DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, T.-Y.; Division of Gastroenterology and Hepatology, Tri-Service General Hospital, Taipei, Taiwan; Chu, H.-C.
2009-05-15
In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitricmore » oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.« less
Yang, Cheng; Gao, Jie; Wu, Banglin; Yan, Nuo; Li, Hui; Ren, Yiqing; Kan, Yufei; Liang, Jiamin; Jiao, Yang; Yu, Yonghao
2017-10-01
We studied the effects of minocycline (an inhibitor of microglial activation) on the expression and activity of Notch-1 receptor, and explored the therapeutic efficacy of minocycline combined with Notch inhibitor DAPT in the treatment of diabetic neuropathic pain (DNP). Diabetic rat model was established by intraperitoneal injection (ip) of Streptozotocin (STZ). Expression and activity of Notch-1 and expression of macrophage/microglia marker Iba-1 were detected by WB. Diabetes induction significantly attenuated sciatic nerve conduction velocity, and dramatically augmented the expression and the activity of Notch-1 in the lumbar enlargement of the spinal cord. Minocycline treatment, however, accelerated the decreased conduction velocity of sciatic nerve and suppressed Notch-1expression and activity in diabetic rats. Similar to DAPT treatment, minocycline administration also prolonged thermal withdrawal latency (TWL) and increase mechanical withdrawal threshold (MWT) in diabetic rats in response to heat or mechanical stimulation via inhibition the expression and the activity of Notch-1 in spinal cord. Combination of DAPT and minocycline further inhibited Notch-1 receptor signaling and reduce neuropathic pain exhibited as improved TWL and MWT. Our study revealed a novel mechanism of Notch-1 receptor inhibition in spinal cord induced by minocycline administration, and suggested that the combination of minocycline and DAPT has the potential to treat DNP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Pinkernelle, Josephine; Fansa, Hisham; Ebmeyer, Uwe; Keilhoff, Gerburg
2013-01-01
Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients. PMID:23967343
Wang, Ping; Li, Haonan; Yu, Shuyuan; Jin, Peng; Hassan, Abdurahman; Du, Bo
2017-08-24
This study aimed to elucidate the protective effect of minocycline against streptomycin-induced damage of cochlear hair cells and its mechanism. Cochlear membranes were isolated from newborn Wistar rats and randomly divided into control, 500μmol/L streptomycin, 100μmol/L minocycline, and streptomycin and minocycline treatment groups. Hair cell survival was analyzed by detecting the expression of 3-nitrotyrosine (3-NT) in cochlear hair cells by immunofluorescence and an enzyme-linked immunosorbent assay. Expression of 3-NT and inducible nitric oxide synthase (iNOS), and poly (ADP-Ribose) polymerase (PARP) and caspase-3 activation were evaluated by western blotting. The results demonstrated hair cell loss at 24h after streptomycin treatment. No change was found in supporting cells of the cochleae. Minocycline pretreatment improved hair cell survival and significantly reduced the expression of iNOS and 3-NT in cochlear tissues compared with the streptomycin treatment group. PARP and caspase-3 activation was increased in the streptomycin treatment group compared with the control group, and pretreatment with minocycline decreased cleaved PARP and activated caspase-3 expression. Minocycline protected cochlear hair cells from injury caused by streptomycin in vitro. The mechanism underlying the protective effect may be associated with the inhibition of excessive formation of nitric oxide, reduction of the nitration stress reaction, and inhibition of PARP and caspase-3 activation in cochlear hair cells. Combined minocycline therapy can be applied to patients requiring streptomycin treatment. Copyright © 2017. Published by Elsevier B.V.
Minocycline protects the immature white matter against hyperoxia.
Schmitz, Thomas; Krabbe, Grietje; Weikert, Georg; Scheuer, Till; Matheus, Friederike; Wang, Yan; Mueller, Susanne; Kettenmann, Helmut; Matyash, Vitali; Bührer, Christoph; Endesfelder, Stefanie
2014-04-01
Poor neurological outcome in preterm infants is associated with periventricular white matter damage and hypomyelination, often caused by perinatal inflammation, hypoxia-ischemia, and hyperoxia. Minocycline has been demonstrated in animal models to protect the immature brain against inflammation and hypoxia-ischemia by microglial inhibition. Here we studied the effect of minocycline on white matter damage caused by hyperoxia. To mimic the 3- to 4-fold increase of oxygen tension caused by preterm birth, we have used the hyperoxia model in neonatal rats providing 24h exposure to 4-fold increased oxygen concentration (80% instead of 21% O2) from P6 to P7. We analyzed whether minocycline prevents activation of microglia and damage of oligodendroglial precursor cell development, and whether acute treatment of hyperoxia-exposed rats with minocycline improves long term white matter integrity. Minocycline administration during exposure to hyperoxia resulted in decreased apoptotic cell death and in improved proliferation and maturation of oligodendroglial precursor cells (OPC). Minocycline blocked changes in microglial morphology and IL-1β release induced by hyperoxia. In primary microglial cell cultures, minocycline inhibited cytokine release while in mono-cultures of OPCs, it improved survival and proliferation. Long term impairment of white matter diffusivity in MRI/DTI in P30 and P60 animals after neonatal hyperoxia was attenuated by minocycline. Minocycline protects white matter development against oxygen toxicity through direct protection of oligodendroglia and by microglial inhibition. This study moreover demonstrates long term benefits of minocycline on white matter integrity. Copyright © 2014 Elsevier Inc. All rights reserved.
Amorim, Diana; Puga, Sónia; Bragança, Rui; Braga, António; Pertovaara, Antti; Almeida, Armando; Pinto-Ribeiro, Filipa
2017-06-01
A common and devastating complication of diabetes mellitus is painful diabetic neuropathy (PDN) that can be accompanied by emotional disorders such as depression. A few studies have suggested that minocycline that inhibits microglia may attenuate pain hypersensitivity in PDN. Moreover, a recent study reported that minocycline has an acute antidepressive-like effect in diabetic animals. Here we studied whether (i) prolonged minocycline treatment suppresses pain behaviour in PDN, (ii) the minocycline effect varies with submodality of pain, and (iii) the suppression of pain behaviour by prolonged minocycline treatment is associated with antidepressive-like effect. The experiments were performed in streptozotocin-induced rat model of type-1 diabetes. Pain behaviour was evoked by innocuous (monofilaments) and noxious (paw pressure) mechanical stimulation, innocuous cold (acetone drops) and noxious heat (radiant heat). Depression-like behaviour was assessed using forced swimming test. Minocycline treatment (daily 80mg/kg per os) of three-week duration started four weeks after induction of diabetes. Diabetes induced mechanical allodynia and hyperalgesia, cold allodynia, heat hypoalgesia, and depression-like behaviour. Minocycline treatment significantly attenuated mechanical allodynia and depression-like behaviour, while it failed to produce significant changes in mechanical hyperalgesia, cold allodynia or heat hypoalgesia. The results indicate that prolonged per oral treatment with minocycline has a sustained mechanical antiallodynic and antidepressive-like effect in PDN. These results support the proposal that minocycline might provide a treatment option for attenuating sensory and comorbid emotional symptoms in chronic PDN. Copyright © 2017 Elsevier B.V. All rights reserved.
Minocycline Inhibition of Monocyte Activation Correlates with Neuronal Protection in SIV NeuroAIDS
Campbell, Jennifer H.; Burdo, Tricia H.; Autissier, Patrick; Bombardier, Jeffrey P.; Westmoreland, Susan V.; Soulas, Caroline; González, R. Gilberto; Ratai, Eva-Maria; Williams, Kenneth C.
2011-01-01
Background Minocycline is a tetracycline antibiotic that has been proposed as a potential conjunctive therapy for HIV-1 associated cognitive disorders. Precise mechanism(s) of minocycline's functions are not well defined. Methods Fourteen rhesus macaques were SIV infected and neuronal metabolites measured by proton magnetic resonance spectroscopy (1H MRS). Seven received minocycline (4 mg/kg) daily starting at day 28 post-infection (pi). Monocyte expansion and activation were assessed by flow cytometry, cell traffic to lymph nodes, CD16 regulation, viral replication, and cytokine production were studied. Results Minocycline treatment decreased plasma virus and pro-inflammatory CD14+CD16+ and CD14loCD16+ monocytes, and reduced their expression of CD11b, CD163, CD64, CCR2 and HLA-DR. There was reduced recruitment of monocyte/macrophages and productively infected cells in axillary lymph nodes. There was an inverse correlation between brain NAA/Cr (neuronal injury) and circulating CD14+CD16+ and CD14loCD16+ monocytes. Minocycline treatment in vitro reduced SIV replication CD16 expression on activated CD14+CD16+ monocytes, and IL-6 production by monocytes following LPS stimulation. Conclusion Neuroprotective effects of minocycline are due in part to reduction of activated monocytes, monocyte traffic. Mechanisms for these effects include CD16 regulation, reduced viral replication, and inhibited immune activation. PMID:21494695
Li, Jianru; Chen, Jingsen; Mo, Hangbo; Chen, Jingyin; Qian, Cong; Yan, Feng; Gu, Chi; Hu, Qiang; Wang, Lin; Chen, Gao
2016-05-01
Minocycline has beneficial effects in early brain injury (EBI) following subarachnoid hemorrhage (SAH); however, the molecular mechanisms underlying these effects have not been clearly identified. This study was undertaken to determine the influence of minocycline on inflammation and neural apoptosis and the possible mechanisms of these effects in early brain injury following subarachnoid hemorrhage. SAH was induced by the filament perforation model of SAH in male Sprague-Dawley rats. Minocycline or vehicle was given via an intraperitoneal injection 1 h after SAH induction. Minocycline treatment markedly attenuated brain edema secondary to blood-brain barrier (BBB) dysfunction by inhibiting NLRP3 inflammasome activation, which controls the maturation and release of pro-inflammatory cytokines, especially interleukin-1β (IL-1β). Minocycline treatment also markedly reduced the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive cells. To further identify the potential mechanisms, we demonstrated that minocycline increased Bcl2 expression and reduced the protein expression of P53, Bax, and cleaved caspase-3. In addition, minocycline reduced the cortical levels of reactive oxygen species (ROS), which are closely related to both NLRP3 inflammasome and P53 expression. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury following SAH. Minocycline's anti-inflammatory and anti-apoptotic effect may involve the reduction of ROS. Minocycline treatment may exhibit important clinical potentials in the management of SAH.
Inhibition of retinoic acid catabolism by minocycline: evidence for a novel mode of action?
Regen, Francesca; Hildebrand, Martin; Le Bret, Nathalie; Herzog, Irmelin; Heuser, Isabella; Hellmann-Regen, Julian
2015-06-01
Retinoic acid (RA) represents an essential and highly potent endogenous retinoid with pronounced anti-inflammatory properties and potent anti-acne activity, and has recently been suggested to share a common anti-inflammatory mode of action with tetracycline antibiotics. We hypothesized that tetracyclines may directly interfere with RA homeostasis via inhibition of its local cytochrome P450 (CYP450)-mediated degradation, an essential component of tightly regulated skin RA homeostasis. To test this hypothesis, we performed controlled in vitro RA metabolism assays using rat skin microsomes and measured RA levels in a RA-synthesizing human keratinocyte cell line, both in the presence and in the absence of minocycline, a tetracycline popular in acne treatment. Interestingly, minocycline potently blocked RA degradation in rat skin microsomes, and strikingly enhanced RA levels in RA-synthesizing cell cultures, in a dose-dependent manner. These findings indicate a potential role for CYP-450-mediated RA metabolism in minocycline's pleiotropic mode of action and anti-acne efficacy and could account for the overlap between minocycline and RA-induced effects at the level of their molecular mode of action, but also clinically at the level of the rare side effect of pseudotumor cerebri, which is observed for both, RA and minocycline treatment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Minocycline is effective in intracerebral hemorrhage by inhibition of apoptosis and autophagy.
Wu, Zehan; Zou, Xiang; Zhu, Wei; Mao, Ying; Chen, Liang; Zhao, Fan
2016-12-15
Intracerebral hemorrhage is the least treatable type of stroke and affects millions of people worldwide. Treatment for ICH varies from medicine to surgery, but the rate of mortality and mobility still remains high. Minocycline is a tetracycline antibiotic increasingly recognized for its neuroprotective potential. In earlier studies, we demonstrated that many secondary injuries caused by ICH could be significantly reduced by injection of minocycline in rat models. The following research investigates the role of minocycline in reducing brain injury. Twenty-four rats were administered 100μl autologous arterial blood injections into the right basal ganglia, treated with minocycline or vehicle and euthanized on the 1st, 3rd, and 7th day. Immunohistochemistry, TUNEL, and western blot analysis were performed to analyze the effects of minocycline on apoptosis and autophagy. After the injection of minocycline, TUNEL-positive cells were remarkably reduced on days 1, 3 and 7; Beclin-1, LC3BII/I, caspase-3/8 were all suppressed after treatment. The relationship between Cathepsin D and minocycline remained unknown. Our studies suggest the potential medicinal value of minocycline, through both anti-autophagy and anti-apoptosis pathways. Copyright © 2016 Elsevier B.V. All rights reserved.
Ma, Jing; Zhang, Jing; Hou, Wei Wei; Wu, Xiao Hua; Liao, Ru Jia; Chen, Ying; Wang, Zhe; Zhang, Xiang Nan; Zhang, Li San; Zhou, Yu Dong; Chen, Zhong; Hu, Wei Wei
2015-01-01
Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion develops with progressive white matter and cognitive impairments, yet no effective therapy is available. We investigated the temporal effects of minocycline on an experimental SIVD exerted by right unilateral common carotid arteries occlusion (rUCCAO). Minocycline treated at the early stage (day 0–3), but not the late stage after rUCCAO (day 4–32) alleviated the white matter and cognitive impairments, and promoted remyelination. The actions of minocycline may not involve the inhibition of microglia activation, based on the effects after the application of a microglial activation inhibitor, macrophage migration inhibitory factor, and co-treatment with lipopolysaccharides. Furthermore, minocycline treatment at the early stage promoted the proliferation of oligodendrocyte progenitor cells (OPCs) in subventricular zone, increased OPC number and alleviated apoptosis of mature oligodendrocytes in white matter. In vitro, minocycline promoted OPC proliferation and increased the percentage of OPCs in S and G2/M phases. We provided direct evidence that early treatment is critical for minocycline to alleviate white matter and cognitive impairments after chronic cerebral hypoperfusion, which may be due to its robust effects on OPC proliferation and mature oligodendrocyte loss. So, early therapeutic time window may be crucial for its application in SIVD. PMID:26174710
Agbedanu, Prince N; Anderson, Kristi L; Brewer, Matthew T; Carlson, Steve A
2015-09-15
Meningeal worms (Parelaphostrongylus tenuis) are a common malady of alpacas, often refractory to conventional treatments. Ivermectin is a very effective anthelmintic used against a variety of parasites but this drug is not consistently effective against alpaca meningeal worms once the parasite has gained access to the CNS, even if used in a protracted treatment protocol. Ivermectin is not effective against clinical cases of P. tenuis, raising the possibility that the drug is not sustained at therapeutic concentrations in the central nervous system (CNS). A specific protein (designated as p-glycoprotein (PGP)) effluxes ivermectin from the brain at the blood-brain barrier, thus hampering the maintenance of therapeutic concentrations of the drug in the CNS. Minocycline is a synthetic tetracycline antibiotic with an excellent safety profile in all animals tested to date. Minocycline has three unique characteristics that could be useful for treating meningeal worms in conjunction with ivermectin. First, minocycline is an inhibitor of PGP at the blood-brain barrier and this inhibition could maintain effective concentrations of ivermectin in the brain and meninges. Second, minocycline protects neurons in vivo through a number of different mechanisms and this neuroprotection could alleviate the potential untoward neurologic effects of meningeal worms. Third, minocycline is a highly lipid-soluble drug, thus facilitating efficient brain penetration. We thus hypothesized that minocycline will maintain ivermectin, or a related avermectin approved in ruminants (abamectin, doramectin, or eprinomectin), in the alpaca CNS. To test this hypothesis, we cloned the gene encoding the alpaca PGP, expressed the alpaca PGP in a heterologous expression system involving MDCK cells, and measured the ability of minocycline to inhibit the efflux of avermectins from the MDCK cells; doxycycline was used as a putative negative control (based on studies in other species). Our in vitro studies surprisingly revealed that doxycycline was effective at inhibiting the efflux of ivermectin and doramectin (minocycline had no effect). These two avermectins, in combination with doxycycline, should be considered when treating meningeal worms in alpacas. Copyright © 2015 Elsevier B.V. All rights reserved.
Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2
Tian, Yue; Wu, Xiuying; Guo, Shanbin; Ma, Ling; Huang, Wei; Zhao, Xiaochun
2017-01-01
Minocycline has been demonstrated to exert neuroprotective effects in various experimental models. In the present study, we investigated the mechanisms underlying the protective effects of minocycline on cell injury induced by the inhalation of the anesthetic, sevoflurane. In our in vivo experiments using rats, minocycline attenuated sevoflurane-induced neuronal degeneration and apoptosis in the rat hippocampus, and this effect was associated with the minocycline-mediated suppression of oxidative stress in the hippocampus. In in vitro experiments, minocycline inhibited sevoflurane-induced apoptosis and the production of reactive oxygen species (ROS) in H4 human neuroglioma cells. In addition, minocycline suppressed the sevoflurane-induced upregulation of interleukin (IL)-6 and the activation of the nuclear factor-κB (NF-κB) signaling pathway in H4 cells. Furthermore, we found that nuclear factor E2-related factor 2 (Nrf2), an activator of the stress response, was upregulated and activated upon sevoflurane treatment both in the rat hippocampus and in H4 cells. In addition, minocycline further augmented the upregulation and activation of Nrf2 when used in conjunction with sevoflurane. Moreover, the knockdown of Nrf2 in H4 cells by small interfering RNA (siRNA) diminished the cytoprotective effect of minocycline, and attenuated the inhibitory effect of minocycline on ROS production, IL-6 upregulation and the activation of the NF-κB signaling pathway. On the whole, our findings indicate that minocycline may exert protective effects against sevoflurane-induced cell injury via the Nrf2-modulated antioxidant response and the inhibition of the activation of the NF-κB signaling pathway. PMID:28260081
Bonilla, E; Contreras, R; Medina-Leendertz, S; Mora, M; Villalobos, V; Bravo, Y
2012-03-29
The objective of this study was to investigate the effect of Minocycline in the life span, motor activity, and lipid peroxidation of Drosophila melanogaster treated with manganese. Two days after emerging from the pupa male wild-type D. melanogaster were fed for 13 days with corn media containing 15 mM manganese. Then, they were divided in six groups of 300 flies each: group (a) remained treated with manganese (Mn group); group (b) began treatment with Minocycline (0.05 mM) (Mn-Minocycline group); group (c) received no additional treatment (Mn-no treatment group); group (d) simultaneously fed with manganese and Minocycline (Mn+Minocycline group). Additionally, a control (group e) with no treatment and another group (f) fed only with Minocycline after emerging from the pupa were added. All the manganese treated flies (group a) were dead on the 25th day. The life span in group f (101.66±1.33 days, mean S.E.M.) and of group b (97.00±3.46 days) were similar, but in both cases it was significantly higher than in group e (68.33±1.76 days), group c (67.05±2.30 days) and in those of group d (37.33±0.88). Manganese (groups a and d) decreased motor activity in D. melanogaster. In the Minocycline fed flies (groups b and f) a higher motor activity was detected. In Mn-Minocycline and Mn+Minocycline treated flies a significant decrease of MDA levels was detected when compared to the Minocycline group indicating that Minocycline and Mn appear to have a synergistic effect. In conclusion, Minocycline increased the life span and motor activity and decreased MDA formation of manganese treated D. melanogaster, probably by an inhibition of the production of reactive oxygen species. Manganese also exerted an antioxidant effect as shown by the significant decrease of MDA levels when compared to control flies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2.
Tian, Yue; Wu, Xiuying; Guo, Shanbin; Ma, Ling; Huang, Wei; Zhao, Xiaochun
2017-04-01
Minocycline has been demonstrated to exert neuroprotective effects in various experimental models. In the present study, we investigated the mechanisms underlying the protective effects of minocycline on cell injury induced by the inhalation of the anesthetic, sevoflurane. In our in vivo experiments using rats, minocycline attenuated sevoflurane-induced neuronal degeneration and apoptosis in the rat hippocampus, and this effect was associated with the minocycline-mediated suppression of oxidative stress in the hippocampus. In in vitro experiments, minocycline inhibited sevoflurane-induced apoptosis and the production of reactive oxygen species (ROS) in H4 human neuroglioma cells. In addition, minocycline suppressed the sevoflurane-induced upregulation of interleukin (IL)-6 and the activation of the nuclear factor-κB (NF-κB) signaling pathway in H4 cells. Furthermore, we found that nuclear factor E2-related factor 2 (Nrf2), an activator of the stress response, was upregulated and activated upon sevoflurane treatment both in the rat hippocampus and in H4 cells. In addition, minocycline further augmented the upregulation and activation of Nrf2 when used in conjunction with sevoflurane. Moreover, the knockdown of Nrf2 in H4 cells by small interfering RNA (siRNA) diminished the cytoprotective effect of minocycline, and attenuated the inhibitory effect of minocycline on ROS production, IL-6 upregulation and the activation of the NF-κB signaling pathway. On the whole, our findings indicate that minocycline may exert protective effects against sevoflurane-induced cell injury via the Nrf2-modulated antioxidant response and the inhibition of the activation of the NF-κB signaling pathway.
Cheng, Shanshan; Hou, Jinxing; Zhang, Chen; Xu, Congyu; Wang, Long; Zou, Xiaoxia; Yu, Huahong; Shi, Yun; Yin, Zhenyu; Chen, Guiquan
2015-01-01
Minocycline is a broad-spectrum tetracycline antibiotic. A number of preclinical studies have shown that minocycline exhibits neuroprotective effects in various animal models of neurological diseases. However, it remained unknown whether minocycline is effective to prevent neuron loss. To systematically evaluate its effects, minocycline was used to treat Dicer conditional knockout (cKO) mice which display age-related neuron loss. The drug was given to mutant mice prior to the occurrence of neuroinflammation and neurodegeneration, and the treatment had lasted 2 months. Levels of inflammation markers, including glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule1 (Iba1) and interleukin6 (IL6), were significantly reduced in minocycline-treated Dicer cKO mice. In contrast, levels of neuronal markers and the total number of apoptotic cells in Dicer cKO mice were not affected by the drug. In summary, inhibition of neuroinflammation by minocycline is insufficient to prevent neuron loss and apoptosis. PMID:26000566
Minocycline Inhibits Candida albicans Budded-to-Hyphal-Form Transition and Biofilm Formation.
Kurakado, Sanae; Takatori, Kazuhiko; Sugita, Takashi
2017-09-25
Candida albicans frequently causes bloodstream infections; its budded-to-hyphalform transition (BHT) and biofilm formation are major contributors to virulence. During an analysis of antibacterial compounds that inhibit C. albicans BHT, we found that the tetracycline derivative minocycline inhibited BHT and subsequent biofilm formation. Minocycline decreased expression of hypha-specific genes HWP1 and ECE1, and adhesion factor gene ALS3 of C. albicans. In addition, minocycline decreased cell surface hydrophobicity and the extracellular β-glucan level in biofilms. Minocycline has been widely used for catheter antibiotic lock therapy to prevent bacterial infection; this compound may also be prophylactically effective against Candida infection.
Shahzad, Khurrum; Bock, Fabian; Al-Dabet, Moh'd Mohanad; Gadi, Ihsan; Nazir, Sumra; Wang, Hongjie; Kohli, Shrey; Ranjan, Satish; Mertens, Peter R; Nawroth, Peter P; Isermann, Berend
2016-10-10
While a plethora of studies support a therapeutic benefit of Nrf2 activation and ROS inhibition in diabetic nephropathy (dNP), the Nrf2 activator bardoxolone failed in clinical studies in type 2 diabetic patients due to cardiovascular side effects. Hence, alternative approaches to target Nrf2 are required. Intriguingly, the tetracycline antibiotic minocycline, which has been in clinical use for decades, has been shown to convey anti-inflammatory effects in diabetic patients and nephroprotection in rodent models of dNP. However, the mechanism underlying the nephroprotection remains unknown. Here we show that minocycline protects against dNP in mouse models of type 1 and type 2 diabetes, while caspase -3,-6,-7,-8 and -10 inhibition is insufficient, indicating a function of minocycline independent of apoptosis inhibition. Minocycline stabilizes endogenous Nrf2 in kidneys of db/db mice, thus dampening ROS-induced inflammasome activation in the kidney. Indeed, minocycline exerts antioxidant effects in vitro and in vivo, reducing glomerular markers of oxidative stress. Minocycline reduces ubiquitination of the redox-sensitive transcription factor Nrf2 and increases its protein levels. Accordingly, minocycline mediated Nlrp3 inflammasome inhibition and amelioration of dNP are abolished in diabetic Nrf2 -/- mice. Taken together, we uncover a new function of minocycline, which stabilizes the redox-sensitive transcription factor Nrf2, thus protecting from dNP.
Savitz, Jonathan; Preskorn, Sheldon; Teague, T Kent; Drevets, Douglas; Yates, William
2012-01-01
Introduction New medication classes are needed to improve treatment effectiveness in the depressed phase of bipolar disorder (BD). Extant evidence suggests that BD is characterised by neural changes such as dendritic remodelling and glial and neuronal cell loss. These changes have been hypothesised to result from chronic inflammation. The principal aims of the proposed research is to evaluate the antidepressant efficacy in bipolar depression of minocycline, a drug with neuroprotective and immune-modulating properties, and of aspirin, at doses expected to selectively inhibit cyclooxygenase 1 (COX-1). Methods and analysis 120 outpatients between 18 and 55 years of age, who meet DSM-IV-TR criteria for BD (type I or II) and for a current major depressive episode will be recruited to take part in a randomised, double-blind, placebo-controlled, parallel-group, proof-of-concept clinical trial following a 2×2 design. As adjuncts to existing treatment, subjects will be randomised to receive one of the four treatment combinations: placebo-minocycline plus placebo-aspirin, active-minocycline plus placebo-aspirin, placebo-minocycline plus active-aspirin or active-minocycline plus active-aspirin. The dose of minocycline and aspirin is 100 mg twice daily and 81 mg twice daily, respectively. Antidepressant response will be evaluated by assessing changes in the Montgomery–Asberg Depression Rating Scale scores between baseline and the end of the 6-week trial. As secondary outcome measures, the anti-inflammatory effects of minocycline and aspirin will be tested by measuring pre-treatment and post-treatment levels of C reactive protein and inflammatory cytokines. Ethics and dissemination Minocycline has been widely used as an antibiotic in doses up to 400 mg/day. Low-dose aspirin has been safely used on a worldwide scale for its role as an antithrombotic and thrombolytic. The study progress will be overseen by a Data, Safety and Monitoring Board, which will meet once every 6 months. Results of the study will be published in peer-reviewed publications. Trial registration number Clinical Trials.gov: NCT01429272. PMID:22357572
Piotrowska, Anna; Popiolek-Barczyk, Katarzyna; Pavone, Flaminia; Mika, Joanna
2017-01-01
Botulinum neurotoxin type A (BoNT/A) and minocycline are potent drugs used in clinical therapies. The primary molecular mechanism of BoNT/A is the cleavage of SNARE proteins, which prevents cells from releasing neurotransmitters from vesicles, while the effects of minocycline are related to the inhibition of p38 activation. Both BoNT/A and minocycline exhibit analgesic effects, however, their direct impact on glial cells is not fully known. Therefore, the aim of the present study was to determine the effects of those drugs on microglial and astroglial activity after lipopolysaccharide (LPS) stimulation and their potential synergistic action. Our results show that BoNT/A and minocycline influenced primary microglial cells by inhibiting intracellular signaling pathways, such as p38, ERK1/2, NF-κB, and the release of pro-inflammatory factors, including IL-1β, IL-18, IL-6, and NOS2. We have revealed that, in contrast to minocycline, BoNT/A treatment did not decrease LPS-induced release of pro-inflammatory factors in the astroglia. In addition, BoNT/A decreased SNAP-23 in both types of glial cells and also SNAP-25 expressed only in astrocytes. Moreover, BoNT/A increased TLR2 and its adaptor protein MyD88, but not TLR4 exclusively in microglial cells. Furthermore, we have shown the impact of BoNT/A on microglial and astroglial cells, with a particular emphasis on its molecular target, TLR2. In contrast, minocycline did not affect any of those factors. We have revealed that despite of different molecular targets, minocycline, and BoNT/A reduced the release of microglia-derived pro-inflammatory factors. In conclusion, we have shown that BoNT/A and minocycline are effective drugs for the management of neuroinflammation by dampening the activation of microglial cells, with minocycline also affecting astroglial activity.
Piotrowska, Anna; Popiolek-Barczyk, Katarzyna; Pavone, Flaminia; Mika, Joanna
2017-01-01
Botulinum neurotoxin type A (BoNT/A) and minocycline are potent drugs used in clinical therapies. The primary molecular mechanism of BoNT/A is the cleavage of SNARE proteins, which prevents cells from releasing neurotransmitters from vesicles, while the effects of minocycline are related to the inhibition of p38 activation. Both BoNT/A and minocycline exhibit analgesic effects, however, their direct impact on glial cells is not fully known. Therefore, the aim of the present study was to determine the effects of those drugs on microglial and astroglial activity after lipopolysaccharide (LPS) stimulation and their potential synergistic action. Our results show that BoNT/A and minocycline influenced primary microglial cells by inhibiting intracellular signaling pathways, such as p38, ERK1/2, NF-κB, and the release of pro-inflammatory factors, including IL-1β, IL-18, IL-6, and NOS2. We have revealed that, in contrast to minocycline, BoNT/A treatment did not decrease LPS-induced release of pro-inflammatory factors in the astroglia. In addition, BoNT/A decreased SNAP-23 in both types of glial cells and also SNAP-25 expressed only in astrocytes. Moreover, BoNT/A increased TLR2 and its adaptor protein MyD88, but not TLR4 exclusively in microglial cells. Furthermore, we have shown the impact of BoNT/A on microglial and astroglial cells, with a particular emphasis on its molecular target, TLR2. In contrast, minocycline did not affect any of those factors. We have revealed that despite of different molecular targets, minocycline, and BoNT/A reduced the release of microglia-derived pro-inflammatory factors. In conclusion, we have shown that BoNT/A and minocycline are effective drugs for the management of neuroinflammation by dampening the activation of microglial cells, with minocycline also affecting astroglial activity. PMID:28491822
Strahan, J Alex; Walker, William H; Montgomery, Taylor R; Forger, Nancy G
2017-06-01
Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a > tenfold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex, septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3 to P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose 1 week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial "inhibitor" increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 753-766, 2017. © 2016 Wiley Periodicals, Inc.
Strahan, J. Alex; Walker, William H.; Montgomery, Taylor R.; Forger, Nancy G.
2016-01-01
Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms, and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a >10-fold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex (S1), septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3-P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose one week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial “inhibitor” increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. PMID:27706925
Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.
Chen, Y-H; Lin, P-L; Wong, R-W; Wu, Y-T; Hsu, H-Y; Tsai, M-C; Lin, M-J; Hsu, Y-C; Lin, C-H
2012-10-25
Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in the inhibitory effects of minocycline upon AMPH-elicited action potential bursts. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor.
Möller, Thomas; Bard, Frédérique; Bhattacharya, Anindya; Biber, Knut; Campbell, Brian; Dale, Elena; Eder, Claudia; Gan, Li; Garden, Gwenn A; Hughes, Zoë A; Pearse, Damien D; Staal, Roland G W; Sayed, Faten A; Wes, Paul D; Boddeke, Hendrikus W G M
2016-10-01
Minocycline, a second generation broad-spectrum antibiotic, has been frequently postulated to be a "microglia inhibitor." A considerable number of publications have used minocycline as a tool and concluded, after achieving a pharmacological effect, that the effect must be due to "inhibition" of microglia. It is, however, unclear how this "inhibition" is achieved at the molecular and cellular levels. Here, we weigh the evidence whether minocycline is indeed a bona fide microglia inhibitor and discuss how data generated with minocycline should be interpreted. GLIA 2016;64:1788-1794. © 2016 Wiley Periodicals, Inc.
Cukras, Catherine A.; Petrou, Philip; Chew, Emily Y.; Meyerle, Catherine B.; Wong, Wai T.
2012-01-01
Purpose. Inflammation contributes significantly to the pathogenesis of diabetic macular edema (DME). In particular, retinal microglia demonstrate increased activation and aggregation in areas of DME. Study authors investigated the safety and potential efficacy of oral minocycline, a drug capable of inhibiting microglial activation, in the treatment of DME. Methods. A single-center, prospective, open-label phase I/II clinical trial enrolled five participants with fovea-involving DME who received oral minocycline 100 mg twice daily for 6 months. Main outcome measurements included best-corrected visual acuity (BCVA), central retinal subfield thickness (CST), and central macular volume using spectral domain optical coherence tomography (SD-OCT) and late leakage on fluorescein angiography (FA). Results. Findings indicated that the study drug was well tolerated and not associated with significant safety issues. In study eyes, mean BCVA improved continuously from baseline at 1, 2, 4, and 6 months by +1.0, +4.0, +4.0, and +5.8 letters, respectively, while mean retinal thickness (CST) on OCT decreased by −2.9%, −5.7%, −13.9, and −8.1% for the same time points. At month 6, mean area of late leakage on FA decreased by −34.4% in study eyes. Mean changes in contralateral fellow eyes also demonstrated similar trends. Improvements in outcome measures were not correlated with concurrent changes in systemic factors. Conclusions. In this pilot proof-of-concept study of DME, minocycline as primary treatment was associated with improved visual function, central macular edema, and vascular leakage, comparing favorably with historical controls from previous studies. Microglial inhibition with oral minocycline may be a promising therapeutic strategy targeting the inflammatory etiology of DME. (ClinicalTrials.gov number, NCT01120899.) PMID:22589436
Cukras, Catherine A; Petrou, Philip; Chew, Emily Y; Meyerle, Catherine B; Wong, Wai T
2012-06-22
Inflammation contributes significantly to the pathogenesis of diabetic macular edema (DME). In particular, retinal microglia demonstrate increased activation and aggregation in areas of DME. Study authors investigated the safety and potential efficacy of oral minocycline, a drug capable of inhibiting microglial activation, in the treatment of DME. A single-center, prospective, open-label phase I/II clinical trial enrolled five participants with fovea-involving DME who received oral minocycline 100 mg twice daily for 6 months. Main outcome measurements included best-corrected visual acuity (BCVA), central retinal subfield thickness (CST), and central macular volume using spectral domain optical coherence tomography (SD-OCT) and late leakage on fluorescein angiography (FA). Findings indicated that the study drug was well tolerated and not associated with significant safety issues. In study eyes, mean BCVA improved continuously from baseline at 1, 2, 4, and 6 months by +1.0, +4.0, +4.0, and +5.8 letters, respectively, while mean retinal thickness (CST) on OCT decreased by -2.9%, -5.7%, -13.9, and -8.1% for the same time points. At month 6, mean area of late leakage on FA decreased by -34.4% in study eyes. Mean changes in contralateral fellow eyes also demonstrated similar trends. Improvements in outcome measures were not correlated with concurrent changes in systemic factors. In this pilot proof-of-concept study of DME, minocycline as primary treatment was associated with improved visual function, central macular edema, and vascular leakage, comparing favorably with historical controls from previous studies. Microglial inhibition with oral minocycline may be a promising therapeutic strategy targeting the inflammatory etiology of DME. (ClinicalTrials.gov number, NCT01120899.).
Minocycline attenuates cardiac dysfunction in tumor-burdened mice.
Devine, Raymond D; Eichenseer, Clayton M; Wold, Loren E
2016-11-01
Cardiovascular dysfunction as a result of tumor burden is becoming a recognized complication; however, the mechanisms remain unknown. A murine model of cancer cachexia has shown marked increases of matrix metalloproteinases (MMPs), known mediators of cardiac remodeling, in the left ventricle. The extent to which MMPs are involved in remodeling remains obscured. To this end a common antibiotic, minocycline, with MMP inhibitory properties was used to elucidate MMP involvement in tumor induced cardiovascular dysfunction. Tumor-bearing mice showed decreased cardiac function with reduced posterior wall thickness (PWTs) during systole, increased MMP and collagen expression consistent with fibrotic remodeling. Administration of minocycline preserved cardiac function in tumor bearing mice and decreased collagen RNA expression in the left ventricle. MMP protein levels were unaffected by minocycline administration, with the exception of MMP-9, indicating minocycline inhibition mechanisms are directly affecting MMP activity. Cancer induced cardiovascular dysfunction is an increasing concern; novel therapeutics are needed to prevent cardiac complications. Minocycline is a well-known antibiotic and recently has been shown to possess MMP inhibitory properties. Our findings presented here show that minocycline could represent a novel use for a long established drug in the prevention and treatment of cancer induced cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Open-label add-on treatment trial of minocycline in fragile X syndrome.
Paribello, Carlo; Tao, Leeping; Folino, Anthony; Berry-Kravis, Elizabeth; Tranfaglia, Michael; Ethell, Iryna M; Ethell, Douglas W
2010-10-11
Fragile X syndrome (FXS) is a disorder characterized by a variety of disabilities, including cognitive deficits, attention-deficit/hyperactivity disorder, autism, and other socio-emotional problems. It is hypothesized that the absence of the fragile X mental retardation protein (FMRP) leads to higher levels of matrix metallo-proteinase-9 activity (MMP-9) in the brain. Minocycline inhibits MMP-9 activity, and alleviates behavioural and synapse abnormalities in fmr1 knockout mice, an established model for FXS. This open-label add-on pilot trial was conducted to evaluate safety and efficacy of minocycline in treating behavioural abnormalities that occur in humans with FXS. Twenty individuals with FXS, ages 13-32, were randomly assigned to receive 100 mg or 200 mg of minocycline daily. Behavioural evaluations were made prior to treatment (baseline) and again 8 weeks after daily minocycline treatment. The primary outcome measure was the Aberrant Behaviour Checklist-Community Edition (ABC-C) Irritability Subscale, and the secondary outcome measures were the other ABC-C subscales, clinical global improvement scale (CGI), and the visual analog scale for behaviour (VAS). Side effects were assessed using an adverse events checklist, a complete blood count (CBC), hepatic and renal function tests, and antinuclear antibody screen (ANA), done at baseline and at 8 weeks. The ABC-C Irritability Subscale scores showed significant improvement (p < 0.001), as did the VAS (p = 0.003) and the CGI (p < 0.001). The only significant treatment-related side effects were minor diarrhea (n = 3) and seroconversion to a positive ANA (n = 2). Results from this study demonstrate that minocycline provides significant functional benefits to FXS patients and that it is well-tolerated. These findings are consistent with the fmr1 knockout mouse model results, suggesting that minocycline modifies underlying neural defects that account for behavioural abnormalities. A placebo-controlled trial of minocycline in FXS is warranted. ClinicalTrials.gov Open-Label Trial NCT00858689.
Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes
Song, Zhen-peng; Xiong, Bing-rui; Guan, Xue-hai; Cao, Fei; Manyande, Anne; Zhou, Ya-qun; Zheng, Hua; Tian, Yu-ke
2016-01-01
Aim: To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. Methods: A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 μg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1β in vitro. Results: BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 μg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1β-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 μmol/L) significantly inhibited the translocation of NF-κB to nucleus. Conclusion: Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes. PMID:27157092
Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes.
Song, Zhen-Peng; Xiong, Bing-Rui; Guan, Xue-Hai; Cao, Fei; Manyande, Anne; Zhou, Ya-Qun; Zheng, Hua; Tian, Yu-Ke
2016-06-01
To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 μg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1β in vitro. BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 μg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1β-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 μmol/L) significantly inhibited the translocation of NF-κB to nucleus. Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes.
Pancreatic cancer combination therapy using a BH3 mimetic and a synthetic tetracycline
Quinn, Bridget A.; Dash, Rupesh; Sarkar, Siddik; Azab, Belal; Bhoopathi, Praveen; Das, Swadesh K.; Emdad, Luni; Wei, Jun; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B.
2015-01-01
Improved treatments for pancreatic cancer remain a clinical imperative. Sabutoclax, a small molecule BH3 mimetic, inhibits the function of anti-apoptotic Bcl-2 proteins. Minocycline, a synthetic tetracycline, displays antitumor activity. Here we offer evidence of the combinatorial antitumor potency of these agents in several preclinical models of pancreatic cancer. Sabutoclax induced growth arrest and apoptosis in pancreatic cancer cells and synergized with Minocycline to yield a robust mitochondria-mediated caspase-dependent cytotoxicity. This combinatorial property relied upon loss of phosphorylated Stat3 insofar as reintroduction of activated Stat3 rescued cells from toxicity. Tumor growth was inhibited potently in both immune-deficient and immune-competent models with evidence of extended survival. Overall, our results showed that that the combination of Sabutoclax and Minocycline was highly cytotoxic to pancreatic cancer cells and safely efficacious in vivo. PMID:26032425
Siller, Saul S.; Broadie, Kendal
2011-01-01
SUMMARY Fragile X syndrome (FXS), caused by loss of the fragile X mental retardation 1 (FMR1) product (FMRP), is the most common cause of inherited intellectual disability and autism spectrum disorders. FXS patients suffer multiple behavioral symptoms, including hyperactivity, disrupted circadian cycles, and learning and memory deficits. Recently, a study in the mouse FXS model showed that the tetracycline derivative minocycline effectively remediates the disease state via a proposed matrix metalloproteinase (MMP) inhibition mechanism. Here, we use the well-characterized Drosophila FXS model to assess the effects of minocycline treatment on multiple neural circuit morphological defects and to investigate the MMP hypothesis. We first treat Drosophila Fmr1 (dfmr1) null animals with minocycline to assay the effects on mutant synaptic architecture in three disparate locations: the neuromuscular junction (NMJ), clock neurons in the circadian activity circuit and Kenyon cells in the mushroom body learning and memory center. We find that minocycline effectively restores normal synaptic structure in all three circuits, promising therapeutic potential for FXS treatment. We next tested the MMP hypothesis by assaying the effects of overexpressing the sole Drosophila tissue inhibitor of MMP (TIMP) in dfmr1 null mutants. We find that TIMP overexpression effectively prevents defects in the NMJ synaptic architecture in dfmr1 mutants. Moreover, co-removal of dfmr1 similarly rescues TIMP overexpression phenotypes, including cellular tracheal defects and lethality. To further test the MMP hypothesis, we generated dfmr1;mmp1 double null mutants. Null mmp1 mutants are 100% lethal and display cellular tracheal defects, but co-removal of dfmr1 allows adult viability and prevents tracheal defects. Conversely, co-removal of mmp1 ameliorates the NMJ synaptic architecture defects in dfmr1 null mutants, despite the lack of detectable difference in MMP1 expression or gelatinase activity between the single dfmr1 mutants and controls. These results support minocycline as a promising potential FXS treatment and suggest that it might act via MMP inhibition. We conclude that FMRP and TIMP pathways interact in a reciprocal, bidirectional manner. PMID:21669931
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Justin; Holmuhamedov, Ekhson; Zhang, Xun
Minocycline, a tetracycline-derived compound, mitigates damage caused by ischemia/reperfusion (I/R) injury. Here, 19 tetracycline-derived compounds were screened in comparison to minocycline for their ability to protect hepatocytes against damage from chemical hypoxia and I/R injury. Cultured rat hepatocytes were incubated with 50 μM of each tetracycline-derived compound 20 min prior to exposure to 500 μM iodoacetic acid plus 1 mM KCN (chemical hypoxia). In other experiments, hepatocytes were incubated in anoxic Krebs–Ringer–HEPES buffer at pH 6.2 for 4 h prior to reoxygenation at pH 7.4 (simulated I/R). Tetracycline-derived compounds were added 20 min prior to reperfusion. Ca{sup 2+} uptake wasmore » measured in isolated rat liver mitochondria incubated with Fluo-5N. Cell killing after 120 min of chemical hypoxia measured by propidium iodide (PI) fluorometry was 87%, which decreased to 28% and 42% with minocycline and doxycycline, respectively. After I/R, cell killing at 120 min decreased from 79% with vehicle to 43% and 49% with minocycline and doxycycline. No other tested compound decreased killing. Minocycline and doxycycline also inhibited mitochondrial Ca{sup 2+} uptake and suppressed the Ca{sup 2+}-induced mitochondrial permeability transition (MPT), the penultimate cause of cell death in reperfusion injury. Ru360, a specific inhibitor of the mitochondrial calcium uniporter (MCU), also decreased cell killing after hypoxia and I/R and blocked mitochondrial Ca{sup 2+} uptake and the MPT. Other proposed mechanisms, including mitochondrial depolarization and matrix metalloprotease inhibition, could not account for cytoprotection. Taken together, these results indicate that minocycline and doxycycline are cytoprotective by way of inhibition of MCU. - Highlights: • Minocycline and doxycycline are the only cytoprotective tetracyclines of those tested • Cytoprotective tetracyclines inhibit the MPT and mitochondrial calcium and iron uptake. • Cytoprotective tetracyclines protect by inhibiting the MCU.« less
Burgos-Ramos, E; Puebla-Jiménez, L; Arilla-Ferreiro, E
2009-02-13
Tetracyclines have been demonstrated to inhibit formation of beta-amyloid (Abeta) aggregates and to disassemble preformed fibrils. Minocycline, a semi-synthetic second-generation tetracycline, can reverse Abeta-induced impairment of cognitive functions. Since somatostatin is involved in cognition and we recently showed that Abeta(25-35) lowers somatostatin expression in the rat temporal cortex, our aim here was to analyze the effects of minocycline on somatostatin immunoreactivity and mRNA levels in the temporal cortex of Abeta(25-35)-infused and healthy rats. Moreover, since brain levels of neprilysin, an Abeta-degrading enzyme, decrease with age, favoring the appearance of senile neuritic plaques, we tested whether minocyline could affect neprilysin expression. Wistar rats were thus injected with minocycline twice on the first day of treatment. On the following day, and during 14 days, Abeta(25-35) or vehicle were administered. Minocycline was injected once again on days 13 and 14. All animals were sacrificed 24 h after the last drug injection. Minocycline abrogated the Abeta(25-35)-induced decrease of somatostatin-like immunoreactive content, somatostatin mRNA levels, phosphorylated-CREB content and neprilysin levels. Minocycline alone enhanced these targets. Our findings indicate that minocycline prevents the deleterious effects of Abeta(25-35) on SRIF and neprilysin expression in the rat temporal cortex and that it has protective effects per se on these parameters.
Minocycline affects human neutrophil respiratory burst and transendothelial migration.
Parenti, Astrid; Indorato, Boris; Paccosi, Sara
2017-02-01
This study aimed at investigating the in vitro activity of minocycline and doxycycline on human polymorphonuclear (h-PMN) cell function. h-PMNs were isolated from whole venous blood of healthy subjects; PMN oxidative burst was measured by monitoring ROS-induced oxidation of luminol and transendothelial migration was studied by measuring PMN migration through a monolayer of human umbilical vein endothelial cells. Differences between multiple groups were determined by ANOVA followed by Tukey's multiple comparison test; Student's t test for unpaired data for two groups. Minocycline (1-300 µM) concentration dependently and significantly inhibited oxidative burst of h-PMNs stimulated with 100 nM fMLP. Ten micromolar concentrations, which are superimposable to C max following a standard oral dose of minocycline, promoted a 29.8 ± 4 % inhibition of respiratory burst (P < 0.001; n = 6). Doxycycline inhibited ROS production with a lesser extent and at higher concentrations. 10-100 µM minocycline impaired PMN transendothelial migration, with maximal effect at 100 µM (42.5 ± 7 %, inhibition, n = 5, P < 0.001). These results added new insight into anti-inflammatory effects of minocycline exerted on innate immune h-PMN cell function.
Minocycline prevents cholinergic loss in a mouse model of Down's syndrome.
Hunter, Christopher L; Bachman, David; Granholm, Ann-Charlotte
2004-11-01
Individuals with Down's syndrome develop Alzheimer's-like pathologies comparatively early in life, including progressive degeneration of basal forebrain cholinergic neurons (BFCNs). Cholinergic hypofunction contributes to dementia-related cognitive decline and remains a target of therapeutic intervention for Alzheimer's disease. In light of this, partial trisomy 16 (Ts65Dn) mice have been developed to provide an animal model of Down's syndrome that exhibits progressive loss of BFCNs and cognitive ability. Another feature common to both Down's syndrome and Alzheimer's disease is neuroinflammation, which may exacerbate neurodegeneration, including cholinergic loss. Minocycline is a semisynthetic tetracycline with antiinflammatory properties that has demonstrated neuroprotective properties in certain disease models. Consistent with a role for inflammatory processes in BFCN degeneration, we have shown previously that minocycline protects BFCNs and improves memory in mice with acute, immunotoxic BFCN lesions. We now report that minocycline treatment inhibits microglial activation, prevents progressive BFCN decline, and markedly improves performance of Ts65Dn mice on a working and reference memory task. Minocycline is an established antiinflammatory and neuroprotective drug and may provide a novel approach to treat specific AD-like pathologies.
Analgesic effect of Minocycline in rat model of inflammation-induced visceral pain
Kannampalli, Pradeep; Pochiraju, Soumya; Bruckert, Mitchell; Shaker, Reza; Banerjee, Banani; Sengupta, Jyoti N.
2014-01-01
The present study investigates the analgesic effect of minocycline, a semi-synthetic tetracycline antibiotic, in a rat model of inflammation-induced visceral pain. Inflammation was induced in male rats by intracolonic administration of tri-nitrobenzenesulphonic acid (TNBS). Visceral hyperalgesia was assessed by comparing the viscero-motor response (VMR) to graded colorectal distension (CRD) prior and post 7 days after TNBS treatment. Electrophysiology recordings from CRD-sensitive pelvic nerve afferents (PNA) and lumbo-sacral (LS) spinal neurons were performed in naïve and inflamed rats. Colonic inflammation produced visceral hyperalgesia characterized by increase in the VMRs to CRD accompanied with simultaneous activation of microglia in the spinal cord and satellite glial cells (SGCs) in the dorsal root ganglions (DRGs). Selectively inhibiting the glial activation following inflammation by araC (Arabinofuranosyl Cytidine) prevented the development of visceral hyperalgesia. Intrathecal minocycline significantly attenuated the VMR to CRD in inflamed rats, whereas systemic minocycline produced a delayed effect. In electrophysiology experiments, minocycline significantly attenuated the mechanotransduction of CRD-sensitive PNAs and the responses of CRD-sensitive LS spinal neurons in TNBS-treated rats. While the spinal effect of minocycline was observed within 5 min of administration, systemic injection of the drug produced a delayed effect (60 min) in inflamed rats. Interestingly, minocycline did not exhibit analgesic effect in naïve, non-inflamed rats. The results demonstrate that intrathecal injection of minocycline can effectively attenuate inflammation-induced visceral hyperalgesia. Minocycline might as well act on neuronal targets in the spinal cord of inflamed rats, in addition to the widely reported glial inhibitory action to produce analgesia. PMID:24485889
Minocycline: far beyond an antibiotic
Garrido-Mesa, N; Zarzuelo, A; Gálvez, J
2013-01-01
Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic activities, and inhibition of proteolysis, angiogenesis and tumour metastasis. These findings specifically concern to minocycline as it has recently been found to have multiple non-antibiotic biological effects that are beneficial in experimental models of various diseases with an inflammatory basis, including dermatitis, periodontitis, atherosclerosis and autoimmune disorders such as rheumatoid arthritis and inflammatory bowel disease. Of note, minocycline has also emerged as the most effective tetracycline derivative at providing neuroprotection. This effect has been confirmed in experimental models of ischaemia, traumatic brain injury and neuropathic pain, and of several neurodegenerative conditions including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Alzheimer's disease, multiple sclerosis and spinal cord injury. Moreover, other pre-clinical studies have shown its ability to inhibit malignant cell growth and activation and replication of human immunodeficiency virus, and to prevent bone resorption. Considering the above-mentioned findings, this review will cover the most important topics in the pharmacology of minocycline to date, supporting its evaluation as a new therapeutic approach for many of the diseases described herein. PMID:23441623
Electrocortical changes associated with minocycline treatment in fragile X syndrome.
Schneider, Andrea; Leigh, Mary Jacena; Adams, Patrick; Nanakul, Rawi; Chechi, Tasleem; Olichney, John; Hagerman, Randi; Hessl, David
2013-10-01
Minocycline normalizes synaptic connections and behavior in the knockout mouse model of fragile X syndrome (FXS). Human-targeted treatment trials with minocycline have shown benefits in behavioral measures and parent reports. Event-related potentials (ERPs) may provide a sensitive method of monitoring treatment response and changes in coordinated brain activity. Measurement of electrocortical changes due to minocycline was done in a double-blind, placebo-controlled crossover treatment trial in children with FXS. Children with FXS (Meanage 10.5 years) were randomized to minocycline or placebo treatment for 3 months then changed to the other treatment for 3 months. The minocycline dosage ranged from 25-100 mg daily, based on weight. Twelve individuals with FXS (eight male, four female) completed ERP studies using a passive auditory oddball paradigm. Current source density (CSD) and ERP analysis at baseline showed high-amplitude, long-latency components over temporal regions. After 3 months of treatment with minocycline, the temporal N1 and P2 amplitudes were significantly reduced compared with placebo. There was a significant amplitude increase of the central P2 component on minocycline. Electrocortical habituation to auditory stimuli improved with minocycline treatment. Our study demonstrated improvements of the ERP in children with FXS treated with minocycline, and the potential feasibility and sensitivity of ERPs as a cognitive biomarker in FXS treatment trials.
Jones, Terry M; Ellman, Herman; deVries, Tina
2017-10-01
To characterize minocycline pharmacokinetics and relative bioavailability following multiple-dose topical administration of minocycline hydrochloride (HCl) foam 4% (FMX101 4%) as compared with single-dose oral administration of minocycline HCl extended-release tablets (Solodyn®) in subjects with moderate-to-severe acne. A Phase 1, single-center, nonrandomized, open-label, active-controlled, 2-period, 2-treatment crossover clinical study. The study included 30 healthy adults (mean age, 22.6 years; 90% white, and 60% females) who had moderate-to-severe acne. Subjects were assigned to first receive a single oral dose of a minocycline HCl extended-release tablet (approximately 1 mg/kg). At 10 days after the oral minocycline dose, topical minocycline foam 4% was applied, once daily for 21 days. Serial blood samples were obtained before and after administration of oral minocycline and each topical application of minocycline foam 4% on days 1, 12, and 21. Following oral administration of minocycline (approximately 1 mg/kg), plasma minocycline concentration increased until 3 hours, followed by a log-linear decrease over the remainder of the 96-hour sampling period. Following topical application of a 4-g maximal-use dose of minocycline foam 4% for 21 days, plasma minocycline concentration was very low, with geometric mean Cmax values ranging from 1.1 ng/mL to 1.5 ng/mL. Steady state was achieved by day 6. Overall, minocycline exposure with topical minocycline foam 4% was 730 to 765 times lower than that with oral minocycline. There was no evidence of minocycline accumulation over the 21 days of topical application of minocycline foam 4%. Topical minocycline foam 4% appeared to be safe and well tolerated, with no serious treatment-emergent adverse events (TEAEs), treatment-related TEAEs, or TEAEs that led to treatment discontinuation. Once-daily topical application of minocycline foam 4% did not lead to significant systemic exposure to minocycline. It appears to be a well-tolerated treatment option for individuals with moderate-to-severe acne.
J Drugs Dermatol. 2017;16(10):1022-1028.
.Ataie-Kachoie, Parvin; Morris, David L.; Pourgholami, Mohammad H.
2013-01-01
Interleukin (IL)-6 has been shown to be a major contributing factor in growth and progression of ovarian cancer. The cytokine exerts pro-tumorigenic activity through activation of several signaling pathways in particular signal transducer and activator of transcription (STAT3) and extracellular signal-regulated kinase (ERK)1/2. Hence, targeting IL-6 is becoming increasingly attractive as a treatment option in ovarian cancer. Here, we investigated the effects of minocycline on IL-6 and its signaling pathways in ovarian cancer. In vitro, minocycline was found to significantly suppress both constitutive and IL-1β or 4-hydroxyestradiol (4-OH-E2)-stimulated IL-6 expression in human ovarian cancer cells; OVCAR-3, SKOV-3 and CAOV-3. Moreover, minocycline down-regulated two major components of IL-6 receptor system (IL-6Rα and gp130) and blocked the activation of STAT3 and ERK1/2 pathways leading to suppression of the downstream product MCL-1. In female nude mice bearing intraperitoneal OVCAR-3 tumors, acute administration (4 and 24 h) of minocycline (30 mg/kg) led to suppression of IL-6. Even single dose of minocycline was effective at significantly lowering plasma and tumor IL-6 levels. In line with this, tumoral expression of p-STAT3, p-ERK1/2 and MCL-1 were decreased in minocycline-treated mice. Evaluation of the functional implication of minocycline on metastatic activity revealed the capacity of minocycline to inhibit cellular migration, invasion and adhesion associated with down-regulation of matrix metalloproteinases (MMP)-2 and 9. Thus, the data suggest a potential role for minocycline in suppressing IL-6 expression and activity. These effects may prove to be an important attribute to the upcoming clinical trials of minocycline in ovarian cancer. PMID:23593315
A systematic review on potential mechanisms of minocycline in kidney diseases.
Haghi-Aminjan, Hamed; Asghari, Mohammad Hossein; Goharbari, Mohammad Hadi; Abdollahi, Mohammad
2017-08-01
Kidney diseases need specialized health care and still are a reason of death. There is a large body of evidence that indicates minocycline possesses some cytoprotective effects beside of antibacterial properties. In this review, we aimed to explain cytoprotective mechanisms and kidney protection of minocycline. In order to find the effects of minocycline on kidney diseases a systematic literature search was performed, according to the guidelines proposed at the PRISMA statement in the electronic databases, including: PubMed, Scopus, and Web of Science up to August 2016, using the term 'minocycline' combined either by 'kidney' or 'renal' and published in English language. The following criteria were included: (1) studies that used minocycline in renal diseases; (2) full-text articles; (3) English language; (4) no limitation in publications with in-vivo or in-vitro and human or animal subjects. Our search provided a total of 1056 articles which 1045 of them were discarded due to not meeting the inclusion criteria. It has been clear that several factors, including apoptosis, oxidative stress, mitochondrial dysfunction and inflammation have pivotal roles in the development and progression of kidney diseases. Minocycline protective properties are via several ways, including anti-apoptotic, free radical scavenging, anti-inflammatory, effect on mitochondrial functions and inhibition of matrix metalloproteinase. This systematic review confirmed that minocycline could have significant effects on treatment of renal malfunctions. However, regarding any possible adverse effects of antibiotics, it appears that more investigation is still needed in this context. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Shinohara, Akira; Ikeda, Masafumi; Okuyama, Hiroyuki; Kobayashi, Misaki; Funazaki, Hideki; Mitsunaga, Shuichi; Shimizu, Satoshi; Ohno, Izumi; Takahashi, Hideaki; Ichida, Yasuhiko; Takahashi, Kunio; Okusaka, Takuji; Saitoh, Shinichiro
2015-06-01
Erlotinib has been reported as being associated with a high incidence of skin toxicities such as acneiform rash, paronychia, and xerosis. The aim of this study was to evaluate the efficacy of prophylactic minocycline treatment for the skin toxicities induced by erlotinib as compared with deferred minocycline treatment in patients with pancreatic cancer treated with erlotinib plus gemcitabine. A total of 96 patients were studied retrospectively, of whom 44 received prophylactic minocycline between August 2012 and June 2013 and 52 received deferred minocycline treatment between August 2011 and July 2012 at the National Cancer Center Hospital East, Kashiwa, Japan. In the prophylactic minocycline group, 200 mg/day oral minocycline was prophylactically administered during the treatment period. The incidence rate of acneiform rash and xerosis of any grade during the first 6 weeks of treatment was significantly reduced in the prophylactic minocycline group compared with the deferred minocycline treatment group (47.7 vs. 80.8%, p<0.001; 2.3 vs. 19.2%, p=0.01). Multivariate analysis identified prophylactic minocycline as a significant independent factor associated with the incidence of acneiform rash and xerosis of any severity (odds ratio [OR] 0.16, 95% confidence interval [CI] 0.06-0.46, p<0.001; OR 0.11, 95% CI 0.01-0.90, p=0.04). Prophylactic minocycline appears to be useful for the management of erlotinib-related acneiform rash and xerosis during chemotherapy in patients with advanced pancreatic cancer.
Chang, J J; Kim-Tenser, M; Emanuel, B A; Jones, G M; Chapple, K; Alikhani, A; Sanossian, N; Mack, W J; Tsivgoulis, G; Alexandrov, A V; Pourmotabbed, T
2017-11-01
Intracerebral hemorrhage (ICH) is a devastating cerebrovascular disorder with high morbidity and mortality. Minocycline is a matrix metalloproteinase-9 (MMP-9) inhibitor that may attenuate secondary mechanisms of injury in ICH. The feasibility and safety of minocycline in ICH patients were evaluated in a pilot, double-blinded, placebo-controlled randomized clinical trial. Patients with acute onset (<12 h from symptom onset) ICH and small initial hematoma volume (<30 ml) were randomized to high-dose (10 mg/kg) intravenous minocycline or placebo. The outcome events included adverse events, change in serial National Institutes of Health Stroke Scale score assessments, hematoma volume and MMP-9 measurements, 3-month functional outcome (modified Rankin score) and mortality. A total of 20 patients were randomized to minocycline (n = 10) or placebo (n = 10). The two groups did not differ in terms of baseline characteristics. No serious adverse events or complications were noted with minocycline infusion. The two groups did not differ in any of the clinical and radiological outcomes. Day 5 serum MMP-9 levels tended to be lower in the minocycline group (372 ± 216 ng/ml vs. 472 ± 235 ng/ml; P = 0.052). Multiple linear regression analysis showed that minocycline was associated with a 217.65 (95% confidence interval -425.21 to -10.10, P = 0.041) decrease in MMP-9 levels between days 1 and 5. High-dose intravenous minocycline can be safely administered to patients with ICH. Larger randomized clinical trials evaluating the efficacy of minocycline and MMP-9 inhibition in ICH patients are required. © 2017 EAN.
Inta, Dragos; Lang, Undine E; Borgwardt, Stefan; Meyer-Lindenberg, Andreas; Gass, Peter
2017-05-01
The implication of neuroinflammation in schizophrenia, sustained by recent genetic evidence, represents one of the most exciting topics in schizophrenia research. Drugs which inhibit microglia activation, especially the classical tetracycline antibiotic minocycline are currently under investigation as alternative antipsychotics. However, recent studies demonstrated that microglia activation is not only a hallmark of neuroinflammation, but plays important roles during brain development. Inhibition of microglia activation by minocycline was shown to induce extensive neuronal cell death and to impair subventricular zone (SVZ) neurogenesis and synaptic pruning in the early postnatal and adolescent rodent brain, respectively. These deleterious effects contrast with the neuroprotective actions of minocycline at adult stages. They are of potential importance for schizophrenia, since minocycline triggers similar pro-apoptotic effects in the developing brain as NMDA receptor (NMDAR) antagonists, known to induce long-term schizophrenia-like abnormalities. Moreover, altered postnatal neurogenesis, recently described in the human striatum, was proposed to induce striatal dopamine dysregulation associated with schizophrenia. Finally, the effect of minocycline on synapse remodeling is of interest considering the recently reported strong genetic association of the pruning-regulating complement factor gene C4A with schizophrenia. This raises the exciting possibility that in conditions of hyperactive synaptic pruning, as supposed in schizophrenia, the inhibitory action of minocycline turns into a beneficial effect, with relevance for early therapeutic interventions. Altogether, these data support a differential view on microglia activation and its inhibition. Further studies are needed to clarify the relevance of these results for the pathogenesis of schizophrenia and the use of minocycline as antipsychotic drug. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Shah, Syed Zahid Ali; Zhao, Deming; Taglialatela, Giulio; Khan, Sher Hayat; Hussain, Tariq; Dong, Haodi; Lai, Mengyu; Zhou, Xiangmei; Yang, Lifeng
2017-04-01
Prion infections of the central nervous system (CNS) are characterized by initial reactive gliosis followed by overt neuronal death. Gliosis is likely to be caused initially by the deposition of misfolded, proteinase K-resistant, isoforms (termed PrP Sc ) of the normal cellular prion protein (PrP c ) in the brain. Proinflammatory cytokines and chemokines released by PrP Sc -activated glia and stressed neurons may also contribute directly or indirectly to the disease development by enhancing gliosis and inducing neurotoxicity. Recent studies have illustrated that early neuroinflammation activates nuclear factor of activated T cells (NFAT) in the calcineurin signaling cascade, resulting in nuclear translocation of nuclear factor kappa B (NF-κB) to promote apoptosis. Hence, useful therapeutic approaches to slow down the course of prion disease development should control early inflammatory responses to suppress NFAT signaling. Here we used a hamster model of prion diseases to test, for the first time, the neuroprotective and NFAT-suppressive effect of a second-generation semisynthetic tetracycline derivative, minocycline, versus a calcineurin inhibitor, FK506, with known NFAT suppressive activity. Our results indicate that prolonged treatment with minocycline, starting from the presymptomatic stage of prion disease was more effective than FK506 given either during the presymptomatic or symptomatic stage of prion disease. Specifically, minocycline treatment reduced the expression of the astrocyte activation marker glial fibrillary acidic protein and of the microglial activation marker ionized calcium-binding adapter molecule-1, subsequently reducing the level of proinflammatory cytokines interleukin 1β and tumor necrosis factor-α. We further found that minocycline and FK506 treatment inhibited mitogen-activated protein kinase p38 phosphorylation and NF-κB nuclear translocation in a caspase-dependent manner, and enhanced phosphorylated cyclic adenosine monophosphate response element-binding protein and phosphorylated Bcl2-associated death promoter levels to reduce cognitive impairment and apoptosis. Taken together, our results indicate that minocycline is a better choice for prolonged use in prion diseases and encourage its further clinical development as a possible treatment for this disease.
Yang, Ya-Sung; Lee, Yi; Tseng, Kuo-Chuan; Huang, Wei-Cheng; Chuang, Ming-Fen; Kuo, Shu-Chen; Lauderdale, Tsai-Ling Yang; Chen, Te-Li
2016-07-01
Minocycline-based combination therapy has been suggested to be a possible choice for the treatment of infections caused by minocycline-susceptible Acinetobacter baumannii, but its use for the treatment of infections caused by minocycline-resistant A. baumannii is not well established. In this study, we compared the efficacy of minocycline-based combination therapy (with colistin, cefoperazone-sulbactam, or meropenem) to that of colistin in combination with meropenem for the treatment of minocycline-resistant A. baumannii infection. From 2006 to 2010, 191 (17.6%) of 1,083 A. baumannii complex isolates not susceptible to minocycline from the Taiwan Surveillance of Antimicrobial Resistance program were collected. Four representative A. baumannii isolates resistant to minocycline, amikacin, ampicillin-sulbactam, ceftazidime, ciprofloxacin, cefepime, gentamicin, imipenem, levofloxacin, meropenem, and piperacillin-tazobactam were selected on the basis of the diversity of their pulsotypes, collection years, health care setting origins, and geographic areas of origination. All four isolates had tetB and overexpressed adeABC, as revealed by quantitative reverse transcription-PCR. Among all minocycline-based regimens, only the combination with colistin produced a fractional inhibitory concentration index comparable to that achieved with meropenem combined with colistin. Minocycline (4 or 16 μg/ml) in combination with colistin (0.5 μg/ml) also synergistically killed minocycline-resistant isolates in time-kill studies. Minocycline (50 mg/kg of body weight) in combination with colistin (10 mg/kg) significantly improved the survival of mice and reduced the number of bacteria present in the lungs of mice compared to the results of monotherapy. However, minocycline (16 μg/ml)-based therapy was not effective at reducing biofilm-associated bacteria at 24 or 48 h when its effectiveness was compared to that of colistin (0.5 μg/ml) and meropenem (8 μg/ml). The clinical use of minocycline in combination with colistin for the treatment of minocycline-resistant A. baumannii may warrant further investigation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Expression profiling of genes modulated by minocycline in a rat model of neuropathic pain
2014-01-01
Background The molecular mechanisms underlying neuropathic pain are constantly being studied to create new opportunities to prevent or alleviate neuropathic pain. The aim of our study was to determine the gene expression changes induced by sciatic nerve chronic constriction injury (CCI) that are modulated by minocycline, which can effectively diminish neuropathic pain in animal studies. The genes associated with minocycline efficacy in neuropathic pain should provide insight into the etiology of neuropathic pain and identify novel therapeutic targets. Results We screened the ipsilateral dorsal part of the lumbar spinal cord of the rat CCI model for differentially expressed genes. Out of 22,500 studied transcripts, the abundance levels of 93 transcripts were altered following sciatic nerve ligation. Percentage analysis revealed that 54 transcripts were not affected by the repeated administration of minocycline (30 mg/kg, i.p.), but the levels of 39 transcripts were modulated following minocycline treatment. We then selected two gene expression patterns, B1 and B2. The first transcription pattern, B1, consisted of 10 mRNA transcripts that increased in abundance after injury, and minocycline treatment reversed or inhibited the effect of the injury; the B2 transcription pattern consisted of 7 mRNA transcripts whose abundance decreased following sciatic nerve ligation, and minocycline treatment reversed the effect of the injury. Based on the literature, we selected seven genes for further analysis: Cd40, Clec7a, Apobec3b, Slc7a7, and Fam22f from pattern B1 and Rwdd3 and Gimap5 from pattern B2. Additionally, these genes were analyzed using quantitative PCR to determine the transcriptional changes strongly related to the development of neuropathic pain; the ipsilateral DRGs (L4-L6) were also collected and analyzed in these rats using qPCR. Conclusion In this work, we confirmed gene expression alterations previously identified by microarray analysis in the spinal cord and analyzed the expression of selected genes in the DRG. Moreover, we reviewed the literature to illustrate the relevance of these findings for neuropathic pain development and therapy. Further studies are needed to elucidate the roles of the individual genes in neuropathic pain and to determine the therapeutic role of minocycline in the rat neuropathic pain model. PMID:25038616
Xu, Xinghua; Zheng, Yi; Zhao, Zigang; Zhang, Xin; Liu, Pengxiang; Li, Chengxin
2017-12-01
Acne vulgaris is a prevalent skin disorder impairing both physical and psychosocial health. This study was designed to investigate the effectiveness of photodynamic therapy (PDT) combined with minocycline in moderate to severe facial acne and influence on quality of life (QOL). Ninety-five patients with moderate to severe facial acne (Investigator Global Assessment [IGA] score 3-4) were randomly treated with PDT and minocycline (n = 48) or minocycline alone (n = 47). All patients took minocycline hydrochloride 100 mg/d for 4 weeks, whereas patients in the minocycline plus PDT group also received 4 times PDT treatment 1 week apart. IGA score, lesion counts, Dermatology Life Quality Index (DLQI), and safety evaluation were performed before treatment and at 2, 4, 6, and 8 weeks after enrolment. There were no statistically significant differences in characteristics between 2 treatment groups at baseline. Minocycline plus PDT treatment led to a greater mean percentage reduction from baseline in lesion counts versus minocycline alone at 8 weeks for both inflammatory (-74.4% vs -53.3%; P < .001) and noninflammatory lesions (-61.7% vs -42.4%; P < .001). More patients treated with minocycline plus PDT achieved IGA score <2 at study end (week 8: 30/48 vs 20/47; P < .05). Patients treated with minocycline plus PDT got significant lower DLQI at 8 weeks (4.4 vs 6.3; P < .001). Adverse events were mild and manageable. Compared with minocycline alone, the combination of PDT with minocycline significantly improved clinical efficacy and QOL in moderate to severe facial acne patients. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikuchi, Kiyoshi; Department of Neurosurgery, Omuta City General Hospital, 2-19-1 Takarazaka, Omuta-City, Fukuoka 836-8567; Kawahara, Ko-ichi
2009-07-24
High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death inmore » a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.« less
Naura, Amarjit S; Kim, Hogyoung; Ju, Jihang; Rodriguez, Paulo C; Jordan, Joaquin; Catling, Andrew D; Rezk, Bashir M; Abd Elmageed, Zakaria Y; Pyakurel, Kusma; Tarhuni, Abdelmetalab F; Abughazleh, Mohammad Q; Errami, Youssef; Zerfaoui, Mourad; Ochoa, Augusto C; Boulares, A Hamid
2013-01-18
Minocycline protects against asthma independently of its antibiotic function and was recently reported as a potent poly(ADP-ribose) polymerase (PARP) inhibitor. In an animal model of asthma, a single administration of minocycline conferred excellent protection against ovalbumin-induced airway eosinophilia, mucus hypersecretion, and Th2 cytokine production (IL-4/IL-5/IL-12(p70)/IL-13/GM-CSF) and a partial protection against airway hyperresponsiveness. These effects correlated with pronounced reduction in lung and sera allergen-specific IgE. A reduction in poly(ADP-ribose) immunoreactivity in the lungs of minocycline-treated/ovalbumin-challenged mice correlated with decreased oxidative DNA damage. The effect of minocycline on PARP may be indirect, as the drug failed to efficiently block direct PARP activation in lungs of N-methyl-N'-nitro-N-nitroso-guanidine-treated mice or H(2)O(2)-treated cells. Minocycline blocked allergen-specific IgE production in B cells potentially by modulating T cell receptor (TCR)-linked IL-4 production at the mRNA level but not through a modulation of the IL-4-JAK-STAT-6 axis, IL-2 production, or NFAT1 activation. Restoration of IL-4, ex vivo, rescued IgE production by minocycline-treated/ovalbumin-stimulated B cells. IL-4 blockade correlated with a preferential inhibition of the NF-κB activation arm of TCR but not GSK3, Src, p38 MAPK, or ERK1/2. Interestingly, the drug promoted a slightly higher Src and ERK1/2 phosphorylation. Inhibition of NF-κB was linked to a complete blockade of TCR-stimulated GATA-3 expression, a pivotal transcription factor for IL-4 expression. Minocycline also reduced TNF-α-mediated NF-κB activation and expression of dependent genes. These results show a potentially broad effect of minocycline but that it may block IgE production in part by modulating TCR function, particularly by inhibiting the signaling pathway, leading to NF-κB activation, GATA-3 expression, and subsequent IL-4 production.
