Knowledge Base.
Han, Yong-Jin; Park, Seong-Bae; Park, Se-Young
2016-01-01
The discordance between expressions interpretable by a natural language interface (NLI) system and those answerable by a knowledge base is a critical problem in the field of NLIs. In order to solve this discordance problem, this paper proposes a method to translate natural language questions into formal queries that can be generated from a graph-based knowledge base. The proposed method considers a subgraph of a knowledge base as a formal query. Thus, all formal queries corresponding to a concept or a predicate in the knowledge base can be generated prior to query time and all possible natural language expressions corresponding to each formal query can also be collected in advance. A natural language expression has a one-to-one mapping with a formal query. Hence, a natural language question is translated into a formal query by matching the question with the most appropriate natural language expression. If the confidence of this matching is not sufficiently high the proposed method rejects the question and does not answer it. Multipredicate queries are processed by regarding them as a set of collected expressions. The experimental results show that the proposed method thoroughly handles answerable questions from the knowledge base and rejects unanswerable ones effectively.
Design Recommendations for Query Languages
1980-09-01
DESIGN RECOMMENDATIONS FOR QUERY LANGUAGES S.L. Ehrenreich Submitted by: Stanley M. Halpin, Acting Chief HUMAN FACTORS TECHNICAL AREA Approved by: Edgar ...respond to que- ries that it recognizes as faulty. Codd (1974) states that in designing a nat- ural query language, attention must be given to dealing...impaired. Codd (1974) also regarded the user’s perception of the data base to be of critical importance in properly designing a query language system
Crowley, Rebecca S; Castine, Melissa; Mitchell, Kevin; Chavan, Girish; McSherry, Tara; Feldman, Michael
2010-01-01
The authors report on the development of the Cancer Tissue Information Extraction System (caTIES)--an application that supports collaborative tissue banking and text mining by leveraging existing natural language processing methods and algorithms, grid communication and security frameworks, and query visualization methods. The system fills an important need for text-derived clinical data in translational research such as tissue-banking and clinical trials. The design of caTIES addresses three critical issues for informatics support of translational research: (1) federation of research data sources derived from clinical systems; (2) expressive graphical interfaces for concept-based text mining; and (3) regulatory and security model for supporting multi-center collaborative research. Implementation of the system at several Cancer Centers across the country is creating a potential network of caTIES repositories that could provide millions of de-identified clinical reports to users. The system provides an end-to-end application of medical natural language processing to support multi-institutional translational research programs.
Mining biomedical images towards valuable information retrieval in biomedical and life sciences.
Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas
2016-01-01
Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. © The Author(s) 2016. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Sorce, Salvatore; Malizia, Alessio; Jiang, Pingfei; Atherton, Mark; Harrison, David
2018-04-01
One of the main time and money consuming tasks in the design of industrial devices and parts is the checking of possible patent infringements. Indeed, the great number of documents to be mined and the wide variety of technical language used to describe inventions are reasons why considerable amounts of time may be needed. On the other hand, the early detection of a possible patent conflict, in addition to reducing the risk of legal disputes, could stimulate a designers’ creativity to overcome similarities in overlapping patents. For this reason, there are a lot of existing patent analysis systems, each with its own features and access modes. We have designed a visual interface providing an intuitive access to such systems, freeing the designers from the specific knowledge of querying languages and providing them with visual clues. We tested the interface on a framework aimed at representing mechanical engineering patents; the framework is based on a semantic database and provides patent conflict analysis for early-stage designs. The interface supports a visual query composition to obtain a list of potentially overlapping designs.
Effective Filtering of Query Results on Updated User Behavioral Profiles in Web Mining
Sadesh, S.; Suganthe, R. C.
2015-01-01
Web with tremendous volume of information retrieves result for user related queries. With the rapid growth of web page recommendation, results retrieved based on data mining techniques did not offer higher performance filtering rate because relationships between user profile and queries were not analyzed in an extensive manner. At the same time, existing user profile based prediction in web data mining is not exhaustive in producing personalized result rate. To improve the query result rate on dynamics of user behavior over time, Hamilton Filtered Regime Switching User Query Probability (HFRS-UQP) framework is proposed. HFRS-UQP framework is split into two processes, where filtering and switching are carried out. The data mining based filtering in our research work uses the Hamilton Filtering framework to filter user result based on personalized information on automatic updated profiles through search engine. Maximized result is fetched, that is, filtered out with respect to user behavior profiles. The switching performs accurate filtering updated profiles using regime switching. The updating in profile change (i.e., switches) regime in HFRS-UQP framework identifies the second- and higher-order association of query result on the updated profiles. Experiment is conducted on factors such as personalized information search retrieval rate, filtering efficiency, and precision ratio. PMID:26221626
Towards ontology-driven navigation of the lipid bibliosphere
Baker, Christopher JO; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R
2008-01-01
Background The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. Results We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. Conclusion As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining algorithms instantiated into the ontology. The visual query paradigm assists in the adoption of this technology. PMID:18315858
Towards ontology-driven navigation of the lipid bibliosphere.
Baker, Christopher Jo; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R
2008-01-01
The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining algorithms instantiated into the ontology. The visual query paradigm assists in the adoption of this technology.
NASA Astrophysics Data System (ADS)
Kuznetsov, Valentin; Riley, Daniel; Afaq, Anzar; Sekhri, Vijay; Guo, Yuyi; Lueking, Lee
2010-04-01
The CMS experiment has implemented a flexible and powerful system enabling users to find data within the CMS physics data catalog. The Dataset Bookkeeping Service (DBS) comprises a database and the services used to store and access metadata related to CMS physics data. To this, we have added a generalized query system in addition to the existing web and programmatic interfaces to the DBS. This query system is based on a query language that hides the complexity of the underlying database structure by discovering the join conditions between database tables. This provides a way of querying the system that is simple and straightforward for CMS data managers and physicists to use without requiring knowledge of the database tables or keys. The DBS Query Language uses the ANTLR tool to build the input query parser and tokenizer, followed by a query builder that uses a graph representation of the DBS schema to construct the SQL query sent to underlying database. We will describe the design of the query system, provide details of the language components and overview of how this component fits into the overall data discovery system architecture.
Markó, K; Schulz, S; Hahn, U
2005-01-01
We propose an interlingua-based indexing approach to account for the particular challenges that arise in the design and implementation of cross-language document retrieval systems for the medical domain. Documents, as well as queries, are mapped to a language-independent conceptual layer on which retrieval operations are performed. We contrast this approach with the direct translation of German queries to English ones which, subsequently, are matched against English documents. We evaluate both approaches, interlingua-based and direct translation, on a large medical document collection, the OHSUMED corpus. A substantial benefit for interlingua-based document retrieval using German queries on English texts is found, which amounts to 93% of the (monolingual) English baseline. Most state-of-the-art cross-language information retrieval systems translate user queries to the language(s) of the target documents. In contra-distinction to this approach, translating both documents and user queries into a language-independent, concept-like representation format is more beneficial to enhance cross-language retrieval performance.
A Note on Interfacing Object Warehouses and Mass Storage Systems for Data Mining Applications
NASA Technical Reports Server (NTRS)
Grossman, Robert L.; Northcutt, Dave
1996-01-01
Data mining is the automatic discovery of patterns, associations, and anomalies in data sets. Data mining requires numerically and statistically intensive queries. Our assumption is that data mining requires a specialized data management infrastructure to support the aforementioned intensive queries, but because of the sizes of data involved, this infrastructure is layered over a hierarchical storage system. In this paper, we discuss the architecture of a system which is layered for modularity, but exploits specialized lightweight services to maintain efficiency. Rather than use a full functioned database for example, we use light weight object services specialized for data mining. We propose using information repositories between layers so that components on either side of the layer can access information in the repositories to assist in making decisions about data layout, the caching and migration of data, the scheduling of queries, and related matters.
A Priority Fuzzy Logic Extension of the XQuery Language
NASA Astrophysics Data System (ADS)
Škrbić, Srdjan; Wettayaprasit, Wiphada; Saeueng, Pannipa
2011-09-01
In recent years there have been significant research findings in flexible XML querying techniques using fuzzy set theory. Many types of fuzzy extensions to XML data model and XML query languages have been proposed. In this paper, we introduce priority fuzzy logic extensions to XQuery language. Describing these extensions we introduce a new query language. Moreover, we describe a way to implement an interpreter for this language using an existing XML native database.
Relational Algebra and SQL: Better Together
ERIC Educational Resources Information Center
McMaster, Kirby; Sambasivam, Samuel; Hadfield, Steven; Wolthuis, Stuart
2013-01-01
In this paper, we describe how database instructors can teach Relational Algebra and Structured Query Language together through programming. Students write query programs consisting of sequences of Relational Algebra operations vs. Structured Query Language SELECT statements. The query programs can then be run interactively, allowing students to…
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Liu, I-Hsiung
1985-01-01
The currently developed multi-level language interfaces of information systems are generally designed for experienced users. These interfaces commonly ignore the nature and needs of the largest user group, i.e., casual users. This research identifies the importance of natural language query system research within information storage and retrieval system development; addresses the topics of developing such a query system; and finally, proposes a framework for the development of natural language query systems in order to facilitate the communication between casual users and information storage and retrieval systems.
A natural language interface plug-in for cooperative query answering in biological databases.
Jamil, Hasan M
2012-06-11
One of the many unique features of biological databases is that the mere existence of a ground data item is not always a precondition for a query response. It may be argued that from a biologist's standpoint, queries are not always best posed using a structured language. By this we mean that approximate and flexible responses to natural language like queries are well suited for this domain. This is partly due to biologists' tendency to seek simpler interfaces and partly due to the fact that questions in biology involve high level concepts that are open to interpretations computed using sophisticated tools. In such highly interpretive environments, rigidly structured databases do not always perform well. In this paper, our goal is to propose a semantic correspondence plug-in to aid natural language query processing over arbitrary biological database schema with an aim to providing cooperative responses to queries tailored to users' interpretations. Natural language interfaces for databases are generally effective when they are tuned to the underlying database schema and its semantics. Therefore, changes in database schema become impossible to support, or a substantial reorganization cost must be absorbed to reflect any change. We leverage developments in natural language parsing, rule languages and ontologies, and data integration technologies to assemble a prototype query processor that is able to transform a natural language query into a semantically equivalent structured query over the database. We allow knowledge rules and their frequent modifications as part of the underlying database schema. The approach we adopt in our plug-in overcomes some of the serious limitations of many contemporary natural language interfaces, including support for schema modifications and independence from underlying database schema. The plug-in introduced in this paper is generic and facilitates connecting user selected natural language interfaces to arbitrary databases using a semantic description of the intended application. We demonstrate the feasibility of our approach with a practical example.
A Visual Interface for Querying Heterogeneous Phylogenetic Databases.
Jamil, Hasan M
2017-01-01
Despite the recent growth in the number of phylogenetic databases, access to these wealth of resources remain largely tool or form-based interface driven. It is our thesis that the flexibility afforded by declarative query languages may offer the opportunity to access these repositories in a better way, and to use such a language to pose truly powerful queries in unprecedented ways. In this paper, we propose a substantially enhanced closed visual query language, called PhyQL, that can be used to query phylogenetic databases represented in a canonical form. The canonical representation presented helps capture most phylogenetic tree formats in a convenient way, and is used as the storage model for our PhyloBase database for which PhyQL serves as the query language. We have implemented a visual interface for the end users to pose PhyQL queries using visual icons, and drag and drop operations defined over them. Once a query is posed, the interface translates the visual query into a Datalog query for execution over the canonical database. Responses are returned as hyperlinks to phylogenies that can be viewed in several formats using the tree viewers supported by PhyloBase. Results cached in PhyQL buffer allows secondary querying on the computed results making it a truly powerful querying architecture.
A Relational Algebra Query Language for Programming Relational Databases
ERIC Educational Resources Information Center
McMaster, Kirby; Sambasivam, Samuel; Anderson, Nicole
2011-01-01
In this paper, we describe a Relational Algebra Query Language (RAQL) and Relational Algebra Query (RAQ) software product we have developed that allows database instructors to teach relational algebra through programming. Instead of defining query operations using mathematical notation (the approach commonly taken in database textbooks), students…
Object-Oriented Query Language For Events Detection From Images Sequences
NASA Astrophysics Data System (ADS)
Ganea, Ion Eugen
2015-09-01
In this paper is presented a method to represent the events extracted from images sequences and the query language used for events detection. Using an object oriented model the spatial and temporal relationships between salient objects and also between events are stored and queried. This works aims to unify the storing and querying phases for video events processing. The object oriented language syntax used for events processing allow the instantiation of the indexes classes in order to improve the accuracy of the query results. The experiments were performed on images sequences provided from sport domain and it shows the reliability and the robustness of the proposed language. To extend the language will be added a specific syntax for constructing the templates for abnormal events and for detection of the incidents as the final goal of the research.
NASA Astrophysics Data System (ADS)
Li, C.; Zhu, X.; Guo, W.; Liu, Y.; Huang, H.
2015-05-01
A method suitable for indoor complex semantic query considering the computation of indoor spatial relations is provided According to the characteristics of indoor space. This paper designs ontology model describing the space related information of humans, events and Indoor space objects (e.g. Storey and Room) as well as their relations to meet the indoor semantic query. The ontology concepts are used in IndoorSPARQL query language which extends SPARQL syntax for representing and querying indoor space. And four types specific primitives for indoor query, "Adjacent", "Opposite", "Vertical" and "Contain", are defined as query functions in IndoorSPARQL used to support quantitative spatial computations. Also a method is proposed to analysis the query language. Finally this paper adopts this method to realize indoor semantic query on the study area through constructing the ontology model for the study building. The experimental results show that the method proposed in this paper can effectively support complex indoor space semantic query.
Knowledge Query Language (KQL)
2016-02-12
Lexington Massachusetts This page intentionally left blank. iii EXECUTIVE SUMMARY Currently, queries for data ...retrieval from non-Structured Query Language (NoSQL) data stores are tightly coupled to the specific implementation of the data store implementation...independent of the storage content and format for querying NoSQL or relational data stores. This approach uses address expressions (or A-Expressions
Natural Language Processing Technologies in Radiology Research and Clinical Applications.
Cai, Tianrun; Giannopoulos, Andreas A; Yu, Sheng; Kelil, Tatiana; Ripley, Beth; Kumamaru, Kanako K; Rybicki, Frank J; Mitsouras, Dimitrios
2016-01-01
The migration of imaging reports to electronic medical record systems holds great potential in terms of advancing radiology research and practice by leveraging the large volume of data continuously being updated, integrated, and shared. However, there are significant challenges as well, largely due to the heterogeneity of how these data are formatted. Indeed, although there is movement toward structured reporting in radiology (ie, hierarchically itemized reporting with use of standardized terminology), the majority of radiology reports remain unstructured and use free-form language. To effectively "mine" these large datasets for hypothesis testing, a robust strategy for extracting the necessary information is needed. Manual extraction of information is a time-consuming and often unmanageable task. "Intelligent" search engines that instead rely on natural language processing (NLP), a computer-based approach to analyzing free-form text or speech, can be used to automate this data mining task. The overall goal of NLP is to translate natural human language into a structured format (ie, a fixed collection of elements), each with a standardized set of choices for its value, that is easily manipulated by computer programs to (among other things) order into subcategories or query for the presence or absence of a finding. The authors review the fundamentals of NLP and describe various techniques that constitute NLP in radiology, along with some key applications. ©RSNA, 2016.
Generating and Executing Complex Natural Language Queries across Linked Data.
Hamon, Thierry; Mougin, Fleur; Grabar, Natalia
2015-01-01
With the recent and intensive research in the biomedical area, the knowledge accumulated is disseminated through various knowledge bases. Links between these knowledge bases are needed in order to use them jointly. Linked Data, SPARQL language, and interfaces in Natural Language question-answering provide interesting solutions for querying such knowledge bases. We propose a method for translating natural language questions in SPARQL queries. We use Natural Language Processing tools, semantic resources, and the RDF triples description. The method is designed on 50 questions over 3 biomedical knowledge bases, and evaluated on 27 questions. It achieves 0.78 F-measure on the test set. The method for translating natural language questions into SPARQL queries is implemented as Perl module available at http://search.cpan.org/ thhamon/RDF-NLP-SPARQLQuery.
Concept-based query language approach to enterprise information systems
NASA Astrophysics Data System (ADS)
Niemi, Timo; Junkkari, Marko; Järvelin, Kalervo
2014-01-01
In enterprise information systems (EISs) it is necessary to model, integrate and compute very diverse data. In advanced EISs the stored data often are based both on structured (e.g. relational) and semi-structured (e.g. XML) data models. In addition, the ad hoc information needs of end-users may require the manipulation of data-oriented (structural), behavioural and deductive aspects of data. Contemporary languages capable of treating this kind of diversity suit only persons with good programming skills. In this paper we present a concept-oriented query language approach to manipulate this diversity so that the programming skill requirements are considerably reduced. In our query language, the features which need technical knowledge are hidden in application-specific concepts and structures. Therefore, users need not be aware of the underlying technology. Application-specific concepts and structures are represented by the modelling primitives of the extended RDOOM (relational deductive object-oriented modelling) which contains primitives for all crucial real world relationships (is-a relationship, part-of relationship, association), XML documents and views. Our query language also supports intensional and extensional-intensional queries, in addition to conventional extensional queries. In its query formulation, the end-user combines available application-specific concepts and structures through shared variables.
Knowledge Query Language (KQL)
2016-02-01
unlimited. This page intentionally left blank. iii EXECUTIVE SUMMARY Currently, queries for data ...retrieval from non-Structured Query Language (NoSQL) data stores are tightly coupled to the specific implementation of the data store implementation, making...of the storage content and format for querying NoSQL or relational data stores. This approach uses address expressions (or A-Expressions) embedded in
Pont, Frédéric; Fournié, Jean Jacques
2010-03-01
MS, the reference technology for proteomics, routinely produces large numbers of protein lists whose fast comparison would prove very useful. Unfortunately, most softwares only allow comparisons of two to three lists at once. We introduce here nwCompare, a simple tool for n-way comparison of several protein lists without any query language, and exemplify its use with differential and shared cancer cell proteomes. As the software compares character strings, it can be applied to any type of data mining, such as genomic or metabolomic datalists.
SPARQL Assist language-neutral query composer
2012-01-01
Background SPARQL query composition is difficult for the lay-person, and even the experienced bioinformatician in cases where the data model is unfamiliar. Moreover, established best-practices and internationalization concerns dictate that the identifiers for ontological terms should be opaque rather than human-readable, which further complicates the task of synthesizing queries manually. Results We present SPARQL Assist: a Web application that addresses these issues by providing context-sensitive type-ahead completion during SPARQL query construction. Ontological terms are suggested using their multi-lingual labels and descriptions, leveraging existing support for internationalization and language-neutrality. Moreover, the system utilizes the semantics embedded in ontologies, and within the query itself, to help prioritize the most likely suggestions. Conclusions To ensure success, the Semantic Web must be easily available to all users, regardless of locale, training, or preferred language. By enhancing support for internationalization, and moreover by simplifying the manual construction of SPARQL queries through the use of controlled-natural-language interfaces, we believe we have made some early steps towards simplifying access to Semantic Web resources. PMID:22373327
SPARQL assist language-neutral query composer.
McCarthy, Luke; Vandervalk, Ben; Wilkinson, Mark
2012-01-25
SPARQL query composition is difficult for the lay-person, and even the experienced bioinformatician in cases where the data model is unfamiliar. Moreover, established best-practices and internationalization concerns dictate that the identifiers for ontological terms should be opaque rather than human-readable, which further complicates the task of synthesizing queries manually. We present SPARQL Assist: a Web application that addresses these issues by providing context-sensitive type-ahead completion during SPARQL query construction. Ontological terms are suggested using their multi-lingual labels and descriptions, leveraging existing support for internationalization and language-neutrality. Moreover, the system utilizes the semantics embedded in ontologies, and within the query itself, to help prioritize the most likely suggestions. To ensure success, the Semantic Web must be easily available to all users, regardless of locale, training, or preferred language. By enhancing support for internationalization, and moreover by simplifying the manual construction of SPARQL queries through the use of controlled-natural-language interfaces, we believe we have made some early steps towards simplifying access to Semantic Web resources.
NASA Technical Reports Server (NTRS)
Aspinall, David; Denney, Ewen; Lueth, Christoph
2012-01-01
We motivate and introduce a query language PrQL designed for inspecting machine representations of proofs. PrQL natively supports hiproofs which express proof structure using hierarchical nested labelled trees. The core language presented in this paper is locally structured (first-order), with queries built using recursion and patterns over proof structure and rule names. We define the syntax and semantics of locally structured queries, demonstrate their power, and sketch some implementation experiments.
Querying Proofs (Work in Progress)
NASA Technical Reports Server (NTRS)
Aspinall, David; Denney, Ewen; Lueth, Christoph
2011-01-01
We motivate and introduce the basis for a query language designed for inspecting electronic representations of proofs. We argue that there is much to learn from large proofs beyond their validity, and that a dedicated query language can provide a principled way of implementing a family of useful operations.
A Framework for Building and Reasoning with Adaptive and Interoperable PMESII Models
2007-11-01
Description Logic SOA Service Oriented Architecture SPARQL Simple Protocol And RDF Query Language SQL Standard Query Language SROM Stability and...another by providing a more expressive ontological structure for one of the models, e.g., semantic networks can be mapped to first- order logical...Pellet is an open-source reasoner that works with OWL-DL. It accepts the SPARQL protocol and RDF query language ( SPARQL ) and provides a Java API to
ESTminer: a Web interface for mining EST contig and cluster databases.
Huang, Yecheng; Pumphrey, Janie; Gingle, Alan R
2005-03-01
ESTminer is a Web application and database schema for interactive mining of expressed sequence tag (EST) contig and cluster datasets. The Web interface contains a query frame that allows the selection of contigs/clusters with specific cDNA library makeup or a threshold number of members. The results are displayed as color-coded tree nodes, where the color indicates the fractional size of each cDNA library component. The nodes are expandable, revealing library statistics as well as EST or contig members, with links to sequence data, GenBank records or user configurable links. Also, the interface allows 'queries within queries' where the result set of a query is further filtered by the subsequent query. ESTminer is implemented in Java/JSP and the package, including MySQL and Oracle schema creation scripts, is available from http://cggc.agtec.uga.edu/Data/download.asp agingle@uga.edu.
An Experimental Investigation of Complexity in Database Query Formulation Tasks
ERIC Educational Resources Information Center
Casterella, Gretchen Irwin; Vijayasarathy, Leo
2013-01-01
Information Technology professionals and other knowledge workers rely on their ability to extract data from organizational databases to respond to business questions and support decision making. Structured query language (SQL) is the standard programming language for querying data in relational databases, and SQL skills are in high demand and are…
SIMS: addressing the problem of heterogeneity in databases
NASA Astrophysics Data System (ADS)
Arens, Yigal
1997-02-01
The heterogeneity of remotely accessible databases -- with respect to contents, query language, semantics, organization, etc. -- presents serious obstacles to convenient querying. The SIMS (single interface to multiple sources) system addresses this global integration problem. It does so by defining a single language for describing the domain about which information is stored in the databases and using this language as the query language. Each database to which SIMS is to provide access is modeled using this language. The model describes a database's contents, organization, and other relevant features. SIMS uses these models, together with a planning system drawing on techniques from artificial intelligence, to decompose a given user's high-level query into a series of queries against the databases and other data manipulation steps. The retrieval plan is constructed so as to minimize data movement over the network and maximize parallelism to increase execution speed. SIMS can recover from network failures during plan execution by obtaining data from alternate sources, when possible. SIMS has been demonstrated in the domains of medical informatics and logistics, using real databases.
Supporting temporal queries on clinical relational databases: the S-WATCH-QL language.
Combi, C.; Missora, L.; Pinciroli, F.
1996-01-01
Due to the ubiquitous and special nature of time, specially in clinical datábases there's the need of particular temporal data and operators. In this paper we describe S-WATCH-QL (Structured Watch Query Language), a temporal extension of SQL, the widespread query language based on the relational model. S-WATCH-QL extends the well-known SQL by the addition of: a) temporal data types that allow the storage of information with different levels of granularity; b) historical relations that can store together both instantaneous valid times and intervals; c) some temporal clauses, functions and predicates allowing to define complex temporal queries. PMID:8947722
Yang, Chihae; Tarkhov, Aleksey; Marusczyk, Jörg; Bienfait, Bruno; Gasteiger, Johann; Kleinoeder, Thomas; Magdziarz, Tomasz; Sacher, Oliver; Schwab, Christof H; Schwoebel, Johannes; Terfloth, Lothar; Arvidson, Kirk; Richard, Ann; Worth, Andrew; Rathman, James
2015-03-23
Chemotypes are a new approach for representing molecules, chemical substructures and patterns, reaction rules, and reactions. Chemotypes are capable of integrating types of information beyond what is possible using current representation methods (e.g., SMARTS patterns) or reaction transformations (e.g., SMIRKS, reaction SMILES). Chemotypes are expressed in the XML-based Chemical Subgraphs and Reactions Markup Language (CSRML), and can be encoded not only with connectivity and topology but also with properties of atoms, bonds, electronic systems, or molecules. CSRML has been developed in parallel with a public set of chemotypes, i.e., the ToxPrint chemotypes, which are designed to provide excellent coverage of environmental, regulatory, and commercial-use chemical space, as well as to represent chemical patterns and properties especially relevant to various toxicity concerns. A software application, ChemoTyper has also been developed and made publicly available in order to enable chemotype searching and fingerprinting against a target structure set. The public ChemoTyper houses the ToxPrint chemotype CSRML dictionary, as well as reference implementation so that the query specifications may be adopted by other chemical structure knowledge systems. The full specifications of the XML-based CSRML standard used to express chemotypes are publicly available to facilitate and encourage the exchange of structural knowledge.
p3d--Python module for structural bioinformatics.
Fufezan, Christian; Specht, Michael
2009-08-21
High-throughput bioinformatic analysis tools are needed to mine the large amount of structural data via knowledge based approaches. The development of such tools requires a robust interface to access the structural data in an easy way. For this the Python scripting language is the optimal choice since its philosophy is to write an understandable source code. p3d is an object oriented Python module that adds a simple yet powerful interface to the Python interpreter to process and analyse three dimensional protein structure files (PDB files). p3d's strength arises from the combination of a) very fast spatial access to the structural data due to the implementation of a binary space partitioning (BSP) tree, b) set theory and c) functions that allow to combine a and b and that use human readable language in the search queries rather than complex computer language. All these factors combined facilitate the rapid development of bioinformatic tools that can perform quick and complex analyses of protein structures. p3d is the perfect tool to quickly develop tools for structural bioinformatics using the Python scripting language.
TOPSAN: a dynamic web database for structural genomics.
Ellrott, Kyle; Zmasek, Christian M; Weekes, Dana; Sri Krishna, S; Bakolitsa, Constantina; Godzik, Adam; Wooley, John
2011-01-01
The Open Protein Structure Annotation Network (TOPSAN) is a web-based collaboration platform for exploring and annotating structures determined by structural genomics efforts. Characterization of those structures presents a challenge since the majority of the proteins themselves have not yet been characterized. Responding to this challenge, the TOPSAN platform facilitates collaborative annotation and investigation via a user-friendly web-based interface pre-populated with automatically generated information. Semantic web technologies expand and enrich TOPSAN's content through links to larger sets of related databases, and thus, enable data integration from disparate sources and data mining via conventional query languages. TOPSAN can be found at http://www.topsan.org.
Finding Relevant Data in a Sea of Languages
2016-04-26
full machine-translated text , unbiased word clouds , query-biased word clouds , and query-biased sentence...and information retrieval to automate language processing tasks so that the limited number of linguists available for analyzing text and spoken...the crime (stock market). The Cross-LAnguage Search Engine (CLASE) has already preprocessed the documents, extracting text to identify the language
An Expressive and Efficient Language for XML Information Retrieval.
ERIC Educational Resources Information Center
Chinenyanga, Taurai Tapiwa; Kushmerick, Nicholas
2002-01-01
Discusses XML and information retrieval and describes a query language, ELIXIR (expressive and efficient language for XML information retrieval), with a textual similarity operator that can be used for similarity joins. Explains the algorithm for answering ELIXIR queries to generate intermediate relational data. (Author/LRW)
DBPQL: A view-oriented query language for the Intel Data Base Processor
NASA Technical Reports Server (NTRS)
Fishwick, P. A.
1983-01-01
An interactive query language (BDPQL) for the Intel Data Base Processor (DBP) is defined. DBPQL includes a parser generator package which permits the analyst to easily create and manipulate the query statement syntax and semantics. The prototype language, DBPQL, includes trace and performance commands to aid the analyst when implementing new commands and analyzing the execution characteristics of the DBP. The DBPQL grammar file and associated key procedures are included as an appendix to this report.
Time series patterns and language support in DBMS
NASA Astrophysics Data System (ADS)
Telnarova, Zdenka
2017-07-01
This contribution is focused on pattern type Time Series as a rich in semantics representation of data. Some example of implementation of this pattern type in traditional Data Base Management Systems is briefly presented. There are many approaches how to manipulate with patterns and query patterns. Crucial issue can be seen in systematic approach to pattern management and specific pattern query language which takes into consideration semantics of patterns. Query language SQL-TS for manipulating with patterns is shown on Time Series data.
Graphical modeling and query language for hospitals.
Barzdins, Janis; Barzdins, Juris; Rencis, Edgars; Sostaks, Agris
2013-01-01
So far there has been little evidence that implementation of the health information technologies (HIT) is leading to health care cost savings. One of the reasons for this lack of impact by the HIT likely lies in the complexity of the business process ownership in the hospitals. The goal of our research is to develop a business model-based method for hospital use which would allow doctors to retrieve directly the ad-hoc information from various hospital databases. We have developed a special domain-specific process modelling language called the MedMod. Formally, we define the MedMod language as a profile on UML Class diagrams, but we also demonstrate it on examples, where we explain the semantics of all its elements informally. Moreover, we have developed the Process Query Language (PQL) that is based on MedMod process definition language. The purpose of PQL is to allow a doctor querying (filtering) runtime data of hospital's processes described using MedMod. The MedMod language tries to overcome deficiencies in existing process modeling languages, allowing to specify the loosely-defined sequence of the steps to be performed in the clinical process. The main advantages of PQL are in two main areas - usability and efficiency. They are: 1) the view on data through "glasses" of familiar process, 2) the simple and easy-to-perceive means of setting filtering conditions require no more expertise than using spreadsheet applications, 3) the dynamic response to each step in construction of the complete query that shortens the learning curve greatly and reduces the error rate, and 4) the selected means of filtering and data retrieving allows to execute queries in O(n) time regarding the size of the dataset. We are about to continue developing this project with three further steps. First, we are planning to develop user-friendly graphical editors for the MedMod process modeling and query languages. The second step is to do evaluation of usability the proposed language and tool involving the physicians from several hospitals in Latvia and working with real data from these hospitals. Our third step is to develop an efficient implementation of the query language.
Miwa, Makoto; Ohta, Tomoko; Rak, Rafal; Rowley, Andrew; Kell, Douglas B.; Pyysalo, Sampo; Ananiadou, Sophia
2013-01-01
Motivation: To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. Method: We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several ranking methods, using various heuristic and machine-learning approaches. Results: Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText. Availability: An online demonstration of PathText 2 and the annotated corpus are available for research purposes at http://www.nactem.ac.uk/pathtext2/. Contact: makoto.miwa@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813008
NASA Astrophysics Data System (ADS)
Arenas, Marcelo; Gutierrez, Claudio; Pérez, Jorge
The goal of this paper is to give an overview of the basics of the theory of RDF databases. We provide a formal definition of RDF that includes the features that distinguish this model from other graph data models. We then move into the fundamental issue of querying RDF data. We start by considering the RDF query language SPARQL, which is a W3C Recommendation since January 2008. We provide an algebraic syntax and a compositional semantics for this language, study the complexity of the evaluation problem for different fragments of SPARQL, and consider the problem of optimizing the evaluation of SPARQL queries, showing that a natural fragment of this language has some good properties in this respect. We furthermore study the expressive power of SPARQL, by comparing it with some well-known query languages such as relational algebra. We conclude by considering the issue of querying RDF data in the presence of RDFS vocabulary. In particular, we present a recently proposed extension of SPARQL with navigational capabilities.
Shuttle Data Center File-Processing Tool in Java
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Miller, Walter H.
2006-01-01
A Java-language computer program has been written to facilitate mining of data in files in the Shuttle Data Center (SDC) archives. This program can be executed on a variety of workstations or via Web-browser programs. This program is partly similar to prior C-language programs used for the same purpose, while differing from those programs in that it exploits the platform-neutrality of Java in implementing several features that are important for analysis of large sets of time-series data. The program supports regular expression queries of SDC archive files, reads the files, interleaves the time-stamped samples according to a chosen output, then transforms the results into that format. A user can choose among a variety of output file formats that are useful for diverse purposes, including plotting, Markov modeling, multivariate density estimation, and wavelet multiresolution analysis, as well as for playback of data in support of simulation and testing.
Recommender System for Learning SQL Using Hints
ERIC Educational Resources Information Center
Lavbic, Dejan; Matek, Tadej; Zrnec, Aljaž
2017-01-01
Today's software industry requires individuals who are proficient in as many programming languages as possible. Structured query language (SQL), as an adopted standard, is no exception, as it is the most widely used query language to retrieve and manipulate data. However, the process of learning SQL turns out to be challenging. The need for a…
Ontological Approach to Military Knowledge Modeling and Management
2004-03-01
federated search mechanism has to reformulate user queries (expressed using the ontology) in the query languages of the different sources (e.g. SQL...ontologies as a common terminology – Unified query to perform federated search • Query processing – Ontology mapping to sources reformulate queries
Andrenucci, Andrea
2016-01-01
Few studies have been performed within cross-language information retrieval (CLIR) in the field of psychology and psychotherapy. The aim of this paper is to to analyze and assess the quality of available query translation methods for CLIR on a health portal for psychology. A test base of 100 user queries, 50 Multi Word Units (WUs) and 50 Single WUs, was used. Swedish was the source language and English the target language. Query translation methods based on machine translation (MT) and dictionary look-up were utilized in order to submit query translations to two search engines: Google Site Search and Quick Ask. Standard IR evaluation measures and a qualitative analysis were utilized to assess the results. The lexicon extracted with word alignment of the portal's parallel corpus provided better statistical results among dictionary look-ups. Google Translate provided more linguistically correct translations overall and also delivered better retrieval results in MT.
Query Classification and Study of University Students' Search Trends
ERIC Educational Resources Information Center
Maabreh, Majdi A.; Al-Kabi, Mohammed N.; Alsmadi, Izzat M.
2012-01-01
Purpose: This study is an attempt to develop an automatic identification method for Arabic web queries and divide them into several query types using data mining. In addition, it seeks to evaluate the impact of the academic environment on using the internet. Design/methodology/approach: The web log files were collected from one of the higher…
BioWarehouse: a bioinformatics database warehouse toolkit
Lee, Thomas J; Pouliot, Yannick; Wagner, Valerie; Gupta, Priyanka; Stringer-Calvert, David WJ; Tenenbaum, Jessica D; Karp, Peter D
2006-01-01
Background This article addresses the problem of interoperation of heterogeneous bioinformatics databases. Results We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. Conclusion BioWarehouse embodies significant progress on the database integration problem for bioinformatics. PMID:16556315
BioWarehouse: a bioinformatics database warehouse toolkit.
Lee, Thomas J; Pouliot, Yannick; Wagner, Valerie; Gupta, Priyanka; Stringer-Calvert, David W J; Tenenbaum, Jessica D; Karp, Peter D
2006-03-23
This article addresses the problem of interoperation of heterogeneous bioinformatics databases. We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. BioWarehouse embodies significant progress on the database integration problem for bioinformatics.
Query Language for Location-Based Services: A Model Checking Approach
NASA Astrophysics Data System (ADS)
Hoareau, Christian; Satoh, Ichiro
We present a model checking approach to the rationale, implementation, and applications of a query language for location-based services. Such query mechanisms are necessary so that users, objects, and/or services can effectively benefit from the location-awareness of their surrounding environment. The underlying data model is founded on a symbolic model of space organized in a tree structure. Once extended to a semantic model for modal logic, we regard location query processing as a model checking problem, and thus define location queries as hybrid logicbased formulas. Our approach is unique to existing research because it explores the connection between location models and query processing in ubiquitous computing systems, relies on a sound theoretical basis, and provides modal logic-based query mechanisms for expressive searches over a decentralized data structure. A prototype implementation is also presented and will be discussed.
Diamond Eye: a distributed architecture for image data mining
NASA Astrophysics Data System (ADS)
Burl, Michael C.; Fowlkes, Charless; Roden, Joe; Stechert, Andre; Mukhtar, Saleem
1999-02-01
Diamond Eye is a distributed software architecture, which enables users (scientists) to analyze large image collections by interacting with one or more custom data mining servers via a Java applet interface. Each server is coupled with an object-oriented database and a computational engine, such as a network of high-performance workstations. The database provides persistent storage and supports querying of the 'mined' information. The computational engine provides parallel execution of expensive image processing, object recognition, and query-by-content operations. Key benefits of the Diamond Eye architecture are: (1) the design promotes trial evaluation of advanced data mining and machine learning techniques by potential new users (all that is required is to point a web browser to the appropriate URL), (2) software infrastructure that is common across a range of science mining applications is factored out and reused, and (3) the system facilitates closer collaborations between algorithm developers and domain experts.
Luo, Yuan; Szolovits, Peter
2016-01-01
In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy position constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types from Allen's interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmentations to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval query tasks on all of Allen's relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions.
Luo, Yuan; Szolovits, Peter
2016-01-01
In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy position constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types from Allen’s interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmentations to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval query tasks on all of Allen’s relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions. PMID:27478379
GraQL: A Query Language for High-Performance Attributed Graph Databases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavarría-Miranda, Daniel; Castellana, Vito G.; Morari, Alessandro
Graph databases have gained increasing interest in the last few years due to the emergence of data sources which are not easily analyzable in traditional relational models or for which a graph data model is the natural representation. In order to understand the design and implementation choices for an attributed graph database backend and query language, we have started to design our infrastructure for attributed graph databases. In this paper, we describe the design considerations of our in-memory attributed graph database system with a particular focus on the data definition and query language components.
Mining Tasks from the Web Anchor Text Graph: MSR Notebook Paper for the TREC 2015 Tasks Track
2015-11-20
Mining Tasks from the Web Anchor Text Graph: MSR Notebook Paper for the TREC 2015 Tasks Track Paul N. Bennett Microsoft Research Redmond, USA pauben...anchor text graph has proven useful in the general realm of query reformulation [2], we sought to quantify the value of extracting key phrases from...anchor text in the broader setting of the task understanding track. Given a query, our approach considers a simple method for identifying a relevant
Schuers, Matthieu; Joulakian, Mher; Kerdelhué, Gaetan; Segas, Léa; Grosjean, Julien; Darmoni, Stéfan J; Griffon, Nicolas
2017-07-03
MEDLINE is the most widely used medical bibliographic database in the world. Most of its citations are in English and this can be an obstacle for some researchers to access the information the database contains. We created a multilingual query builder to facilitate access to the PubMed subset using a language other than English. The aim of our study was to assess the impact of this multilingual query builder on the quality of PubMed queries for non-native English speaking physicians and medical researchers. A randomised controlled study was conducted among French speaking general practice residents. We designed a multi-lingual query builder to facilitate information retrieval, based on available MeSH translations and providing users with both an interface and a controlled vocabulary in their own language. Participating residents were randomly allocated either the French or the English version of the query builder. They were asked to translate 12 short medical questions into MeSH queries. The main outcome was the quality of the query. Two librarians blind to the arm independently evaluated each query, using a modified published classification that differentiated eight types of errors. Twenty residents used the French version of the query builder and 22 used the English version. 492 queries were analysed. There were significantly more perfect queries in the French group vs. the English group (respectively 37.9% vs. 17.9%; p < 0.01). It took significantly more time for the members of the English group than the members of the French group to build each query, respectively 194 sec vs. 128 sec; p < 0.01. This multi-lingual query builder is an effective tool to improve the quality of PubMed queries in particular for researchers whose first language is not English.
XGI: a graphical interface for XQuery creation.
Li, Xiang; Gennari, John H; Brinkley, James F
2007-10-11
XML has become the default standard for data exchange among heterogeneous data sources, and in January 2007 XQuery (XML Query language) was recommended by the World Wide Web Consortium as the query language for XML. However, XQuery is a complex language that is difficult for non-programmers to learn. We have therefore developed XGI (XQuery Graphical Interface), a visual interface for graphically generating XQuery. In this paper we demonstrate the functionality of XGI through its application to a biomedical XML dataset. We describe the system architecture and the features of XGI in relation to several existing querying systems, we demonstrate the system's usability through a sample query construction, and we discuss a preliminary evaluation of XGI. Finally, we describe some limitations of the system, and our plans for future improvements.
Big Data and Dysmenorrhea: What Questions Do Women and Men Ask About Menstrual Pain?
Chen, Chen X; Groves, Doyle; Miller, Wendy R; Carpenter, Janet S
2018-04-30
Menstrual pain is highly prevalent among women of reproductive age. As the general public increasingly obtains health information online, Big Data from online platforms provide novel sources to understand the public's perspectives and information needs about menstrual pain. The study's purpose was to describe salient queries about dysmenorrhea using Big Data from a question and answer platform. We performed text-mining of 1.9 billion queries from ChaCha, a United States-based question and answer platform. Dysmenorrhea-related queries were identified by using keyword searching. Each relevant query was split into token words (i.e., meaningful words or phrases) and stop words (i.e., not meaningful functional words). Word Adjacency Graph (WAG) modeling was used to detect clusters of queries and visualize the range of dysmenorrhea-related topics. We constructed two WAG models respectively from queries by women of reproductive age and bymen. Salient themes were identified through inspecting clusters of WAG models. We identified two subsets of queries: Subset 1 contained 507,327 queries from women aged 13-50 years. Subset 2 contained 113,888 queries from men aged 13 or above. WAG modeling revealed topic clusters for each subset. Between female and male subsets, topic clusters overlapped on dysmenorrhea symptoms and management. Among female queries, there were distinctive topics on approaching menstrual pain at school and menstrual pain-related conditions; while among male queries, there was a distinctive cluster of queries on menstrual pain from male's perspectives. Big Data mining of the ChaCha ® question and answer service revealed a series of information needs among women and men on menstrual pain. Findings may be useful in structuring the content and informing the delivery platform for educational interventions.
An XML-Based Manipulation and Query Language for Rule-Based Information
NASA Astrophysics Data System (ADS)
Mansour, Essam; Höpfner, Hagen
Rules are utilized to assist in the monitoring process that is required in activities, such as disease management and customer relationship management. These rules are specified according to the application best practices. Most of research efforts emphasize on the specification and execution of these rules. Few research efforts focus on managing these rules as one object that has a management life-cycle. This paper presents our manipulation and query language that is developed to facilitate the maintenance of this object during its life-cycle and to query the information contained in this object. This language is based on an XML-based model. Furthermore, we evaluate the model and language using a prototype system applied to a clinical case study.
Visual information mining in remote sensing image archives
NASA Astrophysics Data System (ADS)
Pelizzari, Andrea; Descargues, Vincent; Datcu, Mihai P.
2002-01-01
The present article focuses on the development of interactive exploratory tools for visually mining the image content in large remote sensing archives. Two aspects are treated: the iconic visualization of the global information in the archive and the progressive visualization of the image details. The proposed methods are integrated in the Image Information Mining (I2M) system. The images and image structure in the I2M system are indexed based on a probabilistic approach. The resulting links are managed by a relational data base. Both the intrinsic complexity of the observed images and the diversity of user requests result in a great number of associations in the data base. Thus new tools have been designed to visualize, in iconic representation the relationships created during a query or information mining operation: the visualization of the query results positioned on the geographical map, quick-looks gallery, visualization of the measure of goodness of the query, visualization of the image space for statistical evaluation purposes. Additionally the I2M system is enhanced with progressive detail visualization in order to allow better access for operator inspection. I2M is a three-tier Java architecture and is optimized for the Internet.
Selecting the Best Mobile Information Service with Natural Language User Input
NASA Astrophysics Data System (ADS)
Feng, Qiangze; Qi, Hongwei; Fukushima, Toshikazu
Information services accessed via mobile phones provide information directly relevant to subscribers’ daily lives and are an area of dynamic market growth worldwide. Although many information services are currently offered by mobile operators, many of the existing solutions require a unique gateway for each service, and it is inconvenient for users to have to remember a large number of such gateways. Furthermore, the Short Message Service (SMS) is very popular in China and Chinese users would prefer to access these services in natural language via SMS. This chapter describes a Natural Language Based Service Selection System (NL3S) for use with a large number of mobile information services. The system can accept user queries in natural language and navigate it to the required service. Since it is difficult for existing methods to achieve high accuracy and high coverage and anticipate which other services a user might want to query, the NL3S is developed based on a Multi-service Ontology (MO) and Multi-service Query Language (MQL). The MO and MQL provide semantic and linguistic knowledge, respectively, to facilitate service selection for a user query and to provide adaptive service recommendations. Experiments show that the NL3S can achieve 75-95% accuracies and 85-95% satisfactions for processing various styles of natural language queries. A trial involving navigation of 30 different mobile services shows that the NL3S can provide a viable commercial solution for mobile operators.
toxoMine: an integrated omics data warehouse for Toxoplasma gondii systems biology research
Rhee, David B.; Croken, Matthew McKnight; Shieh, Kevin R.; Sullivan, Julie; Micklem, Gos; Kim, Kami; Golden, Aaron
2015-01-01
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that must monitor for changes in the host environment and respond accordingly; however, it is still not fully known which genetic or epigenetic factors are involved in regulating virulence traits of T. gondii. There are on-going efforts to elucidate the mechanisms regulating the stage transition process via the application of high-throughput epigenomics, genomics and proteomics techniques. Given the range of experimental conditions and the typical yield from such high-throughput techniques, a new challenge arises: how to effectively collect, organize and disseminate the generated data for subsequent data analysis. Here, we describe toxoMine, which provides a powerful interface to support sophisticated integrative exploration of high-throughput experimental data and metadata, providing researchers with a more tractable means toward understanding how genetic and/or epigenetic factors play a coordinated role in determining pathogenicity of T. gondii. As a data warehouse, toxoMine allows integration of high-throughput data sets with public T. gondii data. toxoMine is also able to execute complex queries involving multiple data sets with straightforward user interaction. Furthermore, toxoMine allows users to define their own parameters during the search process that gives users near-limitless search and query capabilities. The interoperability feature also allows users to query and examine data available in other InterMine systems, which would effectively augment the search scope beyond what is available to toxoMine. toxoMine complements the major community database ToxoDB by providing a data warehouse that enables more extensive integrative studies for T. gondii. Given all these factors, we believe it will become an indispensable resource to the greater infectious disease research community. Database URL: http://toxomine.org PMID:26130662
Manchester visual query language
NASA Astrophysics Data System (ADS)
Oakley, John P.; Davis, Darryl N.; Shann, Richard T.
1993-04-01
We report a database language for visual retrieval which allows queries on image feature information which has been computed and stored along with images. The language is novel in that it provides facilities for dealing with feature data which has actually been obtained from image analysis. Each line in the Manchester Visual Query Language (MVQL) takes a set of objects as input and produces another, usually smaller, set as output. The MVQL constructs are mainly based on proven operators from the field of digital image analysis. An example is the Hough-group operator which takes as input a specification for the objects to be grouped, a specification for the relevant Hough space, and a definition of the voting rule. The output is a ranked list of high scoring bins. The query could be directed towards one particular image or an entire image database, in the latter case the bins in the output list would in general be associated with different images. We have implemented MVQL in two layers. The command interpreter is a Lisp program which maps each MVQL line to a sequence of commands which are used to control a specialized database engine. The latter is a hybrid graph/relational system which provides low-level support for inheritance and schema evolution. In the paper we outline the language and provide examples of useful queries. We also describe our solution to the engineering problems associated with the implementation of MVQL.