Naura, Amarjit S.; Kim, Hogyoung; Ju, Jihang; Rodriguez, Paulo C.; Jordan, Joaquin; Catling, Andrew D.; Rezk, Bashir M.; Elmageed, Zakaria Y. Abd; Pyakurel, Kusma; Tarhuni, Abdelmetalab F.; Abughazleh, Mohammad Q.; Errami, Youssef; Zerfaoui, Mourad; Ochoa, Augusto C.; Boulares, A. Hamid
2013-01-01
Minocycline protects against asthma independently of its antibiotic function and was recently reported as a potent poly(ADP-ribose) polymerase (PARP) inhibitor. In an animal model of asthma, a single administration of minocycline conferred excellent protection against ovalbumin-induced airway eosinophilia, mucus hypersecretion, and Th2 cytokine production (IL-4/IL-5/IL-12(p70)/IL-13/GM-CSF) and a partial protection against airway hyperresponsiveness. These effects correlated with pronounced reduction in lung and sera allergen-specific IgE. A reduction in poly(ADP-ribose) immunoreactivity in the lungs of minocycline-treated/ovalbumin-challenged mice correlated with decreased oxidative DNA damage. The effect of minocycline on PARP may be indirect, as the drug failed to efficiently block direct PARP activation in lungs of N-methyl-N′-nitro-N-nitroso-guanidine-treated mice or H2O2-treated cells. Minocycline blocked allergen-specific IgE production in B cells potentially by modulating T cell receptor (TCR)-linked IL-4 production at the mRNA level but not through a modulation of the IL-4-JAK-STAT-6 axis, IL-2 production, or NFAT1 activation. Restoration of IL-4, ex vivo, rescued IgE production by minocycline-treated/ovalbumin-stimulated B cells. IL-4 blockade correlated with a preferential inhibition of the NF-κB activation arm of TCR but not GSK3, Src, p38 MAPK, or ERK1/2. Interestingly, the drug promoted a slightly higher Src and ERK1/2 phosphorylation. Inhibition of NF-κB was linked to a complete blockade of TCR-stimulated GATA-3 expression, a pivotal transcription factor for IL-4 expression. Minocycline also reduced TNF-α-mediated NF-κB activation and expression of dependent genes. These results show a potentially broad effect of minocycline but that it may block IgE production in part by modulating TCR function, particularly by inhibiting the signaling pathway, leading to NF-κB activation, GATA-3 expression, and subsequent IL-4 production. PMID:23184953
Kholmukhamedov, Andaleb; Czerny, Christoph; Hu, Jiangting; Schwartz, Justin; Zhong, Zhi; Lemasters, John J.
2014-01-01
Background Despite recovery of hemodynamics by fluid resuscitation after hemorrhage, development of the systemic inflammatory response and multiple organ dysfunction syndromes can nonetheless lead to death. Minocycline and doxycycline are tetracycline derivatives that are protective in models of hypoxic, ischemic and oxidative stress. Our Aim was to determine whether minocycline and doxycycline protect liver and kidney and improve survival in a mouse model of hemorrhagic shock and resuscitation. Methods Mice were hemorrhaged to 30 mm Hg for 3 h and then resuscitated with shed blood followed by half the shed volume of lactated Ringer's solution containing tetracycline (10 mg/kg), minocycline (10 mg/kg), doxycycline (5 mg/kg) or vehicle. For pre-plus post-treatment, drugs were administered intraperitoneally prior to hemorrhage followed by second equal dose in Ringer's solution after blood resuscitation. Blood and tissue were harvested after 6 h. Results Serum alanine aminotransferase (ALT) increased to 1988 and 1878 U/L after post-treatment with vehicle and tetracycline, respectively, whereas minocycline and doxycycline post-treatment decreased ALT to 857 and 863 U/L. Pre-plus post-treatment with minocycline and doxycycline also decreased ALT to 849 and 834 U/L. After vehicle, blood creatinine increased to 279 μM, which minocycline and doxycycline post-treatment decreased to 118 and 112 μM. Minocycline and doxycycline pre- plus post-treatment decreased creatinine similarly. Minocycline and doxycycline also decreased necrosis and apoptosis in liver and apoptosis in both liver and kidney, the latter assessed by TUNEL and caspase-3 activation. Lastly after 4.5 h of hemorrhage followed by resuscitation, minocycline and doxycycline (but not tetracycline) post-treatment improved 1-week survival from 38%(vehicle) to 69% and 67%, respectively. Conclusion Minocycline and doxycycline were similarly protective when given before as after blood resuscitation and might therefore have clinical efficacy to mitigate liver and kidney injury after resuscitated hemorrhage. PMID:24978888
Hanlon, L.A.; Raghupathi, R.; Huh, J.W.
2017-01-01
The role of microglia in the pathophysiology of injury to the developing brain has been extensively studied. In children under the age of 4 who have sustained a traumatic brain injury (TBI), markers of microglial/macrophage activation were increased in the cerebrospinal fluid and were associated with worse neurologic outcome. Minocycline is an antibiotic that decreases microglial/macrophage activation following hypoxic-ischemia in neonatal rodents and TBI in adult rodents thereby reducing neurodegeneration and behavioral deficits. In study 1, 11-day-old rats received an impact to the intact skull and were treated for 3 days with minocycline. Immediately following termination of minocycline administration, microglial reactivity was reduced in the cortex and hippocampus (p<0.001) and was accompanied by an increase in the number of fluoro-Jade B profiles (p<0.001) suggestive of a reduced clearance of degenerating cells; however, this effect was not sustained at 7 days post-injury. Although microglial reactivity was reduced in the white matter tracts (p<0.001), minocycline treatment did not reduce axonal injury or degeneration. In the thalamus, minocycline treatment did not affect microglial reactivity, axonal injury and degeneration, and neurodegeneration. Injury-induced spatial learning and memory deficits were also not affected by minocycline. In study 2, to test whether extended dosing of minocycline may be necessary to reduce the ongoing pathologic alterations, a separate group of animals received minocycline for 9 days. Immediately following termination of treatment, microglial reactivity and neurodegeneration in all regions examined were exacerbated in minocycline-treated brain-injured animals compared to brain-injured animals that received vehicle (p<0.001), an effect that was only sustained in the cortex and hippocampus up to 15 days post-injury (p<0.001). Whereas injury-induced spatial learning deficits remained unaffected by minocycline treatment, memory deficits appeared to be significantly worse (p<0.05). Sex had minimal effects on either injury-induced alterations or the efficacy of minocycline treatment. Collectively, these data demonstrate the differential effects of minocycline in the immature brain following impact trauma and suggest that minocycline may not be an effective therapeutic strategy for TBI in the immature brain. PMID:28038986
Yau, S Y; Bettio, Luis; Vetrici, M; Truesdell, A; Chiu, C; Chiu, J; Truesdell, E; Christie, B R
2018-05-01
Fragile X Syndrome (FXS) is the most common inherited cause of intellectual disability, and is the leading known single-gene cause of autism spectrum disorder. FXS patients display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently there is no cure for this condition, however minocycline is becoming commonly prescribed as a treatment for FXS patients. Minocycline has been reported to alleviate social behavioural deficits, and improve verbal functioning in patients with FXS; however, its mode of action is not well understood. Previously we have shown that FXS results in learning impairments that involve deficits in N-methyl-d-aspartate (NMDA) receptor-dependent synaptic plasticity in the hippocampal dentate gyrus (DG). Here we tested whether chronic treatment with minocycline can improve these deficits by enhancing NMDA receptor-dependent functional and structural plasticity in the DG. Minocycline treatment resulted in a significant enhancement in NMDA receptor function in the dentate granule cells. This was accompanied by an increase in PSD-95 and GluN2A and GluN2B subunits in hippocampal synaptoneurosome fractions. Minocycline treatment also enhanced dentate granule cell dendritic length and branching. In addition, our results show that chronic minocycline treatment can rescue performance in novel object recognition in FXS mice. These findings indicate that minocycline treatment has both structural and functional benefits for hippocampal cells, which may partly contribute to the pro-cognitive effects minocycline appears to have for treating FXS. Copyright © 2018 Elsevier Inc. All rights reserved.
Minocycline Reduces Spontaneous Hemorrhage in Mouse Models of Cerebral Amyloid Angiopathy
Liao, Fan; Xiao, Qingli; Kraft, Andrew; Gonzales, Ernie; Perez, Ron; Greenberg, Steven M.; Holtzman, David; Lee, Jin-Moo
2015-01-01
Background and Purpose Cerebral Amyloid Angiopathy (CAA) is a common cause of recurrent intracerebral hemorrhage (ICH) in the elderly. Previous studies have shown that CAA induces inflammation and expression of matrix metalloproteinase-2 and -9 (gelatinases) in amyloid-laden vessels. Here, we inhibited both using minocycline in CAA mouse models to determine if spontaneous ICH could be reduced. Methods Tg2576 (n=16) and 5×FAD/ApoE4 knock-in mice (n=16), aged to 17 and 12 months, respectively, were treated with minocycline (50 mg/kg, i.p.) or saline every other day for two months. Brains were extracted and stained with X-34 (to quantify amyloid), Perl’s blue (to quantify hemorrhage), and immunostained to examined Aβ load, gliosis (GFAP, Iba-1), and vascular markers of blood-brain-barrier integrity (ZO-1 and collagen IV). Brain extracts were used to quantify mRNA for a variety of inflammatory genes. Results Minocycline treatment significantly reduced hemorrhage frequency in the brains of Tg2576 and 5×FAD/ApoE4 mice relative to the saline-treated mice, without affecting CAA load. Gliosis (GFAP and Iba-1 immunostaining), gelatinase activity, and expression of a variety of inflammatory genes (MMP-9, Nox4, CD45, S-100b, Iba-1) were also significantly reduced. Higher levels of microvascular tight junction and basal lamina proteins were found in the brains of minocycline-treated Tg2576 mice relative to saline-treated controls. Conclusions Minocycline reduced gliosis, inflammatory gene expression, gelatinase activity, and spontaneous hemorrhage in two different mouse models of CAA, supporting the importance of MMP-related and inflammatory pathways in ICH pathogenesis. As an FDA-approved drug, minocycline might be considered for clinical trials to test efficacy in preventing CAA-related ICH. PMID:25944329
Arakawa, Shiho; Shirayama, Yukihiko; Fujita, Yuko; Ishima, Tamaki; Horio, Mao; Muneoka, Katsumasa; Iyo, Masaomi; Hashimoto, Kenji
2012-01-01
Previous studies have indicated that minocycline might function as an antidepressant drug. The aim of this study was to evaluate the antidepressant-like effects of minocycline, which is known to suppress activated microglia, using learned helplessness (LH) rats (an animal model of depression). Infusion of minocycline into the cerebral ventricle of LH rats induced antidepressant-like effects. However, infusion of minocycline into the cerebral ventricle of naïve rats did not produce locomotor activation in the open field tests, suggesting that the antidepressant-like effects of minocycline were not attributed to the enhanced locomotion. LH rats showed significantly higher serotonin turnover in the orbitofrontal cortex and lower levels of brain-derived neurotrophic factor (BDNF) in the hippocampus than control rats. However, these alterations in serotonin turnover and BDNF expression remained unchanged after treatment with minocycline. On the contrary, minocycline treatment of LH rats induced significant increases in the levels of dopamine and its metabolites in the amygdala when compared with untreated LH rats. Taken together, minocycline may be a therapeutic drug for the treatment of depression. Copyright © 2011 Elsevier Inc. All rights reserved.
Hanlon, L A; Raghupathi, R; Huh, J W
2017-04-01
The role of microglia in the pathophysiology of injury to the developing brain has been extensively studied. In children under the age of 4 who have sustained a traumatic brain injury (TBI), markers of microglial/macrophage activation were increased in the cerebrospinal fluid and were associated with worse neurologic outcome. Minocycline is an antibiotic that decreases microglial/macrophage activation following hypoxic-ischemia in neonatal rodents and TBI in adult rodents thereby reducing neurodegeneration and behavioral deficits. In study 1, 11-day-old rats received an impact to the intact skull and were treated for 3days with minocycline. Immediately following termination of minocycline administration, microglial reactivity was reduced in the cortex and hippocampus (p<0.001) and was accompanied by an increase in the number of fluoro-Jade B profiles (p<0.001) suggestive of a reduced clearance of degenerating cells; however, this effect was not sustained at 7days post-injury. Although microglial reactivity was reduced in the white matter tracts (p<0.001), minocycline treatment did not reduce axonal injury or degeneration. In the thalamus, minocycline treatment did not affect microglial reactivity, axonal injury and degeneration, and neurodegeneration. Injury-induced spatial learning and memory deficits were also not affected by minocycline. In study 2, to test whether extended dosing of minocycline may be necessary to reduce the ongoing pathologic alterations, a separate group of animals received minocycline for 9days. Immediately following termination of treatment, microglial reactivity and neurodegeneration in all regions examined were exacerbated in minocycline-treated brain-injured animals compared to brain-injured animals that received vehicle (p<0.001), an effect that was only sustained in the cortex and hippocampus up to 15days post-injury (p<0.001). Whereas injury-induced spatial learning deficits remained unaffected by minocycline treatment, memory deficits appeared to be significantly worse (p<0.05). Sex had minimal effects on either injury-induced alterations or the efficacy of minocycline treatment. Collectively, these data demonstrate the differential effects of minocycline in the immature brain following impact trauma and suggest that minocycline may not be an effective therapeutic strategy for TBI in the immature brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Minocycline Effectively Protects the Rabbit's Spinal Cord From Aortic Occlusion-Related Ischemia.
Drenger, Benjamin; Fellig, Yakov; Ben-David, Dror; Mintz, Bella; Idrees, Suhel; Or, Omer; Kaplan, Leon; Ginosar, Yehuda; Barzilay, Yair
2016-04-01
To identify the minocycline anti-inflammatory and antiapoptotic mechanisms through which it is believed to exert spinal cord protection during aortic occlusion in the rabbit model. An animal model of aortic occlusion-related spinal cord ischemia. Randomized study with a control group and pre-ischemia and post-ischemia escalating doses of minocycline to high-dose minocycline in the presence of either hyperglycemia, a pro-apoptotic maneuver, or wortmannin, a specific phosphatidylinositol 3-kinase antagonist. Tertiary medical center and school of medicine laboratory. Laboratory animals-rabbits. Balloon obstruction of infrarenal aorta introduced via femoral artery incision. Severe hindlimb paralysis (mean Tarlov score 0.36±0.81 out of 3) was observed in all the control group animals (9 of 11 with paraplegia and 2 of 11 with paraparesis) compared with 11 of 12 neurologically intact animals (mean Tarlov score 2.58±0.90 [p = 0.001 compared with control]) in the high-dose minocycline group. This protective effect was observed partially during a state of hyperglycemia and was completely abrogated by wortmannin. Minocycline administration resulted in higher neurologic scores (p = 0.003) and a shift to viable neurons and more apoptotic-stained nuclei resulting from reduced necrosis (p = 0.001). In a rabbit model of infrarenal aortic occlusion, minocycline effectively reduced paraplegia by increasing the number of viable neurons in a dose-dependent manner. Its action was completely abrogated by inhibiting the phosphatidylinositol 3-kinase pathway and was inhibited partially by the pro-apoptotic hyperglycemia maneuver, indicating that the activation of cell salvage pathways and mitochondrial sites are possible targets of minocycline action in an ischemic spinal cord. Copyright © 2016. Published by Elsevier Inc.
Long-lasting Effects of Minocycline on Behavior in Young but not Adult Fragile X Mice
Dansie, Lorraine E.; Phommahaxay, Kelly; Okusanya, Ayodeji G.; Uwadia, Jessica; Huang, Mike; Rotschafer, Sarah E.; Razak, Khaleel A.; Ethell, Douglas W.; Ethell, Iryna M.
2013-01-01
Fragile X Syndrome (FXS) is the most common single-gene inherited form of intellectual disability with behaviors characteristic of autism. People with FXS display childhood seizures, hyperactivity, anxiety, developmental delay, attention deficits, and visual-spatial memory impairment, as well as a propensity for obsessive-compulsive disorder (OCD). Several of these aberrant behaviors and FXS-associated synaptic irregularities also occur in “fragile X mental retardation gene” knock-out (Fmr1 KO) mice. We previously reported that minocycline promotes the maturation of dendritic spines - postsynaptic sites for excitatory synapses - in the developing hippocampus of Fmr1 KO mice, which may underlie the beneficial effects of minocycline on anxiolytic behavior in young Fmr1 KO mice. In this study, we compared the effectiveness of minocycline treatment in young and adult Fmr1 KO mice, and determined the dependence of behavioral improvements on short-term versus long-term minocycline administration. We found that 4 and 8 week long treatments significantly reduced locomotor activity in both young and adult Fmr1 KO mice. Some behavioral improvements persisted in young mice post-treatment, but in adults the beneficial effects were lost soon after minocycline treatment was stopped. We also show, for the first time, that minocycline treatment partially attenuates the number and severity of audiogenic seizures in Fmr1 KO mice. This report provides further evidence that minocycline treatment has immediate and long-lasting benefits on FXS-associated behaviors in the Fmr1 KO mouse model. PMID:23660195
Ali, Sumia; Driscoll, Heather E.; Newton, Victoria L.; Gardiner, Natalie J.
2014-01-01
Minocycline is an inhibitor of matrix metalloproteinases (MMPs) and has been shown to have analgesic effects. Whilst increased expression of MMPs is associated with neuropathic pain, MMPs also play crucial roles in Wallerian degeneration and nerve regeneration. In this study we examined the expression of MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1/-2 in the sciatic nerve of control and streptozotocin-induced diabetic rats treated with either vehicle or minocycline by quantitative PCR and gelatin zymography. We assessed the effects of minocycline on nerve conduction velocity and intraepidermal nerve fibre (IENF) deficits in diabetic neuropathy and investigated the effects of minocycline or MMP-2 on neurite outgrowth from primary cultures of dissociated adult rat sensory neurons. We show that MMP-2 is expressed constitutively in the sciatic nerve in vivo and treatment with minocycline or diabetes leads to downregulation of MMP-2 expression and activity. The functional consequence of this is IENF deficits in minocycline-treated nondiabetic rats and an unsupportive microenvironment for regeneration in diabetes. Minocycline reduces levels of MMP-2 mRNA and nerve growth factor-induced neurite outgrowth. Furthermore, in vivo minocycline treatment reduces preconditioning-induced in vitro neurite outgrowth following a sciatic nerve crush. In contrast, the addition of active MMP-2 facilitates neurite outgrowth in the absence of neurotrophic support and pre-treatment of diabetic sciatic nerve substrata with active MMP-2 promotes a permissive environment for neurite outgrowth. In conclusion we suggest that MMP-2 downregulation may contribute to the regenerative deficits in diabetes. Minocycline treatment also downregulates MMP-2 activity and is associated with inhibitory effects on sensory neurons. Thus, caution should be exhibited with its use as the balance between beneficial and detrimental outcomes may be critical in assessing the benefits of using minocycline to treat diabetic neuropathy. PMID:25158309
van der Linden, M M D; van Ratingen, A R; van Rappard, D C; Nieuwenburg, S A; Spuls, Ph I
2017-06-01
There is a lack of evidence for minocycline in the treatment of rosacea. To compare the efficacy and safety of doxycycline 40 mg vs. minocycline 100 mg in papulopustular rosacea. In this randomized, single-centre, 1 : 1 allocation, assessor-blinded, noninferiority trial, patients with mild-to-severe papulopustular rosacea were randomly allocated to either oral doxycycline 40 mg or minocycline 100 mg for a 16-week period with 12 weeks of follow-up. Our primary outcomes were the change in lesion count and change in patient's health-related quality of life (using RosaQoL). Intention-to-treat and per protocol analyses were performed. Of the 80 patients randomized (40 minocycline, 40 doxycycline), 71 were treated for 16 weeks. Sixty-eight patients completed the study. At week 16, the median change in lesion count was comparable in both groups: doxycycline vs. minocycline, respectively 13 vs. 14 fewer lesions. The RosaQoL scores were decreased for both doxycycline and minocycline, respectively by 0·62 and 0·86. Secondary outcomes were comparable except for Investigator's Global Assessment success, which was seen significantly more often in the minocycline group than in the doxycycline group (60% vs. 18%, P < 0·001). At week 28, outcomes were comparable, except for RosaQoL scores and PaGA, which were significantly different in favour of minocycline (P = 0·005 and P = 0·043, respectively), and fewer relapses were recorded in the minocycline group than in the doxycycline group (7% and 48%, respectively; P < 0·001). No serious adverse reactions were reported. Minocycline 100 mg is noninferior to doxycycline 40 mg in efficacy over a 16- week treatment period. At follow-up, RosaQoL and PaGA were statistically significantly more improved in the minocycline group than in the doxycycline group, and minocycline 100 mg gives longer remission. In this study there was no significant difference in safety between these treatments; however, based on previous literature minocycline has a lower risk-to-benefit ratio than doxycycline. Minocycline 100 mg may be a good alternative treatment for those patients who, for any reason, are unable or unwilling to take doxycycline 40 mg. © 2016 British Association of Dermatologists.
Quick, Eamon D; Seitz, Scott; Clarke, Penny; Tyler, Kenneth L
2017-11-15
West Nile virus (WNV) is a neurotropic flavivirus that can cause significant neurological disease. Mouse models of WNV infection demonstrate that a proinflammatory environment is induced within the central nervous system (CNS) after WNV infection, leading to entry of activated peripheral immune cells. We utilized ex vivo spinal cord slice cultures (SCSC) to demonstrate that anti-inflammatory mechanisms may also play a role in WNV-induced pathology and/or recovery. Microglia are a type of macrophage that function as resident CNS immune cells. Similar to mouse models, infection of SCSC with WNV induces the upregulation of proinflammatory genes and proteins that are associated with microglial activation, including the microglial activation marker Iba1 and CC motif chemokines CCL2, CCL3, and CCL5. This suggests that microglia assume a proinflammatory phenotype in response to WNV infection similar to the proinflammatory (M1) activation that can be displayed by other macrophages. We now show that the WNV-induced expression of these and other proinflammatory genes was significantly decreased in the presence of minocycline, which has antineuroinflammatory properties, including the ability to inhibit proinflammatory microglial responses. Minocycline also caused a significant increase in the expression of anti-inflammatory genes associated with alternative anti-inflammatory (M2) macrophage activation, including interleukin 4 (IL-4), IL-13, and FIZZ1. Minocycline-dependent alterations to M1/M2 gene expression were associated with a significant increase in survival of neurons, microglia, and astrocytes in WNV-infected slices and markedly decreased levels of inducible nitric oxide synthase (iNOS). These results demonstrate that an anti-inflammatory environment induced by minocycline reduces viral cytotoxicity during WNV infection in ex vivo CNS tissue. IMPORTANCE West Nile virus (WNV) causes substantial morbidity and mortality, with no specific therapeutic treatments available. Antiviral inflammatory responses are a crucial component of WNV pathology, and understanding how they are regulated is important for tailoring effective treatments. Proinflammatory responses during WNV infection have been extensively studied, but anti-inflammatory responses (and their potential protective and reparative capabilities) following WNV infection have not been investigated. Minocycline induced the expression of genes associated with the anti-inflammatory (M2) activation of CNS macrophages (microglia) in WNV-infected SCSC while inhibiting the expression of genes associated with proinflammatory (M1) macrophage activation and was protective for multiple CNS cell types, indicating its potential use as a therapeutic reagent. This ex vivo culture system can uniquely address the ability of CNS parenchymal cells (neurons, astrocytes, and microglia) to respond to minocycline and to modulate the inflammatory environment and cytotoxicity in response to WNV infection without peripheral immune cell involvement. Copyright © 2017 American Society for Microbiology.
Quick, Eamon D.; Seitz, Scott; Tyler, Kenneth L.
2017-01-01
ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that can cause significant neurological disease. Mouse models of WNV infection demonstrate that a proinflammatory environment is induced within the central nervous system (CNS) after WNV infection, leading to entry of activated peripheral immune cells. We utilized ex vivo spinal cord slice cultures (SCSC) to demonstrate that anti-inflammatory mechanisms may also play a role in WNV-induced pathology and/or recovery. Microglia are a type of macrophage that function as resident CNS immune cells. Similar to mouse models, infection of SCSC with WNV induces the upregulation of proinflammatory genes and proteins that are associated with microglial activation, including the microglial activation marker Iba1 and CC motif chemokines CCL2, CCL3, and CCL5. This suggests that microglia assume a proinflammatory phenotype in response to WNV infection similar to the proinflammatory (M1) activation that can be displayed by other macrophages. We now show that the WNV-induced expression of these and other proinflammatory genes was significantly decreased in the presence of minocycline, which has antineuroinflammatory properties, including the ability to inhibit proinflammatory microglial responses. Minocycline also caused a significant increase in the expression of anti-inflammatory genes associated with alternative anti-inflammatory (M2) macrophage activation, including interleukin 4 (IL-4), IL-13, and FIZZ1. Minocycline-dependent alterations to M1/M2 gene expression were associated with a significant increase in survival of neurons, microglia, and astrocytes in WNV-infected slices and markedly decreased levels of inducible nitric oxide synthase (iNOS). These results demonstrate that an anti-inflammatory environment induced by minocycline reduces viral cytotoxicity during WNV infection in ex vivo CNS tissue. IMPORTANCE West Nile virus (WNV) causes substantial morbidity and mortality, with no specific therapeutic treatments available. Antiviral inflammatory responses are a crucial component of WNV pathology, and understanding how they are regulated is important for tailoring effective treatments. Proinflammatory responses during WNV infection have been extensively studied, but anti-inflammatory responses (and their potential protective and reparative capabilities) following WNV infection have not been investigated. Minocycline induced the expression of genes associated with the anti-inflammatory (M2) activation of CNS macrophages (microglia) in WNV-infected SCSC while inhibiting the expression of genes associated with proinflammatory (M1) macrophage activation and was protective for multiple CNS cell types, indicating its potential use as a therapeutic reagent. This ex vivo culture system can uniquely address the ability of CNS parenchymal cells (neurons, astrocytes, and microglia) to respond to minocycline and to modulate the inflammatory environment and cytotoxicity in response to WNV infection without peripheral immune cell involvement. PMID:28878079
Drug repurposing of minocycline against dengue virus infection.
Leela, Shilpa Lekshmi; Srisawat, Chatchawan; Sreekanth, Gopinathan Pillai; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai; Limjindaporn, Thawornchai
2016-09-09
Dengue virus infection is one of the most common arthropod-borne viral diseases. A complex interplay between host and viral factors contributes to the severity of infection. The antiviral effects of three antibiotics, lomefloxacin, netilmicin, and minocycline, were examined in this study, and minocycline was found to be a promising drug. This antiviral effect was confirmed in all four serotypes of the virus. The effects of minocycline at various stages of the viral life cycle, such as during viral RNA synthesis, intracellular envelope protein expression, and the production of infectious virions, were examined and found to be significantly reduced by minocycline treatment. Minocycline also modulated host factors, including the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2). The transcription of antiviral genes, including 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 3 (OAS3), and interferon α (IFNA), was upregulated by minocycline treatment. Therefore, the antiviral activity of minocycline may have a potential clinical use against Dengue virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.
Vangipuram, Ramya K; DeLozier, Whitney L; Geddes, Elizabeth; Friedman, Paul M
2016-03-01
Pigmentation secondary to minocycline ingestion is an uncommon adverse event affecting 3.7-14.8% of treated individuals for which few effective therapies are available. Three patterns of minocycline pigmentation have a characteristic clinical and histological appearance. The pigment composition in each variety is different and occurs at varying skin depths. Accordingly, a tailored approach according to the type of minocycline pigmentation is crucial for treatment success. The purpose of this intervention was to evaluate the efficacy of non-ablative fractional photothermolysis in combination with the Q-switched alexandrite laser for the treatment of type I minocycline pigmentation on the face. A patient with type I minocycline pigmentation was treated with non-ablative 1550-nm fractional photothermolysis followed immediately by 755-nm Q-switched alexandrite laser and then observed clinically to determine the outcome of this modality. The patient was seen in clinic 1 month later following her single treatment session and 100% clearance of all blue facial pigment was observed. Non-ablative fractional photothermolysis in combination with the 755-nm Q-switched alexandrite laser should be considered for treatment of type I minocycline pigmentation. © 2015 Wiley Periodicals, Inc.
Amini-Khoei, Hossein; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Haj-Mirzaian, Arvin; Shirzadian, Armin; Hasanvand, Amin; Balali-Dehkordi, Shima; Hassanipoor, Mahsa; Dehpour, Ahmad Reza
2018-03-20
Anticonvulsant effects of minocycline have been explored recently. This study was designed to examine the anticonvulsant effect of acute administration of minocycline on pentylenetetrazole (PTZ)-induced seizures in mouse considering the possible role of nitric oxide (NO)/NMDA pathway. We induced seizure using intravenous administration of PTZ. Our results showed that acute administration of minocycline increased the seizure threshold. Furthermore, co-administration of sub-effective doses of the non-selective nitric oxide synthase (NOS) inhibitor, L-NAME (10 mg/kg) and the neuronal NOS inhibitor, 7-nitroindazole (40 mg/kg) enhanced the anticonvulsant effect of sub-effective dose of minocycline (40 mg/kg). We found that inducible NOS inhibitor, aminoguanidine (100 mg/kg), had no effect on the anti-seizure effect of minocycline. Moreover, L-arginine (60 mg/kg), as a NOS substrate, reduced the anticonvulsant effect of minocycline. We also demonstrated that pretreatment with NMDA receptor antagonists, ketamine (0.5 mg/kg) and MK-801 (0.05 mg/kg) increased the anticonvulsant effect of sub-effective dose of minocycline. Results showed that minocycline significantly decreased the hippocampal nitrite level. Furthermore, co-administration of nNOS inhibitor like NMDA receptor antagonists augmented the effect of minocycline on the hippocampal nitrite level. In conclusion, we revealed that anticonvulsant effect of minocycline might be, at least in part, due to decline in constitutive hippocampal nitric oxide activity as well as inhibition of NMDA receptors.
Buonaguro, Elisabetta F; Tomasetti, Carmine; Chiodini, Paolo; Marmo, Federica; Latte, Gianmarco; Rossi, Rodolfo; Avvisati, Livia; Iasevoli, Felice; de Bartolomeis, Andrea
2017-04-01
In this study, we investigated whether minocycline, a second-generation tetracycline proposed as an add-on to antipsychotics in treatment-resistant schizophrenia (TRS), may affect the expression of Homer and Arc postsynaptic density (PSD) transcripts, implicated in synaptic regulation. Minocycline was administered alone or with haloperidol in rats exposed or not to ketamine, mimicking acute glutamatergic psychosis or naturalistic conditions, respectively. Arc expression was significantly reduced by minocycline compared with controls. Minocycline in combination with haloperidol also significantly reduced Arc expression compared with both controls and haloperidol alone. Moreover, haloperidol/minocycline combination significantly affected Arc expression in cortical regions, while haloperidol alone was ineffective on cortical gene expression. These results suggest that minocycline may strongly affect the expression of Arc as mediated by haloperidol, both in terms of quantitative levels and of topography of haloperidol-related expression. It is noteworthy that no significant pre-treatment effect was found, suggesting that pre-exposure to ketamine did not grossly affect gene expression. Minocycline was not found to significantly affect haloperidol-related Homer1a expression. No significant changes in Homer1b/c expression were observed. These results are consistent with previous observations that minocycline may modulate postsynaptic glutamatergic transmission, affecting distinct downstream pathways initiated by N-methyl-D-aspartate (NMDA) receptor modulation, i.e. Arc-mediated but not Homer1a-mediated pathways.
Could lengthening minocycline therapy better treat early syphilis?
Shao, Li-Li; Guo, Rui; Shi, Wei-Jie; Liu, Yuan-Jun; Feng, Bin; Han, Long; Liu, Quan-Zhong
2016-12-01
Syphilis is a sexually transmitted disease caused by Treponema pallidum. Minocycline, a representative tetracycline derivative, has the greatest antimicrobial activity among all tetracyclines. There are few reports about treating syphilis with minocycline because there is a lack of efficacy data from controlled trials. We compared the rates of serological cure in patients with early syphilis who were treated with minocycline or benzathine penicillin G (BPG).During the study period, a total of 40 syphilis patients received the BPG treatment, which was a single intramuscular dose of 2.4 million units of BPG, and 156 patients were treated with minocycline; 77 patients were placed in the 2-week, standard minocycline therapy group and received 100 mg of minocycline orally, twice daily for 14 days, and 79 patients were placed in the 4-week, lengthened minocycline therapy group and received 100 mg of minocycline orally, twice daily for 28 days. The outcome of interest was the rate of serological cure in these patients.At the end of the 2-year follow-up, the serological cure rate of the 4-week, lengthened minocycline therapy group (87.34%) was higher than that of both the 2-week, standard minocycline therapy group (72.73%) and the BPG treatment group (77.50%). In addition, the curative effect of the 4-week, lengthened minocycline therapy was significantly greater than that of the 2-week, standard minocycline therapy in patients who were aged >40 years; exhibited an initial rapid plasma reagin titer ≥1: 32; or exhibited secondary syphilis (P = 0.000, 0.008, 0.000; <0.05).Minocycline appears to be an effective agent for treating early syphilis, especially when applied as a 4-week, lengthened therapy.
Souza, Celice C.; da Silva, Michelle Castro; Lopes, Rosana Telma; Cardoso, Marcelo M.; Santos, Adriano Guimarães; dos Santos, Ijair Rogério
2017-01-01
We explored the comparative effects of minocycline treatment and intrastriatal BMMC transplantation after experimental striatal stroke in adult rats. Male Wistar adult rats were divided as follows: saline-treated (N = 5), minocycline-treated (N = 5), and BMMC-transplanted (N = 5) animals. Animals received intrastriatal microinjections of 80 pmol of endothelin-1 (ET-1). Behavioral tests were performed at 1, 3, and 7 days postischemia. Animals were treated with minocycline (50 mg/kg, i.p.) or intrastriatal transplants of 106 BMMCs at 24 h postischemia. Animals were perfused at 7 days after ischemic induction. Coronal sections were stained with cresyl violet for gross histopathological analysis and immunolabeled for the identification of neuronal bodies (NeuN), activated microglia/macrophages (ED1), and apoptotic cells (active caspase-3). BMMC transplantation and minocycline reduced the number of ED1+ cells (p < 0.05, ANOVA-Tukey), but BMMC afforded better results. Both treatments afforded comparable levels of neuronal preservation compared to control (p > 0.05). BMMC transplantation induced a higher decrease in the number of apoptotic cells compared to control and minocycline treatment. Both therapeutic approaches improved functional recovery in ischemic animals. The results suggest that BMMC transplantation is more effective in modulating microglial activation and reducing apoptotic cell death than minocycline, although both treatments are equally efficacious on improving neuronal preservation. PMID:28713482
Souza, Celice C; da Silva, Michelle Castro; Lopes, Rosana Telma; Cardoso, Marcelo M; de Souza, Lucas Lacerda; Santos, Adriano Guimarães; Dos Santos, Ijair Rogério; Franco, Edna C S; Gomes-Leal, Walace
2017-01-01
We explored the comparative effects of minocycline treatment and intrastriatal BMMC transplantation after experimental striatal stroke in adult rats. Male Wistar adult rats were divided as follows: saline-treated ( N = 5), minocycline-treated ( N = 5), and BMMC-transplanted ( N = 5) animals. Animals received intrastriatal microinjections of 80 pmol of endothelin-1 (ET-1). Behavioral tests were performed at 1, 3, and 7 days postischemia. Animals were treated with minocycline (50 mg/kg, i.p.) or intrastriatal transplants of 106 BMMCs at 24 h postischemia. Animals were perfused at 7 days after ischemic induction. Coronal sections were stained with cresyl violet for gross histopathological analysis and immunolabeled for the identification of neuronal bodies (NeuN), activated microglia/macrophages (ED1), and apoptotic cells (active caspase-3). BMMC transplantation and minocycline reduced the number of ED1+ cells ( p < 0.05, ANOVA-Tukey), but BMMC afforded better results. Both treatments afforded comparable levels of neuronal preservation compared to control ( p > 0.05). BMMC transplantation induced a higher decrease in the number of apoptotic cells compared to control and minocycline treatment. Both therapeutic approaches improved functional recovery in ischemic animals. The results suggest that BMMC transplantation is more effective in modulating microglial activation and reducing apoptotic cell death than minocycline, although both treatments are equally efficacious on improving neuronal preservation.
Jackson, J Mark; Kircik, Leon H; Lorenz, Douglas J
2013-03-01
Rosacea is one of the most commonly occurring dermatoses treated by dermatologists. There are multiple therapeutic options available for the treatment of papulopustular rosacea. Rosacea is an inflammatory condition, classically presenting with flushing and/or blushing along with erythema, edema, telangiectasia, papules, pustules, and nodules of the face. Minocycline, a member of the tetracycline family, has demonstrated benefit in the treatment of inflammatory lesions in patients with rosacea. This manuscript highlights the use of a new sustained-release low-dose minocycline 45 mg tablet, with or without azelaic acid, for the treatment of papulopustular rosacea.
Jackson, Joseph W.; Singh, Meera V.; Singh, Vir B.; Jones, Letitia D.; Davidson, Gregory A.; Ture, Sara; Morrell, Craig N.; Schifitto, Giovanni; Maggirwar, Sanjay B.
2016-01-01
Platelets play an essential role in hemostasis and wound healing by facilitating thrombus formation at sites of injury. Platelets also mediate inflammation and contain several pro-inflammatory molecules including cytokines and chemokines that mediate leukocyte recruitment and activation. Not surprisingly, platelet dysfunction is known to contribute to several inflammatory disorders. Antiplatelet therapies, such as aspirin, adenosine diphosphate (ADP) antagonists, glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, and anticoagulants such as warfarin, dampen platelet activity at the risk of unwarranted bleeding. Thus, the development of drugs that reduce platelet-mediated inflammation without interfering with thrombus formation is of importance to combat platelet-associated disorders. We have shown here for the first time that the tetracycline antibiotic, minocycline, administered to HIV-infected individuals reduces plasma levels of soluble CD40L and platelet factor 4 levels, host molecules predominately released by platelets. Minocycline reduced the activation of isolated platelets in the presence of the potent platelet activator, thrombin, as measured by ELISA and flow cytometry. Platelet degranulation was reduced upon exposure to minocycline as shown by mepacrine retention and flow cytometry. However, minocycline had no effect on spreading, aggregation, GPIIb/IIIa activation, or in vivo thrombus formation. Lastly, immunoblot analysis suggests that the antiplatelet activity of minocycline is likely mediated by inhibition of mixed lineage kinase 3 (MLK3)-p38 MAPK signaling axis and loss of p38 activity. Our findings provide a better understanding of platelet biology and a novel repurposing of an established antibiotic, minocycline, to specifically reduce platelet granule release without affecting thrombosis, which may yield insights in generating novel, specific antiplatelet therapies. PMID:27270236
Jackson, Joseph W; Singh, Meera V; Singh, Vir B; Jones, Letitia D; Davidson, Gregory A; Ture, Sara; Morrell, Craig N; Schifitto, Giovanni; Maggirwar, Sanjay B
2016-01-01
Platelets play an essential role in hemostasis and wound healing by facilitating thrombus formation at sites of injury. Platelets also mediate inflammation and contain several pro-inflammatory molecules including cytokines and chemokines that mediate leukocyte recruitment and activation. Not surprisingly, platelet dysfunction is known to contribute to several inflammatory disorders. Antiplatelet therapies, such as aspirin, adenosine diphosphate (ADP) antagonists, glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, and anticoagulants such as warfarin, dampen platelet activity at the risk of unwarranted bleeding. Thus, the development of drugs that reduce platelet-mediated inflammation without interfering with thrombus formation is of importance to combat platelet-associated disorders. We have shown here for the first time that the tetracycline antibiotic, minocycline, administered to HIV-infected individuals reduces plasma levels of soluble CD40L and platelet factor 4 levels, host molecules predominately released by platelets. Minocycline reduced the activation of isolated platelets in the presence of the potent platelet activator, thrombin, as measured by ELISA and flow cytometry. Platelet degranulation was reduced upon exposure to minocycline as shown by mepacrine retention and flow cytometry. However, minocycline had no effect on spreading, aggregation, GPIIb/IIIa activation, or in vivo thrombus formation. Lastly, immunoblot analysis suggests that the antiplatelet activity of minocycline is likely mediated by inhibition of mixed lineage kinase 3 (MLK3)-p38 MAPK signaling axis and loss of p38 activity. Our findings provide a better understanding of platelet biology and a novel repurposing of an established antibiotic, minocycline, to specifically reduce platelet granule release without affecting thrombosis, which may yield insights in generating novel, specific antiplatelet therapies.
Rojewska, Ewelina; Piotrowska, Anna; Makuch, Wioletta; Przewlocka, Barbara; Mika, Joanna
2016-03-01
Recent studies have highlighted the involvement of the kynurenine pathway in the pathology of neurodegenerative diseases, but the role of this system in neuropathic pain requires further extensive research. Therefore, the aim of our study was to examine the role of kynurenine 3-monooxygenase (Kmo), an enzyme that is important in this pathway, in a rat model of neuropathy after chronic constriction injury (CCI) to the sciatic nerve. For the first time, we demonstrated that the injury-induced increase in the Kmo mRNA levels in the spinal cord and the dorsal root ganglia (DRG) was reduced by chronic administration of the microglial inhibitor minocycline and that this effect paralleled a decrease in the intensity of neuropathy. Further, minocycline administration alleviated the lipopolysaccharide (LPS)-induced upregulation of Kmo mRNA expression in microglial cell cultures. Moreover, we demonstrated that not only indirect inhibition of Kmo using minocycline but also direct inhibition using Kmo inhibitors (Ro61-6048 and JM6) decreased neuropathic pain intensity on the third and the seventh days after CCI. Chronic Ro61-6048 administration diminished the protein levels of IBA-1, IL-6, IL-1beta and NOS2 in the spinal cord and/or the DRG. Both Kmo inhibitors potentiated the analgesic properties of morphine. In summary, our data suggest that in neuropathic pain model, inhibiting Kmo function significantly reduces pain symptoms and enhances the effectiveness of morphine. The results of our studies show that the kynurenine pathway is an important mediator of neuropathic pain pathology and indicate that Kmo represents a novel pharmacological target for the treatment of neuropathy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Leigh, Mary Jacena S; Nguyen, Danh V; Mu, Yi; Winarni, Tri I; Schneider, Andrea; Chechi, Tasleem; Polussa, Jonathan; Doucet, Paul; Tassone, Flora; Rivera, Susan M; Hessl, David; Hagerman, Randi J
2013-04-01
Minocycline rescued synaptic abnormalities and improved behavior in the fragile X mouse model. Previous open-label human studies demonstrated benefits in individuals with fragile X syndrome (FXS); however, its efficacy in patients with FXS has not been assessed in a controlled trial. Randomized, double-blind, placebo-controlled, crossover trial in individuals with FXS, aged 3.5 years to 16 years (n = 55, mean age 9.2 [SD, 3.6] years). Participants were randomized to minocycline or placebo for 3 months and then switched to the other treatment. Sixty-nine subjects were screened and 66 were randomized. Fifty-five subjects (83.3%) completed at least the first period and 48 (72.7%) completed the full trial. Intention-to-treat analysis demonstrated significantly greater improvements in one primary outcome, Clinical Global Impression Scale-Improvement after minocycline compared with placebo (2.49 ± 0.13 and 2.97 ± 0.13, respectively, p = .0173) and greater improvement in ad hoc analysis of anxiety and mood-related behaviors on the Visual Analog Scale (minocycline: 5.26 cm ± 0.46 cm, placebo: 4.05 cm ± 0.46 cm; p = .0488). Side effects were not significantly different during the minocycline and placebo treatments. No serious adverse events occurred on minocycline. Results may be potentially biased by study design weaknesses, including unblinding of subjects when they completed the study, drug-related side effects unblinding, and preliminary efficacy analysis results known to investigators. Minocycline treatment for 3 months in children with FXS resulted in greater global improvement than placebo. Treatment for 3 months appears safe; however, longer trials are indicated to further assess benefits, side effects, and factors associated with a clinical response to minocycline.
Leigh, Mary Jacena S.; Nguyen, Danh V.; Mu, Yi; Winarni, Tri I.; Schneider, Andrea; Chechi, Tasleem; Polussa, Jonathan; Doucet, Paul; Tassone, Flora; Rivera, Susan M.; Hessl, David; Hagerman, Randi J.
2013-01-01
Objective Minocycline rescued synaptic abnormalities and improved behavior in the fragile X mouse model. Prior open-label human studies demonstrated benefits in individuals with fragile X syndrome (FXS); however, its efficacy in patients with FXS has not been assessed in a controlled trial. Method Randomized, double-blind, placebo-controlled, crossover trial in individuals with FXS, ages 3.5-16 years (n=55, mean age 9.2 (SD 3.6 years)). Participants were randomized to minocycline or placebo for three months, then switched to the other treatment. Results Sixty-nine subjects were screened and 66 were randomized. Fifty-five subjects (83.3%) completed at least the first period and 48 (72.7%) completed the full trial. Intention-to-treat analysis demonstrated significantly greater improvements in one primary outcome, Clinical Global Impression Scale-Improvement after minocycline compared to placebo (2.49 ±0.13, 2.97 ±0.13, respectively, p 0.0173) and greater improvement in ad hoc analysis of anxiety and mood-related behaviors on the Visual Analoge Scale (minocycline 5.26 cm ±0.46 cm, placebo 4.05 cm±0.46cm; p 0.0488). Side effects were not significantly different during the minocycline and placebo treatments. No serious adverse events occurred on minocycline. Results may be potentially biased by study design weaknesses, including unblinding of subjects when they completed the study, drug-related side effects unblinding and preliminary efficacy analysis results known to investigators. Conclusion Minocycline treatment for three months in children with FXS resulted in greater global improvement than placebo. Treatment for three months appears safe; however, longer trials are indicated to further assess benefits, side effects, and factors associated with a clinical response to minocycline. PMID:23572165
Husain, Muhammad I; Chaudhry, Imran B; Husain, Nusrat; Khoso, Ameer B; Rahman, Raza R; Hamirani, Munir M; Hodsoll, John; Qurashi, Inti; Deakin, John Fw; Young, Allan H
2017-09-01
Evidence suggests that anti-inflammatory medication may be effective in the treatment of depressive symptoms. In this study, we aimed to investigate whether minocycline added to treatment as usual (TAU) for 3 months in patients with treatment-resistant depression will lead to an improvement in depressive symptoms. Multi-site, 12-week, double-blind, placebo-controlled, pilot trial of minocycline added to TAU for patients suffering from DSM-5 major depressive disorder, whose current episode has failed to respond to at least two antidepressants. The primary outcome measure was mean change in Hamilton Depression Rating Scale (HAMD-17) scores from baseline to week 12. Secondary measures were the Clinical Global Impression scale (CGI), Patient Health Questionnaire-9 (PHQ-9), the Generalised Anxiety Disorder scale (GAD-7) and EuroQoL (EQ-5D) quality-of-life questionnaire. Side-effect checklists were also used. Minocycline was started at 100 mg once daily (OD) and increased to 200 mg after 2 weeks. A total of 41 participants were randomised, with 21 in the minocycline group and 20 in the placebo group. A large decrease in HAMD scores was observed in the minocycline group compared to the placebo group (standardised effect size (ES) -1.21, p < 0.001). CGI scores in the minocycline group also showed a large improvement compared with placebo (odds ratio (OR): 17.6, p < 0.001). PHQ-9, GAD-7 and EQ-5D total showed more moderate improvements (ES ~ 0.4-0.5). The findings indicate that adjunctive minocycline leads to improvement in symptoms of treatment-resistant depression. However, our findings require replication in a larger sample. ClinicalTrials.gov identifier: NCT02263872, registered October 2014.
ERIC Educational Resources Information Center
Utari, Agustini; Chonchaiya, Weerasak; Rivera, Susan M.; Schneider, Andrea; Hagerman, Randi J.; Faradz, Sultana M. H.; Ethell, Iryna M.; Nguyen, Danh V.
2010-01-01
Minocycline can rescue the dendritic spine and synaptic structural abnormalities in the fragile X knock-out mouse. This is a review and preliminary survey to document side effects and potential outcome measures for minocycline use in the treatment of individuals with fragile X syndrome. We surveyed 50 patients with fragile X syndrome who received…
Minocycline Protection of Neomycin Induced Hearing Loss in Gerbils
Robinson, Alan M.; Vujanovic, Irena; Richter, Claus-Peter
2015-01-01
This animal study was designed to determine if minocycline ameliorates cochlear damage is caused by intratympanic injection of the ototoxic aminoglycoside antibiotic neomycin. Baseline auditory-evoked brainstem responses were measured in gerbils that received 40 mM intratympanic neomycin either with 0, 1.2, or 1.5 mg/kg intraperitoneal minocycline. Four weeks later auditory-evoked brainstem responses were measured and compared to the baseline measurements. Minocycline treatments of 1.2 mg/kg and 1.5 mg/kg resulted in significantly lower threshold increases compared to 0 mg/kg, indicating protection of hearing loss between 6 kHz and 19 kHz. Cochleae were processed for histology and sectioned to allow quantification of the spiral ganglion neurons and histological evaluation of organ of Corti. Significant reduction of spiral ganglion neuron density was demonstrated in animals that did not receive minocycline, indicating that those receiving minocycline demonstrated enhanced survival of spiral ganglion neurons, enhanced survival of sensory hairs cells and spiral ganglion neurons, and reduced hearing threshold elevation correlates with minocycline treatment demonstrating that neomycin induced hearing loss can be reduced by the simultaneous application of minocycline. PMID:25950003
Minocycline in Acute Cerebral Hemorrhage: An Early Phase Randomized Trial.
Fouda, Abdelrahman Y; Newsome, Andrea S; Spellicy, Samantha; Waller, Jennifer L; Zhi, Wenbo; Hess, David C; Ergul, Adviye; Edwards, David J; Fagan, Susan C; Switzer, Jeffrey A
2017-10-01
Minocycline is under investigation as a neurovascular protective agent for stroke. This study evaluated the pharmacokinetic, anti-inflammatory, and safety profile of minocycline after intracerebral hemorrhage. This study was a single-site, randomized controlled trial of minocycline conducted from 2013 to 2016. Adults ≥18 years with primary intracerebral hemorrhage who could have study drug administered within 24 hours of onset were included. Patients received 400 mg of intravenous minocycline, followed by 400 mg minocycline oral daily for 4 days. Serum concentrations of minocycline after the last oral dose and biomarkers were sampled to determine the peak concentration, half-life, and anti-inflammatory profile. A total of 16 consecutive eligible patients were enrolled, with 8 randomized to minocycline. Although the literature supports a time to peak concentration (T max ) of 1 hour for oral minocycline, the T max was estimated to be at least 6 hours in this cohort. The elimination half-life (available on 7 patients) was 17.5 hours (SD±3.5). No differences were observed in inflammatory biomarkers, hematoma volume, or perihematomal edema. Concentrations remained at neuroprotective levels (>3 mg/L) throughout the dosing interval in 5 of 7 patients. In intracerebral hemorrhage, a 400 mg dose of minocycline was safe and achieved neuroprotective serum concentrations. However, oral administration led to delayed absorption in these critically ill patients and should not be used when rapid, high concentrations are desired. Given the safety and pharmacokinetic profile of minocycline in intracerebral hemorrhage and promising data in the treatment of ischemic stroke, intravenous minocycline is an excellent candidate for a prehospital treatment trial. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01805895. © 2017 American Heart Association, Inc.
Shankar, Chaitra; Nabarro, Laura E B; Anandan, Shalini; Veeraraghavan, Balaji
2017-06-01
Carbapenem-resistant organisms are increasingly common worldwide, particularly in India and are associated with high mortality rates especially in patients with severe infection such as bacteremia. Existing drugs such as carbapenems and polymyxins have a number of disadvantages, but remain the mainstay of treatment. The tetracycline class of antibiotics was first produced in the 1940s. Minocycline, tetracycline derivative, although licensed for treatment of wide range of infections, has not been considered for treatment of multidrug-resistant organisms until recently and needs further in vivo studies. Tigecycline, a derivative of minocycline, although with certain disadvantages, has been frequently used in the treatment of carbapenem-resistant organisms. In this article, we review the properties of minocycline and tigecycline, the common mechanisms of resistance, and assess their role in the management of carbapenem-resistant organisms.
Considerations for using minocycline vs doxycycline for treatment of canine heartworm disease.
Papich, Mark G
2017-11-09
Doxycycline has been considered the first drug of choice for treating Wolbachia, a member of the Rickettsiaceae, which has a symbiotic relationship with filarial worms, including heartworms. Wolbachia, is susceptible to tetracyclines, which have been used as adjunctive treatments for heartworm disease. Treatment with doxycycline reduces Wolbachia numbers in all stages of heartworms and improves outcomes and decreased microfilaremia in dogs treated for heartworm disease. The American Heartworm Society recommends treatment with doxycycline in dogs diagnosed with heartworm disease at a dose of 10 mg/kg twice daily for 28 days. If doxycycline is not available, minocycline can be considered as a substitute. However, minocycline has not undergone an evaluation in dogs with heartworm disease, nor has an effective dose been established. Minocycline is an attractive option because of the higher cost of doxycycline and new pharmacokinetic information for dogs that provides guidance for appropriate dosage regimens to achieve pharmacokinetic-pharmacodynamic (PK-PD) targets. Published reports from the Anti-Wolbachia Consortium (A-WOL) indicate superior in vitro activity of minocycline over doxycycline. Studies performed in mouse models to measure anti-Wolbachia activity showed that minocycline was 1.7 times more effective than doxycycline, despite a 3-fold lower pharmacokinetic exposure. To achieve the same exposure as achieved in the mouse infection model, a pharmacokinetic-pharmacodynamic (PK-PD) analysis was conducted to determine optimal dosages for dogs. The analysis showed that an oral minocycline dose of 3.75 to 5 mg/kg administered twice daily would attain similar targets as observed in mice and predicted for human infections. There are potentially several advantages for use of minocycline in animals. It is well absorbed from oral administration, it has less protein binding than doxycycline (65% vs 92%) allowing for better distribution into tissue, and it is approximately two times more lipophilic than doxycycline, which may result in better intracellular penetration. More work is needed to document efficacy of minocycline for treating canine heartworm disease.
Apoorv, Thittayil Suresh; Babu, Phanithi Prakash
2017-02-01
Cerebral malaria (CM) is a neurological complication arising due to Plasmodium falciparum or Plasmodium vivax infection. Minocycline, a semi-synthetic tetracycline, has been earlier reported to have a neuroprotective role in several neurodegenerative diseases. In this study, we investigated the effect of minocycline treatment on the survivability of mice during experimental cerebral malaria (ECM). The currently accepted mouse model, C57BL/6 mice infected with Plasmodium berghei ANKA, was used for the study. Infected mice were treated with an intra-peritoneal dose of minocycline hydrochloride, 45mg/kg daily for ten days that led to parasite clearance in blood, brain, liver and spleen on 7th day post-infection; and the mice survived until experiment ended (90days) without parasite recrudescence. Evans blue extravasation assay showed that blood-brain barrier integrity was maintained by minocycline. The tumor necrosis factor-alpha protein level and caspase activity, which is related to CM pathogenesis, was significantly reduced in the minocycline-treated group. Fluoro-Jade® C and hematoxylin-eosin staining of the brains of minocycline group revealed a decrease in degenerating neurons and absence of hemorrhages respectively. Minocycline treatment led to decrease in gene expressions of inflammatory mediators like interferon-gamma, CXCL10, CCL5, CCL2; receptors CXCR3 and CCR2; and hence decrease in T-cell-mediated cerebral inflammation. We also proved that this reduction in gene expressions is irrespective of the anti-parasitic property of minocycline. The distinct ability of minocycline to modulate gene expressions of CXCL10 and CXCR3 makes it effective than doxycycline, a tetracycline used as chemoprophylaxis. Our study shows that minocycline is highly effective in conferring neuroprotection during ECM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Saito, Mineki; Sejima, Hiroe; Naito, Tadasuke; Ushirogawa, Hiroshi; Matsuzaki, Toshio; Matsuura, Eiji; Tanaka, Yuetsu; Nakamura, Tatsufumi; Takashima, Hiroshi
2017-12-04
Chemokine (C-C motif) ligand 1 (CCL1) is produced by activated monocytes/ macrophages and T-lymphocytes, and acts as a potent attractant for Th2 cells and a subset of T-regulatory (Treg) cells. Previous reports have indicated that CCL1 is overexpressed in adult T-cell leukemia cells, mediating an autocrine anti-apoptotic loop. Because CCL1 is also known as a potent chemoattractant that plays a major role in inflammatory processes, we investigated the role of CCL1 in the pathogenesis of human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The results showed that: (1) CCL1 was preferentially expressed in HAM/TSP-derived HTLV-1-infected T-cell lines, (2) CCL1 expression was induced along with Tax expression in the Tax-inducible T-cell line JPX9, (3) transient Tax expression in an HTLV-1-negative T-cell line activated the CCL1 gene promoter, (4) plasma levels of CCL1 were significantly higher in patients with HAM/TSP than in HTLV-1-seronegative patients with multiple sclerosis and HTLV-1-infected asymptomatic healthy carriers, and (5) minocycline inhibited the production of CCL1 in HTLV-1-infected T-cell lines. The present results suggest that elevated CCL1 levels may be associated with the pathogenesis of HAM/TSP. Although further studies are required to determine the in vivo significance, minocycline may be considered as a potential candidate for the long-term treatment of HAM/TSP via its anti-inflammatory effects, which includes the inhibition of CCL1 expression.
2013-01-01
Introduction Multiple sclerosis (MS) is the most common inflammatory demyelinating disorder of the central nervous system (CNS). Minocycline ameliorates the clinical severity of MS and exhibits antiinflammatory, neuroprotective activities, and good tolerance for long-term use, whereas it is toxic to the CNS. Recently, the immunomodulation and neuroprotection capabilities of human bone marrow mesenchymal stem cells (hBM-MSCs) were shown in experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated whether the combination of hBM-MSCs and a low-dose minocycline could produce beneficial effects in EAE mice. Methods The sensitivity of hBM-MSCs to minocycline was determined by an established cell-viability assay. Minocycline-treated hBM-MSCs were also characterized with flow cytometry by using MSC surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by using immunization with MOG35-55. Immunopathology assays were used to detect the inflammatory cells, demyelination, and neuroprotection. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct Th1 and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). terminal dUTP nick-end labeling (TUNEL) staining was performed to elucidate the cell apoptosis in the spinal cords of EAE mice. Results Minocycline did not affect the viability, surface phenotypes, or differentiation capacity of hBM-MSCs, while minocycline affected the viability of astrocytes at a high dose. In vivo efficacy experiments showed that combined treatment, compared to the use of minocycline or hBM-MSCs alone, resulted in a significant reduction in clinical scores, along with attenuation of inflammation, demyelination, and neurodegeneration. Moreover, the combined treatment with hBM-MSCs and minocycline enhanced the immunomodulatory effects, which suppressed proinflammatory cytokines (IFN-γ, TNF-α) and conversely increased anti-inflammatory cytokines (IL-4, IL-10). In addition, TUNEL staining also demonstrated a significant decrease of the number of apoptotic cells in the combined treatment compared with either treatment alone. Conclusions The combination of hBM-MSCs and minocycline provides a novel experimental protocol to enhance the therapeutic effects in MS. PMID:23826999
Inta, Ioana; Vogt, Miriam A; Vogel, Anne S; Bettendorf, Markus; Gass, Peter; Inta, Dragos
2016-10-01
NMDA receptor (NMDAR) antagonists induce in perinatal rodent cortical apoptosis and protracted schizophrenia-like alterations ameliorated by antipsychotic treatment. The broad-spectrum antibiotic minocycline elicits antipsychotic and neuroprotective effects. Here we tested, if minocycline protects also against apoptosis triggered by the NMDAR antagonist MK-801 at postnatal day 7. Surprisingly, minocycline induced widespread cortical apoptosis and exacerbated MK-801-triggered cell death. In some areas such as the subiculum, the pro-apoptotic effect of minocycline was even more pronounced than that elicited by MK-801. These data reveal among antipsychotics unique pro-apoptotic properties of minocycline, raising concerns regarding consequences for brain development and the use in children.
Sinha-Hikim, Indrani; Shen, Ruoqing; Nzenwa, Ify; Gelfand, Robert; Mahata, Sushil K.
2015-01-01
This study investigates the molecular mechanisms by which minocycline, a second generation tetracycline, prevents cardiac myocyte death induced by in utero cocaine exposure. Timed mated pregnant Sprague-Dawley (SD) rats received one of the following treatments twice daily from embryonic (E) day 15–21 (E15–E21): (i) intraperitoneal (IP) injections of saline (control); (ii) IP injections of cocaine (15 mg/kg BW); and (iii) IP injections of cocaine + oral administration of 25 mg/kg BW of minocycline. Pups were killed on postnatal day 15 (P15). Additional pregnant dams received twice daily IP injections of cocaine (from E15–E21) + oral administration of a relatively higher (37.5 mg/kg BW) dose of minocycline. Minocycline treatment continued from E15 until the pups were sacrificed on P15. In utero cocaine exposure resulted in an increase in oxidative stress and fetal cardiac myocyte apoptosis through activation of c-Jun-NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK)-mediated mitochondria-dependent apoptotic pathway. Continued minocycline treatment from E15 through P15 significantly prevented oxidative stress, kinase activation, perturbation of BAX/BCL-2 ratio, cytochrome c release, caspase activation, and attenuated fetal cardiac myocyte apoptosis after prenatal cocaine exposure. These results demonstrate in vivo cardioprotective effects of minocycline in preventing fetal cardiac myocyte death after prenatal cocaine exposure. Given its proven clinical safety and ability to cross the placental barrier and enter into the fetal circulation, minocycline may be an effective therapy for preventing cardiac consequences of in utero cocaine exposure. PMID:21424555
Hashimoto, Kenji; Tsukada, Hideo; Nishiyama, Shingo; Fukumoto, Dai; Kakiuchi, Takeharu; Iyo, Masaomi
2007-03-01
Positron emission tomography (PET) studies of methamphetamine (METH) abusers suggest that psychotic symptoms of METH abusers may be attributable to the reduction of dopamine transporters (DAT) in the human brain. However, there are currently no particular pharmacological treatments for the wide range of symptoms associated with METH abuse. Using a PET study in conscious monkeys, we investigated whether the second generation antibiotic minocycline could protect against the reduction of DAT in monkeys treated with METH (2 mg/kg x 3, 3-hour intervals). Pretreatment and subsequent administration of minocycline significantly attenuated the reduction of DAT in the striatum of monkeys treated with METH. Furthermore, posttreatment and subsequent administration of minocycline also significantly attenuated the reduction of DAT. In contrast, repeated administration of minocycline alone did not alter the density of DAT in the striatum of monkeys treated with METH. Our findings suggest that minocycline protects against METH-induced neurotoxicity in the monkey brain. Therefore, minocycline is likely to be a promising therapeutic agent for the treatment of several symptoms associated with METH use in humans.
Star, Phoebe; Choy, Carolyn; Parsi, Kurosh
2017-01-01
Minocycline-induced pigmentation (MIP) is an uncommon but well-described adverse effect of oral minocycline treatment. MIP is clinically and histopathologically distinct from post-sclerotherapy pigmentation. We report a case of a patient presenting with blackened skin overlying veins recently treated with endovenous laser and foam sclerotherapy. The patient was a 44-year-old male with systemic sclerosis who commenced minocycline for the treatment of rosacea 5 months prior. Histological examination of the discolored tissue and underlying vein revealed hemosiderin deposition in the dermis and pigmented macrophages within the sub-endothelial layer of the vein wall with a staining pattern consistent with MIP. Venous tissue has not previously been reported in the literature as a target of minocycline pigmentation. Our patient preferred to control his rosacea by continuing to take minocycline. Follow-up ultrasound examinations revealed the treated vessels to be fully occluded with no evidence of recanalization, residual flow or ongoing thrombophlebitis. Despite a good sclerotherapy outcome, the pigmentation did not subside over 2 years. This case demonstrates that oral minocycline may induce significant and potentially long-term pigmentation in predisposed patients undergoing sclerotherapy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chen, Wei; Zhao, Minjie; Zhao, Shuzhi; Lu, Qianyi; Ni, Lisha; Zou, Chen; Lu, Li; Xu, Xun; Guan, Huaijin; Zheng, Zhi; Qiu, Qinghua
2017-02-01
Chronic low-grade inflammation occurs in diabetic retinopathy (DR), but the underlying mechanism(s) remains (remain) unclear. NLRP3 inflammasome activation is involved in several other inflammatory diseases. Thus, we investigated the role of the NLRP3 inflammasome signaling pathway in the pathogenesis of DR. Diabetes was induced in rats by streptozotocin treatment for 8 weeks. They were treated with NLRP3 shRNA or minocycline during the last 4 weeks. High glucose-exposed human retinal microvascular endothelial cells (HRMECs) were co-incubated with antioxidants or subjected to TXNIP or NLRP3 shRNA interference. In high glucose-exposed HRMECs and retinas of diabetic rats, mRNA and protein expression of NLRP3, ASC, and proinflammatory cytokines were induced significantly by hyperglycemia. Upregulated interleukin (IL)-1β maturation, IL-18 secretion, and caspase-1 cleavage were also observed with increased cell apoptosis and retinal vascular permeability, compared with the control group. NLRP3 silencing blocked these effects in the rat model and HRMECs, confirming that inflammasome activation contributed to inflammation in DR. TXNIP expression was increased by reactive oxygen species (ROS) overproduction in animal and cell models, whereas antioxidant addition or TXNIP silencing blocked IL-1β and IL-18 secretion in high glucose-exposed HRMECs, indicating that the ROS-TXNIP pathway mediates NLRP3 inflammasome activation. Minocycline significantly downregulated ROS generation and reduced TXNIP expression, subsequently inhibited NLRP3 activation, and further decreased inflammatory factors, which were associated with a decrease in retinal vascular permeability and cell apoptosis. Together, our data suggest that the TXNIP/NLRP3 pathway is a potential therapeutic target for the treatment of DR, and the use of minocycline specifically for such therapy may be a new avenue of investigation in inflammatory disease.
Gajbhiye, Snehalata V; Tripathi, Raakhi K; Salve, Bharat; Petare, Anup; Potey, Anirudha V
2017-05-10
Medical management for alcohol abuse has limitations. Alcohol consumption activates N-methyl-d-aspartate receptors and release of nitric oxide which can be inhibited by minocycline as it readily crosses blood brain barrier and may have effect on alcohol consumption. Thus, study objective is to evaluate the effect of minocycline on rewarding property, extinction and the reinstatement phenomenon induced by alcohol in a model of conditioned place preference (CPP) in mice. To evaluate rewarding effects of alcohol, CPP procedure consisted of 4 parts, including adaptation (day 1), pre-conditioning test (day 2), conditionings with alcohol (days 3, 5, 7 and 9) or saline (days 4, 6, 8 and 10) and postconditioning test (day 11) conducted on 11 consecutive days. The groups included were saline treated group (alcohol control), naltrexone - 1mg/kg (positive control), and minocycline in the doses of 10, 30 and 50mg/kg. To evaluate the effect of minocycline on alcohol relapse, CPP procedure consisted 6 parts, the first 4 were the same as enumerated above followed by extinction (days 12-16) and reinstatement phase (day 17). The time spent in alcohol paired compartment by different groups, revealed that minocycline and naltrexone significantly attenuated alcohol-induced place preference compared to alcohol control (p<0.05). Pretreatment with minocycline and naltrexone blocked reinstatement of extinguished CPP. Minocycline may have a role in attenuating the rewarding property of alcohol and prevent alcohol relapse. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparison of minocycline and azithromycin for the treatment of mild scrub typhus in northern China.
Zhao, Minxing; Wang, Ting; Yuan, Xiaoyu; Du, Weiming; Lin, Miaoxin; Shen, Yanbo
2016-09-01
Scrub typhus, caused by Orientia tsutsugamushi, has recently emerged in northern China where the disease had not been known to exist. Although doxycycline and azithromycin are the recommended agents for the treatment of scrub typhus, clinical responses depend both on the susceptibilities of various O. tsutsugamushi strains and the severity of the disease. A retrospective analysis was conducted on patients diagnosed with mild scrub typhus from August 2013 to January 2016 in the Affiliated Hospital of Nantong University, northern China. A total of 40 patients who received minocycline treatment and 34 patients who received azithromycin treatment were included in the analysis. All patients except one defervesced within 120 h after initiating antimicrobial therapy. Kaplan-Meier curves in association with log-rank test showed that the median time to defervescence was significantly shorter for the minocycline-treated group than the azithromycin-treated group (P = 0.003). There were no serious adverse events during treatment. No relapse occurred in either group during the 1-month follow-up period. In conclusion, both minocycline and azithromycin are effective and safe for the treatment of mild scrub typhus, but minocycline is more active than azithromycin against O. tsutsugamushi infection acquired in northern China. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Beneficial effects of minocycline on cuprizone induced cortical demyelination.
Skripuletz, Thomas; Miller, Elvira; Moharregh-Khiabani, Darius; Blank, Alexander; Pul, Refik; Gudi, Viktoria; Trebst, Corinna; Stangel, Martin
2010-09-01
In this study, we investigated the potential of minocycline to influence cuprizone induced demyelination in the grey and white matter. To induce demyelination C57BL/6 mice were fed with cuprizone for up to 6 weeks and were analysed at different timepoints (week 0, 4, 5, 6). Mice treated with minocycline had less demyelination of the cortex and corpus callosum compared with sham treated animals. In the cortex decreased numbers of activated and proliferating microglia were found after 6 weeks of cuprizone feeding, while there were no significant effects for microglial infiltration of the corpus callosum. In addition to the beneficial effects on demyelination, minocycline prevented from motor coordination disturbance as shown in the beam walking test. For astrogliosis and the numbers of OPC and oligodendrocytes no treatment effects were found. In summary, minocycline treatment diminished the course of demyelination in the grey and white matter and prevented disturbances in motor coordination.
Sinha-Hikim, Indrani; Shen, Ruoqing; Nzenwa, Ify; Gelfand, Robert; Mahata, Sushil K; Sinha-Hikim, Amiya P
2011-06-01
This study investigates the molecular mechanisms by which minocycline, a second generation tetracycline, prevents cardiac myocyte death induced by in utero cocaine exposure. Timed mated pregnant Sprague-Dawley (SD) rats received one of the following treatments twice daily from embryonic (E) day 15-21 (E15-E21): (i) intraperitoneal (IP) injections of saline (control); (ii) IP injections of cocaine (15 mg/kg BW); and (iii) IP injections of cocaine + oral administration of 25 mg/kg BW of minocycline. Pups were killed on postnatal day 15 (P15). Additional pregnant dams received twice daily IP injections of cocaine (from E15-E21) + oral administration of a relatively higher (37.5 mg/kg BW) dose of minocycline. Minocycline treatment continued from E15 until the pups were sacrificed on P15. In utero cocaine exposure resulted in an increase in oxidative stress and fetal cardiac myocyte apoptosis through activation of c-Jun-NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK)-mediated mitochondria-dependent apoptotic pathway. Continued minocycline treatment from E15 through P15 significantly prevented oxidative stress, kinase activation, perturbation of BAX/BCL-2 ratio, cytochrome c release, caspase activation, and attenuated fetal cardiac myocyte apoptosis after prenatal cocaine exposure. These results demonstrate in vivo cardioprotective effects of minocycline in preventing fetal cardiac myocyte death after prenatal cocaine exposure. Given its proven clinical safety and ability to cross the placental barrier and enter into the fetal circulation, minocycline may be an effective therapy for preventing cardiac consequences of in utero cocaine exposure.
Chemical pleurodesis for prolonged postoperative air leak in primary spontaneous pneumothorax.
How, Cheng-Hung; Tsai, Tung-Ming; Kuo, Shuenn-Wen; Huang, Pei-Ming; Hsu, Hsao-Hsun; Lee, Jang-Ming; Chen, Jin-Shing; Lai, Hong-Shiee
2014-05-01
Prolonged air leak is the most common complication after thoracoscopic operation for primary spontaneous pneumothorax (PSP), and the role of chemical pleurodesis in treating air leaks remains unclear. This study evaluated the safety and efficacy of chemical pleurodesis with a comparison between minocycline and OK-432. Between 1994 and 2011, 1083 PSP patients were treated by thoracoscopic operation. After the operation, patients with persistent air leak for 3 days or more were managed by minocycline or OK-432 pleurodesis. The demographic and outcome data for these patients were collected by retrospective chart review. Seventy-nine patients (7.3%) with prolonged air leak after thoracoscopy underwent minocycline pleurodesis (60 patients) or OK-432 pleurodesis (19 patients) as the primary treatment. The primary success rate was 63% (38/60) for minocycline pleurodesis and 95% (18/19) for OK-432 pleurodesis (p = 0.009). Postpleurodesis pain was common and comparable between the two groups. No major complications were noted after a total of 121 treatments. Patients undergoing primary OK-432 pleurodesis had shorter durations of postpleurodesis chest drainage (mean 8.5 vs. 2.3 days; p < 0.001) and postoperative hospital stay (mean 11.9 vs. 6.8 days; p < 0.001) than those undergoing primary minocycline pleurodesis. After a median follow-up of 16 months, recurrence was noted in one patient in the OK-432 group and none in the minocycline group. Long-term pulmonary function in the two groups was comparable. Chemical pleurodesis using OK-432 or minocycline is safe and convenient for prolonged air leak after thoracoscopic treatment for PSP. Our experience suggested that OK-432 may be more effective than minocycline in reducing air leak. Copyright © 2013. Published by Elsevier B.V.
Minocycline neuroprotection in a rat model of asphyxial cardiac arrest is limited.
Keilhoff, Gerburg; Schweizer, Hannes; John, Robin; Langnaese, Kristina; Ebmeyer, Uwe
2011-03-01
The study investigated a possible neuroprotective potency of minocycline in an experimental asphyxial cardiac arrest (ACA) rat model. Clinically important survival times were evaluated thus broadening common experimental approaches. Adult rats were subjected to 5 min of ACA followed by resuscitation. There were two main treatment groups: ACA and sham operated. Relating to minocycline treatment each group consisted of three sub-groups: pre-, post-, and sans-mino, with three different survival times: 4, 7, and 21 days. Neurodegeneration and microgliosis were monitored by immunohistochemistry. Alterations of microglia-associated gene expression were analyzed by quantitative RT-PCR. ACA induced massive nerve cell loss and activation of microglia/macrophages in hippocampal CA1 cell layer intensifying with survival time. After 7 days, minocycline significantly decreased both, neuronal degeneration and microglia response in dependence on the application pattern; application post ACA was most effective. After 21 days, neuroprotective effects of minocycline were lost. ACA significantly induced expression of the microglia-associated factors Ccl2, CD45, Mac-1, F4-80, and Tnfa. Independent on survival time, minocycline affected these parameters not significantly. Expression of iNOS was unaffected by both, ACA and minocycline. In adult rat hippocampus microglia was significantly activated by ACA. Minocycline positive affected neuronal survival and microglial response temporary, even when applied up to 18 h after ACA, thus defining a therapeutically-relevant time window. As ACA-induced neuronal cell death involves acute and delayed events, longer minocycline intervention targeting also secondary injury cascades should manifest neuroprotective potency, a question to be answered by further experiments. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Prevention of hypoglycemia-induced neuronal death by minocycline
2012-01-01
Diabetic patients who attempt strict management of blood glucose levels frequently experience hypoglycemia. Severe and prolonged hypoglycemia causes neuronal death and cognitive impairment. There is no effective tool for prevention of these unwanted clinical sequelae. Minocycline, a second-generation tetracycline derivative, has been recognized as an anti-inflammatory and neuroprotective agent in several animal models such as stroke and traumatic brain injury. In the present study, we tested whether minocycline also has protective effects on hypoglycemia-induced neuronal death and cognitive impairment. To test our hypothesis we used an animal model of insulin-induced acute hypoglycemia. Minocycline was injected intraperitoneally at 6 hours after hypoglycemia/glucose reperfusion and injected once per day for the following 1 week. Histological evaluation for neuronal death and microglial activation was performed from 1 day to 1 week after hypoglycemia. Cognitive evaluation was conducted 6 weeks after hypoglycemia. Microglial activation began to be evident in the hippocampal area at 1 day after hypoglycemia and persisted for 1 week. Minocycline injection significantly reduced hypoglycemia-induced microglial activation and myeloperoxidase (MPO) immunoreactivity. Neuronal death was significantly reduced by minocycline treatment when evaluated at 1 week after hypoglycemia. Hypoglycemia-induced cognitive impairment is also significantly prevented by the same minocycline regimen when subjects were evaluated at 6 weeks after hypoglycemia. Therefore, these results suggest that delayed treatment (6 hours post-insult) with minocycline protects against microglial activation, neuronal death and cognitive impairment caused by severe hypoglycemia. The present study suggests that minocycline has therapeutic potential to prevent hypoglycemia-induced brain injury in diabetic patients. PMID:22998689
Guerra, Alberto Daniel; Rose, Warren E; Hematti, Peiman; Kao, W John
2017-07-21
Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties due to their anti-inflammatory, angiogenic, and even antibacterial properties. We have shown previously that minocycline enhances the wound healing phenotype of MSCs, and MSCs encapsulated in poly(ethylene glycol) and gelatin-based hydrogels with minocycline have antibacterial properties against Staphylococcus aureus (SA). Here, we investigated the signaling pathway that minocycline modulates in MSCs which results in their enhanced wound healing phenotype and determined whether preconditioning MSCs with minocycline has an effect on antimicrobial activity. We further investigated the in-vivo antimicrobial efficacy of MSC and antibiotic-loaded hydrogels in inoculated full-thickness cutaneous wounds. Modulation of cell signaling pathways in MSCs with minocycline was analyzed via western blot, immunofluorescence, and ELISA. Antimicrobial efficacy of MSCs pretreated with minocycline was determined by direct and transwell coculture with SA. MSC viability after SA coculture was determined via a LIVE/DEAD® stain. Internalization of SA by MSCs pretreated with minocycline was determined via confocal imaging. All protein and cytokine analysis was done via ELISA. The in-vivo antimicrobial efficacy of MSC and antibiotic-loaded hydrogels was determined in Sprague-Dawley rats inoculated with SA. Two-way ANOVA for multiple comparisons was used with Bonferroni test assessment and an unpaired two-tailed Student's t test was used to determine p values for all assays with multiple or two conditions, respectively. Minocycline leads to the phosphorylation of transcriptional nuclear factor-κB (NFκB), but not c-Jun NH 2 -terminal kinase (JNK) or mitogen-activated protein kinase (ERK). Inhibition of NFκB activation prevented the minocycline-induced increase in VEGF secretion. Preconditioning of MSCs with minocycline led to a reduced production of the antimicrobial peptide LL-37, but enhanced antimicrobial activity against SA via an increased production of IL-6 and SA internalization. MSC and antibiotic-loaded hydrogels reduced SA bioburden in inoculated wounds over 3 days and accelerated reepithelialization. Minocycline modulates the NFκB pathway in MSCs that leads to an enhanced production of IL-6 and internalization of SA. This mechanism may have contributed to the in-vivo antibacterial efficacy of MSC and antibiotic-loaded hydrogels.
[Minocycline pneumonitis and eosinophilia].
Fink, N; Mouallem, M
2000-06-15
Pneumonitis with eosinophilia is one of the less common and severe adverse effects of minocycline. The disease evolves in days or weeks from the beginning of treatment, and is usually characterized by dyspnea, fever and bilateral infiltrates in the chest X-ray. With cessation of the antibiotic, and sometimes adding cortico-steroids, clinical and roentgenological resolution follow. We present a case given minocycline for folliculitis and 3 weeks later fever, cough and shortness of breath developed. The clinical and roentgenological course was consistent with minocycline pneumonitis accompanied by eosinophilia.
Impact of minocycline ointment for periodontal treatment of oral bacteria.
Nakao, Ryoma; Takigawa, Satoko; Sugano, Naoyuki; Koshi, Ryosuke; Ito, Koichi; Watanabe, Haruo; Senpuku, Hidenobu
2011-01-01
Topical tetracyclines, such as minocycline ointment, are frequently used for the treatment of periodontal infection. We investigated the influence of minocycline ointment use on oral bacteria, using supragingival plaque samples from adults who had not taken any antibiotics for 6 months. Initially we investigated the effect of topical minocycline administration on the emergence of tetracycline-resistant oral bacteria in four healthy adults. The isolation frequency of tetracycline-resistant oral bacteria to total viable bacteria increased substantially on day 6 after treatment, although it returned to baseline on day 25. Subsequently we investigated the isolation frequency of tetracycline-resistant oral streptococci (TOS) as a representative oral bacterium, using samples from 41 subjects with periodontal diseases. The percentage of TOS (of the total oral streptococci) increased significantly (from 11.9±15.6% to 34.2±24.0%) after minocycline treatment. Various TOS species were identified; S. mitis, S. salivarius, S. sanguinis, and S. oralis were frequently isolated. PCR and Southern blotting allowed us to identify tetM on the Tn916-like elements as the gene responsible for tetracycline-resistance. These findings suggest that the potential risk of the spread of similar genetic elements through bacteria in the oral cavity should be considered.
Knoops, Sofie; Aldinucci Buzzo, João L.; Boon, Lise; Martens, Erik; Opdenakker, Ghislain; Kolaczkowska, Elzbieta
2017-01-01
Gelatinase B or matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) is increased in inflammatory processes and cancer, and is associated with disease progression. In part, this is due to MMP-9-mediated degradation of extracellular matrix, facilitating influx of leukocytes into inflamed tissues and invasion or metastasis of cancer cells. MMP-9 is produced as proMMP-9 and its propeptide is subsequently removed by other proteases to generate proteolytically active MMP-9. The significance of MMP-9 in pathologies triggered the development of specific inhibitors of this protease. However, clinical trials with synthetic inhibitors of MMPs in the fight against cancer were disappointing. Reports on active compounds which inhibit MMP-9 should be carefully examined in this regard. In a considerable set of recent publications, two antibiotics (minocycline and azythromycin) and the proteasome inhibitor bortezomib, used in cancers, were reported to inhibit MMP-9 at different stages of its expression, activation or activity. The current study was undertaken to compare and to verify the impact of these compounds on MMP-9. With exception of minocycline at high concentrations (>100 μM), the compounds did not affect processing of proMMP-9 into MMP-9, nor did they affect direct MMP-9 gelatinolytic activity. In contrast, azithromycin specifically reduced MMP-9 mRNA and protein levels without affecting NF-κB in endotoxin-challenged monocytic THP-1 cells. Bortezomib, although being highly toxic, had no MMP-9-specific effects but significantly upregulated cyclooxygenase-2 (COX-2) activity and PGE2 levels. Overall, our study clarified that azithromycin decreased the levels of MMP-9 by reduction of gene and protein expression while minocycline inhibits proteolytic activity at high concentrations. PMID:28369077
Mora, Marylhi; Medina-Leendertz, Shirley J; Bonilla, Ernesto; Terán, Raikelin E; Paz, Milagros C; Arcaya, José Luis
2013-06-01
In the present study we compared the effects of minocycline and ascorbic acid in the life span, motor activity and lipid peroxidation of Drosophila melanogaster, in an effort to find a substance capable of providing protection against oxidative stress in aging. In the flies treated with minocycline a very significant increase in the life span (101 +/- 1.33 days) was observed when compared to those treated with ascorbic acid and controls (42.3% and 38.4%, respectively). The motor activity of minocycline treated flies also increased significantly with respect to control and ascorbic acid fed flies, from the 3rd to the 9th week of treatment. With regard to lipid peroxidation, it was found that the levels of malondialdehyde (MDA) in flies treated with minocycline showed no statistical differences to the control on the first day of treatment, but a significantly lower content on the day of 50% survival. In contrast, in flies treated with ascorbic acid significantly elevated levels of MDA compared to control and minocycline treated flies were detected throughout. These results suggest a protective effect of minocycline against oxidative stress and aging in D. melanogaster. An inhibitory effect on reactive oxygen species production may be an important contributing factor.
Minocycline promotes the generation of dendritic cells with regulatory properties.
Kim, Narae; Park, Chan-Su; Im, Sun-A; Kim, Ji-Wan; Lee, Jae-Hee; Park, Young-Jun; Song, Sukgil; Lee, Chong-Kil
2016-08-16
Minocycline, which has long been used as a broad-spectrum antibiotic, also exhibits non-antibiotic properties such as inhibition of inflammation and angiogenesis. In this study, we show that minocycline significantly enhances the generation of dendritic cells (DCs) from mouse bone marrow (BM) cells when used together with GM-CSF and IL-4. DCs generated from BM cells in the presence of minocycline (Mino-DCs) demonstrate the characteristics of regulatory DCs. Compared with control DCs, Mino-DCs are resistant to subsequent maturation stimuli, impaired in MHC class II-restricted exogenous Ag presentation, and show decreased cytokine secretion. Mino-DCs also show decreased ability to prime allogeneic-specific T cells, while increasing the expansion of CD4+CD25+Foxp3+ T regulatory cells both in vitro and in vivo. In addition, pretreatment with MOG35-55 peptide-pulsed Mino-DCs ameliorates clinical signs of experimental autoimmune encephalitis induced by MOG peptide injection. Our study identifies minocycline as a new pharmacological agent that could be potentially used to increase the production of regulatory DCs for cell therapy to treat autoimmune disorders, allergy, and transplant rejection.
Karasneh, Jumana A; Al-Eryani, Kamal; Clark, Glenn T; Sedghizadeh, Parish P
2016-10-01
Management of medication-related osteone-crosis of the jaw (MRONJ) with active infection can be a serious challenge for clinicians. Based on Association of Oral and Maxillofacial Surgeons (AAOMS) recommendations, we have tested a modified treatment protocol using topical minocycline. Five patients diagnosed with stage II or III MRONJ lesions were willing to consent to our protocol. In addition to conventional treatment as suggested by the AAOMS, such as, surgical debridement, chlorhexidine irrigation, and systemic antibiotics, we applied 10% minocycline to the lesions once a week for sustained local antibiotic delivery. All five patients reported pain relief after the first minocycline application. Complete healing occurred in three patients; case three healed completely after the third application, one case continues to improve toward resolution and one withdraws due to other non-relevant medical problem. In this study, we are reporting favorable results using a modified protocol with topical minocycline to treat MRONJ lesions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Topical Minocycline Effectively Decontaminates and Reduces Inflammation in Infected Porcine Wounds.
Daly, Lauren Tracy; Tsai, David M; Singh, Mansher; Nuutila, Kristo; Minasian, Raquel A; Lee, Cameron C Y; Kiwanuka, Elizabeth; Hackl, Florian; Onderdonk, Andrew B; Junker, Johan P E; Eriksson, Elof; Caterson, Edward J
2016-11-01
Wound infection can impair postoperative healing. Topical antibiotics have potential to treat wound infection and inflammation and minimize the adverse effects associated with systemic antibiotics. Full-thickness porcine wounds were infected with Staphylococcus aureus. Using polyurethane wound enclosure devices, wounds were treated with topical 100 μg/ml minocycline, topical 1000 μg/ml minocycline, topical saline control, or 4 mg/kg intravenous minocycline. Bacteria were quantified in wound tissue and fluid obtained over 9 hours. Immunosorbent assays were used to analyze inflammatory marker concentrations. Minocycline's effect on in vitro migration and proliferation of human keratinocytes and fibroblasts was tested using scratch assays and metabolic assays, respectively. After 6 hours, 100 and 1000 μg/ml topical minocycline decreased bacteria in wound tissue to 3.5 ± 0.87 and 2.9 ± 2.3 log colony-forming units/g respectively, compared to 8.3 ± 0.9 log colony-forming units/g in control wounds (p < 0.001) and 6.9 ± 0.2 log colony-forming units/g in wounds treated with 4 mg/kg intravenous minocycline (p < 0.01). After 2 hours, topical minocycline reduced concentrations of the inflammatory cytokines interleukin-1β, interleukin-6, and tumor necrosis factor-α (p < 0.01), and inflammatory cell counts in wound tissue (p < 0.05). In noninfected wounds, topical minocycline significantly reduced interleukin-1β, interleukin-6, and inflammatory cell counts after 4 hours (p < 0.01). Matrix metalloproteinase-9 concentrations decreased after 1-hour treatment (p < 0.05). Keratinocyte and fibroblast in vitro functions were not adversely affected by 10 μg/ml minocycline or less. Topical minocycline significantly reduces bacterial burden and inflammation in infected wounds compared with wounds treated with intravenous minocycline or control wounds. Minocycline also decreases local inflammation independently of its antimicrobial effect.
Minocycline does not evoke anxiolytic and antidepressant-like effects in C57BL/6 mice.
Vogt, M A; Mallien, A S; Pfeiffer, N; Inta, I; Gass, P; Inta, D
2016-03-15
Minocycline is a broad-spectrum tetracycline antibiotic with multiple actions, including anti-inflammatory and neuroprotective effects, that was proposed as novel treatment for several psychiatric disorders including schizophrenia and depression. However, there are contradictory results regarding antidepressant effects of minocycline in rodent models. Additionally, the possible anxiolytic effect of minocycline is still poorly investigated. Therefore, we aimed to clarify in the present study the influence of minocycline on behavioral correlates of mood disorders in standard tests for depression and anxiety, the Porsolt Forced Swim Test (FST), Elevated O-Maze, Dark-Light Box Test and Openfield Test in adult C57BL/6 mice. We found, unexpectedly, that mice treated with minocycline (20-40mg/kg, i.p.) did not display antidepressant- or anxiolytic-like behavioral changes in contrast to mice treated with diazepam (0.5mg/kg, anxiety tests) or imipramine (20mg/kg, depressive-like behavior). These results are relevant for future studies, considering that C57BL/6 mice, the most widely used strain in pharmacological and genetic animal models, did not react as expected to the treatment regime applied. Copyright © 2015 Elsevier B.V. All rights reserved.
Watabe, Motoki; Kato, Takahiro A; Monji, Akira; Horikawa, Hideki; Kanba, Shigenobu
2012-04-01
Minocycline has long been applied to various infectious diseases as a tetracycline antibiotic and recently has found new application in the treatment of brain diseases such as stroke and multiple sclerosis. In addition, minocycline has also been suggested as an effective drug for psychiatric diseases. These suggestions imply that minocycline may modulate our mental activities, while the underlying mechanism remains to be clarified. To investigate how minocycline influences human mental activity, we experimentally examined how minocycline works on human social decision making in a double-blind randomized trial. Forty-nine healthy volunteers were administered minocycline or placebo over four days, after which they played (1) a trust game, in which they decided how much to trust an anonymous partner, and (2) a dictator game, in which they decided how to divide resources between themselves and an anonymous partner. The minocycline group did not display increased trusting behavior or more altruistic resource allocation. In fact, the minocycline group displayed a slight reduction in trusting behavior. However, the minocycline group did show a strong positive correlation between the degree of risk taking in the trust game and in a separate evaluation of others' trustworthiness, whereas the placebo group showed no such correlation. These results suggest that minocycline led to more rational decision-making strategies, possibly by increasing emotion regulation. Since minocycline is a well-known inhibitor of microglial activation, our findings may open a new optional pathway for treating mental states in which a component of rational decision making is impaired.
Effect of feeding on the pharmacokinetics of oral minocycline in healthy research dogs.
Hnot, Melanie L; Cole, Lynette K; Lorch, Gwendolen; Rajala-Schultz, Paivi J; Papich, Mark G
2015-12-01
The effect of food on minocycline oral absorption in dogs is unknown. The objective was to determine the pharmacokinetics of minocycline after administration of a single oral dose in fed and fasted dogs. Ten research hounds were administered oral minocycline (approximately 5 mg/kg) with and without food, in a crossover study, with a one-week wash-out between treatments. Blood samples were collected immediately prior to minocycline administration and over 24 h. Minocycline plasma drug concentrations were measured using high-performance liquid chromatography using ultraviolet detection and were analysed with compartmental modelling to determine primary pharmacokinetic parameters. Each dog was analysed independently, followed by calculation of means and variation of the dogs. The Wilcoxon signed-rank test [analysing secondary pharmacokinetic parameters - peak concentration (CMAX ), area under the concentration versus time curve (AUC)] was used to compare the two groups. A population pharmacokinetic modelling approach was performed using nonlinear mixed effects modelling of primary parameters for the population as fixed effects and the difference between subjects as a random effect. Covariate analysis was used to identify the source of variability in the population. No significant difference was found between treatments for AUC (P = 0.0645), although AUC was higher in fasted dogs. A significant difference was found for CMAX (P = 0.0059), with fasted dogs attaining a higher CMAX . The covariate of fed versus fasted accounted for a significant variation in the pharmacokinetics. Because feeding was a significant source of variation for the population's primary pharmacokinetic parameters and fasted dogs had higher minocycline concentrations, we recommend administering minocycline without food. © 2015 ESVD and ACVD.
NASA Astrophysics Data System (ADS)
Fidyawati, D.; Soeroso, Y.; Masulili, S. L. C.
2017-08-01
The role of root surface conditioning treatment on smear layer removal of human teeth is affected by periodontitis in periodontal regeneration. The objective of this study is to analyze the smear layer on root surface conditioned with 2.1% minocycline HCl ointment (Periocline), and 24% EDTA gel (Prefgel). A total of 10 human teeth indicated for extraction due to chronic periodontitis were collected and root planed. The teeth were sectioned in thirds of the cervical area, providing 30 samples that were divided into three groups - minocycline ointment treatment, 24% EDTA gel treatment, and saline as a control. The samples were examined by scanning electron microscope. No significant differences in levels of smear layer were observed between the minocycline group and the EDTA group (p=0.759). However, there were significant differences in the level of smear layer after root surface treatment in the minocycline and EDTA groups, compared with the control group (p=0.00). There was a relationship between root surface conditioning treatment and smear layer levels following root planing.
Singh, Maneesh; Singh, Pratibha; Vaira, Dolores; Amand, Mathieu; Rahmouni, Souad; Moutschen, Michel
2014-01-01
More than a quarter of a century of research has established chronic immune activation and dysfunctional T cells as central features of chronic HIV infection and subsequent immunodeficiency. Consequently, the search for a new immunomodulatory therapy that could reduce immune activation and improve T-cell function has been increased. However, the lack of small animal models for in vivo HIV study has hampered progress. In the current study, we have investigated a model of cord blood haematopoietic progenitor cells (CB-HPCs) -transplanted humanized NOD/LtsZ-scidIL-2Rγnull mice in which progression of HIV infection is associated with widespread chronic immune activation and inflammation. Indeed, HIV infection in humanized NSG mice caused up-regulation of several T-cell immune activation markers such as CD38, HLA-DR, CD69 and co-receptor CCR5. T-cell exhaustion markers PD-1 and CTLA-4 were found to be significantly up-regulated on T cells. Moreover, increased plasmatic levels of lipopolysaccharide, sCD14 and interleukin-10 were also observed in infected mice. Treatment with minocycline resulted in a significant decrease of expression of cellular and plasma immune activation markers, inhibition of HIV replication and improved T-cell counts in HIV-infected humanized NSG mice. The study demonstrates that minocycline could be an effective, low-cost adjunctive treatment to regulate chronic immune activation and replication of HIV. PMID:24409837
Minocycline attenuates interferon-α-induced impairments in rat fear extinction.
Bi, Qiang; Shi, Lijuan; Yang, Pingting; Wang, Jianing; Qin, Ling
2016-06-30
Extinction of conditioned fear is an important brain function for animals to adapt to a new environment. Accumulating evidence suggests that innate immune cytokines are involved in the pathology of psychotic disorders. However, the involvement of cytokines in fear dysregulation remains less investigated. In the present study, we investigated how interferon (IFN)-α disrupts the extinction of conditioned fear and propose an approach to rescue IFN-α-induced neurologic impairment. We used a rat model of auditory fear conditioning to study the effect of IFN-α on the fear memory process. IFN-α was infused directly into the amygdala of rats and examined the rats' behavioral response (freezing) to fear-conditioned stimuli. Immunohistochemical staining was used to examine the glia activity status of glia in the amygdala. The levels of the proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the amygdala were measured by enzyme-linked immunosorbent assay. We also administrated minocycline, a microglial activation inhibitor, before the IFN-α infusion to testify the possibility to reverse the IFN-α-induced effects. Infusing the amygdala with IFN-α impaired the extinction of conditioned fear in rats and activated microglia and astrocytes in the amygdala. Administering minocycline prevented IFN-α from impairing fear extinction. The immunohistochemical and biochemical results show that minocycline inhibited IFN-α-induced microglial activation and reduced IL-1β and TNF-α production. Our findings suggest that IFN-α disrupts the extinction of auditory fear by activating glia in the amygdala and provides direction for clinical studies of novel treatments to modulate the innate immune system in patients with psychotic disorders.
Intravenous Minocycline: A Review in Acinetobacter Infections.
Greig, Sarah L; Scott, Lesley J
2016-10-01
Intravenous minocycline (Minocin ® ) is approved in the USA for use in patients with infections due to susceptible strains of Gram-positive and Gram-negative pathogens, including infections due to Acinetobacter spp. Minocycline is a synthetic tetracycline derivative that was originally introduced in the 1960s. A new intravenous formulation of minocycline was recently approved and introduced to address the increasing prevalence of multidrug-resistant (MDR) pathogens. Minocycline shows antibacterial activity against A. baumannii clinical isolates worldwide, and exhibits synergistic bactericidal activity against MDR and extensively drug-resistant (XDR) A. baumannii isolates when combined with other antibacterial agents. In retrospective studies, intravenous minocycline provided high rates of clinical success or improvement and was generally well tolerated among patients with MDR or carbapenem-resistant A. baumannii infections. While randomized clinical trial data would be useful to fully establish the place of minocycline in the management of these infections for which there are currently very few available options, clinical trials in patients with infections due to Acinetobacter spp. are difficult to perform. Nevertheless, current data indicate a potential role for intravenous minocycline in the treatment of patients MDR A. baumannii infections, particularly when combined with a second antibacterial agent (e.g. colistin).
Adjunctive minocycline for schizophrenia: A meta-analysis of randomized controlled trials.
Xiang, Ying-Qiang; Zheng, Wei; Wang, Shi-Bin; Yang, Xin-Hu; Cai, Dong-Bin; Ng, Chee H; Ungvari, Gabor S; Kelly, Deanna L; Xu, Wei-Ying; Xiang, Yu-Tao
2017-01-01
This study aimed to conduct a meta-analysis of the efficacy and safety of adjunctive minocycline for schizophrenia. Randomized controlled trials (RCTs) comparing adjunctive minocycline with placebo in patients with schizophrenia were included in the meta-analysis. Two independent investigators extracted and synthesized data. Standard mean differences (SMDs), risk ratio (RR) ±95% confidence intervals (CIs) and the number-needed-to-harm (NNH) were calculated. Eight RCTs with 548 schizophrenia patient including 286 (52.2%) patients on minocycline (171.9±31.2mg/day) and 262 (47.8%) on placebo completed 18.5±13.4 weeks of treatment. Meta-analyses of Positive and Negative Syndrome Scale (PANSS) (7 RCTs with 8 treatment arms)/Brief Psychiatric Rating Scale (BPRS) (1 RCT) total score [SMD: -0.64, (95%CI: -1.02, -0.27), P=0.0008; I 2 =74%], positive, negative and general symptom scores [SMD: -0.69 to -0.22 (95%CI: -0.98, -0.03), P=0.02-0.00001; I 2 =7-63%] revealed a significant superiority of adjunctive minocycline treatment over the placebo. There was no significant difference regarding neurocognitive function, discontinuation rate and adverse drug reactions between the two groups. This meta-analysis showed that adjunctive minocycline appears to be efficacious and safe for schizophrenia. Due to significant heterogeneity, future studies with a large sample size are needed to confirm these findings. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Chaudhry, Imran B; Hallak, Jaime; Husain, Nusrat; Minhas, Fareed; Stirling, John; Richardson, Paul; Dursun, Serdar; Dunn, Graham; Deakin, Bill
2012-09-01
The onset and early course of schizophrenia is associated with subtle loss of grey matter which may be responsible for the evolution and persistence of symptoms such as apathy, emotional blunting, and social withdrawal. Such 'negative' symptoms are unaffected by current antipsychotic therapies. There is evidence that the antibiotic minocycline has neuroprotective properties. We investigated whether the addition of minocycline to treatment as usual (TAU) for 1 year in early psychosis would reduce negative symptoms compared with placebo. In total, 144 participants within 5 years of first onset in Brazil and Pakistan were randomised to receive TAU plus placebo or minocycline. The primary outcome measures were the negative and positive syndrome ratings using the Positive and Negative Syndrome Scale. Some 94 patients completed the trial. The mean improvement in negative symptoms for the minocycline group was 9.2 and in the placebo group 4.7, an adjusted difference of 3.53 (s.e. 1.01) 95% CI: 1.55, 5.51; p < 0.001 in the intention-to-treat population. The effect was present in both countries. The addition of minocycline to TAU early in the course of schizophrenia predominantly improves negative symptoms. Whether this is mediated by neuroprotective, anti-inflammatory or others actions is under investigation.
Arezoomandan, Reza; Haghparast, Abbas
2016-03-01
Relapse to drug use is one of the most difficult clinical problems in treating addiction. Glial activation has been linked with the drug abuse, and the glia modulators such as minocycline can modulate the drug abuse effects. The aim of the present study was to determine whether minocycline could attenuate the maintenance and reinstatement of morphine. Conditioned place preference (CPP) was induced by subcutaneous injection of morphine (5 mg/kg) for 3 days. Following the acquisition of the CPP, the rats were given daily bilateral intra-NAc injections of either minocycline (1, 5, and 10 μg/0.5 μL) or saline (0.5 μL). The animals were tested for conditioning score 60 min after each injection. To induce the reinstatement, a priming dose of morphine (1 mg/kg) was injected 1 day after the final extinction day. The morphine-induced CPP lasted for 7 days after cessation of morphine treatment. Our data revealed that a priming dose of morphine could reinstate the extinguished morphine-induced CPP. Daily intra-accumbal injection of minocycline during the extinction period blocked the maintenance of morphine CPP and also attenuated the priming-induced reinstatement. Our findings indicated that minocycline could facilitate the extinction and attenuate the reinstatement of morphine. These results provided new evidence that minocycline might be considered as a promising therapeutic agent for the treatment of several symptoms associated with morphine abuse.
Levkovitz, Yechiel; Fenchel, Daphna; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit
2015-01-01
We assessed the effects of minocycline, a tetracycline with anti-inflammatory, anti-apoptotic and neuroprotective capacities, in an animal model of post-traumatic stress disorder (PTSD). Rats were exposed to psychogenic stress and treated 1h later with minocycline or saline. Behavioral measures included the elevated plus-maze (EPM) and acoustic startle response (ASR) 7 days post stress-exposure. One day after behavioral testing, animals were exposed to a trauma cue and freezing response was assessed. Local levels of cytokines interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the hippocampus, frontal cortex (FC) and hypothalamus were then examined. Minocycline attenuated anxious-like behaviors in stress-exposed rats. In addition, decreased levels of cytokines were measured in exposed rats treated with minocycline compared to their counterparts treated with saline. This study suggests a potential use of minocycline in preventing physiological and behavioral alternations resulting from acute exposure to psychological stress. As this is the first study to report beneficial outcomes for minocycline treatment in an animal model of PTSD, further investigations of the use of minocycline in stress-related conditions with emphasis on PTSD is needed. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
Salameh, Aida; Halling, Michelle; Seidel, Thomas; Dhein, Stefan
2015-12-01
Pharmacological cardiac organ protection during cardiopulmonary bypass presents an opportunity for improvement. A number of different strategies have been established to minimize ischemia/reperfusion-induced damage to the heart. Among these, cardioplegia with histidine-tryptophan-ketoglutarate solution and hypothermia are the most frequently used regimens. The antibiotic minocycline has been used in this context for neuroprotection. The aim of the current study was to evaluate whether the application of minocycline prior to cardioplegia exerts a protective effect on cardiac muscle. For this purpose, this study investigated six rabbit hearts with minocycline treatment (1 μmol/L) and six without in a Langendorff model of 90 min cold cardioplegic arrest using Custodiol followed by a 30 min recovery phase. Histological analysis of cardiac muscle revealed that markers of apoptosis, oxidative and nitrosative stress were significantly lower in the minocycline group, whereas adenosine triphosphate (ATP)- and malondialdehyde (MDA)-levels and O2-consumption were not affected by minocycline. Functionally, recovery of dP/dt (max) and dP/dt (min) was significantly faster in the minocycline group than in control. This leads to the conclusion that adding minocycline to the cardioplegic solution may improve left ventricular recovery after cardioplegic arrest involving reduced pro-apoptotic effects. © 2015 Wiley Publishing Asia Pty Ltd.
Minocycline attenuates noise-induced hearing loss in rats.
Zhang, Jing; Song, Yong-Li; Tian, Ke-Yong; Qiu, Jian-Hua
2017-02-03
Noise-induced hearing loss (NIHL) is a serious health concern and prevention of hair cell death or therapeutic intervention at the early stage of NIHL is critical to preserve hearing. Minocycline is a semi-synthetic derivative of tetracycline and has been shown to have otoprotective effects in ototoxic drug-induced hearing impairment, however, whether minocycline can protect against NIHL has not been investigated. The present study demonstrated elevated ABR (auditory brainstem response) thresholds and outer hair cell loss following traumatic noise exposure, which was mitigated by intraperitoneal administration of minocycline (45mg/kg/d) for 5 consecutive days. In conclusion, the present study demonstrated that minocycline, a clinically approved drug with a good safety profile, can attenuate NIHL in rats and may potentially be used for treatment of hearing loss in clinic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Li, Shih-Wen; Chen, Yu-Chieh; Sheen, Jiunn-Ming; Hsu, Mei-Hsin; Tain, You-Lin; Chang, Kow-Aung; Huang, Li-Tung
2017-07-01
Bile duct ligation (BDL) model is used to study hepatic encephalopathy accompanied by cognitive impairment. We employed the proteomic analysis approach to evaluate cognition-related proteins in the prefrontal cortex of young BDL rats and analyzed the effect of minocycline on these proteins and spatial memory. BDL was induced in young rats at postnatal day 17. Minocycline as a slow-release pellet was implanted into the peritoneum. Morris water maze test and two-dimensional liquid chromatography-tandem mass spectrometry were used to evaluate spatial memory and prefrontal cortex protein expression, respectively. We used 2D/LC-MS/MS to analyze for affected proteins in the prefrontal cortex of young BDL rats. Results were verified with Western blotting, immunohistochemistry, and quantitative real-time PCR. The effect of minocycline in BDL rats was assessed. BDL induced spatial deficits, while minocycline rescued it. Collapsin response mediator protein 2 (CRMP2) and manganese-dependent superoxide dismutase (MnSOD) were upregulated and nucleoside diphosphate kinase B (NME2) was downregulated in young BDL rats. BDL rats exhibited decreased levels of brain-derived neurotrophic factor (BDNF) mRNA as compared with those by the control. However, minocycline treatment restored CRMP2 and NME2 protein expression, BDNF mRNA level, and MnSOD activity to control levels. We demonstrated that BDL altered the expression of CRMP2, NME2, MnSOD, and BDNF in the prefrontal cortex of young BDL rats. However, minocycline treatment restored the expression of the affected mediators that are implicated in cognition. Copyright © 2017 Elsevier Inc. All rights reserved.
Herrero-Zazo, Maria; Brauer, Ruth; Gaughran, Fiona; Howard, Louise M; Taylor, David; Barlow, David J
2018-05-01
Animal studies suggest that the antibiotic and microglial activation inhibitor, minocycline, is likely to have a protective effect against the emergence of psychosis but evidence from human studies is lacking. The aim of this study is to examine the effects of exposure to minocycline during adolescence on the later incidence of severe mental illness (SMI). A historical cohort study using electronic primary care data was conducted to assess the association between exposure to minocycline during adolescence and incidence of SMI. The Incidence Rate Ratio (IRR) was measured using Poisson regression adjusted for age, gender, time of exposure, socioeconomic deprivation status, calendar year and co-medications. Early minocycline prescription ( n=13,248) did not affect the incidence of SMI compared with non-prescription of minocycline ( n=14,393), regardless of gender or whether or not the data were filtered according to a minimum exposure period (minimum period: IRR 0.96; 95% CI 0.68-1.36; p=0.821; no minimum period: IRR 1.08; 95% CI 0.83-1.42; p=0.566). Exposure to minocycline for acne treatment during adolescence appears to have no effect on the incidence of SMI.
Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia.
Stokes, Jennifer A; Arbogast, Tara E; Moya, Esteban A; Fu, Zhenxing; Powell, Frank L
2017-04-01
Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, Pi O 2 = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly ( P < 0.001) decreased ventilation during acute hypoxia in CH rats. However, minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia. NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory centers during chronic hypoxia and ventilatory acclimatization. However, minocycline cannot reverse ventilatory acclimatization after it is established. Hence, glial cells may provide signals that initiate but do not sustain ventilatory acclimatization. Copyright © 2017 the American Physiological Society.
Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia
Arbogast, Tara E.; Moya, Esteban A.; Fu, Zhenxing; Powell, Frank L.
2017-01-01
Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, PiO2 = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly (P < 0.001) decreased ventilation during acute hypoxia in CH rats. However, minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia. NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory centers during chronic hypoxia and ventilatory acclimatization. However, minocycline cannot reverse ventilatory acclimatization after it is established. Hence, glial cells may provide signals that initiate but do not sustain ventilatory acclimatization. PMID:28100653
Garcez, Michelle Lima; Mina, Francielle; Bellettini-Santos, Tatiani; Carneiro, Franciellen Gonçalves; Luz, Aline Pereira; Schiavo, Gustavo Luis; Andrighetti, Matheus Scopel; Scheid, Maylton Grégori; Bolfe, Renan Pereira; Budni, Josiane
2017-07-03
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common type of age-related dementia. Cognitive decline, beta-amyloid (Aβ) accumulation, neurofibrillary tangles, and neuroinflammation are the main pathophysiological characteristics of AD. Minocycline is a tetracycline derivative with anti-inflammatory properties that has a neuroprotective effect. The aim of this study was to evaluate the effect of minocycline on memory, neurotrophins and neuroinflammation in an animal model of AD induced by the administration of Aβ (1-42) oligomer. Male BALB/c mice were treated with minocycline (50mg/kg) via the oral route for a total of 17days, 24h after intracerebroventricular administration of Aβ (1-42) oligomer. At the end of this period, was performed the radial maze test, and 24h after the last minocycline administration, serum was collected and the cortex and hippocampus were dissected for biochemical analysis. The administration of minocycline reversed the memory impairment caused by Aβ (1-42). In the hippocampus, minocycline reversed the increases in the levels of interleukin (IL-1β), Tumor Necrosis Factor- alpha (TNF-α) and, IL-10 caused by Aβ (1-42). In the cortex, AD-like model increase the levels of IL-1β, TNF-α and, IL-4. Minocycline treatment reversed this. In the serum, Aβ (1-42) increased the levels of IL-1β and IL-4, and minocycline was able to reverse this action, but not to reverse the decrease of IL-10 levels. Minocycline also reversed the increase in the levels of Brain-derived neurotrophic factor (BDNF) in the hippocampus caused by Aβ (1-42), and reduced Nerve Growth Factor (NGF) increases in the total cortex. Therefore, our results indicate that minocycline causes improvements in the spatial memory, and cytokine levels were correlated with this effect in the brain it. Besides this, minocycline reduced BDNF and NGF levels, highlighting the promising effects of minocycline in treating AD-like dementia. Copyright © 2017 Elsevier Inc. All rights reserved.
Minocycline fails to exert antiepileptogenic effects in a rat status epilepticus model.
Russmann, Vera; Goc, Joanna; Boes, Katharina; Ongerth, Tanja; Salvamoser, Josephine D; Siegl, Claudia; Potschka, Heidrun
2016-01-15
The tetracycline antibiotic minocycline can exert strong anti-inflammatory, antioxidant, and antiapoptotic effects. There is cumulating evidence that epileptogenic brain insults trigger neuroinflammation and anti-inflammatory concepts can modulate the process of epileptogenesis. Based on the mechanisms of action discussed for minocycline, the compound is of interest for intervention studies as it can prevent the polarization of microglia into a pro-inflammatory state. Here, we assessed the efficacy of sub-chronic minocycline administration initiated immediately following an electrically-induced status epilepticus in rats. The treatment did not affect the development of spontaneous seizures. However, minocycline attenuated behavioral long-term consequences of status epilepticus with a reduction in hyperactivity and hyperlocomotion. Furthermore, the compound limited the spatial learning deficits observed in the post-status epilepticus model. The typical status epilepticus-induced neuronal cell loss was evident in the hippocampus and the piriform cortex. Minocycline exposure selectively protected neurons in the piriform cortex and the hilus, but not in the hippocampal pyramidal layer. In conclusion, the data argue against an antiepileptogenic effect of minocycline in adult rats. However, the findings suggest a disease-modifying impact of the tetracycline affecting the development of behavioral co-morbidities, as well as long-term consequences on spatial learning. In addition, minocycline administration resulted in a selective neuroprotective effect. Although strong anti-inflammatory effects have been proposed for minocycline, we could not verify these effects in our experimental model. Considering the multitude of mechanisms claimed to contribute to minocycline's effects, it is of interest to further explore the exact mechanisms underlying the beneficial effects in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Naderi, Yazdan; Sabetkasaei, Masoumeh; Parvardeh, Siavash; Zanjani, Taraneh Moini
2017-05-01
Memory deficit is the most visible symptom of cerebral ischemia that is associated with loss of pyramidal cells in CA1 region of the hippocampus. Oxidative stress and inflammation may be involved in the pathogenesis of ischemia/reperfusion (I/R) damage. Minocycline, a semi-synthetic tetracycline derived antibiotic, has anti-inflammatory and antioxidant properties. We evaluated the neuroprotective effect of minocycline on memory deficit induced by cerebral I/R in rat. I/R was induced by occlusion of common carotid arteries for 20min. Minocycline (40mg/kg, i.p.) was administered once daily for 7days after I/R. Learning and memory were assessed using the Morris water maze test. Nissl staining was used to evaluate the viability of CA1 pyramidal cells. The effects of minocycline on the microglial activation was also investigated by Iba1 (Ionized calcium binding adapter molecule 1) immunostaining. The content of malondialdehyde (MDA) and pro-inflammatory cytokines (IL-1β and TNF-α) in the hippocampus were measured by thiobarbituric acid reaction substances method and ELISA, respectively. Minocycline reduced the increase in escape latency time and in swimming path length induced by cerebral I/R. Furthermore, the ischemia-induced reduction in time spent in the target quadrant during the probe trial was increased by treatment with minocycline. Histopathological results indicated that minocycline prevented pyramidal cells death and microglial activation induced by I/R. Minocycline also reduced the levels of MDA and pro-inflammatory cytokines in the hippocampus in rats subjected to I/R. Minocycline has neuroprotective effects on memory deficit induced by cerebral I/R in rat, probably via its anti-inflammatory and antioxidant properties. Copyright © 2017 Elsevier Inc. All rights reserved.
Huang, Dennis; Yu, Brenda; Diep, John K; Sharma, Rajnikant; Dudley, Michael; Monteiro, Jussimara; Kaye, Keith S; Pogue, Jason M; Abboud, Cely Saad; Rao, Gauri G
2017-07-01
The multidrug resistance profiles of Klebsiella pneumoniae carbapenemase (KPC) producers have led to increased clinical polymyxin use. Combination therapy with polymyxins may improve treatment outcomes, but it is uncertain which combinations are most effective. Clinical successes with intravenous minocycline-based combination treatments have been reported for infections caused by carbapenemase-producing bacteria. The objective of this study was to evaluate the in vitro activity of polymyxin B and minocycline combination therapy against six KPC-2-producing K. pneumoniae isolates (minocycline MIC range, 2 to 32 mg/liter). Polymyxin B monotherapy (0.5, 1, 2, 4, and 16 mg/liter) resulted in a rapid reduction of up to 6 log in bactericidal activity followed by regrowth by 24 h. Minocycline monotherapy (1, 2, 4, 8, and 16 mg/liter) showed no reduction of activity of >1.34 log against all isolates, although concentrations of 8 and 16 mg/liter prolonged the time to regrowth. When the therapies were used in combination, rapid bactericidal activity was followed by slower regrowth, with synergy (60 of 120 combinations at 24 h, 19 of 120 combinations at 48 h) and additivity (43 of 120 combinations at 24 h, 44 of 120 combinations at 48 h) against all isolates. The extent of killing was greatest against the more susceptible polymyxin B isolates (MICs of ≤0.5 mg/liter) regardless of the minocycline MIC. The pharmacodynamic activity of combined polymyxin B-minocycline therapy against KPC-producing K. pneumoniae is dependent on polymyxin B susceptibility. Further in vitro and animal studies must be performed to fully evaluate the efficacy of this drug combination. Copyright © 2017 American Society for Microbiology.
Song, Xiaoqing; Yaskell, Tina; Klepac-Ceraj, Vanja; Lynch, Michael C; Soukos, Nikolaos S
2014-02-01
The purpose of this study is to investigate the antimicrobial effects of minocycline hydrochloride microspheres versus infrared light at 810 nm from a diode laser on multispecies oral biofilms in vitro. These biofilms were grown from dental plaque inoculum (oral microcosms) and were obtained from six systemically healthy individuals with generalized chronic periodontitis. Multispecies biofilms were derived using supra- and subgingival plaque samples from mesio-buccal aspects of premolars and molars exhibiting probing depths in the 4- to 5-mm range and 1- to 2-mm attachment loss. Biofilms were developed anaerobically on blood agar surfaces in 96-well plates using a growth medium of prereduced, anaerobically sterilized brain-heart infusion with 2% horse serum. Minocycline HCl 1 mg microspheres were applied on biofilms on days 2 and 5 of their development. Biofilms were also exposed on days 2 and 5 of their growth to 810-nm light for 30 seconds using a power of 0.8 W in a continuous-wave mode. The susceptibility of microorganisms to minocycline or infrared light was evaluated by a colony-forming assay and DNA probe analysis at different time points. At all time points of survival assessment, minocycline was more effective (>2 log10 colony-forming unit reduction) than light treatment (P <0.002). Microbial analysis did not reveal susceptibility of certain dental plaque pathogens to light, and it was not possible after treatment with minocycline due to lack of bacterial growth. The cumulative action of minocycline microspheres on multispecies oral biofilms in vitro led to enhanced killing of microorganisms, whereas a single exposure of light at 810 nm exhibited minimal and non-selective antimicrobial effects.
Esalatmanesh, Sophia; Abrishami, Zoha; Zeinoddini, Atefeh; Rahiminejad, Fatemeh; Sadeghi, Majid; Najarzadegan, Mohammad-Reza; Shalbafan, Mohammad-Reza; Akhondzadeh, Shahin
2016-11-01
Several lines of evidence implicate glutamatergic dysfunction in the pathophysiology of obsessive-compulsive disorder (OCD), presenting this neurotransmitter as a target for the development of novel pharmacotherapy. The objective of this study was to assess the efficacy of minocycline as an augmentative agent to fluvoxamine in the treatment of patients with OCD. One hundred and two patients with the diagnosis of moderate-to-severe OCD were recruited to this study. A randomized double-blind trial was designed and patients received either L-carnosine or placebo as adjuvant to fluvoxamine for 10 weeks. The patients randomly received either minocycline 100 mg twice per day or placebo for 10 weeks. All patients received fluvoxamine (100 mg/day) for the first 4 weeks, followed by 200 mg/day for the rest of the trial, regardless of their treatment groups. Participants were evaluated using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). The main outcome measure was to assess the efficacy of minocycline in improving the OCD symptoms. General linear model repeated measures demonstrated significant effect for time × treatment interaction on the Y-BOCS total scores, F(1.49, 137.93) = 7.1, P = 0.003, and Y-BOCS Obsession subscale score, F(1.54, 141.94) = 9.72, P = 0.001, and near significant effect for the Y-BOCS Compulsion subscale score, F(1.27, 117.47) = 2.92, P = 0.08. A significantly greater rate of partial and complete response was observed in the minocycline group (P < 0.001). The frequency of side-effects was not significantly different between the treatment arms. The results of this study suggest that minocycline could be a tolerable and effective adjuvant in the management of patients with OCD. © 2016 The Authors. Psychiatry and Clinical Neurosciences © 2016 Japanese Society of Psychiatry and Neurology.
Comparative pharmacokinetics of minocycline in foals and adult horses.
Giguère, S; Burton, A J; Berghaus, L J; Haspel, A D
2017-08-01
The objective of this study was to compare the pharmacokinetics of minocycline in foals vs. adult horses. Minocycline was administered to six healthy 6- to 9-week-old foals and six adult horses at a dose of 4 mg/kg intragastrically (IG) and 2 mg/kg intravenously (i.v.) in a cross-over design. Five additional oral doses were administered at 12-h intervals in foals. A microbiologic assay was used to measure minocycline concentration in plasma, urine, synovial fluid, and cerebrospinal fluid (CSF). Liquid chromatography-tandem mass spectrometry was used to measure minocycline concentrations in pulmonary epithelial lining fluid (PELF) and bronchoalveolar (BAL) cells. After i.v. administration to foals, minocycline had a mean (±SD) elimination half-life of 8.5 ± 2.1 h, a systemic clearance of 113.3 ± 26.1 mL/h/kg, and an apparent volume of distribution of 1.24 ± 0.19 L/kg. Pharmacokinetic variables determined after i.v. administration to adult horses were not significantly different from those determined in foals. Bioavailability was significantly higher in foals (57.8 ± 19.3%) than in adult horses (32.0 ± 18.0%). Minocycline concentrations in PELF were higher than in other body fluids. Oral minocycline dosed at 4 mg/kg every 12 h might be adequate for the treatment of susceptible bacterial infections in foals. © 2016 John Wiley & Sons Ltd.
Parr, Karina; Mahmoudizad, Rod; Grimwood, Ronald
2013-07-01
Postradiation comedogenesis is an uncommon side effect of radiation therapy, with few cases reported in the medical literature. The proposed etiology of this reaction is alteration of pilosebaceous unit secretions and retention of proliferating ductal keratinocytes due to stricture and scarring. We report a case of a 48-year-old woman who had been treated for infiltrating ductal carcinoma of the right breast with lumpectomy and radiation therapy. She subsequently developed open and closed comedones as well as tender inflammatory papules and papulopustules in the irradiated area. Our patient was treated with tretinoin cream and oral minocycline, with rapid improvement in symptoms and complete resolution of lesions after 2 months of therapy. We review the literature on the pathogenesis, clinical features, and treatment of postradiation acne, and discuss rapid resolution of a radiation-induced acneform eruption after combination treatment with tretinoin and minocycline.
Goto, Ayano; Ozawa, Yuichi; Koda, Keigo; Akahori, Daisuke; Koyauchi, Takashi; Amano, Yusuke; Kakutani, Takuya; Sato, Yoshiko; Hasegawa, Hirotsugu; Matsui, Takashi; Yokomura, Koshi; Suda, Takafumi
2018-03-01
The management of skin toxicity is crucial for efficient afatinib treatment, but the role of tetracycline class antibiotics (TCs) in managing these rashes is relatively unknown. We reviewed the clinical records of patients who were administered afatinib for the treatment of non-small cell lung cancer harboring epidermal growth factor receptor mutations between October 2014 and November 2016. Twenty-five patients, who received TCs for the management of afatinib-related skin disorders, were enrolled. Minocycline was administered orally to participants. Afatinib-related toxic effects, such as rash, diarrhea, and paronychia, were observed in 92%, 92%, and 40% of cases, respectively. Although 24% of diarrhea and 4% of paronychia cases were rated grade 3 or higher, no severe cases of rash were observed during afatinib treatment. Of the 18 afatinib dose reductions, 14 (78%), three (17%), and one (6%) resulted from diarrhea, paronychia, and stomatitis, respectively; no patients required a dose reduction because of rash. When minocycline treatment started, 21 patients (84%) had a rash of grade 1 or less, and three patients had a grade 2 rash. A response to afatinib was observed in 18 patients (72%) and the median duration of afatinib administration was 501 days. An adverse event related to minocycline (grade 1 nausea) was observed in one patient. A large proportion of the study patients started minocycline before grade 2 rash development and the severity of afatinib-related rash was lower than that previously reported. Oral TCs may be beneficial, especially if started early. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
Hahm, Suk-Chan; Yoon, Young Wook; Kim, Junesun
2015-05-01
Transcutaneous electrical nerve stimulation (TENS) can be used as a physical therapy for spasticity, but the effects of TENS on spasticity and its underlying mechanisms remain unclear. The purpose of this study was to test the effects of TENS on spasticity and the role of activated microglia as underlying mechanisms of TENS treatment for spasticity in rats with a 50-mm contusive spinal cord injury (SCI). A spinal contusion was made at the T12 spinal segment in adult male Sprague-Dawley rats using the NYU impactor. Behavioral tests for motor function were conducted before and after SCI and before and after TENS application. To assess spasticity, the modified Ashworth scale (MAS) was used before and after SCI, high-frequency (HF)/low-frequency (LF) TENS application at 3 different intensities (motor threshold [MT], 50% and 90% MT) or minocycline administration. Immunohistochemistry for microglia was performed at the lumbar spinal segments. Motor recovery reached a plateau approximately 28 days after SCI. Spasticity was well developed and was sustained above the MAS grade of 3, beginning at 28 days after SCI. HF-TENS at 90% MT significantly alleviated spasticity. Motor function did not show any significant changes with LF- or HF-TENS treatment. HF-TENS significantly reduced the proportion of activated microglia observed after SCI. Minocycline, the microglia inhibitor, also significantly alleviated spasticity with the reduction of activated microglia expression. These results suggest that HF-TENS at 90% MT alleviates spasticity in rats with SCI by inhibiting activated microglia. © The Author(s) 2014.
[Minocycline as a therapeutic drug for methamphetamine use disorders].
Hashimoto, Kenji
2008-02-01
Use of methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) is an extremely serious and growing problem throughout the world, including Japan. Antipsychotic drugs have been used for psychotic symptoms associated with these abused drugs. However, there are currently no particular pharmacological treatments for the wide range of symptoms associated with these abused drugs. Recently, we reported that the second generation antibiotic drug minocycline can attenuate behavioral abnormalities and neurotoxicity in the brain after administration of methamphetamine or MDMA. In this review, we discuss minocycline as a new potential therapeutic drug for schizophrenia as well as psychosis associated with these abused drugs.
Lung protection in cardio-pulmonary bypass.
Salameh, A; Greimann, W; Vollroth, M; Dhein, S; Bahramsoltani, M; Dahnert, I
2017-02-01
Since the invention of the heart-lung machine paediatric cardiac surgery developed rapidly. For correction of complex cardiac malformations the application of a cardio-pulmonary bypass (CPB) has become indispensable but possible negative effects of this technique should not be neglected. Especially, both bypassed organs i.e. heart and lung are not perfused during the procedure and therefore are threatened by ischemia and reperfusion injury. Additionally, CPB was developed with a non-pulsatile flow but there are clinical observations that pulsatile flow might be superior with improved patient outcomes. Thus, the aim of our study was to evaluate the effect of CPB on lung structure and to assess whether different flow modalities (pulsatile vs. non-pulsatile flow) or application of the antibiotic minocycline might be advantageous. Thirty five piglets of four weeks age were examined and divided into five experimental groups: control (no CPB) without or with minocycline, CPB (non-pulsatile flow) without or with minocycline and CPB with pulsatile flow. CPB was performed for 90 min followed by a 120 min reperfusion and recovery phase. Thereafter, adenosine triphosphate-content of lung biopsies and histology was carried out. We found that CPB was associated with a significant thickening of alveolar wall accompanied by an infiltration of neutrophil leucocytes. Moreover, markers for hypoxia, apoptosis, nitrosative stress, inflammation and DNA damage were significantly elevated after CPB. These cellular damages could be partially inhibited by minocycline or pulsatile flow. Both, minocycline and pulsatile flow attenuate lung damage after CPB.
Ghaleiha, Ali; Alikhani, Rosa; Kazemi, Mohammad-Reza; Mohammadi, Mohammad-Reza; Mohammadinejad, Payam; Zeinoddini, Atefeh; Hamedi, Mehdi; Shahriari, Mona; Keshavarzi, Zahra; Akhondzadeh, Shahin
2016-11-01
This is an investigation of minocycline efficacy and safety as an adjuvant to risperidone in management of children with autism. Forty-six children with diagnosis of autistic disorder, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th ed., Text Revision (DSM-IV-TR) criteria and a score of ≥12 on the Aberrant Behavior Checklist-Community (ABC-C) irritability subscale, who were already drug-free for at least 6 months participated in a randomized controlled trial and underwent 10 weeks of treatment with either minocycline (50 mg twice per day) or placebo in addition to risperidone titrated up to 2 mg/day (based on bodyweight). Patients were evaluated using ABC-C at baseline and at weeks 5 and 10. General linear model repeated measures showed significant effect for time × treatment interaction on the irritability [F(2, 88) = 3.94, p = 0.02] and hyperactivity/noncompliance [F(1.50, 66.05) = 7.92, p = 0.002], but not for lethargy/social withdrawal [F(1.61, 71.02) = 0.98, p = 0.36], stereotypic behavior [F(1.34, 58.80) = 1.55, p = 0.22], and inappropriate speech subscale scores [F(1.52, 66.88) = 1.15, p = 0.31]. By week 10, 21 (91.3%) patients in the minocycline group and 15 (65.5%) patients in the placebo group achieved at least partial response (p = 0.03). Frequencies of adverse events were not significantly different between groups. Minocycline seems to be a safe and effective adjuvant in management of patients with autistic disorder. Future studies with larger sample sizes, longer follow-ups, and inflammatory cytokine measurements are warranted to confirm these findings and provide insight into minocycline mechanism of action in autistic disorder.
COMMUNICATION: Minocycline increases quality and longevity of chronic neural recordings
NASA Astrophysics Data System (ADS)
Rennaker, R. L.; Miller, J.; Tang, H.; Wilson, D. A.
2007-06-01
Brain/machine interfaces could potentially be used in the treatment of a host of neurological disorders ranging from paralysis to sensory deficits. Insertion of chronic micro-electrode arrays into neural tissue initiates a host of immunological responses, which typically leads to the formation of a cellular sheath around the implant, resulting in the loss of useful signals. Minocycline has been shown to have neuroprotective and neurorestorative effects in certain neural injury and neurodegenerative disease models. This study examined the effects of minocycline administration on the quality and longevity of chronic multi-channel microwire neural implants 1 week and 1 month post-implantation in auditory cortex. The mean signal-to-noise ratio for the minocycline group stabilized at the end of week 1 and remained above 4.6 throughout the following 3 weeks. The control group signal-to-noise ratio dropped throughout the duration of the study and at the end of 4 weeks was 2.6. Furthermore, 68% of electrodes from the minocycline group showed significant stimulus-driven activity at week 4 compared to 12.5% of electrodes in the control group. There was a significant reduction in the number of activated astrocytes around the implant in minocycline subjects, as well as a reduction in total area occupied by activated astrocytes at 1 and 4 weeks.
Hanlon, Lauren A.; Huh, Jimmy W.
2016-01-01
Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312
Hahn, Jennifer N; Kaushik, Deepak K; Mishra, Manoj K; Wang, Jianxiong; Silva, Claudia; Yong, V Wee
2016-11-15
Extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a transmembrane glycoprotein that is upregulated on leukocytes in active lesions in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Administration of anti-EMMPRIN Abs reduces the severity of EAE. Minocycline is a tetracycline antibiotic with immune-modulatory properties that decreases the severity of EAE; it was recently found to attenuate the conversion from a first demyelinating event to clinically definite MS in a phase III trial. We investigated whether and how minocycline affects the expression of EMMPRIN on T cells in culture and in mice afflicted with EAE. EMMPRIN expression in cultures of mouse splenocytes or human PBMCs was elevated upon polyclonal T cell activation, and this was reduced by minocycline correspondent with decreased P-Akt levels. An established MS medication, IFN-β, also diminished EMMPRIN levels on human cells whereas this was not readily observed for fingolimod or monomethylfumarate. In EAE-afflicted mice, minocycline treatment significantly reduced EMMPRIN levels on splenic lymphocytes at the presymptomatic (day 7) phase, and prevented the development of disease. Day 7 spleen transcripts from minocycline-treated EAE mice had a significantly lower MMP-9/TIMP-1 ratio, and significantly lower MCT-1 and CD98 levels, factors associated with EMMPRIN function. Day 16 (peak clinical severity) CNS samples from EAE mice had prominent representation of inflammatory perivascular cuffs, inflammatory molecules and EMMPRIN, and these were abrogated by minocycline. Overall, minocycline attenuated the activation-induced elevation of EMMPRIN on T cells in culture and in EAE mice, correspondent with reduced immune function and EAE CNS pathology. Copyright © 2016 by The American Association of Immunologists, Inc.
Pachman, Deirdre R; Dockter, Travis; Zekan, Patricia J; Fruth, Briant; Ruddy, Kathryn J; Ta, Lauren E; Lafky, Jacqueline M; Dentchev, Todor; Le-Lindqwister, Nguyet Anh; Sikov, William M; Staff, Nathan; Beutler, Andreas S; Loprinzi, Charles L
2017-11-01
Paclitaxel is associated with both an acute pain syndrome (P-APS) and chronic chemotherapy-induced peripheral neuropathy (CIPN). Given that extensive animal data suggest that minocycline may prevent chemotherapy-induced neurotoxicity, the purpose of this pilot study was to investigate the efficacy of minocycline for the prevention of CIPN and the P-APS. Patients with breast cancer were enrolled prior to initiating neoadjuvant or adjuvant weekly paclitaxel for 12 weeks and were randomized to receive minocycline 200 mg on day 1 followed by 100 mg twice daily or a matching placebo. Patients completed (1) an acute pain syndrome questionnaire daily during chemotherapy to measure P-APS and (2) the EORTC QLQ-CIPN20 questionnaire at baseline, prior to each dose of paclitaxel, and monthly for 6 months post treatment, to measure CIPN. Forty-seven patients were randomized. There were no remarkable differences noted between the minocycline and placebo groups for the overall sensory neuropathy score of the EORTC QLQ-CIPN20 or its individual components, which evaluate tingling, numbness and shooting/burning pain in hands and feet. However, patients taking minocycline had a significant reduction in the daily average pain score attributed to P-APS (p = 0.02). Not only were no increased toxicities reported with minocycline, but there was a significant reduction in fatigue (p = 0.02). Results of this pilot study do not support the use of minocycline to prevent CIPN, but suggest that it may reduce P-APS and decrease fatigue; further study of the impact of this agent on those endpoints may be warranted.
Corsaro, Alessandro; Thellung, Stefano; Chiovitti, Katia; Villa, Valentina; Simi, Alessandro; Raggi, Federica; Paludi, Domenico; Russo, Claudio; Aceto, Antonio; Florio, Tullio
2009-02-01
Several in vitro and in vivo studies addressed the identification of molecular determinants of the neuronal death induced by PrP(Sc) or related peptides. We developed an experimental model to assess PrP(Sc) neurotoxicity using a recombinant polypeptide encompassing amino acids 90-231 of human PrP (hPrP90-231) that corresponds to the protease-resistant core of PrP(Sc) identified in prion-infected brains. By means of mild thermal denaturation, we can convert hPrP90-231 from a PrP(C)-like conformation into a PrP(Sc)-like structure. In virtue of these structural changes, hPrP90-231 powerfully affected the survival of SH-SY5Y cells, inducing caspase 3 and p38-dependent apoptosis, while in the native alpha-helix-rich conformation, hPrP90-231 did not induce cell toxicity. The aim of this study was to identify drugs able to block hPrP90-231 neurotoxic effects, focusing on minocycline, a tetracycline with known neuroprotective activity. hPrP90-231 caused a caspase 3-dependent apoptosis via the blockade of ERK1/2 activation and the subsequent activation of p38 MAP kinase. We propose that hPrP90-231-induced apoptosis is dependent on the inhibition of ERK1/2 responsiveness to neurotrophic factors, removing a tonic inhibition of p38 activity and resulting in caspase 3 activation. Minocycline prevented hPrP90-231-induced toxicity interfering with this mechanism: the pretreatment with this tetracycline restored ERK1/2 activity and reverted p38 and caspase 3 activities. The effects of minocycline were not mediated by the prevention of hPrP90-231 structural changes or cell internalization (differently from Congo Red). In conclusion, minocycline elicits anti-apoptotic effects against the neurotoxic activity of hPrP90-231 and these effects are mediated by opposite modulation of ERK1/2 and p38 MAP kinase activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Chunling; Yang, Liqun; Jiang, Xiaolan
Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cellmore » proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.« less
Adjunctive minocycline treatment for major depressive disorder: A proof of concept trial.
Dean, Olivia M; Kanchanatawan, Buranee; Ashton, Melanie; Mohebbi, Mohammadreza; Ng, Chee Hong; Maes, Michael; Berk, Lesley; Sughondhabirom, Atapol; Tangwongchai, Sookjaroen; Singh, Ajeet B; McKenzie, Helen; Smith, Deidre J; Malhi, Gin S; Dowling, Nathan; Berk, Michael
2017-08-01
Conventional antidepressant treatments result in symptom remission in 30% of those treated for major depressive disorder, raising the need for effective adjunctive therapies. Inflammation has an established role in the pathophysiology of major depressive disorder, and minocycline has been shown to modify the immune-inflammatory processes and also reduce oxidative stress and promote neuronal growth. This double-blind, randomised, placebo-controlled trial examined adjunctive minocycline (200 mg/day, in addition to treatment as usual) for major depressive disorder. This double-blind, randomised, placebo-controlled trial investigated 200 mg/day adjunctive minocycline (in addition to treatment as usual) for major depressive disorder. A total of 71 adults with major depressive disorder ( Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition) were randomised to this 12-week trial. Outcome measures included the Montgomery-Asberg Depression Rating Scale (primary outcome), Clinical Global Impression-Improvement and Clinical Global Impression-Severity, Hamilton Anxiety Rating Scale, Quality of Life Enjoyment and Satisfaction Questionnaire, Social and Occupational Functioning Scale and the Range of Impaired Functioning Tool. The study was registered on the Australian and New Zealand Clinical Trials Register: www.anzctr.org.au , #ACTRN12612000283875. Based on mixed-methods repeated measures analysis of variance at week 12, there was no significant difference in Montgomery-Asberg Depression Rating Scale scores between groups. However, there were significant differences, favouring the minocycline group at week 12 for Clinical Global Impression-Improvement score - effect size (95% confidence interval) = -0.62 [-1.8, -0.3], p = 0.02; Quality of Life Enjoyment and Satisfaction Questionnaire score - effect size (confidence interval) = -0.12 [0.0, 0.2], p < 0.001; and Social and Occupational Functioning Scale and the Range of Impaired Functioning Tool score - 0.79 [-4.5, -1.4], p < 0.001. These effects remained at follow-up (week 16), and Patient Global Impression also became significant, effect size (confidence interval) = 0.57 [-1.7, -0.4], p = 0.017. While the primary outcome was not significant, the improvements in other comprehensive clinical measures suggest that minocycline may be a useful adjunct to improve global experience, functioning and quality of life in people with major depressive disorder. Further studies are warranted to confirm the potential of this accessible agent to optimise treatment outcomes.
Melosky, Barbara; Anderson, Helen; Burkes, Ronald L; Chu, Quincy; Hao, Desiree; Ho, Vincent; Ho, Cheryl; Lam, Wendy; Lee, Christopher W; Leighl, Natasha B; Murray, Nevin; Sun, Sophie; Winston, Robert; Laskin, Janessa J
2016-03-10
Erlotinib is an epidermal growth factor receptor inhibitor approved for patients with advanced non-small-cell lung cancer (NSCLC) whose epidermal growth factor receptor expression status is positive or unknown. Although it is efficacious, erlotinib can cause skin toxicity. This prospective, randomized phase III trial examined the effect of prophylactic treatment of erlotinib-induced skin rash. Patients receiving erlotinib in the second- or third-line setting for advanced NSCLC were randomly assigned to prophylactic minocycline (100 mg twice per day for 4 weeks), reactive treatment (after rash developed, per grade of rash), or no treatment unless severe (grade 3). Rash incidence and severity, time to maximal rash, time to resolution, and overall survival (OS) were compared among treatment groups. In all, 150 patients were randomly assigned, 50 to each of three treatment arms. The incidence of skin toxicity was 84% regardless of treatment arm. Prophylactic treatment with minocycline significantly lengthened the time to the most severe grade of rash. Grade 3 rash was significantly higher in the no-treatment arm. OS was not significantly different among treatment arms, but patients receiving prophylactic or reactive treatments had a longer OS (7.6 and 8 months, respectively) than those who received no rash treatment (6 months). Rash was not self-limiting. The incidence of all grades of rash did not differ statistically among the three arms, so the trial was negative. The incidence of grade 3 skin toxicities was reduced in patients who were treated with prophylactic minocycline or reactive treatment. Efficacy was not compromised. Prophylactic minocycline and reactive treatment are both acceptable options for the necessary treatment of erlotinib-induced rash in the second- or third-line setting of metastatic NSCLC. © 2015 by American Society of Clinical Oncology.
2012-03-01
minocy- cline treatment (Figures 1-4). Minocycline also improved mitochondrial function as assessed by intravital multiphoton imaging of the...will make direct measurements by intravital multiphoton microscopy to determine whether onset of the mitochondrial permeability transition and...oxidative stress were assessed 6 h after resuscitation. Mitochondrial polarization were assessed by intravital microscopy. After H/R with vehicle or
Liu, Wei-Ting; Huang, Chih-Yuan; Lu, I-Chen; Gean, Po-Wu
2013-01-01
Background We have reported that minocycline (Mino) induced autophagic death in glioma cells. In the present study, we characterize the upstream regulators that control autophagy and switch cell death from autophagic to apoptotic. Methods Western blotting and immunofluorescence were used to detect the expressions of eukaryotic translation initiation factor 2α (eIF2α), transcription factor GADD153 (CHOP), and glucose-regulated protein 78 (GRP78). Short hairpin (sh)RNA was used to knock down eIF2α or CHOP expression. Autophagy was assessed by the conversion of light chain (LC)3-I to LC3-II and green fluorescent protein puncta formation. An intracranial mouse model and bioluminescent imaging were used to assess the effect of Mino on tumor growth and survival time of mice. Results The expression of GRP78 in glioma was high, whereas in normal glia it was low. Mino treatment increased GRP78 expression and reduced binding of GRP78 with protein kinase-like endoplasmic reticulum kinase. Subsequently, Mino increased eIF2α phosphorylation and CHOP expression. Knockdown of eIF2α or CHOP reduced Mino-induced LC3-II conversion and glioma cell death. When autophagy was inhibited, Mino induced cell death in a caspase-dependent manner. Rapamycin in combination with Mino produced synergistic effects on LC3 conversion, reduction of the Akt/mTOR/p70S6K pathway, and glioma cell death. Bioluminescent imaging showed that Mino inhibited the growth of glioma and prolonged survival time and that these effects were blocked by shCHOP. Conclusions Mino induced autophagy by eliciting endoplasmic reticulum stress response and switched cell death from autophagy to apoptosis when autophagy was blocked. These results coupled with clinical availability and a safe track record make Mino a promising agent for the treatment of malignant gliomas. PMID:23787763
Song, Zhiqiang; Suo, Baojun; Zhang, Lingyun; Zhou, Liya
2016-12-01
Because of general unavailability of tetracycline, common adverse effects, and complicated administration, the clinical application of bismuth quadruple therapy often faces difficulties. Whether the combination of minocycline and amoxicillin can replace tetracycline and metronidazole for Helicobacter pylori eradication remains unclear. This study was to determine the efficacy, compliance, and safety of rabeprazole, minocycline, amoxicillin, and bismuth (RMAB) therapy as first-line and second-line regimens. Between July 2013 and December 2015, a total of 160 patients in first-line and 70 patients in second-line therapies received rabeprazole 10 mg, minocycline 100 mg, amoxicillin 1000 mg, and bismuth potassium citrate 220 mg twice daily for 14 days. Eradication status was assessed 6-12 weeks after treatment. RMAB therapy achieved the eradication rates of 87.5% (95% confidence interval, 81.9-92.5%, intention-to-treat analysis), 90.9% (85.7-95.5%, modified intention-to-treat analysis), and 92.6% (88.5-96.6%, per-protocol analysis) in first-line therapy in a setting with high antibiotic resistance rates (amoxicillin 3.4%, clarithromycin 39.7%, metronidazole 60.3%, levofloxacin 36.2%, tetracycline 3.4%, and minocycline 6.9%). As for second-line therapy, the eradication rates were 82.9% (74.3-91.4%, intention-to-treat analysis), 86.6% (77.6-94.0%, modified intention-to-treat analysis), and 89.1% (81.3-95.3%, per-protocol analysis). Totally, 24.0% patients had adverse effects, 2.2% discontinued medications, and good compliance was achieved in 94.7%. Poor compliance and minocycline resistance were identified as the risk factors for treatment failure. Significant differences in efficacy existed among the groups of both sensitive (48/51 and 18/20), isolated amoxicillin resistance (1/1 and 0/0), isolated minocycline resistance (2/3 and 1/1), and dual resistance (0/1 and 0/1) in both first-line (p = .004) and second-line (p = .035) therapies. The eradication efficacies of RMAB therapy as first-line and second-line regimens were satisfactory with good compliance and safety in a region with high antibiotic resistance. © 2016 John Wiley & Sons Ltd.