A New Publicly Available Chemical Query Language, CSRML ...
A new XML-based query language, CSRML, has been developed for representing chemical substructures, molecules, reaction rules, and reactions. CSRML queries are capable of integrating additional forms of information beyond the simple substructure (e.g., SMARTS) or reaction transformation (e.g., SMIRKS, reaction SMILES) queries currently in use. Chemotypes, a term used to represent advanced CSRML queries for repeated application can be encoded not only with connectivity and topology, but also with properties of atoms, bonds, electronic systems, or molecules. The CSRML language has been developed in parallel with a public set of chemotypes, i.e., the ToxPrint chemotypes, which are designed to provide excellent coverage of environmental, regulatory and commercial use chemical space, as well as to represent features and frameworks believed to be especially relevant to toxicity concerns. A software application, ChemoTyper, has also been developed and made publicly available to enable chemotype searching and fingerprinting against a target structure set. The public ChemoTyper houses the ToxPrint chemotype CSRML dictionary, as well as reference implementation so that the query specifications may be adopted by other chemical structure knowledge systems. The full specifications of the XML standard used in CSRML-based chemotypes are publicly available to facilitate and encourage the exchange of structural knowledge. Paper details specifications for a new XML-based query lan
Query Expansion and Query Translation as Logical Inference.
ERIC Educational Resources Information Center
Nie, Jian-Yun
2003-01-01
Examines query expansion during query translation in cross language information retrieval and develops a general framework for inferential information retrieval in two particular contexts: using fuzzy logic and probability theory. Obtains evaluation formulas that are shown to strongly correspond to those used in other information retrieval models.…
A Text Knowledge Base from the AI Handbook.
ERIC Educational Resources Information Center
Simmons, Robert F.
1987-01-01
Describes a prototype natural language text knowledge system (TKS) that was used to organize 50 pages of a handbook on artificial intelligence as an inferential knowledge base with natural language query and command capabilities. Representation of text, database navigation, query systems, discourse structuring, and future research needs are…
Seismic Search Engine: A distributed database for mining large scale seismic data
NASA Astrophysics Data System (ADS)
Liu, Y.; Vaidya, S.; Kuzma, H. A.
2009-12-01
The International Monitoring System (IMS) of the CTBTO collects terabytes worth of seismic measurements from many receiver stations situated around the earth with the goal of detecting underground nuclear testing events and distinguishing them from other benign, but more common events such as earthquakes and mine blasts. The International Data Center (IDC) processes and analyzes these measurements, as they are collected by the IMS, to summarize event detections in daily bulletins. Thereafter, the data measurements are archived into a large format database. Our proposed Seismic Search Engine (SSE) will facilitate a framework for data exploration of the seismic database as well as the development of seismic data mining algorithms. Analogous to GenBank, the annotated genetic sequence database maintained by NIH, through SSE, we intend to provide public access to seismic data and a set of processing and analysis tools, along with community-generated annotations and statistical models to help interpret the data. SSE will implement queries as user-defined functions composed from standard tools and models. Each query is compiled and executed over the database internally before reporting results back to the user. Since queries are expressed with standard tools and models, users can easily reproduce published results within this framework for peer-review and making metric comparisons. As an illustration, an example query is “what are the best receiver stations in East Asia for detecting events in the Middle East?” Evaluating this query involves listing all receiver stations in East Asia, characterizing known seismic events in that region, and constructing a profile for each receiver station to determine how effective its measurements are at predicting each event. The results of this query can be used to help prioritize how data is collected, identify defective instruments, and guide future sensor placements.
A Query Integrator and Manager for the Query Web
Brinkley, James F.; Detwiler, Landon T.
2012-01-01
We introduce two concepts: the Query Web as a layer of interconnected queries over the document web and the semantic web, and a Query Web Integrator and Manager (QI) that enables the Query Web to evolve. QI permits users to write, save and reuse queries over any web accessible source, including other queries saved in other installations of QI. The saved queries may be in any language (e.g. SPARQL, XQuery); the only condition for interconnection is that the queries return their results in some form of XML. This condition allows queries to chain off each other, and to be written in whatever language is appropriate for the task. We illustrate the potential use of QI for several biomedical use cases, including ontology view generation using a combination of graph-based and logical approaches, value set generation for clinical data management, image annotation using terminology obtained from an ontology web service, ontology-driven brain imaging data integration, small-scale clinical data integration, and wider-scale clinical data integration. Such use cases illustrate the current range of applications of QI and lead us to speculate about the potential evolution from smaller groups of interconnected queries into a larger query network that layers over the document and semantic web. The resulting Query Web could greatly aid researchers and others who now have to manually navigate through multiple information sources in order to answer specific questions. PMID:22531831
Path querying system on mobile devices
NASA Astrophysics Data System (ADS)
Lin, Xing; Wang, Yifei; Tian, Yuan; Wu, Lun
2006-01-01
Traditional approaches to path querying problems are not efficient and convenient under most circumstances. A more convenient and reliable approach to this problem has to be found. This paper is devoted to a path querying solution on mobile devices. By using an improved Dijkstra's shortest path algorithm and a natural language translating module, this system can help people find the shortest path between two places through their cell phones or other mobile devices. The chosen path is prompted in text of natural language, as well as a map picture. This system would be useful in solving best path querying problems and have potential to be a profitable business system.
Shuttle-Data-Tape XML Translator
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Osborne, Richard N.
2005-01-01
JSDTImport is a computer program for translating native Shuttle Data Tape (SDT) files from American Standard Code for Information Interchange (ASCII) format into databases in other formats. JSDTImport solves the problem of organizing the SDT content, affording flexibility to enable users to choose how to store the information in a database to better support client and server applications. JSDTImport can be dynamically configured by use of a simple Extensible Markup Language (XML) file. JSDTImport uses this XML file to define how each record and field will be parsed, its layout and definition, and how the resulting database will be structured. JSDTImport also includes a client application programming interface (API) layer that provides abstraction for the data-querying process. The API enables a user to specify the search criteria to apply in gathering all the data relevant to a query. The API can be used to organize the SDT content and translate into a native XML database. The XML format is structured into efficient sections, enabling excellent query performance by use of the XPath query language. Optionally, the content can be translated into a Structured Query Language (SQL) database for fast, reliable SQL queries on standard database server computers.
SQL/NF Translator for the Triton Nested Relational Database System
1990-12-01
18as., Ohio .. 9~~ ~~ 1 4- AFIT/GCE/ENG/90D-05 SQL/Nk1 TRANSLATOR FOR THE TRITON NESTED RELATIONAL DATABASE SYSTEM THESIS Craig William Schnepf Captain...FOR THE TRITON NESTED RELATIONAL DATABASE SYSTEM THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technnlogy... systems . The SQL/NF query language used for the nested relationil model is an extension of the popular relational model query language SQL. The query
Extending the Query Language of a Data Warehouse for Patient Recruitment.
Dietrich, Georg; Ertl, Maximilian; Fette, Georg; Kaspar, Mathias; Krebs, Jonathan; Mackenrodt, Daniel; Störk, Stefan; Puppe, Frank
2017-01-01
Patient recruitment for clinical trials is a laborious task, as many texts have to be screened. Usually, this work is done manually and takes a lot of time. We have developed a system that automates the screening process. Besides standard keyword queries, the query language supports extraction of numbers, time-spans and negations. In a feasibility study for patient recruitment from a stroke unit with 40 patients, we achieved encouraging extraction rates above 95% for numbers and negations and ca. 86% for time spans.
Percolator: Scalable Pattern Discovery in Dynamic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sutanay; Purohit, Sumit; Lin, Peng
We demonstrate Percolator, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of Percolator is to dynamically decide and verify a small fraction of patterns and their in- stances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a) the feasibility of incremental pattern mining by walkingmore » through each component of Percolator, b) the efficiency and scalability of Percolator over the sheer size of real-world dynamic graphs, and c) how the user-friendly GUI of Percolator inter- acts with users to support keyword-based queries that detect, browse and inspect trending patterns. We also demonstrate two user cases of Percolator, in social media trend analysis and academic collaboration analysis, respectively.« less
An advanced web query interface for biological databases
Latendresse, Mario; Karp, Peter D.
2010-01-01
Although most web-based biological databases (DBs) offer some type of web-based form to allow users to author DB queries, these query forms are quite restricted in the complexity of DB queries that they can formulate. They can typically query only one DB, and can query only a single type of object at a time (e.g. genes) with no possible interaction between the objects—that is, in SQL parlance, no joins are allowed between DB objects. Writing precise queries against biological DBs is usually left to a programmer skillful enough in complex DB query languages like SQL. We present a web interface for building precise queries for biological DBs that can construct much more precise queries than most web-based query forms, yet that is user friendly enough to be used by biologists. It supports queries containing multiple conditions, and connecting multiple object types without using the join concept, which is unintuitive to biologists. This interactive web interface is called the Structured Advanced Query Page (SAQP). Users interactively build up a wide range of query constructs. Interactive documentation within the SAQP describes the schema of the queried DBs. The SAQP is based on BioVelo, a query language based on list comprehension. The SAQP is part of the Pathway Tools software and is available as part of several bioinformatics web sites powered by Pathway Tools, including the BioCyc.org site that contains more than 500 Pathway/Genome DBs. PMID:20624715
Quality performance measurement using the text of electronic medical records.
Pakhomov, Serguei; Bjornsen, Susan; Hanson, Penny; Smith, Steven
2008-01-01
Annual foot examinations (FE) constitute a critical component of care for diabetes. Documented evidence of FE is central to quality-of-care reporting; however, manual abstraction of electronic medical records (EMR) is slow, expensive, and subject to error. The objective of this study was to test the hypothesis that text mining of the EMR results in ascertaining FE evidence with accuracy comparable to manual abstraction. The text of inpatient and outpatient clinical reports was searched with natural-language (NL) queries for evidence of neurological, vascular, and structural components of FE. A manual medical records audit was used for validation. The reference standard consisted of 3 independent sets used for development (n=200 ), validation (n=118), and reliability (n=80). The reliability of manual auditing was 91% (95% confidence interval [CI]= 85-97) and was determined by comparing the results of an additional audit to the original audit using the records in the reliability set. The accuracy of the NL query requiring 1 of 3 FE components was 89% (95% CI=83-95). The accuracy of the query requiring any 2 of 3 components was 88% (95% CI=82-94). The accuracy of the query requiring all 3 components was 75% (95% CI= 68- 83). The free text of the EMR is a viable source of information necessary for quality of health care reporting on the evidence of FE for patients with diabetes. The low-cost methodology is scalable to monitoring large numbers of patients and can be used to streamline quality-of-care reporting.
Regular paths in SparQL: querying the NCI Thesaurus.
Detwiler, Landon T; Suciu, Dan; Brinkley, James F
2008-11-06
OWL, the Web Ontology Language, provides syntax and semantics for representing knowledge for the semantic web. Many of the constructs of OWL have a basis in the field of description logics. While the formal underpinnings of description logics have lead to a highly computable language, it has come at a cognitive cost. OWL ontologies are often unintuitive to readers lacking a strong logic background. In this work we describe GLEEN, a regular path expression library, which extends the RDF query language SparQL to support complex path expressions over OWL and other RDF-based ontologies. We illustrate the utility of GLEEN by showing how it can be used in a query-based approach to defining simpler, more intuitive views of OWL ontologies. In particular we show how relatively simple GLEEN-enhanced SparQL queries can create views of the OWL version of the NCI Thesaurus that match the views generated by the web-based NCI browser.
Social media based NPL system to find and retrieve ARM data: Concept paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet; Giansiracusa, Michael T.; Kumar, Jitendra
Information connectivity and retrieval has a role in our daily lives. The most pervasive source of online information is databases. The amount of data is growing at rapid rate and database technology is improving and having a profound effect. Almost all online applications are storing and retrieving information from databases. One challenge in supplying the public with wider access to informational databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it may notmore » be practical to make the public aware of the structure of the database. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide more intuitive method for generating database queries and delivering responses. Social media makes it possible to interact with a wide section of the population. Through this medium, and with the help of Natural Language Processing (NLP) we can make the data of the Atmospheric Radiation Measurement Data Center (ADC) more accessible to the public. We propose an architecture for using Apache Lucene/Solr [1], OpenML [2,3], and Kafka [4] to generate an automated query/response system with inputs from Twitter5, our Cassandra DB, and our log database. Using the Twitter API and NLP we can give the public the ability to ask questions of our database and get automated responses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet; Giansiracusa, Michael T.; Kumar, Jitendra
Information connectivity and retrieval has a role in our daily lives. The most pervasive source of online information is databases. The amount of data is growing at rapid rate and database technology is improving and having a profound effect. Almost all online applications are storing and retrieving information from databases. One challenge in supplying the public with wider access to informational databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it may notmore » be practical to make the public aware of the structure of the database. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide more intuitive method for generating database queries and delivering responses. Social media makes it possible to interact with a wide section of the population. Through this medium, and with the help of Natural Language Processing (NLP) we can make the data of the Atmospheric Radiation Measurement Data Center (ADC) more accessible to the public. We propose an architecture for using Apache Lucene/Solr [1], OpenML [2,3], and Kafka [4] to generate an automated query/response system with inputs from Twitter5, our Cassandra DB, and our log database. Using the Twitter API and NLP we can give the public the ability to ask questions of our database and get automated responses.« less
A natural language query system for Hubble Space Telescope proposal selection
NASA Technical Reports Server (NTRS)
Hornick, Thomas; Cohen, William; Miller, Glenn
1987-01-01
The proposal selection process for the Hubble Space Telescope is assisted by a robust and easy to use query program (TACOS). The system parses an English subset language sentence regardless of the order of the keyword phases, allowing the user a greater flexibility than a standard command query language. Capabilities for macro and procedure definition are also integrated. The system was designed for flexibility in both use and maintenance. In addition, TACOS can be applied to any knowledge domain that can be expressed in terms of a single reaction. The system was implemented mostly in Common LISP. The TACOS design is described in detail, with particular attention given to the implementation methods of sentence processing.
ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.
Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y
2008-08-12
New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.
Design of an On-Line Query Language for Full Text Patent Search.
ERIC Educational Resources Information Center
Glantz, Richard S.
The design of an English-like query language and an interactive computer environment for searching the full text of the U.S. patent collection are discussed. Special attention is paid to achieving a transparent user interface, to providing extremely broad search capabilities (including nested substitution classes, Kleene star events, and domain…
SP2Bench: A SPARQL Performance Benchmark
NASA Astrophysics Data System (ADS)
Schmidt, Michael; Hornung, Thomas; Meier, Michael; Pinkel, Christoph; Lausen, Georg
A meaningful analysis and comparison of both existing storage schemes for RDF data and evaluation approaches for SPARQL queries necessitates a comprehensive and universal benchmark platform. We present SP2Bench, a publicly available, language-specific performance benchmark for the SPARQL query language. SP2Bench is settled in the DBLP scenario and comprises a data generator for creating arbitrarily large DBLP-like documents and a set of carefully designed benchmark queries. The generated documents mirror vital key characteristics and social-world distributions encountered in the original DBLP data set, while the queries implement meaningful requests on top of this data, covering a variety of SPARQL operator constellations and RDF access patterns. In this chapter, we discuss requirements and desiderata for SPARQL benchmarks and present the SP2Bench framework, including its data generator, benchmark queries and performance metrics.
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Liu, I-Hsiung
1985-01-01
This Working Paper Series entry represents a collection of presentation visuals associated with the companion report entitled Natural Language Query System Design for Interactive Information Storage and Retrieval Systems, USL/DBMS NASA/RECON Working Paper Series report number DBMS.NASA/RECON-17.
The Effectiveness of Stemming for Natural-Language Access to Slovene Textual Data.
ERIC Educational Resources Information Center
Popovic, Mirko; Willett, Peter
1992-01-01
Reports on the use of stemming for Slovene language documents and queries in free-text retrieval systems and demonstrates that an appropriate stemming algorithm results in an increase in retrieval effectiveness when compared with nonstemming processing. A comparison is made with stemming of English versions of the same documents and queries. (24…
ERIC Educational Resources Information Center
Piyayodilokchai, Hongsiri; Panjaburee, Patcharin; Laosinchai, Parames; Ketpichainarong, Watcharee; Ruenwongsa, Pintip
2013-01-01
With the benefit of multimedia and the learning cycle approach in promoting effective active learning, this paper proposed a learning cycle approach-based, multimedia-supplemented instructional unit for Structured Query Language (SQL) for second-year undergraduate students with the aim of enhancing their basic knowledge of SQL and ability to apply…
NASA Astrophysics Data System (ADS)
Curland, Matthew; Halpin, Terry; Stirewalt, Kurt
A conceptual schema of an information system specifies the fact structures of interest as well as related business rules that are either constraints or derivation rules. Constraints restrict the possible or permitted states or state transitions, while derivation rules enable some facts to be derived from others. Graphical languages are commonly used to specify conceptual schemas, but often need to be supplemented by more expressive textual languages to capture additional business rules, as well as conceptual queries that enable conceptual models to be queried directly. This paper describes research to provide a role calculus to underpin textual languages for Object-Role Modeling (ORM), to enable business rules and queries to be formulated in a language intelligible to business users. The role-based nature of this calculus, which exploits the attribute-free nature of ORM, appears to offer significant advantages over other proposed approaches, especially in the area of semantic stability.
Searching for cancer information on the internet: analyzing natural language search queries.
Bader, Judith L; Theofanos, Mary Frances
2003-12-11
Searching for health information is one of the most-common tasks performed by Internet users. Many users begin searching on popular search engines rather than on prominent health information sites. We know that many visitors to our (National Cancer Institute) Web site, cancer.gov, arrive via links in search engine result. To learn more about the specific needs of our general-public users, we wanted to understand what lay users really wanted to know about cancer, how they phrased their questions, and how much detail they used. The National Cancer Institute partnered with AskJeeves, Inc to develop a methodology to capture, sample, and analyze 3 months of cancer-related queries on the Ask.com Web site, a prominent United States consumer search engine, which receives over 35 million queries per week. Using a benchmark set of 500 terms and word roots supplied by the National Cancer Institute, AskJeeves identified a test sample of cancer queries for 1 week in August 2001. From these 500 terms only 37 appeared >or= 5 times/day over the trial test week in 17208 queries. Using these 37 terms, 204165 instances of cancer queries were found in the Ask.com query logs for the actual test period of June-August 2001. Of these, 7500 individual user questions were randomly selected for detailed analysis and assigned to appropriate categories. The exact language of sample queries is presented. Considering multiples of the same questions, the sample of 7500 individual user queries represented 76077 queries (37% of the total 3-month pool). Overall 78.37% of sampled Cancer queries asked about 14 specific cancer types. Within each cancer type, queries were sorted into appropriate subcategories including at least the following: General Information, Symptoms, Diagnosis and Testing, Treatment, Statistics, Definition, and Cause/Risk/Link. The most-common specific cancer types mentioned in queries were Digestive/Gastrointestinal/Bowel (15.0%), Breast (11.7%), Skin (11.3%), and Genitourinary (10.5%). Additional subcategories of queries about specific cancer types varied, depending on user input. Queries that were not specific to a cancer type were also tracked and categorized. Natural-language searching affords users the opportunity to fully express their information needs and can aid users naïve to the content and vocabulary. The specific queries analyzed for this study reflect news and research studies reported during the study dates and would surely change with different study dates. Analyzing queries from search engines represents one way of knowing what kinds of content to provide to users of a given Web site. Users ask questions using whole sentences and keywords, often misspelling words. Providing the option for natural-language searching does not obviate the need for good information architecture, usability engineering, and user testing in order to optimize user experience.
Searching for Cancer Information on the Internet: Analyzing Natural Language Search Queries
Theofanos, Mary Frances
2003-01-01
Background Searching for health information is one of the most-common tasks performed by Internet users. Many users begin searching on popular search engines rather than on prominent health information sites. We know that many visitors to our (National Cancer Institute) Web site, cancer.gov, arrive via links in search engine result. Objective To learn more about the specific needs of our general-public users, we wanted to understand what lay users really wanted to know about cancer, how they phrased their questions, and how much detail they used. Methods The National Cancer Institute partnered with AskJeeves, Inc to develop a methodology to capture, sample, and analyze 3 months of cancer-related queries on the Ask.com Web site, a prominent United States consumer search engine, which receives over 35 million queries per week. Using a benchmark set of 500 terms and word roots supplied by the National Cancer Institute, AskJeeves identified a test sample of cancer queries for 1 week in August 2001. From these 500 terms only 37 appeared ≥ 5 times/day over the trial test week in 17208 queries. Using these 37 terms, 204165 instances of cancer queries were found in the Ask.com query logs for the actual test period of June-August 2001. Of these, 7500 individual user questions were randomly selected for detailed analysis and assigned to appropriate categories. The exact language of sample queries is presented. Results Considering multiples of the same questions, the sample of 7500 individual user queries represented 76077 queries (37% of the total 3-month pool). Overall 78.37% of sampled Cancer queries asked about 14 specific cancer types. Within each cancer type, queries were sorted into appropriate subcategories including at least the following: General Information, Symptoms, Diagnosis and Testing, Treatment, Statistics, Definition, and Cause/Risk/Link. The most-common specific cancer types mentioned in queries were Digestive/Gastrointestinal/Bowel (15.0%), Breast (11.7%), Skin (11.3%), and Genitourinary (10.5%). Additional subcategories of queries about specific cancer types varied, depending on user input. Queries that were not specific to a cancer type were also tracked and categorized. Conclusions Natural-language searching affords users the opportunity to fully express their information needs and can aid users naïve to the content and vocabulary. The specific queries analyzed for this study reflect news and research studies reported during the study dates and would surely change with different study dates. Analyzing queries from search engines represents one way of knowing what kinds of content to provide to users of a given Web site. Users ask questions using whole sentences and keywords, often misspelling words. Providing the option for natural-language searching does not obviate the need for good information architecture, usability engineering, and user testing in order to optimize user experience. PMID:14713659
NASA Astrophysics Data System (ADS)
Mueller, Wolfgang; Mueller, Henning; Marchand-Maillet, Stephane; Pun, Thierry; Squire, David M.; Pecenovic, Zoran; Giess, Christoph; de Vries, Arjen P.
2000-10-01
While in the area of relational databases interoperability is ensured by common communication protocols (e.g. ODBC/JDBC using SQL), Content Based Image Retrieval Systems (CBIRS) and other multimedia retrieval systems are lacking both a common query language and a common communication protocol. Besides its obvious short term convenience, interoperability of systems is crucial for the exchange and analysis of user data. In this paper, we present and describe an extensible XML-based query markup language, called MRML (Multimedia Retrieval markup Language). MRML is primarily designed so as to ensure interoperability between different content-based multimedia retrieval systems. Further, MRML allows researchers to preserve their freedom in extending their system as needed. MRML encapsulates multimedia queries in a way that enable multimedia (MM) query languages, MM content descriptions, MM query engines, and MM user interfaces to grow independently from each other, reaching a maximum of interoperability while ensuring a maximum of freedom for the developer. For benefitting from this, only a few simple design principles have to be respected when extending MRML for one's fprivate needs. The design of extensions withing the MRML framework will be described in detail in the paper. MRML has been implemented and tested for the CBIRS Viper, using the user interface Snake Charmer. Both are part of the GNU project and can be downloaded at our site.
Saying What You're Looking For: Linguistics Meets Video Search.
Barrett, Daniel Paul; Barbu, Andrei; Siddharth, N; Siskind, Jeffrey Mark
2016-10-01
We present an approach to searching large video corpora for clips which depict a natural-language query in the form of a sentence. Compositional semantics is used to encode subtle meaning differences lost in other approaches, such as the difference between two sentences which have identical words but entirely different meaning: The person rode the horse versus The horse rode the person. Given a sentential query and a natural-language parser, we produce a score indicating how well a video clip depicts that sentence for each clip in a corpus and return a ranked list of clips. Two fundamental problems are addressed simultaneously: detecting and tracking objects, and recognizing whether those tracks depict the query. Because both tracking and object detection are unreliable, our approach uses the sentential query to focus the tracker on the relevant participants and ensures that the resulting tracks are described by the sentential query. While most earlier work was limited to single-word queries which correspond to either verbs or nouns, we search for complex queries which contain multiple phrases, such as prepositional phrases, and modifiers, such as adverbs. We demonstrate this approach by searching for 2,627 naturally elicited sentential queries in 10 Hollywood movies.
vSPARQL: A View Definition Language for the Semantic Web
Shaw, Marianne; Detwiler, Landon T.; Noy, Natalya; Brinkley, James; Suciu, Dan
2010-01-01
Translational medicine applications would like to leverage the biological and biomedical ontologies, vocabularies, and data sets available on the semantic web. We present a general solution for RDF information set reuse inspired by database views. Our view definition language, vSPARQL, allows applications to specify the exact content that they are interested in and how that content should be restructured or modified. Applications can access relevant content by querying against these view definitions. We evaluate the expressivity of our approach by defining views for practical use cases and comparing our view definition language to existing query languages. PMID:20800106
Concepts and implementations of natural language query systems
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Liu, I-Hsiung
1984-01-01
The currently developed user language interfaces of information systems are generally intended for serious users. These interfaces commonly ignore potentially the largest user group, i.e., casual users. This project discusses the concepts and implementations of a natural query language system which satisfy the nature and information needs of casual users by allowing them to communicate with the system in the form of their native (natural) language. In addition, a framework for the development of such an interface is also introduced for the MADAM (Multics Approach to Data Access and Management) system at the University of Southwestern Louisiana.
Survey of Natural Language Processing Techniques in Bioinformatics.
Zeng, Zhiqiang; Shi, Hua; Wu, Yun; Hong, Zhiling
2015-01-01
Informatics methods, such as text mining and natural language processing, are always involved in bioinformatics research. In this study, we discuss text mining and natural language processing methods in bioinformatics from two perspectives. First, we aim to search for knowledge on biology, retrieve references using text mining methods, and reconstruct databases. For example, protein-protein interactions and gene-disease relationship can be mined from PubMed. Then, we analyze the applications of text mining and natural language processing techniques in bioinformatics, including predicting protein structure and function, detecting noncoding RNA. Finally, numerous methods and applications, as well as their contributions to bioinformatics, are discussed for future use by text mining and natural language processing researchers.
Hybrid Schema Matching for Deep Web
NASA Astrophysics Data System (ADS)
Chen, Kerui; Zuo, Wanli; He, Fengling; Chen, Yongheng
Schema matching is the process of identifying semantic mappings, or correspondences, between two or more schemas. Schema matching is a first step and critical part of data integration. For schema matching of deep web, most researches only interested in query interface, while rarely pay attention to abundant schema information contained in query result pages. This paper proposed a mixed schema matching technique, which combines attributes that appeared in query structures and query results of different data sources, and mines the matched schemas inside. Experimental results prove the effectiveness of this method for improving the accuracy of schema matching.
Safari, Leila; Patrick, Jon D
2018-06-01
This paper reports on a generic framework to provide clinicians with the ability to conduct complex analyses on elaborate research topics using cascaded queries to resolve internal time-event dependencies in the research questions, as an extension to the proposed Clinical Data Analytics Language (CliniDAL). A cascaded query model is proposed to resolve internal time-event dependencies in the queries which can have up to five levels of criteria starting with a query to define subjects to be admitted into a study, followed by a query to define the time span of the experiment. Three more cascaded queries can be required to define control groups, control variables and output variables which all together simulate a real scientific experiment. According to the complexity of the research questions, the cascaded query model has the flexibility of merging some lower level queries for simple research questions or adding a nested query to each level to compose more complex queries. Three different scenarios (one of them contains two studies) are described and used for evaluation of the proposed solution. CliniDAL's complex analyses solution enables answering complex queries with time-event dependencies at most in a few hours which manually would take many days. An evaluation of results of the research studies based on the comparison between CliniDAL and SQL solutions reveals high usability and efficiency of CliniDAL's solution. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Tsai, Bor-sheng
2003-01-01
Total quality management and knowledge management are merged and used as a conceptual model to direct and develop information landscaping techniques through the coordination of information mapping, charting, querying, and reporting. Goals included: merge citation analysis and data mining, and apply data visualization and information architecture…
ERIC Educational Resources Information Center
Peterson, Gabriel M.; Su, Kuichun; Ries, James E.; Sievert, Mary Ellen C.
2002-01-01
Discussion of Internet use for information searches on health-related topics focuses on a study that examined complexity and variability of natural language in using search terms that express the concept of electronic health (e-health). Highlights include precision of retrieved information; shift in terminology; and queries using the Pub Med…
ERIC Educational Resources Information Center
Bosc, P.; Lietard, L.; Pivert, O.
2003-01-01
Considers flexible querying of relational databases. Highlights include SQL languages and basic aggregate operators; Sugeno's fuzzy integral; evaluation examples; and how and under what conditions other aggregate functions could be applied to fuzzy sets in a flexible query. (Author/LRW)
Stratification-Based Outlier Detection over the Deep Web.
Xian, Xuefeng; Zhao, Pengpeng; Sheng, Victor S; Fang, Ligang; Gu, Caidong; Yang, Yuanfeng; Cui, Zhiming
2016-01-01
For many applications, finding rare instances or outliers can be more interesting than finding common patterns. Existing work in outlier detection never considers the context of deep web. In this paper, we argue that, for many scenarios, it is more meaningful to detect outliers over deep web. In the context of deep web, users must submit queries through a query interface to retrieve corresponding data. Therefore, traditional data mining methods cannot be directly applied. The primary contribution of this paper is to develop a new data mining method for outlier detection over deep web. In our approach, the query space of a deep web data source is stratified based on a pilot sample. Neighborhood sampling and uncertainty sampling are developed in this paper with the goal of improving recall and precision based on stratification. Finally, a careful performance evaluation of our algorithm confirms that our approach can effectively detect outliers in deep web.
Stratification-Based Outlier Detection over the Deep Web
Xian, Xuefeng; Zhao, Pengpeng; Sheng, Victor S.; Fang, Ligang; Gu, Caidong; Yang, Yuanfeng; Cui, Zhiming
2016-01-01
For many applications, finding rare instances or outliers can be more interesting than finding common patterns. Existing work in outlier detection never considers the context of deep web. In this paper, we argue that, for many scenarios, it is more meaningful to detect outliers over deep web. In the context of deep web, users must submit queries through a query interface to retrieve corresponding data. Therefore, traditional data mining methods cannot be directly applied. The primary contribution of this paper is to develop a new data mining method for outlier detection over deep web. In our approach, the query space of a deep web data source is stratified based on a pilot sample. Neighborhood sampling and uncertainty sampling are developed in this paper with the goal of improving recall and precision based on stratification. Finally, a careful performance evaluation of our algorithm confirms that our approach can effectively detect outliers in deep web. PMID:27313603
Reppe, Linda Amundstuen; Spigset, Olav; Kampmann, Jens Peter; Damkier, Per; Christensen, Hanne Rolighed; Böttiger, Ylva; Schjøtt, Jan
2017-05-01
The aim of this study was to identify structure and language elements affecting the quality of responses from Scandinavian drug information centres (DICs). Six different fictitious drug-related queries were sent to each of seven Scandinavian DICs. The centres were blinded for which queries were part of the study. The responses were assessed qualitatively by six clinical pharmacologists (internal experts) and six general practitioners (GPs, external experts). In addition, linguistic aspects of the responses were evaluated by a plain language expert. The quality of responses was generally judged as satisfactory to good. Presenting specific advice and conclusions were considered to improve the quality of the responses. However, small nuances in language formulations could affect the individual judgments of the experts, e.g. on whether or not advice was given. Some experts preferred the use of primary sources to the use of secondary and tertiary sources. Both internal and external experts criticised the use of abbreviations, professional terminology and study findings that was left unexplained. The plain language expert emphasised the importance of defining and explaining pharmacological terms to ensure that enquirers understand the response as intended. In addition, more use of active voice and less compressed text structure would be desirable. This evaluation of responses to DIC queries may give some indications on how to improve written responses on drug-related queries with respect to language and text structure. Giving specific advice and precise conclusions and avoiding too compressed language and non-standard abbreviations may aid to reach this goal.
Data mining through simulation.
Lytton, William W; Stewart, Mark
2007-01-01
Data integration is particularly difficult in neuroscience; we must organize vast amounts of data around only a few fragmentary functional hypotheses. It has often been noted that computer simulation, by providing explicit hypotheses for a particular system and bridging across different levels of organization, can provide an organizational focus, which can be leveraged to form substantive hypotheses. Simulations lend meaning to data and can be updated and adapted as further data come in. The use of simulation in this context suggests the need for simulator adjuncts to manage and evaluate data. We have developed a neural query system (NQS) within the NEURON simulator, providing a relational database system, a query function, and basic data-mining tools. NQS is used within the simulation context to manage, verify, and evaluate model parameterizations. More importantly, it is used for data mining of simulation data and comparison with neurophysiology.
Wikipedia and Medicine: Quantifying Readership, Editors, and the Significance of Natural Language
West, Andrew G
2015-01-01
Background Wikipedia is a collaboratively edited encyclopedia. One of the most popular websites on the Internet, it is known to be a frequently used source of health care information by both professionals and the lay public. Objective This paper quantifies the production and consumption of Wikipedia’s medical content along 4 dimensions. First, we measured the amount of medical content in both articles and bytes and, second, the citations that supported that content. Third, we analyzed the medical readership against that of other health care websites between Wikipedia’s natural language editions and its relationship with disease prevalence. Fourth, we surveyed the quantity/characteristics of Wikipedia’s medical contributors, including year-over-year participation trends and editor demographics. Methods Using a well-defined categorization infrastructure, we identified medically pertinent English-language Wikipedia articles and links to their foreign language equivalents. With these, Wikipedia can be queried to produce metadata and full texts for entire article histories. Wikipedia also makes available hourly reports that aggregate reader traffic at per-article granularity. An online survey was used to determine the background of contributors. Standard mining and visualization techniques (eg, aggregation queries, cumulative distribution functions, and/or correlation metrics) were applied to each of these datasets. Analysis focused on year-end 2013, but historical data permitted some longitudinal analysis. Results Wikipedia’s medical content (at the end of 2013) was made up of more than 155,000 articles and 1 billion bytes of text across more than 255 languages. This content was supported by more than 950,000 references. Content was viewed more than 4.88 billion times in 2013. This makes it one of if not the most viewed medical resource(s) globally. The core editor community numbered less than 300 and declined over the past 5 years. The members of this community were half health care providers and 85.5% (100/117) had a university education. Conclusions Although Wikipedia has a considerable volume of multilingual medical content that is extensively read and well-referenced, the core group of editors that contribute and maintain that content is small and shrinking in size. PMID:25739399
Wikipedia and medicine: quantifying readership, editors, and the significance of natural language.
Heilman, James M; West, Andrew G
2015-03-04
Wikipedia is a collaboratively edited encyclopedia. One of the most popular websites on the Internet, it is known to be a frequently used source of health care information by both professionals and the lay public. This paper quantifies the production and consumption of Wikipedia's medical content along 4 dimensions. First, we measured the amount of medical content in both articles and bytes and, second, the citations that supported that content. Third, we analyzed the medical readership against that of other health care websites between Wikipedia's natural language editions and its relationship with disease prevalence. Fourth, we surveyed the quantity/characteristics of Wikipedia's medical contributors, including year-over-year participation trends and editor demographics. Using a well-defined categorization infrastructure, we identified medically pertinent English-language Wikipedia articles and links to their foreign language equivalents. With these, Wikipedia can be queried to produce metadata and full texts for entire article histories. Wikipedia also makes available hourly reports that aggregate reader traffic at per-article granularity. An online survey was used to determine the background of contributors. Standard mining and visualization techniques (eg, aggregation queries, cumulative distribution functions, and/or correlation metrics) were applied to each of these datasets. Analysis focused on year-end 2013, but historical data permitted some longitudinal analysis. Wikipedia's medical content (at the end of 2013) was made up of more than 155,000 articles and 1 billion bytes of text across more than 255 languages. This content was supported by more than 950,000 references. Content was viewed more than 4.88 billion times in 2013. This makes it one of if not the most viewed medical resource(s) globally. The core editor community numbered less than 300 and declined over the past 5 years. The members of this community were half health care providers and 85.5% (100/117) had a university education. Although Wikipedia has a considerable volume of multilingual medical content that is extensively read and well-referenced, the core group of editors that contribute and maintain that content is small and shrinking in size.
Agent-Based Computing Integration and Testing
2006-12-01
Query Language (DQL). Regrettably, DQL never became a W3C Member Submission itself, but likely had some influence on the SPARQL Protocol And RDF... Query Language ( SPARQL ) subsequently produced by the W3C Data Access Working Group (DAWG) as that working group also contained members from the DAML...Sponsored by Defense Advanced Research Projects Agency DARPA Order No. K536 APPROVED FOR PUBLIC RELEASE
Using Web Ontology Language to Integrate Heterogeneous Databases in the Neurosciences
Lam, Hugo Y.K.; Marenco, Luis; Shepherd, Gordon M.; Miller, Perry L.; Cheung, Kei-Hoi
2006-01-01
Integrative neuroscience involves the integration and analysis of diverse types of neuroscience data involving many different experimental techniques. This data will increasingly be distributed across many heterogeneous databases that are web-accessible. Currently, these databases do not expose their schemas (database structures) and their contents to web applications/agents in a standardized, machine-friendly way. This limits database interoperation. To address this problem, we describe a pilot project that illustrates how neuroscience databases can be expressed using the Web Ontology Language, which is a semantically-rich ontological language, as a common data representation language to facilitate complex cross-database queries. In this pilot project, an existing tool called “D2RQ” was used to translate two neuroscience databases (NeuronDB and CoCoDat) into OWL, and the resulting OWL ontologies were then merged. An OWL-based reasoner (Racer) was then used to provide a sophisticated query language (nRQL) to perform integrated queries across the two databases based on the merged ontology. This pilot project is one step toward exploring the use of semantic web technologies in the neurosciences. PMID:17238384
vSPARQL: a view definition language for the semantic web.
Shaw, Marianne; Detwiler, Landon T; Noy, Natalya; Brinkley, James; Suciu, Dan
2011-02-01
Translational medicine applications would like to leverage the biological and biomedical ontologies, vocabularies, and data sets available on the semantic web. We present a general solution for RDF information set reuse inspired by database views. Our view definition language, vSPARQL, allows applications to specify the exact content that they are interested in and how that content should be restructured or modified. Applications can access relevant content by querying against these view definitions. We evaluate the expressivity of our approach by defining views for practical use cases and comparing our view definition language to existing query languages. Copyright © 2010 Elsevier Inc. All rights reserved.
QATT: a Natural Language Interface for QPE. M.S. Thesis
NASA Technical Reports Server (NTRS)
White, Douglas Robert-Graham
1989-01-01
QATT, a natural language interface developed for the Qualitative Process Engine (QPE) system is presented. The major goal was to evaluate the use of a preexisting natural language understanding system designed to be tailored for query processing in multiple domains of application. The other goal of QATT is to provide a comfortable environment in which to query envisionments in order to gain insight into the qualitative behavior of physical systems. It is shown that the use of the preexisting system made possible the development of a reasonably useful interface in a few months.
Query Expansion Using SNOMED-CT and Weighing Schemes
2014-11-01
For this research, we have used SNOMED-CT along with UMLS Methathesaurus as our ontology in medical domain to expand the queries. General Terms...CT along with UMLS Methathesaurus as our ontology in medical domain to expand the queries. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...University of the Basque country discuss their finding on query expansion using external sources headlined by Unified Medical Language System ( UMLS
Spatial information semantic query based on SPARQL
NASA Astrophysics Data System (ADS)
Xiao, Zhifeng; Huang, Lei; Zhai, Xiaofang
2009-10-01
How can the efficiency of spatial information inquiries be enhanced in today's fast-growing information age? We are rich in geospatial data but poor in up-to-date geospatial information and knowledge that are ready to be accessed by public users. This paper adopts an approach for querying spatial semantic by building an Web Ontology language(OWL) format ontology and introducing SPARQL Protocol and RDF Query Language(SPARQL) to search spatial semantic relations. It is important to establish spatial semantics that support for effective spatial reasoning for performing semantic query. Compared to earlier keyword-based and information retrieval techniques that rely on syntax, we use semantic approaches in our spatial queries system. Semantic approaches need to be developed by ontology, so we use OWL to describe spatial information extracted by the large-scale map of Wuhan. Spatial information expressed by ontology with formal semantics is available to machines for processing and to people for understanding. The approach is illustrated by introducing a case study for using SPARQL to query geo-spatial ontology instances of Wuhan. The paper shows that making use of SPARQL to search OWL ontology instances can ensure the result's accuracy and applicability. The result also indicates constructing a geo-spatial semantic query system has positive efforts on forming spatial query and retrieval.
Fast Spatio-Temporal Data Mining from Large Geophysical Datasets
NASA Technical Reports Server (NTRS)
Stolorz, P.; Mesrobian, E.; Muntz, R.; Santos, J. R.; Shek, E.; Yi, J.; Mechoso, C.; Farrara, J.
1995-01-01
Use of the UCLA CONQUEST (CONtent-based Querying in Space and Time) is reviewed for performance of automatic cyclone extraction and detection of spatio-temporal blocking conditions on MPP. CONQUEST is a data analysis environment for knowledge and data mining to aid in high-resolution modeling of climate modeling.
ERIC Educational Resources Information Center
Cullen, Kevin
2005-01-01
Corporations employ data mining to analyze operations, find trends in recorded information, and look for new opportunities. Libraries are no different. Librarians manage large stores of data--about collections and usage, for example--and they also want to analyze this data to serve their users better. Analysts use data mining to query a data…
Query Health: standards-based, cross-platform population health surveillance
Klann, Jeffrey G; Buck, Michael D; Brown, Jeffrey; Hadley, Marc; Elmore, Richard; Weber, Griffin M; Murphy, Shawn N
2014-01-01
Objective Understanding population-level health trends is essential to effectively monitor and improve public health. The Office of the National Coordinator for Health Information Technology (ONC) Query Health initiative is a collaboration to develop a national architecture for distributed, population-level health queries across diverse clinical systems with disparate data models. Here we review Query Health activities, including a standards-based methodology, an open-source reference implementation, and three pilot projects. Materials and methods Query Health defined a standards-based approach for distributed population health queries, using an ontology based on the Quality Data Model and Consolidated Clinical Document Architecture, Health Quality Measures Format (HQMF) as the query language, the Query Envelope as the secure transport layer, and the Quality Reporting Document Architecture as the result language. Results We implemented this approach using Informatics for Integrating Biology and the Bedside (i2b2) and hQuery for data analytics and PopMedNet for access control, secure query distribution, and response. We deployed the reference implementation at three pilot sites: two public health departments (New York City and Massachusetts) and one pilot designed to support Food and Drug Administration post-market safety surveillance activities. The pilots were successful, although improved cross-platform data normalization is needed. Discussions This initiative resulted in a standards-based methodology for population health queries, a reference implementation, and revision of the HQMF standard. It also informed future directions regarding interoperability and data access for ONC's Data Access Framework initiative. Conclusions Query Health was a test of the learning health system that supplied a functional methodology and reference implementation for distributed population health queries that has been validated at three sites. PMID:24699371
Query Health: standards-based, cross-platform population health surveillance.
Klann, Jeffrey G; Buck, Michael D; Brown, Jeffrey; Hadley, Marc; Elmore, Richard; Weber, Griffin M; Murphy, Shawn N
2014-01-01
Understanding population-level health trends is essential to effectively monitor and improve public health. The Office of the National Coordinator for Health Information Technology (ONC) Query Health initiative is a collaboration to develop a national architecture for distributed, population-level health queries across diverse clinical systems with disparate data models. Here we review Query Health activities, including a standards-based methodology, an open-source reference implementation, and three pilot projects. Query Health defined a standards-based approach for distributed population health queries, using an ontology based on the Quality Data Model and Consolidated Clinical Document Architecture, Health Quality Measures Format (HQMF) as the query language, the Query Envelope as the secure transport layer, and the Quality Reporting Document Architecture as the result language. We implemented this approach using Informatics for Integrating Biology and the Bedside (i2b2) and hQuery for data analytics and PopMedNet for access control, secure query distribution, and response. We deployed the reference implementation at three pilot sites: two public health departments (New York City and Massachusetts) and one pilot designed to support Food and Drug Administration post-market safety surveillance activities. The pilots were successful, although improved cross-platform data normalization is needed. This initiative resulted in a standards-based methodology for population health queries, a reference implementation, and revision of the HQMF standard. It also informed future directions regarding interoperability and data access for ONC's Data Access Framework initiative. Query Health was a test of the learning health system that supplied a functional methodology and reference implementation for distributed population health queries that has been validated at three sites. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The contribution of morphological knowledge to French MeSH mapping for information retrieval.
Zweigenbaum, P.; Darmoni, S. J.; Grabar, N.
2001-01-01
MeSH-indexed Internet health directories must provide a mapping from natural language queries to MeSH terms so that both health professionals and the general public can query their contents. We describe here the design of lexical knowledge bases for mapping French expressions to MeSH terms, and the initial evaluation of their contribution to Doc'CISMeF, the search tool of a MeSH-indexed directory of French-language medical Internet resources. The observed trend is in favor of the use of morphological knowledge as a moderate (approximately 5%) but effective factor for improving query to term mapping capabilities. PMID:11825295
SPARK: Adapting Keyword Query to Semantic Search
NASA Astrophysics Data System (ADS)
Zhou, Qi; Wang, Chong; Xiong, Miao; Wang, Haofen; Yu, Yong
Semantic search promises to provide more accurate result than present-day keyword search. However, progress with semantic search has been delayed due to the complexity of its query languages. In this paper, we explore a novel approach of adapting keywords to querying the semantic web: the approach automatically translates keyword queries into formal logic queries so that end users can use familiar keywords to perform semantic search. A prototype system named 'SPARK' has been implemented in light of this approach. Given a keyword query, SPARK outputs a ranked list of SPARQL queries as the translation result. The translation in SPARK consists of three major steps: term mapping, query graph construction and query ranking. Specifically, a probabilistic query ranking model is proposed to select the most likely SPARQL query. In the experiment, SPARK achieved an encouraging translation result.
NASA Astrophysics Data System (ADS)
Tan, Kian Lam; Lim, Chen Kim
2017-10-01
With the explosive growth of online information such as email messages, news articles, and scientific literature, many institutions and museums are converting their cultural collections from physical data to digital format. However, this conversion resulted in the issues of inconsistency and incompleteness. Besides, the usage of inaccurate keywords also resulted in short query problem. Most of the time, the inconsistency and incompleteness are caused by the aggregation fault in annotating a document itself while the short query problem is caused by naive user who has prior knowledge and experience in cultural heritage domain. In this paper, we presented an approach to solve the problem of inconsistency, incompleteness and short query by incorporating the Term Similarity Matrix into the Language Model. Our approach is tested on the Cultural Heritage in CLEF (CHiC) collection which consists of short queries and documents. The results show that the proposed approach is effective and has improved the accuracy in retrieval time.
A Query System Implementation Case Study.
ERIC Educational Resources Information Center
Hiser, Judith N.; Neil, M. Elizabeth
1985-01-01
The Department of Administrative Programming Services of Clemson University investigated products available in user-friendly retrieval systems. The test of INTELLECT, a natural language query system written by Artifical Intelligence Corporation, is described. (Author/MLW)
Natural Language Processing Technologies in Radiology Research and Clinical Applications
Cai, Tianrun; Giannopoulos, Andreas A.; Yu, Sheng; Kelil, Tatiana; Ripley, Beth; Kumamaru, Kanako K.; Rybicki, Frank J.