Wang, Peng; Bowler, Sarah L; Kantz, Serena F; Mettus, Roberta T; Guo, Yan; McElheny, Christi L; Doi, Yohei
2016-12-01
Treatment options for infections due to carbapenem-resistant Acinetobacter baumannii are extremely limited. Minocycline is a semisynthetic tetracycline derivative with activity against this pathogen. This study compared susceptibility testing methods that are used in clinical microbiology laboratories (Etest, disk diffusion, and Sensititre broth microdilution methods) for testing of minocycline, tigecycline, and doxycycline against 107 carbapenem-resistant A. baumannii clinical isolates. Susceptibility rates determined with the standard broth microdilution method using cation-adjusted Mueller-Hinton (MH) broth were 77.6% for minocycline and 29% for doxycycline, and 92.5% of isolates had tigecycline MICs of ≤2 μg/ml. Using MH agar from BD and Oxoid, susceptibility rates determined with the Etest method were 67.3% and 52.3% for minocycline, 21.5% and 18.7% for doxycycline, and 71% and 29.9% for tigecycline, respectively. With the disk diffusion method using MH agar from BD and Oxoid, susceptibility rates were 82.2% and 72.9% for minocycline and 34.6% and 34.6% for doxycycline, respectively, and rates of MICs of ≤2 μg/ml were 46.7% and 23.4% for tigecycline. In comparison with the standard broth microdilution results, very major rates were low (∼2.8%) for all three drugs across the methods, but major error rates were higher (∼5.6%), especially with the Etest method. For minocycline, minor error rates ranged from 14% to 37.4%. For tigecycline, minor error rates ranged from 6.5% to 69.2%. The majority of minor errors were due to susceptible results being reported as intermediate. For minocycline susceptibility testing of carbapenem-resistant A. baumannii strains, very major errors are rare, but major and minor errors overcalling strains as intermediate or resistant occur frequently with susceptibility testing methods that are feasible in clinical laboratories. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Zhou, Jian; Ledesma, Kimberly R.; Chang, Kai-Tai; Abodakpi, Henrietta; Gao, Song
2017-01-01
ABSTRACT Multidrug-resistant (MDR) Acinetobacter baumannii is increasingly more prevalent in nosocomial infections. Although in vitro susceptibility of A. baumannii to minocycline is promising, the in vivo efficacy of minocycline has not been well established. In this study, the in vivo activity of minocycline was evaluated in a neutropenic murine pneumonia model. Specifically, we investigated the relationship between minocycline exposure and bactericidal activity using five A. baumannii isolates with a broad range of susceptibility (MIC ranged from 0.25 mg/liter to 16 mg/liter). The pharmacokinetics of minocycline (single dose of 25 mg/kg of body weight, 50 mg/kg, 100 mg/kg, and a humanized regimen, given intraperitoneally) in serum and epithelial lining fluid (ELF) were characterized. Dose linearity was observed for doses up to 50 mg/kg and pulmonary penetration ratios (area under the concentration-time curve in ELF from 0 to 24 h [AUCELF,0–24]/area under the concentration time curve in serum from 0 to 24 h [AUCserum,0–24]) ranged from 2.5 to 2.8. Pharmacokinetic-pharmacodynamics (PK-PD) index values in ELF for various dose regimens against different A. baumannii isolates were calculated. The maximum efficacy at 24 h was approximately 1.5-log-unit reduction of pulmonary bacterial burdens from baseline. The AUC/MIC ratio was the PK-PD index most closely correlating to the bacterial burden (r2 = 0.81). The required AUCELF,0–24/MIC for maintaining stasis and achieving 1-log-unit reduction were 140 and 410, respectively. These findings could guide the treatment of infections caused by A. baumannii using minocycline in the future. Additional studies to examine resistance development during therapy are warranted. PMID:28264853
Zhou, Jian; Ledesma, Kimberly R; Chang, Kai-Tai; Abodakpi, Henrietta; Gao, Song; Tam, Vincent H
2017-05-01
Multidrug-resistant (MDR) Acinetobacter baumannii is increasingly more prevalent in nosocomial infections. Although in vitro susceptibility of A. baumannii to minocycline is promising, the in vivo efficacy of minocycline has not been well established. In this study, the in vivo activity of minocycline was evaluated in a neutropenic murine pneumonia model. Specifically, we investigated the relationship between minocycline exposure and bactericidal activity using five A. baumannii isolates with a broad range of susceptibility (MIC ranged from 0.25 mg/liter to 16 mg/liter). The pharmacokinetics of minocycline (single dose of 25 mg/kg of body weight, 50 mg/kg, 100 mg/kg, and a humanized regimen, given intraperitoneally) in serum and epithelial lining fluid (ELF) were characterized. Dose linearity was observed for doses up to 50 mg/kg and pulmonary penetration ratios (area under the concentration-time curve in ELF from 0 to 24 h [AUC ELF,0-24 ]/area under the concentration time curve in serum from 0 to 24 h [AUC serum,0-24 ]) ranged from 2.5 to 2.8. Pharmacokinetic-pharmacodynamics (PK-PD) index values in ELF for various dose regimens against different A. baumannii isolates were calculated. The maximum efficacy at 24 h was approximately 1.5-log-unit reduction of pulmonary bacterial burdens from baseline. The AUC/MIC ratio was the PK-PD index most closely correlating to the bacterial burden ( r 2 = 0.81). The required AUC ELF,0-24 /MIC for maintaining stasis and achieving 1-log-unit reduction were 140 and 410, respectively. These findings could guide the treatment of infections caused by A. baumannii using minocycline in the future. Additional studies to examine resistance development during therapy are warranted. Copyright © 2017 American Society for Microbiology.
Wei, Chuanqi; Ni, Wentao; Cai, Xuejiu; Cui, Junchang
2015-01-01
Stenotrophomonas maltophilia has emerged as an important opportunistic pathogen in recent years. Increasing antimicrobial resistance and other contraindications have greatly compromised trimethoprim/sulfamethoxazole (SXT) as the first-line therapeutic option. The objective of this study was to explore other options for treating hospital-acquired pneumonia (HAP) caused by S. maltophilia. A total of 102 strains of S. maltophilia were isolated from sputum and bronchoalveolar lavage (BAL) specimens of patients with HAP in our institution. The minimum inhibitory concentration (MIC) values of minocycline, tigecycline, moxifloxacin, and levofloxacin were determined by the agar dilution method. Based on the MICs and the population pharmacokinetic parameters of the investigated antimicrobials, a Monte Carlo simulation was performed to simulate the pharmacokinetic/pharmacodynamic (PK/PD) indices of different regimens. The probability of target attainment (PTA) was estimated at each MIC value and the cumulative fraction of response (CFR) was calculated to evaluate the efficacy of these regimens. The susceptibility rates to minocycline, tigecycline, moxifloxacin, and levofloxacin were 96.1%, 80.4%, 74.5%, and 69.6%, respectively. The estimated CFRs were 96.2% for minocycline 100 mg twice daily; 50.8%/67.1%/75.4% for tigecycline 50/75/100 mg twice daily; 34.3%/48.0%/56.6% for levofloxacin 500/750/1000 mg once daily; and 45.7% for moxifloxacin 400 mg once daily. The simulation results suggest that minocycline may be a proper choice for treatment of HAP caused by S. maltophilia, while tigecycline, moxifloxacin, and levofloxacin may not be optimal as monotherapy.
Kumar, Hariom; Sharma, Bhupesh
2016-01-01
Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. Copyright © 2015 Elsevier B.V. All rights reserved.
Sharma, Raman; Jayoussi, Ghaith Al; Tyrer, Hayley E.; Gamble, Joanne; Hayward, Laura; Guimaraes, Ana F.; Davies, Jill; Waterhouse, David; Cook, Darren A. N.; Myhill, Laura J.; Clare, Rachel H.; Cassidy, Andrew; Steven, Andrew; Johnston, Kelly L.; Ford, Louise; Turner, Joseph D.; Ward, Stephen A.; Taylor, Mark J.
2016-01-01
Lymphatic filariasis and onchocerciasis are parasitic helminth diseases, which cause severe morbidities such as elephantiasis, skin disease and blindness, presenting a major public health burden in endemic communities. The anti-Wolbachia consortium (A·WOL: http://www.a-wol.com/) has identified a number of registered antibiotics that target the endosymbiotic bacterium, Wolbachia, delivering macrofilaricidal activity. Here we use pharmacokinetics/pharmacodynamics (PK/PD) analysis to rationally develop an anti-Wolbachia chemotherapy by linking drug exposure to pharmacological effect. We compare the pharmacokinetics and anti-Wolbachia efficacy in a murine Brugia malayi model of minocycline versus doxycycline. Doxycycline exhibits superior PK in comparison to minocycline resulting in a 3-fold greater exposure in SCID mice. Monte-Carlo simulations confirmed that a bi-daily 25–40 mg/Kg regimen is bioequivalent to a clinically effective 100–200 mg/day dose for these tetracyclines. Pharmacodynamic studies showed that minocycline depletes Wolbachia more effectively than doxycycline (99.51% vs. 90.35%) after 28 day 25 mg/Kg bid regimens with a more potent block in microfilarial production. PK/PD analysis predicts that minocycline would be expected to be 1.7 fold more effective than doxycycline in man despite lower exposure in our infection models. Our findings warrant onward clinical investigations to examine the clinical efficacy of minocycline treatment regimens against lymphatic filariasis and onchocerciasis. PMID:26996237
Mandras, N; Roana, J; Allizond, V; Pasqualini, D; Crosasso, P; Burlando, M; Banche, G; Denisova, T; Berutti, E; Cuffini, A M
2013-01-01
Elimination of microbial contamination from the root canal system is a precondition for successful root canal treatment. Teeth with immature root development, necrotic pulps and apical periodontitis present multiple challenges for successful treatment. Disinfection is achieved by irrigation followed by the placement of an intracanal medicament. A mixture of ciprofloxacin, metronidazole and minocycline (3-MIX S) has been shown to be very effective in eliminating endodontic pathogens in vitro and in vivo. Among the components of the mixture, minocycline can induce tooth discolouration after long-term oral use. Therefore, the elimination of minocycline from the above-mentioned combination has been suggested to prevent the occasion of this undesirable effect. The aim of this study was to investigate the potential antimicrobial efficacy of alternative antibiotic combinations [3-MIX C (clarithromycin); 3-MIX F (fosfomycin)] against bacteria from infected root canals. An additional objective was to evaluate their discolouration potential as possible alternatives to minocycline-based intracanal medicaments. Our in vitro results clearly demonstrated that 3-MIX C and 3-MIX F had a greater antimicrobial activity than 3-MIX S, underlying that clarithromycin still had a higher capacity to kill endodontic pathogens in vitro compared to fosfomycin. Both 3-MIX C and 3-MIX F were able to avoid the permanent staining effect of the crown.
Sivaprasad, S; Patra, S; DaCosta, J; Adewoyin, T; Shona, O; Pearce, E; Chong, N V
2011-01-01
To assess the safety and efficacy of the combined treatment of reduced-fluence verteporfin photodynamic therapy (PDT), intravitreal ranibizumab, intravitreal dexamethasone and oral minocycline for choroidal neovascularisa- tion (CNV) secondary to age-related macular degeneration (AMD). Nineteen patients with subfoveal CNV secondary to AMD were recruited into the trial. All study eyes (n = 19) received a single cycle of reduced-fluence (25 mJ/cm(2)) PDT with verteporfin followed by an intravitreal injection of ranibizumab 0.3 mg/0.05 ml and dexamethasone 200 μg at baseline. Oral minocycline 100 mg daily was started the following day and continued for 3 months. Patients were followed up monthly for 12 months. Repeat intravitreal ranibizumab was given if best-corrected visual acuity (BCVA) deteriorated by >5 letters on the Early Treatment Diabetic Retinopathy Study (ETDRS) chart or central retinal thickness (CRT) on ocular coherence tomography increased >100 μm. Eighteen patients completed the 12-month study. Stable vision (loss of ≤15 ETDRS letters) was maintained in 89% eyes (16/18). The mean change in BCVA was -5.0 ± 10.5 ETDRS letters. The mean number of ranibizumab injections was 3.4 (range 2-6). The mean reduction in the CRT was 66.3 μm (±75). This open-label clinical trial has demonstrated the safety in terms of adverse effects and maintenance of stable vision of combination treatment with verteporfin, ranibizumab, dexamethasone and minocycline in exudative AMD. However, the outcomes with reduced-fluence PDT combination therapy does not differ significantly with outcomes of clinical trials on combination treatment with standard dose PDT and intravitreal ranibizumab in neovascular AMD. Copyright © 2011 S. Karger AG, Basel.
Mesoporous TiO2 implants for loading high dosage of antibacterial agent
NASA Astrophysics Data System (ADS)
Park, Se Woong; Lee, Donghyun; Choi, Yong Suk; Jeon, Hoon Bong; Lee, Chang-Hoon; Moon, Ji-Hoi; Kwon, Il Keun
2014-06-01
We have fabricated mesoporous thin films composed of TiO2 nanoparticles on anodized titanium implant surfaces for loading drugs at high doses. Surface anodization followed by treatment with TiO2 paste leads to the formation of mechanically stable mesoporous thin films with controllable thickness. A series of antibacterial agents (silver nanoparticles, cephalothin, minocycline, and amoxicillin) were loaded into the mesoporous thin films and their antibacterial activities were evaluated against five bacterial species including three oral pathogens. Additionally, two agents (silver nanoparticles and minocycline) were loaded together on the thin film and tested for antibacterial effectiveness. The combination of silver nanoparticles and minocycline was found to display a wide range of effectiveness against all tested bacteria.
Cao, Shenglong; Hua, Ya; Keep, Richard F; Chaudhary, Neeraj; Xi, Guohua
2018-04-01
Brain iron overload is a key factor causing brain injury after intracerebral hemorrhage (ICH). This study quantified brain iron levels after ICH with magnetic resonance imaging R2* mapping. The effect of minocycline on iron overload and ICH-induced brain injury in aged rats was also determined. Aged (18 months old) male Fischer 344 rats had an intracerebral injection of autologous blood or saline, and brain iron levels were measured by magnetic resonance imaging R2* mapping. Some ICH rats were treated with minocycline or vehicle. The rats were euthanized at days 7 and 28 after ICH, and brains were used for immunohistochemistry and Western blot analyses. Magnetic resonance imaging (T2-weighted, T2* gradient-echo, and R2* mapping) sequences were performed at different time points. ICH-induced brain iron overload in the perihematomal area could be quantified by R2* mapping. Minocycline treatment reduced brain iron accumulation, T2* lesion volume, iron-handling protein upregulation, neuronal cell death, and neurological deficits ( P <0.05). Magnetic resonance imaging R2* mapping is a reliable and noninvasive method, which can quantitatively measure brain iron levels after ICH. Minocycline reduced ICH-related perihematomal iron accumulation and brain injury in aged rats. © 2018 American Heart Association, Inc.
Li, Zhilin; Wei, Hong; Piirainen, Sami; Chen, Zuyue; Kalso, Eija; Pertovaara, Antti; Tian, Li
2016-11-01
Substantial evidence indicates involvement of microglia/macrophages in chronic neuropathic pain. However, the temporal-spatial features of microglial/macrophage activation and their pain-bound roles remain elusive. Here, we evaluated microglia/macrophages and the subtypes in the lumbar spinal cord (SC) and prefrontal cortex (PFC), and analgesic-anxiolytic effect of minocycline at different stages following spared nerve injury (SNI) in rats. While SNI enhanced the number of spinal microglia/macrophages since post-operative day (POD)3, pro-inflammatory MHCII + spinal microglia/macrophages were unexpectedly less abundant in SNI rats than shams on POD21. By contrast, less abundant anti-inflammatory CD172a (SIRPα) + microglia/macrophages were found in the PFC of SNI rats. Interestingly in naïve rats, microglial/macrophage expression of CD11b/c, MHCII and MHCII + /CD172a + ratio were higher in the SC than the cortex. Consistently, multiple immune genes involved in anti-inflammation, phagocytosis, complement activation and M2 microglial/macrophage polarization were upregulated in the spinal dorsal horn and dorsal root ganglia but downregulated in the PFC of SNI rats. Furthermore, daily intrathecal minocycline treatment starting from POD0 for two weeks alleviated mechanical allodynia most robustly before POD3 and attenuated anxiety on POD9. Although minocycline dampened spinal MHCII + microglia/macrophages until POD13, it failed to do so on cortical microglia/macrophages, indicating that dampening only spinal inflammation may not be enough to alleviate centralized pain at the chronic stage. Taken together, our data provide the first evidence that basal microglial/macrophage traits underlie differential region-specific responses to SNI and minocycline treatment, and suggest that drug treatment efficiently targeting not only spinal but also brain inflammation may be more effective in treating chronic neuropathic pain. Copyright © 2016 Elsevier Inc. All rights reserved.
Soczynska, Joanna K; Kennedy, Sidney H; Alsuwaidan, Mohammad; Mansur, Rodrigo B; Li, Madeline; McAndrews, Mary Pat; Brietzke, Elisa; Woldeyohannes, Hanna O; Taylor, Valerie H; McIntyre, Roger S
2017-05-01
The objectives of the study were to determine if adjunctive minocycline mitigates depressive symptom severity and improves cognitive function in individuals with bipolar I/II disorder (BD). The study also aimed to determine if changes in depressive and/or cognitive symptoms over the course of treatment were associated with changes in circulating inflammatory cytokine levels. A total of 29 (intention-to-treat: n=27) adults meeting DSM-IV-TR criteria for a major depressive episode as part of bipolar I or II disorder (i.e. Hamilton Depression Rating Scale 17-item [HAMD-17] ≥20) were enrolled in an 8-week, open-label study with adjunctive minocycline (100 mg bid). The primary outcome measure was the Montgomery-Åsberg Depression Rating Scale (MADRS). The HAMD-17, Clinical Global Impression-Severity (CGI-S), cognitive test composite scores and plasma cytokines were secondary outcome measures. Plasma cytokines were measured with the 30 V-Plex Immunoassay from Meso Scale Discovery. Adjunctive minocycline was associated with a reduction in depressive symptom severity from baseline to week 8 on the MADRS (P<.001, d=0.835), HAMD-17 (P<.001, d=0.949) and CGI-S (P<.001, d=1.09). Improvement in psychomotor speed, but not verbal memory or executive function, was observed only amongst individuals exhibiting a reduction in depression severity (P=.007, d=0.826). Levels of interleukin (IL)-12/23p40 (P=.002) were increased, while levels of IL-12p70 (P=.001) and C-C motif chemokine ligand 26 (CCL26) (P<.001) were reduced from baseline to week 8. A reduction in CCL26 levels was associated with a less favourable treatment response (P<.001). Results from the pilot study suggest that adjunctive minocycline may exert antidepressant effects in individuals with bipolar depression, possibly by targeting inflammatory cytokines. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Treatment of the psychiatric problems associated with fragile X syndrome.
Hagerman, Randi J; Polussa, Jonathan
2015-03-01
This work reviews recent research regarding treatment of fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder. The phenotype includes anxiety linked to sensory hyperarousal, hyperactivity, and attentional problems consistent with attention deficit hyperactivity disorder and social deficits leading to autism spectrum disorder in 60% of boys and 25% of girls with FXS. Multiple targeted treatments for FXS have rescued the phenotype of the fmr1 knockout mouse, but few have been beneficial to patients with FXS. The failure of the metabotropic glutamate receptor 5 antagonists falls on the heels of the failure of Arbaclofen's efficacy in children and adults with autism or FXS. In contrast, efficacy has been demonstrated in a controlled trial of minocycline in children with FXS. Minocycline lowers the abnormally elevated levels of matrix metalloproteinase 9 in FXS. Acamprosate and lovastatin have been beneficial in open-label trials in FXS. The first 5 years of life may be the most efficacious time for intervention when combined with behavioral and/or educational interventions. Minocycline, acamprosate, lovastatin, and sertraline are treatments that can be currently prescribed and have shown benefit in children with FXS. Use of combined medical and behavioral interventions will likely be most efficacious for the treatment of FXS.
NASA Astrophysics Data System (ADS)
Hermsmeier, Maiko; Sawant, Tanvee; Lac, Diana; Yamamoto, Akira; Chen, Xin; Nagavarapu, Usha; Evans, Conor L.; Chan, Kin Foong
2017-02-01
Minocycline is an antibiotic regularly prescribed to treat acne vulgaris. The only commercially available minocycline comes in an oral dosage form, which often results in systemic adverse effects. A topical minocycline composition (BPX-01) was developed to provide localized and targeted delivery to the epidermis and pilosebaceous unit where acne-related bacteria, Propionibacterium acnes (P. acnes), reside. As minocycline is a known fluorophore, fluorescence microscopy was performed to investigate its potential use in visualizing minocycline distribution within tissues. BPX-01 with various concentrations of minocycline, was applied topically to freshly excised human facial skin specimens. Spatial distribution of minocycline and its fluorescence intensity within the stratum corneum, epidermis, dermis, and pilosebaceous unit were assessed. The resulting fluorescence intensity data as a function of minocycline concentration may indicate clinically relevant therapeutic doses of topical BPX-01 needed to kill P. acnes and reduce inflammation for successful clinical outcomes.
Hutchinson, Mark R.; Northcutt, Alexis L.; Chao, Lindsey W.; Kearney, Jeffrey J.; Zhang, Yingning; Berkelhammer, Debra L.; Loram, Lisa C.; Rozeske, Robert R.; Bland, Sondra T.; Maier, Steven F.; Gleeson, Todd T.; Watkins, Linda R.
2008-01-01
Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation. PMID:18706994
Kumar, Anil; Vashist, Aditi; Kumar, Puneet; Kalonia, Harikesh; Mishra, Jitendriya
2012-01-01
Chronic fatigue stress (CFS) is a common complaint among general population. Persistent and debilitating fatigue severely impairs daily functioning and is usually accompanied by combination of several physical and psychiatric problems. It is now well established fact that oxidative stress and neuroinflammation are involved in the pathophysiology of chronic fatigue and related disorders. Targeting both COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways have been proposed to be involved in neuroprotective effect. In the present study, mice were put on the running wheel apparatus for 6 min test session daily for 21 days, what produced fatigue like condition. The locomotor activity and anxiety like behavior were measured on 0, 8(th), 15(th) and 22(nd) day. The brains were isolated on 22(nd) day immediately after the behavioral assessments for the estimation of oxidative stress parameters and mitochondrial enzyme complexes activity. Pre-treatment with licofelone (2.5, 5 and 10 mg/kg, po) and minocycline (50 and 100 mg/kg, po) for 21 days, significantly attenuated fatigue like behavior as compared to the control (rotating wheel activity test session, RWATS) group. Further, licofelone (5 and 10 mg/kg, po) and minocycline (50 and 100 mg/kg, po) drug treatments for 21 days significantly attenuated behavioral alterations, oxidative damage and restored mitochondrial enzyme complex activities (I, II, III and IV) as compared to control, whereas combination of licofelone (5 mg/kg) with minocycline (50 mg/kg) significantly potentiated their protective effect which was significant as compared to their effect per se. The present study highlights the therapeutic potential of licofelone, minocycline and their combination against CFS in mice.
Tang, Minke; Alexander, Henry; Clark, Robert S B; Kochanek, Patrick M; Kagan, Valerian E; Bayir, Hülya
2010-01-01
The mechanisms leading to delayed neuronal death after asphyxial cardiac arrest (ACA) in the developing brain are unknown. This study aimed at investigating the possible role of microglial activation in neuronal death in developing brain after ACA. Postnatal day-17 rats were subjected to 9 mins of ACA followed by resuscitation. Rats were randomized to treatment with minocycline, (90 mg/kg, intraperitoneally (i.p.)) or vehicle (saline, i.p.) at 1 h after return of spontaneous circulation. Thereafter, minocycline (22.5 mg/kg, i.p.) was administrated every 12 h until sacrifice. Microglial activation (evaluated by immunohistochemistry using ionized calcium-binding adapter molecule-1 (Iba1) antibody) coincided with DNA fragmentation and neurodegeneration in CA1 hippocampus and cortex (assessed by deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), Fluoro-Jade-B and Nissl stain). Minocycline significantly decreased both the microglial response and neuronal degeneration compared with the vehicle. Asphyxial CA significantly enhanced proinflammatory cytokine and chemokine levels in hippocampus versus control (assessed by multiplex bead array assay), specifically tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1alpha (MIP-1alpha), regulated upon activation, normal T-cell expressed and secreted (RANTES), and growth-related oncogene (GRO-KC) (P<0.05). Minocycline attenuated ACA-induced increases in MIP-1alpha and RANTES (P<0.05). These data show that microglial activation and cytokine production are increased in immature brain after ACA. The beneficial effect of minocycline suggests an important role for microglia in selective neuronal death after pediatric ACA, and a possible therapeutic target.
High MMP-9 activity levels in fragile X syndrome are lowered by minocycline.
Dziembowska, Magdalena; Pretto, Dalyir I; Janusz, Aleksandra; Kaczmarek, Leszek; Leigh, Mary Jacena; Gabriel, Nielsen; Durbin-Johnson, Blythe; Hagerman, Randi J; Tassone, Flora
2013-08-01
Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by lack of the FMR1 protein, FMRP, a translational repressor. Its absence leads to up-regulation of locally translated proteins involved in synaptic transmission and plasticity, including the matrix metalloproteinase-9 (MMP-9). In the Fmr1 knock-out (KO), a mouse model of FXS, an abnormal elevated expression of MMP-9 in the brain was pharmacologically down-regulated after treatment with the tetracycline derivative minocycline. Moreover, the rescue of immature dendritic spine morphology and a significant improvement of abnormal behavior were associated with down-regulation of MMP-9. Here, we report on high plasma activity of MMP-9 in individuals with FXS. In addition, we investigate MMP-9 changes in patients with FXS who have gone through a minocycline controlled clinical trial and correlate MMP-9 activity to clinical observations. The results of this study suggest that, in humans, activity levels of MMP-9 are lowered by minocycline and that, in some cases, changes in MMP-9 activity are positively associated with improvement based on clinical measures. Copyright © 2013 Wiley Periodicals, Inc.
Aota, Yasuo; Gotoh, Akihiko; Nakamura, Itaru; Motoya, Kazuki; Okuda, Yuko; Hanyu, Naofumi; Honma, Toshihiro; Udou, Ryutaro; Yokoyama, Tomohisa; Kitagawa, Naoyuki; Komatsu, Norio
2017-05-01
A 63-year-old man with follicular lymphoma was administered standard R-CHOP chemotherapy. Six days after the second course of chemotherapy, the patient developed fever and chills. Blood cultures yielded rod-shaped gram-negative bacteria, but no further identification was obtained. High fever and chills returned on the fifth and sixth days after the third and fourth courses of R-CHOP, respectively. These blood cultures were also positive. Since we detected spiral-shaped gram-negative rods, we performed a prolonged culture during the febrile period after the fourth course of R-CHOP. This revealed the formation of characteristic film-like colonies, and Helicobacter cinaedi(H. cinaedi)bacteria was identified. After final identification, the patient was administered prophylactic minocycline treatment. Subsequent blood cultures were negative, fever did not recur, and we were able to complete 6 courses of R-CHOP. Although H. cinaedi has been reported to be a cause of sepsis in immunocompromised patients, standard correlation has not been established. Our case suggests that H. cinaedi should be considered when recurrent fever is observed after chemotherapy. Prophylactic antibiotic treatment with minocycline may prevent sepsis, as observed in our case.
New thermoresistant polymorph from CO2 recrystallization of minocycline hydrochloride.
Rodrigues, Miguel A; Tiago, João M; Padrela, Luis; Matos, Henrique A; Nunes, Teresa G; Pinheiro, Lídia; Almeida, António J; de Azevedo, Edmundo Gomes
2014-11-01
To prepare and thoroughly characterize a new polymorph of the broad-spectrum antibiotic minocycline from its hydrochloride dehydrate salts. The new minocycline hydrochloride polymorph was prepared by means of the antisolvent effect caused by carbon dioxide. Minocycline recrystallized as a red crystalline hydrochloride salt, starting from solutions or suspensions containing CO2 and ethanol under defined conditions of temperature, pressure and composition. This novel polymorph (β-minocycline) revealed characteristic PXRD and FTIR patterns and a high melting point (of 247 ºC) compared to the initial minocycline hydrochloride hydrates (α-minocycline). Upon dissolution the new polymorph showed full anti-microbial activity. Solid-state NMR and DSC studies evidenced the higher chemical stability and crystalline homogeneity of β-minocycline compared to the commercial chlorohydrate powders. Molecular structures of both minocyclines present relevant differences as shown by multinuclear solid-state NMR. This work describes a new crystalline structure of minocycline and evidences the ability of ethanol-CO2 system in removing water molecules from the crystalline structure of this API, at modest pressure, temperature and relatively short time (2 h), while controlling the crystal habit. This process has therefore the potential to become a consistent alternative towards the control of the solid form of APIs.
Raad, Issam; Hachem, Ray; Hanna, Hend; Girgawy, Essam; Rolston, Kenneth; Whimbey, Estella; Husni, Rola; Bodey, Gerald
2001-01-01
Between February 1994 and November 1998, 56 oncology patients infected with vancomycin-resistant enterococci (VRE) were treated with quinopristin-dalfopristin (Q-D) plus minocycline (MIN). Infections included bacteremia, urinary tract infection, pneumonia, and wound infection. The response rate was 68%, and the most frequent adverse event was arthralgia or myalgia (36%). Q-D–MIN is effective for VRE infection in cancer patients but is associated with a substantial frequency of arthralgia or myalgia. PMID:11600379
Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang
2016-04-01
Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.
Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice.
Yau, Suk Yu; Chiu, Christine; Vetrici, Mariana; Christie, Brian R
2016-10-01
Fragile X syndrome (FXS) is caused by a mutation in the Fmr1 gene that leads to silencing of the gene and a loss of its gene product, Fragile X mental retardation protein (FMRP). Some of the key behavioral phenotypes for FXS include abnormal social anxiety and sociability. Here we show that Fmr1 knock-out (KO) mice exhibit impaired social recognition when presented with a novel mouse, and they display normal social interactions in other sociability tests. Administering minocycline to Fmr1 KO mice throughout critical stages of neural development improved social recognition memory in the novel mouse recognition task. To determine if synaptic changes in the prefrontal cortex (PFC) could have played a role in this improvement, we examined PSD-95, a member of the membrane-associated guanylate kinase family, and signaling molecules (ERK1/2, and Akt) linked to synaptic plasticity in the PFC. Our analyses indicated that while minocycline treatment can enhance behavioral performance, it does not enhance expression of PSD-95, ERK1/2 or Akt in the PFC. Copyright © 2016 Elsevier B.V. All rights reserved.
Pulmonary disposition and pharmacokinetics of minocycline in adult horses.
Echeverria, Kate O; Lascola, Kara M; Giguère, Steeve; Foreman, Jonathan H; Austin, Scott A
2017-11-01
OBJECTIVE To determine pharmacokinetics and pulmonary disposition of minocycline in horses after IV and intragastric administration. ANIMALS 7 healthy adult horses. PROCEDURES For experiment 1 of the study, minocycline was administered IV (2.2 mg/kg) or intragastrically (4 mg/kg) to 6 horses by use of a randomized crossover design. Plasma samples were obtained before and 16 times within 36 hours after minocycline administration. Bronchoalveolar lavage (BAL) was performed 4 times within 24 hours after minocycline administration for collection of pulmonary epithelial lining fluid (PELF) and BAL cells. For experiment 2, minocycline was administered intragastrically (4 mg/kg, q 12 h, for 5 doses) to 6 horses. Plasma samples were obtained before and 20 times within 96 hours after minocycline administration. A BAL was performed 6 times within 72 hours after minocycline administration for collection of PELF samples and BAL cells. RESULTS Mean bioavailability of minocycline was 48% (range, 35% to 75%). At steady state, mean ± SD maximum concentration (Cmax) of minocycline in plasma was 2.3 ± 1.3 μg/mL, and terminal half-life was 11.8 ± 0.5 hours. Median time to Cmax (Tmax) was 1.3 hours (interquartile range [IQR], 1.0 to 1.5 hours). The Cmax and Tmax of minocycline in the PELF were 10.5 ± 12.8 μg/mL and 9.0 hours (IQR, 5.5 to 12.0 hours), respectively. The Cmax and Tmax for BAL cells were 0.24 ± 0.1 μg/mL and 6.0 hours (IQR, 0 to 6.0 hours), respectively. CONCLUSIONS AND CLINICAL RELEVANCE Minocycline was distributed into the PELF and BAL cells of adult horses.
Targets of vascular protection in acute ischemic stroke differ in type 2 diabetes
Kelly-Cobbs, Aisha I.; Prakash, Roshini; Li, Weiguo; Pillai, Bindu; Hafez, Sherif; Coucha, Maha; Johnson, Maribeth H.; Ogbi, Safia N.; Fagan, Susan C.
2013-01-01
Hemorrhagic transformation is an important complication of acute ischemic stroke, particularly in diabetic patients receiving thrombolytic treatment with tissue plasminogen activator, the only approved drug for the treatment of acute ischemic stroke. The objective of the present study was to determine the effects of acute manipulation of potential targets for vascular protection [i.e., NF-κB, peroxynitrite, and matrix metalloproteinases (MMPs)] on vascular injury and functional outcome in a diabetic model of cerebral ischemia. Ischemia was induced by middle cerebral artery occlusion in control and type 2 diabetic Goto-Kakizaki rats. Treatment groups received a single dose of the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron (III), the nonspecific NF-κB inhibitor curcumin, or the broad-spectrum MMP inhibitor minocycline at reperfusion. Poststroke infarct volume, edema, hemorrhage, neurological deficits, and MMP-9 activity were evaluated. All acute treatments reduced MMP-9 and hemorrhagic transformation in diabetic groups. In addition, acute curcumin and minocycline therapy reduced edema in these animals. Improved neurological function was observed in varying degrees with treatment, as indicated by beam-walk performance, modified Bederson scores, and grip strength; however, infarct size was similar to untreated diabetic animals. In control animals, all treatments reduced MMP-9 activity, yet bleeding was not improved. Neuroprotection was only conferred by curcumin and minocycline. Uncovering the underlying mechanisms contributing to the success of acute therapy in diabetes will advance tailored stroke therapies. PMID:23335797
Hu, Jiangting; Kholmukhamedov, Andaleb; Lindsey, Christopher C; Beeson, Craig C; Jaeschke, Hartmut; Lemasters, John J
2016-08-01
Acetaminophen (APAP) overdose causes hepatotoxicity involving mitochondrial dysfunction and the mitochondrial permeability transition (MPT). Iron is a critical catalyst for ROS formation, and reactive oxygen species (ROS) play an important role in APAP-induced hepatotoxicity. Previous studies show that APAP disrupts lysosomes, which release ferrous iron (Fe(2+)) into the cytosol to trigger the MPT and cell killing. Here, our aim was to investigate whether iron released from lysosomes after APAP is then taken up into mitochondria via the mitochondrial electrogenic Ca(2+), Fe(2+) uniporter (MCFU) to cause mitochondrial dysfunction and cell death. Hepatocytes were isolated from fasted male C57BL/6 mice. Necrotic cell killing was assessed by propidium iodide fluorimetry. Mitochondrial membrane potential (ΔΨ) was visualized by confocal microscopy of rhodamine 123 (Rh123) and tetramethylrhodamine methylester (TMRM). Chelatable Fe(2+) was monitored by quenching of calcein (cytosol) and mitoferrofluor (MFF, mitochondria). ROS generation was monitored by confocal microscopy of MitoSox Red and plate reader fluorimetry of chloromethyldihydrodichlorofluorescein diacetate (cmH2DCF-DA). Administered 1h before APAP (10mM), the lysosomally targeted iron chelator, starch-desferal (1mM), and the MCFU inhibitors, Ru360 (100nM) and minocycline (4µM), decreased cell killing from 83% to 41%, 57% and 53%, respectively, after 10h. Progressive quenching of calcein and MFF began after ~4h, signifying increased cytosolic and mitochondrial chelatable Fe(2+). Mitochondria then depolarized after ~10h. Dipyridyl, a membrane-permeable iron chelator, dequenched calcein and MFF fluorescence after APAP. Starch-desferal, but not Ru360 and minocycline, suppressed cytosolic calcein quenching, whereas starch-desferal, Ru360 and minocycline all suppressed mitochondrial MFF quenching and mitochondrial depolarization. Starch-desferal, Ru360 and minocycline also each decreased ROS formation. Moreover, minocycline 1h after APAP decreased cell killing by half. In conclusion, release of Fe(2+) from lysosomes followed by uptake into mitochondria via MCFU occurs during APAP hepatotoxicity. Mitochondrial iron then catalyzes toxic hydroxyl radical formation, which triggers the MPT and cell killing. The efficacy of minocycline post-treatment shows minocycline as a possible therapeutic agent against APAP hepatotoxicity. Copyright © 2016 Elsevier Inc. All rights reserved.
Vinay, Keshavamurthy; Narang, Tarun; Saikia, Uma N; Kumaran, Muthu Sendhil; Dogra, Sunil
2017-03-01
Mycobacterium W (Mw) vaccine has been found to be effective in the treatment of leprosy and warts. Despite increasing use of Mw immunotherapy, data on its safety is limited. We report a series of eight patients who developed persisting injection site granulomatous reaction following Mw immunotherapy and were successfully treated with minocycline. Eight patients with persistent nodular swelling at the site of Mw injections were identified. Seven of them had received Mw immunotherapy for cutaneous warts and one for verrucous epidermal nevus. The lesions were firm, erythematous, succulent, non-tender nodules confined to the sites of Mw vaccine injections. In 6 of these patients nodules also involved the previously injected areas. Skin biopsy from all patients showed eosinophil rich inflammation admixed with histiocytes and lymphocytes. In addition granulomas were seen in all with septal and nodular panniculitis in four patients. Broken and granular acid-fast bacilli were identified in two cases. All patients were treated with oral minocycline 100 mg/day for a mean of 9 weeks and showed good clinical response. Granulomatous reaction is a rare but significant adverse effect of Mw immunotherapy at cosmetically and functionally imperative sites. Oral minocycline appears to be effective therapy in this situation. © 2016 Wiley Periodicals, Inc.
Photo-onycholysis from minocycline. Side effects of minocycline therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kestel, J.L. Jr.
1981-07-01
Minocycline, prescribed for a patient with acne, produced a photosensitivity reaction (photo-onycholysis) involving the fingernails. The onset of this reaction coincided with an increase in sun exposure and cleared several months later, when the drug was discontinued. This type of reaction has been reported to occur in patients taking tetracycline or a member of the tetracycline group of antibiotics, of which minocycline is a member. This appears to be first report of photo-onycholysis due to minocycline.
Cardiac Uptake of Minocycline and Mechanisms for In Vivo Cardioprotection
Romero-Perez, Diego; Fricovsky, Eduardo; Yamasaki, Katrina Go; Griffin, Michael; Barraza-Hidalgo, Maraliz; Dillmann, Wolfgang; Villarreal, Francisco
2008-01-01
Objectives The ability of minocycline to be transported into cardiac cells, concentrate in normal and ischemic myocardium and act as in vivo cardioprotector was examined. We also determined minocycline's capacity to act as a reducer of myocardial oxidative stress and matrix metalloproteinase (MMP) activity. Background The identification of compounds with the potential to reduce myocardial ischemic injury is of great interest. Tetracyclines (TTCs) are antibiotics with pleiotropic cytoprotective properties that accumulate in normal and diseased tissues. Minocycline is highly lipophilic and has shown promise as a possible cardioprotector. However, minocycline's potential as an in vivo cardioprotector as well as the means by which this action is attained are not well understood. Methods Rats were subjected to 45 min of ischemia and 48 h of reperfusion. Animals were treated 48 h before and 48 h after thoracotomy with either vehicle or 50 mg/kg/day minocycline. Tissue samples were used for biochemical assays and cultured cardiac cells for minocycline uptake experiments. Results Minocycline significantly reduced infarct size (∼33%), tissue MMP-9 activity and oxidative stress. Minocycline was concentrated ∼24-fold in normal (0.5 mM) and ∼50-fold in ischemic regions (1.1 mM) vs. blood. Neonatal rat cardiac fibroblasts, myocytes and adult fibroblasts demonstrate a time- and temperature-dependent uptake of minocycline to levels that approximate those of normal myocardium. Conclusions Given the high intracellular levels observed and results from the assessment of in vitro antioxidant and MMP inhibitor capacities, it is likely that minocycline acts to limit myocardial ischemic injury via mass action effects. PMID:18848143
Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice.
Hou, Yue; Xie, Guanbo; Liu, Xia; Li, Guoxun; Jia, Congcong; Xu, Jinghua; Wang, Bing
2016-03-01
The role of glial cells, especially microglia and astrocytes, in neuroinflammation and cognition has been studied intensively. Lipopolysaccharide (LPS), a commonly used inducer of neuroinflammation, can cause cognitive impairment. Minocycline is known to possess potent neuroprotective activity, but its effect on LPS-induced cognitive impairment is unknown. This study aims to investigate the effects of minocycline on LPS-induced cognitive impairment and glial cell activation in mice. Behavioral tests were conducted for cognitive function, immunohistochemistry for microglial and astrocyte response, and quantitative PCR for mRNA expression of proinflammatory cytokines. Minocycline significantly reversed the decreased spontaneous alternation induced by intrahippocampal administration of LPS in the Y-maze task. In the Morris water maze place navigation test, minocycline decreased the escape latency and distance traveled compared to LPS-treated mice. In the probe test, minocycline-treated mice spent more time in the target quadrant and crossed the platform area more frequently than animals in the LPS-treated group. Minocycline produced a significant decrease in the number of Iba-1- and GFAP-positive hippocampal cells compared to the LPS-treated group. Minocycline-treated mice had significantly reduced hippocampal TNF-α and IL-1β mRNA levels compared with LPS-treated animals. Minocycline caused a significant increase in hippocampal BDNF expression compared to the LPS-treated group. Minocycline can attenuate LPS-induced cognitive impairments in mice. This effect may be associated with its action to suppress the activation of microglia and astrocytes and to normalize BDNF expression. Since neuroinflammatory processes and cognitive impairments are implicated in neurodegenerative disorders, minocycline may be a promising candidate for treating such diseases.
Sumracki, Nicole M.; Hutchinson, Mark R.; Gentgall, Melanie; Briggs, Nancy; Williams, Desmond B.; Rolan, Paul
2012-01-01
Background Patients with unilateral sciatica have heightened responses to intradermal capsaicin compared to pain-free volunteers. No studies have investigated whether this pain model can screen for novel anti-neuropathic agents in patients with pre-existing neuropathic pain syndromes. Aim This study compared the effects of pregabalin (300 mg) and the tetracycline antibiotic and glial attenuator minocycline (400 mg) on capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia in patients with unilateral sciatica on both their affected and unaffected leg. Methods/Results Eighteen patients with unilateral sciatica completed this randomised, double-blind, placebo-controlled, three-way cross-over study. Participants received a 10 µg dose of capsaicin into the middle section of their calf on both their affected and unaffected leg, separated by an interval of 75 min. Capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were recorded pre-injection and at 5, 20, 40, 60 and 90 min post-injection. Minocycline tended to reduce pre-capsaicin injection values of hyperalgesia in the affected leg by 28% (95% CI 0% to 56%). The area under the effect time curves for capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were not affected by either treatment compared to placebo. Significant limb differences were observed for flare (AUC) (−38% in affected leg, 95% CI for difference −19% to −52%). Both hand dominance and sex were significant covariates of response to capsaicin. Conclusions It cannot be concluded that minocycline is unsuitable for further evaluation as an anti-neuropathic pain drug as pregabalin, our positive control, failed to reduce capsaicin-induced neuropathic pain. However, the anti-hyperalgesic effect of minocycline observed pre-capsaicin injection is promising pilot information to support ongoing research into glial-mediated treatments for neuropathic pain. The differences in flare response between limbs may represent a useful biomarker to further investigate neuropathic pain. Inclusion of a positive control is imperative for the assessment of novel therapies for neuropathic pain. PMID:22685578
Black bone disease in a healing fracture.
Thiam, Desmond; Teo, Tse Yean; Malhotra, Rishi; Tan, Kong Bing; Chee, Yu Han
2016-01-28
Black bone disease refers to the hyperpigmentation of bone secondary to prolonged usage of minocycline. We present a report of a 34-year-old man who underwent femoral shaft fracture fixation complicated by deep infection requiring debridement. The implants were removed 10 months later after long-term treatment with minocycline and fracture union. A refracture of the femoral shaft occurred 2 days after implant removal and repeat fixation was required. Intraoperatively, abundant heavily pigmented and dark brown bone callus was noted over the old fracture site. There was no evidence of other bony pathology and the appearance was consistent with minocycline-associated pigmentation. As far as we are aware, this is the first case of black bone disease affecting callus within the interval period of bone healing. We also discuss the relevant literature on black bone disease to bring light on this rare entity that is an unwelcomed surprise to operating orthopaedic surgeons. 2016 BMJ Publishing Group Ltd.
Toward a noncytotoxic glioblastoma therapy: blocking MCP-1 with the MTZ Regimen
Salacz, Michael E; Kast, Richard E; Saki, Najmaldin; Brüning, Ansgar; Karpel-Massler, Georg; Halatsch, Marc-Eric
2016-01-01
To improve the prognosis of glioblastoma, we developed an adjuvant treatment directed to a neglected aspect of glioblastoma growth, the contribution of nonmalignant monocyte lineage cells (MLCs) (monocyte, macrophage, microglia, dendritic cells) that infiltrated a main tumor mass. These nonmalignant cells contribute to glioblastoma growth and tumor homeostasis. MLCs comprise of approximately 10%–30% of glioblastoma by volume. After integration into the tumor mass, these become polarized toward an M2 immunosuppressive, pro-angiogenic phenotype that promotes continued tumor growth. Glioblastoma cells initiate and promote this process by synthesizing 13 kDa MCP-1 that attracts circulating monocytes to the tumor. Infiltrating monocytes, after polarizing toward an M2 phenotype, synthesize more MCP-1, forming an amplification loop. Three noncytotoxic drugs, an antibiotic – minocycline, an antihypertensive drug – telmisartan, and a bisphosphonate – zoledronic acid, have ancillary attributes of MCP-1 synthesis inhibition and could be re-purposed, singly or in combination, to inhibit or reverse MLC-mediated immunosuppression, angiogenesis, and other growth-enhancing aspects. Minocycline, telmisartan, and zoledronic acid – the MTZ Regimen – have low-toxicity profiles and could be added to standard radiotherapy and temozolomide. Re-purposing older drugs has advantages of established safety and low drug cost. Four core observations support this approach: 1) malignant glioblastoma cells require a reciprocal trophic relationship with nonmalignant macrophages or microglia to thrive; 2) glioblastoma cells secrete MCP-1 to start the cycle, attracting MLCs, which subsequently also secrete MCP-1 perpetuating the recruitment cycle; 3) increasing cytokine levels in the tumor environment generate further immunosuppression and tumor growth; and 4) MTZ regimen may impede MCP-1-driven processes, thereby interfering with glioblastoma growth. PMID:27175087
Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury
2013-10-01
Contract Number: W81XWH-10-2-0171 TITLE: Minocycline and...30September2012-29September2013 4. TITLE AND SUBTITLE Minocycline and N-acetylcysteine: a synergistic drug combination to treat...grantee previously found screened that the combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function when
Peng, H-Z; Ma, L-X; Lv, M-H; Hu, T; Liu, T
2016-04-05
Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmission, which also plays a key role in modulating pain signaling. To examine the effect of minocycline on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) using whole-cell patch-clamp recording at a holding potential of 0 mV. Bath application of minocycline significantly increased the frequency but not the amplitude of sIPSCs in a reversible and concentration-dependent manner with an EC50 of 85. The enhancement of inhibitory synaptic transmission produced by minocycline was not affected by the glutamate receptor antagonists CNQX and D-APV or by the voltage-gated sodium channel blocker tetrodotoxin (TTX). Moreover, the potency of minocycline for facilitating sIPSC frequency was the same in both glycinergic and GABAergic sIPSCs without changing their decay phases. However, the facilitatory effect of minocycline on sIPSCs was eliminated in a Ca(2+)-free Krebs solution or by co-administration with calcium channel blockers. In summary, our data demonstrate that baseline inhibitory synaptic transmission in SG neurons is markedly enhanced by minocycline. This may function to decrease the excitability of SG neurons, thus leading to a modulation of nociceptive transmission. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Minocycline Attenuates Iron-Induced Brain Injury.
Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya
2016-01-01
Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p < 0.05). The co-injection of minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p < 0.01). Albumin, a marker of BBB disruption, was measured by Western blot analysis. Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p < 0.01). Iron-handling protein levels in the brain, including ceruloplasmin and transferrin, were reduced in the minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.
Fares, Mona; Abedi-Valugerdi, Manuchehr; Hassan, Moustapha; Potácová, Zuzana
2015-07-31
We investigated mechanisms of cytotoxicity induced by doxycycline (doxy) and minocycline (mino) in the chronic myeloid leukemia K562 cell line. Doxy and mino induced cell death in exposure-dependent manner. While annexin V/propidium iodide staining was consistent with apoptosis, the morphological changes in Giemsa staining were more equivocal. A pancaspase inhibitor Z-VAD-FMK partially reverted cell death morphology, but concurrently completely prevented PARP cleavage. Mitochondrial involvement was detected as dissipation of mitochondrial membrane potential and cytochrome C release. DNA double strand breaks detected with γH2AX antibody and caspase-2 activation were found early after the treatment start, but caspase-3 activation was a late event. Decrement of Bcl-xL protein levels and electrophoretic shift of Bcl-xL molecule were induced by both drugs. Phosphorylation of Bcl-xL at serine 62 was ruled out. Similarly, Bcr/Abl tyrosine kinase levels were decreased. Lysosomal inhibitor chloroquine restored Bcl-xL and Bcr/Abl protein levels and inhibited caspase-3 activation. Thus, the cytotoxicity of doxy and mino in K562 cells is mediated by DNA damage, Bcl-xL deamidation and lysosomal degradation with activation of mitochondrial pathway of apoptosis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Urban, Thomas Jacob; Nicoletti, Paola; Chalasani, Naga; Serrano, José; Stolz, Andrew; Daly, Ann K; Aithal, Guruprasad P; Dillon, John; Navarro, Victor; Odin, Joseph; Barnhart, Huiman; Ostrov, David; Long, Nanye; Cirulli, Elizabeth Trilby; Watkins, Paul Brent; Fontana, Robert John
2017-07-01
Minocycline hepatotoxicity can present with prominent autoimmune features in previously healthy individuals. The aim of this study was to identify genetic determinants of minocycline drug-induced liver injury (DILI) in a well-phenotyped cohort of patients. Caucasian patients with minocycline DILI underwent genome-wide genotyping and were compared to unexposed population controls. Human leukocyte antigen (HLA) binding of minocycline was assessed using AutoDock Vina. Among the 25 cases, 80% were female, median age was 19years and median latency from drug start to DILI onset was 318days. At presentation, 76% had acute hepatocellular liver injury, median ALT 1,077U/L (range: 63 to 2,333), median bilirubin 4.5mg/dl (range: 0.2 to 16.7), and 90% had a +ANA. During follow-up, 50% were treated with corticosteroids and no participants died or required a liver transplant. A significant association was noted between HLA-B∗35:02 and risk for minocycline DILI; a 16% carrier frequency in DILI cases compared to 0.6% in population controls (odds ratio: 29.6, 95% CI: 7.8-89.8, p=2.5×10 -8 ). Verification of HLA-B∗35:02 imputation was confirmed by sequence-based HLA typing. HLA-B∗35:02 carriers had similar presenting features and outcomes compared to non-carriers. In silico modeling studies support the hypothesis that direct binding of minocycline to this novel HLA risk allele might be an important initiating event in minocycline DILI. HLA-B∗35:02 is a rare HLA allele that was more frequently identified in the 25 minocycline DILI cases compared to population controls. If confirmed in other cohorts, this HLA allele may prove to be a useful diagnostic marker of minocycline DILI. Development of liver injury following prolonged use of minocycline for acne is a rare but potentially severe form of drug-induced liver injury. Our study demonstrates that individuals who are HLA-B∗35:02 carriers are at increased risk of developing minocycline related liver injury. These results may help doctors more rapidly and confidently diagnose affected patients and possibly reduce the risk of liver injury in individuals receiving minocycline going forward. Copyright © 2017. Published by Elsevier B.V.
Ichiki, Masao; Wataya, Hiroshi; Yamada, Kazuhiko; Tsuruta, Nobuko; Takeoka, Hiroaki; Okayama, Yusuke; Sasaki, Jun; Hoshino, Tomoaki
2017-01-01
Purpose Diarrhea and oral mucositis induced by afatinib can cause devastating quality of life issues for patients undergoing afatinib treatment. Several studies have shown that hangeshashin-to (TJ-14) might be useful for chemotherapy-induced diarrhea and oral mucositis. In this study, we investigated the prophylactic effects of TJ-14 for afatinib-induced diarrhea and oral mucositis and minocycline for afatinib-induced skin rash. Patients and methods First- and second-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors have become the standard first-line treatment in patients with EGFR-mutated non-small cell lung cancer. The incidence of diarrhea was higher with afatinib than with gefitinib, and we conducted a single-arm Phase II study with afatinib. Patients who had previously undergone treatment with afatinib were ineligible. Both TJ-14 (7.5 g/day) and minocycline (100 mg/day) were administered simultaneously from the start of afatinib administration. The primary end point was the incidence of ≥ grade 3 (G3) diarrhea (increase of ≥7 stools/day over baseline) during the first 4 weeks of treatment. The secondary end points were the incidence of ≥ G3 oral mucositis (severe pain interfering with oral intake) and $ G3 skin toxicity (severe or medically significant but not immediately life-threatening). Results A total of 29 patients (nine men and 20 women; median age, 66 years; performance status, 0/1/2: 18/10/1) were enrolled from four centers. Four patients had undergone prior treatment with chemotherapy, including gefitinib or erlotinib. In all, 20 (68.9%) patients and one (3.4%) patient had diarrhea of any grade and ≥ G3, respectively. One (3.4%) patient had ≥ G3 oral mucositis; no patients had ≥ G3 skin rash. A total of 18 (62%) of the 29 patients achieved a partial response. Conclusion The present study indicated a trend in which TJ-14 reduced the risk of afatinib-induced diarrhea and minocycline reduced the risk of afatinib-induced skin rash. PMID:29123409
Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury
2011-10-01
AD_________________ Award Number: W81XWH-10-2-0171 TITLE: Minocycline and N-acetylcysteine: A... Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-10-2-0171 5c. PROGRAM...combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function when dosed one hour following closed cortical
Gopinath, V.; Ramakrishnan, T.; Emmadi, Pamela; Ambalavanan, N.; Mammen, Biju; Vijayalakshmi
2009-01-01
Introduction: Adjunctive therapy with locally delivered antimicrobials has resulted in improved clinical outcomes. The aim of this study was to evaluate the efficacy and safety of locally administered minocycline microspheres (Arestin™) in the treatment of chronic periodontitis. Materials and Methods: A total of 60 sites from 15 patients in the age group of 35-50 years, who had periodontal pockets measuring 5-8 mm and had been diagnosed with chronic periodontitis, were selected for the study. The selected groups were randomly assigned to either the control group (group A) or the treatment/test group (group B). Only scaling and root planing were done at the base line visit for the control sites followed by local application of Arestin™ (1 mg). Clinical parameters such as plaque index, gingival index, and gingival bleeding index were recorded at baseline, day 30, day 90, and day 180 in the selected sites of both the groups. Probing pocket depth also was recorded at baseline, day 90, and day 180 for both the groups. Results: A statistically significant reduction was observed in both groups. Group B showed better results than Group A and these differences were statistically significant. Conclusion: The results of this study clearly indicate that treatment with scaling and root planing plus minocycline microspheres (Arestin™) is more effective and safer than scaling and root planing alone in reducing the signs of chronic periodontitis. PMID:20407655
Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury
2012-10-01
W81XWH-10-2-0171 TITLE: Minocycline and N-acetylcysteine: a synergistic drug combination to treat traumatic brain injury PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Minocycline and N-acetylcysteine: a synergistic drug combination to treat traumatic brain injury 5a. CONTRACT NUMBER 5b...The grantee previously found screened that the combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function
Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.
Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang
2017-06-27
The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P < 0.05). The treatment group exhibited the highest OD value among the four groups. The results observed at 5h were consistent with the results at 1 h. Flow cytometry results showed that at 1h after treatment the apoptosis percentages is higher in the control group compared to other three groups (P < 0.05). Mouse brain tissues were collected and primary neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.
Doughty, Michael J
2016-02-01
To review the special pharmacology of tetracycline antibiotics as anti-inflammatory drugs for treatment of obstructive Meibomian gland disease (MGD) METHODS: PubMed was used as principal resource for articles, regardless of language, on doxycycline and minocycline with key interests being on their serum and tissue pharmacokinetics and their use in clinical studies as part of management of MGD. With oral dosing of between 50 and 200mg, peak blood levels of these antibiotics have been reported to be predictably dose-dependent at between 1 and 5 microgram/mL, with human tear film levels not being detectable with 100mg dosing of doxycycline but levels of 0.2 microgram/mL with 200mg minocycline. That these two tetracycline antibiotics reach the conjunctiva is indicated by conjunctival pigmentary changes due to photosensitization after very long term use. Based the reported use in a range of clinical studies on MGD, dosing with these two antibiotics for MGD is likely to be useful at relatively low doses (e.g. 100mg for doxycycline or 50mg for minocycline, either at once or twice daily depending on severity at presentation and previous history) continued for 2 to 3 months, with the expected outcome being small-to-substantial decreases in abnormal appearance of the glands (from -4 to -89%) and increases in tear film stability (from 21 to 273%). Oral doxycycline and minocycline have predictable pharmacokinetics and have been reported to improve Meibomian gland dysfunction over a few months of use. Copyright © 2015 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Naderi, Yazdan; Sabetkasaei, Masoumeh; Parvardeh, Siavash; Moini Zanjani, Taraneh
2017-04-01
Cerebral ischemia leads to memory impairment that is associated with loss of hippocampal CA1 pyramidal neurons. Neuroinflammation and oxidative stress may be implicated in the pathogenesis of ischemia/reperfusion damage. Minocycline has anti-inflammatory and antioxidant properties. We investigated the neuroprotective effects of minocycline in rats subjected to cerebral ischemia/reperfusion injury. Thirty male rats were divided into three groups: control, sham, and minocycline-pretreated group. Minocycline (40 mg/kg) was injected intraperitoneally immediately before surgery, and then ischemia was induced by occlusion of common carotid arteries for 20 min. Seven days after reperfusion, the Morris water-maze task was used to evaluate memory. Nissl staining was also performed to analyze pyramidal cell damage. We measured the contents of malondialdehyde and proinflammatory cytokines in the hippocampus by the thiobarbituric acid method and enzyme-linked immunosorbent assay, respectively. Microglial activation was also investigated by Iba1 immunostaining. The results showed that pretreatment with minocycline prevented memory impairment induced by cerebral ischemia/reperfusion. Minocycline pretreatment also significantly attenuated ischemia-induced pyramidal cell death and microglial activation in the CA1 region and reduced the levels of malondialdehyde and proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the hippocampus of ischemic rats. Minocycline showed neuroprotective effects on cerebral ischemia-induced memory deficit probably through its anti-inflammatory and antioxidant activities.
Methicillin-resistant Staphylococcus aureus: clinical manifestations and antimicrobial therapy.
Cunha, B A
2005-07-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a common skin coloniser and less commonly causes infection. MRSA colonisation should be contained by infection control measures and not treated. MRSA infections cause the same spectrum of infection as MSSA infections, i.e., skin/soft tissue infections, bone/joint infections, central IV line infections, and acute bacterial endocarditis (native valve/prosthetic valve). There is a discrepancy between in-vitro sensitivity and in-vivo effectiveness with MRSA. To treat MRSA infections, clinicians should select an MRSA drug with proven in-vivo effectiveness, i.e., daptomycin. Linezolid, quinupristin/dalfopristin, minocycline, or vancomycin, and not rely on in-vitro susceptibility data. For MRSA, doxycycline cannot be substituted for minocycline. Linezolid and minocycline are available for oral administration and both are also effective in treating MRSA CNS infections. Vancomycin is being used less due to side effects, (increasing MICs/resistance, VISA/VRSA), and increased VRE prevalence. The most potent anti-MRSA drug at the present time is daptomycin. Daptomycin is useful when rapid/effective therapy of MRSA bacteraemia/endocarditis is necessary. Daptomycin is also useful to treat persistent MRSA bacteraemias/MRSA treatment failures with other drugs, i.e., vancomycin. There is no difference in virulence between MSSA and MRSA infections if treatment is started early and with an agent that has in-vivo effectiveness.
Zhao, Qiuying; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Jiang, Wei; Wu, Xiaohui; Yan, Shuo; Chen, Yubo; Peng, Cheng; You, Zili
2015-01-01
Despite the potential adverse effects of maternal sleep deprivation (MSD) on physiological and behavioral aspects of offspring, the mechanisms remain poorly understood. The present study was intended to investigate the roles of microglia on neurodevelopment and cognition in young offspring rats with prenatal sleep deprivation. Pregnant Wistar rats received 72 h sleep deprivation in the last trimester of gestation, and their prepuberty male offspring were given the intraperitoneal injection with or without minocycline. The results showed the number of Iba1+ microglia increased, that of hippocampal neurogenesis decreased, and the hippocampus-dependent spatial learning and memory were impaired in MSD offspring. The classical microglial activation markers (M1 phenotype) IL-1β, IL-6, TNF-α, CD68 and iNOS were increased, while the alternative microglial activation markers (M2 phenotype) Arg1, Ym1, IL-4, IL-10 and CD206 were reduced in hippocampus of MSD offspring. After minocycline administration, the MSD offspring showed improvement in MWM behaviors and increase in BrdU+/DCX+ cells. Minocycline reduced Iba1+ cells, suppressed the production of pro-inflammatory molecules, and reversed the reduction of M2 microglial markers in the MSD prepuberty offspring. These results indicate that dysregulation in microglial pro- and anti-inflammatory activation is involved in MSD-induced inhibition of neurogenesis and impairment of spatial learning and memory. PMID:25830666
Minocycline in leprosy patients with recent onset clinical nerve function impairment.
Narang, Tarun; Arshdeep; Dogra, Sunil
2017-01-01
Nerve function impairment (NFI) in leprosy may occur and progress despite multidrug therapy alone or in combination with corticosteroids. We observed improvement in neuritis when minocycline was administered in patients with type 2 lepra reaction. This prompted us to investigate the role of minocycline in recent onset NFI, especially in corticosteroid unresponsive leprosy patients. Leprosy patients with recent onset clinical NFI (<6 months), as determined by Monofilament Test (MFT) and Voluntary Muscle Test (VMT), were recruited. Minocycline 100mg/day was given for 3 months to these patients. The primary outcome was the proportion of patients with 'restored,' 'improved,' 'stabilized,' or 'deteriorated' NFI. Secondary outcomes included any improvement in nerve tenderness and pain. In this pilot study, 11 patients were recruited. The progression of NFI was halted in all; with 9 out of 11 patients (81.82%) showing ?restored? or ?improved? sensory or motor nerve functions, on assessment with MFT and VMT. No serious adverse effects due to minocycline were observed. Our pilot study demonstrates the efficacy and safety of minocycline in recent onset NFI in leprosy patients. However, larger and long term comparative trials are needed to validate the efficacy of minocycline in leprosy neuropathy. © 2016 Wiley Periodicals, Inc.
Yamada, Maya; Iihara, Hirotoshi; Fujii, Hironori; Ishihara, Masashi; Matsuhashi, Nobuhisa; Takahashi, Takao; Yoshida, Kazuhiro; Itoh, Yoshinori
2015-11-01
Although the anti-EGFR monoclonal antibody panitumumab is effective in treating colorectal cancer, the occurrence of severe skin disorders often discontinues therapy. Herein, we investigated by a retrospective chart review the effect of prophylactic oral minocycline in combination with skin treatment using moisturizer on the incidence of skin disorders and tumor response in metastatic colorectal cancer patients who received panitumumab. In a total of 55 patients, 38 patients were eligible, consisting the pre-emptive group (N=25) and reactive group (N=13). Acneiform rash and other adverse events were graded according to the CTCAE v4.0. The occurrence of acneiform rash (grade ≥2) was significantly lower in pre-emptive group than in reactive group (44.0% vs. 84.6%, p=0.04). No significant differences in the occurrence of other adverse events were observed between the two groups. Tumor response was not significantly different between the two groups (36.0% vs. 7.7%, OR, 6.75; 95% confidence interval (CI)=0.75-60.76, p=0.12). Mean time to treatment failure was 149.7 days and 110.2 days in the pre-emptive group and reactive treatment group, respectively (HR=0.58; 95% CI= 0.26-1.28, p=0.18). Prophylactic oral minocycline combined with skin care reduced panitumumab-induced acneiform rash without a significant influence on tumor response. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Qi, Jian; Chen, Chen; Meng, Qing-Xi; Wu, Yan; Wu, Haitao; Zhao, Ting-Bao
2016-01-01
Stress has been shown to enhance pain sensitivity resulting in stress-induced hyperalgesia. However, the underlying mechanisms have yet to be elucidated. Using single-prolonged stress combined with Complete Freund’s Adjuvant injection model, we explored the reciprocal regulatory relationship between neurons and microglia, which is critical for the maintenance of posttraumatic stress disorder (PTSD)-induced hyperalgesia. In our assay, significant mechanical allodynia was observed. Additionally, activated neurons in spinal dorsal horn were observed by analysis of Fos expression. And, microglia were also significantly activated with the presence of increased Iba-1 expression. Intrathecal administration of c-fos antisense oligodeoxynucleotides (ASO) or minocycline (a specific microglia inhibitor) attenuated mechanical allodynia. Moreover, intrathecal administration of c-fos ASO significantly suppressed the activation of neurons and microglia. Interestingly, inhibition of microglia activation by minocycline significantly suppressed the activation of both neurons and microglia in spinal dorsal horn. P38 inhibitor SB203580 suppressed IL-6 production, and inhibition of IL-6 receptor (IL-6R) activation by tocilizumab suppressed Fos expression. Together, our data suggest that the presence of a “crosstalk” between activated microglia and neurons in the spinal dorsal horn, which might contribute to the stress-induced hyperactivated state, leading to an increased pain sensitivity. PMID:27995982
Minocycline-induced hyperpigmentation of tympanic membrane, sclera, teeth, and pinna.
Reese, Stephen; Grundfast, Kenneth
2015-11-01
A 40-year-old woman was referred by her primary care physician for evaluation after a routine physical exam revealed bilateral brownish pigmentation of the tympanic membrane. Head and neck examination in the otolaryngology clinic revealed bluish hue of both sclera, teeth, and portions of her pinnae. A hearing test revealed bilateral mild sensorineural hearing loss. The patient had a history of taking minocycline for 14 years, and the hyperpigmentation that she had is known to be a rare complication of prolonged minocycline use. However, to our knowledge, this is the first case showing photographic evidence of minocycline-induced tympanic membrane hyperpigmentation. Minocycline-induced hyperpigmentation should be considered when a patient presents with brown or blue discoloration of the tympanic membrane. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Salameh, Aida; Einenkel, Anne; Kühne, Lydia; Grassl, Maria; von Salisch, Sandy; Kiefer, Phillip; Vollroth, Marcel; Dähnert, Ingo; Dhein, Stefan
2015-11-01
Surgical correction of congenital cardiac malformations mostly implies the use of cardiopulmonary bypass (CPB). However, a possible negative impact of CPB on cerebral structures like the hippocampus cannot be neglected. Therefore, we investigated the effect of CPB on hippocampus CA1 and CA3 regions without or with the addition of epigallocatechin-3-gallate (EGCG) or minocycline. We studied 42 piglets and divided them into six experimental groups: control without or with EGCG or minocycline, CPB without or with EGCG or minocycline. The piglets underwent 90 minutes CPB and subsequently, a 120-minute recovery and reperfusion phase. Thereafter, histology of the hippocampus was performed and the adenosine triphosphate (ATP) content was measured. Histologic evaluation revealed that CPB produced a significant peri-cellular edema in both CA regions. Moreover, we found an increased number of cells stained with markers for hypoxia, apoptosis and nitrosative stress. Most of these alterations were significantly reduced to or near to control levels by application of EGCG or minocycline. ATP content was significantly reduced within the hippocampus after CPB. This reduction could not be antagonized by EGCG or minocycline. In conclusion, CPB had a significant negative impact on the integrity of hippocampal neural cells. This cellular damage could be significantly attenuated by addition of EGCG or minocycline. © 2015 International Society of Neuropathology.
Tao, Tao; Feng, Jin-Zhou; Xu, Guang-Hui; Fu, Jie; Li, Xiao-Gang; Qin, Xin-Yue
2017-04-01
Minocycline, a semi-synthetic second-generation derivative of tetracycline, has been reported to exert neuroprotective effects both in animal models and in clinic trials of neurological diseases. In the present study, we first investigated the protective effects of minocycline on oxygen-glucose deprivation and reoxygenation-induced impairment of neurite outgrowth and its potential mechanism in the neuronal cell line, PC12 cells. We found that minocycline significantly increased cell viability, promoted neurite outgrowth and enhanced the expression of growth-associated protein-43 (GAP-43) in PC12 cells exposed to oxygen-glucose deprivation/reoxygenation injury. In addition, immunoblots revealed that minocycline reversed the overexpression of phosphorylated myosin light chain (MLC) and the suppression of activated extracellular signal-regulated kinase 1/2 (ERK1/2) caused by oxygen-glucose deprivation/reoxygenation injury. Moreover, the minocycline-induced neurite outgrowth was significantly blocked by Calyculin A (1 nM), an inhibitor of myosin light chain phosphatase (MLCP), but not by an ERK1/2 inhibitor (U0126; 10 μM). These findings suggested that minocycline activated the MLCP/MLC signaling pathway in PC12 cells after oxygen-glucose deprivation/reoxygenation injury, which resulted in the promotion of neurite outgrowth.
Cheng, Kuang-I; Wang, Hung-Chen; Wu, Yi-Chia; Tseng, Kuang-Yi; Chuang, Yi-Ta; Chou, Chao-Wen; Chen, Ping-Luen; Chang, Lin-Li; Lai, Chung-Sheng
2016-06-01
Peripheral nerve block guidance with a nerve stimulator or echo may not prevent intrafascicular injury. This study investigated whether intrafascicular lidocaine induces peripheral neuropathic pain and whether this pain can be alleviated by minocycline administration. A total of 168 male Sprague-Dawley rats were included. In experiment 1, 2% lidocaine (0.1 mL) was injected into the left sciatic nerve. Hindpaw responses to thermal and mechanical stimuli, and sodium channel and activating transcription factor (ATF-3) expression in dorsal root ganglion (DRG) and glial cells in the spinal dorsal horn (SDH), were measured on days 4, 7, 14, 21, and 28. On the basis of the results in experiment 1, rats in experiment 2 were divided into sham, extraneural, intrafascicular, peri-injury minocycline, and postinjury minocycline groups. Behavioral responses, macrophage recruitment, expression changes of myelin basic protein and Schwann cells in the sciatic nerve, dysregulated expression of ATF-3 in the DRG, and activated glial cells in L5 SDH were assessed on days 7 and 14. Intrafascicular lidocaine induced mechanical allodynia, downregulated Nav1.8, increased ATF-3 expression in the DRG, and activated glial cells in the SDH. Increased expression of macrophages, Schwann cells, and myelin basic protein was found in the sciatic nerve. Minocycline attenuated intrafascicular lidocaine-induced neuropathic pain and nerve damage significantly. Peri-injury minocycline was better than postinjury minocycline administration in alleviating mechanical behaviors, mitigating macrophage recruitment into the sciatic nerve, and suppressing activated microglial cells in the spinal cord. Systemic minocycline administration alleviates intrafascicular lidocaine injection-induced peripheral nerve damage.
Dai, Chongshan; Ciccotosto, Giuseppe D.; Cappai, Roberto; Wang, Yang; Tang, Shusheng; Xiao, Xilong; Velkov, Tony
2017-01-01
Background: Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. Methods: The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Results: Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. Conclusions: To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy. PMID:28204513
Minocycline added to subcutaneous interferon β-1a in multiple sclerosis: randomized RECYCLINE study.
Sørensen, P S; Sellebjerg, F; Lycke, J; Färkkilä, M; Créange, A; Lund, C G; Schluep, M; Frederiksen, J L; Stenager, E; Pfleger, C; Garde, E; Kinnunen, E; Marhardt, K
2016-05-01
Combining different therapies may improve disease control in patients with relapsing-remitting multiple sclerosis (RRMS). This study assessed the efficacy and safety of minocycline added to subcutaneous (sc) interferon (IFN) β-1a therapy. This was a double-blind, randomized, placebo-controlled multicentre study. Within 3 months (±1 month) of starting sc IFN β-1a 44 μg three times weekly, patients with RRMS were randomized to minocycline 100 mg twice daily or placebo, added to sc IFN β-1a, for 96 weeks. The primary efficacy endpoint was the time to first qualifying relapse. Secondary efficacy endpoints were the annualized relapse rate for qualifying relapses, the number of new/enlarging T2-weighted lesions and change in brain volume [magnetic resonance imaging (MRI) was performed only in a few selected centres]. In addition, a number of tertiary efficacy endpoints were assessed. One hundred and forty-nine patients received minocycline and 155 received placebo; MRI data were available for 23 and 27 patients, respectively. The time to first qualifying relapse did not differ significantly for minocycline versus placebo (hazard ratio 0.85; 95% confidence interval 0.53, 1.35; log-rank = 0.50; P = 0.48). There were no statistically significant differences between the two groups on other efficacy endpoints, although some numerical trends in favour of minocycline were observed. No unexpected adverse events were reported, but more patients discontinued because of adverse events with minocycline versus placebo. Minocycline showed no statistically significant beneficial effect when added to sc IFN β-1a therapy. © 2016 EAN.
Analysis of minocycline as a countermeasure against acute radiation syndrome.
Mehrotra, Shalini; Pecaut, Michael J; Gridley, Daila S
2012-01-01
To evaluate the impact of an antibiotic, minocycline, on several immune parameters in response to radiation in a mouse model. C57BL/6 mice were treated with minocycline (i.p.) for 5 days, beginning immediately before radiation with 1-3 Gy (60)Co γ-rays. Spleen and blood were collected on day 4 post-irradiation. Cell populations were determined in the blood and spleen. Splenocytes were activated with anti-CD3 antibody for 48 h and cytokines were quantified. Minocycline increased the counts and/or percentages of splenic macrophages, granulocytes, natural killer, T- and CD8(+) T-cells (p<0.05 versus radiation alone). Minocycline significantly increased the expression of interleukin-1α and β, which are radioprotective, as well as the ones of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor, which accelerate neutrophil recovery (p<0.05 versus radiation alone), while suppressing cytokines that could prevent hematopoiesis, e.g. macrophage inflammatory protein-1α, tumor necrosis factor-α and interferon-γ. These data indicate that minocycline should be further tested for use in restoration of the hematopoietic system after radiation exposure.
A, Lan; Xu, Wenzhou; Zhao, Jinghui; Li, Chunyan; Qi, Manlin; Li, Xue; Wang, Lin; Zhou, Yanmin
2018-06-20
Minocycline has been widely used in central nervous system disease. However, the effect of minocycline on the repairing of nerve fibers around dental implants had not been previously investigated. The aim of the present study was to evaluate the possibility of using minocycline for the repairing of nerve fibers around dental implants by investigating the effect of minocycline on the proliferation of Schwann cells and secretion of neurotrophic factors nerve growth factor and glial cell line-derived neurotrophic factor in vitro. TiO 2 nanotubes were fabricated on the surface of pure titanium via anodization at the voltage of 20, 30, 40 and 50 V. The nanotubes structure were characterized by scanning electron microscopy and examined with an optical contact angle. Then drug loading capability and release behavior were detected in vitro. The TiO 2 nanotubes loaded with different concentration of minocycline were used to produce conditioned media with which to treat the Schwann cells. A cell counting kit-8 assay and cell viability were both selected to study the proliferative effect of the specimens on Schwann cell. Reverse transcription-quantitative PCR and western blot analyses were used to detect the related gene/protein expression of Schwann cells. The results showed that the diameter of TiO 2 nanotubes at different voltage varied from 100 to 200 nm. The results of optical contact angle and releasing profile showed the nanotubes fabricated at the voltage of 30 V met the needs of the carrier of minocycline. In addition, the TiO 2 nanotubes loaded with the concentration of 20 μg/mL minocycline increased Schwann cells proliferation and secretion of neurotrophic factors in vitro. The results suggested that the surface functionalization of TiO 2 nanotubes with minocycline was a promising candidate biomaterial for the peripheral nerve regeneration around dental implants and has potential to be applied in improving the osseoperception of dental implant.
Himmel, Lauren E.; Lustberg, Maryam B.; DeVries, A. Courtney; Poi, Ming; Chen, Ching-Shih; Kulp, Samuel K.
2016-01-01
Minocycline is purported to have neuroprotective properties in experimental models of some human neurologic diseases, and has therefore been identified as a putative neuroprotectant for chemotherapy-induced cognitive impairment (CICI) in breast cancer patients. However, because its mechanism of action is believed to be mediated through anti-inflammatory, anti-apoptotic, and anti-oxidant pathways, co-administration of minocycline with chemotherapeutic agents has the potential to reduce the efficacy of anticancer drugs. The objective of this study is to evaluate the effect of minocycline on the activity of the AC chemotherapeutic regimen (Adriamycin [doxorubicin], Cytoxan [cyclophosphamide]) in in vitro and in vivo models of triple-negative breast cancer (TNBC). Clonogenic and methylthiazol tetrazolium (MTT) assays were used to assess survival and viability in two TNBC cell lines treated with increasing concentrations of AC in the presence or absence of minocycline. Biomarkers of apoptosis, cell stress, and DNA damage were evaluated by western blot. The in vivo effects of AC and minocycline, each alone and in combination, were assessed in a xenograft model of TNBC in female athymic nude mice by weekly tumor volume measurement, body and organ weight measurement, and histopathology. Apoptosis and proliferation were characterized by immunohistochemistry in the xenografts tumors. Brains from tumor-bearing mice were evaluated for microglial activation, glial scars, and the proportion of neural progenitor cells. Data from these in vitro and in vivo studies demonstrate that minocycline does not diminish the cytotoxic and tumor-suppressive effects of this chemotherapeutic drug combination in TNBC cells. Moreover, minocycline appeared to prevent the reduction in doublecortin-positive neural progenitor cells observed in AC-treated mice. We posit that minocycline may be useful clinically for its reported neuroprotective activity in breast cancer patients receiving AC without loss of chemotherapeutic efficacy. PMID:27555377
Himmel, Lauren E; Lustberg, Maryam B; DeVries, A Courtney; Poi, Ming; Chen, Ching-Shih; Kulp, Samuel K
2016-10-01
Minocycline is purported to have neuroprotective properties in experimental models of some human neurologic diseases, and has therefore been identified as a putative neuroprotectant for chemotherapy-induced cognitive impairment (CICI) in breast cancer patients. However, because its mechanism of action is believed to be mediated through anti-inflammatory, anti-apoptotic, and anti-oxidant pathways, co-administration of minocycline with chemotherapeutic agents has the potential to reduce the efficacy of anticancer drugs. The objective of this study is to evaluate the effect of minocycline on the activity of the AC chemotherapeutic regimen (Adriamycin [doxorubicin], Cytoxan [cyclophosphamide]) in in vitro and in vivo models of triple-negative breast cancer (TNBC). Clonogenic and methylthiazol tetrazolium (MTT) assays were used to assess survival and viability in two TNBC cell lines treated with increasing concentrations of AC in the presence or absence of minocycline. Biomarkers of apoptosis, cell stress, and DNA damage were evaluated by western blot. The in vivo effects of AC and minocycline, each alone and in combination, were assessed in a xenograft model of TNBC in female athymic nude mice by weekly tumor volume measurement, body and organ weight measurement, and histopathology. Apoptosis and proliferation were characterized by immunohistochemistry in the xenografts tumors. Brains from tumor-bearing mice were evaluated for microglial activation, glial scars, and the proportion of neural progenitor cells. Data from these in vitro and in vivo studies demonstrate that minocycline does not diminish the cytotoxic and tumor-suppressive effects of this chemotherapeutic drug combination in TNBC cells. Moreover, minocycline appeared to prevent the reduction in doublecortin-positive neural progenitor cells observed in AC-treated mice. We posit that minocycline may be useful clinically for its reported neuroprotective activity in breast cancer patients receiving AC without loss of chemotherapeutic efficacy. Copyright © 2016 Elsevier GmbH. All rights reserved.
Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens
2016-02-29
Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hermsmeier, Maiko; Sawant, Tanvee; Lac, Diana; Yamamoto, Akira; Chen, Xin; Huang, Susan Y.; Nagavarapu, Usha; Evans, Conor L.; Chan, Kin Foong; Daniels, AnnaMarie
2017-02-01
Acne vulgaris is a chronic inflammatory skin condition commonly resulting in negative aesthetic and social impacts on those affected. Minocycline, currently available as an oral antibiotic for moderate to severe acne, has a known minimum inhibitory concentration (MIC) for the acne-causing bacterium Propionibacterium acnes (P. acnes) in vitro, with its anti-inflammatory properties also eliciting inhibitory effects on pro-inflammatory molecules. A novel topical gel composition containing solubilized minocycline (BPX-01) has been developed to directly deliver the drug to the skin. Because minocycline is a known fluorophore, fluorescence microscopy and concurrent quantitative measurements were performed on excised human facial skin dosed with different concentrations, in order to determine the spatial distribution of the drug and quantification of its local concentration in the epidermis and the pilosebaceous unit where P. acnes generally reside. Local minocycline delivery confirmed achievement of an adequate therapeutic dose to support clinical studies. Subsequently, a 4-week double-blind, randomized, vehicle controlled clinical study was performed to assess the safety and efficacy of 1% minocycline BPX-01 applied daily. No instances of cutaneous toxicity were reported, and a greater than 1 log reduction of P. acnes count was observed at week 4 with statistical significance from baseline and vehicle control. In addition, no detectable amounts of minocycline in the plasma were reported, suggesting the potential of this new formulation to diminish the known systemic adverse effects associated with oral minocycline. Follow-on clinical plans are underway to further establish the safety of BPX-01 and to evaluate its efficacy against inflammatory acne lesions in a 225 patient multi-center dose-finding study.
Dai, Chongshan; Ciccotosto, Giuseppe D; Cappai, Roberto; Wang, Yang; Tang, Shusheng; Xiao, Xilong; Velkov, Tony
2017-06-01
Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Minocycline-Induced Drug Hypersensitivity Syndrome Followed by Multiple Autoimmune Sequelae
Brown, Rebecca J.; Rother, Kristina I.; Artman, Henry; Mercurio, Mary Gail; Wang, Roger; Looney, R. John; Cowen, Edward W.
2010-01-01
Background Drug hypersensitivity syndrome (DHS) is a severe, multisystem adverse drug reaction that may occur following the use of numerous medications, including anticonvulsants, sulfonamides, and minocycline hydrochloride. Long-term autoimmune sequelae of DHS have been reported, including hypothyroidism. Observations A 15-year-old female adolescent developed DHS 4 weeks after starting minocycline therapy for acne vulgaris. Seven weeks later she developed autoimmune hyperthyroidism (Graves disease), and 7 months after discontinuing minocycline therapy she developed autoimmune type 1 diabetes mellitus. In addition, she developed elevated titers of several markers of systemic autoimmune disease, including antinuclear, anti-Sjögren syndrome A, and anti-Smith antibodies. Conclusions Minocycline-associated DHS may be associated with multiple autoimmune sequelae, including thyroid disease, type 1 diabetes mellitus, and elevated markers of systemic autoimmunity. Long-term follow-up is needed in patients with DHS to determine the natural history of DHS-associated sequelae. PMID:19153345
Ming, Mo-yu; Cai, Shuang-qi; Chen, Yi-Qiang
2015-01-01
Background Pleural abrasion has been widely used to control the recurrence of primary spontaneous pneumothorax (PSP). However, controversy still exists regarding the advantages and disadvantages of pleural abrasion compared with other interventions in preventing the recurrence of PSP. Methods The PubMed, Embase, and Cochrane Central Register of Controlled Trials databases were searched up to December 15, 2014 to identify randomized controlled trials (RCTs) that compared the effects of pleural abrasion with those of other interventions in the treatment of PSP. The study outcomes included the PSP recurrence rate and the occurrence rate of adverse effects. Results Mechanical pleural abrasion and apical pleurectomy after thoracoscopic stapled bullectomy exhibited similarly persistent postoperative air leak occurrence rates (p = 0.978) and 1-year PSP recurrence rates (p = 0.821), whereas pleural abrasion led to reduced residual chest pain and discomfort (p = 0.001) and a smaller rate of hemothorax (p = 0.036) than did apical pleurectomy. However, the addition of minocycline pleurodesis to pleural abrasion did not reduce the pneumothorax recurrence rate compared with apical pleurectomy (3.8% for both procedures) but was associated with fewer complications. There was no statistical difference in the pneumothorax recurrence rate between mechanical pleural abrasion and chemical pleurodesis with minocycline on either an intention-to-treat basis (4 of 42 versus 0 of 42, p = 0.12; Fisher exact test) or after exclusions (2 of 40 versus 0 of 42, p = 0.24; Fisher exact test). Pleural abrasion plus minocycline pleurodesis also did not reduce the pneumothorax recurrence rate compared with pleural abrasion alone (p = 0.055). Moreover, pleural abrasion plus minocycline pleurodesis was associated with more intense acute chest pain. The postoperative overall recurrence rate in patients who underwent staple line coverage with absorbable cellulose mesh and fibrin glue was similar to that with mechanical abrasion after thoracoscopic bullectomy (13.8% vs. 14.2%, respectively; p = 0.555), but staple line coverage resulted in less postoperative residual pain than mechanical abrasion (0.4% vs.3.2%; p<0.0001). Pleural abrasion after thoracoscopic wedge resection did not decrease the recurrence of pneumothorax compared with wedge resection alone (p = 0.791), but the intraoperative bleeding and postoperative pleural drainage rates were higher when pleural abrasion was performed. Conclusions In addition to resulting in the same pneumothorax recurrence rate, thoracoscopic pleural abrasion with or without minocycline pleurodesis is safer than apical pleurectomy in the treatment of PSP. However, minocycline pleurodesis with or without pleural abrasion is not any more effective than pleural abrasion alone. Moreover, additional mechanical abrasion is not safer than additional staple line coverage with absorbable cellulose mesh and fibrin glue after thoracoscopic bullectomy because of increased postoperative pain. Additionally, pleural abrasion after thoracoscopic wedge resection should not be recommended for routine application due to the greater incidence of adverse effects than wedge resection alone. However, further large-scale, well-designed RCTs are needed to confirm the best procedure. PMID:26042737
Activated Microglia Targeting Dendrimer-Minocycline Conjugate as Therapeutics for Neuroinflammation.
Sharma, Rishi; Kim, Soo-Young; Sharma, Anjali; Zhang, Zhi; Kambhampati, Siva Pramodh; Kannan, Sujatha; Kannan, Rangaramanujam M
2017-11-15
Brain-related disorders have outmatched cancer and cardiovascular diseases worldwide as the leading cause of morbidity and mortality. The lack of effective therapies and the relatively dry central nervous system (CNS) drug pipeline pose formidable challenge. Superior, targeted delivery of current clinically approved drugs may offer significant potential. Minocycline has shown promise for the treatment of neurological diseases owing to its ability to penetrate the blood-brain barrier (BBB) and potency. Despite its potential in the clinic and in preclinical models, the high doses needed to affect a positive therapeutic response have led to side effects. Targeted delivery of minocycline to the injured site and injured cells in the brain can be highly beneficial. Systemically administered hydroxyl poly(amidoamine) (PAMAM) generation-6 (G6) dendrimers have a longer blood circulation time and have been shown to cross the impaired BBB. We have successfully prepared and characterized the in vitro efficacy and in vivo targeting ability of hydroxyl-G6 PAMAM dendrimer-9-amino-minocycline conjugate (D-mino). Minocycline is a challenging drug to carry out chemical transformations due to its inherent instability. We used a combination of a highly efficient and mild copper catalyzed azide-alkyne click reaction (CuAAC) along with microwave energy to conjugate 9-amino-minocycline (mino) to the dendrimer surface via enzyme responsive linkages. D-mino was further evaluated for anti-inflammatory and antioxidant activity in lipopolysaccharides-activated murine microglial cells. D-mino conjugates enhanced the intracellular availability of the drug due to their rapid uptake, suppressed inflammatory cytokine tumor necrosis factor α (TNF-α) production, and reduced oxidative stress by suppressing nitric oxide production, all significantly better than the free drug. Fluorescently labeled dendrimer conjugate (Cy5-D-mino) was systematically administered (intravenous, 55 mg/kg) on postnatal day 1 to rabbit kits with a clinically relevant phenotype of cerebral palsy. The in vivo imaging study indicates that Cy5-D-mino crossed the impaired blood-brain barrier and co-localized with activated microglia at the periventricular white matter areas, including the corpus callosum and the angle of the lateral ventricle, with significant implications for positive therapeutic outcomes. The enhanced efficacy of D-mino, when combined with the inherent neuroinflammation-targeting capability of the PAMAM dendrimers, may provide new opportunities for targeted drug delivery to treat neurological disorders.
Saeedi Saravi, Seyed Soheil; Amirkhanloo, Roya; Arefidoust, Alireza; Yaftian, Rahele; Saeedi Saravi, Seyed Sobhan; Shokrzadeh, Mohammad; Dehpour, Ahmad Reza
2016-06-01
This study was performed to investigate the antidepressant-like effect of minocycline in mice exposed to organophosphate pesticide malathion and possible involvement of nitric oxide/cGMP pathway in this paradigm. Mice were administered specific doses of malathion once daily for 7 consecutive days. After induction of depression, different doses of minocycline were daily injected alone or combined with non-specific NOS inhibitor, L-NAME, specific inducible NOS inhibitor, AG, NO precursor, L-arginine, and PDE5I, sildenafil. After locomotion assessment in open-field test, immobility times were recorded in the FST and TST. Moreover, hippocampal nitrite concentrations and acetylcholinesterase activity were measured. The results showed that repeated exposure to malathion induces depressive-like behavior at dose of 250 mg/kg. Minocycline (160 mg/kg) significantly reduced immobility times in FST and TST (P < 0.001). Combination of sub-effective doses of minocycline (80 mg/kg) with either L-NAME (3 mg/kg) or AG (25 mg/kg) significantly exerted a robust antidepressant-like effect in FST and TST (P < 0.001). Furthermore, minocycline at the same dose which has antidepressant-like effect, significantly reduced hippocampal nitrite concentration. The investigation indicates the essential role for NO/cGMP pathway in malathion-induced depressive-like behavior and antidepressant-like effect of minocycline. Moreover, the interaction between nitrergic and cholinergic systems are suggested to be involved in malathion-induced depression.
Microbial changes in patients with acute periodontal abscess after treatment detected by PadoTest.
Eguchi, T; Koshy, G; Umeda, M; Iwanami, T; Suga, J; Nomura, Y; Kawanami, M; Ishikawa, I
2008-03-01
To investigate changes in bacterial counts in subgingival plaque from patients with acute periodontal abscess by IAI-PadoTest. Ninety-one patients were randomly allocated to either test or control groups. In all the patients, pockets with acute periodontal abscess were irrigated with sterilized physiological saline, and in the test group, 2% minocycline hydrochloride ointment was applied once into the pocket in addition. Subgingival plaque samples were collected by paper point before treatment and 7 days after treatment. The total bacterial count was determined and Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, were detected using IAI-PadoTest, a DNA/RNA probe method. The total bacterial count decreased in both groups, with a significant decrease in the test group. The counts and number of sites positive for P. gingivalis, T. forsythia and T. denticola significantly decreased in the test group after treatment, compared with those in the control group. Pocket depth decreased in the both groups, with a statistically significant decrease in the test group. Topical treatment with minocycline in pockets with acute periodontal abscess was effective in reducing the bacterial counts as shown by the microbiological investigation using PadoTest 4.5.
2009-01-01
Background Parkinson's disease (PD) is the most common movement disorder. Extrapyramidal motor symptoms stem from the degeneration of the dopaminergic pathways in patient brain. Current treatments for PD are symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Although the cause of PD remains unknown, several pathogenic factors have been identified, which cause dopaminergic neuron (DN) death in the substantia nigra (SN). These include oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity. Manipulation of these factors may allow the development of disease-modifying treatment strategies to slow neuronal death. Inhibition of DJ-1A, the Drosophila homologue of the familial PD gene DJ-1, leads to oxidative stress, mitochondrial dysfunction, and DN loss, making fly DJ-1A model an excellent in vivo system to test for compounds with therapeutic potential. Results In the present study, a Drosophila DJ-1A model of PD was used to test potential neuroprotective drugs. The drugs applied are the Chinese herb celastrol, the antibiotic minocycline, the bioenergetic amine coenzyme Q10 (coQ10), and the glutamate antagonist 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f]-quinoxaline (NBQX). All of these drugs target pathogenic processes implicated in PD, thus constitute mechanism-based treatment strategies. We show that celastrol and minocycline, both having antioxidant and anti-inflammatory properties, confer potent dopaminergic neuroprotection in Drosophila DJ-1A model, while coQ10 shows no protective effect. NBQX exerts differential effects on cell survival and brain dopamine content: it protects against DN loss but fails to restore brain dopamine level. Conclusion The present study further validates Drosophila as a valuable model for preclinical testing of drugs with therapeutic potential for neurodegenerative diseases. The lower cost and amenability to high throughput testing make Drosophila PD models effective in vivo tools for screening novel therapeutic compounds. If our findings can be further validated in mammalian PD models, they would implicate drugs combining antioxidant and anti-inflammatory properties as strong therapeutic candidates for mechanism-based PD treatment. PMID:19723328
Determination of the toxicity of intravitreal minocycline in rabbit eyes.
Falavarjani, Khalil Ghasemi; Pourhabibi, Arash; Aghdam, Kaveh Abri; Hosseini, Seyed Bagher; Modarres, Mehdi; Pazouki, Abdolreza; Khanamiri, Hossein Nazari
2016-09-01
To evaluate the retinal toxicity of intravitreal minocycline in rabbit eyes. Intravitreal injection of minocycline with concentrations of 1000, 500, 250, 125 and 62.5 μg in 0.1 ml was performed in 10 New Zealand albino rabbits. Each concentration was injected into two rabbit eyes. For each dose, normal saline was injected in one contralateral eye and the other fellow eye remained non-injected. Electrophysiologic testing was performed before and 4 weeks after injections. The eyes were enucleated 4 weeks after injections and examined using light microscopy. The clinical examination was unremarkable after injections. Electroretinography recordings were significantly affected at all doses in at least one of the a- or b-waves of photopic or scotopic responses. Histopathologic examination revealed marked atrophy and loss of integrity in all retinal layers in all minocycline injected eyes. Contralateral eyes were normal. In our study, intravitreal minocycline was toxic to the retina in albino rabbits even at a concentration of 62.5 µg/0.1 ml.
Drewes, Julia L.; Szeto, Gregory L.; Engle, Elizabeth L.; Liao, Zhaohao; Shearer, Gene M.; Zink, M. Christine; Graham, David R.
2014-01-01
HIV immune pathogenesis is postulated to involve two major mechanisms: 1) chronic innate immune responses that drive T cell activation and apoptosis and 2) induction of immune regulators that suppress T cell function and proliferation. Both arms are elevated chronically in lymphoid tissues of non-natural hosts, which ultimately develop AIDS. However, these mechanisms are not elevated chronically in natural hosts of SIV infection that avert immune pathogenesis despite similarly high viral loads. In this study we investigated whether minocycline could modulate these pathogenic antiviral responses in non-natural hosts of HIV and SIV. We found that minocycline attenuated in vitro induction of type I interferon (IFN) and the IFN-stimulated genes indoleamine 2,3-dioxygenase (IDO1) and TNF-related apoptosis inducing ligand (TRAIL) in human plasmacytoid dendritic cells and PBMCs exposed to aldrithiol-2 inactivated HIV or infectious influenza virus. Activation-induced TRAIL and expression of cytotoxic T-lymphocyte antigen 4 (CTLA-4) in isolated CD4+ T cells were also reduced by minocycline. Translation of these in vitro findings to in vivo effects, however, were mixed as minocycline significantly reduced markers of activation and activation-induced cell death (CD25, Fas, caspase-3) but did not affect expression of IFNβ or the IFN-stimulated genes IDO1, FasL, or Mx in the spleens of chronically SIV-infected pigtailed macaques. TRAIL expression, reflecting the mixed effects of minocycline on activation and type I IFN stimuli, was reduced by half, but this change was not significant. These results show that minocycline administered after infection may protect against aspects of activation-induced cell death during HIV/SIV immune disease, but that in vitro effects of minocycline on type I IFN responses are not recapitulated in a rapid progressor model in vivo. PMID:24732038
Caol, Sanjie; Divers, Thomas; Crisman, Mark; Chang, Yung-Fu
2017-09-29
Lyme disease in humans is predominantly treated with tetracycline, macrolides or beta lactam antibiotics that have low minimum inhibitory concentrations (MIC) against Borrelia burgdorferi. Horses with Lyme disease may require long-term treatment making frequent intravenous or intramuscular treatment difficult and when administered orally those drugs may have either a high incidence of side effects or have poor bioavailability. The aim of the present study was to determine the in vitro susceptibility of three B. burgdorferi isolates to three antibiotics of different classes that are commonly used in practice for treating Borrelia infections in horses. Broth microdilution assays were used to determine minimum inhibitory concentration of three antibiotics (ceftiofur sodium, minocycline and metronidazole), for three Borrelia burgdorferi isolates. Barbour-Stoner-Kelly (BSK K + R) medium with a final inoculum of 10 6 Borrelia cells/mL and incubation periods of 72 h were used in the determination of MICs. Observed MICs indicated that all isolates had similar susceptibility to each drug but susceptibility to the tested antimicrobial agents varied; ceftiofur sodium (MIC = 0.08 μg/ml), minocycline hydrochloride (MIC = 0.8 μg/ml) and metronidazole (MIC = 50 μg/ml). The MIC against B. burgorferi varied among the three antibiotics with ceftiofur having the lowest MIC and metronidazole the highest MIC. The MIC values observed for ceftiofur in the study fall within the range of reported serum and tissue concentrations for the drug metabolite following ceftiofur sodium administration as crystalline-free acid. Minocycline and metronidazole treatments, as currently used in equine practice, could fall short of attaining MIC concentrations for B. burgdorferi.
Biologically based treatment of immature permanent teeth with pulpal necrosis: a case series.
Jung, Il-Young; Lee, Seung-Jong; Hargreaves, Kenneth M
2012-06-01
This case series reports the outcomes of 8 patients (ages 9-4 years) who presented with 9 immature permanent teeth with pulpal necrosis and apical periodontitis. During treatment, 5 of the teeth were found to have at least some residual vital tissue remaining in the root canal systems. After NaOCI irrigation and medication with ciprofloxacin, metronidazole, and minocycline, these teeth were sealed with mineral trioxide aggregate and restored. The other group of 4 teeth had no evidence of any residual vital pulp tissue. This second group of teeth was treated with NaOCl irrigation and medicated with ciprofloxacin, metronidazole, and minocycline followed by a revascularization procedure adopted from the trauma literature (bleeding evoked to form an intracanal blood clot). In both groups of patients, there was evidence of satisfactory postoperative clinical outcomes (1-5 years); the patients were asymptomatic, no sinus tracts were evident, apical periodontitis was resolved, and there was radiographic evidence of continuing thickness of dentinal walls, apical closure, or increased root length.
Khatri, Parag M; Bacha, Shraddanand
2014-03-01
Systemic antibiotic treatment has emerged as a powerful adjunct to conventional mechanical debridement for therapeutic management of the periodontal diseases. The conceptual basis for treating periodontal diseases as infections is particularly attractive in part because of substantial data indicating that these diseases may be associated with specific putative pathogens. Further, discrete groups of patients respond well to systemic antibiotics and exhibit improvement of clinical parameters, including attachment level and inflammation. This bacterial-host interaction, which is ever-so-present in periodontitis, directs us toward utilizing antimicrobial agents along with the routine mechanical debridement. This case report presents a case of a female patient with recurrence of the chronic generalized periodontitis with gingival enlargement, which is treated thrice by referral dentist. A through clinical examination was carried out pre-operatively and treatment was planned with systemic minocycline in conjunction with the conventional non-surgical approach. There was a significant reduction of pocket depth, gain in attachment with dramatic improvement clinically.
Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition
Wong, M-L; Inserra, A; Lewis, M D; Mastronardi, C A; Leong, L; Choo, J; Kentish, S; Xie, P; Morrison, M; Wesselingh, S L; Rogers, G B; Licinio, J
2016-01-01
The inflammasome is hypothesized to be a key mediator of the response to physiological and psychological stressors, and its dysregulation may be implicated in major depressive disorder. Inflammasome activation causes the maturation of caspase-1 and activation of interleukin (IL)-1β and IL-18, two proinflammatory cytokines involved in neuroimmunomodulation, neuroinflammation and neurodegeneration. In this study, C57BL/6 mice with genetic deficiency or pharmacological inhibition of caspase-1 were screened for anxiety- and depressive-like behaviors, and locomotion at baseline and after chronic stress. We found that genetic deficiency of caspase-1 decreased depressive- and anxiety-like behaviors, and conversely increased locomotor activity and skills. Caspase-1 deficiency also prevented the exacerbation of depressive-like behaviors following chronic stress. Furthermore, pharmacological caspase-1 antagonism with minocycline ameliorated stress-induced depressive-like behavior in wild-type mice. Interestingly, chronic stress or pharmacological inhibition of caspase-1 per se altered the fecal microbiome in a very similar manner. When stressed mice were treated with minocycline, the observed gut microbiota changes included increase in relative abundance of Akkermansia spp. and Blautia spp., which are compatible with beneficial effects of attenuated inflammation and rebalance of gut microbiota, respectively, and the increment in Lachnospiracea abundance was consistent with microbiota changes of caspase-1 deficiency. Our results suggest that the protective effect of caspase-1 inhibition involves the modulation of the relationship between stress and gut microbiota composition, and establishes the basis for a gut microbiota–inflammasome–brain axis, whereby the gut microbiota via inflammasome signaling modulate pathways that will alter brain function, and affect depressive- and anxiety-like behaviors. Our data also suggest that further elucidation of the gut microbiota–inflammasome–brain axis may offer novel therapeutic targets for psychiatric disorders. PMID:27090302
Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition.
Wong, M-L; Inserra, A; Lewis, M D; Mastronardi, C A; Leong, L; Choo, J; Kentish, S; Xie, P; Morrison, M; Wesselingh, S L; Rogers, G B; Licinio, J
2016-06-01
The inflammasome is hypothesized to be a key mediator of the response to physiological and psychological stressors, and its dysregulation may be implicated in major depressive disorder. Inflammasome activation causes the maturation of caspase-1 and activation of interleukin (IL)-1β and IL-18, two proinflammatory cytokines involved in neuroimmunomodulation, neuroinflammation and neurodegeneration. In this study, C57BL/6 mice with genetic deficiency or pharmacological inhibition of caspase-1 were screened for anxiety- and depressive-like behaviors, and locomotion at baseline and after chronic stress. We found that genetic deficiency of caspase-1 decreased depressive- and anxiety-like behaviors, and conversely increased locomotor activity and skills. Caspase-1 deficiency also prevented the exacerbation of depressive-like behaviors following chronic stress. Furthermore, pharmacological caspase-1 antagonism with minocycline ameliorated stress-induced depressive-like behavior in wild-type mice. Interestingly, chronic stress or pharmacological inhibition of caspase-1 per se altered the fecal microbiome in a very similar manner. When stressed mice were treated with minocycline, the observed gut microbiota changes included increase in relative abundance of Akkermansia spp. and Blautia spp., which are compatible with beneficial effects of attenuated inflammation and rebalance of gut microbiota, respectively, and the increment in Lachnospiracea abundance was consistent with microbiota changes of caspase-1 deficiency. Our results suggest that the protective effect of caspase-1 inhibition involves the modulation of the relationship between stress and gut microbiota composition, and establishes the basis for a gut microbiota-inflammasome-brain axis, whereby the gut microbiota via inflammasome signaling modulate pathways that will alter brain function, and affect depressive- and anxiety-like behaviors. Our data also suggest that further elucidation of the gut microbiota-inflammasome-brain axis may offer novel therapeutic targets for psychiatric disorders.
Analysis of Minocycline as a Radioprotectant
NASA Astrophysics Data System (ADS)
Mehrotra, Shalini
Exposure to radiation is increasing in a variety of settings including space exploration, diagnostic medical procedures and radiotherapy. Cells of the hematopoietic system, such as white blood cells (WBC), are especially sensitive to radiation and their decline can result in Acute Radiation Syndrome (ARS). Radiotherapy is often used for cancers of the central nervous system (CNS), but includes the risk for normal tissue damage, often leading to cognitive impairment. The literature suggests that
Antinociceptive interaction of gabapentin with minocycline in murine diabetic neuropathy.
Miranda, H F; Sierralta, F; Jorquera, V; Poblete, P; Prieto, J C; Noriega, V
2017-02-01
Diabetic neuropathy (DN) is the most common complication of diabetes and pain is one of the main symptoms of diabetic neuropathy, however, currently available drugs are often ineffective and complicated by adverse events. The purpose of this research was to evaluate the antinociceptive interaction between gabapentin and minocycline in a mice experimental model of DN by streptozocin (STZ). The interaction of gabapentin with minocycline was evaluated by the writhing and hot plate tests at 3 and 7 days after STZ injection or vehicle in male CF1 mice. STZ (150 mg/kg, i.p.) produced a marked increase in plasma glucose levels on day 7 (397.46 ± 29.65 mg/dL) than on day 3 (341.12 ± 35.50 mg/dL) and also developed neuropathic pain measured by algesiometric assays. Gabapentin produced similar antinociceptive activity in both writhing and hot plate tests in mice pretreated with STZ. However, minocycline was more potent in the writhing than in the hot plate test in the same type of mice. The combination of gabapentin with minocycline produced synergistic interaction in both test. The combination of gabapentin with minocycline in a 1:1 proportion fulfills all the criteria of multimodal analgesia and this finding suggests that the combination provide a therapeutic alternative that could be used for human neuropathic pain management.
... to a group of antibiotics that includes minocycline, oxytetracycline, doxycycline. In general, the information in this fact ... other medications in this group such as minocycline, oxytetracycline, or doxycycline instead of tetracycline? Does that still ...
2013-10-01
Model Mech. Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM (2009) Minocycline promotes dendritic spine maturation and... Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacology 32:2393-2404. Cuello...neuronal morphology and function in the brain. Neuron 34:961-972. Noble W, Garwood C, Stephenson J, Kinsey AM, Hanger DP, Anderton BH (2009) Minocycline
Feng, Chien-Wei; Wen, Zhi-Hong; Huang, Shi-Ying; Hung, Han-Chun; Chen, Chun-Hong; Yang, San-Nan; Chen, Nan-Fu; Wang, Hui-Min; Hsiao, Chung-Der; Chen, Wu-Fu
2014-06-01
Parkinson's disease (PD) is a neurodegenerative disease that is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. However, current treatments for PD are mainly palliative. Recently, researchers discovered that neurotoxins can induce Parkinsonian-like symptoms in zebrafish. No study to date has investigated the characteristics of PD, such as neuroinflammation factors, oxidative stress, or ubiquitin dysfunction, in this model. Therefore, the current study was aimed at utilizing commonly used clinical drugs, minocycline, vitamin E, and Sinemet, to test the usefulness of this model. Previous studies had indicated that DA cell loss was greater with 6-hydroxydopamine (6-OHDA) than with other neurotoxins. Thus, we first challenged zebrafish with 6-OHDA immersion and found a significant reduction in zebrafish locomotor activity; we then reversed the locomotor disruptions by treatment with vitamin E, Sinemet, or minocycline. The present study also analyzed the mRNA expression of parkin, pink1, and cd-11b, because the expression of these molecular targets has been shown to result in attenuation in mammalian models of PD. Vitamin E, Sinemet, and minocycline significantly reversed 6-OHDA-induced changes of parkin, pink1, and cd-11b mRNA expression in zebrafish. Moreover, we assessed tyrosine hydroxylase (TH) expression to confirm the therapeutic effects of vitamin E tested on this PD model and established that vitamin E reversed the 6-OHDA-induced damage on TH expression. Our results provide some support for the validity of this in vivo Parkinson's model, and we hope that this model will be more widely used in the future.
Mrowietz, Ulrich; Kedem, Tal Hetzroni; Keynan, Rita; Eini, Meir; Tamarkin, Dov; Rom, Dror; Shirvan, Mitchell
2018-06-01
Our objective was to demonstrate the safety, tolerability, and efficacy of a minocycline foam, FMX103, in the treatment of moderate-to-severe facial papulopustular rosacea. This was a phase II, randomized, double-blind, multicenter study. Healthy subjects aged ≥ 18 years with moderate-to-severe rosacea that had been diagnosed ≥ 6 months previously and with ≥ 12 inflammatory facial lesions were randomized (1:1:1) to receive once-daily 1.5% FMX103, 3% FMX103, or vehicle for 12 weeks. The primary endpoint was the absolute change in inflammatory lesion count at week 12. Other assessments included grade 2 or higher Investigator's Global Assessment (IGA) improvement, IGA "clear" or "almost clear" (IGA 0/1), clinical erythema, and safety/tolerability. Safety and efficacy were evaluated at weeks 2, 4, 8, and 12, with a safety follow-up at week 16. A total of 232 subjects were randomized; 213 completed the study. At week 12, inflammatory lesion count reduction was significantly greater for the 1.5 and 3% FMX103 doses than for vehicle (21.1 and 19.1 vs. 7.8, respectively; both p < 0.001). Both doses were significantly better than vehicle for achieving grade 2 or higher IGA improvement and assessment of "clear" or "almost clear." Both doses appeared generally safe and well tolerated. In total, 11 (4.7%) subjects reported treatment-related treatment-emergent adverse events (TEAEs); all but one (eye discharge) were dermal related, and all resolved by study end. No treatment-related systemic TEAEs were reported. Four subjects discontinued the study because of TEAEs (3% FMX103, n = 3; vehicle, n = 1). Topical minocycline foam, FMX103, appeared to be an effective, safe, and well tolerated treatment for moderate-to-severe papulopustular rosacea. These results support further investigation in larger clinical trials. CLINICALTRIALS. NCT02601963.
Vichaya, Elisabeth G; Vermeer, Daniel W; Christian, Diana L; Molkentine, Jessica M; Mason, Kathy A; Lee, John H; Dantzer, Robert
2017-05-01
Patients with cancer often experience a high symptom burden prior to the start of treatment. As disease- and treatment-related neurotoxicities appear to be additive, targeting disease-related symptoms may attenuate overall symptom burden for cancer patients and improve the tolerability of treatment. It has been hypothesized that disease-related symptoms are a consequence of tumor-induced inflammation. We tested this hypothesis using a syngeneic heterotopic murine model of human papilloma virus (HPV)-related head and neck cancer. This model has the advantage of being mildly aggressive and not causing cachexia or weight loss. We previously showed that this tumor leads to increased IL-6, IL-1β, and TNF-α expression in the liver and increased IL-1β expression in the brain. The current study confirmed these features and demonstrated that the tumor itself exhibits high inflammatory cytokine expression (e.g., IL-6, IL-1β, and TNF-α) compared to healthy tissue. While there is a clear relationship between cytokine levels and behavioral deficits in this model, the behavioral changes are surprisingly mild. Therefore, we sought to confirm the relationship between behavior and inflammation by amplifying the effect using a low dose of lipopolysaccharide (LPS, 0.1mg/kg). In tumor-bearing mice LPS induced deficits in nest building, tail suspension, and locomotor activity approximately 24h after LPS. However, these mice did not display an exacerbation of LPS-induced weight loss, anorexia, or anhedonia. Further, while heightened serum IL-6 was observed there was minimal priming of liver or brain cytokine expression. Next we sought to inhibit tumor-induced burrowing deficits by reducing inflammation using minocycline. Minocycline (∼50mg/kg/day in drinking water) was able to attenuate tumor-induced inflammation and burrowing deficits. These data provide evidence in favor of an inflammatory-like mechanism for the behavioral alterations associated with tumor growth in a syngeneic murine model of HPV-related head and neck cancer. However, the inflammatory state and behavioral changes induced by this tumor clearly differ from other forms of inflammation-induced sickness behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Yang; Giri, P K; Lei, Shan; Zheng, Juan; Li, Weisong; Wang, Ning; Chen, Xinlin; Lu, Haixia; Zuo, Zhiyi; Liu, Yong; Zhang, Pengbo
2017-06-03
Ketamine is commonly used for anesthesia in pediatric patients. Recent studies indicated that ketamine exposure in the developing brain can induce neuroapoptosis and disturb normal neurogenesis, which will result in long-lasting cognitive impairment. Minocycline exerts neuroprotection against a wide range of toxic insults in neurodegenerative disease models. In the present study, we investigated whether the disturbed neurogenesis and behavioral deficits after ketamine neonatal exposure could be alleviated by minocycline. Postnatal day (PND)7 Sprague-Dawley rat pups randomly received either normal saline, ketamine, or minocycline 30min prior to ketamine administration, respectively. The rats were decapitated at PND14 for the detection of neurogenesis in the subventricular zone (SVZ) and subgranular zone (SGZ) of the hippocampus by immunostaining. The protein expression of p-Akt, p-GSK-3β in the SVZ and SGZ at 12h after anesthesia, PND10 and PND14 were assessed by western blotting analysis. At PND 42-47, spatial learning and memory abilities were measured by the Morris water maze in all groups. Our data showed that ketamine exposure in neonatal rats resulted in neurogenetic damage and persistent cognitive deficits, and that pretreatment with minocycline eliminated the brain development damage and improved the behavioral function in adult rats. Moreover, the protection of minocycline is associated with the PI3K/Akt signaling pathway. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Easy-Assessment of Levofloxacin and Minocycline in Relevant Biomimetic Media by HPLC-UV Analysis.
Matos, Ana C; Pinto, Rosana V; Bettencourt, Ana F
2017-08-01
Simple, economic and environmental friendly high-performance liquid chromatography methods for levofloxacin and minocycline quantification in biomimetic media were developed and validate including their stability at body temperature, an often neglected evaluation parameter. Both methods are similar only differing in the wavelength setting, i.e., for levofloxacin and minocycline quantification the UV detection was set at 284 and at 273 nm, respectively. The separation of both antibiotics was achieved using a reversed-phase column and a mobile phase consisting of acetonitrile and water (15:85) with 0.6% triethylamine, adjusted to pH 3. As an internal standard for levofloxacin quantification, minocycline was used and vice versa. The calibration curves for both methods were linear (r = 0.99) over a concentration range of 0.3-16 μg/mL and 0.5-16 μg/mL for levofloxacin and minocycline, respectively, with precision, accuracy and recovery in agreement with international guidelines requirement. Levofloxacin revealed stability in all media and conditions, including at 37°C, with exception to freeze-thaw cycle conditions. Minocycline presented a more accentuated degradation profile over prolonged time courses, when compared to levofloxacin. Reported data is of utmost interest for pharma and biomaterials fields regarding the research and development of new local drug-delivery-systems containing either of these two antibiotics, namely when monitoring the in vitro release studies of those systems. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Trial of Minocycline in a Clinically Isolated Syndrome of Multiple Sclerosis.
Metz, Luanne M; Li, David K B; Traboulsee, Anthony L; Duquette, Pierre; Eliasziw, Misha; Cerchiaro, Graziela; Greenfield, Jamie; Riddehough, Andrew; Yeung, Michael; Kremenchutzky, Marcelo; Vorobeychik, Galina; Freedman, Mark S; Bhan, Virender; Blevins, Gregg; Marriott, James J; Grand'Maison, Francois; Lee, Liesly; Thibault, Manon; Hill, Michael D; Yong, V Wee
2017-06-01
On the basis of encouraging preliminary results, we conducted a randomized, controlled trial to determine whether minocycline reduces the risk of conversion from a first demyelinating event (also known as a clinically isolated syndrome) to multiple sclerosis. During the period from January 2009 through July 2013, we randomly assigned participants who had had their first demyelinating symptoms within the previous 180 days to receive either 100 mg of minocycline, administered orally twice daily, or placebo. Administration of minocycline or placebo was continued until a diagnosis of multiple sclerosis was established or until 24 months after randomization, whichever came first. The primary outcome was conversion to multiple sclerosis (diagnosed on the basis of the 2005 McDonald criteria) within 6 months after randomization. Secondary outcomes included conversion to multiple sclerosis within 24 months after randomization and changes on magnetic resonance imaging (MRI) at 6 months and 24 months (change in lesion volume on T 2 -weighted MRI, cumulative number of new lesions enhanced on T 1 -weighted MRI ["enhancing lesions"], and cumulative combined number of unique lesions [new enhancing lesions on T 1 -weighted MRI plus new and newly enlarged lesions on T 2 -weighted MRI]). A total of 142 eligible participants underwent randomization at 12 Canadian multiple sclerosis clinics; 72 participants were assigned to the minocycline group and 70 to the placebo group. The mean age of the participants was 35.8 years, and 68.3% were women. The unadjusted risk of conversion to multiple sclerosis within 6 months after randomization was 61.0% in the placebo group and 33.4% in the minocycline group, a difference of 27.6 percentage points (95% confidence interval [CI], 11.4 to 43.9; P=0.001). After adjustment for the number of enhancing lesions at baseline, the difference in the risk of conversion to multiple sclerosis within 6 months after randomization was 18.5 percentage points (95% CI, 3.7 to 33.3; P=0.01); the unadjusted risk difference was not significant at the 24-month secondary outcome time point (P=0.06). All secondary MRI outcomes favored minocycline over placebo at 6 months but not at 24 months. Trial withdrawals and adverse events of rash, dizziness, and dental discoloration were more frequent among participants who received minocycline than among those who received placebo. The risk of conversion from a clinically isolated syndrome to multiple sclerosis was significantly lower with minocycline than with placebo over 6 months but not over 24 months. (Funded by the Multiple Sclerosis Society of Canada; ClinicalTrials.gov number, NCT00666887 .).
Moini-Zanjani, Taraneh; Ostad, Seyed-Nasser; Labibi, Farzaneh; Ameli, Haleh; Mosaffa, Nariman; Sabetkasaei, Masoumeh
2016-11-01
Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppresses the development of neuropathic pain. Here, we evaluated the analgesic effect of minocycline in a chronic constriction injury (CCI) model of neuropathic pain in rat and assessed IL-6 concentration from cultured macrophage and microglia cells. Male Wistar rat (n=6, 150-200 g) were divided into three different groups: 1) CCI+vehicle, 2) sham+vehicle, and 3) CCI+drug. Minocycline (10, 20, and 40 mg/kg) was injected one hour before surgery and continued daily to day 14 post ligation. Von Frey filaments and acetone, as pain behavioral tests, were used for mechanical allodynia and cold allodynia, respectively. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7, 10, and 14 post -injury. At day 14, rats were killed and monocyte-derived macrophage from right ventricle and microglia from lumbar part of the spinal cord were isolated and cultured in RPMI and Leibovitz's media, respectively. IL-6 concentration was evaluated in cell culture supernatant after 24 h. Minocycline (10, 20, and 40 mg/kg) attenuated pain behavior, and a decrease in IL-6 concentration was observed in immune cells compared to CCI vehicle-treated animals. Minocycline reduced pain behavior and decreased IL-6 concentration in macrophage and microglial cells.
The complexity of minocycline serum protein binding.
Zhou, Jian; Tran, Brian T; Tam, Vincent H
2017-06-01
Serum protein binding is critical for understanding the pharmacology of antimicrobial agents. Tigecycline and eravacycline were previously reported to have atypical non-linear protein binding; the percentage of free fraction decreased with increasing total concentration. In this study, we extended the investigation to other tetracyclines and examined the factors that might impact protein binding. Different minocycline concentrations (0.5-50 mg/L) and perfusion media (saline, 0.1 M HEPES buffer and 0.1 and 1 M PBS) were examined by in vitro microdialysis. After equilibration, two dialysate samples were taken from each experiment and the respective antimicrobial agent concentrations were analysed by validated LC-MS/MS methods. For comparison, the serum protein bindings of doxycycline and levofloxacin were also determined. The free fraction of minocycline decreased with increasing total concentration, and the results depended on the perfusion media used. The trends of minocycline protein binding in mouse and human sera were similar. In addition, serum protein binding of doxycycline showed the same concentration-dependent trend as minocycline, while the results of levofloxacin were concentration independent. The serum protein bindings of minocycline and doxycycline are negatively correlated with their total concentrations. It is possible that all tetracyclines share the same pharmacological property. Moreover, the specific perfusion media used could also impact the results of microdialysis. Additional studies are warranted to understand the mechanism(s) and clinical implications of serum protein binding of tetracyclines. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wang, Ying; Tong, Lili; Pak, Youngju; Andalibi, Ali; LaPage, Janine A.; Adler, Sharon G.
2016-01-01
Background We tested minocycline as an anti-proteinuric adjunct to renin-angiotensin-aldosterone system inhibitors (RAASi) in diabetic nephropathy (DN) and measured urinary biomarkers to evaluate minocycline’s biological effects. Methods Design: Prospective, single center, randomized, placebo-controlled, intention-to-treat pilot trial. Inclusion. Type 2 diabetes/DN; Baseline creatinine clearance > 30 mL/min; proteinuria ≥ 1.0 g/day; Age ≥30 years; BP <150/95 mm Hg; intolerant of/at maximum RAASi dose. Protocol. 3-wk screening; Baseline randomization; Urine and blood measures at months 1, 2, 4, and Month 6 study completion. Urine interleukin-6 (IL-6) and osteoprotegerin were measured in a subset. Primary outcome. Natural log of urine protein/creatinine (ln U P:Cr) ratio at Month 6 vs Baseline. Results 30 patients completed the study. The 15% decline in U P: Cr in minocycline patients (6 month P:Cr ÷ Baseline P:Cr, 0.85 vs. 0.92) was not significant (p = 0.27). Creatinine clearance did not differ in the 2 groups. Urine IL-6:Cr (p = 0.03) and osteoprotegerin/Cr (p = 0.046) decrements were significant. Minocycline modified the relationship between urine IL-6 and proteinuria, suggesting a protective biological effect. Conclusions Although the decline in U P:Cr in minocycline patients was not statistically significant, the significant differences in urine IL-6 and osteoprotegerin suggest that minocycline may confer cytoprotection in patients with DN, providing a rationale for further study. Trial Registration Clinicaltrials.gov NCT01779089 PMID:27019421
Acinetobacter Species Infections Among Navy and Marine Corps Beneficiaries: 2013 Annual Report
2014-11-19
cases in 2013, DON providers most commonly prescribed colistin, minocycline , piperacillin/tazobactam, and trimethoprim/sulfamethoxazole. DOD...administration route, the following antibiotics were all equally common in the DON for resistant Acinetobacter cases: colistin, minocycline , piperacillin
Evidence for Neuroinflammatory and Microglial Changes in the Cerebral Response to Sleep Loss
Wisor, Jonathan P.; Schmidt, Michelle A.; Clegern, William C.
2011-01-01
Study Objectives: Sleep loss has pro-inflammatory effects, but the roles of specific cell populations in mediating these effects have not been delineated. We assessed the modulation of the electroencephalographic and molecular responses to sleep deprivation (S-DEP) by minocycline, a compound that attenuates microglial activation occurring in association with neuroinflammatory events. Design: Laboratory rodents were subjected to assessment of sleep and wake in baseline and sleep deprived conditions. Participants: Adult male CD-1 mice (30-35 g) subjected to telemetric electroencephalography. Interventions: Minocycline was administered daily. Mice were subjected to baseline data collection on the first day of minocycline administration and, on subsequent days, 2 S-DEP sessions, 1 and 3 h in duration, followed by recovery sleep. Following EEG studies, mice were euthanized either at the end of a 3 h S-DEP or as time-of day controls for sampling of brain messenger RNAs. Gene expression was measured by real-time polymerase chain reaction. Measurements and Results: Minocycline-treated mice exhibited a reduction in time spent asleep, relative to saline-treated mice, in the 3-h interval immediately after administration. S-DEP resulted in an increase in EEG slow wave activity relative to baseline in saline-treated mice. This response to S-DEP was abolished in animals subjected to chronic minocycline administration. S-DEP suppressed the expression of the microglial-specific transcript cd11b and the neuroinflammation marker peripheral benzodiazepine receptor, in the brain at the mRNA level. Minocycline attenuated the elevation of c-fos expression by S-DEP. Brain levels of pro-inflammatory cytokine mRNAs interleukin-1β (il-1β), interleukin-6 (il-6), and tumor necrosis factor-α (tnfα) were unaffected by S-DEP, but were elevated in minocycline-treated mice relative to saline-treated mice. Conclusions: The anti-neuroinflammatory agent minocycline prevents either the buildup or expression of sleep need in rodents. The molecular mechanism underlying this effect is not known, but it is not mediated by suppression of il-1β, il-6, and tnfα at the transcript level. Citation: Wisor JP; Schmidt MA; Clegern WC. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. SLEEP 2011;34(3):261-272. PMID:21358843
Samour, Mohamad Samir; Nagi, Saad Saulat; Shortland, Peter John; Mahns, David Anthony
2017-08-01
Minocycline, a glial suppressor, prevents behavioral hypersensitivities in animal models of peripheral nerve injury. However, clinical trials of minocycline in human studies have produced mixed results. This study addressed 2 questions: can repeated injections of hypertonic saline (HS) in humans induce persistent hypersensitivity? Can pretreatment with minocycline, a tetracycline antibiotic with microglial inhibitory effects, prevent the onset of hypersensitivity? Twenty-seven healthy participants took part in this double-blind, placebo-controlled study, consisting of 6 test sessions across 2 weeks. At the beginning of every session, pressure-pain thresholds of the anterior muscle compartment of both legs were measured to determine the region distribution and intensity of muscle soreness. To measure changes in thermal sensitivity in the skin overlying the anterior muscle compartment of both legs, quantitative sensory testing was used to measure the cutaneous thermal thresholds (cold sensation, cold pain, warm sensation, and heat pain) and a mild cooling stimulus was applied to assess the presence of cold allodynia. To induce ongoing hypersensitivity, repeated injections of HS were administered into the right tibialis anterior muscle at 48-hour intervals. In the final 2 sessions (days 9 and 14), only sensory assessments were done to plot the recovery after cessation of HS administrations and drug washout. By day 9, nontreated participants experienced a significant bilateral increase in muscle soreness (P < .0001), accompanied by the emergence of bilateral cold allodynia in 44% of participants, thus confirming the effectiveness of the model. Placebo-treated participants experienced a bilateral 35% alleviation in muscle soreness (P < .0001), with no changes to the prevalence of cold allodynia. In contrast, minocycline-treated participants experienced a bilateral 70% alleviation in muscle soreness (P < .0001), additionally, only 10% of minocycline-treated participants showed cold allodynia. This study showed that repeated injections of HS can induce a hypersensitivity that outlasts the acute response, and the development of this hypersensitivity can be reliably attenuated with minocycline pretreatment. Four repeated injections of HS at 48-hour intervals induce a state of persistent hypersensitivity in healthy human participants. This hypersensitivity was characterized by bilateral muscular hyperalgesia and cutaneous cold allodynia, symptoms commonly reported in many chronic pain conditions. Minocycline pretreatment abolished the development of this state. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
The use of picosecond lasers beyond tattoos.
Forbat, E; Al-Niaimi, F
2016-10-01
Picosecond lasers are a novel laser with the ability to create a pulse of less than one nanosecond. They have been available in the clinical context since 2012. Dermatologists are now using picosecond lasers regularly for the treatment of blue and green pigment tattoo removal. This article reviews the use of picosecond lasers beyond tattoo removal. The overall consensus for the use of picosecond lasers beyond tattoo treatment is positive. With examples of this in the treatment of nevus of Ota, minocycline-induced pigmentation, acne scarring, and rhytides.
Yasa, Bilal; Arslan, Hakan; Akcay, Merve; Kavrik, Fevzi; Hatirli, Huseyin; Ozkan, Bulent
2015-07-01
To investigate the whitening effects of different bleaching agents on teeth discoloured by different antibiotic combinations of ciprofloxacin and metronidazole with minocycline, doxycycline, amoxicillin or cefaclor. Forty extracted bovine incisors were collected and discoloured with triple antibiotic pastes (TAP) with minocycline, doxycycline, amoxicillin and cefaclor throughout 30 days. The specimens were then randomly divided into two subgroups and each group received different bleaching materials: 35% hydrogen peroxide and sodium perborate. Spectrophotometric measurements were obtained on the buccal surfaces of the crown, firstly in the beginning, then on the 4th, 8th and 12th days after the placement of the bleaching materials. The acceptability threshold was set to 3.5. The ∆E values were calculated and the data was analysed using the repeated measures analysis of variance (P = .05). All the test groups induced colour changes exceeding the acceptability threshold 30 days after the antibiotic pastes were placed. The 35% hydrogen peroxide was more effective than sodium perborate in the whitening of discoloured teeth by antibiotic pastes (P = .001). The whitening effect after the 8th and 12th days was significantly more than after 4 days of treatment (P <.001). The discolouration caused by the TAP with minocycline and cefaclor showed greater whitening compared to the TAP with doxycycline and amoxicillin groups (P <.05). The whitening treatment effect of 35% hydrogen peroxide on teeth discoloured by antibiotic pastes seems to have significantly outperformed the sodium perborate treatment. Both bleaching agents were allowed to bleach the teeth gradually each day and the effects on the 8th and 12th days were superior to the one on the 4th day. The use of 35% hydrogen peroxide could be advantageous to bleach the teeth discoloured with antibiotic pastes compared to sodium perborate.
Effect of Minocycline on the Durability of Dentin Bonding Produced with Etch-and-Rinse Adhesives.
Loguercio, A D; Stanislawczuk, R; Malaquias, P; Gutierrez, M F; Bauer, J; Reis, A
2016-01-01
To evaluate the effect of minocycline and chlorhexidine pretreatment of acid-etched dentin on the longevity of resin-dentin bond strength (μTBS) and nanoleakage of two-step etch-and-rinse adhesives. Before application of Prime & Bond NT and Adper Single Bond 2 in occlusal dentin, the dentin surfaces were treated with 37% phosphoric acid, rinsed, air-dried, and rewetted with water (control group), 2% minocycline, or 2% chlorexidine digluconate. Composite buildups were constructed incrementally, and specimens were longitudinally sectioned to obtain bonded sticks (0.8 mm 2 ) to be tested in tension (0.5 mm/min) immediately or after 24 months of water storage. For nanoleakage, two specimens of each tooth/period were immersed in the silver nitrate solution, photo-developed, and polished with SiC paper for analysis under energy-dispersive X-ray spectroscopy/scanning electron microscopy. Reductions of the μTBS and increases in the nanoleakage were observed for both adhesives when the rewetting procedure was performed with water. Stable bonds were observed for the 2% minocycline and 2% chlorexidine digluconate groups after 24 months. The use of 2% minocycline as pretreatment of acid-etched dentin is one alternative to retard the degradation of resin-dentin interfaces over a 24-month period as well as 2% chlorexidine digluconate.
Chen, Dayong; Zeng, Wei; Fu, Yunfeng; Gao, Meng; Lv, Guohua
2015-01-01
The aims of this study were to assess that the effects of bone marrow mesenchymal stem cells (BMSCs) combination with minocycline improve spinal cord injury (SCI) in rat model. In the present study, the Wistar rats were randomly divided into five groups: control group, SCI group, BMSCs group, Minocycline group and BMSCs + minocycline group. Basso, Beattie and Bresnahan (BBB) test and MPO activity were used to assess the effect of combination therapy on locomotion and neutrophil infiltration. Inflammation factors, VEGF and BDNF expression, caspase-3 activation, phosphorylation-p38MAPK, proNGF, p75NTR and RhoA expressions were estimated using commercial kits or western blot, respectively. BBB scores were significantly increased and MPO activity was significantly undermined by combination therapy. In addition, combination therapy significantly decreased inflammation factors in SCI rats. Results from western blot showed that combination therapy significantly up-regulated the protein of VEGF and BDNF expression and down-regulated the protein of phosphorylation-p38MAPK, proNGF, p75NTR and RhoA expressions in SCI rats. Combination therapy stimulation also suppressed the caspase-3 activation in SCI rats. These results demonstrated that the effects of bone marrow mesenchymal stem cells combination with minocycline improve SCI in rat model. PMID:26722382
Mehrabian, Zara; Guo, Yan; Weinreich, Daniel; Bernstein, Steven L
2017-01-01
Optic nerve (ON) damage following nonarteritic anterior ischemic optic neuropathy (NAION) and its models is associated with neurodegenerative inflammation. Minocycline is a tetracycline derivative antibiotic believed to exert a neuroprotective effect by selective alteration and activation of the neuroinflammatory response. We evaluated minocycline's post-induction ability to modify early and late post-ischemic inflammatory responses and its retinal ganglion cell (RGC)-neuroprotective ability. We used the rodent NAION (rNAION) model in male Sprague-Dawley rats. Animals received either vehicle or minocycline (33 mg/kg) daily intraperitoneally for 28 days. Early (3 days) ON-cytokine responses were evaluated, and oligodendrocyte death was temporally evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. Cellular inflammation was evaluated with immunohistochemistry, and RGC preservation was compared with stereology of Brn3a-positive cells in flat mounted retinas. Post-rNAION, oligodendrocytes exhibit a delayed pattern of apoptosis extending over a month, with extrinsic monocyte infiltration occurring only in the primary rNAION lesion and progressive distal microglial activation. Post-induction minocycline failed to improve retinal ganglion cell survival compared with the vehicle treated (893.14 vs. 920.72; p>0.9). Cytokine analysis of the rNAION lesion 3 days post-induction revealed that minocycline exert general inflammatory suppression without selective upregulation of cytokines associated with the proposed alternative or neuroprotective M2 inflammatory pathway. The pattern of cytokine release, extended temporal window of oligodendrocyte death, and progressive microglial activation suggests that selective neuroimmunomodulation, rather than general inflammatory suppression, may be required for effective repair strategies in ischemic optic neuropathies.
Dai, Shuhui; Hua, Ya; Keep, Richard F; Novakovic, Nemanja; Fei, Zhou; Xi, Guohua
2018-06-05
Brain iron overload is involved in brain injury after intracerebral hemorrhage (ICH). There is evidence that systemic administration of minocycline reduces brain iron level and improves neurological outcome in experimental models of hemorrhagic and ischemic stroke. However, there is evidence in cerebral ischemia that minocycline is not protective in aged female animals. Since most ICH research has used male models, this study was designed to provide an overall view of ICH-induced iron deposits at different time points (1 to 28 days) in aged (18-month old) female Fischer 344 rat ICH model and to investigate the neuroprotective effects of minocycline in those rats. According to our previous studies, we used the following dosing regimen (20 mg/kg, i.p. at 2 and 12 h after ICH onset followed by 10 mg/kg, i.p., twice a day up to 7 days). T2-, T2 ⁎ -weighted and T2 ⁎ array MRI was performed at 1, 3, 7 and 28 days to measure brain iron content, ventricle volume, lesion volume and brain swelling. Immunohistochemistry was used to examine changes in iron handling proteins, neuronal loss and microglial activation. Behavioral testing was used to assess neurological deficits. In aged female rats, ICH induced long-term perihematomal iron overload with upregulated iron handling proteins, neuroinflammation, brain atrophy, neuronal loss and neurological deficits. Minocycline significantly reduced ICH-induced perihematomal iron overload and iron handling proteins. It further reduced brain swelling, neuroinflammation, neuronal loss, delayed brain atrophy and neurological deficits. These effects may be linked to the role of minocycline as an iron chelator as well as an inhibitor of neuroinflammation. Copyright © 2018 Elsevier Inc. All rights reserved.
Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul
2012-01-01
Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. The nanoparticles prepared in this study were spherical, with an average particle size of 85-424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug.
Ahmad, Mohammad; Zakaria, Abdulrahim; Almutairi, Khalid M
2016-06-01
Injury to the spinal cord results in immediate physical damage (primary injury) followed by a prolonged posttraumatic inflammatory disorder (secondary injury). The present study aimed to investigate the neuroprotective effects of minocycline and FK506 (Tacrolimus) individually and in combination on recovery from experimental spinal cord injury (SCI). Young adult male rats were subjected to experimental SCI by weight compression method. Minocycline (50mg/kg) and FK506 (1mg/kg) were administered orally in combination and individually to the SCI group daily for three weeks. During these three weeks, the recovery was measured using behavioral motor parameters (including BBB, Tarlov and other scorings) every other day for 29days after SCI. Thereafter, the animals were sacrificed and the segment of the spinal cord centered at the injury site was removed for the histopathological studies as well as for biochemical analysis of monoamines such as 5-hydroxytryptamine (5-HT) and 5-hydroxy-indolacetic acid (5-HIAA) and some oxidative stress indices, such as thiobarbituric acid-reactive substances (TBARS), total glutathione (GSH) and myeloperoxidase (MPO). All behavioral results indicated that both drugs induced significant recovery from SCI with respect to time. The biochemical and histopathological results supported the behavioral findings, revealing significant recovery in the regeneration of the injured spinal tissues, the monoamine levels, and the oxidative stress indices. Overall, the effects of the tested drugs for SCI recovery were as follows: FK506+minocycline>minocycline>FK506 in all studied parameters. Thus, minocycline and FK506 may prove to be a potential therapy cocktail to treat acute SCI. However, further studies are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.
Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul
2012-01-01
Background Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Methods Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. Results The nanoparticles prepared in this study were spherical, with an average particle size of 85–424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Conclusion Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug. PMID:22275837
USDA-ARS?s Scientific Manuscript database
The aim of this study was to determine the incidence of tetracycline resistance and the prevalence of tetracycline-resistance genes in strains of Clostridium perfringens isolated from different sources between 1994 and 2005. Susceptibility to tetracycline and minocycline in C. perfringens isolates ...
Zhang, Zhiling; Nix, Camilla A.; Ercan, Utku K.; Gerstenhaber, Jonathan A.; Joshi, Suresh G.; Zhong, Yinghui
2014-01-01
Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca2+ is less stable at acidic pH, enabling ‘smart’ drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca2+ concentration, and Ca2+ incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca2+ binding affinity, enabling its use in a variety of biomedical applications. PMID:24409292
[Two cases of skin pigmentation in association with minocycline therapy (author's transl)].
Leroy, J P; Dorval, J C; Dewitte, J D; Guillerm, D; Volant, A; Masse, R
1981-01-01
Report of two cases of skin pigmentation during minocycline therapy. Examination showed confluent blue-gray oval patches on the anterior part of the legs, occurring after ingestion of respectively 12 g and 100 g of minocycline. Microscopic examination of each case was identical and showed two lesions: increase in the amount of melanine deposition in the basal layer of the epidermis; presence of brown-black pigment at all the level of the dermis but specially near the sweet glands. This pigment was strongly positive with Perls' stain. Electron microscopic examination showed a finely granular pigment exclusively intracellular in dermis fibroblast and macrophage. This pigment seemed to contain mainly hemodiderine.
Low concentrations of doxycycline attenuates FasL-induced apoptosis in HeLa cells.
Yoon, Jung Mi; Koppula, Sushruta; Huh, Se Jong; Hur, Sun Jin; Kim, Chan Gil
2015-07-24
Doxycycline (DC) has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL)-mediated apoptosis against several tumor types in the concentration range of 10-40 µg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied. The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting. In the present findings we showed that low concentration of DC (<2.0 µg/mL) exhibited protective effects against FasL-induced apoptosis in HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1-2 µg/mL) significantly (p < 0.001) attenuated the FasL-induced cell death as measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 µg/mL). Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01-16 µg/mL) did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of caspase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 µg/mL). Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway.
Tegaserod Mimics the Neurostimulatory Glycan Polysialic Acid and Promotes Nervous System Repair
2014-01-01
cyclooxyenase-2 (Phillips et al., 2002). Other compounds, such as b-lactam antibiotics and minocycline , have been found to act via thus far undefined...polyposis in familial adenomatous polyposis. Gut 50, 857e860. Plane, J.M., Shen, Y., Pleasure, D.E., Deng, W., 2010. Prospects for minocycline
Sumitani, Masahiko; Ueda, Hiroshi; Hozumi, Jun; Inoue, Reo; Kogure, Takamichi; Yamada, Yoshitsugu; Kogure, Takamichi
2016-01-01
Recent understanding of the neuron-glia communication shed light on an important role of microglia to develop neuropathic pain The analgesic effect of minocycline on neuropathic pain is promising but it remains unclear in clinical settings. This study included 20 patients with neuropathic pain of varied etiologies. We administered 100 mg/day of minocycline for 1 week and then 200 mg/day for 3 weeks, as an open-label adjunct to conventional analgesics. An 11-point numerical rating scale. (NRS) and the short-form McGill Pain Questionnaire (SF-MPQ) were used to evaluate pain severity. The data were collected at baseline and after 4 weeks of therapy and analyzed using the Wilcoxon signed-rank test. All except two of the patients tolerated the full dose of minocycline. There was no significant improvement in the scoring of NRS (5.6 ± 1.2 at baseline vs. 5.3 ± 1.9 at 4 weeks; P =.60). The total score of the SF-MPQ decreased significantly (17.2 ± 7.4 vs. 13.9 ± 9.6; P =.02), particularly in the affective subscale (4.4 ± 2.7 vs. 3.3 ± 3.6; P =.007) but not so in the sensory subscale (12.8 ± 5.2 vs. 10.6 ± 6.2; P =.06). We conclude that minocycline failed to decrease pain intensity but succeeded in reducing the affective dimension associated with neuropathic pain.
Saravi, Seyed Soheil Saeedi; Mousavi, Seyyedeh Elaheh; Saravi, Seyed Sobhan Saeedi; Dehpour, Ahmad Reza
2016-04-01
Testicular torsion/detorsion (T/D) can induce depression in pre- and post-pubertal patients. This study was conducted to investigate the psychological impact of testicular torsion and mechanism underlying its depressive-like behaviour, as well as antidepressant-like activity of minocycline and possible involvement of nitric oxide (NO)/cyclic GMP pathway in this paradigm in male rats undergoing testicular T/D. Unilateral T/D was performed in 36 male adult Wistar rats, and different doses of minocycline were injected alone or combined with N(ω) -nitro-l-arginine methyl ester (l-NAME), non-specific NO synthase (NOS) inhibitor; aminoguanidine (AG), specific inducible NOS inhibitor; l-arginine, an NO precursor; and selective PDE5I, sildenafil. After assessment of locomotor activity in open-field test, immobility times were recorded in the forced swimming test (FST). Moreover, 30 days after testicular T/D, testicular venous testosterone and serum nitrite concentrations were measured. A correlation was observed between either a decrease in plasma testosterone or an increase in serum nitrite concentrations with prolongation in immobility time in the testicular T/D-operated rats FST. Minocycline (160 mg/kg) exerted the highest significant antidepressant-like effect in the operated rats in the FST (p < 0.001). Furthermore, combination of subeffective doses of minocycline (80 mg/kg) and either l-NAME (10 mg/kg) or AG (50 mg/kg) demonstrated a significant robust antidepressant-like activity in T/D group (p < 0.01). Consequently, NO/cGMP pathway was involved in testicular T/D-induced depressive-like behaviour and antidepressant-like activity of minocycline in the animal model. Moreover, a contribution was observed between either decreased testosterone or elevated serum nitrite levels and depressive-like behaviour following testicular T/D. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Inhibition of matrix metalloproteinase-2 by PARP inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.
2009-10-02
Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparablemore » to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.« less
Miyashita, Naoyuki; Kobayashi, Intetsu; Higa, Futoshi; Aoki, Yosuke; Kikuchi, Toshiaki; Seki, Masafumi; Tateda, Kazuhiro; Maki, Nobuko; Uchino, Kazuhiro; Ogasawara, Kazuhiko; Kurachi, Satoe; Ishikawa, Tatsuya; Ishimura, Yoshito; Kanesaka, Izumo; Kiyota, Hiroshi; Watanabe, Akira
2018-05-01
The activities of various antibiotics against 58 clinical isolates of Legionella species were evaluated using two methods, extracellular activity (minimum inhibitory concentration [MIC]) and intracellular activity. Susceptibility testing was performed using BSYEα agar. The minimum extracellular concentration inhibiting intracellular multiplication (MIEC) was determined using a human monocyte-derived cell line, THP-1. The most potent drugs in terms of MICs against clinical isolates were levofloxacin, garenoxacin, and rifampicin with MIC 90 values of 0.015 μg/ml. The activities of ciprofloxacin, pazufloxacin, moxifloxacin, clarithromycin, and azithromycin were slightly higher than those of levofloxacin, garenoxacin, and rifampicin with an MIC 90 of 0.03-0.06 μg/ml. Minocycline showed the highest activity, with an MIC 90 of 1 μg/ml. No resistance against the antibiotics tested was detected. No difference was detected in the MIC distributions of the antibiotics tested between L. pneumophila serogroup 1 and L. pneumophila non-serogroup 1. The MIECs of ciprofloxacin, pazufloxacin, levofloxacin, moxifloxacin, garenoxacin, clarithromycin, and azithromycin were almost the same as their MICs, with MIEC 90 values of 0.015-0.06 μg/ml, although the MIEC of minocycline was relatively lower and that of rifampicin was higher than their respective MICs. No difference was detected in the MIEC distributions of the antibiotics tested between L. pneumophila serogroup 1 and L. pneumophila non-serogroup 1. The ratios of MIEC:MIC for rifampicin (8) and pazufloxacin (2) were higher than those for levofloxacin (1), ciprofloxacin (1), moxifloxacin (1), garenoxacin (1), clarithromycin (1), and azithromycin (1). Our study showed that quinolones and macrolides had potent antimicrobial activity against both extracellular and intracellular Legionella species. The present data suggested the possible efficacy of these drugs in treatment of Legionella infections. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
2007-07-01
malarial drug),31 curcumin (unpublished results), and a number of other CNS-permeable com- pounds that potently inhibit PrPSc formation in cell culture.32...759-761. (35) Hambright, P. Chemistry of Water Soluble Porphyrins. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic...No 10 lM Amodiaquine 264 ± 11 No 10 lM Minocycline 276 ± 2 No 10 lM Mefloquine 257 ± 4 No 10 lM Curcumin NAc NA 10 lM NiPCTS 50 ± 3 Yes 10 lM PCTS 56
Inflammation is detrimental for neurogenesis in adult brain
NASA Astrophysics Data System (ADS)
Ekdahl, Christine T.; Claasen, Jan-Hendrik; Bonde, Sara; Kokaia, Zaal; Lindvall, Olle
2003-11-01
New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation.
Jain, Nilu; Jain, Gaurav Kumar; Ahmad, Farhan Jalees; Khar, Roop Krishen
2007-09-19
A simple, stability-indicating high-performance thin-layer liquid chromatographic (HPTLC) method for analysis of minocycline was developed and validated. The densitometric analysis was carried out at 345 nm using methanol-acetonitrile-isopropyl alcohol-water (5:4:0.5:0.5, v/v/v/v) as mobile phase. The method employed TLC aluminium plates pre-coated with silica gel 60F-254 as the stationary phase. To achieve good result, plates were sprayed with a 10% (w/v) solution of disodium ethylene diaminetetraacetic acid (EDTA), the pH of which was adjusted to 9.0. Compact spots of minocycline were found at R(f) = 0.30+/-0.02. For proposed procedure, linearity (r = 0.9997), limit of detection (3.7 ng spot(-1)), recovery (99.23-100.16%), and precision (% R.S.D. < or = 0.364) was found to be satisfactory. The drug undergoes acidic and basic degradation, oxidation and photodegradation. All the peaks of degradation products were well resolved from the pure drug with significantly different R(f) values. The acidic and alkaline degradation kinetics of minocycline, evaluated using this method, is found to be of first order.