2016-01-01
The migration of imaging reports to electronic medical record systems holds great potential in terms of advancing radiology research and practice by leveraging the large volume of data continuously being updated, integrated, and shared. However, there are significant challenges as well, largely due to the heterogeneity of how these data are formatted. Indeed, although there is movement toward structured reporting in radiology (ie, hierarchically itemized reporting with use of standardized terminology), the majority of radiology reports remain unstructured and use free-form language. To effectively “mine” these large datasets for hypothesis testing, a robust strategy for extracting the necessary information is needed. Manual extraction of information is a time-consuming and often unmanageable task. “Intelligent” search engines that instead rely on natural language processing (NLP), a computer-based approach to analyzing free-form text or speech, can be used to automate this data mining task. The overall goal of NLP is to translate natural human language into a structured format (ie, a fixed collection of elements), each with a standardized set of choices for its value, that is easily manipulated by computer programs to (among other things) order into subcategories or query for the presence or absence of a finding. The authors review the fundamentals of NLP and describe various techniques that constitute NLP in radiology, along with some key applications. ©RSNA, 2016 PMID:26761536
A SQL-Database Based Meta-CASE System and its Query Subsystem
NASA Astrophysics Data System (ADS)
Eessaar, Erki; Sgirka, Rünno
Meta-CASE systems simplify the creation of CASE (Computer Aided System Engineering) systems. In this paper, we present a meta-CASE system that provides a web-based user interface and uses an object-relational database system (ORDBMS) as its basis. The use of ORDBMSs allows us to integrate different parts of the system and simplify the creation of meta-CASE and CASE systems. ORDBMSs provide powerful query mechanism. The proposed system allows developers to use queries to evaluate and gradually improve artifacts and calculate values of software measures. We illustrate the use of the systems by using SimpleM modeling language and discuss the use of SQL in the context of queries about artifacts. We have created a prototype of the meta-CASE system by using PostgreSQL™ ORDBMS and PHP scripting language.
Discovering Related Clinical Concepts Using Large Amounts of Clinical Notes
Ganesan, Kavita; Lloyd, Shane; Sarkar, Vikren
2016-01-01
The ability to find highly related clinical concepts is essential for many applications such as for hypothesis generation, query expansion for medical literature search, search results filtering, ICD-10 code filtering and many other applications. While manually constructed medical terminologies such as SNOMED CT can surface certain related concepts, these terminologies are inadequate as they depend on expertise of several subject matter experts making the terminology curation process open to geographic and language bias. In addition, these terminologies also provide no quantifiable evidence on how related the concepts are. In this work, we explore an unsupervised graphical approach to mine related concepts by leveraging the volume within large amounts of clinical notes. Our evaluation shows that we are able to use a data driven approach to discovering highly related concepts for various search terms including medications, symptoms and diseases. PMID:27656096
The Limitations of Term Co-Occurrence Data for Query Expansion in Document Retrieval Systems.
ERIC Educational Resources Information Center
Peat, Helen J.; Willett, Peter
1991-01-01
Identifies limitations in the use of term co-occurrence data as a basis for automatic query expansion in natural language document retrieval systems. The use of similarity coefficients to calculate the degree of similarity between pairs of terms is explained, and frequency and discriminatory characteristics for nearest neighbors of query terms are…
A data analysis expert system for large established distributed databases
NASA Technical Reports Server (NTRS)
Gnacek, Anne-Marie; An, Y. Kim; Ryan, J. Patrick
1987-01-01
A design for a natural language database interface system, called the Deductively Augmented NASA Management Decision support System (DANMDS), is presented. The DANMDS system components have been chosen on the basis of the following considerations: maximal employment of the existing NASA IBM-PC computers and supporting software; local structuring and storing of external data via the entity-relationship model; a natural easy-to-use error-free database query language; user ability to alter query language vocabulary and data analysis heuristic; and significant artificial intelligence data analysis heuristic techniques that allow the system to become progressively and automatically more useful.
GELLO: an object-oriented query and expression language for clinical decision support.
Sordo, Margarita; Ogunyemi, Omolola; Boxwala, Aziz A; Greenes, Robert A
2003-01-01
GELLO is a purpose-specific, object-oriented (OO) query and expression language. GELLO is the result of a concerted effort of the Decision Systems Group (DSG) working with the HL7 Clinical Decision Support Technical Committee (CDSTC) to provide the HL7 community with a common format for data encoding and manipulation. GELLO will soon be submitted for ballot to the HL7 CDSTC for consideration as a standard.
Machine Translation-Supported Cross-Language Information Retrieval for a Consumer Health Resource
Rosemblat, Graciela; Gemoets, Darren; Browne, Allen C.; Tse, Tony
2003-01-01
The U.S. National Institutes of Health, through its National Library of Medicine, developed ClinicalTrials.gov to provide the public with easy access to information on clinical trials on a wide range of conditions or diseases. Only English language information retrieval is currently supported. Given the growing number of Spanish speakers in the U.S. and their increasing use of the Web, we anticipate a significant increase in Spanish-speaking users. This study compares the effectiveness of two common cross-language information retrieval methods using machine translation, query translation versus document translation, using a subset of genuine user queries from ClinicalTrials.gov. Preliminary results conducted with the ClinicalTrials.gov search engine show that in our environment, query translation is statistically significantly better than document translation. We discuss possible reasons for this result and we conclude with suggestions for future work. PMID:14728236
The LSST Data Mining Research Agenda
NASA Astrophysics Data System (ADS)
Borne, K.; Becla, J.; Davidson, I.; Szalay, A.; Tyson, J. A.
2008-12-01
We describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night) multi-resolution methods for exploration of petascale databases; indexing of multi-attribute multi-dimensional astronomical databases (beyond spatial indexing) for rapid querying of petabyte databases; and more.
A study on PubMed search tag usage pattern: association rule mining of a full-day PubMed query log.
Mosa, Abu Saleh Mohammad; Yoo, Illhoi
2013-01-09
The practice of evidence-based medicine requires efficient biomedical literature search such as PubMed/MEDLINE. Retrieval performance relies highly on the efficient use of search field tags. The purpose of this study was to analyze PubMed log data in order to understand the usage pattern of search tags by the end user in PubMed/MEDLINE search. A PubMed query log file was obtained from the National Library of Medicine containing anonymous user identification, timestamp, and query text. Inconsistent records were removed from the dataset and the search tags were extracted from the query texts. A total of 2,917,159 queries were selected for this study issued by a total of 613,061 users. The analysis of frequent co-occurrences and usage patterns of the search tags was conducted using an association mining algorithm. The percentage of search tag usage was low (11.38% of the total queries) and only 2.95% of queries contained two or more tags. Three out of four users used no search tag and about two-third of them issued less than four queries. Among the queries containing at least one tagged search term, the average number of search tags was almost half of the number of total search terms. Navigational search tags are more frequently used than informational search tags. While no strong association was observed between informational and navigational tags, six (out of 19) informational tags and six (out of 29) navigational tags showed strong associations in PubMed searches. The low percentage of search tag usage implies that PubMed/MEDLINE users do not utilize the features of PubMed/MEDLINE widely or they are not aware of such features or solely depend on the high recall focused query translation by the PubMed's Automatic Term Mapping. The users need further education and interactive search application for effective use of the search tags in order to fulfill their biomedical information needs from PubMed/MEDLINE.
A Study on Pubmed Search Tag Usage Pattern: Association Rule Mining of a Full-day Pubmed Query Log
2013-01-01
Background The practice of evidence-based medicine requires efficient biomedical literature search such as PubMed/MEDLINE. Retrieval performance relies highly on the efficient use of search field tags. The purpose of this study was to analyze PubMed log data in order to understand the usage pattern of search tags by the end user in PubMed/MEDLINE search. Methods A PubMed query log file was obtained from the National Library of Medicine containing anonymous user identification, timestamp, and query text. Inconsistent records were removed from the dataset and the search tags were extracted from the query texts. A total of 2,917,159 queries were selected for this study issued by a total of 613,061 users. The analysis of frequent co-occurrences and usage patterns of the search tags was conducted using an association mining algorithm. Results The percentage of search tag usage was low (11.38% of the total queries) and only 2.95% of queries contained two or more tags. Three out of four users used no search tag and about two-third of them issued less than four queries. Among the queries containing at least one tagged search term, the average number of search tags was almost half of the number of total search terms. Navigational search tags are more frequently used than informational search tags. While no strong association was observed between informational and navigational tags, six (out of 19) informational tags and six (out of 29) navigational tags showed strong associations in PubMed searches. Conclusions The low percentage of search tag usage implies that PubMed/MEDLINE users do not utilize the features of PubMed/MEDLINE widely or they are not aware of such features or solely depend on the high recall focused query translation by the PubMed’s Automatic Term Mapping. The users need further education and interactive search application for effective use of the search tags in order to fulfill their biomedical information needs from PubMed/MEDLINE. PMID:23302604
CARIBIAM: constrained Association Rules using Interactive Biological IncrementAl Mining.
Rahal, Imad; Rahhal, Riad; Wang, Baoying; Perrizo, William
2008-01-01
This paper analyses annotated genome data by applying a very central data-mining technique known as Association Rule Mining (ARM) with the aim of discovering rules and hypotheses capable of yielding deeper insights into this type of data. In the literature, ARM has been noted for producing an overwhelming number of rules. This work proposes a new technique capable of using domain knowledge in the form of queries in order to efficiently mine only the subset of the associations that are of interest to investigators in an incremental and interactive manner.
Cyclone: java-based querying and computing with Pathway/Genome databases.
Le Fèvre, François; Smidtas, Serge; Schächter, Vincent
2007-05-15
Cyclone aims at facilitating the use of BioCyc, a collection of Pathway/Genome Databases (PGDBs). Cyclone provides a fully extensible Java Object API to analyze and visualize these data. Cyclone can read and write PGDBs, and can write its own data in the CycloneML format. This format is automatically generated from the BioCyc ontology by Cyclone itself, ensuring continued compatibility. Cyclone objects can also be stored in a relational database CycloneDB. Queries can be written in SQL, and in an intuitive and concise object-oriented query language, Hibernate Query Language (HQL). In addition, Cyclone interfaces easily with Java software including the Eclipse IDE for HQL edition, the Jung API for graph algorithms or Cytoscape for graph visualization. Cyclone is freely available under an open source license at: http://sourceforge.net/projects/nemo-cyclone. For download and installation instructions, tutorials, use cases and examples, see http://nemo-cyclone.sourceforge.net.
2007-08-01
In this domain, queries typically show a deeply nested structure, which makes the semantic parsing task rather challenging , e.g.: What states border...only 80% of the GEOQUERY queries are semantically tractable, which shows that GEOQUERY is indeed a more challenging domain than ATIS. Note that none...a particularly challenging task, because of the inherent ambiguity of natural languages on both sides. It has inspired a large body of research. In
TEQUEL: The query language of SADDLE
NASA Technical Reports Server (NTRS)
Rajan, S. D.
1984-01-01
A relational database management system is presented that is tailored for engineering applications. A wide variety of engineering data types are supported and the data definition language (DDL) and data manipulation language (DML) are extended to handle matrices. The system can be used either in the standalone mode or through a FORTRAN or PASCAL application program. The query language is of the relational calculus type and allows the user to store, retrieve, update and delete tuples from relations. The relational operations including union, intersect and differ facilitate creation of temporary relations that can be used for manipulating information in a powerful manner. Sample applications are shown to illustrate the creation of data through a FORTRAN program and data manipulation using the TEQUEL DML.
Pattern Discovery and Change Detection of Online Music Query Streams
NASA Astrophysics Data System (ADS)
Li, Hua-Fu
In this paper, an efficient stream mining algorithm, called FTP-stream (Frequent Temporal Pattern mining of streams), is proposed to find the frequent temporal patterns over melody sequence streams. In the framework of our proposed algorithm, an effective bit-sequence representation is used to reduce the time and memory needed to slide the windows. The FTP-stream algorithm can calculate the support threshold in only a single pass based on the concept of bit-sequence representation. It takes the advantage of "left" and "and" operations of the representation. Experiments show that the proposed algorithm only scans the music query stream once, and runs significant faster and consumes less memory than existing algorithms, such as SWFI-stream and Moment.
An Analysis of Application Generators.
1983-03-01
query language OUEL in the programming language C, THESEUS [20], which embeds relational operators in the language Euclid. Schmidt [21] reports some...34The Design and Implementation of INGRES," ACM-TODS, Vol. 1. No. 3, 1976,. 33 £ 20. Shopiro,J.E., " THESEUS -A Programming Language for Relational
NASA Astrophysics Data System (ADS)
Arenas, Marcelo; Gutierrez, Claudio; Pérez, Jorge
The Resource Description Framework (RDF) is the standard data model for representing information about World Wide Web resources. In January 2008, it was released the recommendation of the W3C for querying RDF data, a query language called SPARQL. In this chapter, we give a detailed description of the semantics of this language. We start by focusing on the definition of a formal semantics for the core part of SPARQL, and then move to the definition for the entire language, including all the features in the specification of SPARQL by the W3C such as blank nodes in graph patterns and bag semantics for solutions.
PDBj Mine: design and implementation of relational database interface for Protein Data Bank Japan
Kinjo, Akira R.; Yamashita, Reiko; Nakamura, Haruki
2010-01-01
This article is a tutorial for PDBj Mine, a new database and its interface for Protein Data Bank Japan (PDBj). In PDBj Mine, data are loaded from files in the PDBMLplus format (an extension of PDBML, PDB's canonical XML format, enriched with annotations), which are then served for the user of PDBj via the worldwide web (WWW). We describe the basic design of the relational database (RDB) and web interfaces of PDBj Mine. The contents of PDBMLplus files are first broken into XPath entities, and these paths and data are indexed in the way that reflects the hierarchical structure of the XML files. The data for each XPath type are saved into the corresponding relational table that is named as the XPath itself. The generation of table definitions from the PDBMLplus XML schema is fully automated. For efficient search, frequently queried terms are compiled into a brief summary table. Casual users can perform simple keyword search, and 'Advanced Search' which can specify various conditions on the entries. More experienced users can query the database using SQL statements which can be constructed in a uniform manner. Thus, PDBj Mine achieves a combination of the flexibility of XML documents and the robustness of the RDB. Database URL: http://www.pdbj.org/ PMID:20798081
PDBj Mine: design and implementation of relational database interface for Protein Data Bank Japan.
Kinjo, Akira R; Yamashita, Reiko; Nakamura, Haruki
2010-08-25
This article is a tutorial for PDBj Mine, a new database and its interface for Protein Data Bank Japan (PDBj). In PDBj Mine, data are loaded from files in the PDBMLplus format (an extension of PDBML, PDB's canonical XML format, enriched with annotations), which are then served for the user of PDBj via the worldwide web (WWW). We describe the basic design of the relational database (RDB) and web interfaces of PDBj Mine. The contents of PDBMLplus files are first broken into XPath entities, and these paths and data are indexed in the way that reflects the hierarchical structure of the XML files. The data for each XPath type are saved into the corresponding relational table that is named as the XPath itself. The generation of table definitions from the PDBMLplus XML schema is fully automated. For efficient search, frequently queried terms are compiled into a brief summary table. Casual users can perform simple keyword search, and 'Advanced Search' which can specify various conditions on the entries. More experienced users can query the database using SQL statements which can be constructed in a uniform manner. Thus, PDBj Mine achieves a combination of the flexibility of XML documents and the robustness of the RDB. Database URL: http://www.pdbj.org/
A web-based data-querying tool based on ontology-driven methodology and flowchart-based model.
Ping, Xiao-Ou; Chung, Yufang; Tseng, Yi-Ju; Liang, Ja-Der; Yang, Pei-Ming; Huang, Guan-Tarn; Lai, Feipei
2013-10-08
Because of the increased adoption rate of electronic medical record (EMR) systems, more health care records have been increasingly accumulating in clinical data repositories. Therefore, querying the data stored in these repositories is crucial for retrieving the knowledge from such large volumes of clinical data. The aim of this study is to develop a Web-based approach for enriching the capabilities of the data-querying system along the three following considerations: (1) the interface design used for query formulation, (2) the representation of query results, and (3) the models used for formulating query criteria. The Guideline Interchange Format version 3.5 (GLIF3.5), an ontology-driven clinical guideline representation language, was used for formulating the query tasks based on the GLIF3.5 flowchart in the Protégé environment. The flowchart-based data-querying model (FBDQM) query execution engine was developed and implemented for executing queries and presenting the results through a visual and graphical interface. To examine a broad variety of patient data, the clinical data generator was implemented to automatically generate the clinical data in the repository, and the generated data, thereby, were employed to evaluate the system. The accuracy and time performance of the system for three medical query tasks relevant to liver cancer were evaluated based on the clinical data generator in the experiments with varying numbers of patients. In this study, a prototype system was developed to test the feasibility of applying a methodology for building a query execution engine using FBDQMs by formulating query tasks using the existing GLIF. The FBDQM-based query execution engine was used to successfully retrieve the clinical data based on the query tasks formatted using the GLIF3.5 in the experiments with varying numbers of patients. The accuracy of the three queries (ie, "degree of liver damage," "degree of liver damage when applying a mutually exclusive setting," and "treatments for liver cancer") was 100% for all four experiments (10 patients, 100 patients, 1000 patients, and 10,000 patients). Among the three measured query phases, (1) structured query language operations, (2) criteria verification, and (3) other, the first two had the longest execution time. The ontology-driven FBDQM-based approach enriched the capabilities of the data-querying system. The adoption of the GLIF3.5 increased the potential for interoperability, shareability, and reusability of the query tasks.
Active Wiki Knowledge Repository
2012-10-01
data using SPARQL queries or RESTful web-services; ‘gardening’ tools for examining the semantically tagged content in the wiki; high-level language tool...Tagging & RDF triple-store Fusion and inferences for collaboration Tools for Consuming Data SPARQL queries or RESTful WS Inference & Gardening tools...other stores using AW SPARQL queries and rendering templates; and 4) Interactively share maps and other content using annotation tools to post notes
2011-01-01
Shotgun lipidome profiling relies on direct mass spectrometric analysis of total lipid extracts from cells, tissues or organisms and is a powerful tool to elucidate the molecular composition of lipidomes. We present a novel informatics concept of the molecular fragmentation query language implemented within the LipidXplorer open source software kit that supports accurate quantification of individual species of any ionizable lipid class in shotgun spectra acquired on any mass spectrometry platform. PMID:21247462
Data Warehousing at the Marine Corps Institute
2003-09-01
applications exists for several reasons. It allows for data to be extracted from many sources, by “cleaned”, and stored into one large data facility ...exists. Key individuals at MCI, or the so called “knowledge workers” will be educated , and try to brainstorm possible data relationships that can...They include querying and reporting, On-Line Analytical Processing (OLAP) and statistical analysis, and data mining. 1. Queries and Reports The
Entity Bases: Large-Scale Knowledgebases for Intelligence Data
2009-02-01
declaratively expressed as Datalog rules . The EntityBase supports two query scenarios: • Free-Form Querying: A human analyst or a client program can pose...integration, Prometheus follows the Inverse Rules algo- rithm (Duschka 1997) with additional optimizations (Thakkar et al. 2005). We use the mediator...Discovery and Data Mining (PAKDD), Sydney, Australia. Crammer , K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006). Online passive
Mass Storage Performance Information System
NASA Technical Reports Server (NTRS)
Scheuermann, Peter
2000-01-01
The purpose of this task is to develop a data warehouse to enable system administrators and their managers to gather information by querying the data logs of the MDSDS. Currently detailed logs capture the activity of the MDSDS internal to the different systems. The elements to be included in the data warehouse are requirements analysis, data cleansing, database design, database population, hardware/software acquisition, data transformation, query and report generation, and data mining.
Unapparent Information Revelation: Text Mining for Counterterrorism
NASA Astrophysics Data System (ADS)
Srihari, Rohini K.
Unapparent information revelation (UIR) is a special case of text mining that focuses on detecting possible links between concepts across multiple text documents by generating an evidence trail explaining the connection. A traditional search involving, for example, two or more person names will attempt to find documents mentioning both these individuals. This research focuses on a different interpretation of such a query: what is the best evidence trail across documents that explains a connection between these individuals? For example, all may be good golfers. A generalization of this task involves query terms representing general concepts (e.g. indictment, foreign policy). Previous approaches to this problem have focused on graph mining involving hyperlinked documents, and link analysis exploiting named entities. A new robust framework is presented, based on (i) generating concept chain graphs, a hybrid content representation, (ii) performing graph matching to select candidate subgraphs, and (iii) subsequently using graphical models to validate hypotheses using ranked evidence trails. We adapt the DUC data set for cross-document summarization to evaluate evidence trails generated by this approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druzinsky, Robert E.; Balhoff, James P.; Crompton, Alfred W.
Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repositorymore » for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). Lastly, we compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.« less
Druzinsky, Robert E.; Balhoff, James P.; Crompton, Alfred W.; ...
2016-02-12
Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repositorymore » for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). Lastly, we compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.« less
Effects of Epilepsy on Language Functions: Scoping Review and Data Mining Findings.
Dutta, Manaswita; Murray, Laura; Miller, Wendy; Groves, Doyle
2018-03-01
This study involved a scoping review to identify possible gaps in the empirical description of language functioning in epilepsy in adults. With access to social network data, data mining was used to determine if individuals with epilepsy are expressing language-related concerns. For the scoping review, scientific databases were explored to identify pertinent articles. Findings regarding the nature of epilepsy etiologies, patient characteristics, tested language modalities, and language measures were compiled. Data mining focused on social network databases to obtain a set of relevant language-related posts. The search yielded 66 articles. Epilepsy etiologies except temporal lobe epilepsy and older adults were underrepresented. Most studies utilized aphasia tests and primarily assessed single-word productions; few studies included healthy control groups. Data mining revealed several posts regarding epilepsy-related language problems, including word retrieval, reading, writing, verbal memory difficulties, and negative effects of epilepsy treatment on language. Our findings underscore the need for future specification of the integrity of language in epilepsy, particularly with respect to discourse and high-level language abilities. Increased awareness of epilepsy-related language issues and understanding the patients' perspectives about their language concerns will allow researchers and speech-language pathologists to utilize appropriate assessments and improve quality of care.
Cross-Language Information Retrieval: An Analysis of Errors.
ERIC Educational Resources Information Center
Ruiz, Miguel E.; Srinivasan, Padmini
1998-01-01
Investigates an automatic method for Cross Language Information Retrieval (CLIR) that utilizes the multilingual Unified Medical Language System (UMLS) Metathesaurus to translate Spanish natural-language queries into English. Results indicate that for Spanish, the UMLS Metathesaurus-based CLIR method is at least equivalent to if not better than…
Enhanced DIII-D Data Management Through a Relational Database
NASA Astrophysics Data System (ADS)
Burruss, J. R.; Peng, Q.; Schachter, J.; Schissel, D. P.; Terpstra, T. B.
2000-10-01
A relational database is being used to serve data about DIII-D experiments. The database is optimized for queries across multiple shots, allowing for rapid data mining by SQL-literate researchers. The relational database relates different experiments and datasets, thus providing a big picture of DIII-D operations. Users are encouraged to add their own tables to the database. Summary physics quantities about DIII-D discharges are collected and stored in the database automatically. Meta-data about code runs, MDSplus usage, and visualization tool usage are collected, stored in the database, and later analyzed to improve computing. Documentation on the database may be accessed through programming languages such as C, Java, and IDL, or through ODBC compliant applications such as Excel and Access. A database-driven web page also provides a convenient means for viewing database quantities through the World Wide Web. Demonstrations will be given at the poster.
Visually defining and querying consistent multi-granular clinical temporal abstractions.
Combi, Carlo; Oliboni, Barbara
2012-02-01
The main goal of this work is to propose a framework for the visual specification and query of consistent multi-granular clinical temporal abstractions. We focus on the issue of querying patient clinical information by visually defining and composing temporal abstractions, i.e., high level patterns derived from several time-stamped raw data. In particular, we focus on the visual specification of consistent temporal abstractions with different granularities and on the visual composition of different temporal abstractions for querying clinical databases. Temporal abstractions on clinical data provide a concise and high-level description of temporal raw data, and a suitable way to support decision making. Granularities define partitions on the time line and allow one to represent time and, thus, temporal clinical information at different levels of detail, according to the requirements coming from the represented clinical domain. The visual representation of temporal information has been considered since several years in clinical domains. Proposed visualization techniques must be easy and quick to understand, and could benefit from visual metaphors that do not lead to ambiguous interpretations. Recently, physical metaphors such as strips, springs, weights, and wires have been proposed and evaluated on clinical users for the specification of temporal clinical abstractions. Visual approaches to boolean queries have been considered in the last years and confirmed that the visual support to the specification of complex boolean queries is both an important and difficult research topic. We propose and describe a visual language for the definition of temporal abstractions based on a set of intuitive metaphors (striped wall, plastered wall, brick wall), allowing the clinician to use different granularities. A new algorithm, underlying the visual language, allows the physician to specify only consistent abstractions, i.e., abstractions not containing contradictory conditions on the component abstractions. Moreover, we propose a visual query language where different temporal abstractions can be composed to build complex queries: temporal abstractions are visually connected through the usual logical connectives AND, OR, and NOT. The proposed visual language allows one to simply define temporal abstractions by using intuitive metaphors, and to specify temporal intervals related to abstractions by using different temporal granularities. The physician can interact with the designed and implemented tool by point-and-click selections, and can visually compose queries involving several temporal abstractions. The evaluation of the proposed granularity-related metaphors consisted in two parts: (i) solving 30 interpretation exercises by choosing the correct interpretation of a given screenshot representing a possible scenario, and (ii) solving a complex exercise, by visually specifying through the interface a scenario described only in natural language. The exercises were done by 13 subjects. The percentage of correct answers to the interpretation exercises were slightly different with respect to the considered metaphors (54.4--striped wall, 73.3--plastered wall, 61--brick wall, and 61--no wall), but post hoc statistical analysis on means confirmed that differences were not statistically significant. The result of the user's satisfaction questionnaire related to the evaluation of the proposed granularity-related metaphors ratified that there are no preferences for one of them. The evaluation of the proposed logical notation consisted in two parts: (i) solving five interpretation exercises provided by a screenshot representing a possible scenario and by three different possible interpretations, of which only one was correct, and (ii) solving five exercises, by visually defining through the interface a scenario described only in natural language. Exercises had an increasing difficulty. The evaluation involved a total of 31 subjects. Results related to this evaluation phase confirmed us about the soundness of the proposed solution even in comparison with a well known proposal based on a tabular query form (the only significant difference is that our proposal requires more time for the training phase: 21 min versus 14 min). In this work we have considered the issue of visually composing and querying temporal clinical patient data. In this context we have proposed a visual framework for the specification of consistent temporal abstractions with different granularities and for the visual composition of different temporal abstractions to build (possibly) complex queries on clinical databases. A new algorithm has been proposed to check the consistency of the specified granular abstraction. From the evaluation of the proposed metaphors and interfaces and from the comparison of the visual query language with a well known visual method for boolean queries, the soundness of the overall system has been confirmed; moreover, pros and cons and possible improvements emerged from the comparison of different visual metaphors and solutions. Copyright © 2011 Elsevier B.V. All rights reserved.
Mining Student Data Captured from a Web-Based Tutoring Tool: Initial Exploration and Results
ERIC Educational Resources Information Center
Merceron, Agathe; Yacef, Kalina
2004-01-01
In this article we describe the initial investigations that we have conducted on student data collected from a web-based tutoring tool. We have used some data mining techniques such as association rule and symbolic data analysis, as well as traditional SQL queries to gain further insight on the students' learning and deduce information to improve…
Automatic Query Formulations in Information Retrieval.
ERIC Educational Resources Information Center
Salton, G.; And Others
1983-01-01
Introduces methods designed to reduce role of search intermediaries by generating Boolean search formulations automatically using term frequency considerations from natural language statements provided by system patrons. Experimental results are supplied and methods are described for applying automatic query formulation process in practice.…
Empirical advances with text mining of electronic health records.
Delespierre, T; Denormandie, P; Bar-Hen, A; Josseran, L
2017-08-22
Korian is a private group specializing in medical accommodations for elderly and dependent people. A professional data warehouse (DWH) established in 2010 hosts all of the residents' data. Inside this information system (IS), clinical narratives (CNs) were used only by medical staff as a residents' care linking tool. The objective of this study was to show that, through qualitative and quantitative textual analysis of a relatively small physiotherapy and well-defined CN sample, it was possible to build a physiotherapy corpus and, through this process, generate a new body of knowledge by adding relevant information to describe the residents' care and lives. Meaningful words were extracted through Standard Query Language (SQL) with the LIKE function and wildcards to perform pattern matching, followed by text mining and a word cloud using R® packages. Another step involved principal components and multiple correspondence analyses, plus clustering on the same residents' sample as well as on other health data using a health model measuring the residents' care level needs. By combining these techniques, physiotherapy treatments could be characterized by a list of constructed keywords, and the residents' health characteristics were built. Feeding defects or health outlier groups could be detected, physiotherapy residents' data and their health data were matched, and differences in health situations showed qualitative and quantitative differences in physiotherapy narratives. This textual experiment using a textual process in two stages showed that text mining and data mining techniques provide convenient tools to improve residents' health and quality of care by adding new, simple, useable data to the electronic health record (EHR). When used with a normalized physiotherapy problem list, text mining through information extraction (IE), named entity recognition (NER) and data mining (DM) can provide a real advantage to describe health care, adding new medical material and helping to integrate the EHR system into the health staff work environment.
Zhu, Xinjie; Zhang, Qiang; Ho, Eric Dun; Yu, Ken Hung-On; Liu, Chris; Huang, Tim H; Cheng, Alfred Sze-Lok; Kao, Ben; Lo, Eric; Yip, Kevin Y
2017-09-22
A genomic signal track is a set of genomic intervals associated with values of various types, such as measurements from high-throughput experiments. Analysis of signal tracks requires complex computational methods, which often make the analysts focus too much on the detailed computational steps rather than on their biological questions. Here we propose Signal Track Query Language (STQL) for simple analysis of signal tracks. It is a Structured Query Language (SQL)-like declarative language, which means one only specifies what computations need to be done but not how these computations are to be carried out. STQL provides a rich set of constructs for manipulating genomic intervals and their values. To run STQL queries, we have developed the Signal Track Analytical Research Tool (START, http://yiplab.cse.cuhk.edu.hk/start/ ), a system that includes a Web-based user interface and a back-end execution system. The user interface helps users select data from our database of around 10,000 commonly-used public signal tracks, manage their own tracks, and construct, store and share STQL queries. The back-end system automatically translates STQL queries into optimized low-level programs and runs them on a computer cluster in parallel. We use STQL to perform 14 representative analytical tasks. By repeating these analyses using bedtools, Galaxy and custom Python scripts, we show that the STQL solution is usually the simplest, and the parallel execution achieves significant speed-up with large data files. Finally, we describe how a biologist with minimal formal training in computer programming self-learned STQL to analyze DNA methylation data we produced from 60 pairs of hepatocellular carcinoma (HCC) samples. Overall, STQL and START provide a generic way for analyzing a large number of genomic signal tracks in parallel easily.
Content-Aware DataGuide with Incremental Index Update using Frequently Used Paths
NASA Astrophysics Data System (ADS)
Sharma, A. K.; Duhan, Neelam; Khattar, Priyanka
2010-11-01
Size of the WWW is increasing day by day. Due to the absence of structured data on the Web, it becomes very difficult for information retrieval tools to fully utilize the Web information. As a solution to this problem, XML pages come into play, which provide structural information to the users to some extent. Without efficient indexes, query processing can be quite inefficient due to an exhaustive traversal on XML data. In this paper an improved content-centric approach of Content-Aware DataGuide, which is an indexing technique for XML databases, is being proposed that uses frequently used paths from historical query logs to improve query performance. The index can be updated incrementally according to the changes in query workload and thus, the overhead of reconstruction can be minimized. Frequently used paths are extracted using any Sequential Pattern mining algorithm on subsequent queries in the query workload. After this, the data structures are incrementally updated. This indexing technique proves to be efficient as partial matching queries can be executed efficiently and users can now get the more relevant documents in results.
VISAGE: Interactive Visual Graph Querying.
Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng
2016-06-01
Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete , an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with "wildcard" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries.
VISAGE: Interactive Visual Graph Querying
Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng
2017-01-01
Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with “wildcard” nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE’s ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries. PMID:28553670
Semantic based man-machine interface for real-time communication
NASA Technical Reports Server (NTRS)
Ali, M.; Ai, C.-S.
1988-01-01
A flight expert system (FLES) was developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. To provide a communications interface between the flight crew and FLES, a natural language interface (NALI) was implemented. Input to NALI is processed by three processors: (1) the semantics parser; (2) the knowledge retriever; and (3) the response generator. First the semantic parser extracts meaningful words and phrases to generate an internal representation of the query. At this point, the semantic parser has the ability to map different input forms related to the same concept into the same internal representation. Then the knowledge retriever analyzes and stores the context of the query to aid in resolving ellipses and pronoun references. At the end of this process, a sequence of retrievel functions is created as a first step in generating the proper response. Finally, the response generator generates the natural language response to the query. The architecture of NALI was designed to process both temporal and nontemporal queries. The architecture and implementation of NALI are described.
Time-related patient data retrieval for the case studies from the pharmacogenomics research network
Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G.
2012-01-01
There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users’ own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities. PMID:23076712
Time-related patient data retrieval for the case studies from the pharmacogenomics research network.
Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G
2012-11-01
There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users' own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities.
SPARQLGraph: a web-based platform for graphically querying biological Semantic Web databases.
Schweiger, Dominik; Trajanoski, Zlatko; Pabinger, Stephan
2014-08-15
Semantic Web has established itself as a framework for using and sharing data across applications and database boundaries. Here, we present a web-based platform for querying biological Semantic Web databases in a graphical way. SPARQLGraph offers an intuitive drag & drop query builder, which converts the visual graph into a query and executes it on a public endpoint. The tool integrates several publicly available Semantic Web databases, including the databases of the just recently released EBI RDF platform. Furthermore, it provides several predefined template queries for answering biological questions. Users can easily create and save new query graphs, which can also be shared with other researchers. This new graphical way of creating queries for biological Semantic Web databases considerably facilitates usability as it removes the requirement of knowing specific query languages and database structures. The system is freely available at http://sparqlgraph.i-med.ac.at.
Computing health quality measures using Informatics for Integrating Biology and the Bedside.
Klann, Jeffrey G; Murphy, Shawn N
2013-04-19
The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)'s Query Health platform to move toward this goal. Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population health. However, its current form might allow complexity that is intractable for current database systems (both in terms of implementation and computation). Our translator, which supports the subset of HQMF currently expressible in i2b2-XML, may represent the beginnings of a practical compromise. It is being pilot-tested in two Query Health demonstration projects, and it can be further expanded to balance computational tractability with the advanced features needed by measure developers.
Computing Health Quality Measures Using Informatics for Integrating Biology and the Bedside
Murphy, Shawn N
2013-01-01
Background The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)’s Query Health platform to move toward this goal. Objective Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. Methods We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. Results The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. Conclusions HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population health. However, its current form might allow complexity that is intractable for current database systems (both in terms of implementation and computation). Our translator, which supports the subset of HQMF currently expressible in i2b2-XML, may represent the beginnings of a practical compromise. It is being pilot-tested in two Query Health demonstration projects, and it can be further expanded to balance computational tractability with the advanced features needed by measure developers. PMID:23603227
A Web-Based Data-Querying Tool Based on Ontology-Driven Methodology and Flowchart-Based Model
Ping, Xiao-Ou; Chung, Yufang; Liang, Ja-Der; Yang, Pei-Ming; Huang, Guan-Tarn; Lai, Feipei
2013-01-01
Background Because of the increased adoption rate of electronic medical record (EMR) systems, more health care records have been increasingly accumulating in clinical data repositories. Therefore, querying the data stored in these repositories is crucial for retrieving the knowledge from such large volumes of clinical data. Objective The aim of this study is to develop a Web-based approach for enriching the capabilities of the data-querying system along the three following considerations: (1) the interface design used for query formulation, (2) the representation of query results, and (3) the models used for formulating query criteria. Methods The Guideline Interchange Format version 3.5 (GLIF3.5), an ontology-driven clinical guideline representation language, was used for formulating the query tasks based on the GLIF3.5 flowchart in the Protégé environment. The flowchart-based data-querying model (FBDQM) query execution engine was developed and implemented for executing queries and presenting the results through a visual and graphical interface. To examine a broad variety of patient data, the clinical data generator was implemented to automatically generate the clinical data in the repository, and the generated data, thereby, were employed to evaluate the system. The accuracy and time performance of the system for three medical query tasks relevant to liver cancer were evaluated based on the clinical data generator in the experiments with varying numbers of patients. Results In this study, a prototype system was developed to test the feasibility of applying a methodology for building a query execution engine using FBDQMs by formulating query tasks using the existing GLIF. The FBDQM-based query execution engine was used to successfully retrieve the clinical data based on the query tasks formatted using the GLIF3.5 in the experiments with varying numbers of patients. The accuracy of the three queries (ie, “degree of liver damage,” “degree of liver damage when applying a mutually exclusive setting,” and “treatments for liver cancer”) was 100% for all four experiments (10 patients, 100 patients, 1000 patients, and 10,000 patients). Among the three measured query phases, (1) structured query language operations, (2) criteria verification, and (3) other, the first two had the longest execution time. Conclusions The ontology-driven FBDQM-based approach enriched the capabilities of the data-querying system. The adoption of the GLIF3.5 increased the potential for interoperability, shareability, and reusability of the query tasks. PMID:25600078
Computer systems and methods for the query and visualization of multidimensional databases
Stolte, Chris; Tang, Diane L.; Hanrahan, Patrick
2006-08-08
A method and system for producing graphics. A hierarchical structure of a database is determined. A visual table, comprising a plurality of panes, is constructed by providing a specification that is in a language based on the hierarchical structure of the database. In some cases, this language can include fields that are in the database schema. The database is queried to retrieve a set of tuples in accordance with the specification. A subset of the set of tuples is associated with a pane in the plurality of panes.
Computer systems and methods for the query and visualization of multidimensional database
Stolte, Chris; Tang, Diane L.; Hanrahan, Patrick
2010-05-11
A method and system for producing graphics. A hierarchical structure of a database is determined. A visual table, comprising a plurality of panes, is constructed by providing a specification that is in a language based on the hierarchical structure of the database. In some cases, this language can include fields that are in the database schema. The database is queried to retrieve a set of tuples in accordance with the specification. A subset of the set of tuples is associated with a pane in the plurality of panes.
A database system to support image algorithm evaluation
NASA Technical Reports Server (NTRS)
Lien, Y. E.
1977-01-01
The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.
CytoscapeRPC: a plugin to create, modify and query Cytoscape networks from scripting languages.
Bot, Jan J; Reinders, Marcel J T
2011-09-01
CytoscapeRPC is a plugin for Cytoscape which allows users to create, query and modify Cytoscape networks from any programming language which supports XML-RPC. This enables them to access Cytoscape functionality and visualize their data interactively without leaving the programming environment with which they are familiar. Install through the Cytoscape plugin manager or visit the web page: http://wiki.nbic.nl/index.php/CytoscapeRPC for the user tutorial and download. j.j.bot@tudelft.nl; j.j.bot@tudelft.nl.
The Use of Dynamic Segment Scoring for Language-Independent Question Answering
2001-01-01
initial window with one sentence is compared to scores corre- his/PRONOUN brother/ CONSANGUINITY like/SIMILARITY his/PRONOUN call/NOMENCLATURE he/PRONOUN...the query processing mod- ule. Using the differences between index numbers to specify phys- ical distance relationships among query keywords, we can
A Simple Blueprint for Automatic Boolean Query Processing.
ERIC Educational Resources Information Center
Salton, G.
1988-01-01
Describes a new Boolean retrieval environment in which an extended soft Boolean logic is used to automatically construct queries from original natural language formulations provided by users. Experimental results that compare the retrieval effectiveness of this method to conventional Boolean and vector processing are discussed. (27 references)…
Experiments in Multi-Lingual Information Retrieval.
ERIC Educational Resources Information Center
Salton, Gerard
A comparison was made of the performance in an automatic information retrieval environment of user queries and document abstracts available in natural language form in both English and French. The results obtained indicate that the automatic indexing and retrieval techniques actually used appear equally effective in handling the query and document…
Implementation of relational data base management systems on micro-computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C.L.
1982-01-01
This dissertation describes an implementation of a Relational Data Base Management System on a microcomputer. A specific floppy disk based hardward called TERAK is being used, and high level query interface which is similar to a subset of the SEQUEL language is provided. The system contains sub-systems such as I/O, file management, virtual memory management, query system, B-tree management, scanner, command interpreter, expression compiler, garbage collection, linked list manipulation, disk space management, etc. The software has been implemented to fulfill the following goals: (1) it is highly modularized. (2) The system is physically segmented into 16 logically independent, overlayable segments,more » in a way such that a minimal amount of memory is needed at execution time. (3) Virtual memory system is simulated that provides the system with seemingly unlimited memory space. (4) A language translator is applied to recognize user requests in the query language. The code generation of this translator generates compact code for the execution of UPDATE, DELETE, and QUERY commands. (5) A complete set of basic functions needed for on-line data base manipulations is provided through the use of a friendly query interface. (6) To eliminate the dependency on the environment (both software and hardware) as much as possible, so that it would be easy to transplant the system to other computers. (7) To simulate each relation as a sequential file. It is intended to be a highly efficient, single user system suited to be used by small or medium sized organizations for, say, administrative purposes. Experiments show that quite satisfying results have indeed been achieved.« less
Meta Data Mining in Earth Remote Sensing Data Archives
NASA Astrophysics Data System (ADS)
Davis, B.; Steinwand, D.
2014-12-01
Modern search and discovery tools for satellite based remote sensing data are often catalog based and rely on query systems which use scene- (or granule-) based meta data for those queries. While these traditional catalog systems are often robust, very little has been done in the way of meta data mining to aid in the search and discovery process. The recently coined term "Big Data" can be applied in the remote sensing world's efforts to derive information from the vast data holdings of satellite based land remote sensing data. Large catalog-based search and discovery systems such as the United States Geological Survey's Earth Explorer system and the NASA Earth Observing System Data and Information System's Reverb-ECHO system provide comprehensive access to these data holdings, but do little to expose the underlying scene-based meta data. These catalog-based systems are extremely flexible, but are manually intensive and often require a high level of user expertise. Exposing scene-based meta data to external, web-based services can enable machine-driven queries to aid in the search and discovery process. Furthermore, services which expose additional scene-based content data (such as product quality information) are now available and can provide a "deeper look" into remote sensing data archives too large for efficient manual search methods. This presentation shows examples of the mining of Landsat and Aster scene-based meta data, and an experimental service using OPeNDAP to extract information from quality band from multiple granules in the MODIS archive.
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Triantafyllopoulos, Spiros
1985-01-01
A collection of presentation visuals associated with the companion report entitled KARL: A Knowledge-Assisted Retrieval Language, is presented. Information is given on data retrieval, natural language database front ends, generic design objectives, processing capababilities and the query processing cycle.
Getting Answers to Natural Language Questions on the Web.
ERIC Educational Resources Information Center
Radev, Dragomir R.; Libner, Kelsey; Fan, Weiguo
2002-01-01
Describes a study that investigated the use of natural language questions on Web search engines. Highlights include query languages; differences in search engine syntax; and results of logistic regression and analysis of variance that showed aspects of questions that predicted significantly different performances, including the number of words,…
On describing human white matter anatomy: the white matter query language.
Wassermann, Demian; Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik
2013-01-01
The main contribution of this work is the careful syntactical definition of major white matter tracts in the human brain based on a neuroanatomist's expert knowledge. We present a technique to formally describe white matter tracts and to automatically extract them from diffusion MRI data. The framework is based on a novel query language with a near-to-English textual syntax. This query language allows us to construct a dictionary of anatomical definitions describing white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This enables automated coherent labeling of white matter anatomy across subjects. We use our method to encode anatomical knowledge in human white matter describing 10 association and 8 projection tracts per hemisphere and 7 commissural tracts. The technique is shown to be comparable in accuracy to manual labeling. We present results applying this framework to create a white matter atlas from 77 healthy subjects, and we use this atlas in a proof-of-concept study to detect tract changes specific to schizophrenia.
An ontology-driven tool for structured data acquisition using Web forms.
Gonçalves, Rafael S; Tu, Samson W; Nyulas, Csongor I; Tierney, Michael J; Musen, Mark A
2017-08-01
Structured data acquisition is a common task that is widely performed in biomedicine. However, current solutions for this task are far from providing a means to structure data in such a way that it can be automatically employed in decision making (e.g., in our example application domain of clinical functional assessment, for determining eligibility for disability benefits) based on conclusions derived from acquired data (e.g., assessment of impaired motor function). To use data in these settings, we need it structured in a way that can be exploited by automated reasoning systems, for instance, in the Web Ontology Language (OWL); the de facto ontology language for the Web. We tackle the problem of generating Web-based assessment forms from OWL ontologies, and aggregating input gathered through these forms as an ontology of "semantically-enriched" form data that can be queried using an RDF query language, such as SPARQL. We developed an ontology-based structured data acquisition system, which we present through its specific application to the clinical functional assessment domain. We found that data gathered through our system is highly amenable to automatic analysis using queries. We demonstrated how ontologies can be used to help structuring Web-based forms and to semantically enrich the data elements of the acquired structured data. The ontologies associated with the enriched data elements enable automated inferences and provide a rich vocabulary for performing queries.
SPARQLog: SPARQL with Rules and Quantification
NASA Astrophysics Data System (ADS)
Bry, François; Furche, Tim; Marnette, Bruno; Ley, Clemens; Linse, Benedikt; Poppe, Olga
SPARQL has become the gold-standard for RDF query languages. Nevertheless, we believe there is further room for improving RDF query languages. In this chapter, we investigate the addition of rules and quantifier alternation to SPARQL. That extension, called SPARQLog, extends previous RDF query languages by arbitrary quantifier alternation: blank nodes may occur in the scope of all, some, or none of the universal variables of a rule. In addition, SPARQLog is aware of important RDF features such as the distinction between blank nodes, literals and IRIs or the RDFS vocabulary. The semantics of SPARQLog is closed (every answer is an RDF graph), but lifts RDF's restrictions on literal and blank node occurrences for intermediary data. We show how to define a sound and complete operational semantics that can be implemented using existing logic programming techniques. While SPARQLog is Turing complete, we identify a decidable (in fact, polynomial time) fragment SwARQLog ensuring polynomial data-complexity inspired from the notion of super-weak acyclicity in data exchange. Furthermore, we prove that SPARQLog with no universal quantifiers in the scope of existential ones (∀ ∃ fragment) is equivalent to full SPARQLog in presence of graph projection. Thus, the convenience of arbitrary quantifier alternation comes, in fact, for free. These results, though here presented in the context of RDF querying, apply similarly also in the more general setting of data exchange.
Database Reports Over the Internet
NASA Technical Reports Server (NTRS)
Smith, Dean Lance
2002-01-01
Most of the summer was spent developing software that would permit existing test report forms to be printed over the web on a printer that is supported by Adobe Acrobat Reader. The data is stored in a DBMS (Data Base Management System). The client asks for the information from the database using an HTML (Hyper Text Markup Language) form in a web browser. JavaScript is used with the forms to assist the user and verify the integrity of the entered data. Queries to a database are made in SQL (Sequential Query Language), a widely supported standard for making queries to databases. Java servlets, programs written in the Java programming language running under the control of network server software, interrogate the database and complete a PDF form template kept in a file. The completed report is sent to the browser requesting the report. Some errors are sent to the browser in an HTML web page, others are reported to the server. Access to the databases was restricted since the data are being transported to new DBMS software that will run on new hardware. However, the SQL queries were made to Microsoft Access, a DBMS that is available on most PCs (Personal Computers). Access does support the SQL commands that were used, and a database was created with Access that contained typical data for the report forms. Some of the problems and features are discussed below.