Fond, G; Hamdani, N; Kapczinski, F; Boukouaci, W; Drancourt, N; Dargel, A; Oliveira, J; Le Guen, E; Marlinge, E; Tamouza, R; Leboyer, M
2014-03-01
To provide a systematic review of the literature regarding the efficacy of anti-inflammatory drugs in three major mental disorders [major depressive disorder (MDD), schizophrenia and bipolar disorders]. Four databases were explored, without any year or language restrictions. The baseline search paradigm was limited to open-labelled clinical and randomized controlled trials (RCTs). Four major classes of anti-inflammatory drugs were identified, namely polyunsaturated fatty acids (PUFAs), cyclooxygenase (COX) inhibitors, anti-TNFalpha and minocycline. Effectiveness and benefit/risk ratio of each class in MDD, bipolar disorders and schizophrenia was detailed when data were available. Several meta-analyses indicated effectiveness of PUFAs in MDD with a good tolerance profile. One meta-analysis indicated that COX-2 specific inhibitors showed effectiveness in schizophrenia. Anti-TNFalpha showed important effectiveness in resistant MDD with blood inflammatory abnormalities. Minocycline showed effectiveness in schizophrenia. Polyunsaturated fatty acids seem to have the best benefit/risk ratio profile but proved their effectiveness only in MDD. A number of anti-inflammatory drugs are available as adjunct treatment for treatment-resistant patients with MDD, schizophrenia and bipolar disorder. If used with caution regarding their possible side-effects, they may be reasonable therapeutic alternatives for resistant symptomatology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zollinger, Lilly; Schnyder, Simone; Nietzsche, Sandor; Sculean, Anton; Eick, Sigrun
2015-04-01
The antimicrobial activity of taurolidine was compared with minocycline against microbial species associated with periodontitis (four single strains and a 12-species mixture). Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs), killing as well as activities on established and forming single-species biofilms and a 12-species biofilm were determined. The MICs of taurolidine against single species were always 0.31 mg/ml, the MBCs were 0.64 mg/ml. The used mixed microbiota was less sensitive to taurolidine, MIC and the MBC was 2.5 mg/ml. The strains and the mixture were completely killed by 2.5 mg/ml taurolidine, whereas 256 μg/ml minocycline reduced the bacterial counts of the mixture by 5 log10 colony forming units (cfu). Coating the surface with 10 mg/ml taurolidine or 256 μg/ml minocycline prevented completely biofilm formation of Porphyromonas gingivalis ATCC 33277 but not of Aggregatibacter actinomycetemcomitans Y4 and the mixture. On 4.5 d old biofilms, taurolidine acted concentration dependent with a reduction by 5 log10 cfu (P. gingivalis ATCC 33277) and 7 log10 cfu (A. actinomycetemcomitans Y4) when applying 10 mg/ml. Minocycline decreased the cfu counts by 1-2 log10 cfu independent of the used concentration. The reduction of the cfu counts in the 4.5 d old multi-species biofilms was about 3 log10 cfu after application of any minocycline concentration and after using 10 mg/ml taurolidine. Taurolidine is active against species associated with periodontitis, even within biofilms. Nevertheless a complete elimination of complex biofilms by taurolidine seems to be impossible and underlines the importance of a mechanical removal of biofilms prior to application of taurolidine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mehrabian, Zara; Guo, Yan; Weinreich, Daniel
2017-01-01
Purpose Optic nerve (ON) damage following nonarteritic anterior ischemic optic neuropathy (NAION) and its models is associated with neurodegenerative inflammation. Minocycline is a tetracycline derivative antibiotic believed to exert a neuroprotective effect by selective alteration and activation of the neuroinflammatory response. We evaluated minocycline’s post-induction ability to modify early and late post-ischemic inflammatory responses and its retinal ganglion cell (RGC)–neuroprotective ability. Methods We used the rodent NAION (rNAION) model in male Sprague-Dawley rats. Animals received either vehicle or minocycline (33 mg/kg) daily intraperitoneally for 28 days. Early (3 days) ON-cytokine responses were evaluated, and oligodendrocyte death was temporally evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. Cellular inflammation was evaluated with immunohistochemistry, and RGC preservation was compared with stereology of Brn3a-positive cells in flat mounted retinas. Results Post-rNAION, oligodendrocytes exhibit a delayed pattern of apoptosis extending over a month, with extrinsic monocyte infiltration occurring only in the primary rNAION lesion and progressive distal microglial activation. Post-induction minocycline failed to improve retinal ganglion cell survival compared with the vehicle treated (893.14 vs. 920.72; p>0.9). Cytokine analysis of the rNAION lesion 3 days post-induction revealed that minocycline exert general inflammatory suppression without selective upregulation of cytokines associated with the proposed alternative or neuroprotective M2 inflammatory pathway. Conclusions The pattern of cytokine release, extended temporal window of oligodendrocyte death, and progressive microglial activation suggests that selective neuroimmunomodulation, rather than general inflammatory suppression, may be required for effective repair strategies in ischemic optic neuropathies. PMID:29386871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, S.; Murphy, G.F.; Bernhard, J.D.
1981-09-01
In order to elucidate the nature and distribution of the pigment responsible for the circumscribed blue-black cutaneous hyperpigmentation occurring after administration of minocycline hydrochloride, transmission electron microscopy and energy-dispersive electron x-ray microanalysis were performed on lesional skin. Ultrastructural observations demonstrated electron-dense iron-containing particles either incorporated into a variety of siderosomes, within dermal histiocytes, free within the cytoplasm, or, rarely, scattered among dermal collagen fibers. Electron x-ray microanalysis confirmed iron content present within these particles. Although siderosomal inclusions contained occasional melanosome complexes, the degree of deposition of electron-dense iron-containing particles in dermal histiocytes seemed to be primarily responsible for the blue-blackmore » discoloration of the skin. The present study is an investigation of the structure and composition of the pigment responsible for minocycline-related cutaneous hyperpigmentation.« less
Kaszuba-Zwoinska, J; Chorobik, P; Juszczak, K; Zaraska, W; Thor, P J
2012-10-01
Current studies were aimed to elucidate influence of pulsed electromagnetic field stimulation on cell viability and apoptosis induction pathways. For the experimental model we have chosen monocytic cell line MonoMac6 and several apoptosis inducers with different mechanism of death induction like puromycin, colchicine, cyclophosphamide, minocycline and hydrogen peroxide. MonoMac6 cell line was grown at density 1x10(5) cells/well in 96-well culture plates. To induce cell death cell cultures were treated with different apoptosis inducers like puromycin, colchicine, cyclophosphamide, minocycline, hydrogen peroxide and at the same time with pulsed electromagnetic field 50 Hz, 45±5 mT (PEMF) for 4 hour per each stimulation, three times, in 24 hours intervals. Afterwards, cells were harvested for flow cytometry analysis of cell viability measured by annexin V-APC labeled and propidium iodide staining. Expression of apoptosis related genes was evaluated by semi quantitative reverse transcription (RT)-PCR assay. NuPAGE Novex Western blot analysis was carried out for apoptosis inducing factor (AIF) abundance in cytosolic and nuclear extracts of MonoMac6 cells. Puromycin, colchicine and minocycline activated cells and simultaneously treated with PEMF have shown out diminished percentage of annexinV positive (AnV+) cells comparing to controls without PEMF stimulation. MonaMac6 cells puromycin/colchicyne and PEMF treated were to a higher extent double stained (AnV+,PI+), which means increased late apoptotic as well as necrotic (PI+) cells, than non-stimulated controls. On the other hand, minocycline activated cells prior to PEMF treatment showed diminished amount of apoptotic and necrotic (annexin V, annexin V and propidium iodide, propidium iodide positive staining) cells. The opposite effect of PEMF on the percentage of annexin V positively stained cells has been achieved after treatment of MonoMac6 culture with cyclophoshamide and hydrogen peroxide. PEMF enhanced early phase of apoptosis induced by both apoptosis inducing agents. The analysis of expression of the apoptosis related genes in MonoMac6 cultures treated with puromycin and exposed to PEMF performed in reverse transcription of polymerase chain reaction (PCR) assay has shown changes in mRNA of genes engaged in intrinsic apoptotic pathway and pathway with AIF abundance. The most influenced was expression of gene belonging to pro-apoptotic family of Bcl-2 and AIF agent. Examination of immunoblots developed with anti-AIF antibody showed that cytosol content of AIF protein was diminished after puromycin and PEMF treatment of MonoMac6 cells. The obtained results indicate that PEMF affects induction of apoptosis in MonoMac6 cells stimulated to death with inducing agents to a different extent. Main finding of the current results is that, PEMF stimulation of MonoMac6 cells simultaneously treated with puromycin caused changes in the Bcl-family genes expression as well as in caspase independent pathway of apoptosis inducing factor (AIF).
Novel Cause of 'Black Thyroid': Intraoperative Use of Indocyanine Green.
Chernock, Rebecca D; Jackson, Ryan S
2017-09-01
The antibiotic minocycline is virtually pathognomonic for brown-black discoloration of the thyroid gland referred to as 'black thyroid'. Black thyroid' is an incidental finding in patients taking the drug who undergo thyroid surgery for another indication and is not of known clinical significance. However, its recognition is important so as not to raise concern for a disease process. Here, we present the first case of 'black thyroid' attributable to the iodine-containing compound indocyanine green. Intraoperative indocyanine green was administered as part of a research protocol transoral robotic-assisted surgery for a base of tongue cancer in a 44-year-old man. Hemithyroidectomy was subsequently performed during the same operation for further evaluation of an indeterminate thyroid nodule. The resected thyroid lobe was dark, nearly black in color, and histologically showed extensive brown pigment deposition in the follicular epithelial cells and colloid, mimicking minocycline-induced 'black thyroid'. In this case, however, the patient was not taking minocycline; instead the 'black thyroid' was attributed to the iodine-containing compound indocyanine green. Indocyanine green is a hereto unreported cause of 'black thyroid' with histopathologic features that are remarkably similar to that induced by minocycline. Indocyanine green should be included the differential diagnosis of 'black thyroid'. Clinical history is important so as not to raise concern for a disease process.
Silva, Tiago; Grenho, Liliana; Barros, Joana; Silva, José Carlos; Pinto, Rosana V; Matos, Ana; Colaço, Bruno; Fernandes, Maria Helena; Bettencourt, Ana; Gomes, Pedro S
2017-06-06
In the present work, we study the development and biological characterization of a polymethyl methacrylate (PMMA)-based minocycline delivery system, to be used as a space maintainer within craniofacial staged regenerative interventions. The developed delivery systems were characterized regarding solid state characteristics and assayed in vitro for antibacterial and anti-inflammatory activity, and cytocompatibility with human bone cells. A drug release profile allowed for an initial burst release and a more sustained and controlled release over time, with minimum inhibitory concentrations for the assayed and relevant pathogenic bacteria (i.e., Staphylococcus aureus, slime-producer Staphylococcus epidermidis and Escherichia coli) being easily attained in the early time points, and sustained up to 72 h. Furthermore, an improved osteoblastic cell response-with enhancement of cell adhesion and cell proliferation-and increased anti-inflammatory activity were verified in developed systems, compared to a control (non minocycline-loaded PMMA cement). The obtained results converge to support the possible efficacy of the developed PMMA-based minocycline delivery systems for the clinical management of complex craniofacial trauma. Here, biomaterials with space maintenance properties are necessary for the management of staged reconstructive approaches, thus minimizing the risk of peri-operative infections and enhancing the local tissue healing and early stages of regeneration.
Antiepileptic Drugs in Clinical Development: Differentiate or Die?
Zaccara, Gaetano; Schmidt, D
2017-01-01
Animal models when carefully selected, designed and conducted, are important parts of any translational drug development strategy. However, research of new compounds for patients with drugresistant epilepsies is still based on animal experiments, mostly in rodents, which are far from being a model of chronic human epilepsy and have failed to differentiate the efficacy of new compounds versus standard drug treatment. The objective was identification and description of compounds in clinical development in 2016. Search was conducted from the website of the U.S. National Institutes of Health and from literature. Identified compounds have been divided in two groups: 1) compounds initially developed for the treatment of diseases other than epilepsy: biperiden, bumetanide, everolimus, fenfluramine, melatonin, minocycline, verapamil. 2) Compounds specifically developed for the treatment of epilepsy: allopregnanolone, cannabidiol, cannabidivarin, ganaxolone, nalutozan, PF-06372865, UCB0942, and cenobamate. Everolimus, and perhaps, fenfluramine are effective in specific epileptic diseases and may be considered as true disease modifying antiepileptic drugs. These are tuberous sclerosis complex for everolimus and Dravet syndrome for fenfluramine. With the exception of a few other compounds such as cannabinidiol, cannabidivarin and minocycline, the vast majority of other compounds had mechanisms of action which are similar to the mechanism of action of the anti-seizure drugs already in the market. Substantial improvements in the efficacy, specifically as pharmacological treatment of drug-resistant epilepsy is regarded, are not expected. New drugs should be developed to specifically target the biochemical alteration which characterizes the underlying disease and also include targets that contribute to epileptogenesis in relevant epilepsy models. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
2018-04-12
duties. Title 17 USC §105 provides that ‘copyright protection under this title is not available for any work of the US Government.’ Title 17 USC §101...chromatography HPLC High performance liquid chromatography ISO International standardization organization M Minocycline MDR Multidrug resistant...used for the past few decades as topical otic and ophthalmic treatments. Literature available for the individual colistin-, polymyxin B-, and
Systemic therapy of ocular and cutaneous rosacea in children.
Gonser, L I; Gonser, C E; Deuter, C; Heister, M; Zierhut, M; Schaller, M
2017-10-01
In paediatric rosacea, ocular symptoms are often predominant. Literature about systemic therapy of paediatric ocular rosacea is sparse, though. Analysis of children with ocular rosacea treated systemically, particularly addressing remission and recurrence rates. Retrospective study reviewing the medical records of children with ocular rosacea treated with systemic antibiotic therapy. Nine of 19 patients were chosen for detailed analysis. To our knowledge, this is the first study in paediatric ocular rosacea requiring systemic therapy with a larger patient group and a longer follow-up (mean follow-up = 30.2 months). 17 patients (89.5%) suffered from blepharitis, 15 patients (78.9%) from conjunctivitis, twelve patients (63.2%) from chalazia/styes and nine female patients (47.4%) from corneal involvement. We used erythromycin (n = 9) or roxithromycin (n = 1) in patients younger than 8 years and doxycycline (n = 8) or minocycline (n = 1) in patients older than 8 years. Seven of nine patients treated with erythromycin, one of eight patients treated with doxycycline and the patient treated with minocycline achieved a complete remission of ocular and cutaneous symptoms. Two of nine patients treated with erythromycin, seven of eight patients treated with doxycycline and the patient treated with roxithromycin achieved a partial remission. Relapses occurred in the patient treated with minocycline (cutaneous), two of eight patients treated with doxycycline (ocular and cutaneous) and one of nine patients treated with erythromycin (cutaneous). To achieve a complete remission of cutaneous and ocular rosacea, a long-term anti-inflammatory treatment of at least 6 months is necessary. The relapse rates seem to be lower than in adults especially in the patients treated with erythromycin. © 2017 European Academy of Dermatology and Venereology.
Zychowska, Magdalena; Rojewska, Ewelina; Makuch, Wioletta; Luvisetto, Siro; Pavone, Flaminia; Marinelli, Sara; Przewlocka, Barbara; Mika, Joanna
2016-11-15
Botulinum neurotoxin serotype A (BoNT/A) shows antinociceptive properties, and its clinical applications in pain therapy are continuously increasing. BoNT/A specifically cleaves SNAP-25, which results in the formation of a non-functional SNARE complex, thereby potently inhibiting the release of neurotransmitters and neuropeptides, including those involved in nociception. The aim of the present study was to determine the effects of BoNT/A (300pg/paw) on pain-related behavior and the levels of glial markers and interleukins in the spinal cord and dorsal root ganglia (DRG) after chronic constriction injury (CCI) to the sciatic nerve in rats. Glial activity was also examined after repeated intraperitoneal injection of minocycline combined with a single BoNT/A injection. Our results show that a single intraplantar BoNT/A injection did not influence motor function but strongly diminished pain-related behaviors in naïve and CCI-exposed rats. Additionally, microglial inhibition using minocycline enhanced the analgesic effects of BoNT/A. Western blotting results suggested that CCI induces the upregulation of the pronociceptive proteins IL-18, IL-6 and IL-1β in the ipsilateral lumbar spinal cord and DRG, but no changes in the levels of the antinociceptive proteins IL-18BP, IL-1RA and IL-10 were observed. Interestingly, BoNT/A injection suppressed the CCI-induced upregulation of IL-18 and IL-1β in the spinal cord and/or DRG and increased the levels of IL-10 and IL-1RA in the DRG. In summary, our results suggest that BoNT/A significantly attenuates pain-related behavior and microglial activation and restores the neuroimmune balance in a CCI model by decreasing the levels of pronociceptive factors (IL-1β and IL-18) and increasing the levels of antinociceptive factors (IL-10 and IL-1RA) in the spinal cord and DRG. Copyright © 2016 Elsevier B.V. All rights reserved.
Zaenglein, Andrea L; Shamban, Ava; Webster, Guy; Del Rosso, James; Dover, Jeffrey S; Swinyer, Leonard; Stein, Linda; Lin, Xiaoming; Draelos, Zoe; Gold, Michael; Thiboutot, Diane
2013-06-01
Moderate to severe acne vulgaris is often treated with a combination of an oral antibiotic, topical antibiotic/retinoid, and benzoyl peroxide (BP), but data are limited on the efficacy of this and other combination regimens that incorporate both oral and topical therapies.
Patients were required to be aged 12-30 years with moderate to severe acne (grades 3-4 acne on the Investigator's Global Assessment [IGA]) and deemed potential candidates for treatment with isotretinoin. Enrolled patients were given triple-combination therapy, defined in this study as oral minocycline HCl extended release 1 mg/kg QD, 6% BP foaming cloths used QD, and clindamycin phosphate 1.2%/tretinoin 0.025% gel applied QD, and were evaluated at baseline and weeks 2, 4, 8, and 12.
A total of 97 patients were enrolled in the study. At week 12, 89% of patients had at least a one-grade improvement from baseline IGA and 96% had at least a one-grade improvement from baseline Global Aesthetic Improvement Scale score. Mean ± SD in- flammatory, non-inflammatory, and total lesion counts decreased from baseline by 61.8% ± 38.3%, 48.8% ± 34.5%, and 56.5% ± 29.9%, respectively. The percentage of patients evaluated as candidates for isotretinoin by independent photographic review was 77% (69/90) at baseline and only 16% (14/90) at week 12. Treatment-related adverse events (AEs) occurred in eight of 97 (8%) patients. Triplecombination therapy was not associated with any serious AEs or AEs leading to discontinuation.
Triple-combination therapy was well tolerated and substantially reduced facial acne lesion counts, with 84% of patients judged to no longer be candidates for isotretinoin therapy by study end. These data support the clinical observation that a triple-combination regimen incorporating oral minocycline (dosed by patient weight), BP foaming cloths 6% QD, and clindamycin phosphate 1.2%/ tretinoin 0.025% gel QD can substantially improve moderate to severe acne vulgaris.
Miyazaki, Shinji; Hiraoka, Yuichi; Hidema, Shizu; Nishimori, Katsuhiko
2016-04-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, difficulty in companionship, repetitive behaviors and restricted interests. Recent studies have shown amelioration of ASD symptoms by intranasal administration of oxytocin and demonstrated the association of polymorphisms in the oxytocin receptor (Oxtr) gene with ASD patients. Deficient pruning of synapses by microglial cells in the brain has been proposed as potential mechanism of ASD. Other researchers have shown specific activation of microglial cells in brain regions related to sociality in patients with ASD. Although the roles of Oxtr and microglia in ASD are in the spotlight, the relationship between them remains to be elucidated. In this study, we found abnormal activation of microglial cells and a reduction of postsynaptic density protein PSD95 expression in the Oxtr-deficient brain. Moreover, pharmacological inhibition of microglia during development can alter the expression of PSD95 and ameliorate abnormal mother-infant communication in Oxtr-deficient mice. Our results suggest that microglial abnormality is a potential mechanism of the development of Oxt/Oxtr mediated ASD-like phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of ozonation on minocycline degradation and N-Nitrosodimethylamine formation.
Lv, Juan; Li, Yong M
2018-06-07
The objective of this study was to assess reactivity of Minocycline (MNC) towards ozone and determine the effects of ozone dose, pH value, and water matrix on MNC degradation as well as to characterize N-Nitrosodimethylamine (NDMA) formation from MNC ozonation. The MNC initial concentration of the solution was set in the range of 2-20 mg/L to investigate NDMA formation during MNC ozonation. Four ozone doses (22.5, 37.2, 58.0, and 74.4 mg/min) were tested to study the effect of ozone dose. For the evaluation of effects of pH value, pH was adjusted from 5 to 9 in the presence of phosphate buffer. MNC ozonation experiments were also conducted in natural water to assess the influence of water matirx. The influence of the typical component of natural water was also investigated with the addition of HA and NaHCO 3 solution. Results indicated that ozone was effective in MNC removal. Consequently, NDMA and dimethylamine (DMA) were generated from MNC oxidation. Increasing pH value enhanced MNC removal but led to greater NDMA generation. Water matrices, such as HCO 3 - and humic acid, affected MNC degradation. Conversely, more NDMA accumulated due to the inhibition of NDMA oxidation by oxidant consumption. Though ⋅OH can enhance MNC degradation, ozone molecules were heavily involved in NDMA production. Seven transformation products were identified. However, only DMA and the unidentified tertiary amine containing DMA group contributed to NDMA formation.
Guerra, Alberto Daniel; Rose, Warren E; Hematti, Peiman; Kao, W John
2017-03-15
Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) crosslinked hydrogels have led to controlled cellular presentation at wound sites with favorable wound healing outcomes. However, the therapeutic potential of MSC-loaded hydrogels may be limited by non-specific protein adsorption on the delivery matrix that could facilitate the initial adhesion of microorganisms and subsequent virulent biofilm formation. Antimicrobials loaded concurrently in the hydrogels with MSCs could reduce microbial bioburden and promote healing, but the antimicrobial effect on the MSC wound healing capacity and the antibacterial efficacy of the hydrogels is unknown. We demonstrate that minocycline specifically induces a favorable change in MSC migration capacity, proliferation, gene expression, extracellular matrix (ECM) attachment, and adhesion molecule and growth factor release with subsequent increased angiogenesis. We then demonstrate that hydrogels loaded with MSCs, minocycline, vancomycin, and linezolid can significantly decrease bacterial bioburden. Our study suggests that minocycline can serve as a dual mechanism for the regenerative capacity of MSCs and the reduction of bioburden in triple antimicrobial-loaded hydrogels. Wound healing is a complex biological process that can be hindered by bacterial infection, excessive inflammation, and inadequate microvasculature. In this study, we develop a new formulation of poly(ethylene glycol) diacrylate and thiolated gelatin poly(ethylene glycol) crosslinked hydrogels loaded with minocycline, vancomycin, linezolid, and mesenchymal stromal/stem cells that induces a favorable wound healing phenotype in mesenchymal stromal/stem cells and prevents bacterial bioburden on the hydrogel. This combinatorial approach to biomaterial development has the potential to impact wound healing for contaminated full thickness cutaneous wounds. Copyright © 2017. Published by Elsevier Ltd.
Sex Differences in Stroke Therapies
Sohrabji, Farida; Park, Min Jung; Mahnke, Amanda H
2016-01-01
Stroke is the 5th leading cause of death and acquired disability in aged populations. Women are disproportionally affected by stroke, having a higher incidence and worse outcomes than men. Numerous preclinical studies have discovered novel therapies for the treatment of stroke, but almost all of these were found to be unsuccessful in clinical trials. Despite known sex differences in occurrence and severity of stroke, few therapeutics, both preclinically and clinically, take into account possible sex differences in treatment. Reanalysis of data from the only currently FDA-approved stroke therapy, tPA, has shown to not only improve stroke outcomes for both sexes, but to also show sexual dimorphism by more robust improvement in stroke outcome in females. Experimental evidence supports the inclusion of sex as a variable in the study of a number of novel stroke drugs and therapies, including preclinical studies of anti-inflammatory drugs (minocycline), stimulators of cell survival (IGF-1), and inhibitors of cell death pathways (pharmacological inhibition of PARP-1, NO production, and caspase activation), as well as in current clinical trials of stem cell therapy and cortical stimulation. Overall, study design and analyses in clinical trials, as well as in preclinical studies, must include both sexes equally, consider possible sex differences in the analyses, and report the differences/similarities in more systemized/structured way to translate promising therapies to both sexes and increase stroke recovery. PMID:27870437
Faramarzi, Masumeh; Goharfar, Zahra; Pourabbas, Reza; Kashefimehr, Atabak; Shirmohmmadi, Adileh
2015-08-01
The purpose of this study was to compare the microbial and clinical effects of mechanical debridement (MD) alone or in combination with the application of enamel matrix derivative (EMD) and sustained-release micro-spherical minocycline (MSM) for treatment of peri-implant mucosal infl ammation (PIMI). Subjects with at least one implant with PIMI were included and divided into control and two different test groups. In all three groups, MD was performed. In the MSM group, following MD, MSM was placed subgingivally around the implants. In the EMD group, after MD, EMD was placed in the sulcus around the implants. Sampling of peri-implant crevicular fl uid for microbial analysis with real-time polymerase chain reaction and recording of probing depth (PD) and bleeding on probing (BOP) were performed prior to as well as two weeks and three months after treatment. Median values and interquartile range were estimated for each variable during the various assessment intervals of the study. In all groups, at two weeks and three months, the counts of Porphyromonas gingivalis decreased significantly compared to baseline. Levels of P. gingivalis were significantly reduced in MSM (P<0.001) and EMD (P=0.026) groups compared to the control group. Also, clinical parameters improved significantly at two weeks and three months. Reduction of PD was significant in MSM (P<0.001) and EMD (P<0.001) groups. The decrease in BOP in the MSM, EMD, and control groups was 60%, 50%, and 20%, respectively. The use of MSM and EMD can be an adjunctive treatment for management of PIMI and improves clinical parameters and reduces P. gingivalis burden three months after treatment.
Colovic, Milena; Caccia, Silvio
2003-07-05
An isocratic reversed-phase high-performance liquid chromatographic procedure was developed for the determination of minocycline in rat plasma and brain and applied to brain-to-blood (plasma) distribution studies. The procedure is based on isolation of the compound and the internal standard (either demeclocycline or tetracycline may be used) from plasma and brain constituents using the Oasis HLB cartridge, with satisfactory recovery and specificity, and separation on a Symmetry Shield RP8 (15 cm x 4.6 mm, 3.5 microm) column coupled with a UV detector set at 350 nm. The assay was linear over a wide range, with a lower limit of quantification of 50 ng ml(-1) or g(-1), using 0.2 ml of plasma and about 200 mg of brain tissue. Precision and accuracy were acceptable. In the rat minocycline crossed the blood-brain barrier slowly, achieving mean brain concentrations between 30 and 40% of the equivalent systemic exposure, regardless of the dose and route of administration.
Raad, Issam; Hanna, Hend; Dvorak, Tanya; Chaiban, Gassan; Hachem, Ray
2007-01-01
Antimicrobial lock solutions may be needed to salvage indwelling catheters in patients requiring continuous intravenous therapy. We determined the activity of minocycline, EDTA, and 25% ethanol, alone or in combination, against methicillin-resistant Staphylococcus aureus and Candida parapsilosis catheter-related bloodstream infection strains in two established models of biofilm colonization. Biofilm-colonized catheter segments from a modified Robbins device and a silicone disk biofilm colonization model were exposed to these antimicrobial agents for 15 or 60 min, respectively. After exposure, segments were sonicated and cultured. To determine regrowth after incubation at 37 degrees C, following the brief exposure to the antimicrobial agents, an equal number of segments were washed, reincubated for 24 h, and then sonicated and cultured. The triple combination of minocycline-EDTA (M-EDTA) in 25% ethanol was the only antimicrobial lock solution that completely eradicated S. aureus and C. parapsilosis in biofilm of all segments tested in the two models, and it completely prevented regrowth. In addition, M-EDTA in 25% ethanol was significantly more effective in rapidly eradicating the growth or regrowth of methicillin-resistant S. aureus and C. parapsilosis biofilm colonization in the two models than the other solutions--minocycline, EDTA, M-EDTA, 25% ethanol, and EDTA in ethanol. We conclude that M-EDTA in 25% ethanol is highly effective at rapidly eradicating S. aureus and C. parapsilosis embedded in biofilm adhering to catheter segments.
Lee, Ming-Jen; Hung, Shih-Hsuan; Huang, Mu-Ching; Tsai, Tsuimin; Chen, Chin-Tin
2017-01-01
Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous disorders. Some NF1 patients develop benign large plexiform neurofibroma(s) at birth, which can then transform into a malignant peripheral nerve sheath tumor (MPNST). There is no curative treatment for this rapidly progressive and easily metastatic neurofibrosarcoma. Photodynamic therapy (PDT) has been developed as an anti-cancer treatment, and 5-aminolevulinic (ALA) mediated PDT (ALA-PDT) has been used to treat cutaneous skin and oral neoplasms. Doxycycline, a tetracycline derivative, can substantially reduce the tumor burden in human and animal models, in addition to its antimicrobial effects. The purpose of this study was to evaluate the effect and to investigate the mechanism of action of combined doxycycline and ALA-PDT treatment of MPNST cells. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the combination of ALA-PDT and doxycycline significantly reduce MPNST survival rate, compared to cells treated with each therapy alone. Isobologram analysis showed that the combined treatment had a synergistic effect. The increased cytotoxic activity could be seen by an increase in cellular protoporphyrin IX (PpIX) accumulation. Furthermore, we found that the higher retention of PpIX was mainly due to increasing ALA uptake, rather than activity changes of the enzymes porphobilinogen deaminase and ferrochelatase. The combined treatment inhibited tumor growth in different tumor cell lines, but not in normal human Schwann cells or fibroblasts. Similarly, a synergistic interaction was also found in cells treated with ALA-PDT combined with minocycline, but not tetracycline. In summary, doxycycline can potentiate the effect of ALA-PDT to kill tumor cells. This increased potency allows for a dose reduction of doxycycline and photodynamic radiation, reducing the occurrence of toxic side effects in vivo.
Takeda, Nobue; Ishiwada, Naruhiko; Fukasawa, Chie; Furuya, Yumiko; Tsuneoka, Hidehiro; Tsukahara, Masato; Kohno, Yoichi
2007-03-01
Cat scratch disease is associated with a variety of systemic manifestations. We report a pediatric case associated with pneumonia, pleural effusion, and pericarditis. A 3-year-old boy developed prolonged fever unresponsive to antibiotic treatment, including azithromycin and minocycline. Although the fever resolved with corticosteroid treatment, Bartonella henselae IgG titer was positive in indirect fluorescence antibodies, as was Rickettsia japonica IgG titer. Both titers were significantly reduced by serum absorption with B. henselae antigens, and we observed a serological cross-reaction between B. henselae and R. japonica.
Gelesko, Savannah; Long, Leann; Faulk, Jan; Phillips, Ceib; Dicus, Carolyn; White, Raymond P.
2013-01-01
Purpose To assess the impact of cryotherapy or topical minocycline on patients’ perceptions of recovery from pain after third molar surgery in an exploratory comparative-effectiveness study. Patients and Methods Subjects aged at least 14 years who were having all 4 third molars removed were enrolled in 3 separate institutional review board–approved studies. Study groups included subjects treated with a passively applied cold wrap for 24 hours postoperatively, subjects treated with topical minocycline during surgery, and subjects enrolled in a nonconcurrent comparison group who had received neither topical minocycline nor directed cryotherapy. Third molar surgery was performed in all cases by trained surgeons using the same protocol. An exact Kruskal-Wallis test was used to compare the distributions of the worst and average pain scores and a Fisher exact test to compare verbal responses from Gracely pain scales among the 3 groups for postsurgical days (PSDs) 1 to 3. Results This study comprised 51 cryotherapy subjects (2005–2009), 63 minocycline subjects (2003–2004), and 92 comparison-group subjects (2002–2006) who were treated at academic centers and in community practices across the United States (N = 206). Demographic descriptors were similar among all groups. For PSDs 1 through 3 (unadjusted), the highest scores for worst pain (6–7 [out of 7] on Likert-type scale) were reported less frequently in each of the study groups than in subjects in the comparison group, although the numbers of subjects reporting the highest scores were few. The distribution of pain outcomes was significantly different among the 3 groups for worst pain and affective words on PSD 1 (P = .04 for both). However, the small number of subjects who reported the highest pain scores precluded adequate multivariate statistical analyses for all outcomes on PSD 1 to 3. Conclusions Data from this exploratory study suggest that adjunctive therapy to decrease postoperative pain—cryotherapy or topical minocycline—might be effective at moderating the patient’s highest pain levels after third molar surgery. The topic should be studied further in a multicenter, prospective, randomized trial. PMID:21802812
Zhang, Li-quan; Xu, Jia-ni; Wang, Zhen-zhen; Zeng, Li-jun; Ye, Yi-lu; Zhang, Wei-ping; Wei, Er-qing; Zhang, Qi
2014-05-01
To evaluate the application of locomotor activity test in functional injury after global cerebral ischemia (GCI) in C57BL/6 mice. GCI was induced by bilateral carotid arteries occlusion for 30 min in C57BL/6 mice. Mice were divided into sham group, GCI group and minocycline group. Saline or minocycline (45 mg/kg) was i.p. injected once daily for 6 d after ischemia. At Day 6 after ischemia, locomotor activity was recorded for 1 h in open field test. Total distance, central distance, central distance ratio, periphery distance, periphery distance ratio, central time and periphery time were used to evaluate the behavior characteristics of locomotor activity in C57BL/6 mice after ischemia. The survival neuron density was detected by Nissl staining in hippocampus, cortex and striatum. Compared with sham group, total distance, central distance and central time increased and periphery time decreased in C57BL/6 mice after GCI (Ps<0.05). However, minocycline significantly reduced the central distance and central time and increased the periphery time (Ps<0.05). Neurons were damaged in hippocampus, cortex and striatum after GCI, which manifested by decreased neurons and the most serious damage in hippocampal CA1 region. Minocycline significantly improved the neuron appearance and increased the neuron number in hippocampus and striatum (P<0.001 or P<0.05). Locomotor activity in open field test can objectively evaluate the behavior injury after GCI in mice. Central distance and central time can be used as indexes of quantitative assessment.
Kumar, Vinod; Singh, Brajesh Kumar; Chauhan, Amit Kumar; Singh, Deepali; Patel, Devendra Kumar; Singh, Chetna
2016-07-01
Accumulation of zinc (Zn) in dopaminergic neurons is implicated in Parkinson's disease (PD), and microglial activation plays a critical role in toxin-induced Parkinsonism. Oxidative stress is accused in Zn-induced dopaminergic neurodegeneration; however, its connection with microglial activation is still not known. This study was undertaken to elucidate the role and underlying mechanism of microglial activation in Zn-induced nigrostriatal dopaminergic neurodegeneration. Male Wistar rats were treated intraperitoneally with/without zinc sulphate (20 mg/kg) in the presence/absence of minocycline (30 mg/kg), a microglial activation inhibitor, for 2-12 weeks. While neurobehavioral and biochemical indexes of PD and number of dopaminergic neurons were reduced, the number of microglial cells was increased in the substantia nigra of the Zn-exposed animals. Similarly, Zn elevated lipid peroxidation (LPO) and activities of superoxide dismutase (SOD) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; however, catalase activity was reduced. Besides, Zn increased an association of NADPH oxidase subunit p67(phox) with membrane, cytochrome c release from the mitochondria and cleavage of pro-caspase 3. Zn attenuated the expression of tyrosine hydroxylase (TH) and vesicular monoamine transporter-2 (VMAT-2) while augmented the expression of dopamine transporter (DAT) and heme oxygenase-1 (HO-1). Minocycline alleviated Zn-induced behavioural impairments, loss of TH-positive neurons, activated microglial cells and biochemical indexes and modulated the expression of studied genes/proteins towards normalcy. The results demonstrate that minocycline reduces the number of activated microglial cells and oxidative stress, which rescue from Zn-induced changes in the expression of monoamine transporter and nigrostriatal dopaminergic neurodegeneration.
Setia, Maninder S; Shinde, Santosh S; Jerajani, Hemangi R; Boivin, Jean-François
2011-12-01
A combination of rifampicin, ofloxacin and minocycline (ROM) is one of the newer recommendations for treatment of leprosy. We performed a systematic review and a meta-analysis of studies that had evaluated the efficacy of ROM therapy in treatment of paucibacillary and multibacillary leprosy patients. Studies were identified by searching the PubMed, Embase, LILACS and Cochrane databases. Data were abstracted from all relevant studies, and fixed effects models were used to calculate the summary estimate of effect in paucibacillary and multibacillary leprosy patients. Six studies comparing ROM therapy to multidrug therapy and eight studies that evaluated the effect of ROM therapy alone (no comparison group) were included in the review and meta-analysis. The combined estimate for single dose ROM vs. multidrug therapy in paucibacillary leprosy patients suggested that ROM was less effective than multidrug therapy in these patients [relative risk: 0.91, 95% confidence intervals (CI): 0.86-0.97]. However, the combined estimate for multiple doses of ROM vs. multidrug therapy in multibacillary leprosy patients suggested that ROM was as effective as multidrug therapy in reducing bacillary indices in these patients (proportion change: -4%, 95% CI -31% to 23%). No major side effects were reported in either the ROM or the multidrug treatment groups. Single-dose ROM therapy was less effective than multidrug therapy in paucibacillary patients. However, there are insufficient data to come to a valid conclusion on the efficacy of multidose ROM therapy in multibacillary leprosy, and additional studies with ROM therapy in multibacillary leprosy are needed. Furthermore, multiple doses may be considered as another alternative even for paucibacillary patients, and randomised controlled trials of this therapy may be useful to understand its contribution in the treatment and control of leprosy. © 2011 Blackwell Publishing Ltd.
Shamim, Daniah; Laskowski, Michael
2017-01-01
Tumor necrosis factor α (TNF-α) inhibitors have long been used as disease-modifying agents in immune disorders. Recently, research has shown a role of chronic neuroinflammation in the pathophysiology of neurodegenerative diseases such as Alzheimer disease, and interest has been generated in the use of anti-TNF agents and TNF-modulating agents for prevention and treatment. This article extensively reviewed literature on animal studies testing these agents. The results showed a role for direct and indirect TNF-α inhibition through agents such as thalidomide, 3,6-dithiothalidomide, etanercept, infliximab, exendin-4, sodium hydrosulfide, minocycline, imipramine, and atorvastatin. Studies were performed on mice, rats, and monkeys, with induction of neurodegenerative physiology either through the use of chemical agents or through the use of transgenic animals. Most of these agents showed an improvement in cognitive function as tested with the Morris water maze, and immunohistochemical and histopathological staining studies consistently showed better outcomes with these agents. Brains of treated animals showed significant reduction in pro-inflammatory TNF-α and reduced the burden of neurofibrillary tangles, amyloid precursor protein, and β-amyloid plaques. Also, recruitment of microglial cells in the central nervous system was significantly reduced through these drugs. These studies provide a clearer mechanistic understanding of the role of TNF-α modulation in Alzheimer disease. All studies in this review explored the use of these drugs as prophylactic agents to prevent Alzheimer disease through immune modulation of the TNF inflammatory pathway, and their success highlights the need for further research of these drugs as therapeutic agents. PMID:28811745
Shamim, Daniah; Laskowski, Michael
2017-01-01
Tumor necrosis factor α (TNF-α) inhibitors have long been used as disease-modifying agents in immune disorders. Recently, research has shown a role of chronic neuroinflammation in the pathophysiology of neurodegenerative diseases such as Alzheimer disease, and interest has been generated in the use of anti-TNF agents and TNF-modulating agents for prevention and treatment. This article extensively reviewed literature on animal studies testing these agents. The results showed a role for direct and indirect TNF-α inhibition through agents such as thalidomide, 3,6-dithiothalidomide, etanercept, infliximab, exendin-4, sodium hydrosulfide, minocycline, imipramine, and atorvastatin. Studies were performed on mice, rats, and monkeys, with induction of neurodegenerative physiology either through the use of chemical agents or through the use of transgenic animals. Most of these agents showed an improvement in cognitive function as tested with the Morris water maze, and immunohistochemical and histopathological staining studies consistently showed better outcomes with these agents. Brains of treated animals showed significant reduction in pro-inflammatory TNF-α and reduced the burden of neurofibrillary tangles, amyloid precursor protein, and β-amyloid plaques. Also, recruitment of microglial cells in the central nervous system was significantly reduced through these drugs. These studies provide a clearer mechanistic understanding of the role of TNF-α modulation in Alzheimer disease. All studies in this review explored the use of these drugs as prophylactic agents to prevent Alzheimer disease through immune modulation of the TNF inflammatory pathway, and their success highlights the need for further research of these drugs as therapeutic agents.
Fragile X: leading the way for targeted treatments in autism.
Wang, Lulu W; Berry-Kravis, Elizabeth; Hagerman, Randi J
2010-07-01
Two different mutations in the FMR1 gene may lead to autism. The full mutation, with >200 CGG repeats in the 5' end of FMR1, leads to hypermethylation and transcriptional silencing of FMR1, resulting in absence or deficiency of the protein product, FMRP. Deficiency of FMRP in the brain causes fragile X syndrome (FXS). Autism occurs in approximately 30% of those with FXS, and pervasive developmental disorders-not otherwise specified occur in an additional 30%. FMRP is an RNA binding protein that modulates receptor-mediated dendritic translation; deficiency leads to dysregulation of many proteins important for synaptic plasticity. Group I metabotropic glutamate receptor (mGluR1/5) activated translation is upregulated in FXS, and new targeted treatments that act on this system include mGluR5 antagonists and GABA agonists, which may reverse the cognitive and behavioral deficits in FXS. Matrix metalloproteinase 9 (MMP-9) is one of the proteins elevated in FXS, and minocycline reduces excess MMP-9 activity in the Fmr1 knockout mouse model of FXS. Both minocycline and mGluR5 antagonists are currently being evaluated in patients with FXS through controlled treatment trials. The premutation (55-200 CGG repeats) may also contribute to the mechanism of autism in approximately 10% of males and 2-3% of females. Premutations with <150 repeats exert cellular effects through a different molecular mechanism, one that involves elevated levels of FMR1 mRNA, CGG-mediated toxicity to neurons, early cell death, and fragile X-associated tremor/ataxia syndrome. In those with large premutations (150-200), lowered levels of FMRP also occur. (c) 2010 The American Society for Experimental NeuroTherapeutics, Inc. Published by Elsevier Inc. All rights reserved.
Wakabayashi, Hiroyuki; Teraguchi, Susumu; Tamura, Yoshitaka
2002-10-01
This study aimed to find antibiotics or other compounds that could increase the antimicrobial activity of an antimicrobial peptide, lactoferricin B (LFcin B), against Staphylococcus aureus, including antibiotic-resistant strains. Among conventional antibiotics, minocycline increased the bactericidal activity of LFcin B against S. aureus, but methicillin, ceftizoxime, and sulfamethoxazole-trimethoprim did not have such an effect. The combination of minocycline and LFcin B had synergistic effects against three antibiotic-resistant strains of S. aureus, according to result of checkerboard analysis. Screening of 33 compounds, including acids and salts, alcohols, amino acids, proteins and peptides, sugar, and lipids, showed that medium-chain monoacylglycerols increased the bactericidal activity of LFcin B against three S. aureus strains. The short-term killing test in water and the killing curve test in growing cultures showed that a combination of LFcin B and monolaurin (a monoacylglycerol with a 12-carbon acyl chain) killed S. aureus more rapidly than either agent alone. These findings may be helpful in the application of antimicrobial peptides in medical or other situations.
Khatri, Parag M; Kumar, Rajesh
2012-01-01
Periodontal disease is a multifactorial disease having various risk factors, but a dynamic interaction between bacterial products and host response in association with genetic and environmental factors is considered as the primary cause for periodontal tissue destruction in periodontitis. This bacterial-host interaction which is ever-so-present in periodontitis directs us toward utilizing antimicrobial agents along with the routine mechanical debridement. This case report present a case of a female patient with recurrent periodontal infections with gingival enlargement treated with systemic Minocycline in conjunction with the conventional non-surgical approach.
Sex differences in stroke therapies.
Sohrabji, Farida; Park, Min Jung; Mahnke, Amanda H
2017-01-02
Stroke is the fifth leading cause of death and acquired disability in aged populations. Women are disproportionally affected by stroke, having a higher incidence and worse outcomes than men. Numerous preclinical studies have discovered novel therapies for the treatment of stroke, but almost all of these have been shown to be unsuccessful in clinical trials. Despite known sex differences in occurrence and severity of stroke, few preclinical or clinical therapeutics take into account possible sex differences in treatment. Reanalysis of data from studies of tissue plasminogen activator (tPA), the only currently FDA-approved stroke therapy, has shown that tPA improves stroke outcomes for both sexes and also shows sexual dimorphism by more robust improvement in stroke outcome in females. Experimental evidence supports the inclusion of sex as a variable in the study of a number of novel stroke drugs and therapies, including preclinical studies of anti-inflammatory drugs (minocycline), stimulators of cell survival (insulin-like growth factor-1), and inhibitors of cell death pathways (pharmacological inhibition of poly[ADP-ribose] polymerase-1, nitric oxide production, and caspase activation) as well as in current clinical trials of stem cell therapy and cortical stimulation. Overall, study design and analysis in clinical trials as well as in preclinical studies must include both sexes equally, consider possible sex differences in the analyses, and report the differences/similarities in more systematic/structured ways to allow promising therapies for both sexes and increase stroke recovery. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Norowski, Peter Andrew, Jr.
Guided tissue regeneration (GTR) is a surgical technique commonly used to exclude bacteria and soft tissues from bone graft sites in oral/maxillofacial bone graft sites by using a barrier membrane to maintain the graft contour and space. Current clinical barrier membrane materials based on expanded polytetrafluoroethylene (ePTFE) and bovine type 1 collagen are non-ideal and experience a number of disadvantages including membrane exposure, bacterial colonization/biofilm formation and premature degradation, all of which result in increased surgical intervention and poor bone regeneration. These materials do not actively participate in tissue regeneration, however bioactive materials, such as chitosan, may provide advantages such as the ability to stimulate wound healing and de novo bone formation. Our hypothesis is that electrospun chitosan GTR membranes will support cell attachment and growth but prevent cell infiltration/penetration of membrane, demonstrate in vitro degradation predictive of 4--6 month in vivo functionality, and will deliver antibiotics locally to prevent/inhibit periopathogenic complications. To test this hypothesis a series of chitosan membranes were electrospun, in the presence or absence of genipin, a natural crosslinking agent, at concentrations of 5 and 10 mM. These membranes were characterized by scanning electron microscopy, tensile testing, suture pullout testing, Fourier transform infrared spectroscopy, X-ray diffraction, and gel permeation chromatography, and in vitro biodegradation for diameter/morphology of fibers, membrane strengths, degree of crosslinking, crystallinity, molecular weight, and degradation kinetics, respectively. Cytocompability of membranes was evaluated in osteoblastic, fibroblastic and monocyte cultures. The activity of minocycline loaded and released from the membranes was determined in zone of inhibition tests using P. gingivalis microbe. The results demonstrated that genipin crosslinking extended the in vitro degradation timeframe, extended the release of minocycline, and increased the tensile strength of the resultant membranes while cytocompatibility, swelling, and tear strength were unaffected. In conclusion, electrospun chitosan membranes crosslinked with genipin are a suitable material for guided tissue regeneration and may help reduce bacterial infection and bacteria-induced host inflammatory response.
A data-driven approach for evaluating multi-modal therapy in traumatic brain injury
Haefeli, Jenny; Ferguson, Adam R.; Bingham, Deborah; Orr, Adrienne; Won, Seok Joon; Lam, Tina I.; Shi, Jian; Hawley, Sarah; Liu, Jialing; Swanson, Raymond A.; Massa, Stephen M.
2017-01-01
Combination therapies targeting multiple recovery mechanisms have the potential for additive or synergistic effects, but experimental design and analyses of multimodal therapeutic trials are challenging. To address this problem, we developed a data-driven approach to integrate and analyze raw source data from separate pre-clinical studies and evaluated interactions between four treatments following traumatic brain injury. Histologic and behavioral outcomes were measured in 202 rats treated with combinations of an anti-inflammatory agent (minocycline), a neurotrophic agent (LM11A-31), and physical therapy consisting of assisted exercise with or without botulinum toxin-induced limb constraint. Data was curated and analyzed in a linked workflow involving non-linear principal component analysis followed by hypothesis testing with a linear mixed model. Results revealed significant benefits of the neurotrophic agent LM11A-31 on learning and memory outcomes after traumatic brain injury. In addition, modulations of LM11A-31 effects by co-administration of minocycline and by the type of physical therapy applied reached statistical significance. These results suggest a combinatorial effect of drug and physical therapy interventions that was not evident by univariate analysis. The study designs and analytic techniques applied here form a structured, unbiased, internally validated workflow that may be applied to other combinatorial studies, both in animals and humans. PMID:28205533
A data-driven approach for evaluating multi-modal therapy in traumatic brain injury.
Haefeli, Jenny; Ferguson, Adam R; Bingham, Deborah; Orr, Adrienne; Won, Seok Joon; Lam, Tina I; Shi, Jian; Hawley, Sarah; Liu, Jialing; Swanson, Raymond A; Massa, Stephen M
2017-02-16
Combination therapies targeting multiple recovery mechanisms have the potential for additive or synergistic effects, but experimental design and analyses of multimodal therapeutic trials are challenging. To address this problem, we developed a data-driven approach to integrate and analyze raw source data from separate pre-clinical studies and evaluated interactions between four treatments following traumatic brain injury. Histologic and behavioral outcomes were measured in 202 rats treated with combinations of an anti-inflammatory agent (minocycline), a neurotrophic agent (LM11A-31), and physical therapy consisting of assisted exercise with or without botulinum toxin-induced limb constraint. Data was curated and analyzed in a linked workflow involving non-linear principal component analysis followed by hypothesis testing with a linear mixed model. Results revealed significant benefits of the neurotrophic agent LM11A-31 on learning and memory outcomes after traumatic brain injury. In addition, modulations of LM11A-31 effects by co-administration of minocycline and by the type of physical therapy applied reached statistical significance. These results suggest a combinatorial effect of drug and physical therapy interventions that was not evident by univariate analysis. The study designs and analytic techniques applied here form a structured, unbiased, internally validated workflow that may be applied to other combinatorial studies, both in animals and humans.
Fried, Nathan T; Maxwell, Christina R; Elliott, Melanie B; Oshinsky, Michael L
2017-01-01
Background The blood-brain barrier (BBB) has been hypothesized to play a role in migraine since the late 1970s. Despite this, limited investigation of the BBB in migraine has been conducted. We used the inflammatory soup rat model of trigeminal allodynia, which closely mimics chronic migraine, to determine the impact of repeated dural inflammatory stimulation on BBB permeability. Methods The sodium fluorescein BBB permeability assay was used in multiple brain regions (trigeminal nucleus caudalis (TNC), periaqueductal grey, frontal cortex, sub-cortex, and cortex directly below the area of dural activation) during the episodic and chronic stages of repeated inflammatory dural stimulation. Glial activation was assessed in the TNC via GFAP and OX42 immunoreactivity. Minocycline was tested for its ability to prevent BBB disruption and trigeminal sensitivity. Results No astrocyte or microglial activation was found during the episodic stage, but BBB permeability and trigeminal sensitivity were increased. Astrocyte and microglial activation, BBB permeability, and trigeminal sensitivity were increased during the chronic stage. These changes were only found in the TNC. Minocycline treatment prevented BBB permeability modulation and trigeminal sensitivity during the episodic and chronic stages. Discussion Modulation of BBB permeability occurs centrally within the TNC following repeated dural inflammatory stimulation and may play a role in migraine. PMID:28457145
Temporal/compartmental changes in viral RNA and neuronal injury in a primate model of NeuroAIDS.
González, R Gilberto; Fell, Robert; He, Julian; Campbell, Jennifer; Burdo, Tricia H; Autissier, Patrick; Annamalai, Lakshmanan; Taheri, Faramarz; Parker, Termara; Lifson, Jeffrey D; Halpern, Elkan F; Vangel, Mark; Masliah, Eliezer; Westmoreland, Susan V; Williams, Kenneth C; Ratai, Eva-Maria
2018-01-01
Despite the advent of highly active anti-retroviral therapy HIV-associated neurocognitive disorders (HAND) continue to be a significant problem. Furthermore, the precise pathogenesis of this neurodegeneration is still unclear. The objective of this study was to examine the relationship between infection by the simian immunodeficiency virus (SIV) and neuronal injury in the rhesus macaque using in vivo and postmortem sampling techniques. The effect of SIV infection in 23 adult rhesus macaques was investigated using an accelerated NeuroAIDS model. Disease progression was modulated either with combination anti-retroviral therapy (cART, 4 animals) or minocycline (7 animals). Twelve animals remained untreated. Viral loads were monitored in the blood and cerebral spinal fluid, as were levels of activated monocytes in the blood. Neuronal injury was monitored in vivo using magnetic resonance spectroscopy. Viral RNA was quantified in brain tissue of each animal postmortem using reverse transcription polymerase chain reaction (RT-PCR), and neuronal injury was assessed by immunohistochemistry. Without treatment, viral RNA in plasma, cerebral spinal fluid, and brain tissue appears to reach a plateau. Neuronal injury was highly correlated both to plasma viral levels and a subset of infected/activated monocytes (CD14+CD16+), which are known to traffic the virus into the brain. Treatment with either cART or minocycline decreased brain viral levels and partially reversed alterations in in vivo and immunohistochemical markers for neuronal injury. These findings suggest there is significant turnover of replicating virus within the brain and the severity of neuronal injury is directly related to the brain viral load.
Ramírez, María Soledad; Traglia, German Matías; Pérez, Jorgelina Fernanda; Müller, Gabriela Leticia; Martínez, María Florencia; Golic, Adrián Ezequiel; Mussi, María Alejandra
2015-05-01
Minocycline (MIN) and tigecycline (TIG) are antibiotics currently used for treatment of multidrug-resistant nosocomial pathogens. In this work, we show that blue light, as well as white light, modulates susceptibility to these antibiotics in a temperature-dependent manner. The modulation of susceptibility by light depends on the content of iron; an increase in iron results in a reduction in antibiotic susceptibility both under light and in the dark, though the effect is more pronounced in the latter condition. We further provide insights into the mechanism by showing that reduction in susceptibility to MIN and TIG induced by light is likely triggered by the generation of (1)O2, which, by a yet unknown mechanism, would ultimately lead to the activation of resistance genes such as those coding for the efflux pump AdeABC. The clinical relevance of these results may lie in surface-exposed wound infections, given the exposure to light in addition to the relatively low temperatures recorded in this type of lesion. We further show that the modulation of antibiotic susceptibility occurs not only in Acinetobacter baumannii but also in other micro-organisms of clinical relevance such as Escherichia coli and Staphylococcus aureus. Overall, our findings allow us to suggest that MIN and TIG antibiotic treatments may be improved by the inclusion of an iron chelator, in addition to keeping the wounds in the dark, a condition that would increase the effectiveness in the control of infections involving these micro-organisms. © 2015 The Authors.
Xiong, Lina; Yan, He; Shi, Lei; Mo, Ziyao
2016-12-01
The purpose of this study was to investigate the susceptibility of waterborne strains of Legionella to eight antimicrobials commonly used in legionellosis therapy. The minimum inhibitory concentrations (MICs) of 66 environmental Legionella strains, isolated from fountains and cooling towers of public facilities (hotels, schools, and shopping malls) in Macau and Guangzhou, were tested using the microdilution method in buffered yeast extract broth. The MIC 50 /MIC 90 values for erythromycin, cefotaxime (CTX), doxycycline (DOC), minocycline (MIN), azithromycin, ciprofloxacin, levofloxacin (LEV), and moxifloxacin were 0.125/0.5 mg/L, 4/8 mg/L, 8/16 mg/L, 4/8 mg/L, 0.125/0.5 mg/L, 0.031/0.031 mg/L, 0.031/0.031 mg/L, and 0.031/0.062 mg/L, respectively. Legionella isolates were inhibited by either low concentrations of macrolides and fluoroquinolones, or high concentrations of CTX and tetracycline drugs. LEV was the most effective drug against different Legionella species and serogroups of L. pneumophila isolates. The latter were inhibited in decreasing order by MIN > CTX >DOC, while non-L. pneumophila isolates were inhibited by CTX> MIN >DOC. In this study, we evaluated drug resistance of pathogenic bacteria from the environment. This may help predict the emergence of drug resistance, improve patient outcomes, and reduce hospitalization costs.
Lee, Ming-Jen; Hung, Shih-Hsuan; Huang, Mu-Ching; Tsai, Tsuimin
2017-01-01
Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous disorders. Some NF1 patients develop benign large plexiform neurofibroma(s) at birth, which can then transform into a malignant peripheral nerve sheath tumor (MPNST). There is no curative treatment for this rapidly progressive and easily metastatic neurofibrosarcoma. Photodynamic therapy (PDT) has been developed as an anti-cancer treatment, and 5-aminolevulinic (ALA) mediated PDT (ALA-PDT) has been used to treat cutaneous skin and oral neoplasms. Doxycycline, a tetracycline derivative, can substantially reduce the tumor burden in human and animal models, in addition to its antimicrobial effects. The purpose of this study was to evaluate the effect and to investigate the mechanism of action of combined doxycycline and ALA-PDT treatment of MPNST cells. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the combination of ALA-PDT and doxycycline significantly reduce MPNST survival rate, compared to cells treated with each therapy alone. Isobologram analysis showed that the combined treatment had a synergistic effect. The increased cytotoxic activity could be seen by an increase in cellular protoporphyrin IX (PpIX) accumulation. Furthermore, we found that the higher retention of PpIX was mainly due to increasing ALA uptake, rather than activity changes of the enzymes porphobilinogen deaminase and ferrochelatase. The combined treatment inhibited tumor growth in different tumor cell lines, but not in normal human Schwann cells or fibroblasts. Similarly, a synergistic interaction was also found in cells treated with ALA-PDT combined with minocycline, but not tetracycline. In summary, doxycycline can potentiate the effect of ALA-PDT to kill tumor cells. This increased potency allows for a dose reduction of doxycycline and photodynamic radiation, reducing the occurrence of toxic side effects in vivo. PMID:28558025
Ortega-Arellano, Hector Flavio; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos
2017-05-01
Autosomal recessive Juvenile Parkinsonism (AR-JP) is a chronic, progressive neurodegenerative disorder caused by mutation in the PARKIN gene, and invariably associated with dopaminergic (DAergic) neuronal loss and brain iron accumulation. Since current medical therapy is symptomatic and lacks significant disease-modifying effects, other treatment approaches are urgently needed it. In the present work, we investigate the role of minocycline (MC) in paraquat (PQ)/iron-induced neurotoxicity in the Drosophila TH>parkin-RNAi/+ (w[*]; UAS-parkin-RNAi; TH-GAL4) fly and have shown the following: (i) MC increased life span and restored the locomotor activity of knockdown (KD) transgenic parkin flies in comparison with the control (vehicle) group; (ii) MC at low (0.1 and 0.3mM) and middle (0.5mM) concentrations protected, rescued and prevented KD parkin Drosophila against PQ toxicity. However, MC at high (1mM) concentration aggravated the toxic effect of PQ; (iii) MC protected and rescued DAergic neurons against the PQ toxic effect according to tyrosine hydroxylase (TH)>green-fluorescent protein (GFP) reporter protein microscopy and anti-TH Western blotting analysis; (iv) MC protected DAergic neurons against PQ/iron toxicity; (v) MC significantly abridged lipid peroxidation (LPO) in the protection, rescue and prevention treatment in TH>parkin-RNAi/+ flies against PQ or iron alone or combined (PQ/iron)-induced neuronal oxidative stress (OS). Our results suggest that MC exerts neuroprotection against PQ/iron-induced OS in DAergic neurons most probably by the scavenging activity of reactive oxygen species (ROS), and by chelating iron. Therefore, MC might be a potential therapeutic drug to delay, revert, or prevent AR-JP. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Yi; Kimura-Ohba, Shihoko; Thompson, Jeffrey F; Salayandia, Victor M; Cossé, Melissa; Raz, Limor; Jalal, Fakhreya Y; Rosenberg, Gary A
2018-06-01
Vascular cognitive impairment is a major cause of dementia caused by chronic hypoxia, producing progressive damage to white matter (WM) secondary to blood-brain barrier (BBB) opening and vascular dysfunction. Tight junction proteins (TJPs), which maintain BBB integrity, are lost in acute ischemia. Although angiogenesis is critical for neurovascular remodeling, less is known about its role in chronic hypoxia. To study the impact of TJP degradation and angiogenesis during pathological progression of WM damage, we used the spontaneously hypertensive/stroke prone rats with unilateral carotid artery occlusion and Japanese permissive diet to model WM damage. MRI and IgG immunostaining showed regions with BBB damage, which corresponded with decreased endothelial TJPs, claudin-5, occludin, and ZO-1. Affected WM had increased expression of angiogenic factors, Ki67, NG2, VEGF-A, and MMP-3 in vascular endothelial cells and pericytes. To facilitate the study of angiogenesis, we treated rats with minocycline to block BBB disruption, reduce WM lesion size, and extend survival. Minocycline-treated rats showed increased VEGF-A protein, TJP formation, and oligodendrocyte proliferation. We propose that chronic hypoxia disrupts TJPs, increasing vascular permeability, and initiating angiogenesis in WM. Minocycline facilitated WM repair by reducing BBB damage and enhancing expression of TJPs and angiogenesis, ultimately preserving oligodendrocytes. Copyright © 2018 Elsevier Inc. All rights reserved.
Planche, Vincent; Panatier, Aude; Hiba, Bassem; Ducourneau, Eva-Gunnel; Raffard, Gerard; Dubourdieu, Nadège; Maitre, Marlène; Lesté-Lasserre, Thierry; Brochet, Bruno; Dousset, Vincent; Desmedt, Aline; Oliet, Stéphane H; Tourdias, Thomas
2017-02-01
Memory impairment is an early and disabling manifestation of multiple sclerosis whose anatomical and biological substrates are still poorly understood. We thus investigated whether memory impairment encountered at the early stage of the disease could be explained by a differential vulnerability of particular hippocampal subfields. By using experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, we identified that early memory impairment was associated with selective alteration of the dentate gyrus as pinpointed in vivo with diffusion-tensor-imaging (DTI). Neuromorphometric analyses and electrophysiological recordings confirmed dendritic degeneration, alteration in glutamatergic synaptic transmission and impaired long-term synaptic potentiation selectively in the dentate gyrus, but not in CA1, together with a more severe pattern of microglial activation in this subfield. Systemic injections of the microglial inhibitor minocycline prevented DTI, morphological, electrophysiological and behavioral impairments in EAE-mice. Furthermore, daily infusions of minocycline specifically within the dentate gyrus were sufficient to prevent memory impairment in EAE-mice while infusions of minocycline within CA1 were inefficient. We conclude that early memory impairment in EAE is due to a selective disruption of the dentate gyrus associated with microglia activation. These results open new pathophysiological, imaging, and therapeutic perspectives for memory impairment in multiple sclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Tufvesson-Alm, Maximilian; Schwieler, Lilly; Schwarcz, Robert; Goiny, Michel; Erhardt, Sophie; Engberg, Göran
2018-06-05
Kynurenine 3-monooxygenase (KMO) is an essential enzyme of the kynurenine pathway, converting kynurenine into 3-hydroxykynurenine. Inhibition of KMO increases kynurenine, resulting in elevated levels of kynurenic acid (KYNA), an endogenous N-methyl-d-aspartate and α*7-nicotinic receptor antagonist. The concentration of KYNA is elevated in the brain of patients with schizophrenia, possibly as a result of a reduced KMO activity. In the present study, using in vivo single cell recording techniques, we investigated the electrophysiological characteristics of ventral tegmental area dopamine (VTA DA) neurons and their response to antipsychotic drugs in a KMO knock-out (K/O) mouse model. KMO K/O mice exhibited a marked increase in spontaneous VTA DA neuron activity as compared to wild-type (WT) mice. Furthermore, VTA DA neurons showed clear-cut, yet qualitatively opposite, responses to the antipsychotic drugs haloperidol and clozapine in the two genotypes. The anti-inflammatory drug parecoxib successfully lowered the firing activity of VTA DA neurons in KMO K/O, but not in WT mice. Minocycline, an antibiotic and anti-inflammatory drug, produced no effect in this regard. Taken together, the present data further support the usefulness of KMO K/O mice for studying distinct aspects of the pathophysiology and pharmacological treatment of psychiatric disorders such as schizophrenia. Copyright © 2018. Published by Elsevier Ltd.
Polonini, H C; Silva, S L; Cunha, C N; Brandão, M A F; Ferreira, A O
2016-04-01
A challenge with compounding oral liquid formulations is the limited availability of data to support the physical, chemical and microbiological stability of the formulation. This poses a patient safety concern and a risk for medication errors. The objective of this study was to evaluate the compatibility of the following active pharmaceutical ingredients (APIs) in 10 oral suspensions, using SyrSpend SF PH4 (liquid) as the suspending vehicle: cholecalciferol 50,000 IU/mL, haloperidol 0.5 mg/mL, imipramine hydrochloride 5.0 mg/mL, levodopa/carbidopa 5.0/1.25 mg/mL, lorazepam 1.0 mg/mL, minocycline hydrochloride 10.0 mg/mL, tacrolimus monohydrate 1.0 mg/mL, terbinafine 25.0 mg/mL, tramadol hydrochloride 10.0 mg/mL and valsartan 4.0 mg/mL. The suspensions were stored both refrigerated (2 - 8 degrees C) and at controlled room temperature (20 - 25 degrees C). This is the first stability study for these APIs in SyrSpend SF PH4 (liquid). Further, the stability of haloperidol,ilmipramine hydrochloride, minocycline, and valsartan in oral suspension has not been previously reported in the literature. Compatibility was assessed by measuring percent recovery at varying time points throughout a 90 days period. Quantification of the APIs was performed by high performance liquid chromatography (HPLC-UV). Given the percentage of recovery of the APIs within the suspensions, the beyond-use date of the final preparations was found to be at least 90 days for most suspensions both refrigerated and at room temperature. Exceptions were: Minocycline hydrochloride at both storage temperatures (60 days), levodopa/carbidopa at room temperature (30 days), and lorazepam at room temperature (60 days). This suggests that compounded suspensions of APIs from different pharmacological classes in SyrSpend SF PH4 (liquid) are stable.
Inflammation in Depression and the Potential for Anti-Inflammatory Treatment
Köhler, Ole; Krogh, Jesper; Mors, Ole; Benros, Michael Eriksen
2016-01-01
Accumulating evidence supports an association between depression and inflammatory processes, a connection that seems to be bidirectional. Clinical trials have indicated antidepressant treatment effects for anti-inflammatory agents, both as add-on treatment and as monotherapy. In particular, nonsteroidal anti-inflammatory drugs (NSAIDs) and cytokine-inhibitors have shown antidepressant treatment effects compared to placebo, but also statins, poly-unsaturated fatty acids, pioglitazone, minocycline, modafinil, and corticosteroids may yield antidepressant treatment effects. However, the complexity of the inflammatory cascade, limited clinical evidence, and the risk for side effects stress cautiousness before clinical application. Thus, despite proof-of-concept studies of anti-inflammatory treatment effects in depression, important challenges remain to be investigated. Within this paper, we review the association between inflammation and depression together with the current evidence on use of anti-inflammatory treatment in depression. Based on this, we address the questions and challenges that seem most important and relevant to future studies, such as timing, most effective treatment lengths and identification of subgroups of patients potentially responding better to different anti-inflammatory treatment regimens. PMID:27640518
Bunagan, M J Kristine; Banka, Nusrat; Shapiro, Jerry
2015-01-01
To date, there is no standard treatment of folliculitis decalvans (FD), a rare type of cicatricial alopecia. The records of 23 patients with FD (1998-2012) were retrospectively analyzed, with added data review on the course and treatment of long-standing cases. Initial management consisted mostly of intralesional triamcinolone acetonide, clobetasol lotion, and either cephalexin, minocycline, doxycycline, or tetracycline. Alternatives consisted of rifampicin, clindamycin, ciprofloxacin, and isotretinoin. Remission was achieved in weeks to months in more than half of the cases, with low occurrence of relapse. The poor responders had a protracted course of temporary improvement and multiple relapses. The majority of patients showed improvement and subsequent remission with oral antibiotics. In some patients, it took years of slow taper before the antibiotic could be discontinued. Only a few patients had recalcitrant disease, with minimal response to their initial and alternative medications. © 2014 Canadian Dermatology Association.
Matsui, Emi; Takayama, Kento; Sato, Eiji; Okamura, Nobuyuki
2011-01-01
Daiokanzoto (DKT), a Kampo medicine that includes the combination of two crude drugs (rhubarb and glycyrrhiza), is clinically effective for constipation. The aim of this study is to clarify the influence of glycyrrhiza, three glycyrrhiza constituents (glycyrrhizin, liquiritin, and liquiritin apioside), and eight antibiotics on the purgative action of DKT, rhubarb, or sennoside A, a constituent of rhubarb, in mice. The purgative actions of rhubarb and sennoside A were significantly intensified when glycyrrhiza was co-administered orally to mice. Liquiritin and liquiritin apioside but not glycyrrhizin showed significant amplification of the purgative action in a dose-dependent manner. The purgative actions of DKT and sennoside A were significantly reduced by the pre-administration of ampicillin, cefcapene pivoxil, faropenem, fosfomycin, or kanamycin, but were not affected by the pre-administration of clarithromycin or levofloxacin. On the other hand, the purgative action of sennoside A was significantly reduced by the pre-administration of minocycline, whereas that of DKT was not affected. The effect of minocycline on the purgative action of sennoside A was lost when glycyrrhiza was co-administered. These results suggest that liquiritin and liquiritin apioside contribute as active substances for the purgative action of DKT, and some antibiotics reduce the purgative action of DKT and sennoside A. Furthermore, glycyrrhiza has the ability to recover the purgative action of sennoside A suppressed by minocycline via an unknown mechanism.
Pijpers, A; Van Klingeren, B; Schoevers, E J; Verheijden, J H; Van Miert, A S
1989-09-01
The minimal inhibitory concentrations (MIC) of five tetracyclines and ten other antimicrobial agents were determined for four porcine bacterial respiratory tract pathogens by the agar dilution method. For the following oxytetracycline-susceptible strains, the MIC50 ranges of the tetracyclines were: P. multocida (n = 17) 0.25-0.5 micrograms/ml; B. bronchiseptica (n = 20) 0.25-1.0 micrograms/ml; H. pleuropneumoniae (n = 20) 0.25-0.5 micrograms/ml; S. suis Type 2 (n = 20) 0.06-0.25 micrograms/ml. For 19 oxytetracycline-resistant P. multocida strains the MIC50 of the tetracyclines varied from 64 micrograms/ml for oxytetracycline to 0.5 micrograms/ml for minocycline. Strikingly, minocycline showed no cross-resistance with oxytetracycline, tetracycline, chlortetracycline and doxycycline in P. multocida and in H. pleuropneumoniae. Moreover, in susceptible strains minocycline showed the highest in vitro activity followed by doxycycline. Low MIC50 values were observed for chloramphenicol, ampicillin, flumequine, ofloxacin and ciprofloxacin against P. multocida and H. pleuropneumoniae. B. bronchiseptica was moderately susceptible or resistant to these compounds. As expected tiamulin, lincomycin, tylosin and spiramycin were not active against H. pleuropneumoniae. Except for flumequine, the MIC50 values of nine antimicrobial agents were low for S. suis Type 2. Six strains of this species showed resistance to the macrolides and lincomycin.
... used in patients who cannot be treated with penicillin to treat certain types of food poisoning, and ... Ergomar, in Cafergot, Migergot), and methylergonovine (Methergine); and penicillin. Also tell your doctor or pharmacist if you ...
Walters, Edgar T
2014-08-01
Neuropathic pain after spinal cord injury (SCI) is common, often intractable, and can be severely debilitating. A number of mechanisms have been proposed for this pain, which are discussed briefly, along with methods for revealing SCI pain in animal models, such as the recently applied conditioned place preference test. During the last decade, studies of animal models have shown that both central neuroinflammation and behavioral hypersensitivity (indirect reflex measures of pain) persist chronically after SCI. Interventions that reduce neuroinflammation have been found to ameliorate pain-related behavior, such as treatment with agents that inhibit the activation states of microglia and/or astroglia (including IL-10, minocycline, etanercept, propentofylline, ibudilast, licofelone, SP600125, carbenoxolone). Reversal of pain-related behavior has also been shown with disruption by an inhibitor (CR8) and/or genetic deletion of cell cycle-related proteins, deletion of a truncated receptor (trkB.T1) for brain-derived neurotrophic factor (BDNF), or reduction by antisense knockdown or an inhibitor (AMG9810) of the activity of channels (TRPV1 or Nav1.8) important for electrical activity in primary nociceptors. Nociceptor activity is known to drive central neuroinflammation in peripheral injury models, and nociceptors appear to be an integral component of host defense. Thus, emerging results suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact via neuroinflammatory signaling with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation suggests new targets, and additional complications, for efforts to develop effective treatments for neuropathic SCI pain. Copyright © 2014 Elsevier Inc. All rights reserved.
Imipenem/cilastatin-induced acute eosinophilic pneumonia.