NASA Astrophysics Data System (ADS)
Bikakis, Nikos; Gioldasis, Nektarios; Tsinaraki, Chrisa; Christodoulakis, Stavros
SPARQL is today the standard access language for Semantic Web data. In the recent years XML databases have also acquired industrial importance due to the widespread applicability of XML in the Web. In this paper we present a framework that bridges the heterogeneity gap and creates an interoperable environment where SPARQL queries are used to access XML databases. Our approach assumes that fairly generic mappings between ontology constructs and XML Schema constructs have been automatically derived or manually specified. The mappings are used to automatically translate SPARQL queries to semantically equivalent XQuery queries which are used to access the XML databases. We present the algorithms and the implementation of SPARQL2XQuery framework, which is used for answering SPARQL queries over XML databases.
Vaccine-criticism on the internet: new insights based on French-speaking websites.
Ward, Jeremy K; Peretti-Watel, Patrick; Larson, Heidi J; Raude, Jocelyn; Verger, Pierre
2015-02-18
The internet is playing an increasingly important part in fueling vaccine related controversies and in generating vaccine hesitant behaviors. English language Antivaccination websites have been thoroughly analyzed, however, little is known of the arguments presented in other languages on the internet. This study presents three types of results: (1) Authors apply a time tested content analysis methodology to describe the information diffused by French language vaccine critical websites in comparison with English speaking websites. The contents of French language vaccine critical websites are very similar to those of English language websites except for the relative absence of moral and religious arguments. (2) Authors evaluate the likelihood that internet users will find those websites through vaccine-related queries on a variety of French-language versions of google. Queries on controversial vaccines generated many more vaccine critical websites than queries on vaccination in general. (3) Authors propose a typology of vaccine critical websites. Authors distinguish between (a) websites that criticize all vaccines ("antivaccine" websites) and websites that criticize only some vaccines ("vaccine-selective" websites), and between (b) websites that focus on vaccines ("vaccine-focused" websites) and those for which vaccines were only a secondary topic of interest ("generalist" websites). The differences in stances by groups and websites affect the likelihood that they will be believed and by whom. This study therefore helps understand the different information landscapes that may contribute to the variety of forms of vaccine hesitancy. Public authorities should have better awareness and understanding of these stances to bring appropriate answers to the different controversies about vaccination. Copyright © 2014 Elsevier Ltd. All rights reserved.
Functional Analysis of Language Interactions between Down Syndrome Children and Their Mothers.
ERIC Educational Resources Information Center
Hooshyar, Nahid T.
A 20-minute videotape sample was obtained of the language interactions between 20 Down syndrome children (ages 38 to 107 months) and their mothers during informal playtime. Linguistic utterances of mothers and children were coded according to the following language categories: query, declarative, imperative, performative, feedback, imitation,…
Taboada, María; Martínez, Diego; Pilo, Belén; Jiménez-Escrig, Adriano; Robinson, Peter N; Sobrido, María J
2012-07-31
Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research.
An integrated information retrieval and document management system
NASA Technical Reports Server (NTRS)
Coles, L. Stephen; Alvarez, J. Fernando; Chen, James; Chen, William; Cheung, Lai-Mei; Clancy, Susan; Wong, Alexis
1993-01-01
This paper describes the requirements and prototype development for an intelligent document management and information retrieval system that will be capable of handling millions of pages of text or other data. Technologies for scanning, Optical Character Recognition (OCR), magneto-optical storage, and multiplatform retrieval using a Standard Query Language (SQL) will be discussed. The semantic ambiguity inherent in the English language is somewhat compensated-for through the use of coefficients or weighting factors for partial synonyms. Such coefficients are used both for defining structured query trees for routine queries and for establishing long-term interest profiles that can be used on a regular basis to alert individual users to the presence of relevant documents that may have just arrived from an external source, such as a news wire service. Although this attempt at evidential reasoning is limited in comparison with the latest developments in AI Expert Systems technology, it has the advantage of being commercially available.
2017-01-01
Reusing the data from healthcare information systems can effectively facilitate clinical trials (CTs). How to select candidate patients eligible for CT recruitment criteria is a central task. Related work either depends on DBA (database administrator) to convert the recruitment criteria to native SQL queries or involves the data mapping between a standard ontology/information model and individual data source schema. This paper proposes an alternative computer-aided CT recruitment paradigm, based on syntax translation between different DSLs (domain-specific languages). In this paradigm, the CT recruitment criteria are first formally represented as production rules. The referenced rule variables are all from the underlying database schema. Then the production rule is translated to an intermediate query-oriented DSL (e.g., LINQ). Finally, the intermediate DSL is directly mapped to native database queries (e.g., SQL) automated by ORM (object-relational mapping). PMID:29065644
The EPMI Malay Basin petroleum geology database: Design philosophy and keys to success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, H.E.; Creaney, S.; Fairchild, L.H.
1994-07-01
Esso Production Malaysia Inc. (EPMI) developed and populated a database containing information collected in the areas of basic well data: stratigraphy, lithology, facies; pressure, temperature, column/contacts; geochemistry, shows and stains, migration, fluid properties; maturation; seal; structure. Paradox was used as the database engine and query language, with links to ZYCOR ZMAP+ for mapping and SAS for data analysis. Paradox has a query language that is simple enough for users. The ability to link to good analytical packages was deemed more important than having the capability in the package. Important elements of design philosophy were included: (1) information on data qualitymore » had to be rigorously recorded; (2) raw and interpreted data were kept separate and clearly identified; (3) correlations between rock and chronostratigraphic surfaces were recorded; and (4) queries across technical boundaries had to be seamless.« less
Zhang, Yinsheng; Zhang, Guoming; Shang, Qian
2017-01-01
Reusing the data from healthcare information systems can effectively facilitate clinical trials (CTs). How to select candidate patients eligible for CT recruitment criteria is a central task. Related work either depends on DBA (database administrator) to convert the recruitment criteria to native SQL queries or involves the data mapping between a standard ontology/information model and individual data source schema. This paper proposes an alternative computer-aided CT recruitment paradigm, based on syntax translation between different DSLs (domain-specific languages). In this paradigm, the CT recruitment criteria are first formally represented as production rules. The referenced rule variables are all from the underlying database schema. Then the production rule is translated to an intermediate query-oriented DSL (e.g., LINQ). Finally, the intermediate DSL is directly mapped to native database queries (e.g., SQL) automated by ORM (object-relational mapping).
An Expertise Recommender using Web Mining
NASA Technical Reports Server (NTRS)
Joshi, Anupam; Chandrasekaran, Purnima; ShuYang, Michelle; Ramakrishnan, Ramya
2001-01-01
This report explored techniques to mine web pages of scientists to extract information regarding their expertise, build expertise chains and referral webs, and semi automatically combine this information with directory information services to create a recommender system that permits query by expertise. The approach included experimenting with existing techniques that have been reported in research literature in recent past , and adapted them as needed. In addition, software tools were developed to capture and use this information.
Andragogical Model in Language Training of Mining Specialists
NASA Astrophysics Data System (ADS)
Bondareva, Evgeniya; Chistyakova, Galina; Kleshevskyi, Yury; Sergeev, Sergey; Stepanov, Aleksey
2017-11-01
Nowadays foreign language competence is one of the main professional skills of mining engineers. Modern competitive conditions require the ability for meeting production challenges in a foreign language from specialists and managers of mining enterprises. This is the reason of high demand on foreign language training/retraining courses. Language training of adult learners fundamentally differs from children and adolescent education. The article describes the features of andragogical learning model. The authors conclude that distance learning is the most productive education form having a number of obvious advantages over traditional (in-class) one. Interactive learning method that involves active engagement of adult trainees appears to be of the greatest interest due to introduction of modern information and communication technologies for distance learning.
A systematic review of data mining and machine learning for air pollution epidemiology.
Bellinger, Colin; Mohomed Jabbar, Mohomed Shazan; Zaïane, Osmar; Osornio-Vargas, Alvaro
2017-11-28
Data measuring airborne pollutants, public health and environmental factors are increasingly being stored and merged. These big datasets offer great potential, but also challenge traditional epidemiological methods. This has motivated the exploration of alternative methods to make predictions, find patterns and extract information. To this end, data mining and machine learning algorithms are increasingly being applied to air pollution epidemiology. We conducted a systematic literature review on the application of data mining and machine learning methods in air pollution epidemiology. We carried out our search process in PubMed, the MEDLINE database and Google Scholar. Research articles applying data mining and machine learning methods to air pollution epidemiology were queried and reviewed. Our search queries resulted in 400 research articles. Our fine-grained analysis employed our inclusion/exclusion criteria to reduce the results to 47 articles, which we separate into three primary areas of interest: 1) source apportionment; 2) forecasting/prediction of air pollution/quality or exposure; and 3) generating hypotheses. Early applications had a preference for artificial neural networks. In more recent work, decision trees, support vector machines, k-means clustering and the APRIORI algorithm have been widely applied. Our survey shows that the majority of the research has been conducted in Europe, China and the USA, and that data mining is becoming an increasingly common tool in environmental health. For potential new directions, we have identified that deep learning and geo-spacial pattern mining are two burgeoning areas of data mining that have good potential for future applications in air pollution epidemiology. We carried out a systematic review identifying the current trends, challenges and new directions to explore in the application of data mining methods to air pollution epidemiology. This work shows that data mining is increasingly being applied in air pollution epidemiology. The potential to support air pollution epidemiology continues to grow with advancements in data mining related to temporal and geo-spacial mining, and deep learning. This is further supported by new sensors and storage mediums that enable larger, better quality data. This suggests that many more fruitful applications can be expected in the future.
DiMeX: A Text Mining System for Mutation-Disease Association Extraction.
Mahmood, A S M Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K
2016-01-01
The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases.
DiMeX: A Text Mining System for Mutation-Disease Association Extraction
Mahmood, A. S. M. Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K.
2016-01-01
The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases. PMID:27073839
Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce.
Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng
2013-11-01
The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS - a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing.
A Fuzzy Query Mechanism for Human Resource Websites
NASA Astrophysics Data System (ADS)
Lai, Lien-Fu; Wu, Chao-Chin; Huang, Liang-Tsung; Kuo, Jung-Chih
Users' preferences often contain imprecision and uncertainty that are difficult for traditional human resource websites to deal with. In this paper, we apply the fuzzy logic theory to develop a fuzzy query mechanism for human resource websites. First, a storing mechanism is proposed to store fuzzy data into conventional database management systems without modifying DBMS models. Second, a fuzzy query language is proposed for users to make fuzzy queries on fuzzy databases. User's fuzzy requirement can be expressed by a fuzzy query which consists of a set of fuzzy conditions. Third, each fuzzy condition associates with a fuzzy importance to differentiate between fuzzy conditions according to their degrees of importance. Fourth, the fuzzy weighted average is utilized to aggregate all fuzzy conditions based on their degrees of importance and degrees of matching. Through the mutual compensation of all fuzzy conditions, the ordering of query results can be obtained according to user's preference.
Oliveira, S R M; Almeida, G V; Souza, K R R; Rodrigues, D N; Kuser-Falcão, P R; Yamagishi, M E B; Santos, E H; Vieira, F D; Jardine, J G; Neshich, G
2007-10-05
An effective strategy for managing protein databases is to provide mechanisms to transform raw data into consistent, accurate and reliable information. Such mechanisms will greatly reduce operational inefficiencies and improve one's ability to better handle scientific objectives and interpret the research results. To achieve this challenging goal for the STING project, we introduce Sting_RDB, a relational database of structural parameters for protein analysis with support for data warehousing and data mining. In this article, we highlight the main features of Sting_RDB and show how a user can explore it for efficient and biologically relevant queries. Considering its importance for molecular biologists, effort has been made to advance Sting_RDB toward data quality assessment. To the best of our knowledge, Sting_RDB is one of the most comprehensive data repositories for protein analysis, now also capable of providing its users with a data quality indicator. This paper differs from our previous study in many aspects. First, we introduce Sting_RDB, a relational database with mechanisms for efficient and relevant queries using SQL. Sting_rdb evolved from the earlier, text (flat file)-based database, in which data consistency and integrity was not guaranteed. Second, we provide support for data warehousing and mining. Third, the data quality indicator was introduced. Finally and probably most importantly, complex queries that could not be posed on a text-based database, are now easily implemented. Further details are accessible at the Sting_RDB demo web page: http://www.cbi.cnptia.embrapa.br/StingRDB.
A Semantic Basis for Proof Queries and Transformations
NASA Technical Reports Server (NTRS)
Aspinall, David; Denney, Ewen W.; Luth, Christoph
2013-01-01
We extend the query language PrQL, designed for inspecting machine representations of proofs, to also allow transformation of proofs. PrQL natively supports hiproofs which express proof structure using hierarchically nested labelled trees, which we claim is a natural way of taming the complexity of huge proofs. Query-driven transformations enable manipulation of this structure, in particular, to transform proofs produced by interactive theorem provers into forms that assist their understanding, or that could be consumed by other tools. In this paper we motivate and define basic transformation operations, using an abstract denotational semantics of hiproofs and queries. This extends our previous semantics for queries based on syntactic tree representations.We define update operations that add and remove sub-proofs, and manipulate the hierarchy to group and ungroup nodes. We show that
Semantic retrieval and navigation in clinical document collections.
Kreuzthaler, Markus; Daumke, Philipp; Schulz, Stefan
2015-01-01
Patients with chronic diseases undergo numerous in- and outpatient treatment periods, and therefore many documents accumulate in their electronic records. We report on an on-going project focussing on the semantic enrichment of medical texts, in order to support recall-oriented navigation across a patient's complete documentation. A document pool of 1,696 de-identified discharge summaries was used for prototyping. A natural language processing toolset for document annotation (based on the text-mining framework UIMA) and indexing (Solr) was used to support a browser-based platform for document import, search and navigation. The integrated search engine combines free text and concept-based querying, supported by dynamically generated facets (diagnoses, procedures, medications, lab values, and body parts). The prototype demonstrates the feasibility of semantic document enrichment within document collections of a single patient. Originally conceived as an add-on for the clinical workplace, this technology could also be adapted to support personalised health record platforms, as well as cross-patient search for cohort building and other secondary use scenarios.
Towards Phenotyping of Clinical Trial Eligibility Criteria.
Löbe, Matthias; Stäubert, Sebastian; Goldberg, Colleen; Haffner, Ivonne; Winter, Alfred
2018-01-01
Medical plaintext documents contain important facts about patients, but they are rarely available for structured queries. The provision of structured information from natural language texts in addition to the existing structured data can significantly speed up the search for fulfilled inclusion criteria and thus improve the recruitment rate. This work is aimed at supporting clinical trial recruitment with text mining techniques to identify suitable subjects in hospitals. Based on the inclusion/exclusion criteria of 5 sample studies and a text corpus consisting of 212 doctor's letters and medical follow-up documentation from a university cancer center, a prototype was developed and technically evaluated using NLP procedures (UIMA) for the extraction of facts from medical free texts. It was found that although the extracted entities are not always correct (precision between 23% and 96%), they provide a decisive indication as to which patient file should be read preferentially. The prototype presented here demonstrates the technical feasibility. In order to find available, lucrative phenotypes, an in-depth evaluation is required.
NASA Technical Reports Server (NTRS)
Barry, Matthew R.
2006-01-01
The X-Windows Process Validation Table (PVT) Widget Class ( Class is used here in the object-oriented-programming sense of the word) was devised to simplify the task of implementing network registration services for Information Sharing Protocol (ISP) graphical-user-interface (GUI) computer programs. Heretofore, ISP PVT programming tasks have required many method calls to identify, query, and interpret the connections and messages exchanged between a client and a PVT server. Normally, programmers have utilized direct access to UNIX socket libraries to implement the PVT protocol queries, necessitating the use of many lines of source code to perform frequent tasks. Now, the X-Windows PVT Widget Class encapsulates ISP client server network registration management tasks within the framework of an X Windows widget. Use of the widget framework enables an X Windows GUI program to interact with PVT services in an abstract way and in the same manner as that of other graphical widgets, making it easier to program PVT clients. Wrapping the PVT services inside the widget framework enables a programmer to treat a PVT server interface as though it were a GUI. Moreover, an alternate subclass could implement another service in a widget of the same type. This program was written by Matthew R. Barry of United Space Alliance for Johnson Space Center. For further information, contact the Johnson Technology Transfer Office at (281) 483-3809. MSC-23582 Shuttle Data Center File- Processing Tool in Java A Java-language computer program has been written to facilitate mining of data in files in the Shuttle Data Center (SDC) archives. This program can be executed on a variety of workstations or via Web-browser programs. This program is partly similar to prior C-language programs used for the same purpose, while differing from those programs in that it exploits the platform-neutrality of Java in implementing several features that are important for analysis of large sets of time-series data. The program supports regular expression queries of SDC archive files, reads the files, interleaves the time-stamped samples according to a chosen output, then transforms the results into that format. A user can choose among a variety of output file formats that are useful for diverse purposes, including plotting, Markov modeling, multivariate density estimation, and wavelet multiresolution analysis, as well as for playback of data in support of simulation and testing.
Astronomical Data Processing Using SciQL, an SQL Based Query Language for Array Data
NASA Astrophysics Data System (ADS)
Zhang, Y.; Scheers, B.; Kersten, M.; Ivanova, M.; Nes, N.
2012-09-01
SciQL (pronounced as ‘cycle’) is a novel SQL-based array query language for scientific applications with both tables and arrays as first class citizens. SciQL lowers the entrance fee of adopting relational DBMS (RDBMS) in scientific domains, because it includes functionality often only found in mathematics software packages. In this paper, we demonstrate the usefulness of SciQL for astronomical data processing using examples from the Transient Key Project of the LOFAR radio telescope. In particular, how the LOFAR light-curve database of all detected sources can be constructed, by correlating sources across the spatial, frequency, time and polarisation domains.
FlyMine: an integrated database for Drosophila and Anopheles genomics
Lyne, Rachel; Smith, Richard; Rutherford, Kim; Wakeling, Matthew; Varley, Andrew; Guillier, Francois; Janssens, Hilde; Ji, Wenyan; Mclaren, Peter; North, Philip; Rana, Debashis; Riley, Tom; Sullivan, Julie; Watkins, Xavier; Woodbridge, Mark; Lilley, Kathryn; Russell, Steve; Ashburner, Michael; Mizuguchi, Kenji; Micklem, Gos
2007-01-01
FlyMine is a data warehouse that addresses one of the important challenges of modern biology: how to integrate and make use of the diversity and volume of current biological data. Its main focus is genomic and proteomics data for Drosophila and other insects. It provides web access to integrated data at a number of different levels, from simple browsing to construction of complex queries, which can be executed on either single items or lists. PMID:17615057
Data mining for clustering naming of the village at Java Island
NASA Astrophysics Data System (ADS)
Setiawan Abdullah, Atje; Nurani Ruchjana, Budi; Hidayat, Akik; Akmal; Setiana, Deni
2017-10-01
Clustering of query based data mining to identify the meaning of the naming of the village in Java island, done by exploring the database village with three categories namely: prefix in the naming of the village, syllables contained in the naming of the village, and full word naming of the village which is actually used. While syllables contained in the naming of the village are classified by the behaviour of the culture and character of each province that describes the business, feelings, circumstances, places, nature, respect, plants, fruits, and animals. Sources of data used for the clustering of the naming of the village on the island of Java was obtained from Geospatial Information Agency (BIG) in the form of a complete village name data with the coordinates in six provinces in Java, which is arranged in a hierarchy of provinces, districts / cities, districts and villages. The research method using KDD (Knowledge Discovery in Database) through the process of preprocessing, data mining and postprocessing to obtain knowledge. In this study, data mining applications to facilitate the search query based on the name of the village, using Java software. While the contours of a map is processed using ArcGIS software. The results of the research can give recommendations to stakeholders such as the Department of Tourism to describe the meaning of the classification of naming the village according to the character in each province at Java island.
Developing A Web-based User Interface for Semantic Information Retrieval
NASA Technical Reports Server (NTRS)
Berrios, Daniel C.; Keller, Richard M.
2003-01-01
While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.
NASA Astrophysics Data System (ADS)
Skotniczny, Zbigniew
1989-12-01
The Query by Forms (QbF) system is a user-oriented interactive tool for querying large relational database with minimal queries difinition cost. The system was worked out under the assumption that user's time and effort for defining needed queries is the most severe bottleneck. The system may be applied in any Rdb/VMS databases system and is recommended for specific information systems of any project where end-user queries cannot be foreseen. The tool is dedicated to specialist of an application domain who have to analyze data maintained in database from any needed point of view, who do not need to know commercial databases languages. The paper presents the system developed as a compromise between its functionality and usability. User-system communication via a menu-driven "tree-like" structure of screen-forms which produces a query difinition and execution is discussed in detail. Output of query results (printed reports and graphics) is also discussed. Finally the paper shows one application of QbF to a HERA-project.
StarView: The object oriented design of the ST DADS user interface
NASA Technical Reports Server (NTRS)
Williams, J. D.; Pollizzi, J. A.
1992-01-01
StarView is the user interface being developed for the Hubble Space Telescope Data Archive and Distribution Service (ST DADS). ST DADS is the data archive for HST observations and a relational database catalog describing the archived data. Users will use StarView to query the catalog and select appropriate datasets for study. StarView sends requests for archived datasets to ST DADS which processes the requests and returns the database to the user. StarView is designed to be a powerful and extensible user interface. Unique features include an internal relational database to navigate query results, a form definition language that will work with both CRT and X interfaces, a data definition language that will allow StarView to work with any relational database, and the ability to generate adhoc queries without requiring the user to understand the structure of the ST DADS catalog. Ultimately, StarView will allow the user to refine queries in the local database for improved performance and merge in data from external sources for correlation with other query results. The user will be able to create a query from single or multiple forms, merging the selected attributes into a single query. Arbitrary selection of attributes for querying is supported. The user will be able to select how query results are viewed. A standard form or table-row format may be used. Navigation capabilities are provided to aid the user in viewing query results. Object oriented analysis and design techniques were used in the design of StarView to support the mechanisms and concepts required to implement these features. One such mechanism is the Model-View-Controller (MVC) paradigm. The MVC allows the user to have multiple views of the underlying database, while providing a consistent mechanism for interaction regardless of the view. This approach supports both CRT and X interfaces while providing a common mode of user interaction. Another powerful abstraction is the concept of a Query Model. This concept allows a single query to be built form a single or multiple forms before it is submitted to ST DADS. Supporting this concept is the adhoc query generator which allows the user to select and qualify an indeterminate number attributes from the database. The user does not need any knowledge of how the joins across various tables are to be resolved. The adhoc generator calculates the joins automatically and generates the correct SQL query.
Informatics in radiology: use of CouchDB for document-based storage of DICOM objects.
Rascovsky, Simón J; Delgado, Jorge A; Sanz, Alexander; Calvo, Víctor D; Castrillón, Gabriel
2012-01-01
Picture archiving and communication systems traditionally have depended on schema-based Structured Query Language (SQL) databases for imaging data management. To optimize database size and performance, many such systems store a reduced set of Digital Imaging and Communications in Medicine (DICOM) metadata, discarding informational content that might be needed in the future. As an alternative to traditional database systems, document-based key-value stores recently have gained popularity. These systems store documents containing key-value pairs that facilitate data searches without predefined schemas. Document-based key-value stores are especially suited to archive DICOM objects because DICOM metadata are highly heterogeneous collections of tag-value pairs conveying specific information about imaging modalities, acquisition protocols, and vendor-supported postprocessing options. The authors used an open-source document-based database management system (Apache CouchDB) to create and test two such databases; CouchDB was selected for its overall ease of use, capability for managing attachments, and reliance on HTTP and Representational State Transfer standards for accessing and retrieving data. A large database was created first in which the DICOM metadata from 5880 anonymized magnetic resonance imaging studies (1,949,753 images) were loaded by using a Ruby script. To provide the usual DICOM query functionality, several predefined "views" (standard queries) were created by using JavaScript. For performance comparison, the same queries were executed in both the CouchDB database and a SQL-based DICOM archive. The capabilities of CouchDB for attachment management and database replication were separately assessed in tests of a similar, smaller database. Results showed that CouchDB allowed efficient storage and interrogation of all DICOM objects; with the use of information retrieval algorithms such as map-reduce, all the DICOM metadata stored in the large database were searchable with only a minimal increase in retrieval time over that with the traditional database management system. Results also indicated possible uses for document-based databases in data mining applications such as dose monitoring, quality assurance, and protocol optimization. RSNA, 2012
Druzinsky, Robert E; Balhoff, James P; Crompton, Alfred W; Done, James; German, Rebecca Z; Haendel, Melissa A; Herrel, Anthony; Herring, Susan W; Lapp, Hilmar; Mabee, Paula M; Muller, Hans-Michael; Mungall, Christopher J; Sternberg, Paul W; Van Auken, Kimberly; Vinyard, Christopher J; Williams, Susan H; Wall, Christine E
2016-01-01
In recent years large bibliographic databases have made much of the published literature of biology available for searches. However, the capabilities of the search engines integrated into these databases for text-based bibliographic searches are limited. To enable searches that deliver the results expected by comparative anatomists, an underlying logical structure known as an ontology is required. Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repository for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). We compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.
Optimizability of OGC Standards Implementations - a Case Study
NASA Astrophysics Data System (ADS)
Misev, D.; Baumann, P.
2012-04-01
Why do we shop at Amazon? Because they have a unique offering that is nowhere else available? Certainly not. Rather, Amazon offers (i) simple, yet effective search; (ii) very simple payment; (iii) extremely rapid delivery. This is how scientific services will be distinguished in future: not for their data holding (there will be manifold choice), but for their service quality. We are facing the transition from data stewardship to service stewardship. One of the OGC standards which particularly enables flexible retrieval is the Web Coverage Processing Service (WCPS). It defines a high-level query language on large, multi-dimensional raster data, such as 1D timeseries, 2D EO imagery, 3D x/y/t image time series and x/y/z geophysical data, 4D x/y/z/t climate and ocean data. We have implemented WCPS based on an Array Database Management System, rasdaman, which is available in open source. In this demonstration, we study WCPS queries on 2D, 3D, and 4D data sets. Particular emphasis is placed on the computational load queries generate in such on-demand processing and filtering. We look at different techniques and their impact on performance, such as adaptive storage partitioning, query rewriting, and just-in-time compilation. Results show that there is significant potential for effective server-side optimization once a query language is sufficiently high-level and declarative.
Improving Concept-Based Web Image Retrieval by Mixing Semantically Similar Greek Queries
ERIC Educational Resources Information Center
Lazarinis, Fotis
2008-01-01
Purpose: Image searching is a common activity for web users. Search engines offer image retrieval services based on textual queries. Previous studies have shown that web searching is more demanding when the search is not in English and does not use a Latin-based language. The aim of this paper is to explore the behaviour of the major search…
The Comparison of SQL, QBE, and DFQL as Query Languages for Relational Databases
1994-03-01
is: Dname F-mune Laame Headquarter James Borg b. Query 7: RetieMl involving explicit sets Retrieve the Social Security Numbers of employees who worked...i •••,• I• i , i I I • I 10. Ka Dispullahta MABES TNI-AL Cilangkap-Jakarta Timur Indonesia 11. Parunmungan Girsang 3 Jl. Cawang Baru 34-36 Jakarta
Design of a Low-Cost Adaptive Question Answering System for Closed Domain Factoid Queries
ERIC Educational Resources Information Center
Toh, Huey Ling
2010-01-01
Closed domain question answering (QA) systems achieve precision and recall at the cost of complex language processing techniques to parse the answer corpus. We propose a "query-based" model for indexing answers in a closed domain factoid QA system. Further, we use a phrase term inference method for improving the ranking order of related questions.…
Privacy Perspectives for Online Searchers: Confidentiality with Confidence?
ERIC Educational Resources Information Center
Duberman, Josh; Beaudet, Michael
2000-01-01
Presents issues and questions involved in online privacy from the information professional's perspective. Topics include consumer concerns; query confidentiality; securing computers from intrusion; electronic mail; search engines; patents and intellectual property searches; government's role; Internet service providers; database mining; user…
NVST Data Archiving System Based On FastBit NoSQL Database
NASA Astrophysics Data System (ADS)
Liu, Ying-bo; Wang, Feng; Ji, Kai-fan; Deng, Hui; Dai, Wei; Liang, Bo
2014-06-01
The New Vacuum Solar Telescope (NVST) is a 1-meter vacuum solar telescope that aims to observe the fine structures of active regions on the Sun. The main tasks of the NVST are high resolution imaging and spectral observations, including the measurements of the solar magnetic field. The NVST has been collecting more than 20 million FITS files since it began routine observations in 2012 and produces a maximum observational records of 120 thousand files in a day. Given the large amount of files, the effective archiving and retrieval of files becomes a critical and urgent problem. In this study, we implement a new data archiving system for the NVST based on the Fastbit Not Only Structured Query Language (NoSQL) database. Comparing to the relational database (i.e., MySQL; My Structured Query Language), the Fastbit database manifests distinctive advantages on indexing and querying performance. In a large scale database of 40 million records, the multi-field combined query response time of Fastbit database is about 15 times faster and fully meets the requirements of the NVST. Our study brings a new idea for massive astronomical data archiving and would contribute to the design of data management systems for other astronomical telescopes.
GenoMetric Query Language: a novel approach to large-scale genomic data management.
Masseroli, Marco; Pinoli, Pietro; Venco, Francesco; Kaitoua, Abdulrahman; Jalili, Vahid; Palluzzi, Fernando; Muller, Heiko; Ceri, Stefano
2015-06-15
Improvement of sequencing technologies and data processing pipelines is rapidly providing sequencing data, with associated high-level features, of many individual genomes in multiple biological and clinical conditions. They allow for data-driven genomic, transcriptomic and epigenomic characterizations, but require state-of-the-art 'big data' computing strategies, with abstraction levels beyond available tool capabilities. We propose a high-level, declarative GenoMetric Query Language (GMQL) and a toolkit for its use. GMQL operates downstream of raw data preprocessing pipelines and supports queries over thousands of heterogeneous datasets and samples; as such it is key to genomic 'big data' analysis. GMQL leverages a simple data model that provides both abstractions of genomic region data and associated experimental, biological and clinical metadata and interoperability between many data formats. Based on Hadoop framework and Apache Pig platform, GMQL ensures high scalability, expressivity, flexibility and simplicity of use, as demonstrated by several biological query examples on ENCODE and TCGA datasets. The GMQL toolkit is freely available for non-commercial use at http://www.bioinformatics.deib.polimi.it/GMQL/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
GO2PUB: Querying PubMed with semantic expansion of gene ontology terms
2012-01-01
Background With the development of high throughput methods of gene analyses, there is a growing need for mining tools to retrieve relevant articles in PubMed. As PubMed grows, literature searches become more complex and time-consuming. Automated search tools with good precision and recall are necessary. We developed GO2PUB to automatically enrich PubMed queries with gene names, symbols and synonyms annotated by a GO term of interest or one of its descendants. Results GO2PUB enriches PubMed queries based on selected GO terms and keywords. It processes the result and displays the PMID, title, authors, abstract and bibliographic references of the articles. Gene names, symbols and synonyms that have been generated as extra keywords from the GO terms are also highlighted. GO2PUB is based on a semantic expansion of PubMed queries using the semantic inheritance between terms through the GO graph. Two experts manually assessed the relevance of GO2PUB, GoPubMed and PubMed on three queries about lipid metabolism. Experts’ agreement was high (kappa = 0.88). GO2PUB returned 69% of the relevant articles, GoPubMed: 40% and PubMed: 29%. GO2PUB and GoPubMed have 17% of their results in common, corresponding to 24% of the total number of relevant results. 70% of the articles returned by more than one tool were relevant. 36% of the relevant articles were returned only by GO2PUB, 17% only by GoPubMed and 14% only by PubMed. For determining whether these results can be generalized, we generated twenty queries based on random GO terms with a granularity similar to those of the first three queries and compared the proportions of GO2PUB and GoPubMed results. These were respectively of 77% and 40% for the first queries, and of 70% and 38% for the random queries. The two experts also assessed the relevance of seven of the twenty queries (the three related to lipid metabolism and four related to other domains). Expert agreement was high (0.93 and 0.8). GO2PUB and GoPubMed performances were similar to those of the first queries. Conclusions We demonstrated that the use of genes annotated by either GO terms of interest or a descendant of these GO terms yields some relevant articles ignored by other tools. The comparison of GO2PUB, based on semantic expansion, with GoPubMed, based on text mining techniques, showed that both tools are complementary. The analysis of the randomly-generated queries suggests that the results obtained about lipid metabolism can be generalized to other biological processes. GO2PUB is available at http://go2pub.genouest.org. PMID:22958570
CITE NLM: Natural-Language Searching in an Online Catalog.
ERIC Educational Resources Information Center
Doszkocs, Tamas E.
1983-01-01
The National Library of Medicine's Current Information Transfer in English public access online catalog offers unique subject search capabilities--natural-language query input, automatic medical subject headings display, closest match search strategy, ranked document output, dynamic end user feedback for search refinement. References, description…
Interrogation: General vs. Local.
ERIC Educational Resources Information Center
Johnson, Jeannette
This paper proposes a set of hypotheses on the nature of interrogration as a possible language universal. Examples and phrase structure rules and diagrams are given. Examining Tamazight and English, genetically unrelated languages with almost no contact, the author distinguishes two types of interrogation: (1) general, querying acceptability to…
Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes
NASA Astrophysics Data System (ADS)
Ianni, Giovambattista; Krennwallner, Thomas; Martello, Alessandra; Polleres, Axel
RDF Schema (RDFS) as a lightweight ontology language is gaining popularity and, consequently, tools for scalable RDFS inference and querying are needed. SPARQL has become recently a W3C standard for querying RDF data, but it mostly provides means for querying simple RDF graphs only, whereas querying with respect to RDFS or other entailment regimes is left outside the current specification. In this paper, we show that SPARQL faces certain unwanted ramifications when querying ontologies in conjunction with RDF datasets that comprise multiple named graphs, and we provide an extension for SPARQL that remedies these effects. Moreover, since RDFS inference has a close relationship with logic rules, we generalize our approach to select a custom ruleset for specifying inferences to be taken into account in a SPARQL query. We show that our extensions are technically feasible by providing benchmark results for RDFS querying in our prototype system GiaBATA, which uses Datalog coupled with a persistent Relational Database as a back-end for implementing SPARQL with dynamic rule-based inference. By employing different optimization techniques like magic set rewriting our system remains competitive with state-of-the-art RDFS querying systems.
Clinician-Oriented Access to Data - C.O.A.D.: A Natural Language Interface to a VA DHCP Database
Levy, Christine; Rogers, Elizabeth
1995-01-01
Hospitals collect enormous amounts of data related to the on-going care of patients. Unfortunately, a clinicians access to the data is limited by complexities of the database structure and/or programming skills required to access the database. The COAD project attempts to bridge the gap between the clinical user's need for specific information from the database, and the wealth of data residing in the hospital information system. The project design includes a natural language interface to data contained in a VA DHCP database. We have developed a prototype which links natural language software to certain DHCP data elements, including, patient demographics, prescriptions, diagnoses, laboratory data, and provider information. English queries can by typed onto the system, and answers to the questions are returned. Future work includes refinement of natural language/DHCP connections to enable more sophisticated queries, and optimization of the system to reduce response time to user questions.
Spanish for Business: A Journey into Employability
ERIC Educational Resources Information Center
Lallana, Amparo; Pastor-González, Victoria
2016-01-01
As language lecturers, we believe that we equip our graduates with a range of key skills that give them an edge in the employment market. But, query final year students of a Business and Languages degree on the value of language learning for employability, and they are likely to mention a small number of functional abilities such as CV writing and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaohan; Ye, Chuyu; Bisaria, Anjali
2011-01-01
Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additionalmore » genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.« less
A common layer of interoperability for biomedical ontologies based on OWL EL.
Hoehndorf, Robert; Dumontier, Michel; Oellrich, Anika; Wimalaratne, Sarala; Rebholz-Schuhmann, Dietrich; Schofield, Paul; Gkoutos, Georgios V
2011-04-01
Ontologies are essential in biomedical research due to their ability to semantically integrate content from different scientific databases and resources. Their application improves capabilities for querying and mining biological knowledge. An increasing number of ontologies is being developed for this purpose, and considerable effort is invested into formally defining them in order to represent their semantics explicitly. However, current biomedical ontologies do not facilitate data integration and interoperability yet, since reasoning over these ontologies is very complex and cannot be performed efficiently or is even impossible. We propose the use of less expressive subsets of ontology representation languages to enable efficient reasoning and achieve the goal of genuine interoperability between ontologies. We present and evaluate EL Vira, a framework that transforms OWL ontologies into the OWL EL subset, thereby enabling the use of tractable reasoning. We illustrate which OWL constructs and inferences are kept and lost following the conversion and demonstrate the performance gain of reasoning indicated by the significant reduction of processing time. We applied EL Vira to the open biomedical ontologies and provide a repository of ontologies resulting from this conversion. EL Vira creates a common layer of ontological interoperability that, for the first time, enables the creation of software solutions that can employ biomedical ontologies to perform inferences and answer complex queries to support scientific analyses. The EL Vira software is available from http://el-vira.googlecode.com and converted OBO ontologies and their mappings are available from http://bioonto.gen.cam.ac.uk/el-ont.
ERIC Educational Resources Information Center
Çepni, Sevcan Bayraktar; Demirel, Elif Tokdemir
2016-01-01
This study aimed to find out the impact of "text mining and imitating" strategies on lexical richness, lexical diversity and general success of students in their compositions in second language writing. The participants were 98 students studying their first year in Karadeniz Technical University in English Language and Literature…
Persistent Identifiers for Improved Accessibility for Linked Data Querying
NASA Astrophysics Data System (ADS)
Shepherd, A.; Chandler, C. L.; Arko, R. A.; Fils, D.; Jones, M. B.; Krisnadhi, A.; Mecum, B.
2016-12-01
The adoption of linked open data principles within the geosciences has increased the amount of accessible information available on the Web. However, this data is difficult to consume for those who are unfamiliar with Semantic Web technologies such as Web Ontology Language (OWL), Resource Description Framework (RDF) and SPARQL - the RDF query language. Consumers would need to understand the structure of the data and how to efficiently query it. Furthermore, understanding how to query doesn't solve problems of poor precision and recall in search results. For consumers unfamiliar with the data, full-text searches are most accessible, but not ideal as they arrest the advantages of data disambiguation and co-reference resolution efforts. Conversely, URI searches across linked data can deliver improved search results, but knowledge of these exact URIs may remain difficult to obtain. The increased adoption of Persistent Identifiers (PIDs) can lead to improved linked data querying by a wide variety of consumers. Because PIDs resolve to a single entity, they are an excellent data point for disambiguating content. At the same time, PIDs are more accessible and prominent than a single data provider's linked data URI. When present in linked open datasets, PIDs provide balance between the technical and social hurdles of linked data querying as evidenced by the NSF EarthCube GeoLink project. The GeoLink project, funded by NSF's EarthCube initiative, have brought together data repositories include content from field expeditions, laboratory analyses, journal publications, conference presentations, theses/reports, and funding awards that span scientific studies from marine geology to marine ecosystems and biogeochemistry to paleoclimatology.
UMass at TREC 2002: Cross Language and Novelty Tracks
2002-01-01
resources – stemmers, dictionaries , machine translation, and an acronym database. We found that proper names were extremely important in this year’s queries...data by manually annotating 48 additional topics. 1. Cross Language Track We submitted one monolingual run and four cross-language runs. For the... monolingual run, the technology was essentially the same as the system we used for TREC 2001. For the cross-language run, we integrated some new
The Effect of Bilingual Term List Size on Dictionary-Based Cross-Language Information Retrieval
2006-01-01
The Effect of Bilingual Term List Size on Dictionary -Based Cross-Language Information Retrieval Dina Demner-Fushman Department of Computer Science... dictionary -based Cross-Language Information Retrieval (CLIR), in which the goal is to find documents written in one natural language based on queries that...in which the documents are written. In dictionary -based CLIR techniques, the princi- pal source of translation knowledge is a translation lexicon
Dimensions of clinical nurse specialist work in the UK.
Leary, Alison; Crouch, Heather; Lezard, Anthony; Rawcliffe, Chris; Boden, Louise; Richardson, Alison
To model the work of clinical nurse specialists (CNSs) in the UK. This article examines data mined as part of a national project. The Pandora database was initially collected on a Microsoft Office Access database and subsequently, a Structured Query Language database in several iterations from June 2006 to September 2008. Pandora recorded CNS activity as a series of events with eight dimensions to each event. Data from this were mined to examine the complexity of CNS work. This study represents the work of 463 CNSs over 2,778 days in England, Scotland and Wales. Clinical work, including physical assessment, referral, symptom control and 'rescue' work, accounted for a large part of the CNS's role. Administration was the second highest workload, with about half of these administrative tasks identified as being suitable for secretarial staff to undertake. Research, education and consultation accounted for less time. A significant proportion of the nurses' clinical work is undertaken by telephone. CNSs in this study spent much of their time doing complex clinical work. Payment by Results (Department of Health 2006) should recognise the work undertaken by CNSs, particularly that done on the telephone. Complex clinical work by CNSs takes place in many different contexts using a wide range of interventions. The role of the CNS is complex and diverse, making comparisons of it difficult. More research needs to be done in relation to quality, safety and efficiency.
Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce
Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng
2016-01-01
The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS – a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing. PMID:27617325
Reyes-Aldasoro, Constantino Carlos
2017-01-01
In this work, the public database of biomedical literature PubMed was mined using queries with combinations of keywords and year restrictions. It was found that the proportion of Cancer-related entries per year in PubMed has risen from around 6% in 1950 to more than 16% in 2016. This increase is not shared by other conditions such as AIDS, Malaria, Tuberculosis, Diabetes, Cardiovascular, Stroke and Infection some of which have, on the contrary, decreased as a proportion of the total entries per year. Organ-related queries were performed to analyse the variation of some specific cancers. A series of queries related to incidence, funding, and relationship with DNA, Computing and Mathematics, were performed to test correlation between the keywords, with the hope of elucidating the cause behind the rise of Cancer in PubMed. Interestingly, the proportion of Cancer-related entries that contain "DNA", "Computational" or "Mathematical" have increased, which suggests that the impact of these scientific advances on Cancer has been stronger than in other conditions. It is important to highlight that the results obtained with the data mining approach here presented are limited to the presence or absence of the keywords on a single, yet extensive, database. Therefore, results should be observed with caution. All the data used for this work is publicly available through PubMed and the UK's Office for National Statistics. All queries and figures were generated with the software platform Matlab and the files are available as supplementary material.
2017-01-01
In this work, the public database of biomedical literature PubMed was mined using queries with combinations of keywords and year restrictions. It was found that the proportion of Cancer-related entries per year in PubMed has risen from around 6% in 1950 to more than 16% in 2016. This increase is not shared by other conditions such as AIDS, Malaria, Tuberculosis, Diabetes, Cardiovascular, Stroke and Infection some of which have, on the contrary, decreased as a proportion of the total entries per year. Organ-related queries were performed to analyse the variation of some specific cancers. A series of queries related to incidence, funding, and relationship with DNA, Computing and Mathematics, were performed to test correlation between the keywords, with the hope of elucidating the cause behind the rise of Cancer in PubMed. Interestingly, the proportion of Cancer-related entries that contain “DNA”, “Computational” or “Mathematical” have increased, which suggests that the impact of these scientific advances on Cancer has been stronger than in other conditions. It is important to highlight that the results obtained with the data mining approach here presented are limited to the presence or absence of the keywords on a single, yet extensive, database. Therefore, results should be observed with caution. All the data used for this work is publicly available through PubMed and the UK’s Office for National Statistics. All queries and figures were generated with the software platform Matlab and the files are available as supplementary material. PMID:28282418
Guiding Students to Answers: Query Recommendation
ERIC Educational Resources Information Center
Yilmazel, Ozgur
2011-01-01
This paper reports on a guided navigation system built on the textbook search engine developed at Anadolu University to support distance education students. The search engine uses Turkish Language specific language processing modules to enable searches over course material presented in Open Education Faculty textbooks. We implemented a guided…
2012-01-01
Background Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Methods Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. Results A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. Conclusions This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research. PMID:22849591
A Big Spatial Data Processing Framework Applying to National Geographic Conditions Monitoring
NASA Astrophysics Data System (ADS)
Xiao, F.
2018-04-01
In this paper, a novel framework for spatial data processing is proposed, which apply to National Geographic Conditions Monitoring project of China. It includes 4 layers: spatial data storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on spatial RDDs, such as range query, k nearest neighbor and spatial join. The spatial query language is a user-friendly interface which provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial frameworks, it is highlighted that comprehensive technologies are referred for big spatial data processing. Extensive experiments on real datasets show that the framework achieves better performance than traditional process methods.
Identifying QT prolongation from ECG impressions using a general-purpose Natural Language Processor
Denny, Joshua C.; Miller, Randolph A.; Waitman, Lemuel Russell; Arrieta, Mark; Peterson, Joshua F.
2009-01-01
Objective Typically detected via electrocardiograms (ECGs), QT interval prolongation is a known risk factor for sudden cardiac death. Since medications can promote or exacerbate the condition, detection of QT interval prolongation is important for clinical decision support. We investigated the accuracy of natural language processing (NLP) for identifying QT prolongation from cardiologist-generated, free-text ECG impressions compared to corrected QT (QTc) thresholds reported by ECG machines. Methods After integrating negation detection to a locally-developed natural language processor, the KnowledgeMap concept identifier, we evaluated NLP-based detection of QT prolongation compared to the calculated QTc on a set of 44,318 ECGs obtained from hospitalized patients. We also created a string query using regular expressions to identify QT prolongation. We calculated sensitivity and specificity of the methods using manual physician review of the cardiologist-generated reports as the gold standard. To investigate causes of “false positive” calculated QTc, we manually reviewed randomly selected ECGs with a long calculated QTc but no mention of QT prolongation. Separately, we validated the performance of the negation detection algorithm on 5,000 manually-categorized ECG phrases for any medical concept (not limited to QT prolongation) prior to developing the NLP query for QT prolongation. Results The NLP query for QT prolongation correctly identified 2,364 of 2,373 ECGs with QT prolongation with a sensitivity of 0.996 and a positive predictive value of 1.000. There were no false positives. The regular expression query had a sensitivity of 0.999 and positive predictive value of 0.982. In contrast, the positive predictive value of common QTc thresholds derived from ECG machines was 0.07–0.25 with corresponding sensitivities of 0.994–0.046. The negation detection algorithm had a recall of 0.973 and precision of 0.982 for 10,490 concepts found within ECG impressions. Conclusions NLP and regular expression queries of cardiologists’ ECG interpretations can more effectively identify QT prolongation than the automated QTc intervals reported by ECG machines. Future clinical decision support could employ NLP queries to detect QTc prolongation and other reported ECG abnormalities. PMID:18938105
The semantic web and computer vision: old AI meets new AI
NASA Astrophysics Data System (ADS)
Mundy, J. L.; Dong, Y.; Gilliam, A.; Wagner, R.
2018-04-01
There has been vast process in linking semantic information across the billions of web pages through the use of ontologies encoded in the Web Ontology Language (OWL) based on the Resource Description Framework (RDF). A prime example is the Wikipedia where the knowledge contained in its more than four million pages is encoded in an ontological database called DBPedia http://wiki.dbpedia.org/. Web-based query tools can retrieve semantic information from DBPedia encoded in interlinked ontologies that can be accessed using natural language. This paper will show how this vast context can be used to automate the process of querying images and other geospatial data in support of report changes in structures and activities. Computer vision algorithms are selected and provided with context based on natural language requests for monitoring and analysis. The resulting reports provide semantically linked observations from images and 3D surface models.
Exploiting salient semantic analysis for information retrieval
NASA Astrophysics Data System (ADS)
Luo, Jing; Meng, Bo; Quan, Changqin; Tu, Xinhui
2016-11-01
Recently, many Wikipedia-based methods have been proposed to improve the performance of different natural language processing (NLP) tasks, such as semantic relatedness computation, text classification and information retrieval. Among these methods, salient semantic analysis (SSA) has been proven to be an effective way to generate conceptual representation for words or documents. However, its feasibility and effectiveness in information retrieval is mostly unknown. In this paper, we study how to efficiently use SSA to improve the information retrieval performance, and propose a SSA-based retrieval method under the language model framework. First, SSA model is adopted to build conceptual representations for documents and queries. Then, these conceptual representations and the bag-of-words (BOW) representations can be used in combination to estimate the language models of queries and documents. The proposed method is evaluated on several standard text retrieval conference (TREC) collections. Experiment results on standard TREC collections show the proposed models consistently outperform the existing Wikipedia-based retrieval methods.
NASA Technical Reports Server (NTRS)
Denney, Ewen W.; Naylor, Dwight; Pai, Ganesh
2014-01-01
Querying a safety case to show how the various stakeholders' concerns about system safety are addressed has been put forth as one of the benefits of argument-based assurance (in a recent study by the Health Foundation, UK, which reviewed the use of safety cases in safety-critical industries). However, neither the literature nor current practice offer much guidance on querying mechanisms appropriate for, or available within, a safety case paradigm. This paper presents a preliminary approach that uses a formal basis for querying safety cases, specifically Goal Structuring Notation (GSN) argument structures. Our approach semantically enriches GSN arguments with domain-specific metadata that the query language leverages, along with its inherent structure, to produce views. We have implemented the approach in our toolset AdvoCATE, and illustrate it by application to a fragment of the safety argument for an Unmanned Aircraft System (UAS) being developed at NASA Ames. We also discuss the potential practical utility of our query mechanism within the context of the existing framework for UAS safety assurance.
Information Network Model Query Processing
NASA Astrophysics Data System (ADS)
Song, Xiaopu
Information Networking Model (INM) [31] is a novel database model for real world objects and relationships management. It naturally and directly supports various kinds of static and dynamic relationships between objects. In INM, objects are networked through various natural and complex relationships. INM Query Language (INM-QL) [30] is designed to explore such information network, retrieve information about schema, instance, their attributes, relationships, and context-dependent information, and process query results in the user specified form. INM database management system has been implemented using Berkeley DB, and it supports INM-QL. This thesis is mainly focused on the implementation of the subsystem that is able to effectively and efficiently process INM-QL. The subsystem provides a lexical and syntactical analyzer of INM-QL, and it is able to choose appropriate evaluation strategies and index mechanism to process queries in INM-QL without the user's intervention. It also uses intermediate result structure to hold intermediate query result and other helping structures to reduce complexity of query processing.
Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G; Khanna, Sanjeev
2017-06-01
Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings.
Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G.; Khanna, Sanjeev
2017-01-01
Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings. PMID:29151821
NASA Astrophysics Data System (ADS)
Merticariu, Vlad; Misev, Dimitar; Baumann, Peter
2017-04-01
While python has developed into the lingua franca in Data Science there is often a paradigm break when accessing specialized tools. In particular for one of the core data categories in science and engineering, massive multi-dimensional arrays, out-of-memory solutions typically employ their own, different models. We discuss this situation on the example of the scalable open-source array engine, rasdaman ("raster data manager") which offers access to and processing of Petascale multi-dimensional arrays through an SQL-style array query language, rasql. Such queries are executed in the server on a storage engine utilizing adaptive array partitioning and based on a processing engine implementing a "tile streaming" paradigm to allow processing of arrays massively larger than server RAM. The rasdaman QL has acted as blueprint for forthcoming ISO Array SQL and the Open Geospatial Consortium (OGC) geo analytics language, Web Coverage Processing Service, adopted in 2008. Not surprisingly, rasdaman is OGC and INSPIRE Reference Implementation for their "Big Earth Data" standards suite. Recently, rasdaman has been augmented with a python interface which allows to transparently interact with the database (credits go to Siddharth Shukla's Master Thesis at Jacobs University). Programmers do not need to know the rasdaman query language, as the operators are silently transformed, through lazy evaluation, into queries. Arrays delivered are likewise automatically transformed into their python representation. In the talk, the rasdaman concept will be illustrated with the help of large-scale real-life examples of operational satellite image and weather data services, and sample python code.
Prolog as a Teaching Tool for Relational Database Interrogation.
ERIC Educational Resources Information Center
Collier, P. A.; Samson, W. B.
1982-01-01
The use of the Prolog programing language is promoted as the language to use by anyone teaching a course in relational databases. A short introduction to Prolog is followed by a series of examples of queries. Several references are noted for anyone wishing to gain a deeper understanding. (MP)
A Graphical Database Interface for Casual, Naive Users.
ERIC Educational Resources Information Center
Burgess, Clifford; Swigger, Kathleen
1986-01-01
Describes the design of a database interface for infrequent users of computers which consists of a graphical display of a model of a database and a natural language query language. This interface was designed for and tested with physicians at the University of Texas Health Science Center in Dallas. (LRW)
NLPIR: A Theoretical Framework for Applying Natural Language Processing to Information Retrieval.
ERIC Educational Resources Information Center
Zhou, Lina; Zhang, Dongsong
2003-01-01
Proposes a theoretical framework called NLPIR that integrates natural language processing (NLP) into information retrieval (IR) based on the assumption that there exists representation distance between queries and documents. Discusses problems in traditional keyword-based IR, including relevance, and describes some existing NLP techniques.…
Make Mine a Metasearcher, Please!
ERIC Educational Resources Information Center
Repman, Judi; Carlson, Randal D.
2000-01-01
Describes metasearch tools and explains their value in helping library media centers improve students' Web searches. Discusses Boolean queries and the emphasis on speed at the expense of comprehensiveness; and compares four metasearch tools, including the number of search engines consulted, user control, and databases included. (LRW)
An intelligent user interface for browsing satellite data catalogs
NASA Technical Reports Server (NTRS)
Cromp, Robert F.; Crook, Sharon
1989-01-01
A large scale domain-independent spatial data management expert system that serves as a front-end to databases containing spatial data is described. This system is unique for two reasons. First, it uses spatial search techniques to generate a list of all the primary keys that fall within a user's spatial constraints prior to invoking the database management system, thus substantially decreasing the amount of time required to answer a user's query. Second, a domain-independent query expert system uses a domain-specific rule base to preprocess the user's English query, effectively mapping a broad class of queries into a smaller subset that can be handled by a commercial natural language processing system. The methods used by the spatial search module and the query expert system are explained, and the system architecture for the spatial data management expert system is described. The system is applied to data from the International Ultraviolet Explorer (IUE) satellite, and results are given.
Content-aware network storage system supporting metadata retrieval
NASA Astrophysics Data System (ADS)
Liu, Ke; Qin, Leihua; Zhou, Jingli; Nie, Xuejun
2008-12-01
Nowadays, content-based network storage has become the hot research spot of academy and corporation[1]. In order to solve the problem of hit rate decline causing by migration and achieve the content-based query, we exploit a new content-aware storage system which supports metadata retrieval to improve the query performance. Firstly, we extend the SCSI command descriptor block to enable system understand those self-defined query requests. Secondly, the extracted metadata is encoded by extensible markup language to improve the universality. Thirdly, according to the demand of information lifecycle management (ILM), we store those data in different storage level and use corresponding query strategy to retrieval them. Fourthly, as the file content identifier plays an important role in locating data and calculating block correlation, we use it to fetch files and sort query results through friendly user interface. Finally, the experiments indicate that the retrieval strategy and sort algorithm have enhanced the retrieval efficiency and precision.
NASA Astrophysics Data System (ADS)
Greenwald, Oksana; Islamov, Roman; Sergeychick, Tatyana
2017-11-01
The necessity to solve nature conservation problems of Kuzbass mining industry demands from postgraduate education institutions to train highly qualified specialists in ecology and environment management. As 21st century education is competence-based one, the article clarifies the concept of competence in education, focuses on key competences, namely foreign language competence and its relevance for specialists in ecology and environment management. Foreign language competence is acquired through the course of "Foreign Language" discipline which covers the following aspects: academic reading, academic writing and public speaking. The article also describes the experience of organizing students' individual work taking into account their motivation and specific conditions of the discipline as well. Thus, both the content of the discipline and the approach to organize students' learning contribute to mastering foreign language competence of ecology and environment managers as inherent condition of their professional efficiency for solving ecological problems of mining industry in Kuzbass region.
A general natural-language text processor for clinical radiology.
Friedman, C; Alderson, P O; Austin, J H; Cimino, J J; Johnson, S B
1994-01-01
OBJECTIVE: Development of a general natural-language processor that identifies clinical information in narrative reports and maps that information into a structured representation containing clinical terms. DESIGN: The natural-language processor provides three phases of processing, all of which are driven by different knowledge sources. The first phase performs the parsing. It identifies the structure of the text through use of a grammar that defines semantic patterns and a target form. The second phase, regularization, standardizes the terms in the initial target structure via a compositional mapping of multi-word phrases. The third phase, encoding, maps the terms to a controlled vocabulary. Radiology is the test domain for the processor and the target structure is a formal model for representing clinical information in that domain. MEASUREMENTS: The impression sections of 230 radiology reports were encoded by the processor. Results of an automated query of the resultant database for the occurrences of four diseases were compared with the analysis of a panel of three physicians to determine recall and precision. RESULTS: Without training specific to the four diseases, recall and precision of the system (combined effect of the processor and query generator) were 70% and 87%. Training of the query component increased recall to 85% without changing precision. PMID:7719797
KARL: A Knowledge-Assisted Retrieval Language. M.S. Thesis Final Report, 1 Jul. 1985 - 31 Dec. 1987
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Triantafyllopoulos, Spiros
1985-01-01
Data classification and storage are tasks typically performed by application specialists. In contrast, information users are primarily non-computer specialists who use information in their decision-making and other activities. Interaction efficiency between such users and the computer is often reduced by machine requirements and resulting user reluctance to use the system. This thesis examines the problems associated with information retrieval for non-computer specialist users, and proposes a method for communicating in restricted English that uses knowledge of the entities involved, relationships between entities, and basic English language syntax and semantics to translate the user requests into formal queries. The proposed method includes an intelligent dictionary, syntax and semantic verifiers, and a formal query generator. In addition, the proposed system has a learning capability that can improve portability and performance. With the increasing demand for efficient human-machine communication, the significance of this thesis becomes apparent. As human resources become more valuable, software systems that will assist in improving the human-machine interface will be needed and research addressing new solutions will be of utmost importance. This thesis presents an initial design and implementation as a foundation for further research and development into the emerging field of natural language database query systems.
Krasowski, Matthew D.; Schriever, Andy; Mathur, Gagan; Blau, John L.; Stauffer, Stephanie L.; Ford, Bradley A.
2015-01-01
Background: Pathology data contained within the electronic health record (EHR), and laboratory information system (LIS) of hospitals represents a potentially powerful resource to improve clinical care. However, existing reporting tools within commercial EHR and LIS software may not be able to efficiently and rapidly mine data for quality improvement and research applications. Materials and Methods: We present experience using a data warehouse produced collaboratively between an academic medical center and a private company. The data warehouse contains data from the EHR, LIS, admission/discharge/transfer system, and billing records and can be accessed using a self-service data access tool known as Starmaker. The Starmaker software allows users to use complex Boolean logic, include and exclude rules, unit conversion and reference scaling, and value aggregation using a straightforward visual interface. More complex queries can be achieved by users with experience with Structured Query Language. Queries can use biomedical ontologies such as Logical Observation Identifiers Names and Codes and Systematized Nomenclature of Medicine. Result: We present examples of successful searches using Starmaker, falling mostly in the realm of microbiology and clinical chemistry/toxicology. The searches were ones that were either very difficult or basically infeasible using reporting tools within the EHR and LIS used in the medical center. One of the main strengths of Starmaker searches is rapid results, with typical searches covering 5 years taking only 1–2 min. A “Run Count” feature quickly outputs the number of cases meeting criteria, allowing for refinement of searches before downloading patient-identifiable data. The Starmaker tool is available to pathology residents and fellows, with some using this tool for quality improvement and scholarly projects. Conclusion: A data warehouse has significant potential for improving utilization of clinical pathology testing. Software that can access data warehouse using a straightforward visual interface can be incorporated into pathology training programs. PMID:26284156
Krasowski, Matthew D; Schriever, Andy; Mathur, Gagan; Blau, John L; Stauffer, Stephanie L; Ford, Bradley A
2015-01-01
Pathology data contained within the electronic health record (EHR), and laboratory information system (LIS) of hospitals represents a potentially powerful resource to improve clinical care. However, existing reporting tools within commercial EHR and LIS software may not be able to efficiently and rapidly mine data for quality improvement and research applications. We present experience using a data warehouse produced collaboratively between an academic medical center and a private company. The data warehouse contains data from the EHR, LIS, admission/discharge/transfer system, and billing records and can be accessed using a self-service data access tool known as Starmaker. The Starmaker software allows users to use complex Boolean logic, include and exclude rules, unit conversion and reference scaling, and value aggregation using a straightforward visual interface. More complex queries can be achieved by users with experience with Structured Query Language. Queries can use biomedical ontologies such as Logical Observation Identifiers Names and Codes and Systematized Nomenclature of Medicine. We present examples of successful searches using Starmaker, falling mostly in the realm of microbiology and clinical chemistry/toxicology. The searches were ones that were either very difficult or basically infeasible using reporting tools within the EHR and LIS used in the medical center. One of the main strengths of Starmaker searches is rapid results, with typical searches covering 5 years taking only 1-2 min. A "Run Count" feature quickly outputs the number of cases meeting criteria, allowing for refinement of searches before downloading patient-identifiable data. The Starmaker tool is available to pathology residents and fellows, with some using this tool for quality improvement and scholarly projects. A data warehouse has significant potential for improving utilization of clinical pathology testing. Software that can access data warehouse using a straightforward visual interface can be incorporated into pathology training programs.
Meeting medical terminology needs--the Ontology-Enhanced Medical Concept Mapper.
Leroy, G; Chen, H
2001-12-01
This paper describes the development and testing of the Medical Concept Mapper, a tool designed to facilitate access to online medical information sources by providing users with appropriate medical search terms for their personal queries. Our system is valuable for patients whose knowledge of medical vocabularies is inadequate to find the desired information, and for medical experts who search for information outside their field of expertise. The Medical Concept Mapper maps synonyms and semantically related concepts to a user's query. The system is unique because it integrates our natural language processing tool, i.e., the Arizona (AZ) Noun Phraser, with human-created ontologies, the Unified Medical Language System (UMLS) and WordNet, and our computer generated Concept Space, into one system. Our unique contribution results from combining the UMLS Semantic Net with Concept Space in our deep semantic parsing (DSP) algorithm. This algorithm establishes a medical query context based on the UMLS Semantic Net, which allows Concept Space terms to be filtered so as to isolate related terms relevant to the query. We performed two user studies in which Medical Concept Mapper terms were compared against human experts' terms. We conclude that the AZ Noun Phraser is well suited to extract medical phrases from user queries, that WordNet is not well suited to provide strictly medical synonyms, that the UMLS Metathesaurus is well suited to provide medical synonyms, and that Concept Space is well suited to provide related medical terms, especially when these terms are limited by our DSP algorithm.
Ong, Edison; Xiang, Zuoshuang; Zhao, Bin; Liu, Yue; Lin, Yu; Zheng, Jie; Mungall, Chris; Courtot, Mélanie; Ruttenberg, Alan; He, Yongqun
2017-01-01
Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies. PMID:27733503
Sehnal, David; Pravda, Lukáš; Svobodová Vařeková, Radka; Ionescu, Crina-Maria; Koča, Jaroslav
2015-07-01
Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Designing integrated computational biology pipelines visually.
Jamil, Hasan M
2013-01-01
The long-term cost of developing and maintaining a computational pipeline that depends upon data integration and sophisticated workflow logic is too high to even contemplate "what if" or ad hoc type queries. In this paper, we introduce a novel application building interface for computational biology research, called VizBuilder, by leveraging a recent query language called BioFlow for life sciences databases. Using VizBuilder, it is now possible to develop ad hoc complex computational biology applications at throw away costs. The underlying query language supports data integration and workflow construction almost transparently and fully automatically, using a best effort approach. Users express their application by drawing it with VizBuilder icons and connecting them in a meaningful way. Completed applications are compiled and translated as BioFlow queries for execution by the data management system LifeDB, for which VizBuilder serves as a front end. We discuss VizBuilder features and functionalities in the context of a real life application after we briefly introduce BioFlow. The architecture and design principles of VizBuilder are also discussed. Finally, we outline future extensions of VizBuilder. To our knowledge, VizBuilder is a unique system that allows visually designing computational biology pipelines involving distributed and heterogeneous resources in an ad hoc manner.
Enhanced Approximate Nearest Neighbor via Local Area Focused Search.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzales, Antonio; Blazier, Nicholas Paul
Approximate Nearest Neighbor (ANN) algorithms are increasingly important in machine learning, data mining, and image processing applications. There is a large family of space- partitioning ANN algorithms, such as randomized KD-Trees, that work well in practice but are limited by an exponential increase in similarity comparisons required to optimize recall. Additionally, they only support a small set of similarity metrics. We present Local Area Fo- cused Search (LAFS), a method that enhances the way queries are performed using an existing ANN index. Instead of a single query, LAFS performs a number of smaller (fewer similarity comparisons) queries and focuses onmore » a local neighborhood which is refined as candidates are identified. We show that our technique improves performance on several well known datasets and is easily extended to general similarity metrics using kernel projection techniques.« less
A knowledge base browser using hypermedia
NASA Technical Reports Server (NTRS)
Pocklington, Tony; Wang, Lui
1990-01-01
A hypermedia system is being developed to browse CLIPS (C Language Integrated Production System) knowledge bases. This system will be used to help train flight controllers for the Mission Control Center. Browsing this knowledge base will be accomplished either by having navigating through the various collection nodes that have already been defined, or through the query languages.
A Tutorial in Creating Web-Enabled Databases with Inmagic DB/TextWorks through ODBC.
ERIC Educational Resources Information Center
Breeding, Marshall
2000-01-01
Explains how to create Web-enabled databases. Highlights include Inmagic's DB/Text WebPublisher product called DB/TextWorks; ODBC (Open Database Connectivity) drivers; Perl programming language; HTML coding; Structured Query Language (SQL); Common Gateway Interface (CGI) programming; and examples of HTML pages and Perl scripts. (LRW)
Uptake in Incidental Focus on Form in Meaning-Focused ESL Lessons
ERIC Educational Resources Information Center
Loewen, Shawn
2004-01-01
Uptake is a term used to describe learners' responses to the provision of feedback after either an erroneous utterance or a query about a linguistic item within the context of meaning-focused language activities. Some researchers argue that uptake may contribute to second language acquisition by facilitating noticing and pushing learners to…
Sense & Meaning: A Second Order Analysis of Language
ERIC Educational Resources Information Center
Singh, Amrendra Kumar; Mishra, Nirbhay
2012-01-01
What we know through language is whether the way things are or the ways the things are constructed through anthropological tradition and socio cultural shaping. Actually at the very outset, it is not very clear the settling point of this query. However, we can very well understand the point why a critical understanding of…
Student Query Trend Assessment with Semantical Annotation and Artificial Intelligent Multi-Agents
ERIC Educational Resources Information Center
Malik, Kaleem Razzaq; Mir, Rizwan Riaz; Farhan, Muhammad; Rafiq, Tariq; Aslam, Muhammad
2017-01-01
Research in era of data representation to contribute and improve key data policy involving the assessment of learning, training and English language competency. Students are required to communicate in English with high level impact using language and influence. The electronic technology works to assess students' questions positively enabling…
BioSWR – Semantic Web Services Registry for Bioinformatics
Repchevsky, Dmitry; Gelpi, Josep Ll.
2014-01-01
Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license. PMID:25233118
BioSWR--semantic web services registry for bioinformatics.
Repchevsky, Dmitry; Gelpi, Josep Ll
2014-01-01
Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license.
Özgür, Arzucan; Hur, Junguk; He, Yongqun
2016-01-01
The Interaction Network Ontology (INO) logically represents biological interactions, pathways, and networks. INO has been demonstrated to be valuable in providing a set of structured ontological terms and associated keywords to support literature mining of gene-gene interactions from biomedical literature. However, previous work using INO focused on single keyword matching, while many interactions are represented with two or more interaction keywords used in combination. This paper reports our extension of INO to include combinatory patterns of two or more literature mining keywords co-existing in one sentence to represent specific INO interaction classes. Such keyword combinations and related INO interaction type information could be automatically obtained via SPARQL queries, formatted in Excel format, and used in an INO-supported SciMiner, an in-house literature mining program. We studied the gene interaction sentences from the commonly used benchmark Learning Logic in Language (LLL) dataset and one internally generated vaccine-related dataset to identify and analyze interaction types containing multiple keywords. Patterns obtained from the dependency parse trees of the sentences were used to identify the interaction keywords that are related to each other and collectively represent an interaction type. The INO ontology currently has 575 terms including 202 terms under the interaction branch. The relations between the INO interaction types and associated keywords are represented using the INO annotation relations: 'has literature mining keywords' and 'has keyword dependency pattern'. The keyword dependency patterns were generated via running the Stanford Parser to obtain dependency relation types. Out of the 107 interactions in the LLL dataset represented with two-keyword interaction types, 86 were identified by using the direct dependency relations. The LLL dataset contained 34 gene regulation interaction types, each of which associated with multiple keywords. A hierarchical display of these 34 interaction types and their ancestor terms in INO resulted in the identification of specific gene-gene interaction patterns from the LLL dataset. The phenomenon of having multi-keyword interaction types was also frequently observed in the vaccine dataset. By modeling and representing multiple textual keywords for interaction types, the extended INO enabled the identification of complex biological gene-gene interactions represented with multiple keywords.
A review of EO image information mining
NASA Astrophysics Data System (ADS)
Quartulli, Marco; Olaizola, Igor G.
2013-01-01
We analyze the state of the art of content-based retrieval in Earth observation image archives focusing on complete systems showing promise for operational implementation. The different paradigms at the basis of the main system families are introduced. The approaches taken are considered, focusing in particular on the phases after primitive feature extraction. The solutions envisaged for the issues related to feature simplification and synthesis, indexing, semantic labeling are reviewed. The methodologies for query specification and execution are evaluated. Conclusions are drawn on the state of published research in Earth observation (EO) mining.
Masseroli, Marco; Kaitoua, Abdulrahman; Pinoli, Pietro; Ceri, Stefano
2016-12-01
While a huge amount of (epi)genomic data of multiple types is becoming available by using Next Generation Sequencing (NGS) technologies, the most important emerging problem is the so-called tertiary analysis, concerned with sense making, e.g., discovering how different (epi)genomic regions and their products interact and cooperate with each other. We propose a paradigm shift in tertiary analysis, based on the use of the Genomic Data Model (GDM), a simple data model which links genomic feature data to their associated experimental, biological and clinical metadata. GDM encompasses all the data formats which have been produced for feature extraction from (epi)genomic datasets. We specifically describe the mapping to GDM of SAM (Sequence Alignment/Map), VCF (Variant Call Format), NARROWPEAK (for called peaks produced by NGS ChIP-seq or DNase-seq methods), and BED (Browser Extensible Data) formats, but GDM supports as well all the formats describing experimental datasets (e.g., including copy number variations, DNA somatic mutations, or gene expressions) and annotations (e.g., regarding transcription start sites, genes, enhancers or CpG islands). We downloaded and integrated samples of all the above-mentioned data types and formats from multiple sources. The GDM is able to homogeneously describe semantically heterogeneous data and makes the ground for providing data interoperability, e.g., achieved through the GenoMetric Query Language (GMQL), a high-level, declarative query language for genomic big data. The combined use of the data model and the query language allows comprehensive processing of multiple heterogeneous data, and supports the development of domain-specific data-driven computations and bio-molecular knowledge discovery. Copyright © 2016 Elsevier Inc. All rights reserved.
Towards a light-weight query engine for accessing health sensor data in a fall prevention system.
Kreiner, Karl; Gossy, Christian; Drobics, Mario
2014-01-01
Connecting various sensors in sensor networks has become popular during the last decade. An important aspect next to storing and creating data is information access by domain experts, such as researchers, caretakers and physicians. In this work we present the design and prototypic implementation of a light-weight query engine using natural language processing for accessing health-related sensor data in a fall prevention system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madduri, Kamesh; Wu, Kesheng
The Resource Description Framework (RDF) is a popular data model for representing linked data sets arising from the web, as well as large scienti c data repositories such as UniProt. RDF data intrinsically represents a labeled and directed multi-graph. SPARQL is a query language for RDF that expresses subgraph pattern- nding queries on this implicit multigraph in a SQL- like syntax. SPARQL queries generate complex intermediate join queries; to compute these joins e ciently, we propose a new strategy based on bitmap indexes. We store the RDF data in column-oriented structures as compressed bitmaps along with two dictionaries. This papermore » makes three new contributions. (i) We present an e cient parallel strategy for parsing the raw RDF data, building dictionaries of unique entities, and creating compressed bitmap indexes of the data. (ii) We utilize the constructed bitmap indexes to e ciently answer SPARQL queries, simplifying the join evaluations. (iii) To quantify the performance impact of using bitmap indexes, we compare our approach to the state-of-the-art triple-store RDF-3X. We nd that our bitmap index-based approach to answering queries is up to an order of magnitude faster for a variety of SPARQL queries, on gigascale RDF data sets.« less
HodDB: Design and Analysis of a Query Processor for Brick.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fierro, Gabriel; Culler, David
Brick is a recently proposed metadata schema and ontology for describing building components and the relationships between them. It represents buildings as directed labeled graphs using the RDF data model. Using the SPARQL query language, building-agnostic applications query a Brick graph to discover the set of resources and relationships they require to operate. Latency-sensitive applications, such as user interfaces, demand response and modelpredictive control, require fast queries — conventionally less than 100ms. We benchmark a set of popular open-source and commercial SPARQL databases against three real Brick models using seven application queries and find that none of them meet thismore » performance target. This lack of performance can be attributed to design decisions that optimize for queries over large graphs consisting of billions of triples, but give poor spatial locality and join performance on the small dense graphs typical of Brick. We present the design and evaluation of HodDB, a RDF/SPARQL database for Brick built over a node-based index structure. HodDB performs Brick queries 3-700x faster than leading SPARQL databases and consistently meets the 100ms threshold, enabling the portability of important latency-sensitive building applications.« less
NASA Astrophysics Data System (ADS)
Kase, Sue E.; Vanni, Michelle; Knight, Joanne A.; Su, Yu; Yan, Xifeng
2016-05-01
Within operational environments decisions must be made quickly based on the information available. Identifying an appropriate knowledge base and accurately formulating a search query are critical tasks for decision-making effectiveness in dynamic situations. The spreading of graph data management tools to access large graph databases is a rapidly emerging research area of potential benefit to the intelligence community. A graph representation provides a natural way of modeling data in a wide variety of domains. Graph structures use nodes, edges, and properties to represent and store data. This research investigates the advantages of information search by graph query initiated by the analyst and interactively refined within the contextual dimensions of the answer space toward a solution. The paper introduces SLQ, a user-friendly graph querying system enabling the visual formulation of schemaless and structureless graph queries. SLQ is demonstrated with an intelligence analyst information search scenario focused on identifying individuals responsible for manufacturing a mosquito-hosted deadly virus. The scenario highlights the interactive construction of graph queries without prior training in complex query languages or graph databases, intuitive navigation through the problem space, and visualization of results in graphical format.
Comparative study on the customization of natural language interfaces to databases.
Pazos R, Rodolfo A; Aguirre L, Marco A; González B, Juan J; Martínez F, José A; Pérez O, Joaquín; Verástegui O, Andrés A
2016-01-01
In the last decades the popularity of natural language interfaces to databases (NLIDBs) has increased, because in many cases information obtained from them is used for making important business decisions. Unfortunately, the complexity of their customization by database administrators make them difficult to use. In order for a NLIDB to obtain a high percentage of correctly translated queries, it is necessary that it is correctly customized for the database to be queried. In most cases the performance reported in NLIDB literature is the highest possible; i.e., the performance obtained when the interfaces were customized by the implementers. However, for end users it is more important the performance that the interface can yield when the NLIDB is customized by someone different from the implementers. Unfortunately, there exist very few articles that report NLIDB performance when the NLIDBs are not customized by the implementers. This article presents a semantically-enriched data dictionary (which permits solving many of the problems that occur when translating from natural language to SQL) and an experiment in which two groups of undergraduate students customized our NLIDB and English language frontend (ELF), considered one of the best available commercial NLIDBs. The experimental results show that, when customized by the first group, our NLIDB obtained a 44.69 % of correctly answered queries and ELF 11.83 % for the ATIS database, and when customized by the second group, our NLIDB attained 77.05 % and ELF 13.48 %. The performance attained by our NLIDB, when customized by ourselves was 90 %.
Cognitive search model and a new query paradigm
NASA Astrophysics Data System (ADS)
Xu, Zhonghui
2001-06-01
This paper proposes a cognitive model in which people begin to search pictures by using semantic content and find a right picture by judging whether its visual content is a proper visualization of the semantics desired. It is essential that human search is not just a process of matching computation on visual feature but rather a process of visualization of the semantic content known. For people to search electronic images in the way as they manually do in the model, we suggest that querying be a semantic-driven process like design. A query-by-design paradigm is prosed in the sense that what you design is what you find. Unlike query-by-example, query-by-design allows users to specify the semantic content through an iterative and incremental interaction process so that a retrieval can start with association and identification of the given semantic content and get refined while further visual cues are available. An experimental image retrieval system, Kuafu, has been under development using the query-by-design paradigm and an iconic language is adopted.
Evaluation methodology for query-based scene understanding systems
NASA Astrophysics Data System (ADS)
Huster, Todd P.; Ross, Timothy D.; Culbertson, Jared L.
2015-05-01
In this paper, we are proposing a method for the principled evaluation of scene understanding systems in a query-based framework. We can think of a query-based scene understanding system as a generalization of typical sensor exploitation systems where instead of performing a narrowly defined task (e.g., detect, track, classify, etc.), the system can perform general user-defined tasks specified in a query language. Examples of this type of system have been developed as part of DARPA's Mathematics of Sensing, Exploitation, and Execution (MSEE) program. There is a body of literature on the evaluation of typical sensor exploitation systems, but the open-ended nature of the query interface introduces new aspects to the evaluation problem that have not been widely considered before. In this paper, we state the evaluation problem and propose an approach to efficiently learn about the quality of the system under test. We consider the objective of the evaluation to be to build a performance model of the system under test, and we rely on the principles of Bayesian experiment design to help construct and select optimal queries for learning about the parameters of that model.
SPANG: a SPARQL client supporting generation and reuse of queries for distributed RDF databases.
Chiba, Hirokazu; Uchiyama, Ikuo
2017-02-08
Toward improved interoperability of distributed biological databases, an increasing number of datasets have been published in the standardized Resource Description Framework (RDF). Although the powerful SPARQL Protocol and RDF Query Language (SPARQL) provides a basis for exploiting RDF databases, writing SPARQL code is burdensome for users including bioinformaticians. Thus, an easy-to-use interface is necessary. We developed SPANG, a SPARQL client that has unique features for querying RDF datasets. SPANG dynamically generates typical SPARQL queries according to specified arguments. It can also call SPARQL template libraries constructed in a local system or published on the Web. Further, it enables combinatorial execution of multiple queries, each with a distinct target database. These features facilitate easy and effective access to RDF datasets and integrative analysis of distributed data. SPANG helps users to exploit RDF datasets by generation and reuse of SPARQL queries through a simple interface. This client will enhance integrative exploitation of biological RDF datasets distributed across the Web. This software package is freely available at http://purl.org/net/spang .
A new relational database structure and online interface for the HITRAN database
NASA Astrophysics Data System (ADS)
Hill, Christian; Gordon, Iouli E.; Rothman, Laurence S.; Tennyson, Jonathan
2013-11-01
A new format for the HITRAN database is proposed. By storing the line-transition data in a number of linked tables described by a relational database schema, it is possible to overcome the limitations of the existing format, which have become increasingly apparent over the last few years as new and more varied data are being used by radiative-transfer models. Although the database in the new format can be searched using the well-established Structured Query Language (SQL), a web service, HITRANonline, has been deployed to allow users to make most common queries of the database using a graphical user interface in a web page. The advantages of the relational form of the database to ensuring data integrity and consistency are explored, and the compatibility of the online interface with the emerging standards of the Virtual Atomic and Molecular Data Centre (VAMDC) project is discussed. In particular, the ability to access HITRAN data using a standard query language from other websites, command line tools and from within computer programs is described.
NASA Technical Reports Server (NTRS)
Steeman, Gerald; Connell, Christopher
2000-01-01
Many librarians may feel that dynamic Web pages are out of their reach, financially and technically. Yet we are reminded in library and Web design literature that static home pages are a thing of the past. This paper describes how librarians at the Institute for Defense Analyses (IDA) library developed a database-driven, dynamic intranet site using commercial off-the-shelf applications. Administrative issues include surveying a library users group for interest and needs evaluation; outlining metadata elements; and, committing resources from managing time to populate the database and training in Microsoft FrontPage and Web-to-database design. Technical issues covered include Microsoft Access database fundamentals, lessons learned in the Web-to-database process (including setting up Database Source Names (DSNs), redesigning queries to accommodate the Web interface, and understanding Access 97 query language vs. Standard Query Language (SQL)). This paper also offers tips on editing Active Server Pages (ASP) scripting to create desired results. A how-to annotated resource list closes out the paper.
[Establishment of the database of the 3D facial models for the plastic surgery based on network].
Liu, Zhe; Zhang, Hai-Lin; Zhang, Zheng-Guo; Qiao, Qun
2008-07-01
To collect the three-dimensional (3D) facial data of 30 facial deformity patients by the 3D scanner and establish a professional database based on Internet. It can be helpful for the clinical intervention. The primitive point data of face topography were collected by the 3D scanner. Then the 3D point cloud was edited by reverse engineering software to reconstruct the 3D model of the face. The database system was divided into three parts, including basic information, disease information and surgery information. The programming language of the web system is Java. The linkages between every table of the database are credibility. The query operation and the data mining are convenient. The users can visit the database via the Internet and use the image analysis system to observe the 3D facial models interactively. In this paper we presented a database and a web system adapt to the plastic surgery of human face. It can be used both in clinic and in basic research.
The white matter query language: a novel approach for describing human white matter anatomy
Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik
2016-01-01
We have developed a novel method to describe human white matter anatomy using an approach that is both intuitive and simple to use, and which automatically extracts white matter tracts from diffusion MRI volumes. Further, our method simplifies the quantification and statistical analysis of white matter tracts on large diffusion MRI databases. This work reflects the careful syntactical definition of major white matter fiber tracts in the human brain based on a neuroanatomist’s expert knowledge. The framework is based on a novel query language with a near-to-English textual syntax. This query language makes it possible to construct a dictionary of anatomical definitions that describe white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This novel method makes it possible to automatically label white matter anatomy across subjects. After describing this method, we provide an example of its implementation where we encode anatomical knowledge in human white matter for ten association and 15 projection tracts per hemisphere, along with seven commissural tracts. Importantly, this novel method is comparable in accuracy to manual labeling. Finally, we present results applying this method to create a white matter atlas from 77 healthy subjects, and we use this atlas in a small proof-of-concept study to detect changes in association tracts that characterize schizophrenia. PMID:26754839
The white matter query language: a novel approach for describing human white matter anatomy.
Wassermann, Demian; Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik
2016-12-01
We have developed a novel method to describe human white matter anatomy using an approach that is both intuitive and simple to use, and which automatically extracts white matter tracts from diffusion MRI volumes. Further, our method simplifies the quantification and statistical analysis of white matter tracts on large diffusion MRI databases. This work reflects the careful syntactical definition of major white matter fiber tracts in the human brain based on a neuroanatomist's expert knowledge. The framework is based on a novel query language with a near-to-English textual syntax. This query language makes it possible to construct a dictionary of anatomical definitions that describe white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This novel method makes it possible to automatically label white matter anatomy across subjects. After describing this method, we provide an example of its implementation where we encode anatomical knowledge in human white matter for ten association and 15 projection tracts per hemisphere, along with seven commissural tracts. Importantly, this novel method is comparable in accuracy to manual labeling. Finally, we present results applying this method to create a white matter atlas from 77 healthy subjects, and we use this atlas in a small proof-of-concept study to detect changes in association tracts that characterize schizophrenia.
Conflict and Accommodation in Classroom Codeswitching in Taiwan
ERIC Educational Resources Information Center
Tien, Ching-yi
2009-01-01
The concept of "English only" as the best teaching-learning method in English as a foreign language classrooms has been promoted in Taiwan over the last decade. During that time, the concept has been queried and debated. Teachers and learners have come to realise that for beginners and slow language learners, the use of codeswitching in…
SGML and Related Standards: New Directions as the Second Decade Begins.
ERIC Educational Resources Information Center
Mason, James David
1997-01-01
ISO--International Organization for Standards highlights the activities of WG8 (Working Group 8 of ISO) in the alignment of standards for a common tree model and common query languages. Examines the how Document Style Semantics and Specification Language (DSSSL) and HyTime make documents easier to work with and more powerful in their ability to…
BROWSER: An Automatic Indexing On-Line Text Retrieval System. Annual Progress Report.
ERIC Educational Resources Information Center
Williams, J. H., Jr.
The development and testing of the Browsing On-line With Selective Retrieval (BROWSER) text retrieval system allowing a natural language query statement and providing on-line browsing capabilities through an IBM 2260 display terminal is described. The prototype system contains data bases of 25,000 German language patent abstracts, 9,000 English…
Designing a Syntax-Based Retrieval System for Supporting Language Learning
ERIC Educational Resources Information Center
Tsao, Nai-Lung; Kuo, Chin-Hwa; Wible, David; Hung, Tsung-Fu
2009-01-01
In this paper, we propose a syntax-based text retrieval system for on-line language learning and use a fast regular expression search engine as its main component. Regular expression searches provide more scalable querying and search results than keyword-based searches. However, without a well-designed index scheme, the execution time of regular…
Mining Genotype-Phenotype Associations from Public Knowledge Sources via Semantic Web Querying.
Kiefer, Richard C; Freimuth, Robert R; Chute, Christopher G; Pathak, Jyotishman
2013-01-01
Gene Wiki Plus (GeneWiki+) and the Online Mendelian Inheritance in Man (OMIM) are publicly available resources for sharing information about disease-gene and gene-SNP associations in humans. While immensely useful to the scientific community, both resources are manually curated, thereby making the data entry and publication process time-consuming, and to some degree, error-prone. To this end, this study investigates Semantic Web technologies to validate existing and potentially discover new genotype-phenotype associations in GWP and OMIM. In particular, we demonstrate the applicability of SPARQL queries for identifying associations not explicitly stated for commonly occurring chronic diseases in GWP and OMIM, and report our preliminary findings for coverage, completeness, and validity of the associations. Our results highlight the benefits of Semantic Web querying technology to validate existing disease-gene associations as well as identify novel associations although further evaluation and analysis is required before such information can be applied and used effectively.
Interaction and Communication of Agents in Networks and Language Complexity Estimates
NASA Technical Reports Server (NTRS)
Smid, Jan; Obitko, Marek; Fisher, David; Truszkowski, Walt
2004-01-01
Knowledge acquisition and sharing are arguably the most critical activities of communicating agents. We report about our on-going project featuring knowledge acquisition and sharing among communicating agents embedded in a network. The applications we target range from hardware robots to virtual entities such as internet agents. Agent experiments can be simulated using a convenient simulation language. We analyzed the complexity of communicating agent simulations using Java and Easel. Scenarios we have studied are listed below. The communication among agents can range from declarative queries to sub-natural language queries. 1) A set of agents monitoring an object are asked to build activity profiles based on exchanging elementary observations; 2) A set of car drivers form a line, where every car is following its predecessor. An unsafe distance cm create a strong wave in the line. Individual agents are asked to incorporate and apply directions how to avoid the wave. 3) A set of micro-vehicles form a grid and are asked to propagate information and concepts to a central server.
Selected Topics from LVCSR Research for Asian Languages at Tokyo Tech
NASA Astrophysics Data System (ADS)
Furui, Sadaoki
This paper presents our recent work in regard to building Large Vocabulary Continuous Speech Recognition (LVCSR) systems for the Thai, Indonesian, and Chinese languages. For Thai, since there is no word boundary in the written form, we have proposed a new method for automatically creating word-like units from a text corpus, and applied topic and speaking style adaptation to the language model to recognize spoken-style utterances. For Indonesian, we have applied proper noun-specific adaptation to acoustic modeling, and rule-based English-to-Indonesian phoneme mapping to solve the problem of large variation in proper noun and English word pronunciation in a spoken-query information retrieval system. In spoken Chinese, long organization names are frequently abbreviated, and abbreviated utterances cannot be recognized if the abbreviations are not included in the dictionary. We have proposed a new method for automatically generating Chinese abbreviations, and by expanding the vocabulary using the generated abbreviations, we have significantly improved the performance of spoken query-based search.
ASCOT: a text mining-based web-service for efficient search and assisted creation of clinical trials
2012-01-01
Clinical trials are mandatory protocols describing medical research on humans and among the most valuable sources of medical practice evidence. Searching for trials relevant to some query is laborious due to the immense number of existing protocols. Apart from search, writing new trials includes composing detailed eligibility criteria, which might be time-consuming, especially for new researchers. In this paper we present ASCOT, an efficient search application customised for clinical trials. ASCOT uses text mining and data mining methods to enrich clinical trials with metadata, that in turn serve as effective tools to narrow down search. In addition, ASCOT integrates a component for recommending eligibility criteria based on a set of selected protocols. PMID:22595088
Korkontzelos, Ioannis; Mu, Tingting; Ananiadou, Sophia
2012-04-30
Clinical trials are mandatory protocols describing medical research on humans and among the most valuable sources of medical practice evidence. Searching for trials relevant to some query is laborious due to the immense number of existing protocols. Apart from search, writing new trials includes composing detailed eligibility criteria, which might be time-consuming, especially for new researchers. In this paper we present ASCOT, an efficient search application customised for clinical trials. ASCOT uses text mining and data mining methods to enrich clinical trials with metadata, that in turn serve as effective tools to narrow down search. In addition, ASCOT integrates a component for recommending eligibility criteria based on a set of selected protocols.
Medical data mining: knowledge discovery in a clinical data warehouse.
Prather, J. C.; Lobach, D. F.; Goodwin, L. K.; Hales, J. W.; Hage, M. L.; Hammond, W. E.
1997-01-01
Clinical databases have accumulated large quantities of information about patients and their medical conditions. Relationships and patterns within this data could provide new medical knowledge. Unfortunately, few methodologies have been developed and applied to discover this hidden knowledge. In this study, the techniques of data mining (also known as Knowledge Discovery in Databases) were used to search for relationships in a large clinical database. Specifically, data accumulated on 3,902 obstetrical patients were evaluated for factors potentially contributing to preterm birth using exploratory factor analysis. Three factors were identified by the investigators for further exploration. This paper describes the processes involved in mining a clinical database including data warehousing, data query and cleaning, and data analysis. PMID:9357597
Boniolo, Giovanni; D'Agostino, Marcello; Di Fiore, Pier Paolo
2010-03-03
We propose a formal language that allows for transposing biological information precisely and rigorously into machine-readable information. This language, which we call Zsyntax (where Z stands for the Greek word zetaomegaeta, life), is grounded on a particular type of non-classical logic, and it can be used to write algorithms and computer programs. We present it as a first step towards a comprehensive formal language for molecular biology in which any biological process can be written and analyzed as a sort of logical "deduction". Moreover, we illustrate the potential value of this language, both in the field of text mining and in that of biological prediction.
Acquaintance: Language-Independent Document Categorization by N-Grams
1995-11-01
the topics. A typical topic (number 32) read “Cual es la importancia de las Naciones Unidas (NU) para Mexico?” To overcome this, the topic...from the query rather than adding anything substantive to it. The rendering of the above query became “ importancia de las Naciones Unidas (NU) para...individual tracks will be discussed below, the same software and basic procedure were used in each track. For the work in TREC-4, a generic, unoptimized
Group Centric Information Sharing Using Hierarchical Models
2011-01-01
enable people to create data using RDF, build vocabularies using web ontology language (OWL), write rules and query data stores using SPARQL [8...a strict joined and the document was added with a strict add. In order to represent the fact that an action is allowed (or not), we have created a...greatly improve the system’s readiness to handle any number of access decision queries . a. The pair is tested against the gSIS Join and Add semantics
Declarative Programming with Temporal Constraints, in the Language CG.
Negreanu, Lorina
2015-01-01
Specifying and interpreting temporal constraints are key elements of knowledge representation and reasoning, with applications in temporal databases, agent programming, and ambient intelligence. We present and formally characterize the language CG, which tackles this issue. In CG, users are able to develop time-dependent programs, in a flexible and straightforward manner. Such programs can, in turn, be coupled with evolving environments, thus empowering users to control the environment's evolution. CG relies on a structure for storing temporal information, together with a dedicated query mechanism. Hence, we explore the computational complexity of our query satisfaction problem. We discuss previous implementation attempts of CG and introduce a novel prototype which relies on logic programming. Finally, we address the issue of consistency and correctness of CG program execution, using the Event-B modeling approach.
Ong, Edison; Xiang, Zuoshuang; Zhao, Bin; Liu, Yue; Lin, Yu; Zheng, Jie; Mungall, Chris; Courtot, Mélanie; Ruttenberg, Alan; He, Yongqun
2017-01-04
Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Managing and Querying Image Annotation and Markup in XML.
Wang, Fusheng; Pan, Tony; Sharma, Ashish; Saltz, Joel
2010-01-01
Proprietary approaches for representing annotations and image markup are serious barriers for researchers to share image data and knowledge. The Annotation and Image Markup (AIM) project is developing a standard based information model for image annotation and markup in health care and clinical trial environments. The complex hierarchical structures of AIM data model pose new challenges for managing such data in terms of performance and support of complex queries. In this paper, we present our work on managing AIM data through a native XML approach, and supporting complex image and annotation queries through native extension of XQuery language. Through integration with xService, AIM databases can now be conveniently shared through caGrid.
Managing and Querying Image Annotation and Markup in XML
Wang, Fusheng; Pan, Tony; Sharma, Ashish; Saltz, Joel
2010-01-01
Proprietary approaches for representing annotations and image markup are serious barriers for researchers to share image data and knowledge. The Annotation and Image Markup (AIM) project is developing a standard based information model for image annotation and markup in health care and clinical trial environments. The complex hierarchical structures of AIM data model pose new challenges for managing such data in terms of performance and support of complex queries. In this paper, we present our work on managing AIM data through a native XML approach, and supporting complex image and annotation queries through native extension of XQuery language. Through integration with xService, AIM databases can now be conveniently shared through caGrid. PMID:21218167
Multi-Filter String Matching and Human-Centric Entity Matching for Information Extraction
ERIC Educational Resources Information Center
Sun, Chong
2012-01-01
More and more information is being generated in text documents, such as Web pages, emails and blogs. To effectively manage this unstructured information, one broadly used approach includes locating relevant content in documents, extracting structured information and integrating the extracted information for querying, mining or further analysis. In…
InterMine Webservices for Phytozome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Joseph; Hayes, David; Goodstein, David
2014-01-10
A data warehousing framework for biological information provides a useful infrastructure for providers and users of genomic data. For providers, the infrastructure give them a consistent mechanism for extracting raw data. While for the users, the web services supported by the software allows them to make either simple and common, or complex and unique, queries of the data
Mining the Human Phenome using Semantic Web Technologies: A Case Study for Type 2 Diabetes
Pathak, Jyotishman; Kiefer, Richard C.; Bielinski, Suzette J.; Chute, Christopher G.