Foong, Kap Sum; Lee, Ashley; Pekez, Marijeta; Bin, Wei
2016-03-04
Drugs, toxins, and infections are known to cause acute eosinophilic pneumonia. Daptomycin and minocycline are the commonly reported antibiotics associated with acute eosinophilic pneumonia. In this study, we present a case of imipenem/cilastatin-induced acute eosinophilic pneumonia. The patient presented with fever, acute hypoxic respiratory distress, and diffuse ground-glass opacities on the chest CT a day after the initiation of imipenem/cilastatin. Patient also developed peripheral eosinophilia. A reinstitution of imipenem/cilastatin resulted in recurrence of the signs and symptoms. A bronchoscopy with bronchoalveolar lavage showed 780 nucleated cells/mm(3) with 15% eosinophil. The patient's clinical condition improved significantly after the discontinuation of imipenem/cilastatin therapy and the treatment with corticosteroid. 2016 BMJ Publishing Group Ltd.
Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu
2016-01-01
Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants. PMID:27821857
Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu
2016-11-08
Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.
NASA Astrophysics Data System (ADS)
Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu
2016-11-01
Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.
Sharma, Raman; Al Jayoussi, Ghaith; Tyrer, Hayley E.; Gamble, Joanne; Hayward, Laura; Priestley, Richard S.; Murphy, Emma A.; Davies, Jill; Waterhouse, David; Cook, Darren A. N.; Clare, Rachel H.; Cassidy, Andrew; Steven, Andrew; Johnston, Kelly L.; McCall, John; Ford, Louise; Hemingway, Janet; Ward, Stephen A.
2017-01-01
Elimination of filariasis requires a macrofilaricide treatment that can be delivered within a 7-day period. Here we have identified a synergy between the anthelmintic albendazole (ABZ) and drugs depleting the filarial endosymbiont Wolbachia, a proven macrofilaricide target, which reduces treatment from several weeks to 7 days in preclinical models. ABZ had negligible effects on Wolbachia but synergized with minocycline or rifampicin (RIF) to deplete symbionts, block embryogenesis, and stop microfilariae production. Greater than 99% Wolbachia depletion following 7-day combination of RIF+ABZ also led to accelerated macrofilaricidal activity. Thus, we provide preclinical proof-of-concept of treatment shortening using antibiotic+ABZ combinations to deliver anti-Wolbachia sterilizing and macrofilaricidal effects. Our data are of immediate public health importance as RIF+ABZ are registered drugs and thus immediately implementable to deliver a 1-wk macrofilaricide. They also suggest that novel, more potent anti-Wolbachia drugs under development may be capable of delivering further treatment shortening, to days rather than weeks, if combined with benzimidazoles. PMID:29078351
Hutchinson, Mark R.; Lewis, Susannah S.; Coats, Benjamen D.; Skyba, David A.; Crysdale, Nicole Y.; Berkelhammer, Debra L.; Brzeski, Anita; Northcutt, Alexis; Vietz, Christine M.; Judd, Charles M.; Maier, Steven F.; Watkins, Linda R.; Johnson, Kirk W.
2009-01-01
Morphine-induced glial proinflammatory responses have been documented to contribute to tolerance to opioid analgesia. Here, we examined whether drugs previously shown to suppress glial proinflammatory responses can alter other clinically relevant opioid effects; namely, withdrawal or acute analgesia. AV411 (ibudilast) and minocycline, drugs with distinct mechanisms of action that result in attenuation of glial proinflammatory responses, each reduced naloxone-precipitated withdrawal. Analysis of brain nuclei associated with opioid withdrawal revealed that morphine altered expression of glial activation markers, cytokines, chemokines, and a neurotrophic factor. AV411 attenuated many of these morphine-induced effects. AV411 also protected against spontaneous withdrawal-induced hyperactivity and weight loss recorded across a 12-day timecourse. Notably, in the spontaneous withdrawal study, AV411 treatment was delayed relative to the start of the morphine regimen so to also test whether AV411 could still be effective in the face of established morphine dependence, which it was. AV411 did not simply attenuate all opioid effects, as co-administering AV411 with morphine or oxycodone caused 3-to-5-fold increases in acute analgesic potency, as revealed by leftward shifts in the analgesic dose response curves. Timecourse analyses revealed that plasma morphine levels were not altered by AV411, suggestive that potentiated analgesia was not simply due to prolongation of morphine exposure or increased plasma concentrations. These data support and extend similar potentiation of acute opioid analgesia by minocycline, again providing converging lines of evidence of glial involvement. Hence, suppression of glial proinflammatory responses can significantly reduce opioid withdrawal, whilst improving analgesia. PMID:18938237
Kyaw, Bhone Myint; arora, Shuchi; Lim, Chu Sing
2012-01-01
Methicillin resistant Staphylococcus aureus (MRSA) infection is a global concern nowadays. Due to its multi-drug resistant nature, treatment with conventional antibiotics does not assure desired clinical outcomes. Therefore, there is a need to find new compounds and/or alternative methods to get arsenal against the pathogen. Combination therapies using conventional antibiotics and phytochemicals fulfill both requirements. In this study, the efficacy of different phytochemicals in combination with selected antibiotics was tested against 12 strains of S. aureus (ATCC MRSA 43300, ATCC methicillin sensitive S. aureus or MSSA 29213 and 10 MRSA clinical strains collected from National University Hospital, Singapore). Out of the six phytochemicals used, tannic acid was synergistic with fusidic acid, minocycline, cefotaxime and rifampicin against most of strains tested and additive with ofloxacin and vancomycin. Quercetin showed synergism with minocycline, fusidic acid and rifampicin against most of the strains. Gallic acid ethyl ester showed additivity against all strains in combination with all antibiotics under investigation except with vancomycin where it showed indifference effect. Eugenol, menthone and caffeic acid showed indifference results against all strains in combination with all antibiotics. Interestingly, no antagonism was observed within these interactions. Based on the fractional inhibitory concentration indices, synergistic pairs were further examined by time-kill assays to confirm the accuracy and killing rate of the combinations over time. The two methods concurred with each other with 92% accuracy and the combinatory pairs were effective throughout the 24 hours of assay. The study suggests a possible incorporation of effective phytochemicals in combination therapies for MRSA infections. PMID:24031910
Kassem, Abeer Ahmed; Ismail, Fatma Ahmed; Naggar, Vivian Fahim; Aboulmagd, Elsayed
2014-08-01
In situ gelling formulations allow easy application to the target area. Gelation is induced by physiological stimuli at the site of application where the formula attains semisolid properties and exerts sustained drug release. In situ gelling formulations containing either 3% meloxicam (Mx) or 2% minocycline HCl (MH) were prepared for local application into the periodontal pockets. Gel formulations were based on the thermosensitive Pluronic(®) (Pl) and the pH-sensitive Carbopol(®) (C) polymers. C gels were prepared in combination with HPMC (H) to decrease its acidity. The total percent drug released from Pl formulae was 21.72% after 1 week for Mx and 85% after 3 days for MH. Their release kinetics data indicated anomalous non-Fickian behavior that could be controlled by both diffusion and chain relaxation. Addition of MH to C/H gels (1:2.5) resulted in liquefaction, followed by drug precipitation. Regarding C/H gel containing Mx, it showed a prolonged release rate up to 7 days with an initial burst effect; the kinetics data revealed Fickian-diffusion mechanism. The in vitro antibacterial activity studies for MH gel in Pl revealed that the drug released exceeded the minimum inhibitory concentration (MIC) of MH against Staphylococcus aureus ATCC 6538; placebo gel showed no effect on the microorganism. Clinical evaluation of Pl gels containing either Mx or MH showed significant improvement in chronic periodontitis patients, manifested by decrease in pocket depth and gingival index and increase in bone density.
A REVIEW OF ANTI-INFLAMMATORY AGENTS FOR SYMPTOMS OF SCHIZOPHRENIA
Keller, William R.; Kum, Lionel M.; Wehring, Heidi J.; Koola, Maju Mathew; Buchanan, Robert W.; Kelly, Deanna L.
2013-01-01
Schizophrenia is a chronic debilitating mental disorder that affects about 1% of the U.S population. The pathophysiology and etiology remain unknown, thus new treatment targets have been challenging and few novel treatments with new mechanisms of action have come to market in the past few decades. Increasing attention has been paid to the role of inflammation in schizophrenia and new data suggests that decreasing inflammation and inflammatory biomarkers may play some role in schizophrenia treatment. This review summarizes the clinical trial literature regarding medications that possess anti-inflammatory properties that have been tested for schizophrenia symptoms and covers such medications as nonsteroidal anti-inflammatory agents, such as the cyclooxygenase-2 (COX-2) inhibitors and aspirin, omega-3 fatty acids, neurosteroids and minocycline. Overall, there is accumulating evidence, albeit mostly adjunctive treatments, that agents working on inflammatory pathways have some benefits in people with schizophrenia. In the next few years the field will begin to see data on many treatments with anti-inflammatory properties that are currently under study. Hopefully advancements in understanding inflammation and effective treatments having anti-inflammatory properties may help revolutionize our understanding and provide new targets for prevention and treatment in schizophrenia. PMID:23151612
A review of anti-inflammatory agents for symptoms of schizophrenia.
Keller, William R; Kum, Lionel M; Wehring, Heidi J; Koola, Maju Mathew; Buchanan, Robert W; Kelly, Deanna L
2013-04-01
Schizophrenia is a chronic debilitating mental disorder that affects about 1% of the US population. The pathophysiology and etiology remain unknown, thus new treatment targets have been challenging and few novel treatments with new mechanisms of action have come to market in the past few decades. Increasing attention has been paid to the role of inflammation in schizophrenia and new data suggests that decreasing inflammation and inflammatory biomarkers may play some role in schizophrenia treatment. This review summarizes the clinical trial literature regarding medications that possess anti-inflammatory properties that have been tested for schizophrenia symptoms and covers such medications as non-steroidal anti-inflammatory agents, such as the cyclo-oxygenase-2 (COX-2) inhibitors and aspirin, omega-3 fatty acids, neurosteroids and minocycline. Overall, there is accumulating evidence, albeit mostly adjunctive treatments, that agents working on inflammatory pathways have some benefits in people with schizophrenia. In the next few years the field will begin to see data on many treatments with anti-inflammatory properties that are currently under study. Hopefully advancements in understanding inflammation and effective treatments having anti-inflammatory properties may help revolutionize our understanding and provide new targets for prevention and treatment in schizophrenia.
[Black bone disease of the skull and facial bones].
Laure, B; Petraud, A; Sury, F; Bayol, J-C; Marquet-Van Der Mee, N; de Pinieux, G; Goga, D
2009-11-01
We report the case of a patient with a craniofacial black bone disease. This was discovered accidentally during a coronal approach. A 38-year-old patient was referred to our unit for facial palsy having appeared 10 years before. Rehabilitation of the facial palsy was performed with a lengthening temporal myoplasty and lengthening of the upper eyelid elevator. An unusual black color of the skull was observed at incision of the coronal approach. Subperiostal dissection of skull and malars confirmed the presence of a black bone disease. A postoperative history revealed minocycline intake (200mg per day) during 3 years. This craniofacial black bone disease was caused by minocycline intake. The originality of this case is to see directly the entire craniofacial skeleton black. This abnormal pigmentation may affect various organs or tissues. Bone pigmentation is irreversible unlike that of the mouth mucosa or of the skin. This abnormal pigmentation is usually discovered accidentally.
Minocycline encapsulated chitosan nanoparticles for central antinociceptive activity.
Nagpal, Kalpana; Singh, S K; Mishra, D N
2015-01-01
The purpose of the study is to explore the central anti-nociceptive activity of brain targeted nanoparticles (NP) of minocycline hydrochloride (MH). The NP were formulated using the modified ionotropic gelation method (MHNP) and were coated with Tween 80 (T80) to target them to brain (cMHNP). The formulated nanoparticles have already been characterized for particle size, zeta potential, drug entrapment efficiency and in vitro drug release. The nanoparticles were then evaluated for pharmacodynamic activity using thermal methods. The pure drug and the formulation, MHNP were not able to show a statistically significant central analgesic activity. cMHNP on the other hand evidenced a significant central analgesic activity. Animal models evidenced that brain targeted nanoparticles may be utilized for effective delivery of central anti-nociceptive effect of MH. Further clinical studies are required to explore the activity for mankind. Copyright © 2014 Elsevier B.V. All rights reserved.
Batsa, Linda; Ayisi-Boateng, Nana Kwame; Osei-Mensah, Jubin; Mubarik, Yusif; Konadu, Peter; Ricchiuto, Arcangelo; Fimmers, Rolf; Arriens, Sandra; Dubben, Bettina; Ford, Louise; Taylor, Mark; Hoerauf, Achim
2017-01-01
The search for new macrofilaricidal drugs against onchocerciasis that can be administered in shorter regimens than required for doxycycline (DOX, 200mg/d given for 4–6 weeks), identified minocycline (MIN) with superior efficacy to DOX. Further reduction in the treatment regimen may be achieved with co-administration with standard anti-filarial drugs. Therefore a randomized, open-label, pilot trial was carried out in an area in Ghana endemic for onchocerciasis, comprising 5 different regimens: the standard regimen DOX 200mg/d for 4 weeks (DOX 4w, N = 33), the experimental regimens MIN 200mg/d for 3 weeks (MIN 3w; N = 30), DOX 200mg/d for 3 weeks plus albendazole (ALB) 800mg/d for 3 days (DOX 3w + ALB 3d, N = 32), DOX 200mg/d for 3 weeks (DOX 3w, N = 31) and ALB 800mg for 3 days (ALB 3d, N = 30). Out of 158 randomized participants, 116 (74.4%) were present for the follow-up at 6 months of whom 99 participants (63.5%) followed the treatment per protocol and underwent surgery. Histological analysis of the adult worms in the extirpated nodules revealed absence of Wolbachia in 98.8% (DOX 4w), 81.4% (DOX 3w + ALB 3d), 72.7% (MIN 3w), 64.1% (DOX 3w) and 35.2% (ALB 3d) of the female worms. All 4 treatment regimens showed superiority to ALB 3d (p < 0.001, p < 0.001, p = 0.002, p = 0.008, respectively), which was confirmed by real-time PCR. Additionally, DOX 4w showed superiority to all other treatment arms. Furthermore DOX 4w and DOX 3w + ALB 3d showed a higher amount of female worms with degenerated embryogenesis compared to ALB 3d (p = 0.028, p = 0.042, respectively). These results confirm earlier studies that DOX 4w is sufficient for Wolbachia depletion and the desired parasitological effects. The data further suggest that there is an additive effect of ALB (3 days) on top of that of DOX alone, and that MIN shows a trend for stronger potency than DOX. These latter two results are preliminary and need confirmation in a fully randomized controlled phase 2 trial. Trial Registration: ClinicalTrials.gov #06010453 PMID:28056021
Openshaw, R L; Thomson, D M; Penninger, J M; Pratt, J A; Morris, B J
2017-01-01
Members of the c-Jun N-terminal kinase (JNK) family of mitogen-activated protein (MAP) kinases, and the upstream kinase MKK7, have all been strongly linked with synaptic plasticity and with the development of the neocortex. However, the impact of disruption of this pathway on cognitive function is unclear. In the current study, we test the hypothesis that reduced MKK7 expression is sufficient to cause cognitive impairment. Attentional function in mice haploinsufficient for Map2k7 (Map2k7 +/- mice) was investigated using the five-choice serial reaction time task (5-CSRTT). Once stable performance had been achieved, Map2k7 +/- mice showed a distinctive attentional deficit, in the form of an increased number of missed responses, accompanied by a more pronounced decrement in performance over time and elevated intra-individual reaction time variability. When performance was reassessed after administration of minocycline-a tetracycline antibiotic currently showing promise for the improvement of attentional deficits in patients with schizophrenia-signs of improvement in attentional performance were detected. Overall, Map2k7 haploinsufficiency causes a distinctive pattern of cognitive impairment strongly suggestive of an inability to sustain attention, in accordance with those seen in psychiatric patients carrying out similar tasks. This may be important for understanding the mechanisms of cognitive dysfunction in clinical populations and highlights the possibility of treating some of these deficits with minocycline.
2017-08-07
Anxiety Disorder; Depression; Recurrent Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer
Differential Top10 promoter regulation by six tetracycline analogues in plant cells
NASA Technical Reports Server (NTRS)
Love, John; Allen, George C.; Gatz, Christiane; Thompson, William F.; Brown, C. S. (Principal Investigator)
2002-01-01
The effects of five tetracycline analogues, anhydrotetracycline, doxycycline, minocycline, oxytetracycline, and tetracycline, on Top10 promoter activity in NT1 tobacco tissue culture cells have been analysed. The concentration that repressed Top10 promoter activity, the level of transgene repression and the kinetics of transgene de-repression were determined for each analogue, and could not be predicted from in vitro binding affinity to the tetracycline repressor or from comparison with animal cells. Doxycycline had the most potent effect on the Top10 promoter and completely inhibited transgene expression at 4 nmol l(-1). Tetracycline was the most versatile of the analogues tested; tetracycline inhibited the Top10 promoter at 10 nmol l(-1) and was easily washed out to restore Top10-driven expression in 12-24 h. A study was also made of the suitability for plant research of a novel tetracycline analogue, GR33076X. In animal cells, GR33076X de-repressed Top10 promoter activity in the presence of inhibitory concentrations of anhydrotetracycline. In NT1, it is shown that GR 33076X can antagonize repression of the Top10 promoter in the presence of tetracycline, but not of anhydrotetracycline or of doxycycline. Different tetracycline analogues can therefore be used to regulate the Top10 promoter in plant cells and this property may be exploited in planning an optimum course of transgene regulation.
Differential Top10 promoter regulation by six tetracycline analogues in plant cells.
Love, John; Allen, George C; Gatz, Christiane; Thompson, William F
2002-09-01
The effects of five tetracycline analogues, anhydrotetracycline, doxycycline, minocycline, oxytetracycline, and tetracycline, on Top10 promoter activity in NT1 tobacco tissue culture cells have been analysed. The concentration that repressed Top10 promoter activity, the level of transgene repression and the kinetics of transgene de-repression were determined for each analogue, and could not be predicted from in vitro binding affinity to the tetracycline repressor or from comparison with animal cells. Doxycycline had the most potent effect on the Top10 promoter and completely inhibited transgene expression at 4 nmol l(-1). Tetracycline was the most versatile of the analogues tested; tetracycline inhibited the Top10 promoter at 10 nmol l(-1) and was easily washed out to restore Top10-driven expression in 12-24 h. A study was also made of the suitability for plant research of a novel tetracycline analogue, GR33076X. In animal cells, GR33076X de-repressed Top10 promoter activity in the presence of inhibitory concentrations of anhydrotetracycline. In NT1, it is shown that GR 33076X can antagonize repression of the Top10 promoter in the presence of tetracycline, but not of anhydrotetracycline or of doxycycline. Different tetracycline analogues can therefore be used to regulate the Top10 promoter in plant cells and this property may be exploited in planning an optimum course of transgene regulation.
Chaftari, Anne-Marie; Zakhour, Ramia; Jordan, Mary; Al Hamal, Zanaib; Jiang, Ying; Yousif, Ammar; Garoge, Kumait; Mulanovich, Victor; Viola, George M.; Kanj, Soha; Pravinkumar, Egbert; Rosenblatt, Joel; Hachem, Ray
2016-01-01
In cancer patients with long-term central venous catheters (CVC), removal and reinsertion of a new CVC at a different site might be difficult because of the unavailability of accessible vascular sites. In vitro and animal studies showed that a minocycline-EDTA-ethanol (M-EDTA-EtOH) lock solution may eradicate microbial organisms in biofilms, hence enabling the treatment of central line-associated bloodstream infections (CLABSI) while retaining the catheter in situ. Between April 2013 and July 2014, we enrolled 30 patients with CLABSI in a prospective study and compared them to a historical group of 60 patients with CLABSI who had their CVC removed and a new CVC inserted. Each catheter lumen was locked with an M-EDTA-EtOH solution for 2 h administered once daily, for a total of 7 doses. Patients who received locks had clinical characteristics that were comparable to those of the control group. The times to fever resolution and microbiological eradication were similar in the two groups. Patients with the lock intervention received a shorter duration of systemic antibiotic therapy than that of the control patients (median, 11 days versus 16 days, respectively; P < 0.0001), and they were able to retain their CVCs for a median of 74 days after the onset of bacteremia. The M-EDTA-EtOH lock was associated with a significantly decreased rate of mechanical and infectious complications compared to that of the CVC removal/reinsertion group, who received a longer duration of systemic antimicrobial therapy. (This study has been registered at ClinicalTrials.gov under registration no. NCT01539343.) PMID:27001822
De Zan, M M; Gil García, M D; Culzoni, M J; Siano, R G; Goicoechea, H C; Martínez Galera, M
2008-02-01
The effect of piecewise direct standardization (PDS) and baseline correction approaches was evaluated in the performance of multivariate curve resolution (MCR-ALS) algorithm for the resolution of three-way data sets from liquid chromatography with diode-array detection (LC-DAD). First, eight tetracyclines (tetracycline, oxytetracycline, chlorotetracycline, demeclocycline, methacycline, doxycycline, meclocycline and minocycline) were isolated from 250 mL effluent wastewater samples by solid-phase extraction (SPE) with Oasis MAX 500 mg/6 mL cartridges and then separated on an Aquasil C18 150 mm x 4.6mm (5 microm particle size) column by LC and detected by DAD. Previous experiments, carried out with Milli-Q water samples, showed a considerable loss of the most polar analytes (minocycline, oxitetracycline and tetracycline) due to breakthrough. PDS was applied to overcome this important drawback. Conversion of chromatograms obtained from standards prepared in solvent was performed obtaining a high correlation with those corresponding to the real situation (r2 = 0.98). Although the enrichment and clean-up steps were carefully optimized, the sample matrix caused a large baseline drift, and also additive interferences were present at the retention times of the analytes. These problems were solved with the baseline correction method proposed by Eilers. MCR-ALS was applied to the corrected and uncorrected three-way data sets to obtain spectral and chromatographic profiles of each tetracycline, as well as those corresponding to the co-eluting interferences. The complexity of the calibration model built from uncorrected data sets was higher, as expected, and the quality of the spectral and chromatographic profiles was worse.
The Promise of Neuroprotective Agents in Parkinson’s Disease
Seidl, Stacey E.; Potashkin, Judith A.
2011-01-01
Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available. PMID:22125548
Cunha, B A
1997-04-01
Because of its intracellular mechanism of activity, excellent safety profile, and low cost, doxycycline is one of the most extensively used antibiotics in the world, and its use will increase as new applications are found. One of its most important uses is in treatment of bacterial community-acquired pneumonias, but it is also useful against atypical pneumonias and sexually transmitted disease. As zoonotic infections continue to increase around the world, doxycycline will occupy an increasingly prominent place. Minocycline shares doxycycline's favorable attributes and also has tissue-penetration characteristics that are important when therapeutic alternatives are few, as in MRSA. TMP-SMX is widely used to treat urinary and respiratory tract infections and for prophylaxis and treatment of P carinii infection. As the AIDS epidemic continues, its use will continue to grow, because it is also effective against other pathogens associated with AIDS. TMP-SMX is relatively underused for treating gram-negative bacteremias, especially nosocomial infections caused by nonaeruginosa pseudomonads. Metronidazole is a cost-effective antianaerobic component in treatment of intra-abdominal and pelvic infections, especially when it is combined with a once-a-day antibiotic.
Extended spectrum of antibiotic susceptibility for tuberculosis, Djibouti.
Bouzid, Fériel; Astier, Hélène; Osman, Djaltou Aboubaker; Javelle, Emilie; Hassan, Mohamed Osman; Simon, Fabrice; Garnotel, Eric; Drancourt, Michel
2018-02-01
In the Horn of Africa, there is a high prevalence of tuberculosis that is reported to be partly driven by multidrug-resistant (MDR) Mycobacterium tuberculosis strictu sensu strains. We conducted a prospective study to investigate M. tuberculosis complex species causing tuberculosis in Djibouti, and their in vitro susceptibility to standard anti-tuberculous antibiotics in addition to clofazimine, minocycline, chloramphenicol and sulfadiazine. Among the 118 mycobacteria isolates from 118 successive patients with suspected pulmonary tuberculosis, 111 strains of M. tuberculosis, five Mycobacterium canettii, one 'Mycobacterium simulans' and one Mycobacterium kansasii were identified. Drug-susceptibility tests performed on the first 78 isolates yielded nine MDR M. tuberculosis isolates. All isolates were fully susceptible to clofazimine, minocycline and chloramphenicol, and 75 of 78 isolates were susceptible to sulfadiazine. In the Horn of Africa, patients with confirmed pulmonary tuberculosis caused by an in vitro susceptible strain may benefit from anti-leprosy drugs, sulfamides and phenicol antibiotics. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Design of minocycline-containing starch nanocapsules for topical delivery.
Marto, J; Gouveia, L F; Gonçalves, L M; Ribeiro, H M; Almeida, A J
2018-06-11
Pharmaceutical research has been focused on developing improved delivery systems while exploring new ways of using approved excipients. The present work investigated the potential of starch nanocapsules (StNC) as a topical delivery platform for hydrophilic antimicrobial drugs using minocycline hydrochloride (MH) as a model drug. Thus, a quality by design approach was used to assess the role of different factors that affect the main pharmaceutical properties of StNC prepared using an emulsification-solvent evaporation method. Full characterization was performed in terms of particle size, encapsulation efficiency, morphology and physical stability at 5 ± 3°C. Results show the surfactant and lipid contents play a major role in StNC particle size distribution. The MH loading only promoted minor changes upon StNC properties. Formulations were stable without variations on physicochemical properties. All tested formulations presented a zeta potential of +33.6±6.7 mV, indicating a good physical stability and evidencing that StNC are suitable nanocarriers for topical use.
Antimicrobial-impregnated catheters for the prevention of catheter-related bloodstream infections.
Lorente, Leonardo
2016-05-04
Central venous catheters are commonly used in critically ill patients. Such catheterization may entail mechanical and infectious complications. The interest in catheter-related infection lies in the morbidity, mortality and costs that it involved. Numerous contributions have been made in the prevention of catheter-related infection and the current review focuses on the possible current role of antimicrobial impregnated catheters to reduce catheter-related bloodstream infections (CRBSI). There is evidence that the use of chlorhexidine-silver sulfadiazine (CHSS), rifampicin-minocycline, or rifampicin-miconazol impregnated catheters reduce the incidence of CRBSI and costs. In addition, there are some clinical circumstances associated with higher risk of CRBSI, such as the venous catheter access and the presence of tracheostomy. Current guidelines for the prevention of CRBSI recommended the use of a CHSS or rifampicin-minocycline impregnated catheter in patients whose catheter is expected to remain in place > 5 d and if the CRBSI rate has not decreased after implementation of a comprehensive strategy to reduce it.
Antimicrobial-impregnated catheters for the prevention of catheter-related bloodstream infections
Lorente, Leonardo
2016-01-01
Central venous catheters are commonly used in critically ill patients. Such catheterization may entail mechanical and infectious complications. The interest in catheter-related infection lies in the morbidity, mortality and costs that it involved. Numerous contributions have been made in the prevention of catheter-related infection and the current review focuses on the possible current role of antimicrobial impregnated catheters to reduce catheter-related bloodstream infections (CRBSI). There is evidence that the use of chlorhexidine-silver sulfadiazine (CHSS), rifampicin-minocycline, or rifampicin-miconazol impregnated catheters reduce the incidence of CRBSI and costs. In addition, there are some clinical circumstances associated with higher risk of CRBSI, such as the venous catheter access and the presence of tracheostomy. Current guidelines for the prevention of CRBSI recommended the use of a CHSS or rifampicin-minocycline impregnated catheter in patients whose catheter is expected to remain in place > 5 d and if the CRBSI rate has not decreased after implementation of a comprehensive strategy to reduce it. PMID:27152256
Fujita, S; Tonohata, A
1990-05-01
The influence of Mueller-Hinton (MH) broth (from BBL Microbiology Systems, and Difco Laboratories) of minimum inhibitory concentrations (MIC) of cefuzoname (CZON), flomoxef (FMOX), imipenem (IPM), and minocycline (MINO) for 100 strains of Staphylococcus aureus was investigated. Antibacterial activity of MINO was stronger than any other antibiotics. MICs of CZON for 16 strains (14 of 50 methicillin-resistant S. aureus (MRSA), 2 of 50 methicillin-sensitive S. aureus) were greater than or equal to 4-fold greater when tested in BBL MH broth than when tested in Difco MH broth, thus, different media altered categories of some strains (8 of 50 MRSA) from susceptible to resistant. MICs of FMOX in the BBL MH broth for 12 of 50 MRSA strains rose greater than or equal to 4-fold compared to the Difco MH broth. On the other hand, MICs of IPM and MINO were affected very little by the different brand of MH broth used.
Armstrong, Nicholas; Richez, Magali; Raoult, Didier; Chabriere, Eric
2017-08-15
A fast UHPLC-UV method was developed for the simultaneous analysis of Hydroxychloroquine, Minocycline and Doxycycline drugs from 100μL of human serum samples. Serum samples were extracted by liquid-liquid extraction and injected into a phenyl hexyl reverse phase column. Compounds were separated using a mobile phase linear gradient and monitored by UV detection at 343nm. Chloroquine and Oxytetracycline were used as internal standards. Lower and upper limits of quantifications, as well as the other levels of calibration, were validated with acceptable accuracy (<15% deviation) and precision (<15% coefficient of variation) according to the European Medicines Agency guidelines. This new method enables cost and time reduction and was considered suitable for the clinical laboratory. It is the first published assay for the therapeutic drug monitoring of patients diagnosed with Q fever or Whipple's disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Griffin, Michael O.; Ceballos, Guillermo; Villarreal, Francisco
2010-01-01
Tetracyclines were developed as a result of the screening of soil samples for antibiotics. The firstt of these compounds, chlortetracycline, was introduced in 1947. Tetracyclines were found to be highly effective against various pathogens including rickettsiae, as well as both gram-positive and gram-negative bacteria, thus becoming the first class of broad spectrum antibiotics. Many other interesting properties, unrelated to their antibiotic activity, have been identified for tetracyclines which have led to widely divergent experimental and clinical uses. For example, tetracyclines are also an effective anti-malarial drug. Minocycline, which can readily cross cell membranes, is known to be a potent anti-apoptotic agent. Another tetracycline, doxycycline is known to exert anti-protease activities. Doxycycline can inhibit matrix metalloproteinases which contribute to tissue destruction activities in diseases such as periodontitis. A large body of literature has provided additional evidence for the “beneficial” actions of tetracyclines, including their ability to act as reactive oxygen species scavengers and anti-inflammatory agents. This review provides a summary of tetracycline’s multiple mechanisms of action as a means to understand their beneficial effects. PMID:20951211
Susceptibility of Acinetobacter Strains Isolated from Deployed U.S. Military Personnel▿
Hawley, Joshua S.; Murray, Clinton K.; Griffith, Matthew E.; McElmeel, M. Leticia; Fulcher, Letitia C.; Hospenthal, Duane R.; Jorgensen, James H.
2007-01-01
The susceptibilities of 142 Acinetobacter baumannii-calcoaceticus complex isolates (95 from wounded U.S. soldiers deployed overseas) to 13 antimicrobial agents were determined by broth microdilution. The most active antimicrobial agents (≥95% of isolates susceptible) were colistin, polymyxin B, and minocycline. PMID:17043112
Scheetz, Marc H.; Qi, Chao; Warren, John R.; Postelnick, Michael J.; Zembower, Teresa; Obias, Arlene; Noskin, Gary A.
2007-01-01
The activities of tigecycline alone and in combination with other antimicrobials are not well defined for carbapenem-intermediate or -resistant Acinetobacter baumannii (CIRA). Pharmacodynamic activity is even less well defined when clinically achievable serum concentrations are considered. Antimicrobial susceptibility testing of clinical CIRA isolates from 2001 to 2005 was performed by broth or agar dilution, as appropriate. Tigecycline concentrations were serially increased in time-kill studies with a representative of the most prevalent carbapenem-resistant clone (strain AA557; imipenem MIC, 64 mg/liter). The in vitro susceptibility of the strain was tested by time-kill studies in duplicate against the average free serum steady-state concentrations of tigecycline alone and in combination with various antimicrobials. Ninety-three CIRA isolates were tested and were found to have the following antimicrobial susceptibility profiles: tigecycline, MIC50 of 1 mg/liter and MIC90 of 2 mg/liter; minocycline, MIC50 of 0.5 mg/liter and MIC90 of 8 mg/liter; doxycycline, MIC50 of 2 mg/liter and MIC90 of ≥32 mg/liter; ampicillin-sulbactam, MIC50 of 48 mg/liter and MIC90 of 96 mg/liter; ciprofloxacin, MIC50 of ≥16 mg/liter and MIC90 of ≥16 mg/liter; rifampin, MIC50 of 4 mg/liter and MIC90 of 8 mg/liter; polymyxin B, MIC50 of 1 mg/liter and MIC90 of 1 mg/liter; amikacin, MIC50 of 32 mg/liter and MIC90 of ≥32 mg/liter; meropenem, MIC50 of 16 mg/liter and MIC90 of ≥128 mg/liter; and imipenem, MIC50 of 4 mg/liter and MIC90 of 64 mg/liter. Among the tetracyclines, the isolates were more susceptible to tigecycline than minocycline and doxycycline, according to FDA breakpoints (95%, 88%, and 71% of the isolates were susceptible to tigecycline, minocycline, and doxycycline, respectively). Concentration escalation studies with tigecycline revealed a maximal killing effect near the MIC, with no additional extent or rate of killing at concentrations 2× to 4× the MIC for tigecycline. Time-kill studies demonstrated indifference for tigecycline in combination with the antimicrobials tested. Polymyxin B, minocycline, and tigecycline are the most active antimicrobials in vitro against CIRA. Concentration escalation studies demonstrate that tigecycline may need to approach concentrations higher than those currently achieved in the bloodstream to adequately treat CIRA bloodstream infections. Future studies should evaluate these findings in vivo. PMID:17307973
Wakabayashi, Hiroyuki; Yamauchi, Koji; Kobayashi, Tetsuo; Yaeshima, Tomoko; Iwatsuki, Keiji; Yoshie, Hiromasa
2009-01-01
Lactoferrin (LF) is an iron-binding antimicrobial protein present in saliva and gingival crevicular fluids, and it is possibly associated with host defense against oral pathogens, including periodontopathic bacteria. In the present study, we evaluated the in vitro effects of LF-related agents on the growth and biofilm formation of two periodontopathic bacteria, Porphyromonas gingivalis and Prevotella intermedia, which reside as biofilms in the subgingival plaque. The planktonic growth of P. gingivalis and P. intermedia was suppressed for up to 5 h by incubation with ≥130 μg/ml of human LF (hLF), iron-free and iron-saturated bovine LF (apo-bLF and holo-bLF, respectively), and ≥6 μg/ml of bLF-derived antimicrobial peptide lactoferricin B (LFcin B); but those effects were weak after 8 h. The biofilm formation of P. gingivalis and P. intermedia over 24 h was effectively inhibited by lower concentrations (≥8 μg/ml) of various iron-bound forms (the apo, native, and holo forms) of bLF and hLF but not LFcin B. A preformed biofilm of P. gingivalis and P. intermedia was also reduced by incubation with various iron-bound bLFs, hLF, and LFcin B for 5 h. In an examination of the effectiveness of native bLF when it was used in combination with four antibiotics, it was found that treatment with ciprofloxacin, clarithromycin, and minocycline in combination with native bLF for 24 h reduced the amount of a preformed biofilm of P. gingivalis compared with the level of reduction achieved with each agent alone. These results demonstrate the antibiofilm activity of LF with lower iron dependency against P. gingivalis and P. intermedia and the potential usefulness of LF for the prevention and treatment of periodontal diseases and as adjunct therapy for periodontal diseases. PMID:19451301
Cetuximab-induced skin exanthema: Improvement by a reactive skin therapy.
Schimanski, Carl C; Moehler, Markus; Zimmermann, Tim; Wörns, Markus A; Steinbach, Alma; Baum, Michael; Galle, Peter R
2010-01-01
More than 80% of patients treated with cetuximab develop an acneiform follicular skin exanthema. Grade 3 exanthema develops in 9-19% of these cases, bearing the risk of cetuximab dose-reduction or cessation. We retrospectively analysed a cohort of 20 patients treated with cetuximab and an in-house reactive skin protocol upon development of an exanthema. The reactive skin protocol was built up as follows: grade 1 exanthema: topical cleansing syndet (Dermowas®) + topical metronidazole cream (Rosiced®); grade 2 exanthema: grade 1 treatment + oral minocycline 50 mg twice per day; grade 3 exanthema: grade 2 treatment + topical corticoid (Dermatop®) + topical nadifloxacin (Nadixa®). As soon as a grade 3 had improved to a grade less than or equal to 2, the application of the topical corticoid was ceased. During the initial 12 weeks of therapy with cetuximab, all patients developed a skin exanthema (20/20; 100%). Of these, 2 patients (10%) developed a grade 3 exanthema, 10 patients (50%) experienced a grade 2 and 8 patients (40%) a grade 1 exanthema. Time to onset ranged from 1 to 4 weeks, with the average time to onset being 2.8 weeks. Applying the reactive skin protocol after the first occurrence of an exanthema, the grade of exanthema was downgraded as follows: no patients (0%) had a persisting grade 3 exanthema, while only 2 patients (10%) experienced a persisting grade 2 exanthema and 8 patients (40%) a persisting grade 1 exanthema. In the majority of cases (10 patients; 50%), the reactive skin protocol completely controlled the exanthema (grade 0). The average time to exanthema reduction by one grade was 9.5 days. No dose reductions of cetuximab were necessary. Cetuximab-induced skin exanthema is effectively managed by applying our reactive protocol. The simple protocol is based on a topical cleansing syndet and topical metronidazole and is to be intensified by the addition of oral minocycline, a topical corticoid and topical nadifloxacine, in cases of high-grade exanthema. More comprehensive results are expected from a prospective study with higher patient numbers that is currently being planned.
Ruangcharoen, Sopita; Suwannarong, Waraporn; Lachica, Marie Rossini Carmela T; Bolscher, Jan G M; Nazmi, Kamran; Khunkitti, Watcharee; Taweechaisupapong, Suwimol
2017-08-19
Lactoferrin chimera (LFchimera), a heterodimeric peptide containing lactoferrampin (LFampin265-284) and a part of lactoferricin (LFcin17-30), possesses a broad spectrum of antimicrobial activity. However, there is no report on the inhibitory effects of LFchimera against multispecies oral biofilms. This study aimed to determine the effects of LFchimera in comparison to chlorhexidine digluconate (CHX) and minocycline hydrochloride (MH), on in vitro multispecies biofilms derived from subgingival plaque of periodontitis patients harboring Aggregatibacter actinomycetemcomitans. First the effects of LFchimera against planktonic and an 1-day old biofilm of the periodontopathic bacteria, A. actinomycetemcomitans ATCC 43718 were established. Then, the effects on biofilm formation and bacterial viability in the multispecies biofilm were determined by crystal violet staining and LIVE/DEAD BacLight Bacterial Viability kit, respectively. The results revealed that a significant reduction (P < 0.05) in biofilm formation occurred after 15 min exposure to 20 µM of LFchimera or CHX compared to control. In contrast, MH at concentration up to 100 µM did not inhibit biofilm formation. The ratio of live/dead bacteria in biofilm was also significantly lower after 15 min exposure to 20 µM of LFchimera compared to control and 20-50 µM of CHX and MH. Altogether, the results obtained indicate that LFchimera is able to inhibit in vitro subgingival biofilm formation and reduce viability of multispecies bacteria in biofilm better than CHX and MH.
Li, Xue; Lu, Yun; Ren, Zhitao; Zhao, Longyin; Hu, Xinxin; Jiang, Jiandong; You, Xuefu
2013-01-01
Background Staphylococcus aureus can cause severe infections, including bacteremia and sepsis. The spread of methicillin-resistant Staphylococcus aureus (MRSA) highlights the need for novel treatment options. Sodium new houttuyfonate (SNH) is an analogue of houttuynin, the main antibacterial ingredient of Houttuynia cordata Thunb. The aim of this study was to evaluate in vitro activity of SNH and its potential for synergy with antibiotics against hospital-associated MRSA. Methodology A total of 103 MRSA clinical isolates recovered in two hospitals in Beijing were evaluated for susceptibility to SNH, oxacillin, cephalothin, meropenem, vancomycin, levofloxacin, minocycline, netilmicin, and trimethoprim/sulfamethoxazole by broth microdilution. Ten isolates were evaluated for potential for synergy between SNH and the antibiotics above by checkerboard assay. Time-kill analysis was performed in three isolates to characterize the kill kinetics of SNH alone and in combination with the antibiotics that engendered synergy in checkerboard assays. Besides, two reference strains were included in all assays. Principal Findings SNH inhibited all test strains with minimum inhibitory concentrations (MICs) ranging from 16 to 64 µg/mL in susceptibility tests, and displayed inhibition to bacterial growth in concentration-dependent manner in time-kill analysis. In synergy studies, the combinations of SNH-oxacillin, SNH-cephalothin, SNH-meropenem and SNH-netilmicin showed synergistic effects against 12 MRSA strains with median fractional inhibitory concentration (FIC) indices of 0.38, 0.38, 0.25 and 0.38 in checkerboard assays. In time-kill analysis, SNH at 1/2 MIC in combination with oxacillin at 1/128 to 1/64 MIC or netilmicin at 1/8 to 1/2 MIC decreased the viable colonies by ≥2log10 CFU/mL. Conclusions/Significance SNH demonstrated in vitro antibacterial activity against 103 hospital-associated MRSA isolates. Combinations of sub-MIC levels of SNH and oxacillin or netilmicin significantly improved the in vitro antibacterial activity against MRSA compared with either drug alone. The SNH-based combinations showed promise in combating MRSA. PMID:23844154
Trairatvorakul, Chutima; Detsomboonrat, Palinee
2012-05-01
To evaluate the clinical and radiographic success rates of three mixed antibiotics in the non-instrumentation endodontic treatment of primary mandibular molars at 24-27 months postoperatively. Eighty cariously involved lower primary molars from 58 children (ages 3-8 years) received a 3Mix medicament by non-instrumentation endodontic treatment and were then sealed with glass-ionomer cement and composite resin before permanent restoration with stainless steel crowns. The patients received a clinical and radiographic assessment every 6 months over a 2-year follow-up period with an intra-examiner reliability of 0.83-1.00 (κ value). In 60 cases at 24- to 27-month follow-up, the success rates as determined by clinical and radiographic evaluation were 75% and 36.7%, respectively; however, the overall success rate of 3Mix non-instrumentation endodontic treatment was 36.7% with 15.8% of cases demonstrating a pulpal response of internal resorption. Non-instrumentation endodontic treatment using 3Mix-MP showed good clinical success but had a low success rate based on radiographic evaluation at 2-year follow-up. Hence, 3Mix antibiotic treatment cannot replace a conventional root canal treatment agent as a long-term therapy. © 2011 The Authors. International Journal of Paediatric Dentistry © 2011 BSPD, IAPD and Blackwell Publishing Ltd.
Operation Brain Trauma Therapy
2011-10-01
Nicotinamide Choline Atorvastatin FK 506 Minocycline Lithium Rolipram Aniracetam Pentostatin...possible effects on CBF and trophic factor production. They confer benefit in experimental TBI.24,25 Atorvastatin , simvastatin, and lovastatin all show...promise after TBI in rats. Impressive benefit was seen with atorvastatin therapy by Wang et al.24 where improved perfor- mance on rotarod and Morris
Ferreira Chacon, Julieta Maria; Hato de Almeida, Emília; de Lourdes Simões, Regina; Lazzarin C Ozório, Viviane; Alves, Benaia Cândida; Mello de Andréa, Maria Lydia; Santiago Biernat, Marcela; Biernat, João Carlos
2011-01-01
Contamination of central catheters is frequent, and biofilm perpetuates infections. Heparin does not protect against infections because it has no antibiotic action. Minocycline and edetic acid (M-EDTA), a potent calcium chelating agent that destroys bacterial and fungal cell membrane and disrupts biofilm, may be an alternative to allow the associated antibiotic to act locally at a high and safe concentration. Fifty children with cancer and a port-a-cath were followed up: 26 received heparin (group 1) and 24 M-EDTA (group 2). A total of 762 serial prospective blood cultures were obtained, 387 from group 1 and 375 from group 2. In group 1 (heparin), 19 blood cultures were positive, and infection incidence was 73.1% (19/26 ports). In group 2 (M-EDTA), 5 blood cultures were positive, and the incidence rate was 20.8% (5/24 ports). M-EDTA, compared with heparin, prevents and treats catheter infections, and is a promising alternative to decrease sepsis during chemotherapy. Copyright © 2011 S. Karger AG, Basel.
Lin, M Y
1987-01-01
Twenty-nine antibiotics or drugs were incorporated individually into mycoplasma agar to evaluate their inhibitory activity against avian mycoplasmas: 100 recent Taiwan isolates of 7 serotypes and 10 standard strains of 7 serotypes were tested. All of the standard strains were very sensitive to erythromycin, chlorotetracycline, doxycycline, minocycline, and tetracycline, but the local isolates were highly resistant to these antibiotics. The drugs or antibiotics that possessed an MIC90 of 50 micrograms/ml or less against the local isolates were tiamulin (less than 0.4 micrograms/ml), lincospectin (2.7), josamycin (2.7), lincomycin (3.0), spectinomycin (4.8), tylosin (6.0), kanamycin (6.0), chloramphenicol (6.0), gentamicin (7.5), apramycin (24.5), doxycycline (27.4), minocycline (29.0), spiramycin (30.0), colistin (44.3), leucomycin (45.0), and streptomycin (50.0). The MIC90 of the other antibiotics or drugs was greater than 50 micrograms/ml. None of the isolates or strains were sensitive to nalidixic acid, ronidazole, penicillin, ampicillin, cephalexin, carbadox, or four sulfa drugs at a concentration about 5 times the therapeutic level.
Josset, Laurence; Zeng, Hui; Kelly, Sara M; Tumpey, Terrence M; Katze, Michael G
2014-02-04
A novel avian-origin H7N9 influenza A virus (IAV) emerged in China in 2013, causing mild to lethal human respiratory infections. H7N9 originated with multiple reassortment events between avian viruses and carries genetic markers of human adaptation. Determining whether H7N9 induces a host response closer to that with human or avian IAV is important in order to better characterize this emerging virus. Here we compared the human lung epithelial cell response to infection with A/Anhui/01/13 (H7N9) or highly pathogenic avian-origin H5N1, H7N7, or human seasonal H3N2 IAV. The transcriptomic response to H7N9 was highly specific to this strain but was more similar to the response to human H3N2 than to that to other avian IAVs. H7N9 and H3N2 both elicited responses related to eicosanoid signaling and chromatin modification, whereas H7N9 specifically induced genes regulating the cell cycle and transcription. Among avian IAVs, the response to H7N9 was closest to that elicited by H5N1 virus. Host responses common to H7N9 and the other avian viruses included the lack of induction of the antigen presentation pathway and reduced proinflammatory cytokine induction compared to that with H3N2. Repression of these responses could have an important impact on the immunogenicity and virulence of H7N9 in humans. Finally, using a genome-based drug repurposing approach, we identified several drugs predicted to regulate the host response to H7N9 that may act as potential antivirals, including several kinase inhibitors, as well as FDA-approved drugs, such as troglitazone and minocycline. Importantly, we validated that minocycline inhibited H7N9 replication in vitro, suggesting that our computational approach holds promise for identifying novel antivirals. Whether H7N9 will be the next pandemic influenza virus or will persist and sporadically infect humans from its avian reservoir, similar to H5N1, is not known yet. High-throughput profiling of the host response to infection allows rapid characterization of virus-host interactions and generates many hypotheses that will accelerate understanding and responsiveness to this potential threat. We show that the cellular response to H7N9 virus is closer to that induced by H3N2 than to that induced by H5N1, reflecting the potential of this new virus for adaptation to humans. Importantly, dissecting the host response to H7N9 may guide host-directed antiviral development.
Zhang, Juanjuan; Mense, Siegfried; Treede, Rolf-Detlef; Hoheisel, Ulrich
2017-10-01
In an animal model of nonspecific low back pain, recordings from dorsal horn neurons were made to investigate the influence of glial cells in the central sensitization process. To induce a latent sensitization of the neurons, nerve growth factor (NGF) was injected into the multifidus muscle; the manifest sensitization to a second NGF injection 5 days later was used as a read-out. The sensitization manifested in increased resting activity and in an increased proportion of neurons responding to stimulation of deep somatic tissues. To block microglial activation, minocycline was continuously administered intrathecally starting 1 day before or 2 days after the first NGF injection. The glia inhibitor fluorocitrate that also blocks astrocyte activation was administrated 2 days after the first injection. Minocycline applied before the first NGF injection reduced the manifest sensitization after the second NGF injection to control values. The proportion of neurons responsive to stimulation of deep tissues was reduced from 50% to 17.7% ( P < 0.01). No significant changes occurred when minocycline was applied after the first injection. In contrast, fluorocitrate administrated after the first NGF injection reduced significantly the proportion of neurons with deep input (15.8%, P < 0.01). A block of glia activation had no significant effect on the increased resting activity. The data suggest that blocking microglial activation prevented the NGF-induced latent spinal sensitization, whereas blocking astrocyte activation reversed it. The induction of spinal neuronal sensitization in this pain model appears to depend on microglia activation, whereas its maintenance is regulated by activated astrocytes. NEW & NOTEWORTHY Activated microglia and astrocytes mediate the latent sensitization induced by nerve growth factor in dorsal horn neurons that receive input from deep tissues of the low back. These processes may contribute to nonspecific low back pain. Copyright © 2017 the American Physiological Society.
In vitro activity of potential old and new drugs against multidrug-resistant gram-negatives.
Rizek, Camila; Ferraz, Juliana Rosa; van der Heijden, Inneke Marie; Giudice, Mauro; Mostachio, Anna Karina; Paez, Jorge; Carrilho, Claudia; Levin, Anna Sara; Costa, Silvia F
2015-02-01
The aim of this study was to evaluate the in vitro susceptibility of MDR gram-negatives bacteria to old drugs such as polymyxin B, minocycline and fosfomycin and new drugs such as tigecycline. One hundred and fifty-three isolates from 4 Brazilian hospitals were evaluated. Forty-seven Acinetobacter baumannii resistant to carbapenens harboring adeB, blaOxA23, blaOxA51, blaOxA143 and blaIMP genes, 48 Stenotrophomonas maltophilia including isolates resistant to levofloxacin and/or trimethoprim-sulfamethoxazole harboring sul-1, sul-2 and qnrMR and 8 Serratia marcescens and 50 Klebsiella pneumoniae resistant to carbapenens harboring blaKPC-2 were tested to determine their minimum inhibitory concentrations (MICs) by microdilution to the following drugs: minocycline, ampicillin-sulbactam, tigecycline, and polymyxin B and by agar dilution to fosfomycin according with breakpoint criteria of CLSI and EUCAST (fosfomycin). In addition, EUCAST fosfomycin breakpoint for Pseudomonas spp. was applied for Acinetobacter spp and S. maltophilia, the FDA criteria for tigecycline was used for Acinetobacter spp and S. maltophilia and the Pseudomonas spp polymyxin B CLSI criterion was used for S. maltophilia. Tigecycline showed the best in vitro activity against the MDR gram-negative evaluated, followed by polymyxin B and fosfomycin. Polymyxin B resistance among K. pneumoniae was detected in 6 isolates, using the breakpoint of MIC > 8 ug/mL. Two of these isolates were resistant to tigecycline. Minocycline was tested only against S. maltophilia and A. baumannii and showed excellent activity against both. Fosfomycin seems to not be an option to treat infections due to the A. baumannii and S. maltophilia isolates according with EUCAST breakpoint, on the other hand, showed excellent activity against S. marcescens and K. pneumoniae. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
2011-01-01
Introduction Acne vulgaris affects over 80% of teenagers, and persists beyond the age of 25 years in 3% of men and 12% of women. Typical lesions of acne include comedones, inflammatory papules, and pustules. Nodules and cysts occur in more severe acne and can cause scarring and psychological distress. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of topical and oral treatments in people with acne vulgaris? We searched: Medline, Embase, The Cochrane Library, and other important databases up to February 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 69 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: topical treatments (adapalene, azelaic acid, benzoyl peroxide, clindamycin, erythromycin [alone or plus zinc]; isotretinoin, tetracycline, tretinoin); and oral treatments (doxycycline, isotretinoin, lymecycline, minocycline, oxytetracycline, tetracycline). PMID:21477388
Ikpeze, Tochukwu C; Mesfin, Addisu
2017-06-01
Spinal cord injuries (SCIs) are sustained by more than 12 500 patients per year in the United States and more globally. The SCIs disproportionately affect the elderly, especially men. Approximately 60% of these injuries are sustained traumatically through falls, but nontraumatic causes including infections, tumors, and medication-related epidural bleeding have also been documented. Preexisting conditions such as ankylosing spondylitis and diffuse idiopathic skeletal hyperostosis can render the spine stiff and are risk factors as well as cervical spondylosis and ensuing cervical stenosis. Treatment options vary depending on the severity, location, and complexity of the injury. Surgical management has been growing in popularity over the years and remains an option as it helps reduce spinal cord compression and alleviate pain. Elevating mean arterial pressures to prevent spinal cord ischemia and avoiding the second hit of SCI have become more common as opposed to high dose steroids. Ongoing clinical trials with pharmacological agents such as minocycline and riluzole have shown early, promising results in their ability to reduce cellular damage and facilitate recovery. Though SCI can be life changing, the available treatment options have aimed to reduce pain and minimize complications and maintain quality of life alongside rehabilitative services.
Purdy, Sarah; de Berker, David
2011-01-05
Acne vulgaris affects over 80% of teenagers, and persists beyond the age of 25 years in 3% of men and 12% of women. Typical lesions of acne include comedones, inflammatory papules, and pustules. Nodules and cysts occur in more severe acne and can cause scarring and psychological distress. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of topical and oral treatments in people with acne vulgaris? We searched: Medline, Embase, The Cochrane Library, and other important databases up to February 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 69 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: topical treatments (adapalene, azelaic acid, benzoyl peroxide, clindamycin, erythromycin [alone or plus zinc]; isotretinoin, tetracycline, tretinoin); and oral treatments (doxycycline, isotretinoin, lymecycline, minocycline, oxytetracycline, tetracycline).
Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII).
Bialer, Meir; Johannessen, Svein I; Levy, René H; Perucca, Emilio; Tomson, Torbjörn; White, H Steve
2015-03-01
The Twelfth Eilat Conference on New Antiepileptic Drugs (AEDs) - EILAT XII, took place in Madrid, Spain from August 31st to September 3rd 2014. About 130 basic scientists, clinical pharmacologists and neurologists from 22 countries attended the conference, whose main themes included "Conquering pharmacoresistant epilepsy", "Innovative emergency treatments", "Progress report on second-generation treatment" and "New methods and formulations". Consistent with previous formats of this conference, a large part of the program was devoted to a review of AEDs in development, as well as updates on AEDs introduced since 2004. Like the EILAT X and EILAT XI reports, the current article focuses on the preclinical and clinical pharmacology of AEDs that are currently in development. These include adenosine-releasing silk, allopregnanolone (SAGE-547), AMP-X-0079, brivaracetam, bumetanide, cannabidiol, cannabidivarin, 2-deoxy-glucose, everolimus, ganaxolone, huperzine A, imepitoin, minocycline, NAX 801-2, pitolisant, PRX 0023, SAGE-217, valnoctamide and its homologue sec-butyl-propylacetamide (SPD), and VLB-01. Since the previous Eilat conference, perampanel has been introduced into the market and twelve novel potential epilepsy treatments are presented for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.
Inflammation and Immune Regulation as Potential Drug Targets in Antidepressant Treatment
Schmidt, Frank M.; Kirkby, Kenneth C.; Lichtblau, Nicole
2016-01-01
Growing evidence supports a mutual relationship between inflammation and major depression. A variety of mechanisms are outlined, indicating how inflammation may be involved in the pathogenesis, course and treatment of major depression. In particular, this review addresses 1) inflammatory cytokines as markers of depression and potential predictors of treatment response, 2) findings that cytokines interact with antidepressants and non-pharmacological antidepressive therapies, such as electroconvulsive therapy, deep brain stimulation and physical activity, 3) the influence of cytokines on the cytochrome (CYP) p450-system and drug efflux transporters, and 4) how cascades of inflammation might serve as antidepressant drug targets. A number of clinical trials have focused on agents with immunmodulatory properties in the treatment of depression, of which this review covers nonsteroidal anti-inflammatory drugs (NSAIDs), cytokine inhibitors, ketamine, polyunsaturated fatty acids, statins and curcumin. A perspective is also provided on possible future immune targets for antidepressant therapy, such as toll-like receptor-inhibitors, glycogen synthase kinase-3 inhibitors, oleanolic acid analogs and minocycline. Concluding from the available data, markers of inflammation may become relevant factors for more personalised planning and prediction of response of antidepressant treatment strategies. Agents with anti-inflammatory properties have the potential to serve as clinically relevant antidepressants. Further studies are required to better define and identify subgroups of patients responsive to inflammatory agents as well as to define optimal time points for treatment onset and duration. PMID:26769225
Putative neuroprotective agents in neuropsychiatric disorders.
Dodd, Seetal; Maes, Michael; Anderson, George; Dean, Olivia M; Moylan, Steven; Berk, Michael
2013-04-05
In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders. Copyright © 2012 Elsevier Inc. All rights reserved.
Repurposing available drugs for neurodevelopmental disorders: The fragile X experience.
Tranfaglia, Michael R; Thibodeaux, Clare; Mason, Daniel J; Brown, David; Roberts, Ian; Smith, Richard; Guilliams, Tim; Cogram, Patricia
2018-05-04
Many available drugs have been repurposed as treatments for neurodevelopmental disorders. In the specific case of fragile X syndrome, many clinical trials of available drugs have been conducted with the goal of disease modification. In some cases, detailed understanding of basic disease mechanisms has guided the choice of drugs for clinical trials, and several notable successes in fragile X clinical trials have led to common use of drugs such as minocycline in routine medical practice. Newer technologies like Disease-Gene Expression Matching (DGEM) may allow for more rapid identification of promising repurposing candidates. A DGEM study predicted that sulindac could be therapeutic for fragile X, and subsequent preclinical validation studies have shown promising results. The use of combinations of available drugs and nutraceuticals has the potential to greatly expand the options for repurposing, and may even be a viable business strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bisht, Rohit; Joshi, Bhuwan Chandra; Kalia, Ajudhiya Nath; Prakash, Atish
2017-09-01
Parkinson's disease (PD) having a complex and multi-factorial neuropathology includes mainly the degeneration of the dopaminergic nigrostriatal pathway, which is a cumulative effect of depleted endogenous antioxidant enzymes, increased oxidative DNA damage, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. The present study was designed to investigate the neuroprotective effect of a potent antioxidant from Urtica dioica in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. MPTP was administered intranigrally for the induction of PD in male Wistar rats. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical, cellular, and neurochemical parameters were measured. Intranigrally repeated administration of MPTP showed significant impairment of motor co-ordination and marked increase of mito-oxidative damage and neuroinflammation in rats. Intranigral MPTP significantly decreases the dopamine and its metabolites with impairment of dopaminergic cell density in rat brain. However, post-treatment with the potent antioxidant fraction of Urtica dioica Linn. (UD) (20, 40, 80 mg/kg) improved the motor function, mito-oxidative defense alteration significantly and dose dependently in MPTP-treated rats. In addition, the potent antioxidant fraction of UD attenuated the pro-inflammatory cytokines (TNF-α and IL-β) and restored the level of dopamine and its metabolites in MPTP-induced PD in rats. Moreover, minocycline (30 mg/kg) with lower dose of UD (20 mg/kg) had significantly potentiated the protective effect of minocycline as compared to its effect with other individual drug-treated groups. In conclusion, Urtica dioica protected the dopaminergic neurons probably by reducing mito-oxidative damage, neuroinflammation, and cellular alteration along with enhanced neurotrophic potential. The above results revealed that the antioxidant rich fraction of UD contain flavonoids and phenolic compounds, which have a promising approach in therapeutics of PD.
Furuhata, Katsunori; Miyamoto, Hiroshi; Hara, Motonobu; Fukuyama, Masafumi
2003-02-01
As part of an epidemiological study of legionellosis, we investigated the growth within Acanthamoeba sp. and antibiotic susceptibility of 62 strains of Legionella spp. isolated from surface soils nationwide in 2001. 1) All strains tested grew in Acanthamoeba sp., suggesting that the strains were pathogenic. The minimum bacterial number required for the growth in the amoeba was 10(3)-10(8) CFU/ml and there were differences between the strains. 2) Susceptibility to 10 drugs was investigated using the Etest. The MIC90 values of imipenem, as a beta-lactam, and rifampicin, as an antitubercular agent, were 0.047 microgram/ml and 0.064 microgram/ml, respectively, showing high sensitivity. In contrast, sensitivity to minocycline, as a tetracycline, and piperacillin, as a beta-lactam, was low and the MIC90 values were 12 micrograms/ml and 16 micrograms/ml, respectively. Sensitivity to minocycline was particularly low, with a MIC value of 32 micrograms/ml, in two strains. The above findings suggested that all soil-derived strains were pathogenic, and susceptibility of the strains tended to be slightly lower than that of clinical isolates.
Ruan, Hong; Yu, Youcheng; Liu, Yun; Ding, Xiaojun; Guo, Xuehua; Jiang, Qian
2016-01-01
In this study, a thermoresponsive gel for minocycline (MCL) with chitosan/β-glycerophosphate (C/β-GP) was formulated and its characterization, in vitro release, stability, toxicity and pharmacodynamics were investigated. The formulation containing MCL was prepared by pouring the chitosan solution directly onto the sterilized drug powder and stirring before mixing with the β-glycerophosphate (β-GP) solution. The final preparations contained 0.5% (w/v) chitosan, 1.8% (w/v) β-GP and 2% (w/v) MCL. The drug content of prepared gels was in the range of 92-99%, and the pH value of the optimized formulation was found to be 5.6-6.2. The gelation temperature of the prepared C/β-GP thermogelling solutions was 37 °C. Color, consistency, pH, viscosity and drug content of the in situ gels were found to be consistent, and no signs of separation and deterioration were observed over a period of 90 d. In vivo studies showed that rats' liver and kidney tissue sections were normal, with no structural damage. The constituents of the in situ gels formulation had a well-sustained release efficacy on the animal model of periodontitis.
Scheinfeld, Noah
2013-04-15
Hidradenitis suppurativa (HS), a pathological follicular disease, impacts patients' lives profoundly. HS most commonly involves cutaneous intertriginous areas, such as the axilla, inner thighs, groin and buttocks, and pendulous breasts, but can appear on any follicular skin. Protean, HS manifests with variations of abscesses, folliculitis, pyogenic granulomas, scars (oval honeycombed), comedones, tracts, fistulas, and keloids. The pathophysiology might involve both defects of the innate follicular immunity and overreaction to coagulase negative Staphylococcus. Treatment depends on the morphology, extent, severity, and duration. Topical clindamycin and dapsone are often adequate for treating mild HS. For Stage 1 and 2 HS, first line treatment combines rifampin with either oral clindamycin or minocycline. Other HS treatments include: fluoroquinolones with metronidazole and rifampin, oral dapsone, zinc, acitretin, hormone blockers (oral contraceptive pills, spironolactone, finasteride, and dutasteride), and oral prednisone. For severe HS, cyclosporine, adalimumab, or infliximab (used at double psoriatic doses) and intravenous carbapenems or cephalosporins are often required. Isotretinoin, etanercept, isoniazid, lymecycline, sulfasalazine, methotrexate, metformin, colchicine, clarithromycin, IVIG, and thalidomide are less favored treatments. The role of botulinum toxin is uncertain. The most important life style modification is weight loss. De-roofing fluctuant nodules and injection of intralesional corticosteroids ameliorates the disease and perhaps, if done at regular intervals, improves HS more permanently. Surgical excision and CO2 laser ablation are more definitive treatments. The 1064 nm laser for hair removal aids in the treatment of HS. This article centers on medical therapies and will only passingly mention surgical and laser treatments. This article summarizes my treatment experience with over 350 HS patients.
Neuroinflammatory Dynamics Underlie Memory Impairments after Repeated Social Defeat
McKim, Daniel B.; Niraula, Anzela; Tarr, Andrew J.; Wohleb, Eric S.
2016-01-01
Repeated social defeat (RSD) is a murine stressor that recapitulates key physiological, immunological, and behavioral alterations observed in humans exposed to chronic psychosocial stress. Psychosocial stress promotes prolonged behavioral adaptations that are associated with neuroinflammatory signaling and impaired neuroplasticity. Here, we show that RSD promoted hippocampal neuroinflammatory activation that was characterized by proinflammatory gene expression and by microglia activation and monocyte trafficking that was particularly pronounced within the caudal extent of the hippocampus. Because the hippocampus is a key area involved in neuroplasticity, behavior, and cognition, we hypothesize that stress-induced neuroinflammation impairs hippocampal neurogenesis and promotes cognitive and affective behavioral deficits. We show here that RSD caused transient impairments in spatial memory recall that resolved within 28 d. In assessment of neurogenesis, the number of proliferating neural progenitor cells (NPCs) and the number of young, developing neurons were not affected initially after RSD. Nonetheless, the neuronal differentiation of NPCs that proliferated during RSD was significantly impaired when examined 10 and 28 d later. In addition, social avoidance, a measure of depressive-like behavior associated with caudal hippocampal circuitry, persisted 28 d after RSD. Treatment with minocycline during RSD prevented both microglia activation and monocyte recruitment. Inhibition of this neuroinflammatory activation in turn prevented impairments in spatial memory after RSD but did not prevent deficits in neurogenesis nor did it prevent the persistence of social avoidance behavior. These findings show that neuroinflammatory activation after psychosocial stress impairs spatial memory performance independent of deficits in neurogenesis and social avoidance. SIGNIFICANCE STATEMENT Repeated exposure to stress alters the homeostatic environment of the brain, giving rise to various cognitive and mood disorders that impair everyday functioning and overall quality of life. The brain, previously thought of as an immune-privileged organ, is now known to communicate extensively with the peripheral immune system. This brain–body communication plays a significant role in various stress-induced inflammatory conditions, also characterized by psychological impairments. Findings from this study implicate neuroimmune activation rather than impaired neurogenesis in stress-induced cognitive deficits. This idea opens up possibilities for novel immune interventions in the treatment of cognitive and mood disturbances, while also adding to the complexity surrounding the functional implications of adult neurogenesis. PMID:26937001
Specht, Sabine; Arriens, Sandra; Hübner, Marc P.; Klarmann-Schulz, Ute; Koschel, Marianne; Sternberg, Sonja; Martin, Coralie; Taylor, Mark J.; Hoerauf, Achim
2018-01-01
Filarial parasites can be targeted by antibiotic treatment due to their unique endosymbiotic relationship with Wolbachia bacteria. This finding has led to successful treatment strategies in both, human onchocerciasis and lymphatic filariasis. A 4–6 week treatment course using doxycycline results in long-term sterility and safe macrofilaricidal activity in humans. However, current treatment times and doxycycline contraindications in children and pregnant women preclude widespread administration of doxycycline in public health control programs; therefore, the search for shorter anti-wolbachial regimens is a focus of ongoing research. We have established an in vivo model for compound screening, using mice infected with Litomosoides sigmodontis. We could show that gold standard doxycycline treatment did not only deplete Wolbachia, it also resulted in a larval arrest. In this model, combinations of registered antibiotics were tested for their anti-wolbachial activity. Administration of rifamycins in combination with doxycycline for 7 days successfully depleted Wolbachia by > 2 log (>99% reduction) and thus resulted in a significant reduction of the treatment duration. Using a triple combination of a tetracycline (doxycycline or minocycline), a rifamycin and a fluoroquinolone (moxifloxacin) led to an even greater shortening of the treatment time. Testing all double combinations that could be derived from the triple combinations revealed that the combination of rifapentine (15mg/kg) and moxifloxacin (2 x 200mg/kg) showed the strongest reduction of treatment time in intraperitoneal and also oral administration routes. The rifapentine plus moxifloxacin combination was equivalent to the triple combination with additional doxycycline (>99% Wolbachia reduction). These investigations suggest that it is possible to shorten anti-wolbachial treatment times with combination treatments in order to achieve the target product profile (TPP) requirements for macrofilaricidal drugs of no more than 7–10 days of treatment. PMID:29300732
Specht, Sabine; Pfarr, Kenneth M; Arriens, Sandra; Hübner, Marc P; Klarmann-Schulz, Ute; Koschel, Marianne; Sternberg, Sonja; Martin, Coralie; Ford, Louise; Taylor, Mark J; Hoerauf, Achim
2018-01-01
Filarial parasites can be targeted by antibiotic treatment due to their unique endosymbiotic relationship with Wolbachia bacteria. This finding has led to successful treatment strategies in both, human onchocerciasis and lymphatic filariasis. A 4-6 week treatment course using doxycycline results in long-term sterility and safe macrofilaricidal activity in humans. However, current treatment times and doxycycline contraindications in children and pregnant women preclude widespread administration of doxycycline in public health control programs; therefore, the search for shorter anti-wolbachial regimens is a focus of ongoing research. We have established an in vivo model for compound screening, using mice infected with Litomosoides sigmodontis. We could show that gold standard doxycycline treatment did not only deplete Wolbachia, it also resulted in a larval arrest. In this model, combinations of registered antibiotics were tested for their anti-wolbachial activity. Administration of rifamycins in combination with doxycycline for 7 days successfully depleted Wolbachia by > 2 log (>99% reduction) and thus resulted in a significant reduction of the treatment duration. Using a triple combination of a tetracycline (doxycycline or minocycline), a rifamycin and a fluoroquinolone (moxifloxacin) led to an even greater shortening of the treatment time. Testing all double combinations that could be derived from the triple combinations revealed that the combination of rifapentine (15mg/kg) and moxifloxacin (2 x 200mg/kg) showed the strongest reduction of treatment time in intraperitoneal and also oral administration routes. The rifapentine plus moxifloxacin combination was equivalent to the triple combination with additional doxycycline (>99% Wolbachia reduction). These investigations suggest that it is possible to shorten anti-wolbachial treatment times with combination treatments in order to achieve the target product profile (TPP) requirements for macrofilaricidal drugs of no more than 7-10 days of treatment.
NASA Astrophysics Data System (ADS)
Abookasis, David; Shochat, Ariel
2016-03-01
We present a comparative evaluation of five different neuroprotective drugs in the early phase following focal traumatic brain injury (TBI) in mouse intact head. The effectiveness of these drugs in terms of changes in brain tissue morphology and hemodynamic properties was experimentally evaluated through analysis of the optical absorption coefficient and spectral reduced scattering parameters in the range of 650-1000 nm. Anesthetized male mice (n=50 and n=10 control) were subjected to weight drop model mimics real life focal head trauma. Monitoring the effect of injury and neuroprotective drugs was obtained by using a diffuse reflectance spectroscopy system utilizing independent source-detector separation and location. Result indicates that administration of minocycline improve hemodynamic and reduced the level of tissue injury at an early phase post-injury while hypertonic saline treatment decrease brain water content. These findings highlight the heterogeneity between neuroprotective drugs and the ongoing controversy among researchers regarding which drug therapy is preferred for treatment of TBI. On the other hand, our results show the capability of optical spectroscopy technique to noninvasively study brain function following injury and drug therapy.
Experimental autoimmune prostatitis induces microglial activation in the spinal cord.
Wong, Larry; Done, Joseph D; Schaeffer, Anthony J; Thumbikat, Praveen
2015-01-01
The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host's immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S14-S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Our data show that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. © 2014 Wiley Periodicals, Inc.
Experimental autoimmune prostatitis induces microglial activation in the spinal cord
Wong, Larry; Done, Joseph D.; Schaeffer, Anthony J.; Thumbikat, Praveen
2014-01-01
Background The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host’s immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Methods Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S4–S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Results Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Conclusion Our data shows that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. PMID:25263093
Nemoto, Wataru; Ogata, Yoshiki; Nakagawasai, Osamu; Yaoita, Fukie; Tadano, Takeshi; Tan-No, Koichi
2015-12-01
We have previously demonstrated the possibility that angiotensin (Ang) II and its N-terminal metabolite Ang (1-7) act as neurotransmitters and/or neuromodulators in the spinal transmission of nociceptive information. Ang III, which is a C-terminal metabolite of Ang II, can also act on AT1 receptors, but its role in spinal nociceptive transmission remains unclear. Therefore, we examined the role of Ang III on the spinal nociceptive system in comparison with that of Ang II. Intrathecal (i.t.) administration of Ang III into mice produced a nociceptive behavior, which was dose-dependently inhibited by the co-administration of the AT1 receptor antagonist losartan and the p38 MAPK inhibitor SB203580, but not by the AT2 receptor antagonist PD123319, MEK1/2 inhibitor U0126 and JNK inhibitor SP600125. In addition, Ang III increased the phosphorylation of p38 MAPK in the dorsal lumbar spinal cord, which was inhibited by losartan. These effects were similar to those of observed with Ang II. The nociceptive behavior produced by Ang II or III was also attenuated by the administration of the astrocytic inhibitor L-α-aminoadipic acid, but not by the microglial inhibitor minocycline. Double immunohistochemical staining showed that spinal AT1 receptors were expressed on neurons and astrocytes, and that i.t. administration of either Ang II or III phosphorylated p38 MAPK in both spinal astrocytes and neurons. These results indicate that Ang III produces nociceptive behavior similar to Ang II, and suggest that the phosphorylation of p38 MAPK mediated through AT1 receptors on spinal astrocytes and neurons contributes to Ang II- and III-induced nociceptive behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.