2012-01-01
The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form “biobanks” where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypothesis generation. In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped with Type 2 Diabetes for discovering gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries. PMID:23304343
Mining the human phenome using semantic web technologies: a case study for Type 2 Diabetes.
Pathak, Jyotishman; Kiefer, Richard C; Bielinski, Suzette J; Chute, Christopher G
2012-01-01
The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form "biobanks" where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypothesis generation. In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped with Type 2 Diabetes for discovering gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries.
Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov.
Su, Eric Wen; Sanger, Todd M
2017-01-01
Drug repositioning (i.e., drug repurposing) is the process of discovering new uses for marketed drugs. Historically, such discoveries were serendipitous. However, the rapid growth in electronic clinical data and text mining tools makes it feasible to systematically identify drugs with the potential to be repurposed. Described here is a novel method of drug repositioning by mining ClinicalTrials.gov. The text mining tools I2E (Linguamatics) and PolyAnalyst (Megaputer) were utilized. An I2E query extracts "Serious Adverse Events" (SAE) data from randomized trials in ClinicalTrials.gov. Through a statistical algorithm, a PolyAnalyst workflow ranks the drugs where the treatment arm has fewer predefined SAEs than the control arm, indicating that potentially the drug is reducing the level of SAE. Hypotheses could then be generated for the new use of these drugs based on the predefined SAE that is indicative of disease (for example, cancer).
A Response to Jordan's (2004) "Explanatory Adequacy and Theories of Second Language Acquisition"
ERIC Educational Resources Information Center
Gregg, Kevin R.
2005-01-01
In a recent paper (Jordan, Geoff Jordan takes issue with some of my claims about second language acquisition (SLA) theory. Specifically, he queries the necessity of a property theory, and he finds my discussion of explanation unsatisfactory. In this brief reply, I try to answer his criticisms. In a brief but interesting paper, Geoff Jordan (2004:…
ERIC Educational Resources Information Center
St. James-Roberts, Ian; Alston, Enid
2006-01-01
Background: WILSTAAR comprises a programme for identifying and treating 8-10-month-old infants who are at risk of language and cognitive difficulties. It has been adopted by health trusts, and included in Sure Start intervention schemes, throughout the UK. This study addresses one of the main queries raised by critics of the programme, by…
English-Chinese Cross-Language IR Using Bilingual Dictionaries
2006-01-01
specialized dictionaries together contain about two million entries [6]. 4 Monolingual Experiment The Chinese documents and the Chinese translations of... monolingual performance. The main performance-limiting factor is the limited coverage of the dictionary used in query translation. Some of the key con...English-Chinese Cross-Language IR using Bilingual Dictionaries Aitao Chen , Hailing Jiang , and Fredric Gey School of Information Management
278. Photocopied July 1978. NOTICE TO MINE EMPLOYEES, CITIZENS AND ...
278. Photocopied July 1978. NOTICE TO MINE EMPLOYEES, CITIZENS AND NON-CITIZENS, ADVISING THEM OF ACCEPTABLE BEHAVIOR AND PROPER SHOP PRACTICES DURING WARTIME. WRITTEN IN SIX LANGUAGES. C. 1918. - Quincy Mining Company, Hancock, Houghton County, MI
Liu, Zhao; Zhu, Yunhong; Wu, Chenxue
2016-01-01
Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502
Reactome graph database: Efficient access to complex pathway data
Korninger, Florian; Viteri, Guilherme; Marin-Garcia, Pablo; Ping, Peipei; Wu, Guanming; Stein, Lincoln; D’Eustachio, Peter
2018-01-01
Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. One of its main priorities is to provide easy and efficient access to its high quality curated data. At present, biological pathway databases typically store their contents in relational databases. This limits access efficiency because there are performance issues associated with queries traversing highly interconnected data. The same data in a graph database can be queried more efficiently. Here we present the rationale behind the adoption of a graph database (Neo4j) as well as the new ContentService (REST API) that provides access to these data. The Neo4j graph database and its query language, Cypher, provide efficient access to the complex Reactome data model, facilitating easy traversal and knowledge discovery. The adoption of this technology greatly improved query efficiency, reducing the average query time by 93%. The web service built on top of the graph database provides programmatic access to Reactome data by object oriented queries, but also supports more complex queries that take advantage of the new underlying graph-based data storage. By adopting graph database technology we are providing a high performance pathway data resource to the community. The Reactome graph database use case shows the power of NoSQL database engines for complex biological data types. PMID:29377902
An approach for heterogeneous and loosely coupled geospatial data distributed computing
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui
2010-07-01
Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.
Reactome graph database: Efficient access to complex pathway data.
Fabregat, Antonio; Korninger, Florian; Viteri, Guilherme; Sidiropoulos, Konstantinos; Marin-Garcia, Pablo; Ping, Peipei; Wu, Guanming; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning
2018-01-01
Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. One of its main priorities is to provide easy and efficient access to its high quality curated data. At present, biological pathway databases typically store their contents in relational databases. This limits access efficiency because there are performance issues associated with queries traversing highly interconnected data. The same data in a graph database can be queried more efficiently. Here we present the rationale behind the adoption of a graph database (Neo4j) as well as the new ContentService (REST API) that provides access to these data. The Neo4j graph database and its query language, Cypher, provide efficient access to the complex Reactome data model, facilitating easy traversal and knowledge discovery. The adoption of this technology greatly improved query efficiency, reducing the average query time by 93%. The web service built on top of the graph database provides programmatic access to Reactome data by object oriented queries, but also supports more complex queries that take advantage of the new underlying graph-based data storage. By adopting graph database technology we are providing a high performance pathway data resource to the community. The Reactome graph database use case shows the power of NoSQL database engines for complex biological data types.
Optimizing Interactive Development of Data-Intensive Applications
Interlandi, Matteo; Tetali, Sai Deep; Gulzar, Muhammad Ali; Noor, Joseph; Condie, Tyson; Kim, Miryung; Millstein, Todd
2017-01-01
Modern Data-Intensive Scalable Computing (DISC) systems are designed to process data through batch jobs that execute programs (e.g., queries) compiled from a high-level language. These programs are often developed interactively by posing ad-hoc queries over the base data until a desired result is generated. We observe that there can be significant overlap in the structure of these queries used to derive the final program. Yet, each successive execution of a slightly modified query is performed anew, which can significantly increase the development cycle. Vega is an Apache Spark framework that we have implemented for optimizing a series of similar Spark programs, likely originating from a development or exploratory data analysis session. Spark developers (e.g., data scientists) can leverage Vega to significantly reduce the amount of time it takes to re-execute a modified Spark program, reducing the overall time to market for their Big Data applications. PMID:28405637
Using a data base management system for modelling SSME test history data
NASA Technical Reports Server (NTRS)
Abernethy, K.
1985-01-01
The usefulness of a data base management system (DBMS) for modelling historical test data for the complete series of static test firings for the Space Shuttle Main Engine (SSME) was assessed. From an analysis of user data base query requirements, it became clear that a relational DMBS which included a relationally complete query language would permit a model satisfying the query requirements. Representative models and sample queries are discussed. A list of environment-particular evaluation criteria for the desired DBMS was constructed; these criteria include requirements in the areas of user-interface complexity, program independence, flexibility, modifiability, and output capability. The evaluation process included the construction of several prototype data bases for user assessement. The systems studied, representing the three major DBMS conceptual models, were: MIRADS, a hierarchical system; DMS-1100, a CODASYL-based network system; ORACLE, a relational system; and DATATRIEVE, a relational-type system.
NASA Astrophysics Data System (ADS)
Vaucouleur, Sebastien
2011-02-01
We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.
Druzinsky, Robert E.; Balhoff, James P.; Crompton, Alfred W.; Done, James; German, Rebecca Z.; Haendel, Melissa A.; Herrel, Anthony; Herring, Susan W.; Lapp, Hilmar; Mabee, Paula M.; Muller, Hans-Michael; Mungall, Christopher J.; Sternberg, Paul W.; Van Auken, Kimberly; Vinyard, Christopher J.; Williams, Susan H.; Wall, Christine E.
2016-01-01
Background In recent years large bibliographic databases have made much of the published literature of biology available for searches. However, the capabilities of the search engines integrated into these databases for text-based bibliographic searches are limited. To enable searches that deliver the results expected by comparative anatomists, an underlying logical structure known as an ontology is required. Development and Testing of the Ontology Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repository for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). We compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. Results and Significance Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities. PMID:26870952
A self-updating road map of The Cancer Genome Atlas.
Robbins, David E; Grüneberg, Alexander; Deus, Helena F; Tanik, Murat M; Almeida, Jonas S
2013-05-15
Since 2011, The Cancer Genome Atlas' (TCGA) files have been accessible through HTTP from a public site, creating entirely new possibilities for cancer informatics by enhancing data discovery and retrieval. Significantly, these enhancements enable the reporting of analysis results that can be fully traced to and reproduced using their source data. However, to realize this possibility, a continually updated road map of files in the TCGA is required. Creation of such a road map represents a significant data modeling challenge, due to the size and fluidity of this resource: each of the 33 cancer types is instantiated in only partially overlapping sets of analytical platforms, while the number of data files available doubles approximately every 7 months. We developed an engine to index and annotate the TCGA files, relying exclusively on third-generation web technologies (Web 3.0). Specifically, this engine uses JavaScript in conjunction with the World Wide Web Consortium's (W3C) Resource Description Framework (RDF), and SPARQL, the query language for RDF, to capture metadata of files in the TCGA open-access HTTP directory. The resulting index may be queried using SPARQL, and enables file-level provenance annotations as well as discovery of arbitrary subsets of files, based on their metadata, using web standard languages. In turn, these abilities enhance the reproducibility and distribution of novel results delivered as elements of a web-based computational ecosystem. The development of the TCGA Roadmap engine was found to provide specific clues about how biomedical big data initiatives should be exposed as public resources for exploratory analysis, data mining and reproducible research. These specific design elements align with the concept of knowledge reengineering and represent a sharp departure from top-down approaches in grid initiatives such as CaBIG. They also present a much more interoperable and reproducible alternative to the still pervasive use of data portals. A prepared dashboard, including links to source code and a SPARQL endpoint, is available at http://bit.ly/TCGARoadmap. A video tutorial is available at http://bit.ly/TCGARoadmapTutorial. robbinsd@uab.edu.
A self-updating road map of The Cancer Genome Atlas
Robbins, David E.; Grüneberg, Alexander; Deus, Helena F.; Tanik, Murat M.; Almeida, Jonas S.
2013-01-01
Motivation: Since 2011, The Cancer Genome Atlas’ (TCGA) files have been accessible through HTTP from a public site, creating entirely new possibilities for cancer informatics by enhancing data discovery and retrieval. Significantly, these enhancements enable the reporting of analysis results that can be fully traced to and reproduced using their source data. However, to realize this possibility, a continually updated road map of files in the TCGA is required. Creation of such a road map represents a significant data modeling challenge, due to the size and fluidity of this resource: each of the 33 cancer types is instantiated in only partially overlapping sets of analytical platforms, while the number of data files available doubles approximately every 7 months. Results: We developed an engine to index and annotate the TCGA files, relying exclusively on third-generation web technologies (Web 3.0). Specifically, this engine uses JavaScript in conjunction with the World Wide Web Consortium’s (W3C) Resource Description Framework (RDF), and SPARQL, the query language for RDF, to capture metadata of files in the TCGA open-access HTTP directory. The resulting index may be queried using SPARQL, and enables file-level provenance annotations as well as discovery of arbitrary subsets of files, based on their metadata, using web standard languages. In turn, these abilities enhance the reproducibility and distribution of novel results delivered as elements of a web-based computational ecosystem. The development of the TCGA Roadmap engine was found to provide specific clues about how biomedical big data initiatives should be exposed as public resources for exploratory analysis, data mining and reproducible research. These specific design elements align with the concept of knowledge reengineering and represent a sharp departure from top-down approaches in grid initiatives such as CaBIG. They also present a much more interoperable and reproducible alternative to the still pervasive use of data portals. Availability: A prepared dashboard, including links to source code and a SPARQL endpoint, is available at http://bit.ly/TCGARoadmap. A video tutorial is available at http://bit.ly/TCGARoadmapTutorial. Contact: robbinsd@uab.edu PMID:23595662
1989-09-30
parses, in a second experiment. This procedure used PUNDIT’s Selection Pattern Query and Response ( SPQR ) component JLang19881. We first used SPQR in...messages pattern. SPQR continues the analysis of the ISR. from each domain, and the resulting output is and the parsing of the sentence is allowed to...UNISYS P. 0. Box 517, Paoli, PA 19301 ABSTRACT knowledge. This paper presents SPQR (Selectional Pat- One obvious benefit of acquiring domain- tern Queries
The Design and Implementation of the Ariel Active Database Rule System
1991-10-01
but only as a main-memory prototype. The POSTGRES rule system (PRS) [SHP88, SRH90] and the Starburst rule system (SRS) [WCL91, HCL+90] have been...query language of POSTGRES for specifying data definition commands, queries and updates [SRH90]. POSTQUEL commands retrieve, append, delete, and replace...placed on an arbitrary attribute (e.g., one without an index) ( POSTGRES rule system [SHP88, SHP89, SR1I90], HiPAC [C+891, DIPS [SLR89], Alert [SPAM91
A search engine to access PubMed monolingual subsets: proof of concept and evaluation in French.
Griffon, Nicolas; Schuers, Matthieu; Soualmia, Lina Fatima; Grosjean, Julien; Kerdelhué, Gaétan; Kergourlay, Ivan; Dahamna, Badisse; Darmoni, Stéfan Jacques
2014-12-01
PubMed contains numerous articles in languages other than English. However, existing solutions to access these articles in the language in which they were written remain unconvincing. The aim of this study was to propose a practical search engine, called Multilingual PubMed, which will permit access to a PubMed subset in 1 language and to evaluate the precision and coverage for the French version (Multilingual PubMed-French). To create this tool, translations of MeSH were enriched (eg, adding synonyms and translations in French) and integrated into a terminology portal. PubMed subsets in several European languages were also added to our database using a dedicated parser. The response time for the generic semantic search engine was evaluated for simple queries. BabelMeSH, Multilingual PubMed-French, and 3 different PubMed strategies were compared by searching for literature in French. Precision and coverage were measured for 20 randomly selected queries. The results were evaluated as relevant to title and abstract, the evaluator being blind to search strategy. More than 650,000 PubMed citations in French were integrated into the Multilingual PubMed-French information system. The response times were all below the threshold defined for usability (2 seconds). Two search strategies (Multilingual PubMed-French and 1 PubMed strategy) showed high precision (0.93 and 0.97, respectively), but coverage was 4 times higher for Multilingual PubMed-French. It is now possible to freely access biomedical literature using a practical search tool in French. This tool will be of particular interest for health professionals and other end users who do not read or query sufficiently in English. The information system is theoretically well suited to expand the approach to other European languages, such as German, Spanish, Norwegian, and Portuguese.
A Search Engine to Access PubMed Monolingual Subsets: Proof of Concept and Evaluation in French
Schuers, Matthieu; Soualmia, Lina Fatima; Grosjean, Julien; Kerdelhué, Gaétan; Kergourlay, Ivan; Dahamna, Badisse; Darmoni, Stéfan Jacques
2014-01-01
Background PubMed contains numerous articles in languages other than English. However, existing solutions to access these articles in the language in which they were written remain unconvincing. Objective The aim of this study was to propose a practical search engine, called Multilingual PubMed, which will permit access to a PubMed subset in 1 language and to evaluate the precision and coverage for the French version (Multilingual PubMed-French). Methods To create this tool, translations of MeSH were enriched (eg, adding synonyms and translations in French) and integrated into a terminology portal. PubMed subsets in several European languages were also added to our database using a dedicated parser. The response time for the generic semantic search engine was evaluated for simple queries. BabelMeSH, Multilingual PubMed-French, and 3 different PubMed strategies were compared by searching for literature in French. Precision and coverage were measured for 20 randomly selected queries. The results were evaluated as relevant to title and abstract, the evaluator being blind to search strategy. Results More than 650,000 PubMed citations in French were integrated into the Multilingual PubMed-French information system. The response times were all below the threshold defined for usability (2 seconds). Two search strategies (Multilingual PubMed-French and 1 PubMed strategy) showed high precision (0.93 and 0.97, respectively), but coverage was 4 times higher for Multilingual PubMed-French. Conclusions It is now possible to freely access biomedical literature using a practical search tool in French. This tool will be of particular interest for health professionals and other end users who do not read or query sufficiently in English. The information system is theoretically well suited to expand the approach to other European languages, such as German, Spanish, Norwegian, and Portuguese. PMID:25448528
Guhlin, Joseph; Silverstein, Kevin A T; Zhou, Peng; Tiffin, Peter; Young, Nevin D
2017-08-10
Rapid generation of omics data in recent years have resulted in vast amounts of disconnected datasets without systemic integration and knowledge building, while individual groups have made customized, annotated datasets available on the web with few ways to link them to in-lab datasets. With so many research groups generating their own data, the ability to relate it to the larger genomic and comparative genomic context is becoming increasingly crucial to make full use of the data. The Omics Database Generator (ODG) allows users to create customized databases that utilize published genomics data integrated with experimental data which can be queried using a flexible graph database. When provided with omics and experimental data, ODG will create a comparative, multi-dimensional graph database. ODG can import definitions and annotations from other sources such as InterProScan, the Gene Ontology, ENZYME, UniPathway, and others. This annotation data can be especially useful for studying new or understudied species for which transcripts have only been predicted, and rapidly give additional layers of annotation to predicted genes. In better studied species, ODG can perform syntenic annotation translations or rapidly identify characteristics of a set of genes or nucleotide locations, such as hits from an association study. ODG provides a web-based user-interface for configuring the data import and for querying the database. Queries can also be run from the command-line and the database can be queried directly through programming language hooks available for most languages. ODG supports most common genomic formats as well as generic, easy to use tab-separated value format for user-provided annotations. ODG is a user-friendly database generation and query tool that adapts to the supplied data to produce a comparative genomic database or multi-layered annotation database. ODG provides rapid comparative genomic annotation and is therefore particularly useful for non-model or understudied species. For species for which more data are available, ODG can be used to conduct complex multi-omics, pattern-matching queries.
Measuring Up: Implementing a Dental Quality Measure in the Electronic Health Record Context
Bhardwaj, Aarti; Ramoni, Rachel; Kalenderian, Elsbeth; Neumann, Ana; Hebballi, Nutan B; White, Joel M; McClellan, Lyle; Walji, Muhammad F
2015-01-01
Background Quality improvement requires quality measures that are validly implementable. In this work, we assessed the feasibility and performance of an automated electronic Meaningful Use dental clinical quality measure (percentage of children who received fluoride varnish). Methods We defined how to implement the automated measure queries in a dental electronic health record (EHR). Within records identified through automated query, we manually reviewed a subsample to assess the performance of the query. Results The automated query found 71.0% of patients to have had fluoride varnish compared to 77.6% found using the manual chart review. The automated quality measure performance was 90.5% sensitivity, 90.8% specificity, 96.9% positive predictive value, and 75.2% negative predictive value. Conclusions Our findings support the feasibility of automated dental quality measure queries in the context of sufficient structured data. Information noted only in the free text rather than in structured data would require natural language processing approaches to effectively query. Practical Implications To participate in self-directed quality improvement, dental clinicians must embrace the accountability era. Commitment to quality will require enhanced documentation in order to support near-term automated calculation of quality measures. PMID:26562736
Sánchez-de-Madariaga, Ricardo; Muñoz, Adolfo; Castro, Antonio L; Moreno, Oscar; Pascual, Mario
2018-01-01
This research shows a protocol to assess the computational complexity of querying relational and non-relational (NoSQL (not only Structured Query Language)) standardized electronic health record (EHR) medical information database systems (DBMS). It uses a set of three doubling-sized databases, i.e. databases storing 5000, 10,000 and 20,000 realistic standardized EHR extracts, in three different database management systems (DBMS): relational MySQL object-relational mapping (ORM), document-based NoSQL MongoDB, and native extensible markup language (XML) NoSQL eXist. The average response times to six complexity-increasing queries were computed, and the results showed a linear behavior in the NoSQL cases. In the NoSQL field, MongoDB presents a much flatter linear slope than eXist. NoSQL systems may also be more appropriate to maintain standardized medical information systems due to the special nature of the updating policies of medical information, which should not affect the consistency and efficiency of the data stored in NoSQL databases. One limitation of this protocol is the lack of direct results of improved relational systems such as archetype relational mapping (ARM) with the same data. However, the interpolation of doubling-size database results to those presented in the literature and other published results suggests that NoSQL systems might be more appropriate in many specific scenarios and problems to be solved. For example, NoSQL may be appropriate for document-based tasks such as EHR extracts used in clinical practice, or edition and visualization, or situations where the aim is not only to query medical information, but also to restore the EHR in exactly its original form. PMID:29608174
Sánchez-de-Madariaga, Ricardo; Muñoz, Adolfo; Castro, Antonio L; Moreno, Oscar; Pascual, Mario
2018-03-19
This research shows a protocol to assess the computational complexity of querying relational and non-relational (NoSQL (not only Structured Query Language)) standardized electronic health record (EHR) medical information database systems (DBMS). It uses a set of three doubling-sized databases, i.e. databases storing 5000, 10,000 and 20,000 realistic standardized EHR extracts, in three different database management systems (DBMS): relational MySQL object-relational mapping (ORM), document-based NoSQL MongoDB, and native extensible markup language (XML) NoSQL eXist. The average response times to six complexity-increasing queries were computed, and the results showed a linear behavior in the NoSQL cases. In the NoSQL field, MongoDB presents a much flatter linear slope than eXist. NoSQL systems may also be more appropriate to maintain standardized medical information systems due to the special nature of the updating policies of medical information, which should not affect the consistency and efficiency of the data stored in NoSQL databases. One limitation of this protocol is the lack of direct results of improved relational systems such as archetype relational mapping (ARM) with the same data. However, the interpolation of doubling-size database results to those presented in the literature and other published results suggests that NoSQL systems might be more appropriate in many specific scenarios and problems to be solved. For example, NoSQL may be appropriate for document-based tasks such as EHR extracts used in clinical practice, or edition and visualization, or situations where the aim is not only to query medical information, but also to restore the EHR in exactly its original form.
Processing SPARQL queries with regular expressions in RDF databases
2011-01-01
Background As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users’ requests for extracting information from the RDF data as well as the lack of users’ knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns. PMID:21489225
Processing SPARQL queries with regular expressions in RDF databases.
Lee, Jinsoo; Pham, Minh-Duc; Lee, Jihwan; Han, Wook-Shin; Cho, Hune; Yu, Hwanjo; Lee, Jeong-Hoon
2011-03-29
As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users' requests for extracting information from the RDF data as well as the lack of users' knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.
EarthServer: Use of Rasdaman as a data store for use in visualisation of complex EO data
NASA Astrophysics Data System (ADS)
Clements, Oliver; Walker, Peter; Grant, Mike
2013-04-01
The European Commission FP7 project EarthServer is establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending cutting-edge Array Database technology. EarthServer is built around the Rasdaman Raster Data Manager which extends standard relational database systems with the ability to store and retrieve multi-dimensional raster data of unlimited size through an SQL style query language. Rasdaman facilitates visualisation of data by providing several Open Geospatial Consortium (OGC) standard interfaces through its web services wrapper, Petascope. These include the well established standards, Web Coverage Service (WCS) and Web Map Service (WMS) as well as the emerging standard, Web Coverage Processing Service (WCPS). The WCPS standard allows the running of ad-hoc queries on the data stored within Rasdaman, creating an infrastructure where users are not restricted by bandwidth when manipulating or querying huge datasets. Here we will show that the use of EarthServer technologies and infrastructure allows access and visualisation of massive scale data through a web client with only marginal bandwidth use as opposed to the current mechanism of copying huge amounts of data to create visualisations locally. For example if a user wanted to generate a plot of global average chlorophyll for a complete decade time series they would only have to download the result instead of Terabytes of data. Firstly we will present a brief overview of the capabilities of Rasdaman and the WCPS query language to introduce the ways in which it is used in a visualisation tool chain. We will show that there are several ways in which WCPS can be utilised to create both standard and novel web based visualisations. An example of a standard visualisation is the production of traditional 2d plots, allowing users the ability to plot data products easily. However, the query language allows the creation of novel/custom products, which can then immediately be plotted with the same system. For more complex multi-spectral data, WCPS allows the user to explore novel combinations of bands in standard band-ratio algorithms through a web browser with dynamic updating of the resultant image. To visualise very large datasets Rasdaman has the capability to dynamically scale a dataset or query result so that it can be appraised quickly for use in later unscaled queries. All of these techniques are accessible through a web based GIS interface increasing the number of potential users of the system. Lastly we will show the advances in dynamic web based 3D visualisations being explored within the EarthServer project. By utilising the emerging declarative 3D web standard X3DOM as a tool to visualise the results of WCPS queries we introduce several possible benefits, including quick appraisal of data for outliers or anomalous data points and visualisation of the uncertainty of data alongside the actual data values.
Cooperative answers in database systems
NASA Technical Reports Server (NTRS)
Gaasterland, Terry; Godfrey, Parke; Minker, Jack; Novik, Lev
1993-01-01
A major concern of researchers who seek to improve human-computer communication involves how to move beyond literal interpretations of queries to a level of responsiveness that takes the user's misconceptions, expectations, desires, and interests into consideration. At Maryland, we are investigating how to better meet a user's needs within the framework of the cooperative answering system of Gal and Minker. We have been exploring how to use semantic information about the database to formulate coherent and informative answers. The work has two main thrusts: (1) the construction of a logic formula which embodies the content of a cooperative answer; and (2) the presentation of the logic formula to the user in a natural language form. The information that is available in a deductive database system for building cooperative answers includes integrity constraints, user constraints, the search tree for answers to the query, and false presuppositions that are present in the query. The basic cooperative answering theory of Gal and Minker forms the foundation of a cooperative answering system that integrates the new construction and presentation methods. This paper provides an overview of the cooperative answering strategies used in the CARMIN cooperative answering system, an ongoing research effort at Maryland. Section 2 gives some useful background definitions. Section 3 describes techniques for collecting cooperative logical formulae. Section 4 discusses which natural language generation techniques are useful for presenting the logic formula in natural language text. Section 5 presents a diagram of the system.
Stream-Dashboard: A Big Data Stream Clustering Framework with Applications to Social Media Streams
ERIC Educational Resources Information Center
Hawwash, Basheer
2013-01-01
Data mining is concerned with detecting patterns of data in raw datasets, which are then used to unearth knowledge that might not have been discovered using conventional querying or statistical methods. This discovered knowledge has been used to empower decision makers in countless applications spanning across many multi-disciplinary areas…
Modeling User Behavior and Attention in Search
ERIC Educational Resources Information Center
Huang, Jeff
2013-01-01
In Web search, query and click log data are easy to collect but they fail to capture user behaviors that do not lead to clicks. As search engines reach the limits inherent in click data and are hungry for more data in a competitive environment, mining cursor movements, hovering, and scrolling becomes important. This dissertation investigates how…
Annotating images by mining image search results.
Wang, Xin-Jing; Zhang, Lei; Li, Xirong; Ma, Wei-Ying
2008-11-01
Although it has been studied for years by the computer vision and machine learning communities, image annotation is still far from practical. In this paper, we propose a novel attempt at model-free image annotation, which is a data-driven approach that annotates images by mining their search results. Some 2.4 million images with their surrounding text are collected from a few photo forums to support this approach. The entire process is formulated in a divide-and-conquer framework where a query keyword is provided along with the uncaptioned image to improve both the effectiveness and efficiency. This is helpful when the collected data set is not dense everywhere. In this sense, our approach contains three steps: 1) the search process to discover visually and semantically similar search results, 2) the mining process to identify salient terms from textual descriptions of the search results, and 3) the annotation rejection process to filter out noisy terms yielded by Step 2. To ensure real-time annotation, two key techniques are leveraged-one is to map the high-dimensional image visual features into hash codes, the other is to implement it as a distributed system, of which the search and mining processes are provided as Web services. As a typical result, the entire process finishes in less than 1 second. Since no training data set is required, our approach enables annotating with unlimited vocabulary and is highly scalable and robust to outliers. Experimental results on both real Web images and a benchmark image data set show the effectiveness and efficiency of the proposed algorithm. It is also worth noting that, although the entire approach is illustrated within the divide-and conquer framework, a query keyword is not crucial to our current implementation. We provide experimental results to prove this.
Toward An Unstructured Mesh Database
NASA Astrophysics Data System (ADS)
Rezaei Mahdiraji, Alireza; Baumann, Peter Peter
2014-05-01
Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi-incidence relationships. We instrument ImG model with sets of optional and application-specific constraints which can be used to check validity of meshes for a specific class of object such as manifold, pseudo-manifold, and simplicial manifold. We conducted experiments to measure the performance of the graph database solution in processing mesh queries and compare it with GrAL mesh library and PostgreSQL database on synthetic and real mesh datasets. The experiments show that each system perform well on specific types of mesh queries, e.g., graph databases perform well on global path-intensive queries. In the future, we investigate database operations for the ImG model and design a mesh query language.
EmptyHeaded: A Relational Engine for Graph Processing
Aberger, Christopher R.; Tu, Susan; Olukotun, Kunle; Ré, Christopher
2016-01-01
There are two types of high-performance graph processing engines: low- and high-level engines. Low-level engines (Galois, PowerGraph, Snap) provide optimized data structures and computation models but require users to write low-level imperative code, hence ensuring that efficiency is the burden of the user. In high-level engines, users write in query languages like datalog (SociaLite) or SQL (Grail). High-level engines are easier to use but are orders of magnitude slower than the low-level graph engines. We present EmptyHeaded, a high-level engine that supports a rich datalog-like query language and achieves performance comparable to that of low-level engines. At the core of EmptyHeaded’s design is a new class of join algorithms that satisfy strong theoretical guarantees but have thus far not achieved performance comparable to that of specialized graph processing engines. To achieve high performance, EmptyHeaded introduces a new join engine architecture, including a novel query optimizer and data layouts that leverage single-instruction multiple data (SIMD) parallelism. With this architecture, EmptyHeaded outperforms high-level approaches by up to three orders of magnitude on graph pattern queries, PageRank, and Single-Source Shortest Paths (SSSP) and is an order of magnitude faster than many low-level baselines. We validate that EmptyHeaded competes with the best-of-breed low-level engine (Galois), achieving comparable performance on PageRank and at most 3× worse performance on SSSP. PMID:28077912
XML at the ADC: Steps to a Next Generation Data Archive
NASA Astrophysics Data System (ADS)
Shaya, E.; Blackwell, J.; Gass, J.; Oliversen, N.; Schneider, G.; Thomas, B.; Cheung, C.; White, R. A.
1999-05-01
The eXtensible Markup Language (XML) is a document markup language that allows users to specify their own tags, to create hierarchical structures to qualify their data, and to support automatic checking of documents for structural validity. It is being intensively supported by nearly every major corporate software developer. Under the funds of a NASA AISRP proposal, the Astronomical Data Center (ADC, http://adc.gsfc.nasa.gov) is developing an infrastructure for importation, enhancement, and distribution of data and metadata using XML as the document markup language. We discuss the preliminary Document Type Definition (DTD, at http://adc.gsfc.nasa.gov/xml) which specifies the elements and their attributes in our metadata documents. This attempts to define both the metadata of an astronomical catalog and the `header' information of an astronomical table. In addition, we give an overview of the planned flow of data through automated pipelines from authors and journal presses into our XML archive and retrieval through the web via the XML-QL Query Language and eXtensible Style Language (XSL) scripts. When completed, the catalogs and journal tables at the ADC will be tightly hyperlinked to enhance data discovery. In addition one will be able to search on fragmentary information. For instance, one could query for a table by entering that the second author is so-and-so or that the third author is at such-and-such institution.
Natural language information retrieval in digital libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strzalkowski, T.; Perez-Carballo, J.; Marinescu, M.
In this paper we report on some recent developments in joint NYU and GE natural language information retrieval system. The main characteristic of this system is the use of advanced natural language processing to enhance the effectiveness of term-based document retrieval. The system is designed around a traditional statistical backbone consisting of the indexer module, which builds inverted index files from pre-processed documents, and a retrieval engine which searches and ranks the documents in response to user queries. Natural language processing is used to (1) preprocess the documents in order to extract content-carrying terms, (2) discover inter-term dependencies and buildmore » a conceptual hierarchy specific to the database domain, and (3) process user`s natural language requests into effective search queries. This system has been used in NIST-sponsored Text Retrieval Conferences (TREC), where we worked with approximately 3.3 GBytes of text articles including material from the Wall Street Journal, the Associated Press newswire, the Federal Register, Ziff Communications`s Computer Library, Department of Energy abstracts, U.S. Patents and the San Jose Mercury News, totaling more than 500 million words of English. The system have been designed to facilitate its scalability to deal with ever increasing amounts of data. In particular, a randomized index-splitting mechanism has been installed which allows the system to create a number of smaller indexes that can be independently and efficiently searched.« less
Query2Question: Translating Visualization Interaction into Natural Language.
Nafari, Maryam; Weaver, Chris
2015-06-01
Richly interactive visualization tools are increasingly popular for data exploration and analysis in a wide variety of domains. Existing systems and techniques for recording provenance of interaction focus either on comprehensive automated recording of low-level interaction events or on idiosyncratic manual transcription of high-level analysis activities. In this paper, we present the architecture and translation design of a query-to-question (Q2Q) system that automatically records user interactions and presents them semantically using natural language (written English). Q2Q takes advantage of domain knowledge and uses natural language generation (NLG) techniques to translate and transcribe a progression of interactive visualization states into a visual log of styled text that complements and effectively extends the functionality of visualization tools. We present Q2Q as a means to support a cross-examination process in which questions rather than interactions are the focus of analytic reasoning and action. We describe the architecture and implementation of the Q2Q system, discuss key design factors and variations that effect question generation, and present several visualizations that incorporate Q2Q for analysis in a variety of knowledge domains.
Internet Distribution of Spacecraft Telemetry Data
NASA Technical Reports Server (NTRS)
Specht, Ted; Noble, David
2006-01-01
Remote Access Multi-mission Processing and Analysis Ground Environment (RAMPAGE) is a Java-language server computer program that enables near-real-time display of spacecraft telemetry data on any authorized client computer that has access to the Internet and is equipped with Web-browser software. In addition to providing a variety of displays of the latest available telemetry data, RAMPAGE can deliver notification of an alarm by electronic mail. Subscribers can then use RAMPAGE displays to determine the state of the spacecraft and formulate a response to the alarm, if necessary. A user can query spacecraft mission data in either binary or comma-separated-value format by use of a Web form or a Practical Extraction and Reporting Language (PERL) script to automate the query process. RAMPAGE runs on Linux and Solaris server computers in the Ground Data System (GDS) of NASA's Jet Propulsion Laboratory and includes components designed specifically to make it compatible with legacy GDS software. The client/server architecture of RAMPAGE and the use of the Java programming language make it possible to utilize a variety of competitive server and client computers, thereby also helping to minimize costs.
The crustal dynamics intelligent user interface anthology
NASA Technical Reports Server (NTRS)
Short, Nicholas M., Jr.; Campbell, William J.; Roelofs, Larry H.; Wattawa, Scott L.
1987-01-01
The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has, as one of its components, the development of an Intelligent User Interface (IUI). The intent of the IUI is to develop a friendly and intelligent user interface service based on expert systems and natural language processing technologies. The purpose of such a service is to support the large number of potential scientific and engineering users that have need of space and land-related research and technical data, but have little or no experience in query languages or understanding of the information content or architecture of the databases of interest. This document presents the design concepts, development approach and evaluation of the performance of a prototype IUI system for the Crustal Dynamics Project Database, which was developed using a microcomputer-based expert system tool (M. 1), the natural language query processor THEMIS, and the graphics software system GSS. The IUI design is based on a multiple view representation of a database from both the user and database perspective, with intelligent processes to translate between the views.
Design, Development and Utilization Perspectives on Database Management Systems
ERIC Educational Resources Information Center
Shneiderman, Ben
1977-01-01
This paper reviews the historical development of integrated data base management systems and examines competing approaches. Topics include management and utilization, implementation and design, query languages, security, integrity, privacy and concurrency. (Author/KP)
Gillet, Ludovic C.; Navarro, Pedro; Tate, Stephen; Röst, Hannes; Selevsek, Nathalie; Reiter, Lukas; Bonner, Ron; Aebersold, Ruedi
2012-01-01
Most proteomic studies use liquid chromatography coupled to tandem mass spectrometry to identify and quantify the peptides generated by the proteolysis of a biological sample. However, with the current methods it remains challenging to rapidly, consistently, reproducibly, accurately, and sensitively detect and quantify large fractions of proteomes across multiple samples. Here we present a new strategy that systematically queries sample sets for the presence and quantity of essentially any protein of interest. It consists of using the information available in fragment ion spectral libraries to mine the complete fragment ion maps generated using a data-independent acquisition method. For this study, the data were acquired on a fast, high resolution quadrupole-quadrupole time-of-flight (TOF) instrument by repeatedly cycling through 32 consecutive 25-Da precursor isolation windows (swaths). This SWATH MS acquisition setup generates, in a single sample injection, time-resolved fragment ion spectra for all the analytes detectable within the 400–1200 m/z precursor range and the user-defined retention time window. We show that suitable combinations of fragment ions extracted from these data sets are sufficiently specific to confidently identify query peptides over a dynamic range of 4 orders of magnitude, even if the precursors of the queried peptides are not detectable in the survey scans. We also show that queried peptides are quantified with a consistency and accuracy comparable with that of selected reaction monitoring, the gold standard proteomic quantification method. Moreover, targeted data extraction enables ad libitum quantification refinement and dynamic extension of protein probing by iterative re-mining of the once-and-forever acquired data sets. This combination of unbiased, broad range precursor ion fragmentation and targeted data extraction alleviates most constraints of present proteomic methods and should be equally applicable to the comprehensive analysis of other classes of analytes, beyond proteomics. PMID:22261725
Xirasagar, Sandhya; Gustafson, Scott F; Huang, Cheng-Cheng; Pan, Qinyan; Fostel, Jennifer; Boyer, Paul; Merrick, B Alex; Tomer, Kenneth B; Chan, Denny D; Yost, Kenneth J; Choi, Danielle; Xiao, Nianqing; Stasiewicz, Stanley; Bushel, Pierre; Waters, Michael D
2006-04-01
The CEBS data repository is being developed to promote a systems biology approach to understand the biological effects of environmental stressors. CEBS will house data from multiple gene expression platforms (transcriptomics), protein expression and protein-protein interaction (proteomics), and changes in low molecular weight metabolite levels (metabolomics) aligned by their detailed toxicological context. The system will accommodate extensive complex querying in a user-friendly manner. CEBS will store toxicological contexts including the study design details, treatment protocols, animal characteristics and conventional toxicological endpoints such as histopathology findings and clinical chemistry measures. All of these data types can be integrated in a seamless fashion to enable data query and analysis in a biologically meaningful manner. An object model, the SysBio-OM (Xirasagar et al., 2004) has been designed to facilitate the integration of microarray gene expression, proteomics and metabolomics data in the CEBS database system. We now report SysTox-OM as an open source systems toxicology model designed to integrate toxicological context into gene expression experiments. The SysTox-OM model is comprehensive and leverages other open source efforts, namely, the Standard for Exchange of Nonclinical Data (http://www.cdisc.org/models/send/v2/index.html) which is a data standard for capturing toxicological information for animal studies and Clinical Data Interchange Standards Consortium (http://www.cdisc.org/models/sdtm/index.html) that serves as a standard for the exchange of clinical data. Such standardization increases the accuracy of data mining, interpretation and exchange. The open source SysTox-OM model, which can be implemented on various software platforms, is presented here. A universal modeling language (UML) depiction of the entire SysTox-OM is available at http://cebs.niehs.nih.gov and the Rational Rose object model package is distributed under an open source license that permits unrestricted academic and commercial use and is available at http://cebs.niehs.nih.gov/cebsdownloads. Currently, the public toxicological data in CEBS can be queried via a web application based on the SysTox-OM at http://cebs.niehs.nih.gov xirasagars@saic.com Supplementary data are available at Bioinformatics online.
Text mining a self-report back-translation.
Blanch, Angel; Aluja, Anton
2016-06-01
There are several recommendations about the routine to undertake when back translating self-report instruments in cross-cultural research. However, text mining methods have been generally ignored within this field. This work describes a text mining innovative application useful to adapt a personality questionnaire to 12 different languages. The method is divided in 3 different stages, a descriptive analysis of the available back-translated instrument versions, a dissimilarity assessment between the source language instrument and the 12 back-translations, and an item assessment of item meaning equivalence. The suggested method contributes to improve the back-translation process of self-report instruments for cross-cultural research in 2 significant intertwined ways. First, it defines a systematic approach to the back translation issue, allowing for a more orderly and informed evaluation concerning the equivalence of different versions of the same instrument in different languages. Second, it provides more accurate instrument back-translations, which has direct implications for the reliability and validity of the instrument's test scores when used in different cultures/languages. In addition, this procedure can be extended to the back-translation of self-reports measuring psychological constructs in clinical assessment. Future research works could refine the suggested methodology and use additional available text mining tools. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Mining Genotype-Phenotype Associations from Public Knowledge Sources via Semantic Web Querying
Kiefer, Richard C.; Freimuth, Robert R.; Chute, Christopher G; Pathak, Jyotishman
Gene Wiki Plus (GeneWiki+) and the Online Mendelian Inheritance in Man (OMIM) are publicly available resources for sharing information about disease-gene and gene-SNP associations in humans. While immensely useful to the scientific community, both resources are manually curated, thereby making the data entry and publication process time-consuming, and to some degree, error-prone. To this end, this study investigates Semantic Web technologies to validate existing and potentially discover new genotype-phenotype associations in GWP and OMIM. In particular, we demonstrate the applicability of SPARQL queries for identifying associations not explicitly stated for commonly occurring chronic diseases in GWP and OMIM, and report our preliminary findings for coverage, completeness, and validity of the associations. Our results highlight the benefits of Semantic Web querying technology to validate existing disease-gene associations as well as identify novel associations although further evaluation and analysis is required before such information can be applied and used effectively. PMID:24303249
Jiang, Ying; Gao, Ge; Fang, Gang; Gustafson, Eric L; Laverty, Maureen; Yin, Yanbin; Zhang, Yong; Luo, Jingchu; Greene, Jonathan R; Bayne, Marvin L; Hedrick, Joseph A; Murgolo, Nicholas J
2003-05-01
PepPat, a hybrid method that combines pattern matching with similarity scoring, is described. We also report PepPat's application in the identification of a novel tachykinin-like peptide. PepPat takes as input a query peptide and a user-specified regular expression pattern within the peptide. It first performs a database pattern match and then ranks candidates on the basis of their similarity to the query peptide. PepPat calculates similarity over the pattern spanning region, enhancing PepPat's sensitivity for short query peptides. PepPat can also search for a user-specified number of occurrences of a repeated pattern within the target sequence. We illustrate PepPat's application in short peptide ligand mining. As a validation example, we report the identification of a novel tachykinin-like peptide, C14TKL-1, and show it is an NK1 (neuokinin receptor 1) agonist whose message is widely expressed in human periphery. PepPat is offered online at: http://peppat.cbi.pku.edu.cn.
Interactive and Versatile Navigation of Structural Databases.
Korb, Oliver; Kuhn, Bernd; Hert, Jérôme; Taylor, Neil; Cole, Jason; Groom, Colin; Stahl, Martin
2016-05-12
We present CSD-CrossMiner, a novel tool for pharmacophore-based searches in crystal structure databases. Intuitive pharmacophore queries describing, among others, protein-ligand interaction patterns, ligand scaffolds, or protein environments can be built and modified interactively. Matching crystal structures are overlaid onto the query and visualized as soon as they are available, enabling the researcher to quickly modify a hypothesis on the fly. We exemplify the utility of the approach by showing applications relevant to real-world drug discovery projects, including the identification of novel fragments for a specific protein environment or scaffold hopping. The ability to concurrently search protein-ligand binding sites extracted from the Protein Data Bank (PDB) and small organic molecules from the Cambridge Structural Database (CSD) using the same pharmacophore query further emphasizes the flexibility of CSD-CrossMiner. We believe that CSD-CrossMiner closes an important gap in mining structural data and will allow users to extract more value from the growing number of available crystal structures.
Design of multi-function sensor detection system in coal mine based on ARM
NASA Astrophysics Data System (ADS)
Ge, Yan-Xiang; Zhang, Quan-Zhu; Deng, Yong-Hong
2017-06-01
The traditional coal mine sensor in the specific measurement points, the number and type of channel will be greater than or less than the number of monitoring points, resulting in a waste of resources or cannot meet the application requirements, in order to enable the sensor to adapt to the needs of different occasions and reduce the cost, a kind of multi-functional intelligent sensor multiple sensors and ARM11 the S3C6410 processor is used to design and realize the dust, gas, temperature and humidity sensor functions together, and has storage, display, voice, pictures, data query, alarm and other new functions.
TOMML: A Rule Language for Structured Data
NASA Astrophysics Data System (ADS)
Cirstea, Horatiu; Moreau, Pierre-Etienne; Reilles, Antoine
We present the TOM language that extends JAVA with the purpose of providing high level constructs inspired by the rewriting community. TOM bridges thus the gap between a general purpose language and high level specifications based on rewriting. This approach was motivated by the promotion of rule based techniques and their integration in large scale applications. Powerful matching capabilities along with a rich strategy language are among TOM's strong features that make it easy to use and competitive with respect to other rule based languages. TOM is thus a natural choice for querying and transforming structured data and in particular XML documents [1]. We present here its main XML oriented features and illustrate its use on several examples.
Extracting biomedical events from pairs of text entities
2015-01-01
Background Huge amounts of electronic biomedical documents, such as molecular biology reports or genomic papers are generated daily. Nowadays, these documents are mainly available in the form of unstructured free texts, which require heavy processing for their registration into organized databases. This organization is instrumental for information retrieval, enabling to answer the advanced queries of researchers and practitioners in biology, medicine, and related fields. Hence, the massive data flow calls for efficient automatic methods of text-mining that extract high-level information, such as biomedical events, from biomedical text. The usual computational tools of Natural Language Processing cannot be readily applied to extract these biomedical events, due to the peculiarities of the domain. Indeed, biomedical documents contain highly domain-specific jargon and syntax. These documents also describe distinctive dependencies, making text-mining in molecular biology a specific discipline. Results We address biomedical event extraction as the classification of pairs of text entities into the classes corresponding to event types. The candidate pairs of text entities are recursively provided to a multiclass classifier relying on Support Vector Machines. This recursive process extracts events involving other events as arguments. Compared to joint models based on Markov Random Fields, our model simplifies inference and hence requires shorter training and prediction times along with lower memory capacity. Compared to usual pipeline approaches, our model passes over a complex intermediate problem, while making a more extensive usage of sophisticated joint features between text entities. Our method focuses on the core event extraction of the Genia task of BioNLP challenges yielding the best result reported so far on the 2013 edition. PMID:26201478
Conceptual Modeling via Logic Programming
1990-01-01
Define User Interface and Query Language L i1W= Ltl k.l 4. Define Procedures for Specifying Output S . Select Logic Programming Language 6. Develop ...baseline s change model. sessions and baselines. It was changed 6. Develop Methodology for C 31 Users. considerably with the advent of the window This...Model Development : Implica- for Conceptual Modeling Via Logic tions for Communications of a Cognitive Programming. Marina del Rey, Calif.: Analysis of
Usability Evaluation of NLP-PIER: A Clinical Document Search Engine for Researchers.
Hultman, Gretchen; McEwan, Reed; Pakhomov, Serguei; Lindemann, Elizabeth; Skube, Steven; Melton, Genevieve B
2017-01-01
NLP-PIER (Natural Language Processing - Patient Information Extraction for Research) is a self-service platform with a search engine for clinical researchers to perform natural language processing (NLP) queries using clinical notes. We conducted user-centered testing of NLP-PIER's usability to inform future design decisions. Quantitative and qualitative data were analyzed. Our findings will be used to improve the usability of NLP-PIER.
NASA Astrophysics Data System (ADS)
Znikina, Ludmila; Rozhneva, Elena
2017-11-01
The article deals with the distribution of informative intensity of the English-language scientific text based on its structural features contributing to the process of formalization of the scientific text and the preservation of the adequacy of the text with derived semantic information in relation to the primary. Discourse analysis is built on specific compositional and meaningful examples of scientific texts taken from the mining field. It also analyzes the adequacy of the translation of foreign texts into another language, the relationships between elements of linguistic systems, the degree of a formal conformance, translation with the specific objectives and information needs of the recipient. Some key words and ideas are emphasized in the paragraphs of the English-language mining scientific texts. The article gives the characteristic features of the structure of paragraphs of technical text and examples of constructions in English scientific texts based on a mining theme with the aim to explain the possible ways of their adequate translation.
Catalogue of HI PArameters (CHIPA)
NASA Astrophysics Data System (ADS)
Saponara, J.; Benaglia, P.; Koribalski, B.; Andruchow, I.
2015-08-01
The catalogue of HI parameters of galaxies HI (CHIPA) is the natural continuation of the compilation by M.C. Martin in 1998. CHIPA provides the most important parameters of nearby galaxies derived from observations of the neutral Hydrogen line. The catalogue contains information of 1400 galaxies across the sky and different morphological types. Parameters like the optical diameter of the galaxy, the blue magnitude, the distance, morphological type, HI extension are listed among others. Maps of the HI distribution, velocity and velocity dispersion can also be display for some cases. The main objective of this catalogue is to facilitate the bibliographic queries, through searching in a database accessible from the internet that will be available in 2015 (the website is under construction). The database was built using the open source `` mysql (SQL, Structured Query Language, management system relational database) '', while the website was built with ''HTML (Hypertext Markup Language)'' and ''PHP (Hypertext Preprocessor)''.
Usability Evaluation of an Unstructured Clinical Document Query Tool for Researchers.
Hultman, Gretchen; McEwan, Reed; Pakhomov, Serguei; Lindemann, Elizabeth; Skube, Steven; Melton, Genevieve B
2018-01-01
Natural Language Processing - Patient Information Extraction for Researchers (NLP-PIER) was developed for clinical researchers for self-service Natural Language Processing (NLP) queries with clinical notes. This study was to conduct a user-centered analysis with clinical researchers to gain insight into NLP-PIER's usability and to gain an understanding of the needs of clinical researchers when using an application for searching clinical notes. Clinical researcher participants (n=11) completed tasks using the system's two existing search interfaces and completed a set of surveys and an exit interview. Quantitative data including time on task, task completion rate, and survey responses were collected. Interviews were analyzed qualitatively. Survey scores, time on task and task completion proportions varied widely. Qualitative analysis indicated that participants found the system to be useful and usable in specific projects. This study identified several usability challenges and our findings will guide the improvement of NLP-PIER 's interfaces.
Intelligent search in Big Data
NASA Astrophysics Data System (ADS)
Birialtsev, E.; Bukharaev, N.; Gusenkov, A.
2017-10-01
An approach to data integration, aimed on the ontology-based intelligent search in Big Data, is considered in the case when information objects are represented in the form of relational databases (RDB), structurally marked by their schemes. The source of information for constructing an ontology and, later on, the organization of the search are texts in natural language, treated as semi-structured data. For the RDBs, these are comments on the names of tables and their attributes. Formal definition of RDBs integration model in terms of ontologies is given. Within framework of the model universal RDB representation ontology, oil production subject domain ontology and linguistic thesaurus of subject domain language are built. Technique of automatic SQL queries generation for subject domain specialists is proposed. On the base of it, information system for TATNEFT oil-producing company RDBs was implemented. Exploitation of the system showed good relevance with majority of queries.
Trends of Serious Games Research from 2007 to 2017: A Bibliometric Analysis
ERIC Educational Resources Information Center
Çiftci, Serdar
2018-01-01
This study examines the tendencies of studies carried out using text mining methods under the title of "serious game". A query was run for the "serious game" keyword in the Web of Science search engine to acquire the data. The study included publications that were scanned in the SCI-EXPANDED, SSCI and A&HCI indices between…
Vazquez, Miguel; Nogales-Cadenas, Ruben; Arroyo, Javier; Botías, Pedro; García, Raul; Carazo, Jose M; Tirado, Francisco; Pascual-Montano, Alberto; Carmona-Saez, Pedro
2010-07-01
The enormous amount of data available in public gene expression repositories such as Gene Expression Omnibus (GEO) offers an inestimable resource to explore gene expression programs across several organisms and conditions. This information can be used to discover experiments that induce similar or opposite gene expression patterns to a given query, which in turn may lead to the discovery of new relationships among diseases, drugs or pathways, as well as the generation of new hypotheses. In this work, we present MARQ, a web-based application that allows researchers to compare a query set of genes, e.g. a set of over- and under-expressed genes, against a signature database built from GEO datasets for different organisms and platforms. MARQ offers an easy-to-use and integrated environment to mine GEO, in order to identify conditions that induce similar or opposite gene expression patterns to a given experimental condition. MARQ also includes additional functionalities for the exploration of the results, including a meta-analysis pipeline to find genes that are differentially expressed across different experiments. The application is freely available at http://marq.dacya.ucm.es.
String Mining in Bioinformatics
NASA Astrophysics Data System (ADS)
Abouelhoda, Mohamed; Ghanem, Moustafa
Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word "data-mining" is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].
Ontology-based geospatial data query and integration
Zhao, T.; Zhang, C.; Wei, M.; Peng, Z.-R.
2008-01-01
Geospatial data sharing is an increasingly important subject as large amount of data is produced by a variety of sources, stored in incompatible formats, and accessible through different GIS applications. Past efforts to enable sharing have produced standardized data format such as GML and data access protocols such as Web Feature Service (WFS). While these standards help enabling client applications to gain access to heterogeneous data stored in different formats from diverse sources, the usability of the access is limited due to the lack of data semantics encoded in the WFS feature types. Past research has used ontology languages to describe the semantics of geospatial data but ontology-based queries cannot be applied directly to legacy data stored in databases or shapefiles, or to feature data in WFS services. This paper presents a method to enable ontology query on spatial data available from WFS services and on data stored in databases. We do not create ontology instances explicitly and thus avoid the problems of data replication. Instead, user queries are rewritten to WFS getFeature requests and SQL queries to database. The method also has the benefits of being able to utilize existing tools of databases, WFS, and GML while enabling query based on ontology semantics. ?? 2008 Springer-Verlag Berlin Heidelberg.
Development of a web-based video management and application processing system
NASA Astrophysics Data System (ADS)
Chan, Shermann S.; Wu, Yi; Li, Qing; Zhuang, Yueting
2001-07-01
How to facilitate efficient video manipulation and access in a web-based environment is becoming a popular trend for video applications. In this paper, we present a web-oriented video management and application processing system, based on our previous work on multimedia database and content-based retrieval. In particular, we extend the VideoMAP architecture with specific web-oriented mechanisms, which include: (1) Concurrency control facilities for the editing of video data among different types of users, such as Video Administrator, Video Producer, Video Editor, and Video Query Client; different users are assigned various priority levels for different operations on the database. (2) Versatile video retrieval mechanism which employs a hybrid approach by integrating a query-based (database) mechanism with content- based retrieval (CBR) functions; its specific language (CAROL/ST with CBR) supports spatio-temporal semantics of video objects, and also offers an improved mechanism to describe visual content of videos by content-based analysis method. (3) Query profiling database which records the `histories' of various clients' query activities; such profiles can be used to provide the default query template when a similar query is encountered by the same kind of users. An experimental prototype system is being developed based on the existing VideoMAP prototype system, using Java and VC++ on the PC platform.
Recent progress in automatically extracting information from the pharmacogenomic literature
Garten, Yael; Coulet, Adrien; Altman, Russ B
2011-01-01
The biomedical literature holds our understanding of pharmacogenomics, but it is dispersed across many journals. In order to integrate our knowledge, connect important facts across publications and generate new hypotheses we must organize and encode the contents of the literature. By creating databases of structured pharmocogenomic knowledge, we can make the value of the literature much greater than the sum of the individual reports. We can, for example, generate candidate gene lists or interpret surprising hits in genome-wide association studies. Text mining automatically adds structure to the unstructured knowledge embedded in millions of publications, and recent years have seen a surge in work on biomedical text mining, some specific to pharmacogenomics literature. These methods enable extraction of specific types of information and can also provide answers to general, systemic queries. In this article, we describe the main tasks of text mining in the context of pharmacogenomics, summarize recent applications and anticipate the next phase of text mining applications. PMID:21047206
NASA Astrophysics Data System (ADS)
Areces, Carlos; Hoffmann, Guillaume; Denis, Alexandre
We present a modal language that includes explicit operators to count the number of elements that a model might include in the extension of a formula, and we discuss how this logic has been previously investigated under different guises. We show that the language is related to graded modalities and to hybrid logics. We illustrate a possible application of the language to the treatment of plural objects and queries in natural language. We investigate the expressive power of this logic via bisimulations, discuss the complexity of its satisfiability problem, define a new reasoning task that retrieves the cardinality bound of the extension of a given input formula, and provide an algorithm to solve it.
Heterogeneous database integration in biomedicine.
Sujansky, W
2001-08-01
The rapid expansion of biomedical knowledge, reduction in computing costs, and spread of internet access have created an ocean of electronic data. The decentralized nature of our scientific community and healthcare system, however, has resulted in a patchwork of diverse, or heterogeneous, database implementations, making access to and aggregation of data across databases very difficult. The database heterogeneity problem applies equally to clinical data describing individual patients and biological data characterizing our genome. Specifically, databases are highly heterogeneous with respect to the data models they employ, the data schemas they specify, the query languages they support, and the terminologies they recognize. Heterogeneous database systems attempt to unify disparate databases by providing uniform conceptual schemas that resolve representational heterogeneities, and by providing querying capabilities that aggregate and integrate distributed data. Research in this area has applied a variety of database and knowledge-based techniques, including semantic data modeling, ontology definition, query translation, query optimization, and terminology mapping. Existing systems have addressed heterogeneous database integration in the realms of molecular biology, hospital information systems, and application portability.
McKenna, Thomas M; Bawa, Gagandeep; Kumar, Kamal; Reifman, Jaques
2007-04-01
The physiology analysis system (PAS) was developed as a resource to support the efficient warehousing, management, and analysis of physiology data, particularly, continuous time-series data that may be extensive, of variable quality, and distributed across many files. The PAS incorporates time-series data collected by many types of data-acquisition devices, and it is designed to free users from data management burdens. This Web-based system allows both discrete (attribute) and time-series (ordered) data to be manipulated, visualized, and analyzed via a client's Web browser. All processes occur on a server, so that the client does not have to download data or any application programs, and the PAS is independent of the client's computer operating system. The PAS contains a library of functions, written in different computer languages that the client can add to and use to perform specific data operations. Functions from the library are sequentially inserted into a function chain-based logical structure to construct sophisticated data operators from simple function building blocks, affording ad hoc query and analysis of time-series data. These features support advanced mining of physiology data.
A distributed query execution engine of big attributed graphs.
Batarfi, Omar; Elshawi, Radwa; Fayoumi, Ayman; Barnawi, Ahmed; Sakr, Sherif
2016-01-01
A graph is a popular data model that has become pervasively used for modeling structural relationships between objects. In practice, in many real-world graphs, the graph vertices and edges need to be associated with descriptive attributes. Such type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as an expressive language, with a centralized execution engine, for querying attributed graphs. G-SPARQL supports various types of graph querying operations including reachability, pattern matching and shortest path where any G-SPARQL query may include value-based predicates on the descriptive information (attributes) of the graph edges/vertices in addition to the structural predicates. In general, a main limitation of centralized systems is that their vertical scalability is always restricted by the physical limits of computer systems. This article describes the design, implementation in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and adaptive parallel execution engine of G-SPARQL queries. In this engine, the topology of the graph is distributed over the main memory of the underlying nodes while the graph data are maintained in a relational store which is replicated on the disk of each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL queries which are pushed to the underlying relational stores while other parts of the query plan, as necessary, are evaluated via indexless memory-based graph traversal algorithms. Our experimental evaluation shows the efficiency and the scalability of DG-SPARQL on querying massive attributed graph datasets in addition to its ability to outperform the performance of Apache Giraph, a popular distributed graph processing system, by orders of magnitudes.
An Automated Approach to Reasoning Under Multiple Perspectives
NASA Technical Reports Server (NTRS)
deBessonet, Cary
2004-01-01
This is the final report with emphasis on research during the last term. The context for the research has been the development of an automated reasoning technology for use in SMS (symbolic Manipulation System), a system used to build and query knowledge bases (KBs) using a special knowledge representation language SL (Symbolic Language). SMS interpreters assertive SL input and enters the results as components of its universe. The system operates in two basic models: 1) constructive mode (for building KBs); and 2) query/search mode (for querying KBs). Query satisfaction consists of matching query components with KB components. The system allows "penumbral matches," that is, matches that do not exactly meet the specifications of the query, but which are deemed relevant for the conversational context. If the user wants to know whether SMS has information that holds, say, for "any chow," the scope of relevancy might be set so that the system would respond based on a finding that it has information that holds for "most dogs," although this is not exactly what was called for by the query. The response would be qualified accordingly, as would normally be the case in ordinary human conversation. The general goal of the research was to develop an approach by which assertive content could be interpreted from multiple perspectives so that reasoning operations could be successfully conducted over the results. The interpretation of an SL statement such as, "{person believes [captain (asserted (perhaps)) (astronaut saw (comet (bright)))]}," which in English would amount to asserting something to the effect that, "Some person believes that a captain perhaps asserted that an astronaut saw a bright comet," would require the recognition of multiple perspectives, including some that are: a) epistemically-based (focusing on "believes"); b) assertion-based (focusing on "asserted"); c) perception-based (focusing on "saw"); d) adjectivally-based (focusing on "bight"); and e) modally-based (focusing on "perhaps"). Any conclusion reached under a line of reasoning that employs such an assertion or its associated implications should somehow reflect the employed perspectives. The investigators made significant progress in developing an approach that would enable a system to conduct reasoning operations over assertions of this kind while maintaining consistency in its knowledge bases. Significant accomplishments were made in the areas of: 1) integration and inferencing; 2) generation of perspectives, including wholistic ad composite views; and 3) consistency maintenance.
Standard Port-Visit Cost Forecasting Model for U.S. Navy Husbanding Contracts
2009-12-01
Protocol (HTTP) server.35 2. MySQL . An open-source database.36 3. PHP . A common scripting language used for Web development.37 E. IMPLEMENTATION OF...Inc. (2009). MySQL Community Server (Version 5.1) [Software]. Available from http://dev.mysql.com/downloads/ 37 The PHP Group (2009). PHP (Version...Logistics Services MySQL My Structured Query Language NAVSUP Navy Supply Systems Command NC Non-Contract Items NPS Naval Postgraduate
Managing Objects in a Relational Framework
1989-01-01
Database Week, San Jose CA, May.1983, pp.107-113. [Stonebraker 85] Stonebraker,M. and Rowe,L.: "The Design of POSTGRES " Tech.Report UC Berkeley, Nov...latter is equivalent to the definition of an attribute in a POSTGRES relation using the generic Quel facility. Recently, recursive query languages have...utilize rewrite rules. OSQL [Lynl 88] provides a language for associative access. 2. The POSTGRES model [Sto 86] allows Quel and C-procedures as the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Antonio
Advanced Natural Language Processing Tools for Web Information Retrieval, Content Analysis, and Synthesis. The goal of this SBIR was to implement and evaluate several advanced Natural Language Processing (NLP) tools and techniques to enhance the precision and relevance of search results by analyzing and augmenting search queries and by helping to organize the search output obtained from heterogeneous databases and web pages containing textual information of interest to DOE and the scientific-technical user communities in general. The SBIR investigated 1) the incorporation of spelling checkers in search applications, 2) identification of significant phrases and concepts using a combination of linguisticmore » and statistical techniques, and 3) enhancement of the query interface and search retrieval results through the use of semantic resources, such as thesauri. A search program with a flexible query interface was developed to search reference databases with the objective of enhancing search results from web queries or queries of specialized search systems such as DOE's Information Bridge. The DOE ETDE/INIS Joint Thesaurus was processed to create a searchable database. Term frequencies and term co-occurrences were used to enhance the web information retrieval by providing algorithmically-derived objective criteria to organize relevant documents into clusters containing significant terms. A thesaurus provides an authoritative overview and classification of a field of knowledge. By organizing the results of a search using the thesaurus terminology, the output is more meaningful than when the results are just organized based on the terms that co-occur in the retrieved documents, some of which may not be significant. An attempt was made to take advantage of the hierarchy provided by broader and narrower terms, as well as other field-specific information in the thesauri. The search program uses linguistic morphological routines to find relevant entries regardless of whether terms are stored in singular or plural form. Implementation of additional inflectional morphology processes for verbs can enhance retrieval further, but this has to be balanced by the possibility of broadening the results too much. In addition to the DOE energy thesaurus, other sources of specialized organized knowledge such as the Medical Subject Headings (MeSH), the Unified Medical Language System (UMLS), and Wikipedia were investigated. The supporting role of the NLP thesaurus search program was enhanced by incorporating spelling aid and a part-of-speech tagger to cope with misspellings in the queries and to determine the grammatical roles of the query words and identify nouns for special processing. To improve precision, multiple modes of searching were implemented including Boolean operators, and field-specific searches. Programs to convert a thesaurus or reference file into searchable support files can be deployed easily, and the resulting files are immediately searchable to produce relevance-ranked results with builtin spelling aid, morphological processing, and advanced search logic. Demonstration systems were built for several databases, including the DOE energy thesaurus.« less
QuadBase2: web server for multiplexed guanine quadruplex mining and visualization
Dhapola, Parashar; Chowdhury, Shantanu
2016-01-01
DNA guanine quadruplexes or G4s are non-canonical DNA secondary structures which affect genomic processes like replication, transcription and recombination. G4s are computationally identified by specific nucleotide motifs which are also called putative G4 (PG4) motifs. Despite the general relevance of these structures, there is currently no tool available that can allow batch queries and genome-wide analysis of these motifs in a user-friendly interface. QuadBase2 (quadbase.igib.res.in) presents a completely reinvented web server version of previously published QuadBase database. QuadBase2 enables users to mine PG4 motifs in up to 178 eukaryotes through the EuQuad module. This module interfaces with Ensembl Compara database, to allow users mine PG4 motifs in the orthologues of genes of interest across eukaryotes. PG4 motifs can be mined across genes and their promoter sequences in 1719 prokaryotes through ProQuad module. This module includes a feature that allows genome-wide mining of PG4 motifs and their visualization as circular histograms. TetraplexFinder, the module for mining PG4 motifs in user-provided sequences is now capable of handling up to 20 MB of data. QuadBase2 is a comprehensive PG4 motif mining tool that further expands the configurations and algorithms for mining PG4 motifs in a user-friendly way. PMID:27185890
Advanced SPARQL querying in small molecule databases.
Galgonek, Jakub; Hurt, Tomáš; Michlíková, Vendula; Onderka, Petr; Schwarz, Jan; Vondrášek, Jiří
2016-01-01
In recent years, the Resource Description Framework (RDF) and the SPARQL query language have become more widely used in the area of cheminformatics and bioinformatics databases. These technologies allow better interoperability of various data sources and powerful searching facilities. However, we identified several deficiencies that make usage of such RDF databases restrictive or challenging for common users. We extended a SPARQL engine to be able to use special procedures inside SPARQL queries. This allows the user to work with data that cannot be simply precomputed and thus cannot be directly stored in the database. We designed an algorithm that checks a query against data ontology to identify possible user errors. This greatly improves query debugging. We also introduced an approach to visualize retrieved data in a user-friendly way, based on templates describing visualizations of resource classes. To integrate all of our approaches, we developed a simple web application. Our system was implemented successfully, and we demonstrated its usability on the ChEBI database transformed into RDF form. To demonstrate procedure call functions, we employed compound similarity searching based on OrChem. The application is publicly available at https://bioinfo.uochb.cas.cz/projects/chemRDF.
Driscoll, Heather E; Murray, Janet M; English, Erika L; Hunter, Timothy C; Pivarski, Kara; Dolci, Elizabeth D
2017-08-01
Here we describe microarray expression data (raw and normalized), experimental metadata, and gene-level data with expression statistics from Saccharomyces cerevisiae exposed to simulated asbestos mine drainage from the Vermont Asbestos Group (VAG) Mine on Belvidere Mountain in northern Vermont, USA. For nearly 100 years (between the late 1890s and 1993), chrysotile asbestos fibers were extracted from serpentinized ultramafic rock at the VAG Mine for use in construction and manufacturing industries. Studies have shown that water courses and streambeds nearby have become contaminated with asbestos mine tailings runoff, including elevated levels of magnesium, nickel, chromium, and arsenic, elevated pH, and chrysotile asbestos-laden mine tailings, due to leaching and gradual erosion of massive piles of mine waste covering approximately 9 km 2 . We exposed yeast to simulated VAG Mine tailings leachate to help gain insight on how eukaryotic cells exposed to VAG Mine drainage may respond in the mine environment. Affymetrix GeneChip® Yeast Genome 2.0 Arrays were utilized to assess gene expression after 24-h exposure to simulated VAG Mine tailings runoff. The chemistry of mine-tailings leachate, mine-tailings leachate plus yeast extract peptone dextrose media, and control yeast extract peptone dextrose media is also reported. To our knowledge this is the first dataset to assess global gene expression patterns in a eukaryotic model system simulating asbestos mine tailings runoff exposure. Raw and normalized gene expression data are accessible through the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) Database Series GSE89875 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89875).
Text mining by Tsallis entropy
NASA Astrophysics Data System (ADS)
Jamaati, Maryam; Mehri, Ali
2018-01-01
Long-range correlations between the elements of natural languages enable them to convey very complex information. Complex structure of human language, as a manifestation of natural languages, motivates us to apply nonextensive statistical mechanics in text mining. Tsallis entropy appropriately ranks the terms' relevance to document subject, taking advantage of their spatial correlation length. We apply this statistical concept as a new powerful word ranking metric in order to extract keywords of a single document. We carry out an experimental evaluation, which shows capability of the presented method in keyword extraction. We find that, Tsallis entropy has reliable word ranking performance, at the same level of the best previous ranking methods.
2012-06-14
weight fat loss effects diet standard nutrition lose nfpa protein Topic 214: menu restaurant engineering restaurants jones wings seat wild buffalo...Selection ................................................................................... 30 3.5 Raw Data File Format...text mining to descriptions of biological activity and the target of the biological activity (i.e., gene, protein , cell, or microorganism) to predict
2014-03-27
0.8.0. The virtual machine’s network adapter was set to internal network only to keep any outside traffic from interfering. A MySQL -based query...primary output of Fullstats is the ARFF file format, intended for use with the WEKA Java -based data mining software developed at the University of Waikato
Archetype-based data warehouse environment to enable the reuse of electronic health record data.
Marco-Ruiz, Luis; Moner, David; Maldonado, José A; Kolstrup, Nils; Bellika, Johan G
2015-09-01
The reuse of data captured during health care delivery is essential to satisfy the demands of clinical research and clinical decision support systems. A main barrier for the reuse is the existence of legacy formats of data and the high granularity of it when stored in an electronic health record (EHR) system. Thus, we need mechanisms to standardize, aggregate, and query data concealed in the EHRs, to allow their reuse whenever they are needed. To create a data warehouse infrastructure using archetype-based technologies, standards and query languages to enable the interoperability needed for data reuse. The work presented makes use of best of breed archetype-based data transformation and storage technologies to create a workflow for the modeling, extraction, transformation and load of EHR proprietary data into standardized data repositories. We converted legacy data and performed patient-centered aggregations via archetype-based transformations. Later, specific purpose aggregations were performed at a query level for particular use cases. Laboratory test results of a population of 230,000 patients belonging to Troms and Finnmark counties in Norway requested between January 2013 and November 2014 have been standardized. Test records normalization has been performed by defining transformation and aggregation functions between the laboratory records and an archetype. These mappings were used to automatically generate open EHR compliant data. These data were loaded into an archetype-based data warehouse. Once loaded, we defined indicators linked to the data in the warehouse to monitor test activity of Salmonella and Pertussis using the archetype query language. Archetype-based standards and technologies can be used to create a data warehouse environment that enables data from EHR systems to be reused in clinical research and decision support systems. With this approach, existing EHR data becomes available in a standardized and interoperable format, thus opening a world of possibilities toward semantic or concept-based reuse, query and communication of clinical data. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Framing Electronic Medical Records as Polylingual Documents in Query Expansion
Huang, Edward W; Wang, Sheng; Lee, Doris Jung-Lin; Zhang, Runshun; Liu, Baoyan; Zhou, Xuezhong; Zhai, ChengXiang
2017-01-01
We present a study of electronic medical record (EMR) retrieval that emulates situations in which a doctor treats a new patient. Given a query consisting of a new patient’s symptoms, the retrieval system returns the set of most relevant records of previously treated patients. However, due to semantic, functional, and treatment synonyms in medical terminology, queries are often incomplete and thus require enhancement. In this paper, we present a topic model that frames symptoms and treatments as separate languages. Our experimental results show that this method improves retrieval performance over several baselines with statistical significance. These baselines include methods used in prior studies as well as state-of-the-art embedding techniques. Finally, we show that our proposed topic model discovers all three types of synonyms to improve medical record retrieval. PMID:29854161
Honda, Masayuki; Matsumoto, Takehiro
2017-01-01
Several kinds of event log data produced in daily clinical activities have yet to be used for secure and efficient improvement of hospital activities. Data Warehouse systems in Hospital Information Systems used for the analysis of structured data such as disease, lab-tests, and medications, have also shown efficient outcomes. This article is focused on two kinds of essential functions: process mining using log data and non-structured data analysis via Natural Language Processing.
Behavioral Issues in the Use of Interactive Systems
1976-12-14
communication. American Psychologist, 1971, 26, 949-961. Codd , E. F . Seven steps to rendezvous with the casual user. IBM Research Report, RI 1333. 1974. Conrad...Approved for public releasel distribution unlimited. F LL(I j i’ This ~Research wavs spotdi pr yteEnierons~ao _ 1Repr o seionrin who Zur ichati emte...natural language ( Codd , 1974). Behavioral work has shown that non-programmers could learn to use a laboratory query language in about 3 hours (Thomas
2014-01-01
model. We combinatorially replaced tokens with words from our vocabulary to score the relationships be- tween concepts. The second-order queries (not...is the action, y3 is an object, and y4 is the scene. Language Potentials: We captialize on state-of-the-art natural language models to score the rela...model estimated on billions of web-pages [4, 10] to form each L(·). Scoring Function: Given the image x, we score a possible labeling configuration y of
The implementation of POSTGRES
NASA Technical Reports Server (NTRS)
Stonebraker, Michael; Rowe, Lawrence A.; Hirohama, Michael
1990-01-01
The design and implementation decisions made for the three-dimensional data manager POSTGRES are discussed. Attention is restricted to the DBMS backend functions. The POSTGRES data model and query language, the rules system, the storage system, the POSTGRES implementation, and the current status and performance are discussed.
Text Information Extraction System (TIES) | Informatics Technology for Cancer Research (ITCR)
TIES is a service based software system for acquiring, deidentifying, and processing clinical text reports using natural language processing, and also for querying, sharing and using this data to foster tissue and image based research, within and between institutions.
Remote file inquiry (RFI) system
NASA Technical Reports Server (NTRS)
1975-01-01
System interrogates and maintains user-definable data files from remote terminals, using English-like, free-form query language easily learned by persons not proficient in computer programming. System operates in asynchronous mode, allowing any number of inquiries within limitation of available core to be active concurrently.
Knowledge-Based Information Retrieval.
ERIC Educational Resources Information Center
Ford, Nigel
1991-01-01
Discussion of information retrieval focuses on theoretical and empirical advances in knowledge-based information retrieval. Topics discussed include the use of natural language for queries; the use of expert systems; intelligent tutoring systems; user modeling; the need for evaluation of system effectiveness; and examples of systems, including…
Image databases: Problems and perspectives
NASA Technical Reports Server (NTRS)
Gudivada, V. Naidu
1989-01-01
With the increasing number of computer graphics, image processing, and pattern recognition applications, economical storage, efficient representation and manipulation, and powerful and flexible query languages for retrieval of image data are of paramount importance. These and related issues pertinent to image data bases are examined.
Chen, Yi-An; Tripathi, Lokesh P; Mizuguchi, Kenji
2016-01-01
Data analysis is one of the most critical and challenging steps in drug discovery and disease biology. A user-friendly resource to visualize and analyse high-throughput data provides a powerful medium for both experimental and computational biologists to understand vastly different biological data types and obtain a concise, simplified and meaningful output for better knowledge discovery. We have previously developed TargetMine, an integrated data warehouse optimized for target prioritization. Here we describe how upgraded and newly modelled data types in TargetMine can now survey the wider biological and chemical data space, relevant to drug discovery and development. To enhance the scope of TargetMine from target prioritization to broad-based knowledge discovery, we have also developed a new auxiliary toolkit to assist with data analysis and visualization in TargetMine. This toolkit features interactive data analysis tools to query and analyse the biological data compiled within the TargetMine data warehouse. The enhanced system enables users to discover new hypotheses interactively by performing complicated searches with no programming and obtaining the results in an easy to comprehend output format. Database URL: http://targetmine.mizuguchilab.org. © The Author(s) 2016. Published by Oxford University Press.
Chen, Yi-An; Tripathi, Lokesh P.; Mizuguchi, Kenji
2016-01-01
Data analysis is one of the most critical and challenging steps in drug discovery and disease biology. A user-friendly resource to visualize and analyse high-throughput data provides a powerful medium for both experimental and computational biologists to understand vastly different biological data types and obtain a concise, simplified and meaningful output for better knowledge discovery. We have previously developed TargetMine, an integrated data warehouse optimized for target prioritization. Here we describe how upgraded and newly modelled data types in TargetMine can now survey the wider biological and chemical data space, relevant to drug discovery and development. To enhance the scope of TargetMine from target prioritization to broad-based knowledge discovery, we have also developed a new auxiliary toolkit to assist with data analysis and visualization in TargetMine. This toolkit features interactive data analysis tools to query and analyse the biological data compiled within the TargetMine data warehouse. The enhanced system enables users to discover new hypotheses interactively by performing complicated searches with no programming and obtaining the results in an easy to comprehend output format. Database URL: http://targetmine.mizuguchilab.org PMID:26989145
Development of management information system for land in mine area based on MapInfo
NASA Astrophysics Data System (ADS)
Wang, Shi-Dong; Liu, Chuang-Hua; Wang, Xin-Chuang; Pan, Yan-Yu
2008-10-01
MapInfo is current a popular GIS software. This paper introduces characters of MapInfo and GIS second development methods offered by MapInfo, which include three ones based on MapBasic, OLE automation, and MapX control usage respectively. Taking development of land management information system in mine area for example, in the paper, the method of developing GIS applications based on MapX has been discussed, as well as development of land management information system in mine area has been introduced in detail, including development environment, overall design, design and realization of every function module, and simple application of system, etc. The system uses MapX 5.0 and Visual Basic 6.0 as development platform, takes SQL Server 2005 as back-end database, and adopts Matlab 6.5 to calculate number in back-end. On the basis of integrated design, the system develops eight modules including start-up, layer control, spatial query, spatial analysis, data editing, application model, document management, results output. The system can be used in mine area for cadastral management, land use structure optimization, land reclamation, land evaluation, analysis and forecasting for land in mine area and environmental disruption, thematic mapping, and so on.
String Mining in Bioinformatics
NASA Astrophysics Data System (ADS)
Abouelhoda, Mohamed; Ghanem, Moustafa
Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word “data-mining” is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].
An SQL query generator for CLIPS
NASA Technical Reports Server (NTRS)
Snyder, James; Chirica, Laurian
1990-01-01
As expert systems become more widely used, their access to large amounts of external information becomes increasingly important. This information exists in several forms such as statistical, tabular data, knowledge gained by experts and large databases of information maintained by companies. Because many expert systems, including CLIPS, do not provide access to this external information, much of the usefulness of expert systems is left untapped. The scope of this paper is to describe a database extension for the CLIPS expert system shell. The current industry standard database language is SQL. Due to SQL standardization, large amounts of information stored on various computers, potentially at different locations, will be more easily accessible. Expert systems should be able to directly access these existing databases rather than requiring information to be re-entered into the expert system environment. The ORACLE relational database management system (RDBMS) was used to provide a database connection within the CLIPS environment. To facilitate relational database access a query generation system was developed as a CLIPS user function. The queries are entered in a CLlPS-like syntax and are passed to the query generator, which constructs and submits for execution, an SQL query to the ORACLE RDBMS. The query results are asserted as CLIPS facts. The query generator was developed primarily for use within the ICADS project (Intelligent Computer Aided Design System) currently being developed by the CAD Research Unit in the California Polytechnic State University (Cal Poly). In ICADS, there are several parallel or distributed expert systems accessing a common knowledge base of facts. Expert system has a narrow domain of interest and therefore needs only certain portions of the information. The query generator provides a common method of accessing this information and allows the expert system to specify what data is needed without specifying how to retrieve it.
SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)
NASA Astrophysics Data System (ADS)
Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj
2013-07-01
Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the ontology, supports SPARQL queries, allows for modifications based on successive discoveries, and provides an accessible knowledge base on the Web.
BioC implementations in Go, Perl, Python and Ruby
Liu, Wanli; Islamaj Doğan, Rezarta; Kwon, Dongseop; Marques, Hernani; Rinaldi, Fabio; Wilbur, W. John; Comeau, Donald C.
2014-01-01
As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language processing. With initial implementations in C++ and Java, BioC provides libraries of code for reading and writing BioC text documents and annotations. We extend BioC to Perl, Python, Go and Ruby. We used SWIG to extend the C++ implementation for Perl and one Python implementation. A second Python implementation and the Ruby implementation use native data structures and libraries. BioC is also implemented in the Google language Go. BioC modules are functional in all of these languages, which can facilitate text mining tasks. BioC implementations are freely available through the BioC site: http://bioc.sourceforge.net. Database URL: http://bioc.sourceforge.net/ PMID:24961236
PlanMine--a mineable resource of planarian biology and biodiversity.
Brandl, Holger; Moon, HongKee; Vila-Farré, Miquel; Liu, Shang-Yun; Henry, Ian; Rink, Jochen C
2016-01-04
Planarian flatworms are in the midst of a renaissance as a model system for regeneration and stem cells. Besides two well-studied model species, hundreds of species exist worldwide that present a fascinating diversity of regenerative abilities, tissue turnover rates, reproductive strategies and other life history traits. PlanMine (http://planmine.mpi-cbg.de/) aims to accomplish two primary missions: First, to provide an easily accessible platform for sharing, comparing and value-added mining of planarian sequence data. Second, to catalyze the comparative analysis of the phenotypic diversity amongst planarian species. Currently, PlanMine houses transcriptomes independently assembled by our lab and community contributors. Detailed assembly/annotation statistics, a custom-developed BLAST viewer and easy export options enable comparisons at the contig and assembly level. Consistent annotation of all transcriptomes by an automated pipeline, the integration of published gene expression information and inter-relational query tools provide opportunities for mining planarian gene sequences and functions. For inter-species comparisons, we include transcriptomes of, so far, six planarian species, along with images, expert-curated information on their biology and pre-calculated cross-species sequence homologies. PlanMine is based on the popular InterMine system in order to make the rich biology of planarians accessible to the general life sciences research community. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
BioMon: A Google Earth Based Continuous Biomass Monitoring System (Demo Paper)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsavai, Raju
2009-01-01
We demonstrate a Google Earth based novel visualization system for continuous monitoring of biomass at regional and global scales. This system is integrated with a back-end spatiotemporal data mining system that continuously detects changes using high temporal resolution MODIS images. In addition to the visualization, we demonstrate novel query features of the system that provides insights into the current conditions of the landscape.
Static Analysis of Mobile Programs
2017-02-01
information flow analysis has the potential to significantly aid human auditors , but it is handicapped by high false positive rates. Instead, auditors ...presents these specifications to a human auditor for validation. We have implemented this framework for a taint analysis of An- droid apps that relies on...of queries to a human auditor . 6.4 Inferring Library Information Flow Specifications Using Dynamic Anal- ysis In [15], we present a technique to mine
Mining and Querying Multimedia Data
2011-09-29
able to capture more subtle spatial variations such as repetitiveness. Local feature descriptors such as SIFT [74] and SURF [12] have also been widely...empirically set to s = 90%, r = 50%, K = 20, where small variations lead to little perturbation of the output. The pseudo-code of the algorithm is...by constructing a three-layer graph based on clustering outputs, and executing a slight variation of random walk with restart algorithm. It provided
Frequent Itemset Mining for Query Expansion in Microblog Ad-hoc Search
2012-11-01
captin, @rayhattersley, #rhythm, almond, #lift, #white, rhythm, #blues, #sci- ence, loss*, you, #eating, #beauty, ambria, #with, weight*, diets , white...puwisdom, sci- ence, #and, @pulistbook, lift, dingle, @mir- acleweight, @tweettraffic4u, # diets , oranges, #of, @aase25, and*, berries*, #no...and, it, is, daily* MB055 benefits, with, acai, their, diet , on, of, wt, health, plans, ber, for, first, how, are, loss*, you, this, mt, lose, weight
Science and Technology Text Mining: Nonlinear Dynamics
2004-02-01
journal/ institution publication and citation data. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...systems whose time evolution has a sensitive dependence on initial conditions. An approximately 100 term query was developed for accessing records from the...SCI papers by a factor of ~ 2. Appendix 4 contains a co-occurrence matrix of the top 15 countries. In terms of absolute numbers of co-authored papers
Mahroum, Naim; Bragazzi, Nicola Luigi; Sharif, Kassem; Gianfredi, Vincenza; Nucci, Daniele; Rosselli, Roberto; Brigo, Francesco; Adawi, Mohammad; Amital, Howard; Watad, Abdulla
2018-06-01
Technological advancements, such as patient-centered smartphone applications, have enabled to support self-management of the disease. Further, the accessibility to health information through the Internet has grown tremendously. This article aimed to investigate how big data can be useful to assess the impact of a celebrity's rheumatic disease on the public opinion. Variable tools and statistical/computational approaches have been used, including massive data mining of Google Trends, Wikipedia, Twitter, and big data analytics. These tools were mined using an in-house script, which facilitated the process of data collection, parsing, handling, processing, and normalization. From Google Trends, the temporal correlation between "Anna Marchesini" and rheumatoid arthritis (RA) queries resulted 0.66 before Anna Marchesini's death and 0.90 after Anna Marchesini's death. The geospatial correlation between "Anna Marchesini" and RA queries resulted 0.45 before Anna Marchesini's death and 0.52 after Anna Marchesini's death. From Wikitrends, after Anna Marchesini's death, the number of accesses to Wikipedia page for RA has increased 5770%. From Twitter, 1979 tweets have been retrieved. Numbers of likes, retweets, and hashtags have increased throughout time. Novel data streams and big data analytics are effective to assess the impact of a disease in a famous person on the laypeople.
Petaminer: Using ROOT for efficient data storage in MySQL database
NASA Astrophysics Data System (ADS)
Cranshaw, J.; Malon, D.; Vaniachine, A.; Fine, V.; Lauret, J.; Hamill, P.
2010-04-01
High Energy and Nuclear Physics (HENP) experiments store Petabytes of event data and Terabytes of calibration data in ROOT files. The Petaminer project is developing a custom MySQL storage engine to enable the MySQL query processor to directly access experimental data stored in ROOT files. Our project is addressing the problem of efficient navigation to PetaBytes of HENP experimental data described with event-level TAG metadata, which is required by data intensive physics communities such as the LHC and RHIC experiments. Physicists need to be able to compose a metadata query and rapidly retrieve the set of matching events, where improved efficiency will facilitate the discovery process by permitting rapid iterations of data evaluation and retrieval. Our custom MySQL storage engine enables the MySQL query processor to directly access TAG data stored in ROOT TTrees. As ROOT TTrees are column-oriented, reading them directly provides improved performance over traditional row-oriented TAG databases. Leveraging the flexible and powerful SQL query language to access data stored in ROOT TTrees, the Petaminer approach enables rich MySQL index-building capabilities for further performance optimization.
Automatic query formulations in information retrieval.
Salton, G; Buckley, C; Fox, E A
1983-07-01
Modern information retrieval systems are designed to supply relevant information in response to requests received from the user population. In most retrieval environments the search requests consist of keywords, or index terms, interrelated by appropriate Boolean operators. Since it is difficult for untrained users to generate effective Boolean search requests, trained search intermediaries are normally used to translate original statements of user need into useful Boolean search formulations. Methods are introduced in this study which reduce the role of the search intermediaries by making it possible to generate Boolean search formulations completely automatically from natural language statements provided by the system patrons. Frequency considerations are used automatically to generate appropriate term combinations as well as Boolean connectives relating the terms. Methods are covered to produce automatic query formulations both in a standard Boolean logic system, as well as in an extended Boolean system in which the strict interpretation of the connectives is relaxed. Experimental results are supplied to evaluate the effectiveness of the automatic query formulation process, and methods are described for applying the automatic query formulation process in practice.
Albin, Aaron; Ji, Xiaonan; Borlawsky, Tara B; Ye, Zhan; Lin, Simon; Payne, Philip Ro; Huang, Kun; Xiang, Yang
2014-10-07
The Unified Medical Language System (UMLS) contains many important ontologies in which terms are connected by semantic relations. For many studies on the relationships between biomedical concepts, the use of transitively associated information from ontologies and the UMLS has been shown to be effective. Although there are a few tools and methods available for extracting transitive relationships from the UMLS, they usually have major restrictions on the length of transitive relations or on the number of data sources. Our goal was to design an efficient online platform that enables efficient studies on the conceptual relationships between any medical terms. To overcome the restrictions of available methods and to facilitate studies on the conceptual relationships between medical terms, we developed a Web platform, onGrid, that supports efficient transitive queries and conceptual relationship studies using the UMLS. This framework uses the latest technique in converting natural language queries into UMLS concepts, performs efficient transitive queries, and visualizes the result paths. It also dynamically builds a relationship matrix for two sets of input biomedical terms. We are thus able to perform effective studies on conceptual relationships between medical terms based on their relationship matrix. The advantage of onGrid is that it can be applied to study any two sets of biomedical concept relations and the relations within one set of biomedical concepts. We use onGrid to study the disease-disease relationships in the Online Mendelian Inheritance in Man (OMIM). By crossvalidating our results with an external database, the Comparative Toxicogenomics Database (CTD), we demonstrated that onGrid is effective for the study of conceptual relationships between medical terms. onGrid is an efficient tool for querying the UMLS for transitive relations, studying the relationship between medical terms, and generating hypotheses.
HBVPathDB: a database of HBV infection-related molecular interaction network.
Zhang, Yi; Bo, Xiao-Chen; Yang, Jing; Wang, Sheng-Qi
2005-03-21
To describe molecules or genes interaction between hepatitis B viruses (HBV) and host, for understanding how virus' and host's genes and molecules are networked to form a biological system and for perceiving mechanism of HBV infection. The knowledge of HBV infection-related reactions was organized into various kinds of pathways with carefully drawn graphs in HBVPathDB. Pathway information is stored with relational database management system (DBMS), which is currently the most efficient way to manage large amounts of data and query is implemented with powerful Structured Query Language (SQL). The search engine is written using Personal Home Page (PHP) with SQL embedded and web retrieval interface is developed for searching with Hypertext Markup Language (HTML). We present the first version of HBVPathDB, which is a HBV infection-related molecular interaction network database composed of 306 pathways with 1 050 molecules involved. With carefully drawn graphs, pathway information stored in HBVPathDB can be browsed in an intuitive way. We develop an easy-to-use interface for flexible accesses to the details of database. Convenient software is implemented to query and browse the pathway information of HBVPathDB. Four search page layout options-category search, gene search, description search, unitized search-are supported by the search engine of the database. The database is freely available at http://www.bio-inf.net/HBVPathDB/HBV/. The conventional perspective HBVPathDB have already contained a considerable amount of pathway information with HBV infection related, which is suitable for in-depth analysis of molecular interaction network of virus and host. HBVPathDB integrates pathway data-sets with convenient software for query, browsing, visualization, that provides users more opportunity to identify regulatory key molecules as potential drug targets and to explore the possible mechanism of HBV infection based on gene expression datasets.
A Survey in Indexing and Searching XML Documents.
ERIC Educational Resources Information Center
Luk, Robert W. P.; Leong, H. V.; Dillon, Tharam S.; Chan, Alvin T. S.; Croft, W. Bruce; Allan, James
2002-01-01
Discussion of XML focuses on indexing techniques for XML documents, grouping them into flat-file, semistructured, and structured indexing paradigms. Highlights include searching techniques, including full text search and multistage search; search result presentations; database and information retrieval system integration; XML query languages; and…
Constructing a Graph Database for Semantic Literature-Based Discovery.
Hristovski, Dimitar; Kastrin, Andrej; Dinevski, Dejan; Rindflesch, Thomas C
2015-01-01
Literature-based discovery (LBD) generates discoveries, or hypotheses, by combining what is already known in the literature. Potential discoveries have the form of relations between biomedical concepts; for example, a drug may be determined to treat a disease other than the one for which it was intended. LBD views the knowledge in a domain as a network; a set of concepts along with the relations between them. As a starting point, we used SemMedDB, a database of semantic relations between biomedical concepts extracted with SemRep from Medline. SemMedDB is distributed as a MySQL relational database, which has some problems when dealing with network data. We transformed and uploaded SemMedDB into the Neo4j graph database, and implemented the basic LBD discovery algorithms with the Cypher query language. We conclude that storing the data needed for semantic LBD is more natural in a graph database. Also, implementing LBD discovery algorithms is conceptually simpler with a graph query language when compared with standard SQL.
Influenza-like illness surveillance on Twitter through automated learning of naïve language.
Gesualdo, Francesco; Stilo, Giovanni; Agricola, Eleonora; Gonfiantini, Michaela V; Pandolfi, Elisabetta; Velardi, Paola; Tozzi, Alberto E
2013-01-01
Twitter has the potential to be a timely and cost-effective source of data for syndromic surveillance. When speaking of an illness, Twitter users often report a combination of symptoms, rather than a suspected or final diagnosis, using naïve, everyday language. We developed a minimally trained algorithm that exploits the abundance of health-related web pages to identify all jargon expressions related to a specific technical term. We then translated an influenza case definition into a Boolean query, each symptom being described by a technical term and all related jargon expressions, as identified by the algorithm. Subsequently, we monitored all tweets that reported a combination of symptoms satisfying the case definition query. In order to geolocalize messages, we defined 3 localization strategies based on codes associated with each tweet. We found a high correlation coefficient between the trend of our influenza-positive tweets and ILI trends identified by US traditional surveillance systems.
Influenza-Like Illness Surveillance on Twitter through Automated Learning of Naïve Language
Gesualdo, Francesco; Stilo, Giovanni; Agricola, Eleonora; Gonfiantini, Michaela V.; Pandolfi, Elisabetta; Velardi, Paola; Tozzi, Alberto E.
2013-01-01
Twitter has the potential to be a timely and cost-effective source of data for syndromic surveillance. When speaking of an illness, Twitter users often report a combination of symptoms, rather than a suspected or final diagnosis, using naïve, everyday language. We developed a minimally trained algorithm that exploits the abundance of health-related web pages to identify all jargon expressions related to a specific technical term. We then translated an influenza case definition into a Boolean query, each symptom being described by a technical term and all related jargon expressions, as identified by the algorithm. Subsequently, we monitored all tweets that reported a combination of symptoms satisfying the case definition query. In order to geolocalize messages, we defined 3 localization strategies based on codes associated with each tweet. We found a high correlation coefficient between the trend of our influenza-positive tweets and ILI trends identified by US traditional surveillance systems. PMID:24324799
Agile Datacube Analytics (not just) for the Earth Sciences
NASA Astrophysics Data System (ADS)
Misev, Dimitar; Merticariu, Vlad; Baumann, Peter
2017-04-01
Metadata are considered small, smart, and queryable; data, on the other hand, are known as big, clumsy, hard to analyze. Consequently, gridded data - such as images, image timeseries, and climate datacubes - are managed separately from the metadata, and with different, restricted retrieval capabilities. One reason for this silo approach is that databases, while good at tables, XML hierarchies, RDF graphs, etc., traditionally do not support multi-dimensional arrays well. This gap is being closed by Array Databases which extend the SQL paradigm of "any query, anytime" to NoSQL arrays. They introduce semantically rich modelling combined with declarative, high-level query languages on n-D arrays. On Server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. This way, they offer new vistas in flexibility, scalability, performance, and data integration. In this respect, the forthcoming ISO SQL extension MDA ("Multi-dimensional Arrays") will be a game changer in Big Data Analytics. We introduce concepts and opportunities through the example of rasdaman ("raster data manager") which in fact has pioneered the field of Array Databases and forms the blueprint for ISO SQL/MDA and further Big Data standards, such as OGC WCPS for querying spatio-temporal Earth datacubes. With operational installations exceeding 140 TB queries have been split across more than one thousand cloud nodes, using CPUs as well as GPUs. Installations can easily be mashed up securely, enabling large-scale location-transparent query processing in federations. Federation queries have been demonstrated live at EGU 2016 spanning Europe and Australia in the context of the intercontinental EarthServer initiative, visualized through NASA WorldWind.
Agile Datacube Analytics (not just) for the Earth Sciences
NASA Astrophysics Data System (ADS)
Baumann, P.
2016-12-01
Metadata are considered small, smart, and queryable; data, on the other hand, are known as big, clumsy, hard to analyze. Consequently, gridded data - such as images, image timeseries, and climate datacubes - are managed separately from the metadata, and with different, restricted retrieval capabilities. One reason for this silo approach is that databases, while good at tables, XML hierarchies, RDF graphs, etc., traditionally do not support multi-dimensional arrays well.This gap is being closed by Array Databases which extend the SQL paradigm of "any query, anytime" to NoSQL arrays. They introduce semantically rich modelling combined with declarative, high-level query languages on n-D arrays. On Server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. This way, they offer new vistas in flexibility, scalability, performance, and data integration. In this respect, the forthcoming ISO SQL extension MDA ("Multi-dimensional Arrays") will be a game changer in Big Data Analytics.We introduce concepts and opportunities through the example of rasdaman ("raster data manager") which in fact has pioneered the field of Array Databases and forms the blueprint for ISO SQL/MDA and further Big Data standards, such as OGC WCPS for querying spatio-temporal Earth datacubes. With operational installations exceeding 140 TB queries have been split across more than one thousand cloud nodes, using CPUs as well as GPUs. Installations can easily be mashed up securely, enabling large-scale location-transparent query processing in federations. Federation queries have been demonstrated live at EGU 2016 spanning Europe and Australia in the context of the intercontinental EarthServer initiative, visualized through NASA WorldWind.
Intelligent communication assistant for databases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobson, G.; Shaked, V.; Rowley, S.
1983-01-01
An intelligent communication assistant for databases, called FRED (front end for databases) is explored. FRED is designed to facilitate access to database systems by users of varying levels of experience. FRED is a second generation of natural language front-ends for databases and intends to solve two critical interface problems existing between end-users and databases: connectivity and communication problems. The authors report their experiences in developing software for natural language query processing, dialog control, and knowledge representation, as well as the direction of future work. 10 references.
2006-08-01
effective for describing taxonomic categories and properties of things, the structures found in SWRL and SPARQL are better suited to describing conditions...up the query processing time, which may occur many times and furthermore it is time critical. In order to maintain information about the...that time spent during this phase does not depend linearly on the number of concepts present in the data structure , but in the order of log of concepts
AiGERM: A logic programming front end for GERM
NASA Technical Reports Server (NTRS)
Hashim, Safaa H.
1990-01-01
AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.
Biotea: semantics for Pubmed Central.
Garcia, Alexander; Lopez, Federico; Garcia, Leyla; Giraldo, Olga; Bucheli, Victor; Dumontier, Michel
2018-01-01
A significant portion of biomedical literature is represented in a manner that makes it difficult for consumers to find or aggregate content through a computational query. One approach to facilitate reuse of the scientific literature is to structure this information as linked data using standardized web technologies. In this paper we present the second version of Biotea, a semantic, linked data version of the open-access subset of PubMed Central that has been enhanced with specialized annotation pipelines that uses existing infrastructure from the National Center for Biomedical Ontology. We expose our models, services, software and datasets. Our infrastructure enables manual and semi-automatic annotation, resulting data are represented as RDF-based linked data and can be readily queried using the SPARQL query language. We illustrate the utility of our system with several use cases. Our datasets, methods and techniques are available at http://biotea.github.io.
Bottom-Up Evaluation of Twig Join Pattern Queries in XML Document Databases
NASA Astrophysics Data System (ADS)
Chen, Yangjun
Since the extensible markup language XML emerged as a new standard for information representation and exchange on the Internet, the problem of storing, indexing, and querying XML documents has been among the major issues of database research. In this paper, we study the twig pattern matching and discuss a new algorithm for processing ordered twig pattern queries. The time complexity of the algorithmis bounded by O(|D|·|Q| + |T|·leaf Q ) and its space overhead is by O(leaf T ·leaf Q ), where T stands for a document tree, Q for a twig pattern and D is a largest data stream associated with a node q of Q, which contains the database nodes that match the node predicate at q. leaf T (leaf Q ) represents the number of the leaf nodes of T (resp. Q). In addition, the algorithm can be adapted to an indexing environment with XB-trees being used.
Development of a replicated database of DHCP data for evaluation of drug use.
Graber, S E; Seneker, J A; Stahl, A A; Franklin, K O; Neel, T E; Miller, R A
1996-01-01
This case report describes development and testing of a method to extract clinical information stored in the Veterans Affairs (VA) Decentralized Hospital Computer System (DHCP) for the purpose of analyzing data about groups of patients. The authors used a microcomputer-based, structured query language (SQL)-compatible, relational database system to replicate a subset of the Nashville VA Hospital's DHCP patient database. This replicated database contained the complete current Nashville DHCP prescription, provider, patient, and drug data sets, and a subset of the laboratory data. A pilot project employed this replicated database to answer questions that might arise in drug-use evaluation, such as identification of cases of polypharmacy, suboptimal drug regimens, and inadequate laboratory monitoring of drug therapy. These database queries included as candidates for review all prescriptions for all outpatients. The queries demonstrated that specific drug-use events could be identified for any time interval represented in the replicated database. PMID:8653451
Development of a replicated database of DHCP data for evaluation of drug use.
Graber, S E; Seneker, J A; Stahl, A A; Franklin, K O; Neel, T E; Miller, R A
1996-01-01
This case report describes development and testing of a method to extract clinical information stored in the Veterans Affairs (VA) Decentralized Hospital Computer System (DHCP) for the purpose of analyzing data about groups of patients. The authors used a microcomputer-based, structured query language (SQL)-compatible, relational database system to replicate a subset of the Nashville VA Hospital's DHCP patient database. This replicated database contained the complete current Nashville DHCP prescription, provider, patient, and drug data sets, and a subset of the laboratory data. A pilot project employed this replicated database to answer questions that might arise in drug-use evaluation, such as identification of cases of polypharmacy, suboptimal drug regimens, and inadequate laboratory monitoring of drug therapy. These database queries included as candidates for review all prescriptions for all outpatients. The queries demonstrated that specific drug-use events could be identified for any time interval represented in the replicated database.
Component Models for Semantic Web Languages
NASA Astrophysics Data System (ADS)
Henriksson, Jakob; Aßmann, Uwe
Intelligent applications and agents on the Semantic Web typically need to be specified with, or interact with specifications written in, many different kinds of formal languages. Such languages include ontology languages, data and metadata query languages, as well as transformation languages. As learnt from years of experience in development of complex software systems, languages need to support some form of component-based development. Components enable higher software quality, better understanding and reusability of already developed artifacts. Any component approach contains an underlying component model, a description detailing what valid components are and how components can interact. With the multitude of languages developed for the Semantic Web, what are their underlying component models? Do we need to develop one for each language, or is a more general and reusable approach achievable? We present a language-driven component model specification approach. This means that a component model can be (automatically) generated from a given base language (actually, its specification, e.g. its grammar). As a consequence, we can provide components for different languages and simplify the development of software artifacts used on the Semantic Web.
Mining Claim Activity on Federal Land for the Period 1976 through 2003
Causey, J. Douglas
2005-01-01
Previous reports on mining claim records provided information and statistics (number of claims) using data from the U.S. Bureau of Land Management's (BLM) Mining Claim Recordation System. Since that time, BLM converted their mining claim data to the Legacy Repost 2000 system (LR2000). This report describes a process to extract similar statistical data about mining claims from LR2000 data using different software and procedures than were used in the earlier work. A major difference between this process and the previous work is that every section that has a mining claim record is assigned a value. This is done by proportioning a claim between each section in which it is recorded. Also, the mining claim data in this report includes all BLM records, not just the western states. LR2000 mining claim database tables for the United States were provided by BLM in text format and imported into a Microsoft? Access2000 database in January, 2004. Data from two tables in the BLM LR2000 database were summarized through a series of database queries to determine a number that represents active mining claims in each Public Land Survey (PLS) section for each of the years from 1976 to 2002. For most of the area, spatial databases are also provided. The spatial databases are only configured to work with the statistics provided in the non-spatial data files. They are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller (for example, 1:250,000).
Assessment of respirable dust and its free silica contents in different Indian coalmines.
Mukherjee, Ashit K; Bhattacharya, Sanat K; Saiyed, Habibullah N
2005-04-01
Assessment of respirable dust, personal exposures of miners and free silica contents in dust were undertaken to find out the associated risk of coal workers' pneumoconiosis in 9 coal mines of Eastern India during 1988-91. Mine Research Establishment (MRE), 113A Gravimetric Dust Sampler (GDS) and personal samplers (AFC 123), Cassella, London, approved by Director General of Mines Safety (DGMS) were used respectively for monitoring of mine air dust and personal exposures of miners. Fourier Transform Infra-red (FTIR) Spectroscopy determined free silica in respirable dusts. Thermal Conditions like Wet Bulb Globe Temperature (WBGT) index, humidity and wind velocity were also recorded during monitoring. The dust levels in the face return air of both, Board & Pillar (B&P) and Long Wall (LW) mining were found above the permissible level recommended by DGMS, Govt. of India. The drilling, blasting and loading are the major dusty operations in B&P method. Exposures of driller and loader were varied between, 0.81-9.48 mg/m3 and 0.05-9.84 mg/m3 respectively in B&P mining, whereas exposures of DOSCO loader, Shearer operator and Power Support Face Worker were varied between 2.65-9.11 mg/m3, 0.22-10.00 mg/m3 and 0.12-9.32 mg/m3 respectively in LW mining. In open cast mining, compressor and driller operators are the major exposed groups. The percentage silica in respirable dusts found below 5% in all most all the workers except among query loaders and drillers of open cast mines.
Development of Human Face Literature Database Using Text Mining Approach: Phase I.
Kaur, Paramjit; Krishan, Kewal; Sharma, Suresh K
2018-06-01
The face is an important part of the human body by which an individual communicates in the society. Its importance can be highlighted by the fact that a person deprived of face cannot sustain in the living world. The amount of experiments being performed and the number of research papers being published under the domain of human face have surged in the past few decades. Several scientific disciplines, which are conducting research on human face include: Medical Science, Anthropology, Information Technology (Biometrics, Robotics, and Artificial Intelligence, etc.), Psychology, Forensic Science, Neuroscience, etc. This alarms the need of collecting and managing the data concerning human face so that the public and free access of it can be provided to the scientific community. This can be attained by developing databases and tools on human face using bioinformatics approach. The current research emphasizes on creating a database concerning literature data of human face. The database can be accessed on the basis of specific keywords, journal name, date of publication, author's name, etc. The collected research papers will be stored in the form of a database. Hence, the database will be beneficial to the research community as the comprehensive information dedicated to the human face could be found at one place. The information related to facial morphologic features, facial disorders, facial asymmetry, facial abnormalities, and many other parameters can be extracted from this database. The front end has been developed using Hyper Text Mark-up Language and Cascading Style Sheets. The back end has been developed using hypertext preprocessor (PHP). The JAVA Script has used as scripting language. MySQL (Structured Query Language) is used for database development as it is most widely used Relational Database Management System. XAMPP (X (cross platform), Apache, MySQL, PHP, Perl) open source web application software has been used as the server.The database is still under the developmental phase and discusses the initial steps of its creation. The current paper throws light on the work done till date.
Cluster-Based Query Expansion Using Language Modeling for Biomedical Literature Retrieval
ERIC Educational Resources Information Center
Xu, Xuheng
2011-01-01
The tremendously huge volume of biomedical literature, scientists' specific information needs, long terms of multiples words, and fundamental problems of synonym and polysemy have been challenging issues facing the biomedical information retrieval community researchers. Search engines have significantly improved the efficiency and effectiveness of…
A Probabilistic Approach to Crosslingual Information Retrieval
2001-06-01
language expansion step can be performed before the translation process. Implemented as a call to the INQUERY function get_modified_query with one of the...database consists of American English while the dictionary is British English. Therefore, e.g. the Spanish word basura is translated to rubbish and
2007-12-01
1 A Brief History of Event Processing... history of event processing. The Applications section defines several application domains and use cases for event processing technology. Event...subscription” and “subscription language” will be used where some will often use “(continuous) query” or “query language.” A Brief History of
NASA Astrophysics Data System (ADS)
Huanqin, Wu; Yasheng, Jin; Yugang, Dai
2017-06-01
Under the current situation where Internet technology develops rapidly, mobile E-commerce technology has brought great convenience to our life. Now, the graphical user interface (GUI) of most E-commerce platforms only supports Chinese. Thus, the development of Android client of E-commerce that supports ethnic languages owns a great prospect. The principle that combines front end design and database technology is adopted in this paper to construct the Android client system of E-commerce platforms that supports ethnic languages, which realizes the displaying, browsing, querying, searching, trading and other functions of ethnic characteristic agricultural products on android platforms.
Enhancements for a Dynamic Data Warehousing and Mining System for Large-scale HSCB Data
2016-07-20
Intelligent Automation Incorporated Enhancements for a Dynamic Data Warehousing and Mining ...Page | 2 Intelligent Automation Incorporated Monthly Report No. 4 Enhancements for a Dynamic Data Warehousing and Mining System Large-Scale HSCB...including Top Videos, Top Users, Top Words, and Top Languages, and also applied NER to the text associated with YouTube posts. We have also developed UI for
Enhancements for a Dynamic Data Warehousing and Mining System for Large-Scale HSCB Data
2016-07-20
Intelligent Automation Incorporated Enhancements for a Dynamic Data Warehousing and Mining ...Page | 2 Intelligent Automation Incorporated Monthly Report No. 4 Enhancements for a Dynamic Data Warehousing and Mining System Large-Scale HSCB...including Top Videos, Top Users, Top Words, and Top Languages, and also applied NER to the text associated with YouTube posts. We have also developed UI for
Foreign Language/Intercultural Program. Your World and Mine (Sixth Grade). DS Manual 2650.6.
ERIC Educational Resources Information Center
Dependents Schools (DOD), Washington, DC.
The curriculum guides for foreign language and intercultural education programs in United States dependents schools overseas provide instructional ideas designed to promote learning about the language and culture of the host nation. The series, covering kindergarten through eighth grade, was written by host nation teachers, classroom teachers, and…
Understanding Online Interaction in Language MOOCs through Learning Analytics
ERIC Educational Resources Information Center
Martín-Monje, Elena; Castrillo, María Dolores; Mañana-Rodríguez, Jorge
2018-01-01
Data mining is increasing its popularity in the research of Technology-Enhanced Language Learning and Applied Linguistics in general. It enables a better understanding of progress, performance and possible pitfalls, which would be useful for language learners, teachers and researchers. Until recently it was an unexplored field, but it is expected…
Hewitt, Robin; Gobbi, Alberto; Lee, Man-Ling
2005-01-01
Relational databases are the current standard for storing and retrieving data in the pharmaceutical and biotech industries. However, retrieving data from a relational database requires specialized knowledge of the database schema and of the SQL query language. At Anadys, we have developed an easy-to-use system for searching and reporting data in a relational database to support our drug discovery project teams. This system is fast and flexible and allows users to access all data without having to write SQL queries. This paper presents the hierarchical, graph-based metadata representation and SQL-construction methods that, together, are the basis of this system's capabilities.
Health consumer-oriented information retrieval.
Claveau, Vincent; Hamon, Thierry; Le Maguer, Sébastien; Grabar, Natalia
2015-01-01
While patients can freely access their Electronic Health Records or online health information, they may not be able to correctly understand the content of these documents. One of the challenges is related to the difference between expert and non-expert languages. We propose to investigate this issue within the Information Retrieval field. The patient queries have to be associated with the corresponding expert documents, that provide trustworthy information. Our approach relies on a state-of-the-art IR system called Indri and on semantic resources. Different query expansion strategies are explored. Our system shows up to 0.6740 P@10, up to 0.7610 R@10, and up to 0.6793 NDCG@10.
ERIC Educational Resources Information Center
Marzo, Stefania; Ceuleers, Evy
2011-01-01
The term "Citetaal" was originally used to refer to the language spoken by Italian immigrants in the Eastern part of Flanders (Limburg) and diffused in the former ghettoised mining areas (the cite). It is a melting pot language, based on Dutch but with a high amount of code mixture from immigrant languages, mostly Italian and Turkish.…
Geographic Video 3d Data Model And Retrieval
NASA Astrophysics Data System (ADS)
Han, Z.; Cui, C.; Kong, Y.; Wu, H.
2014-04-01
Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.
Measuring up: Implementing a dental quality measure in the electronic health record context.
Bhardwaj, Aarti; Ramoni, Rachel; Kalenderian, Elsbeth; Neumann, Ana; Hebballi, Nutan B; White, Joel M; McClellan, Lyle; Walji, Muhammad F
2016-01-01
Quality improvement requires using quality measures that can be implemented in a valid manner. Using guidelines set forth by the Meaningful Use portion of the Health Information Technology for Economic and Clinical Health Act, the authors assessed the feasibility and performance of an automated electronic Meaningful Use dental clinical quality measure to determine the percentage of children who received fluoride varnish. The authors defined how to implement the automated measure queries in a dental electronic health record. Within records identified through automated query, the authors manually reviewed a subsample to assess the performance of the query. The automated query results revealed that 71.0% of patients had fluoride varnish compared with the manual chart review results that indicated 77.6% of patients had fluoride varnish. The automated quality measure performance results indicated 90.5% sensitivity, 90.8% specificity, 96.9% positive predictive value, and 75.2% negative predictive value. The authors' findings support the feasibility of using automated dental quality measure queries in the context of sufficient structured data. Information noted only in free text rather than in structured data would require using natural language processing approaches to effectively query electronic health records. To participate in self-directed quality improvement, dental clinicians must embrace the accountability era. Commitment to quality will require enhanced documentation to support near-term automated calculation of quality measures. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.
Analysis of Patent Databases Using VxInsight
DOE Office of Scientific and Technical Information (OSTI.GOV)
BOYACK,KEVIN W.; WYLIE,BRIAN N.; DAVIDSON,GEORGE S.
2000-12-12
We present the application of a new knowledge visualization tool, VxInsight, to the mapping and analysis of patent databases. Patent data are mined and placed in a database, relationships between the patents are identified, primarily using the citation and classification structures, then the patents are clustered using a proprietary force-directed placement algorithm. Related patents cluster together to produce a 3-D landscape view of the tens of thousands of patents. The user can navigate the landscape by zooming into or out of regions of interest. Querying the underlying database places a colored marker on each patent matching the query. Automatically generatedmore » labels, showing landscape content, update continually upon zooming. Optionally, citation links between patents may be shown on the landscape. The combination of these features enables powerful analyses of patent databases.« less
EpiK: A Knowledge Base for Epidemiological Modeling and Analytics of Infectious Diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, S. M. Shamimul; Fox, Edward A.; Bisset, Keith
Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. Asmore » a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK—a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks—aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed—the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. As a result, we show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.« less
EpiK: A Knowledge Base for Epidemiological Modeling and Analytics of Infectious Diseases
Hasan, S. M. Shamimul; Fox, Edward A.; Bisset, Keith; ...
2017-11-06
Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. Asmore » a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK—a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks—aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed—the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. As a result, we show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.« less
A Medical Area Network of Virtual Technology (MANVT)
2011-10-01
translational research projects be captured, undergo quality control and are stored/managed in such a way that they can be mined to test and generate new...translational research is that access to detailed clinical data typically requires proper informed consent and IRB approval; however, in order to design ...attributes of interest at an early stage of the process. 12B2 overcomes these challenges by enabling researchers to design and execute queries
High-performance analysis of filtered semantic graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buluc, Aydin; Fox, Armando; Gilbert, John R.
2012-01-01
High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry "attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices and edges of interest. The filtered approach is superior due to its generality, ease of use, and memory efficiency, but may carry amore » performance cost. In the Knowledge Discovery Toolbox (KDT), a Python library for parallel graph computations, the user writes filters in a high-level language, but those filters result in relatively low performance due to the bottleneck of having to call into the Python interpreter for each edge. In this work, we use the Selective Embedded JIT Specialization (SEJITS) approach to automatically translate filters defined by programmers into a lower-level efficiency language, bypassing the upcall into Python. We evaluate our approach by comparing it with the high-performance C++ /MPI Combinatorial BLAS engine, and show that the productivity gained by using a high-level filtering language comes without sacrificing performance.« less
Data Mining Research with the LSST
NASA Astrophysics Data System (ADS)
Borne, Kirk D.; Strauss, M. A.; Tyson, J. A.
2007-12-01
The LSST catalog database will exceed 10 petabytes, comprising several hundred attributes for 5 billion galaxies, 10 billion stars, and over 1 billion variable sources (optical variables, transients, or moving objects), extracted from over 20,000 square degrees of deep imaging in 5 passbands with thorough time domain coverage: 1000 visits over the 10-year LSST survey lifetime. The opportunities are enormous for novel scientific discoveries within this rich time-domain ultra-deep multi-band survey database. Data Mining, Machine Learning, and Knowledge Discovery research opportunities with the LSST are now under study, with a potential for new collaborations to develop to contribute to these investigations. We will describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. We also give some illustrative examples of current scientific data mining research in astronomy, and point out where new research is needed. In particular, the data mining research community will need to address several issues in the coming years as we prepare for the LSST data deluge. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night); multi-resolution methods for exploration of petascale databases; visual data mining algorithms for visual exploration of the data; indexing of multi-attribute multi-dimensional astronomical databases (beyond RA-Dec spatial indexing) for rapid querying of petabyte databases; and more. Finally, we will identify opportunities for synergistic collaboration between the data mining research group and the LSST Data Management and Science Collaboration teams.
Automated Assistance in the Formulation of Search Statements for Bibliographic Databases.
ERIC Educational Resources Information Center
Oakes, Michael P.; Taylor, Malcolm J.
1998-01-01
Reports on the design of an automated query system to help pharmacologists access the Derwent Drug File (DDF). Topics include knowledge types; knowledge representation; role of the search intermediary; vocabulary selection, thesaurus, and user input in natural language; browsing; evaluation methods; and search statement generation for the World…
ERIC Educational Resources Information Center
Golden, Cynthia; Eisenberger, Dorit
1990-01-01
Carnegie Mellon University's decision to standardize its administrative system development efforts on relational database technology and structured query language is discussed and its impact is examined in one of its larger, more widely used applications, the university information system. Advantages, new responsibilities, and challenges of the…
A Gene Ontology Tutorial in Python.
Vesztrocy, Alex Warwick; Dessimoz, Christophe
2017-01-01
This chapter is a tutorial on using Gene Ontology resources in the Python programming language. This entails querying the Gene Ontology graph, retrieving Gene Ontology annotations, performing gene enrichment analyses, and computing basic semantic similarity between GO terms. An interactive version of the tutorial, including solutions, is available at http://gohandbook.org .
ADVICE--Educational System for Teaching Database Courses
ERIC Educational Resources Information Center
Cvetanovic, M.; Radivojevic, Z.; Blagojevic, V.; Bojovic, M.
2011-01-01
This paper presents a Web-based educational system, ADVICE, that helps students to bridge the gap between database management system (DBMS) theory and practice. The usage of ADVICE is presented through a set of laboratory exercises developed to teach students conceptual and logical modeling, SQL, formal query languages, and normalization. While…
A Prototype of an Intelligent System for Information Retrieval: IOTA.
ERIC Educational Resources Information Center
Chiaramella, Y.; Defude, B.
1987-01-01
Discusses expert systems and their value as components of information retrieval systems related to semantic inference, and describes IOTA, a model of an intelligent information retrieval system which emphasizes natural language query processing. Experimental results are discussed and current and future developments are highlighted. (Author/LRW)
E = Mc(super 2) for the Chemist: When is Mass Conserved?
ERIC Educational Resources Information Center
Treptow. Richard S.
2005-01-01
An equation derived by Albert Einstein in 1905 that expresses a relationship between mass and energy, formulated as E = mc(super 2) is discussed with reference to the extent mass is conserved. This query can be used to challenge students and develop their language and critical thinking skills.
Web application for detailed real-time database transaction monitoring for CMS condition data
NASA Astrophysics Data System (ADS)
de Gruttola, Michele; Di Guida, Salvatore; Innocente, Vincenzo; Pierro, Antonio
2012-12-01
In the upcoming LHC era, database have become an essential part for the experiments collecting data from LHC, in order to safely store, and consistently retrieve, a wide amount of data, which are produced by different sources. In the CMS experiment at CERN, all this information is stored in ORACLE databases, allocated in several servers, both inside and outside the CERN network. In this scenario, the task of monitoring different databases is a crucial database administration issue, since different information may be required depending on different users' tasks such as data transfer, inspection, planning and security issues. We present here a web application based on Python web framework and Python modules for data mining purposes. To customize the GUI we record traces of user interactions that are used to build use case models. In addition the application detects errors in database transactions (for example identify any mistake made by user, application failure, unexpected network shutdown or Structured Query Language (SQL) statement error) and provides warning messages from the different users' perspectives. Finally, in order to fullfill the requirements of the CMS experiment community, and to meet the new development in many Web client tools, our application was further developed, and new features were deployed.
Brehmer, Matthew; Ingram, Stephen; Stray, Jonathan; Munzner, Tamara
2014-12-01
For an investigative journalist, a large collection of documents obtained from a Freedom of Information Act request or a leak is both a blessing and a curse: such material may contain multiple newsworthy stories, but it can be difficult and time consuming to find relevant documents. Standard text search is useful, but even if the search target is known it may not be possible to formulate an effective query. In addition, summarization is an important non-search task. We present Overview, an application for the systematic analysis of large document collections based on document clustering, visualization, and tagging. This work contributes to the small set of design studies which evaluate a visualization system "in the wild", and we report on six case studies where Overview was voluntarily used by self-initiated journalists to produce published stories. We find that the frequently-used language of "exploring" a document collection is both too vague and too narrow to capture how journalists actually used our application. Our iterative process, including multiple rounds of deployment and observations of real world usage, led to a much more specific characterization of tasks. We analyze and justify the visual encoding and interaction techniques used in Overview's design with respect to our final task abstractions, and propose generalizable lessons for visualization design methodology.
Tidal analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data
2017-01-01
files, organized by location. The data were processed using the Python programming language (van Rossum and Drake 2001), the Pandas data analysis...ER D C/ CH L TR -1 7- 2 Coastal Inlets Research Program Tidal Analysis and Arrival Process Mining Using Automatic Identification System...17-2 January 2017 Tidal Analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data Brandan M. Scully Coastal and
ERIC Educational Resources Information Center
van Mulken, Margot; Hendriks, Berna
2015-01-01
For multinational corporations, the need for efficiency and control has motivated the choice for a corporate language. However, increasing internationalisation has forced corporations to rethink their language policies to cater to the changing demands of the multicultural and multilingual workplace. This paper explores two related issues. First,…
BioC implementations in Go, Perl, Python and Ruby.
Liu, Wanli; Islamaj Doğan, Rezarta; Kwon, Dongseop; Marques, Hernani; Rinaldi, Fabio; Wilbur, W John; Comeau, Donald C
2014-01-01
As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language processing. With initial implementations in C++ and Java, BioC provides libraries of code for reading and writing BioC text documents and annotations. We extend BioC to Perl, Python, Go and Ruby. We used SWIG to extend the C++ implementation for Perl and one Python implementation. A second Python implementation and the Ruby implementation use native data structures and libraries. BioC is also implemented in the Google language Go. BioC modules are functional in all of these languages, which can facilitate text mining tasks. BioC implementations are freely available through the BioC site: http://bioc.sourceforge.net. Database URL: http://bioc.sourceforge.net/ Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.
ERIC Educational Resources Information Center
Jarman, Jay
2011-01-01
This dissertation focuses on developing and evaluating hybrid approaches for analyzing free-form text in the medical domain. This research draws on natural language processing (NLP) techniques that are used to parse and extract concepts based on a controlled vocabulary. Once important concepts are extracted, additional machine learning algorithms,…
NASA Astrophysics Data System (ADS)
Clements, O.; Siemen, S.; Wagemann, J.
2017-12-01
The EU-funded Earthserver-2 project aims to offer on-demand access to large volumes of environmental data (Earth Observation, Marine, Climate data and Planetary data) via the interface standard Web Coverage Service defined by the Open Geospatial Consortium. Providing access to data via OGC web services (e.g. WCS and WMS) has the potential to open up services to a wider audience, especially to users outside the respective communities. Especially WCS 2.0 with its processing extension Web Coverage Processing Service (WCPS) is highly beneficial to make large volumes accessible to non-expert communities. Users do not have to deal with custom community data formats, such as GRIB for the meteorological community, but can directly access the data in a format they are more familiar with, such as NetCDF, JSON or CSV. Data requests can further directly be integrated into custom processing routines and users are not required to download Gigabytes of data anymore. WCS supports trim (reduction of data extent) and slice (reduction of data dimension) operations on multi-dimensional data, providing users a very flexible on-demand access to the data. WCPS allows the user to craft queries to run on the data using a text-based query language, similar to SQL. These queries can be very powerful, e.g. condensing a three-dimensional data cube into its two-dimensional mean. However, the more processing-intensive the more complex the query. As part of the EarthServer-2 project, we developed a python library that helps users to generate complex WCPS queries with Python, a programming language they are more familiar with. The interactive presentation aims to give practical examples how users can benefit from two specific WCS services from the Marine and Climate community. Use-cases from the two communities will show different approaches to take advantage of a Web Coverage (Processing) Service. The entire content is available with Jupyter Notebooks, as they prove to be a highly beneficial tool to generate reproducible workflows for environmental data analysis.
Knowledge modeling of coal mining equipments based on ontology
NASA Astrophysics Data System (ADS)
Zhang, Baolong; Wang, Xiangqian; Li, Huizong; Jiang, Miaomiao
2017-06-01
The problems of information redundancy and sharing are universe in coal mining equipment management. In order to improve the using efficiency of knowledge of coal mining equipments, this paper proposed a new method of knowledge modeling based on ontology. On the basis of analyzing the structures and internal relations of coal mining equipment knowledge, taking OWL as ontology construct language, the ontology model of coal mining equipment knowledge is built with the help of Protégé 4.3 software tools. The knowledge description method will lay the foundation for the high effective knowledge management and sharing, which is very significant for improving the production management level of coal mining enterprises.
Benchmarking infrastructure for mutation text mining
2014-01-01
Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600
Benchmarking infrastructure for mutation text mining.
Klein, Artjom; Riazanov, Alexandre; Hindle, Matthew M; Baker, Christopher Jo
2014-02-25
Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption.
Applying Data Mining Principles to Library Data Collection.
ERIC Educational Resources Information Center
Guenther, Kim
2000-01-01
Explains how libraries can use data mining techniques for more effective data collection. Highlights include three phases: data selection and acquisition; data preparation and processing, including a discussion of the use of XML (extensible markup language); and data interpretation and integration, including database management systems. (LRW)
Masseroli, Marco; Stella, Andrea; Meani, Natalia; Alcalay, Myriam; Pinciroli, Francesco
2004-12-12
High-throughput technologies create the necessity to mine large amounts of gene annotations from diverse databanks, and to integrate the resulting data. Most databanks can be interrogated only via Web, for a single gene at a time, and query results are generally available only in the HTML format. Although some databanks provide batch retrieval of data via FTP, this requires expertise and resources for locally reimplementing the databank. We developed MyWEST, a tool aimed at researchers without extensive informatics skills or resources, which exploits user-defined templates to easily mine selected annotations from different Web-interfaced databanks, and aggregates and structures results in an automatically updated database. Using microarray results from a model system of retinoic acid-induced differentiation, MyWEST effectively gathered relevant annotations from various biomolecular databanks, highlighted significant biological characteristics and supported a global approach to the understanding of complex cellular mechanisms. MyWEST is freely available for non-profit use at http://www.medinfopoli.polimi.it/MyWEST/
PLAN2L: a web tool for integrated text mining and literature-based bioentity relation extraction.
Krallinger, Martin; Rodriguez-Penagos, Carlos; Tendulkar, Ashish; Valencia, Alfonso
2009-07-01
There is an increasing interest in using literature mining techniques to complement information extracted from annotation databases or generated by bioinformatics applications. Here we present PLAN2L, a web-based online search system that integrates text mining and information extraction techniques to access systematically information useful for analyzing genetic, cellular and molecular aspects of the plant model organism Arabidopsis thaliana. Our system facilitates a more efficient retrieval of information relevant to heterogeneous biological topics, from implications in biological relationships at the level of protein interactions and gene regulation, to sub-cellular locations of gene products and associations to cellular and developmental processes, i.e. cell cycle, flowering, root, leaf and seed development. Beyond single entities, also predefined pairs of entities can be provided as queries for which literature-derived relations together with textual evidences are returned. PLAN2L does not require registration and is freely accessible at http://zope.bioinfo.cnio.es/plan2l.
Evolution of the NASA/IPAC Extragalactic Database (NED) into a Data Mining Discovery Engine
NASA Astrophysics Data System (ADS)
Mazzarella, Joseph M.; NED Team
2017-06-01
We review recent advances and ongoing work in evolving the NASA/IPAC Extragalactic Database (NED) beyond an object reference database into a data mining discovery engine. Updates to the infrastructure and data integration techniques are enabling more than a 10-fold expansion; NED will soon contain over a billion objects with their fundamental attributes fused across the spectrum via cross-identifications among the largest sky surveys (e.g., GALEX, SDSS, 2MASS, AllWISE, EMU), and over 100,000 smaller but scientifically important catalogs and journal articles. The recent discovery of super-luminous spiral galaxies exemplifies the opportunities for data mining and science discovery directly from NED's rich data synthesis. Enhancements to the user interface, including new APIs, VO protocols, and queries involving derived physical quantities, are opening new pathways for panchromatic studies of large galaxy samples. Examples are shown of graphics characterizing the content of NED, as well as initial steps in exploring the database via interactive statistical visualizations.
Using natural language processing techniques to inform research on nanotechnology.
Lewinski, Nastassja A; McInnes, Bridget T
2015-01-01
Literature in the field of nanotechnology is exponentially increasing with more and more engineered nanomaterials being created, characterized, and tested for performance and safety. With the deluge of published data, there is a need for natural language processing approaches to semi-automate the cataloguing of engineered nanomaterials and their associated physico-chemical properties, performance, exposure scenarios, and biological effects. In this paper, we review the different informatics methods that have been applied to patent mining, nanomaterial/device characterization, nanomedicine, and environmental risk assessment. Nine natural language processing (NLP)-based tools were identified: NanoPort, NanoMapper, TechPerceptor, a Text Mining Framework, a Nanodevice Analyzer, a Clinical Trial Document Classifier, Nanotoxicity Searcher, NanoSifter, and NEIMiner. We conclude with recommendations for sharing NLP-related tools through online repositories to broaden participation in nanoinformatics.
Using kittens to unlock photo-sharing website datasets for environmental applications
NASA Astrophysics Data System (ADS)
Gascoin, Simon
2016-04-01
Mining photo-sharing websites is a promising approach to complement in situ and satellite observations of the environment, however a challenge is to deal with the large degree of noise inherent to online social datasets. Here I explored the value of the Flickr image hosting website database to monitor the snow cover in the Pyrenees. Using the Flickr application programming interface (API) I queried all the public images metadata tagged at least with one of the following words: "snow", "neige", "nieve", "neu" (snow in French, Spanish and Catalan languages). The search was limited to the geo-tagged pictures taken in the Pyrenees area. However, the number of public pictures available in the Flickr database for a given time interval depends on several factors, including the Flickr website popularity and the development of digital photography. Thus, I also searched for all Flickr images tagged with "chat", "gat" or "gato" (cat in French, Spanish and Catalan languages). The tag "cat" was not considered in order to exclude the results from North America where Flickr got popular earlier than in Europe. The number of "cat" images per month was used to fit a model of the number of images uploaded in Flickr with time. This model was used to remove this trend in the numbers of snow-tagged photographs. The resulting time series was compared to a time series of the snow cover area derived from the MODIS satellite over the same region. Both datasets are well correlated; in particular they exhibit the same seasonal evolution, although the inter-annual variabilities are less similar. I will also discuss which other factors may explain the main discrepancies in order to further decrease the noise in the Flickr dataset.
Earth-Base: A Free And Open Source, RESTful Earth Sciences Platform
NASA Astrophysics Data System (ADS)
Kishor, P.; Heim, N. A.; Peters, S. E.; McClennen, M.
2012-12-01
This presentation describes the motivation, concept, and architecture behind Earth-Base, a web-based, RESTful data-management, analysis and visualization platform for earth sciences data. Traditionally web applications have been built directly accessing data from a database using a scripting language. While such applications are great at bring results to a wide audience, they are limited in scope to the imagination and capabilities of the application developer. Earth-Base decouples the data store from the web application by introducing an intermediate "data application" tier. The data application's job is to query the data store using self-documented, RESTful URIs, and send the results back formatted as JavaScript Object Notation (JSON). Decoupling the data store from the application allows virtually limitless flexibility in developing applications, both web-based for human consumption or programmatic for machine consumption. It also allows outside developers to use the data in their own applications, potentially creating applications that the original data creator and app developer may not have even thought of. Standardized specifications for URI-based querying and JSON-formatted results make querying and developing applications easy. URI-based querying also allows utilizing distributed datasets easily. Companion mechanisms for querying data snapshots aka time-travel, usage tracking and license management, and verification of semantic equivalence of data are also described. The latter promotes the "What You Expect Is What You Get" (WYEIWYG) principle that can aid in data citation and verification.
Virtual Observatory Interfaces to the Chandra Data Archive
NASA Astrophysics Data System (ADS)
Tibbetts, M.; Harbo, P.; Van Stone, D.; Zografou, P.
2014-05-01
The Chandra Data Archive (CDA) plays a central role in the operation of the Chandra X-ray Center (CXC) by providing access to Chandra data. Proprietary interfaces have been the backbone of the CDA throughout the Chandra mission. While these interfaces continue to provide the depth and breadth of mission specific access Chandra users expect, the CXC has been adding Virtual Observatory (VO) interfaces to the Chandra proposal catalog and observation catalog. VO interfaces provide standards-based access to Chandra data through simple positional queries or more complex queries using the Astronomical Data Query Language. Recent development at the CDA has generalized our existing VO services to create a suite of services that can be configured to provide VO interfaces to any dataset. This approach uses a thin web service layer for the individual VO interfaces, a middle-tier query component which is shared among the VO interfaces for parsing, scheduling, and executing queries, and existing web services for file and data access. The CXC VO services provide Simple Cone Search (SCS), Simple Image Access (SIA), and Table Access Protocol (TAP) implementations for both the Chandra proposal and observation catalogs within the existing archive architecture. Our work with the Chandra proposal and observation catalogs, as well as additional datasets beyond the CDA, illustrates how we can provide configurable VO services to extend core archive functionality.
Semantator: semantic annotator for converting biomedical text to linked data.
Tao, Cui; Song, Dezhao; Sharma, Deepak; Chute, Christopher G
2013-10-01
More than 80% of biomedical data is embedded in plain text. The unstructured nature of these text-based documents makes it challenging to easily browse and query the data of interest in them. One approach to facilitate browsing and querying biomedical text is to convert the plain text to a linked web of data, i.e., converting data originally in free text to structured formats with defined meta-level semantics. In this paper, we introduce Semantator (Semantic Annotator), a semantic-web-based environment for annotating data of interest in biomedical documents, browsing and querying the annotated data, and interactively refining annotation results if needed. Through Semantator, information of interest can be either annotated manually or semi-automatically using plug-in information extraction tools. The annotated results will be stored in RDF and can be queried using the SPARQL query language. In addition, semantic reasoners can be directly applied to the annotated data for consistency checking and knowledge inference. Semantator has been released online and was used by the biomedical ontology community who provided positive feedbacks. Our evaluation results indicated that (1) Semantator can perform the annotation functionalities as designed; (2) Semantator can be adopted in real applications in clinical and transactional research; and (3) the annotated results using Semantator can be easily used in Semantic-web-based reasoning tools for further inference. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
McGlynn, T.; Santisteban, M.
2007-01-01
This chapter provides a very brief introduction to the Structured Query Language (SQL) for getting information from relational databases. We make no pretense that this is a complete or comprehensive discussion of SQL. There are many aspects of the language the will be completely ignored in the presentation. The goal here is to provide enough background so that users understand the basic concepts involved in building and using relational databases. We also go through the steps involved in building a particular astronomical database used in some of the other presentations in this volume.
Translation lexicon acquisition from bilingual dictionaries
NASA Astrophysics Data System (ADS)
Doermann, David S.; Ma, Huanfeng; Karagol-Ayan, Burcu; Oard, Douglas W.
2001-12-01
Bilingual dictionaries hold great potential as a source of lexical resources for training automated systems for optical character recognition, machine translation and cross-language information retrieval. In this work we describe a system for extracting term lexicons from printed copies of bilingual dictionaries. We describe our approach to page and definition segmentation and entry parsing. We have used the approach to parse a number of dictionaries and demonstrate the results for retrieval using a French-English Dictionary to generate a translation lexicon and a corpus of English queries applied to French documents to evaluation cross-language IR.
Heterogeneous distributed query processing: The DAVID system
NASA Technical Reports Server (NTRS)
Jacobs, Barry E.
1985-01-01
The objective of the Distributed Access View Integrated Database (DAVID) project is the development of an easy to use computer system with which NASA scientists, engineers and administrators can uniformly access distributed heterogeneous databases. Basically, DAVID will be a database management system that sits alongside already existing database and file management systems. Its function is to enable users to access the data in other languages and file systems without having to learn the data manipulation languages. Given here is an outline of a talk on the DAVID project and several charts.
ThaleMine: A Warehouse for Arabidopsis Data Integration and Discovery.
Krishnakumar, Vivek; Contrino, Sergio; Cheng, Chia-Yi; Belyaeva, Irina; Ferlanti, Erik S; Miller, Jason R; Vaughn, Matthew W; Micklem, Gos; Town, Christopher D; Chan, Agnes P
2017-01-01
ThaleMine (https://apps.araport.org/thalemine/) is a comprehensive data warehouse that integrates a wide array of genomic information of the model plant Arabidopsis thaliana. The data collection currently includes the latest structural and functional annotation from the Araport11 update, the Col-0 genome sequence, RNA-seq and array expression, co-expression, protein interactions, homologs, pathways, publications, alleles, germplasm and phenotypes. The data are collected from a wide variety of public resources. Users can browse gene-specific data through Gene Report pages, identify and create gene lists based on experiments or indexed keywords, and run GO enrichment analysis to investigate the biological significance of selected gene sets. Developed by the Arabidopsis Information Portal project (Araport, https://www.araport.org/), ThaleMine uses the InterMine software framework, which builds well-structured data, and provides powerful data query and analysis functionality. The warehoused data can be accessed by users via graphical interfaces, as well as programmatically via web-services. Here we describe recent developments in ThaleMine including new features and extensions, and discuss future improvements. InterMine has been broadly adopted by the model organism research community including nematode, rat, mouse, zebrafish, budding yeast, the modENCODE project, as well as being used for human data. ThaleMine is the first InterMine developed for a plant model. As additional new plant InterMines are developed by the legume and other plant research communities, the potential of cross-organism integrative data analysis will be further enabled. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Liu, Yifeng; Liang, Yongjie; Wishart, David
2015-07-01
PolySearch2 (http://polysearch.ca) is an online text-mining system for identifying relationships between biomedical entities such as human diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, subcellular organelles, positive health effects, negative health effects, drug actions, Gene Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies and chemical taxonomies. PolySearch2 supports a generalized 'Given X, find all associated Ys' query, where X and Y can be selected from the aforementioned biomedical entities. An example query might be: 'Find all diseases associated with Bisphenol A'. To find its answers, PolySearch2 searches for associations against comprehensive collections of free-text collections, including local versions of MEDLINE abstracts, PubMed Central full-text articles, Wikipedia full-text articles and US Patent application abstracts. PolySearch2 also searches 14 widely used, text-rich biological databases such as UniProt, DrugBank and Human Metabolome Database to improve its accuracy and coverage. PolySearch2 maintains an extensive thesaurus of biological terms and exploits the latest search engine technology to rapidly retrieve relevant articles and databases records. PolySearch2 also generates, ranks and annotates associative candidates and present results with relevancy statistics and highlighted key sentences to facilitate user interpretation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Karthikeyan, Muthukumarasamy; Pandit, Yogesh; Pandit, Deepak; Vyas, Renu
2015-01-01
Virtual screening is an indispensable tool to cope with the massive amount of data being tossed by the high throughput omics technologies. With the objective of enhancing the automation capability of virtual screening process a robust portal termed MegaMiner has been built using the cloud computing platform wherein the user submits a text query and directly accesses the proposed lead molecules along with their drug-like, lead-like and docking scores. Textual chemical structural data representation is fraught with ambiguity in the absence of a global identifier. We have used a combination of statistical models, chemical dictionary and regular expression for building a disease specific dictionary. To demonstrate the effectiveness of this approach, a case study on malaria has been carried out in the present work. MegaMiner offered superior results compared to other text mining search engines, as established by F score analysis. A single query term 'malaria' in the portlet led to retrieval of related PubMed records, protein classes, drug classes and 8000 scaffolds which were internally processed and filtered to suggest new molecules as potential anti-malarials. The results obtained were validated by docking the virtual molecules into relevant protein targets. It is hoped that MegaMiner will serve as an indispensable tool for not only identifying hidden relationships between various biological and chemical entities but also for building better corpus and ontologies.