A simple, rapid and inexpensive screening method for the identification of Pythium insidiosum.
Tondolo, Juliana Simoni Moraes; Loreto, Erico Silva; Denardi, Laura Bedin; Mario, Débora Alves Nunes; Alves, Sydney Hartz; Santurio, Janio Morais
2013-04-01
Growth of Pythium insidiosum mycelia around minocycline disks (30μg) did not occur within 7days of incubation at 35°C when the isolates were grown on Sabouraud, corn meal, Muller-Hinton or RPMI agar. This technique offers a simple and rapid method for the differentiation of P. insidiosum from true filamentous fungi. Copyright © 2013 Elsevier B.V. All rights reserved.
2009-01-01
elements and tend to carry resis- tance determinants in addition to mecA. In addition to varying antimicrobial resistance, the presence of certain...Antimicrobial susceptibility testing BMD testing was performed using CLSI criteria to determine antimicrobial susceptibility, broth microdilution performed...minocycline, trimethoprim –sul- famethoxazole, ciprofloxacin, rifampin, tigecycline and gen- tamicin. Wells containing daptomycin were supplemented with 50 mg
Hains, Leah E.; Loram, Lisa C.; Weiseler, Julie L.; Frank, Matthew G.; Bloss, Erik B.; Sholar, Paige; Taylor, Frederick R; Harrison, Jacqueline A; Martin, Thomas J.; Eisenach, James C.; Maier, Steven F.; Watkins, Linda R.
2010-01-01
Activation of spinal microglia and consequent release of pro-inflammatory mediators facilitate pain. Under certain conditions, responses of activated microglia can become enhanced. Enhanced microglial production of pro-inflammatory products may result from priming (sensitization), similar to macrophage priming. We hypothesized that if spinal microglia were primed by an initial inflammatory challenge, subsequent challenges may create enhanced pain. Here, we used a "two-hit" paradigm using two successive challenges, which affect overlapping populations of spinal microglia, presented two weeks apart. Mechanical allodynia and/or activation of spinal glia were assessed. Initially, laparotomy preceded systemic lipopolysaccharide (LPS). Prior laparotomy caused prolonged microglial (not astrocyte) activation plus enhanced LPS-induced allodynia. In this “two-hit” paradigm, minocycline, a microglial activation inhibitor, significantly reduced later exaggerated pain induced by prior surgery when minocycline was administered intrathecally for 5 days starting either at the time of surgery or 5 days before LPS administration. To test generality of the priming effect, subcutaneous formalin preceded intrathecal HIV-1 gp120, which activates spinal microglia and causes robust allodynia. Prior formalin enhanced intrathecal gp120-induced allodynia, suggesting that microglial priming is not limited to laparotomy and again supporting a spinal site of action. Therefore, spinal microglial priming may increase vulnerability to pain enhancement. PMID:20434956
Tadmouri, A; Champagnat, J; Morin-Surun, M P
2014-05-01
Nucleus tractus solitarius (NTS) is the integrative sensory relay of autonomic functions in the brainstem. To explore the nonneuronal cellular basis of central chemosensitivity during the first 24 hr of ventilatory acclimatization to hypoxia (VHA), we have investigated glial activation markers in the NTS. Conscious mice (C57/BL6) were placed in a hermetic hypoxia chamber containing a plethysmograph to record ventilation. After 4 days of habituation to the normoxic environment, mice were subjected to physiological hypoxia (10% O2 ) for 1, 6, or 24 hr. To dissociate interactions between microglia and astrocytes, another group received daily minocycline, a microglia activation blocker. By immunochemical localization of astrocytes (GFAP), activated microglia (Cd11b), and total microglia (Iba-1), we identified an oxygen-sensing glial layer in the NTS, in which astrocytes are first activated after 1-6 hr of hypoxia, followed by microglia after 6-24 hr of hypoxia. Minocycline administration suppressed microglial activation and decreased astrocyte activation at 6 hr and VHA at 24 hr of hypoxia. These results suggest that astrocytes contribute to the neuronal response during the first hour of hypoxia, whereas microglial cells, via cross-talk with astrocytes, are involved in the VHA during the first 24 hr of acclimatization. Copyright © 2014 Wiley Periodicals, Inc.
Antimicrobial drug resistance in Staphylococcus aureus isolated from cattle in Brazil.
Pereira, M S; Siqueira-Júnior, J P
1995-06-01
Isolates of Staphylococcus aureus obtained from apparently healthy cattle in the State of Paraiba, Brazil were characterized in relation to resistance to 21 antimicrobial agents. Among the 46 isolates obtained, resistance to penicillin was most frequent, followed by resistance to cadmium, streptomycin, arsenate, tetracycline, mercury, erythromycin and kanamycin/neomycin. All isolates were susceptible to fusidic acid, ethidium bromide, cetrimide, chloramphenicol, benzalkonium chloride, doxycycline, gentamicin, methicillin, minocycline, novobiocin, rifamycin, tylosin and vancomycin. Only six isolates were susceptible to all the drugs tested. With respect to the antibiotics, multi-resistant isolates were uncommon. These results are probably a consequence of the peculiarities of local drug usage pressures. In relation to metal ions, resistance to mercury was rare while resistance to arsenate was relatively frequent, which contrasts with the situation for human Staph. aureus strains. After treatment with ethidium bromide, elimination of resistance to penicillin, tetracycline, streptomycin, erythromycin and cadmium was observed, which was consistent with the genetic determinants being plasmid-borne.
Albuquerque, Maria Tereza P; Evans, Joshua D; Gregory, Richard L; Valera, Marcia C; Bottino, Marco C
2016-03-01
This study sought to investigate, in vitro, the effects of a recently developed triple antibiotic paste (TAP)-mimic polymer nanofibrous scaffold against Porphyromonas gingivalis-infected dentin biofilm. Dentin specimens (4 × 4 × 1 mm(3)) were prepared from human canines. The specimens were sterilized, inoculated with P. gingivalis (ATCC 33277), and incubated for 1 week to allow for biofilm formation. Infected dentin specimens were exposed for 3 days to the following treatments: antibiotic-free polydioxanone scaffold (PDS, control), PDS + 25 wt% TAP [25 mg of each antibiotic (metronidazole, ciprofloxacin, and minocycline) per mL of the PDS polymer solution], or a saturated TAP-based solution (50 mg of each antibiotic per mL of saline solution). In order to serve as the negative control, infected dentin specimens were left untreated (bacteria only). To determine the antimicrobial efficacy of the TAP-mimic scaffold, a colony-forming unit (CFU) per milliliter (n = 10/group) measurement was performed. Furthermore, additional specimens (n = 2/group) were prepared to qualitatively study biofilm inhibition via scanning electron microscopy (SEM). Statistics were performed, and significance was set at the 5% level. Both the TAP-mimic scaffold and the positive control (TAP solution) led to complete bacterial elimination, differing statistically (p < 0.05) from the negative control group (bacteria only). No statistical differences were observed for CFU per milliliter data between antibiotic-free scaffolds (2.7 log10 CFU/mL) and the negative control (5.9 log10 CFU/mL). The obtained data revealed significant antimicrobial properties of the novel PDS-based TAP-mimic scaffold against an established P. gingivalis-infected dentin biofilm. Collectively, the data suggest that the proposed nanofibrous scaffold might be used as an alternative to the advocated clinical gold standard (i.e., TAP) for intracanal disinfection prior to regenerative endodontics.
2012-01-01
Background Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen. Results The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. Conclusions The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized pathogen. Plasmid pJA144188 revealed a modular architecture of gene regions that contribute to the multi-drug resistance of C. resistens DSM 45100. The tet(W) gene encoding a ribosomal protection protein is reported here for the first time in corynebacteria. Cloning of the tet(W) gene mediated resistance to second generation tetracyclines in C. glutamicum, indicating that it might be responsible for the failure of minocycline therapies in patients with C. resistens bacteremia. PMID:22524407
Fusco, Nicholas M; Toussaint, Kimberly A; Prescott, William Allan
2015-04-01
To review the treatment of methicillin-resistant Staphylococcus aureus (MRSA)-associated acute pulmonary exacerbations (APEs) in cystic fibrosis (CF). A search of PubMed, MEDLINE, Cochrane Library and Clinicaltrials.gov databases through November 2014 was conducted using the search terms Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, pulmonary exacerbations, and cystic fibrosis. All English-language research articles, case reports, and case series were evaluated. A total of 185 articles were identified related to MRSA and CF; 30 articles that studied treatments of MRSA APE in CF were included. The persistent presence of MRSA in the respiratory tract of patients with CF has been associated with higher morbidity and an increased risk of death. Limited clinical data exist supporting the efficacy of any specific antimicrobial currently available for the treatment of APE secondary to MRSA. Data extrapolated from other populations suggest that vancomycin and linezolid are appropriate first-line treatment options for the treatment of APE secondary to MRSA. Second-line options include doxycycline or minocycline and trimethoprim/sulfamethoxazole, each of which may be useful in patients coinfected with other respiratory pathogens, for which they may provide overlapping coverage. Ceftaroline and ceftobiprole are newer antibiotics that appear to have a potential role in the treatment of APE in CF, but the latter is not currently available to the US market. Although potentially useful, clindamycin is limited by high rates of resistance, telavancin is limited by its toxicity profile, and tigecycline is limited by a lack of demonstrated efficacy for infections that are similar to that seen in the CF population. Studies investigating the clinical utility of the above-cited antibiotics for APE in CF secondary to MRSA are desperately needed to broaden the treatment armamentarium for this medical condition. © The Author(s) 2015.
GUT MICROBIOTA DYSBIOSIS IS LINKED TO HYPERTENSION
Yang, Tao; Santisteban, Monica M.; Rodriguez, Vermali; Li, Eric; Ahmari, Niousha; Carvajal, Jessica Marulanda; Zadeh, Mojgan; Gong, Minghao; Qi, Yanfei; Zubcevic, Jasenka; Sahay, Bikash; Pepine, Carl J.; Raizada, Mohan K.; Mohamadzadeh, Mansour
2015-01-01
Emerging evidence suggests that gut microbiota is critical in the maintenance of physiological homeostasis. The present study was designed to test the hypothesis that dysbiosis in gut microbiota is associated with hypertension since genetic, environmental, and dietary factors profoundly influence both gut microbiota and blood pressure. Bacterial DNA from fecal samples of two rat models of hypertension and a small cohort of patients was used for bacterial genomic analysis. We observed a significant decrease in microbial richness, diversity, and evenness in the spontaneously hypertensive rat, in addition to an increased Firmicutes to Bacteroidetes ratio. These changes were accompanied with decreases in acetate- and butyrate-producing bacteria. Additionally, the microbiota of a small cohort of human hypertension patients was found to follow a similar dysbiotic pattern, as it was less rich and diverse than that of control subjects. Similar changes in gut microbiota were observed in the chronic angiotensin II infusion rat model, most notably decreased microbial richness and an increased Firmicutes to Bacteroidetes ratio. In this model, we evaluated the efficacy of oral minocycline in restoring gut microbiota. In addition to attenuating high blood pressure, minocycline was able to rebalance the dysbiotic hypertension gut microbiota by reducing the Firmicutes to Bacteroidetes ratio. These observations demonstrate that high BP is associated with gut microbiota dysbiosis, both in animal and human hypertension. They suggest that dietary intervention to correct gut microbiota could be an innovative nutritional therapeutic strategy for hypertension. PMID:25870193
NASA Astrophysics Data System (ADS)
Liu, Bin; Kim, Eric; Meggo, Anika; Gandhi, Sachin; Luo, Hao; Kallakuri, Srinivas; Xu, Yong; Zhang, Jinsheng
2017-04-01
Objective. Biocompatibility is a major issue for chronic neural implants, involving inflammatory and wound healing responses of neurons and glial cells. To enhance biocompatibility, we developed silicon-parylene hybrid neural probes with open architecture electrodes, microfluidic channels and a reservoir for drug delivery to suppress tissue responses. Approach. We chronically implanted our neural probes in the rat auditory cortex and investigated (1) whether open architecture electrode reduces inflammatory reaction by measuring glial responses; and (2) whether delivery of antibiotic minocycline reduces inflammatory and tissue reaction. Four weeks after implantation, immunostaining for glial fibrillary acid protein (astrocyte marker) and ionizing calcium-binding adaptor molecule 1 (macrophages/microglia cell marker) were conducted to identify immunoreactive astrocyte and microglial cells, and to determine the extent of astrocytes and microglial cell reaction/activation. A comparison was made between using traditional solid-surface electrodes and newly-designed electrodes with open architecture, as well as between deliveries of minocycline and artificial cerebral-spinal fluid diffused through microfluidic channels. Main results. The new probes with integrated micro-structures induced minimal tissue reaction compared to traditional electrodes at 4 weeks after implantation. Microcycline delivered through integrated microfluidic channels reduced tissue response as indicated by decreased microglial reaction around the neural probes implanted. Significance. The new design will help enhance the long-term stability of the implantable devices.
NASA Astrophysics Data System (ADS)
He, Yi; Peng, Rufang
2014-11-01
In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (˜25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng.
O'Collins, Victoria E; Macleod, Malcolm R; Cox, Susan F; Van Raay, Leena; Aleksoska, Elena; Donnan, Geoffrey A; Howells, David W
2011-01-01
There is some evidence that in animal models of acute ischaemic stroke, combinations of neuroprotective agents might be more efficacious than the same agents administered alone. Hence, we developed pragmatic, empirical criteria based on therapeutic target, cost, availability, efficacy, administration, and safety to select drugs for testing in combination in animal models of acute stroke. Magnesium sulphate, melatonin, and minocycline were chosen from a library of neuroprotective agents, and were tested in a more ‘realistic' model favoured by the STAIR (Stroke Therapy Academic Industry Roundtable). Outcome was assessed with infarct volume, neurologic score, and two newly developed scales measuring general health and physiologic homeostasis. Owing to the failure to achieve neuroprotection in aged, hypertensive animals with drug delivery at 3 hours, the bar was lowered in successive experiments to determine whether neuroprotection could be achieved under conditions more conducive to recovery. Testing in younger animals showed more favourable homeostasis and general health scores than did testing in older animals, but infarct volume and neurologic scores did not differ with age, and treatment efficacy was again not shown. Testing with shorter occlusions resulted in smaller infarct volumes; nevertheless, treatment efficacy was still not observed. It was concluded that this combination, in these stroke models, was not effective. PMID:20978519
A case of typhoidal tularemia in a male Japanese farmer.
Nakamura, Kiwamu; Fujita, Hiromi; Miura, Tomoya; Igata, Yu; Narita, Masashi; Monma, Naota; Hara, Yasuka; Saito, Kyoichi; Matsumoto, Akinori; Kanemitsu, Keiji
2018-06-01
In Japan, most tularemia cases occur after contact with hares (hunting, cooking) and involve the glandular or ulceroglandular form. Here, we present a case of typhoidal tularemia in a 72-year-old Japanese male farmer who presented with fever, fatigue, and right lower abdominal pain. Computed tomography revealed intestinal wall thickening at the ascending colon, pleural effusion, and ascites. Following an initial diagnosis of bacterial enteric infection, his symptoms deteriorated after a week-long cephalosporin treatment course. The patient lived in an area endemic for scrub typhus; the antibiotic was changed to a tetracycline on suspicion of scrub typhus infection. His symptoms rapidly improved after initiation of minocycline treatment. Later, blood tests revealed marked increases in serological tests against Francisella tularensis exclusively, and the patient was diagnosed with typhoidal tularemia. Typhoidal tularemia may be characterized by any combination of general symptoms, but does not exhibit the local manifestations associated with other forms of tularemia. The patient, in this case, had no direct contact with hares or other wild animals and did not present with local manifestations of tularemia. Physicians should consider this disease, especially when tick-borne disease is suspected in the absence of local wounds, eschar, ulcers, or lymphadenopathy. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Drug reaction with eosinophilia and systemic symptoms without skin rash
Sasidharanpillai, Sarita; Binitha, Manikoth P.; Manikath, Neeraj; Janardhanan, Anisha K.
2015-01-01
Drug reaction with eosinophilia and systemic symptoms (DRESS) or drug hypersensitivity syndrome is considered as a severe cutaneous adverse drug reaction which is most commonly precipitated by aromatic anticonvulsants, lamotrigine, dapsone, allopurinol, minocycline, and salazopyrin. Its clinical manifestations are often variable. On rare occasions, it can present with only systemic involvement without any cutaneous features. A complete drug history is of paramount importance in making an early diagnosis. We report the case of a male patient who presented with fever, lymphadenopathy, hepatosplenomegaly, and hepatitis, 2 weeks after starting salazopyrin. The presence of atypical lymphocytes in the peripheral smear was indicative of a viral infection or a hematological dyscrasia. Bone marrow examination revealed a normocellular marrow with an increase in eosinophil precursors. Investigations for the common causes for fever and hepatitis were negative. The presence of eosinophilia, the temporal relationship of the symptoms with the initiation of treatment with salazopyrin, and the marked improvement on withdrawal of the drug along with the administration of systemic corticosteroids, were features consistent with the diagnosis of DRESS. With the incidence of this condition showing a rising trend, it is important for the clinician to be aware of its variable manifestations, as a delay in diagnosis and treatment can be fatal. PMID:26729967
Drug reaction with eosinophilia and systemic symptoms without skin rash.
Sasidharanpillai, Sarita; Binitha, Manikoth P; Manikath, Neeraj; Janardhanan, Anisha K
2015-01-01
Drug reaction with eosinophilia and systemic symptoms (DRESS) or drug hypersensitivity syndrome is considered as a severe cutaneous adverse drug reaction which is most commonly precipitated by aromatic anticonvulsants, lamotrigine, dapsone, allopurinol, minocycline, and salazopyrin. Its clinical manifestations are often variable. On rare occasions, it can present with only systemic involvement without any cutaneous features. A complete drug history is of paramount importance in making an early diagnosis. We report the case of a male patient who presented with fever, lymphadenopathy, hepatosplenomegaly, and hepatitis, 2 weeks after starting salazopyrin. The presence of atypical lymphocytes in the peripheral smear was indicative of a viral infection or a hematological dyscrasia. Bone marrow examination revealed a normocellular marrow with an increase in eosinophil precursors. Investigations for the common causes for fever and hepatitis were negative. The presence of eosinophilia, the temporal relationship of the symptoms with the initiation of treatment with salazopyrin, and the marked improvement on withdrawal of the drug along with the administration of systemic corticosteroids, were features consistent with the diagnosis of DRESS. With the incidence of this condition showing a rising trend, it is important for the clinician to be aware of its variable manifestations, as a delay in diagnosis and treatment can be fatal.
Sadhasivam, Suresh; Sinha, Mau; Saini, Swamini; Kaur, Simar Preet; Gupta, Tanvi; Sengupta, Shiladitya; Ghosh, Shamik; Sardana, Kabir
2016-11-01
Acne vulgaris is a multifactorial skin disease associated with the colonization of Propionibacterium acnes. Antibiotics are a mainstay of treatment for acne, yet the emergence of resistance against the currently approved antibiotics is a serious concern. In this case report, a slow responder had multiple Propionibacterium acnes isolates with varied levels of sensitivity to the conventional antibiotics. The bacterial isolates obtained from acne samples collected from the patient were analyzed for phylogeny, and was found to be largely restricted to two different lineage patterns. Propionibacterium acnes phylotype IA1, which is considered to be pathogenic, displayed clindamycin sensitivity, but phylotype IB, which is associated with commensals, exhibited high clindamycin resistance. Sensitivity analysis revealed uniform resistance to macrolides, but susceptibility to tetracycline and nadifloxacin. These results implicate Propionibacterium acnes in the pathophysiology of acne vulgaris, although the lines between commensal and pathological phylotypes may be blurred. Switching the patient to a combination of minocycline and nadifloxacin resulted in a significant improvement in the clinical lesions. Such a science-driven judicious selection of antibiotics can minimize the probability of development of resistance, and might be the way forward in the treatment of acne. © 2016 Wiley Periodicals, Inc.
Pan, Angelo; Lorenzotti, Silvia; Zoncada, Alessia
2008-01-01
First isolated in the 1960s methicillin-resistant Staphylococcus aureus (MRSA) has become a leading hospital acquired (HA) pathogen, although community acquired isolates (CA-MRSA) are on the rise, particularly in the USA. Treatment of serious MRSA infections has been based for many years upon the use of glycopeptides, i.e. vancomycin and teicoplanin. Other drugs indicated in particular clinical settings, such as prosthetic valve endocarditis or osteomyelitis, are rifampin, gentamycin, fusidic acid, minocycline, co-trimoxazole, clindamycin. Quinolones and doxycycline may be active on some MRSA isolates, and add some this important clinical setting. In the last few years new anti-MRSA drugs have been registered and patented, expanding therapeutic opportunities, i.e. linezolid, the first oxazolidinone, available both as oral and parenteral formulation in being the most widely used new anti-MRSA agent, quinupristin-dalfopristin, daptomycin, a novel lipopeptide, active on germs both in the replicating and in the resting phase, and tigecycline, the first approved glycylcycline. Other drugs from different classes are in the pipeline and will further enhance in the next few years our therapeutic armamentarium: three glycopeptides, i.e. dalbavancin, telavancin, and oritavancin, two broad spectrum cephalosporins, ceftobiprole and ceftaroline, iclaprim, a diaminopyrimidine, as well as a carbapenem, CS-023/RO-4908463, and adjuvant therapies such as the monoclonal antibody tefibazumab.
Singh, Payal; Nagpal, Rajni; Singh, Udai Pratap
2017-08-01
This in vitro study evaluated the effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin. Flat coronal dentin surfaces were prepared in 120 extracted human molars. Teeth were randomly divided into 5 groups ( n = 24) according to 5 different surface pre-treatments: No pre-treatment (control); 1M carbodiimide (EDC); 0.1% epigallocatechin-3-gallate (EGCG); 2% minocycline (MI); 10% sodium ascorbate (SA). After surface pre-treatment, adhesive (Adper Single Bond 2 [SB], 3M ESPE) was applied. Composite was applied into transparent plastic tubes (2.5 mm in diameter), which was placed over the bonded dentin surface. From each group, 10 samples were subjected to shear bond strength (SBS) evaluation at 24 hours (immediate) and remaining 10 samples were tested after 6 months (delayed). Additionally, 4 samples per group were subjected to scanning electron microscopic analysis for observation of resin-dentin interface. The data were statistically analysed with Shaperio‑Wilk W test, 2-way analysis of variance (ANOVA), and post hoc Tukey's test. At 24 hours, SBS of all surface pre-treatment groups were comparable with the control group, with significant differences found between EDC and SA groups only ( p = 0.009). After 6 months storage, EDC, EGCG, and MI pre-treatments preserved the resin-dentin bond strength with no significant fall. Dentin pre-treatment with all the dentin biomodifiers except SA resulted in significant preservation of resin-dentin bond over 6 months storage period, without negatively affecting the immediate bond strength of the etch and rinse adhesive tested.
Neuroinflammatory Dynamics Underlie Memory Impairments after Repeated Social Defeat.
McKim, Daniel B; Niraula, Anzela; Tarr, Andrew J; Wohleb, Eric S; Sheridan, John F; Godbout, Jonathan P
2016-03-02
Repeated social defeat (RSD) is a murine stressor that recapitulates key physiological, immunological, and behavioral alterations observed in humans exposed to chronic psychosocial stress. Psychosocial stress promotes prolonged behavioral adaptations that are associated with neuroinflammatory signaling and impaired neuroplasticity. Here, we show that RSD promoted hippocampal neuroinflammatory activation that was characterized by proinflammatory gene expression and by microglia activation and monocyte trafficking that was particularly pronounced within the caudal extent of the hippocampus. Because the hippocampus is a key area involved in neuroplasticity, behavior, and cognition, we hypothesize that stress-induced neuroinflammation impairs hippocampal neurogenesis and promotes cognitive and affective behavioral deficits. We show here that RSD caused transient impairments in spatial memory recall that resolved within 28 d. In assessment of neurogenesis, the number of proliferating neural progenitor cells (NPCs) and the number of young, developing neurons were not affected initially after RSD. Nonetheless, the neuronal differentiation of NPCs that proliferated during RSD was significantly impaired when examined 10 and 28 d later. In addition, social avoidance, a measure of depressive-like behavior associated with caudal hippocampal circuitry, persisted 28 d after RSD. Treatment with minocycline during RSD prevented both microglia activation and monocyte recruitment. Inhibition of this neuroinflammatory activation in turn prevented impairments in spatial memory after RSD but did not prevent deficits in neurogenesis nor did it prevent the persistence of social avoidance behavior. These findings show that neuroinflammatory activation after psychosocial stress impairs spatial memory performance independent of deficits in neurogenesis and social avoidance. Repeated exposure to stress alters the homeostatic environment of the brain, giving rise to various cognitive and mood disorders that impair everyday functioning and overall quality of life. The brain, previously thought of as an immune-privileged organ, is now known to communicate extensively with the peripheral immune system. This brain-body communication plays a significant role in various stress-induced inflammatory conditions, also characterized by psychological impairments. Findings from this study implicate neuroimmune activation rather than impaired neurogenesis in stress-induced cognitive deficits. This idea opens up possibilities for novel immune interventions in the treatment of cognitive and mood disturbances, while also adding to the complexity surrounding the functional implications of adult neurogenesis. Copyright © 2016 the authors 0270-6474/16/362590-15$15.00/0.
Rasheed, Md Zeeshan; Tabassum, Heena; Parvez, Suhel
2017-01-01
Among the neurodegenerative diseases (ND), Parkinson's disease affects 6.3 million people worldwide characterized by the progressive loss of dopaminergic neurons in substantia nigra. The mitochondrial permeability transition pore (mtPTP) is a non-selective voltage-dependent mitochondrial channel whose opening modifies the permeability properties of the mitochondrial inner membrane. It is recognized as a potent pharmacological target for diseases associated with mitochondrial dysfunction and excessive cell death including ND such as Parkinson's disease (PD). Imbalance in Ca 2+ concentration, change in mitochondrial membrane potential, overproduction of reactive oxygen species (ROS), or mutation in mitochondrial genome has been implicated in the pathophysiology of the opening of the mtPTP. Different proteins are released by permeability transition including cytochrome c which is responsible for apoptosis. This review aims to discuss the importance of PTP in the pathophysiology of PD and puts together different positive as well as negative aspects of drugs such as pramipexole, ropinirole, minocyclin, rasagilin, and safinamide which act as a blocker or modifier for mtPTP. Some of them may be detrimental in their neuroprotective nature.
Otophyma: a case report and review of the literature of lymphedema (elephantiasis) of the ear.
Carlson, J Andrew; Mazza, Jill; Kircher, Kenneth; Tran, Tien Anh
2008-02-01
Phymas (swellings, masses, or bulbs) are considered the end-stage of rosacea and mostly affect the nose (rhinophyma), and rarely involve the chin (gnatophyma), the cheek (metophyma), eyelids (blepharophyma), or ears (otophyma). Herein, we report the case of a 57-year-old man who developed unilateral enlargement of his left ear over 2 years. Biopsy revealed changes of rosaceous lymphedema associated with Demodex infestation. Corticosteroid and minocycline therapies resulted in partial reduction of the ear enlargement. Literature review examining for cases of lymphedema (elephantiasis) of the ear revealed that chronic inflammatory disorders (rosacea (most frequent), psoriasis, eczema), bacterial cellulitis (erysipelas), pediculosis, trauma, and primary (congenital) lymphedema can all lead to localized, lymphedematous enlargement of the ear. Depending on the severity, medical treatment directed at the inflammatory condition for mild, diffuse enlargement to surgical debulking for extensive diffuse enlargement or tumor formation can improve the signs and symptoms of otophyma. Decreased immune surveillance secondary to rosaceous lymphedema may explain why Demodex infestation is common in rosacea and support the suspicion that phymatous skin is predisposed to skin cancer development.
Casellas, J M; Bantar, C; Duret, F
2007-10-01
Tigecycline, the 9-t-butylglycylamino derivative of minocycline is the first commercially available glycylcycline exhibiting an extended spectrum of antibacterial activity due to its capacity to evade the tetracycline ribosomal and efflux resistance mechanisms. We conducted a collaborative in vitro study determining the activity of tigecycline compared to 14 antimicrobials against clinically relevant isolates obtained from adult patients hospitalized in 9 Argentinean institutions. Minimum inhibitory concentrations (MICs) were determined by the reference broth microdilution method. The number of isolates and MICs 50/90 (mg/L) for tigecycline were the following: Acinetobacter spp. 132 (0.5/1); Escherichia coli 220 (0.12/0.25); Klebsiella spp. 220 (0.5/1), Enterobacter spp. 205 (0.5/1); Serratia spp. 84 (0.5/2); Haemophilus influenzae 96 (0.25/0.5); Staphylococcus aureus 223 (0.12/0.25); Streptococcus pneumoniae 98 (
Chen, Chen; Jiang, Peng; Xue, Haipeng; Peterson, Suzanne E.; Tran, Ha T.; McCann, Anna E.; Parast, Mana M.; Li, Shenglan; Pleasure, David E.; Laurent, Louise C.; Loring, Jeanne F.; Liu, Ying; Deng, Wenbin
2014-01-01
Down’s syndrome (DS), caused by trisomy of human chromosome 21, is the most common genetic cause of intellectual disability. Here we use induced pluripotent stem cells (iPSCs) derived from DS patients to identify a role for astrocytes in DS pathogenesis. DS astroglia exhibit higher levels of reactive oxygen species and lower levels of synaptogenic molecules. Astrocyte-conditioned medium collected from DS astroglia causes toxicity to neurons, and fails to promote neuronal ion channel maturation and synapse formation. Transplantation studies show that DS astroglia do not promote neurogenesis of endogenous neural stem cells in vivo. We also observed abnormal gene expression profiles from DS astroglia. Finally, we show that the FDA-approved antibiotic drug, minocycline, partially corrects the pathological phenotypes of DS astroglia by specifically modulating the expression of S100B, GFAP, inducible nitric oxide synthase, and thrombospondins 1 and 2 in DS astroglia. Our studies shed light on the pathogenesis and possible treatment of DS by targeting astrocytes with a clinically available drug. PMID:25034944
Yoo, Min Heui; Kim, Tae-Youn; Yoon, Young Hee; Koh, Jae-Young
2016-01-01
To investigate the role of synaptic zinc in the ASD pathogenesis, we examined zinc transporter 3 (ZnT3) null mice. At 4–5 weeks of age, male but not female ZnT3 null mice exhibited autistic-like behaviors. Cortical volume and neurite density were significantly greater in male ZnT3 null mice than in WT mice. In male ZnT3 null mice, consistent with enhanced neurotrophic stimuli, the level of BDNF as well as activity of MMP-9 was increased. Consistent with known roles for MMPs in BDNF upregulation, 2.5-week treatment with minocycline, an MMP inhibitor, significantly attenuated BDNF levels as well as megalencephaly and autistic-like behaviors. Although the ZnT3 null state removed synaptic zinc, it rather increased free zinc in the cytosol of brain cells, which appeared to increase MMP-9 activity and BDNF levels. The present results suggest that zinc dyshomeostasis during the critical period of brain development may be a possible contributing mechanism for ASD. PMID:27352957
Yoo, Min Heui; Kim, Tae-Youn; Yoon, Young Hee; Koh, Jae-Young
2016-06-29
To investigate the role of synaptic zinc in the ASD pathogenesis, we examined zinc transporter 3 (ZnT3) null mice. At 4-5 weeks of age, male but not female ZnT3 null mice exhibited autistic-like behaviors. Cortical volume and neurite density were significantly greater in male ZnT3 null mice than in WT mice. In male ZnT3 null mice, consistent with enhanced neurotrophic stimuli, the level of BDNF as well as activity of MMP-9 was increased. Consistent with known roles for MMPs in BDNF upregulation, 2.5-week treatment with minocycline, an MMP inhibitor, significantly attenuated BDNF levels as well as megalencephaly and autistic-like behaviors. Although the ZnT3 null state removed synaptic zinc, it rather increased free zinc in the cytosol of brain cells, which appeared to increase MMP-9 activity and BDNF levels. The present results suggest that zinc dyshomeostasis during the critical period of brain development may be a possible contributing mechanism for ASD.
Hashimoto, Y; Takahashi, H; Kishiyama, K; Sato, Y; Nakao, M; Miyamoto, K; Iizuka, H
1998-02-01
A 64-year-old woman with Lyme disease and manifesting facial nerve palsy had been bitten by a tick on the left frontal scalp 4 weeks previously. Erythema migrans appeared on the left forehead, accompanied by left facial paralysis. Nested polymerase chain reaction-restriction fragment length polymorphism analysis (nested PCR-RFLP) was performed on DNA extracted from a skin biopsy of the erythema on the left forehead. Borrelia flagellin gene DNA was detected and its RFLP pattern indicated that the organism was B. garinii, Five weeks later, B. garinii was isolated by conventional culture from the erythematous skin lesion, but not from the cerebrospinal fluid. After treatment with ceftriaxone intravenously for 10 days and oral administration of minocycline for 7 days, both the erythema and facial nerve palsy improved significantly. Nested PCR and culture taken after the lesion subsided, using skin samples obtained from a site adjacent to the original biopsy, were both negative. We suggest that nested PCR-RFLP analysis might be useful for the rapid diagnosis of Lyme disease and for evaluating therapy.
Johnson, Michelle L.; Uhrich, Kathryn E.
2008-01-01
A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (Tg) and the antimicrobials' melting points (Tm) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease. PMID:19180627
Meticillin-resistant Staphylococcus pseudintermedius: clinical challenge and treatment options.
Frank, Linda A; Loeffler, Anette
2012-08-01
Meticillin-resistant Staphylococcus pseudintermedius (MRSP) has emerged as a major therapeutic challenge for small animal veterinarians over the past 10 years and continues to spread worryingly in many countries. This review focuses on the clinical aspects of MRSP infections seen in patients with skin disease and on currently available treatment options. In addition, it discusses the implications for in-contact people, other animals and the environment, because infection control strategies are likely to have a significant impact on treatment success and prevention of spread. There is currently no indication that MRSP is more virulent than meticillin-susceptible S. pseudintermedius, and reported infections have mostly been treated successfully, although possibly with a longer time to resolution than infections with more susceptible S. pseudintermedius. However, in vitro testing of MRSP isolates indicates resistance to most or all antibacterial agents licensed for use in pets. Based on susceptibility results, the most useful systemic antimicrobials may include chloramphenicol, rifampicin, amikacin, clindamycin and/or minocycline. Adverse effects of some of these medications may limit their usefulness. While in vitro susceptibility to vancomycin and linezolid is reported by some laboratories, use of these drugs in animals is strongly discouraged because of ethical considerations. Aggressive topical therapy has been effective as the only treatment in certain cases. Awareness, continued research and comprehensive management of infections are required by veterinary practitioners not only to help treat infected animals but also to limit the spread and prevent the establishment of this highly drug-resistant and zoonotic pathogen in veterinary facilities and in the community. © 2012 The Authors. Veterinary Dermatology © 2012 ESVD and ACVD.
Cognitive remission: a novel objective for the treatment of major depression?
Bortolato, Beatrice; Miskowiak, Kamilla W; Köhler, Cristiano A; Maes, Michael; Fernandes, Brisa S; Berk, Michael; Carvalho, André F
2016-01-22
Cognitive dysfunction in major depressive disorder (MDD) encompasses several domains, including but not limited to executive function, verbal memory, and attention. Furthermore, cognitive dysfunction is a frequent residual manifestation in depression and may persist during the remitted phase. Cognitive deficits may also impede functional recovery, including workforce performance, in patients with MDD. The overarching aims of this opinion article are to critically evaluate the effects of available antidepressants as well as novel therapeutic targets on neurocognitive dysfunction in MDD. Conventional antidepressant drugs mitigate cognitive dysfunction in some people with MDD. However, a significant proportion of MDD patients continue to experience significant cognitive impairment. Two multicenter randomized controlled trials (RCTs) reported that vortioxetine, a multimodal antidepressant, has significant precognitive effects in MDD unrelated to mood improvement. Lisdexamfetamine dimesylate was shown to alleviate executive dysfunction in an RCT of adults after full or partial remission of MDD. Preliminary evidence also indicates that erythropoietin may alleviate cognitive dysfunction in MDD. Several other novel agents may be repurposed as cognitive enhancers for MDD treatment, including minocycline, insulin, antidiabetic agents, angiotensin-converting enzyme inhibitors, S-adenosyl methionine, acetyl-L-carnitine, alpha lipoic acid, omega-3 fatty acids, melatonin, modafinil, galantamine, scopolamine, N-acetylcysteine, curcumin, statins, and coenzyme Q10. The management of cognitive dysfunction remains an unmet need in the treatment of MDD. However, it is hoped that the development of novel therapeutic targets will contribute to 'cognitive remission', which may aid functional recovery in MDD.
Lee, Yao-Chou; Hor, Lien-I; Chiu, Haw-Yen; Lee, Jing-Wei; Shieh, Shyh-Jou
2014-06-01
In Taiwan, the aquatic environment and endemic hepatitis contribute to the high susceptibility of Vibrio vulnificus infection. A multidisciplinary treatment protocol for necrotizing fasciitis caused by V. vulnificus was developed in our institute, namely, ceftriaxone or ceftazidime combined with doxycycline or minocycline followed by an emergency fasciotomy and intensive care unit admission. We retrospectively reviewed 100 cases to evaluate the effectiveness of our treatment protocol and identify independent predictors of mortality to improve clinical outcomes. Cases of culture-confirmed V. vulnificus infection between January 1996 and December 2011 were reviewed. Necrotizing fasciitis was surgically diagnosed if these criteria were met: necrotic fascia, "dishwater discharge", and loss of resistance while doing finger dissection along the fascia plane. One hundred cases met these criteria and were included for analysis. Eighteen patients died (18 % mortality). Unknown injury events, presence of multiple skin lesions, leukocytes < 10,000 cells/mm(3), platelets < 100,000/mm(3), serum creatinine ≥1.3 mg/dL, serum albumin < 2.5 mg/dL, and delayed treatment beyond 3 days post-injury or symptom onset were associated with significantly higher mortality. Multivariate analysis showed that treatment delayed beyond 3 days is an independent factor indicating a poor prognosis (OR 10.75, 95 % CI 1.02-113.39, p = 0.048). Early diagnosis and prompt treatment within 3 days post-injury or symptom onset should be the goal for treating patients with necrotizing fasciitis caused by V. vulnificus. Additional investigations to rescue patients with a prolonged disease course of necrotizing fasciitis (≥3 days) may be important.
Lin, Jiun-Nong; Lai, Chung-Hsu; Yang, Chih-Hui; Huang, Yi-Han; Lin, Hsi-Hsun
2018-05-28
Elizabethkingia anophelis has recently emerged as a cause of life-threatening infections in humans. We aimed to investigate the clinical and molecular characteristics of E. anophelis. A clinical microbiology laboratory database was searched to identify patients with Elizabethkingia infections between 2005 and 2016. Isolates were re-identified and their species were confirmed using 16S rRNA gene sequencing. Patients with E. anophelis infections were included in this study. Clinical information, antimicrobial susceptibility and mutations in DNA gyrase and topoisomerase IV were analysed. A total of 67 patients were identified to have E. anophelis infections, including 47 men and 20 women, with a median age of 61 years. Comorbidity was identified in 85.1% of the patients. Among the 67 E. anophelis isolates, 40 (59.7%) were isolated from blood. The case fatality rate was 28.4%. Inappropriate empirical antimicrobial therapy was an independent risk factor for mortality (adjusted OR = 10.01; 95% CI = 1.20-83.76; P = 0.034). The isolates were 'not susceptible' to multiple antibiotics. All the isolates were susceptible to minocycline. Susceptibilities to ciprofloxacin and levofloxacin were 4.5% and 58.2%, respectively. Mutations in DNA gyrase subunit A were identified in 11 isolates that exhibited high-level fluoroquinolone resistance. Minocycline has the potential to be the drug of choice in patients with E. anophelis infections. Additional investigations are needed to determine the optimal antimicrobial agents to treat this life-threatening infection.
Raad, Issam; Hachem, Ray; Tcholakian, Robert K.; Sherertz, Robert
2002-01-01
To determine the efficacy of antibiotic catheter lock solution in preventing catheter-related infections, silicone catheters were tunneled and inserted into the jugular veins of 18 rabbits. The catheters were challenged with an intraluminal injection of 105 CFU of slime-producing Staphylococcus epidermidis in 0.1 ml of water. The catheters were maintained on heparin (100 IU/ml) flush for the first 3 days. On day 3, quantitative blood samples for culture were obtained from the catheters and ear veins, which documented catheter-related bacteremia, and the rabbits were randomized to have their catheters flushed as follows: five animals were continued on heparin (100 IU/ml), five animals received vancomycin (3 mg/ml) with heparin (100 IU/ml), and eight animals received 3 mg of minocycline per ml with 30 mg of EDTA per ml (M-EDTA). All animals were killed at day 7. Blood, catheters, jugular veins, and heart valves were cultured quantitatively. Animals maintained on heparin developed catheter-related colonization, bacteremia, septic phlebitis, and endocarditis. Vancomycin-heparin partially prevented catheter colonization, bacteremia, and phlebitis (P = 0.2). M-EDTA completely prevented catheter colonization, catheter-related bacteremia, and phlebitis in all of the animals (P < 0.01). Tricuspid endocarditis was equally prevented by vancomycin-heparin and M-EDTA (P ≤ 0.06). In conclusion, the M-EDTA catheter flush solution was highly efficacious in preventing catheter-related colonization, bacteremia, septic phlebitis, and endocarditis in rabbits. PMID:11796338
Chemical pleurodesis for malignant pleural effusions.
Walker-Renard, P B; Vaughan, L M; Sahn, S A
1994-01-01
To provide information about available agents for chemical pleurodesis. A MEDLINE search (1966 to October 1992) was conducted using the terms malignant pleural effusion and pleurodesis. All articles containing references to patients with recurrent, symptomatic, malignant pleural effusions treated with chemical pleurodesis were selected and reviewed for pleurodesis regimen, number of patients treated, success rate (complete response), and adverse effects. The agents studied included doxycycline, minocycline, tetracycline, bleomycin, cisplatin, doxorubicin, etoposide, fluorouracil, interferon-beta, mitomycin-c, Corynebacterium parvum, methylprednisolone, and talc. Independent extraction by three observers. Studies including a total of 1168 patients with malignant pleural effusions were reviewed for efficacy of the pleurodesis agent and studies including 1140 patients were reviewed for toxicity. Chemical pleurodesis produced a complete response in 752 (64%) of 1168 patients. The success rate of the pleurodesis agents varied from 0% with etoposide to 93% with talc. Corynebacterium parvum, the tetracyclines, and bleomycin had success rates of 76%, 67%, and 54%, respectively. The most commonly reported adverse effects were pain (265 of 1140, 23%) and fever (220 of 1140, 19%). Doxycycline and minocycline, with success rates of 72% and 86%, respectively, appear to be effective tetracycline-replacement agents in the few patients studied. Talc appears to be the most effective and least expensive agent; however, insufflation has the disadvantages of the expense of thoracoscopy and the usual need for general anesthesia. Bleomycin appears to be less effective than talc and the tetracyclines and is substantially more expensive.
Park, Jong-Seok; Lim, Youn-Mook; Baik, Jae; Jeong, Jin-Oh; An, Sung-Jun; Jeong, Sung-In; Gwon, Hui-Jeong; Khil, Myung-Seob
2018-06-14
β-Glucan can provide excellent environment to apply to drug carrier due to its immunological and anti-inflammatory effect. Minocycline hydrochloride (MH) has excellent oral bioavailability pharmacological properties. Specifically, MH is effectively absorbed into the gingiva for periodontal disease treatment. In this study, we attempt to develop MH loaded β-glucan hydrogel for periodontal disease treatment through radiation-crosslinking technique. In addition, MH loaded β-glucan hydrogels were tested for their cytotoxicity and antibacterial activity. Finally, we conducted an in vivo study to demonstrate the potential to prevent the invasion of bacteria to treat periodontal disease. The gel content and compressive strength of the β-glucan hydrogels increased as the β-glucan content and the absorbed dose (up to 7 kGy) increased. For a radiation dose of 7 kGy, the gelation and the compressive strength of a 6 wt% β-glucan hydrogel were approximately 92% and 270 kPa, respectively. As a drug, MH was consistently released from β-glucan hydrogels, reaching 80% at approximately 90 min. Furthermore, the MH loaded β-glucan hydrogels showed no cytotoxicity. The MH loaded β-glucan hydrogels exhibited good antibacterial activity against Porphyromonas gingivalis. In addition, MH loaded β-glucan hydrogel demonstrated the potential of a good capability to prevent the invasion of bacteria and to treat wounds. Copyright © 2017. Published by Elsevier B.V.
Osato, K; Tsugami, H; Harada, K; Maruyama, J
1986-01-01
During the three years 1981-3, 134 (9.1%) of 1473 patients presenting at our clinics were found to be infected with penicillinase producing strains of Neisseria gonorrhoeae (PPNG). Minimum inhibitory concentrations (MICs) of benzylpenicillin and ampicillin against these PPNG strains were 8 mg/l or more, whereas against non-PPNG strains they were consistently 4 mg/l or less. In contrast, the MIC of BRL25000 (two parts amoxycillin and one part clavulanic acid, the beta lactamase inhibitor) was 4 mg/l or less even against PPNG strains. MICs of a number of other drugs commonly used to treat gonorrhoea, such as cephaloridine, cefoxitin, tetracycline, doxycycline, minocycline, kanamycin, and spectinomycin, showed no appreciable differences between non-PPNG and PPNG strains and the MIC of cephaloridine in particular was relatively high. BRL25000 proved to be very effective in the treatment of PPNG infection and cured all of 121 patients treated. A daily dose of 2.25g, cured 105 patients in two days, 11 patients in three days, four patients in four days, and one patient in five days. A new rapid diagnostic method for detecting PPNG strains, capable of application at an outpatient clinic and providing a result on the following day, is described. Images PMID:3089905
Quick, Eamon D.; Leser, J. Smith; Tyler, Kenneth L.
2014-01-01
ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that causes significant neuroinvasive disease involving the brain and/or spinal cord. Experimental mouse models of WNV infection have established the importance of innate and adaptive immune responses in controlling the extent and severity of central nervous system (CNS) disease. However, differentiating between immune responses that are intrinsic to the CNS and those that are dependent on infiltrating inflammatory cells has proven difficult. We used a murine ex vivo spinal cord slice culture (SCSC) model to determine the innate immune processes specific to the CNS during WNV infections. By 7 days after ex vivo infection of SCSCs, the majority of neurons and a substantial percentage of astrocytes were infected with WNV, resulting in apoptotic cell death and astrogliosis. Microglia, the resident immune cells of the CNS, were activated by WNV infection, as exemplified by their amoeboid morphology, the development of filopodia and lamellipodia, and phagocytosis of WNV-infected cells and debris. Microglial cell activation was concomitant with increased expression of proinflammatory cytokines and chemokines, including CXCL10, CXCL1, CCL5, CCL3, CCL2, tumor necrosis factor alpha (TNF-α), TNF-related apoptosis-inducing ligand (TRAIL), and interleukin-6 (IL-6). The application of minocycline, an inhibitor of neuroinflammation, altered the WNV-induced proinflammatory cytokine/chemokine expression profile, with inhibited production of CCL5, CCL2, and IL-6. Our findings establish that CNS-resident cells have the capacity to initiate a robust innate immune response against WNV infection in the absence of infiltrating inflammatory cells and systemic immune responses. IMPORTANCE There are no specific treatments of proven efficacy available for WNV neuroinvasive disease. A better understanding of the pathogenesis of WNV CNS infection is crucial for the rational development of novel therapies. Development of a spinal cord slice culture (SCSC) model facilitates the study of WNV pathogenesis and allows investigation of the intrinsic immune responses of the CNS. Our studies demonstrate that robust CNS innate immune responses, including microglial activation and proinflammatory cytokine/chemokine production, develop independently of contributions from the peripheral immune system and CNS-infiltrating inflammatory cells. PMID:25165111
Morphological effects of MMPs inhibitors on the dentin bonding
Li, He; Li, Tianbo; Li, Xiuying; Zhang, Zhimin; Li, Penglian; Li, Zhenling
2015-01-01
Matrix metalloproteinases (MMPs) have been studied extensively, and MMP inhibitors have been used as dental pretreatment agents prior to dentin bonding because they reduce collagen fiber degradation and improve bonding strength. However, morphologic characteristics of the collagen network after etching and of the post-adhesive dentin hybrid layers (DHL) after MMP inhibitors pretreatment have not been evaluated. Thus, we investigated demineralized dentin pretreated with chlorhexidine (CHX) and minocycline (MI) in an etch- and -rinse adhesive system with field emission scanning electron microscopy (FESEM) and immuno-gold labeling markers to observe the collagen network and DHL. FESEM revealed after CHX and MI, a demineralized dentin surface and improved collagen network formation, reduced collagen degradation, and distinct gold-labeling signals. Applying adhesive after either MMP inhibitor created a better dentin interface as evidenced by immuno-gold staining, better adhesive penetration, and higher DHL quality. With microtensile bond strength tests (µTBS) we estimated bonding strength using µTBS data. Immediate µTBS was enhanced with MMP inhibitor application to the bonding surface, and the CHX group was significantly different than non-treated etched surfaces, but no significant change was detected in the MI group. Surface micromorphology of the fractured dentin resin restoration showed that the CHX group had a better resin and dentin tube combination. Both MMP inhibitors created uniform resin coverage. Thus, morphologic results and µTBS data suggest that CHX and MI can inhibit MMP activity, improve immediate bonding strength, and enhance dentin bonding stability with an etch- and -rinse adhesive system. PMID:26379873
Acinetobacter Prosthetic Joint Infection Treated with Debridement and High-Dose Tigecycline.
Vila, Andrea; Pagella, Hugo; Amadio, Claudio; Leiva, Alejandro
2016-12-01
Prosthesis retention is not recommended for multidrug-resistant Acinetobacter prosthetic joint infection due to its high failure rate. Nevertheless, replacing the prosthesis implies high morbidity and prolonged hospitalization. Although tigecycline is not approved for the treatment of prosthetic joint infection due to multidrug resistant Acinetobacter baumannii, its appropriate use may preclude prosthesis exchange. Since the area under the curve divided by the minimum inhibitory concentration is the best pharmacodynamic predictor of its efficacy, we used tigecycline at high dose, in order to optimize its efficacy and achieve implant retention in 3 patients who refused prosthesis exchange. All patients with prosthetic joint infections treated at our Institution are prospectively registered in a database. Three patients with early prosthetic joint infection of total hip arthroplasty due to multidrug resistant A. baumannii were treated with debridement, antibiotics and implant retention, using a high maintenance dose of tigecycline (100 mg every 12 hours). The cases were retrospectively reviewed. All patients signed informed consent for receiving off-label use of tigecycline. Tigecycline was well tolerated, allowing its administration at high maintenance dose for a median of 40 days (range 30-60). Two patients were then switched to minocycline at standard doses for a median of 3.3 months in order to complete treatment. Currently, none of the patients showed relapse. Increasing the dose of tigecycline could be considered as a means to better attain pharmacodynamic targets in patients with severe or difficult-to-treat infections. Tigecycline at high maintenance dose might be useful when retention of the implant is attempted for treatment for prosthetic joint infections due to multidrug resistant Acinetobacter. Although this approach might be promising, off-label use of tigecycline should be interpreted cautiously until prospective data are available. Tigecycline is probably under-dosed for the treatment of implant and biofilm associated infections.
Standardized method to produce tetracycline-stained human molar teeth in vitro.
Chan, Daniel C N; Rozier, Gregory Shayne; Steen, Angela; Browning, William D; Mozaffari, Mahmood S
2006-09-01
This study tested the hypothesis that exposure of human molar teeth to tetracycline (TCN) derivatives in vitro results in tooth discoloration resembling the clinical presentation of TCN staining. The effects of exposure of 20 extracted human molar teeth to distilled water, chlortetracycline, doxycycline, or minocycline were compared. The baseline color of each tooth was analyzed with a dental spectrophotometer. The pulp chambers were each filled with a TCN derivative solution and then sealed. The teeth were placed in a centrifuge tube and then centrifuged at 2800 rpm for 20 minutes. Color change was monitored weekly for 7 weeks. Digital images of the surfaces were recorded. For each specimen at every evaluation period, color change from baseline was calculated using Commission Internationale d'Eclairage (CIE) Delta E 2000 (deltae00). There was a significant association between the type of derivative used and deltae00, as well as between the evaluation period and deltae00. There was also a significant association between the interaction term, derivative x evaluation period, and deltae00. Results of the Holm-Sidak post hoc test demonstrated that all 3 TCN derivatives were associated with significantly larger deltae00 than the control group (P < or = .05). All 3 TCN derivative solutions produced significant color changes as time progressed. Different TCN derivatives produced a different L* (lightness), C* (chroma), and H* (hue), with minocycline behaving distinctly differently from chlortetracycline and doxycycline. The model could be used to study the underlying mechanisms of TCN staining as well as many aspects of vital tooth
Antibiotic-Impregnated Central Venous Catheters Do Not Change Antibiotic Resistance Patterns.
Turnbull, Isaiah R; Buckman, Sara A; Horn, Christopher B; Bochicchio, Grant V; Mazuski, John E
2018-01-01
Antibiotic-impregnated central venous catheters (CVCs) decrease the incidence of infection in high-risk patients. However, use of these catheters carries the hypothetical risk of inducing antibiotic resistance. We hypothesized that routine use of minocycline and rifampin-impregnated catheters (MR-CVC) in a single intensive care unit (ICU) would change the resistance profile for Staphylococcus aureus. We reviewed antibiotic susceptibilities of S. aureus isolates obtained from blood cultures in a large urban teaching hospital from 2002-2015. Resistance patterns were compared before and after implementation of MR-CVC use in the surgical ICU (SICU) in August 2006. We also compared resistance patterns of S. aureus obtained in other ICUs and in non-ICU patients, in whom MR-CVCs were not used. Data for rifampin, oxacillin, and clindamycin were available for 9,703 cultures; tetracycline resistance data were available for 4,627 cultures. After implementation of MR-CVC use in the SICU, rifampin resistance remained unchanged, with rates the same as in other ICU and non-ICU populations (3%). After six years of use of MR-CVCs in the SICU, the rate of tetracycline resistance was unchanged in all facilities (1%-3%). The use of MR-CVCs was not associated with any change in S. aureus oxacillin-resistance rates in the SICU (66% vs. 60%). However, there was a significant decrease in S. aureus clindamycin resistance (59% vs. 34%; p < 0.05) in SICU patients. Routine use of rifampin-minocycline-impregnated CVCs in the SICU was not associated with increased resistance of S. aureus isolates to rifampin or tetracyclines.
Minocycline HCl microspheres reduce red-complex bacteria in periodontal disease therapy.
Goodson, J Max; Gunsolley, John C; Grossi, Sara G; Bland, Paul S; Otomo-Corgel, Joan; Doherty, Frances; Comiskey, Judy
2007-08-01
The objective of this trial was to measure the antimicrobial effects of a minocycline HCl microsphere (MM) local drug-delivery system when used as an adjunct to scaling and root planing (SRP). DNA probe analysis for 40 bacteria was used to evaluate the oral bacteria of 127 subjects with moderate to advanced chronic periodontitis. Subjects were randomly assigned to either SRP alone (N = 65) or MM + SRP (N = 62). The primary endpoints of this study were changes in numbers and proportions of the red-complex bacteria (RCB) and the sum of Porphyromonas gingivalis, Tannerella forsythia (formally T. forsythensis), and Treponema denticola relative to 40 oral bacteria at each test site from baseline to day 30. Numbers of RCB from the five test sites were averaged to provide a value for each subject. MM + SRP reduced the proportion of RCB by 6.49% and the numbers by 9.4 x 10(5). The reduction in RCB proportions and numbers by SRP alone (5.03% and 5.1 x 10(5), respectively) was significantly less. In addition, MM + SRP reduced probing depth by 1.38 mm (compared to 1.01 mm by SRP alone), bleeding on probing was reduced by 25.2% (compared to 13.8% by SRP alone), and a clinical attachment level gain of 1.16 mm (compared to 0.80 mm by SRP alone) was achieved. These observations support the hypothesis that RCBs are responsible for periodontal disease and that local antimicrobial therapy using MM + SRP effectively reduces numbers of RCBs and their proportions to a greater extent than SRP alone.
Azevedo, E P; Ledo, J H; Barbosa, G; Sobrinho, M; Diniz, L; Fonseca, A C C; Gomes, F; Romão, L; Lima, F R S; Palhano, F L; Ferreira, S T; Foguel, D
2013-09-05
Oculoleptomeningeal amyloidosis (OA) is a fatal and untreatable hereditary disease characterized by the accumulation of transthyretin (TTR) amyloid within the central nervous system. The mechanisms underlying the pathogenesis of OA, and in particular how amyloid triggers neuronal damage, are still unknown. Here, we show that amyloid fibrils formed by a mutant form of TTR, A25T, activate microglia, leading to the secretion of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nitric oxide. Further, we found that A25T amyloid fibrils induce the activation of Akt, culminating in the translocation of NFκB to the nucleus of microglia. While A25T fibrils were not directly toxic to neurons, the exposure of neuronal cultures to media conditioned by fibril-activated microglia caused synapse loss that culminated in extensive neuronal death via apoptosis. Finally, intracerebroventricular (i.c.v.) injection of A25T fibrils caused microgliosis, increased brain TNF-α and IL-6 levels and cognitive deficits in mice, which could be prevented by minocycline treatment. These results indicate that A25T fibrils act as pro-inflammatory agents in OA, activating microglia and causing neuronal damage.
Kashimoto, Yoshinori; Kurosaka, Yuichi; Karibe, Yukie; Uoyama, Saori; Fujikawa, Katsuko; Namba, Kenji; Otani, Tsuyoshi; Yamaguchi, Keizo
2009-10-01
The in vitro and in vivo antibacterial activities of levofloxacin (LVFX), a quinolone antibacterial, against clinically isolated Legionella pneumophila were investigated in comparison with those of existing antimicrobial agents approved for legionnaires disease. The minimum inhibitory concentrations (MICs) of the agents against 42 strains of L. pneumophila isolated in Japan were determined using agar dilution methods with buffered starch yeast extract agar. MIC90 of LVFX was 0.03 microg/ml and this activity was similar to ciprofloxacin and pazufloxacin, and higher than telithromycin and minocycline. Therapeutic efficacy of LVFX was studied against a pneumonia model induced by intranasal of L. pneumophila strain suzuki serogoup 1 in DBA/2 mice. Therapeutic doses in mice were selected that would closely match human exposure profile, area under the concentration-time curve (AUC) for a human oral dose of LVFX at 500 mg once a day. LVFX decreased significantly the bacterial burden in the lungs from the next day of commencing treatment. These results, including in vitro antibacterial activity against clinical isolates and therapeutic efficacy of a humanized dosing regimen, provide good evidence to support the use of LVFX at 500 mg once a day for treating patient with legionnaires disease.
[Breast-feeding (part II): Lactation inhibition--Guidelines for clinical practice].
Marcellin, L; Chantry, A A
2015-12-01
Provide guidelines for clinical use of non-pharmacological and pharmacological treatments of inhibition of lactation and the management of the weaning. Systematically review of the literature between 1972 and May 2015 from the databases Medline, Google Scholar, Cochrane Library, and the international recommendations about inhibition of lactation with establishment of levels of evidence (LE) and grades of recommendation. The available data on the effectiveness of non-pharmacological measures are limited, with very low levels of evidence that fail to make recommendations (Professional consensus). Pharmacological treatments for inhibition of lactation should not be given routinely to women who do not wish to breast-feed (Professional consensus). For women aware of the risks of pharmacological treatments of inhibition of lactation, lisuride and cabergolin are the preferred drugs (Professional consensus). Because of potentially serious adverse effects, bromocriptin is contraindicated in inhibiting lactation (Professional consensus). Available data on management of lactation weaning fail to provide recommendation and no treatment is recommended (Professional consensus). Bromocriptin is contraindicated in the treatment of inhibiting lactation. Women who do not wish to breast-feed have to be informed of the benefits and disadvantages of the pharmacological treatment for inhibition of lactation. Copyright © 2015. Published by Elsevier Masson SAS.
In vitro antimycoplasmal activities of rufloxacin and its metabolite MF 922.
Furneri, P M; Bisignano, G; Cerniglia, G; Nicoletti, G; Cesana, M; Tempera, G
1994-01-01
The in vitro activities of rufloxacin and its metabolite, MF 922, were compared with those of ofloxacin, ciprofloxacin, erythromycin, and minocycline against Mycoplasma pneumoniae, Mycoplasma hominis, Mycoplasma fermentans, and Ureaplasma urealyticum. Rufloxacin, MF 922, and ciprofloxacin shared similar activities against all mycoplasmas tested. (MICs for 90% of isolates tested [MIC90s], 0.5 to 4 micrograms/ml. Ofloxacin had the lowest MIC90s for U. urealyticum, M. fermentans, and M. hominis (MIC90s, 0.25 to 1 micrograms/ml) and erythromycin had the lowest MIC90 for M. pneumoniae (MIC90, 0.004 micrograms/ml). PMID:7872762
Phaeohyphomycosis caused by Exophiala jeanselmei in a patient with polymyalgia rheumatica.
Arakaki, Osao; Asato, Yutaka; Yagi, Nobutake; Taira, Kiyohito; Yamamoto, Yu-Ichi; Nonaka, Kimiko; Hosokawa, Atsushi; Kayo, Susumu; Hagiwara, Keisuke; Uezato, Hiroshi
2010-04-01
An 87-year-old man, a gardener in Okinawa, first noticed a tumor on the dorsum of his right hand in November 2005. He had been taking prednisolone for the treatment of polymyalgia rheumatica since 2000. A nearby dermatologist incised the tumor for pus drainage in February 2006. In April of the same year, the dome-like tumor reappeared. The same treatment was repeated. Because the culture of the pus revealed fungi at that time, terbinafine hydrochloride and minocycline were administrated under the diagnosis of a deep fungal infection. After a short remission, the tumor recurred in November of the same year and in May and August of 2007 regardless of the repeated incision and pus drainage. He was referred to our hospital on 27 September 2007. His first physical examination at our outpatient office showed a skin-colored, well-demarcated, multilocular, cystic subcutaneous tumor on the dorsum of his right hand. Histopathological examination revealed a pseudocyst with fibrous walls of connective tissue. Continuous, bead-like hyphae, positive with periodic acid-Schiff stain and Grocott stain, were found within the pseudocyst. Morphological and molecular biological examinations of the separately cultured specimens identified the causative agent as Exophiala jeanselmei. The entire cyst was removed under local anesthesia, and an artificial dermis made of silicon membrane was applied to the wound. Skin graft was performed in November after confirming no recurrence of the fungal infection. Terbinafine hydrochloride 125 mg/day has continued. No recurrence has been observed up to now.
Chang, Yi-Cheng; Lo, Hsueh-Hsia; Hsieh, Hsiu-Ying; Chang, Shan-Min
2015-10-01
The clinical impact of Chryseobacterium indologenes infection is increasing; nevertheless, most studies had been conducted in northern Taiwan, but rarely in central Taiwan. Using 16S rRNA gene sequencing, 34 isolates of C. indologenes were identified at the Central Region Hospital Alliance between 2007 and 2011. Vitek 2 and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) methods were compared for the feasibility to identify this bacterium. Drug susceptibility test, biofilm formation, and pulsed-field gel electrophoresis (PFGE) were also performed. All isolates were collected from hospitalized patients with an average age of 70.8 ± 18.5 years. The most prevalent sample was urine (50.0%), followed by sputum (32.4%). The accuracy rate of species-level identification reached 94.1% using the Vitek 2 method and 85.3% using the MALDI-TOF MS method. All of the isolates were resistant to gentamicin, amikacin, ceftriaxone, chloramphenicol, colistin, and imipenem, but completely susceptible to minocycline. While analyzing biofilm-forming ability, 38.2% (13/34) of C. indologenes isolates displayed a positive phenotype using the Luria-Bertani (LB) medium. However, 80.0% (4/5) of invasive isolates were biofilm producers. Based on PFGE analysis, several clusters were found, and the possible intrahospital spread of this bacterium in this area could not be excluded. Both Vitek 2 and MALDI-TOF MS methods showed good ability in the determination of C. indologenes. Among the examined drugs, minocycline was the most potent one. As many as 38.2% C. indologenes isolates showed biofilm-forming ability. PFGE analyses revealed the possible intrahospital transmission of this bacterium in central Taiwan. Copyright © 2014. Published by Elsevier B.V.
Alcaraz, Eliana; Garcia, Carlos; Papalia, Mariana; Vay, Carlos; Friedman, Laura; Passerini de Rossi, Beatriz
2018-05-25
The aim of this work was to investigate the presence of selected potential virulence factors, susceptibility and clonal relatedness among 63 Stenotrophomonas maltophilia isolates recovered from patients exposed to invasive devices in a university hospital in Argentina between January 2004 and August 2012. Genetic relatedness was assessed by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and pulsed-field gel electrophoresis (PFGE). Isolates were characterized by antimicrobial resistance, the presence and/or expression of potential virulence determinants, and virulence in the Galleria mellonella model.Results/Key findings. ERIC-PCR generated 52 fingerprints, and PFGE added another pattern. Resistance to trimethoprim-sulfamethoxazole (6.35 %), levofloxacin (9.52 %) and ciprofloxacin (23.80 %) was detected. All isolates were susceptible to minocycline. All isolates were lipase, protease and siderophore producers, while all but Sm61 formed biofilms. However, 11/63 isolates did not amplify the major extracellular protease-coding gene (stmPr1). Sm61 is an stmPr1-negative isolate, and showed (as did Sm13 and the reference strain K279a) strong proteolysis and siderophore production, and high resistance to hydrogen peroxide. The three isolates were virulent in the G. mellonella model, while Sm10, a low-resistance hydrogen peroxide stmPr1-negative isolate, and weak proteolysis and siderophore producer, was not virulent. This is the first epidemiological study of the clonal relatedness of S. maltophilia clinical isolates in Argentina. Great genomic diversity was observed, and only two small clusters of related S. maltophilia types were found. Minocycline and trimethoprim-sulfamethoxazole were the most active agents. S. maltophilia virulence in the G. mellonella model is multifactorial, and further studies are needed to elucidate the role of each potential virulence factor.
Abbas, O; Marrouch, N; Kattar, M M; Zeynoun, S; Kibbi, A G; Rached, R A; Araj, G F; Ghosn, S
2011-01-01
Only a few studies characterized cutaneous non-tuberculous Mycobacterium (NTM) infections in this region of the world. Objective The aim of this study was to describe the epidemiological, clinical and histological findings of cutaneous NTM infections in Lebanon. Retrospective study of 17 patients (19 histological specimens) diagnosed with cutaneous NTM infections and confirmed by culture-based partial sequencing of the 16S rRNA gene at the American University of Beirut Medical Center between 2005 and 2008. Of 17 cases, 14 were caused by Mycobacterium marinum. All patients were immunocompetent except for one. Clinically, the most common presentation was multiple sporotrichoid lesions over an extremity (8/17). Many patients had peculiar presentations including bruise-like patches, herpetiform lesions, annular ulcerated plaques, symmetrical nodules over the buttocks and locally disseminated lesions with surrounding pale halo. Almost all patients cleared their infection on either minocycline or clarithromycin monotherapies. Histologically, a dermal small vessel proliferation with mixed inflammation (granulation tissue-like changes) was identified in 58% of specimens. The most common type of granulomatous inflammation was the suppurative (47%) followed by the tuberculoid (30%), sarcoidal (11%), and palisading (5%) types. Lichenoid granulomatous dermatitis was noted in 42% of cases. Special staining highlighted mycobacteria in only two specimens. The incidence of cutaneous NTM infections is high in our area. Many patients had peculiar clinical presentations. Our study is the second to report the common presence of granulation tissue-like changes as a good histological indicator of cutaneous NTM infections. Minocycline and clarithromycin remain the drugs of choice in our area. © 2010 The Authors. Journal of the European Academy of Dermatology and Venereology © 2010 European Academy of Dermatology and Venereology.
Albuquerque, Maria T P; Ryan, Stuart J; Münchow, Eliseu A; Kamocka, Maria M; Gregory, Richard L; Valera, Marcia C; Bottino, Marco C
2015-08-01
Actinomyces naeslundii has been recovered from traumatized permanent teeth diagnosed with necrotic pulps. In this work, a triple antibiotic paste (TAP)-mimic scaffold is proposed as a drug-delivery strategy to eliminate A. naeslundii dentin biofilm. Metronidazole, ciprofloxacin, and minocycline were added to a polydioxanone (PDS) polymer solution and spun into fibrous scaffolds. Fiber morphology, mechanical properties, and drug release were investigated by using scanning electron microscopy, microtensile testing, and high-performance liquid chromatography, respectively. Human dentin specimens (4 × 4 × 1 mm(3), n = 4/group) were inoculated with A. naeslundii (ATCC 43146) for 7 days for biofilm formation. The infected dentin specimens were exposed to TAP-mimic scaffolds, TAP solution (positive control), and pure PDS (drug-free scaffold). Dentin infected (7-day biofilm) specimens were used for comparison (negative control). Confocal laser scanning microscopy was done to determine bacterial viability. Scaffolds displayed a submicron mean fiber diameter (PDS = 689 ± 312 nm and TAP-mimic = 718 ± 125 nm). Overall, TAP-mimic scaffolds showed significantly (P ≤ .040) lower mechanical properties than PDS. Within the first 24 hours, a burst release for all drugs was seen. A sustained maintenance of metronidazole and ciprofloxacin was observed over 4 weeks, but not for minocycline. Confocal laser scanning microscopy demonstrated complete elimination of all viable bacteria exposed to the TAP solution. Meanwhile, TAP-mimic scaffolds led to a significant (P < .05) reduction in the percentage of viable bacteria compared with the negative control and PDS. Our findings suggest that TAP-mimic scaffolds hold significant potential in the eradication/elimination of bacterial biofilm, a critical step in regenerative endodontics. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Fundaoğlu Küçükekenci, Funda; Çakici, Fatih; Küçükekenci, Ahmet Serkan
2018-04-14
To investigate teeth's antibiotic-induced color differences after bleaching using two different techniques. One hundred twenty extracted maxillar human incisors were examined. The specimens were randomly divided into six groups, each receiving one of six antibiotic paste fillings: (1) triple antibiotic paste (TAP) with minocycline, (2) double antibiotic paste (DAP), (3) TAP with amoxicillin, (4) TAP with cefaclor, (5) TAP with doxycycline, and (6) no filling (control group). Spectrophotometric measurements were obtained at baseline and then during the first, second, and third weeks after paste placement. The specimens discolored by antibiotics pastes were randomly divided into two subgroups: (1) internal bleaching with hydrogen peroxide (H 2 O 2) and (2) internal bleaching with H 2 O 2 plus Nd-YAG laser irradiation. The ∆E value was calculated and analyzed using a two-way analysis of variance and post-hoc Tukey's test (α = 0.05). The ∆E for all groups showed color differences exceeding the perceptibility threshold (∆E ˃ 3.7) at all time points except in the control and DAP groups. Minocycline-induced TAP showed the most severe coronal discoloration (32.42). When the ∆E was examined, thermo/photo bleaching (22.01 ± 8.23) caused more bleaching than walking bleaching (19.73 ± 5.73) at every time point (P = 0.19). No group returned to the original color after bleaching (P < 0.05). Except for DAP, all antibiotic pastes caused discoloration. Internal bleaching with Nd-YAG laser can be useful for bleaching/removing this discoloration. For clinically successful final appearances, understanding the effects of bleaching procedures on antibiotic paste discoloration is important.
Vinson, Amy E; Dufort, Elizabeth M; Willis, Matthew D; Eberson, Craig P; Harwell, Joseph I
2010-07-01
Drug rash, eosinophilia, and systemic symptoms syndrome is a type of drug hypersensitivity reaction characterized by the clinical triad of skin eruption, fever, and internal organ involvement. Drug rash, eosinophilia, and systemic symptoms syndrome has rarely been reported in association with vancomycin or in the pediatric population. There have only been four pediatric case reports of drug rash, eosinophilia, and systemic symptoms syndrome and three cases of drug rash, eosinophilia, and systemic symptoms syndrome involving vancomycin published in the English literature to date. We describe two pediatric cases of drug rash, eosinophilia, and systemic symptoms syndrome to illustrate the range in severity of presentation. The first case illustrates drug rash, eosinophilia, and systemic symptoms syndrome associated with vancomycin exposure in a 14-yr-old boy with Duchenne muscular dystrophy after posterior spinal fusion, whose clinical presentation was indistinguishable from toxic shock syndrome. The second case illustrates a milder and more typical presentation of drug rash, eosinophilia, and systemic symptoms syndrome in a 14-yr-old boy being treated with minocycline for acne. We also present a review of the literature relevant to this syndrome. : Drug rash, eosinophilia, and systemic symptoms syndrome is relatively unknown among general pediatricians and pediatric intensivists and may potentially become more common with the increasing use of long-term medications in the pediatric population. Our cases demonstrate the importance of an awareness of drug rash, eosinophilia, and systemic symptoms syndrome among general pediatricians and pediatric intensivists because drug rash, eosinophilia, and systemic symptoms syndrome may present in any range of severity, from indolent illness to frank and refractory shock.
Rumbo, C.; Gato, E.; López, M.; Ruiz de Alegría, C.; Fernández-Cuenca, F.; Martínez-Martínez, L.; Vila, J.; Pachón, J.; Cisneros, J. M.; Rodríguez-Baño, J.; Pascual, A.
2013-01-01
We investigated the mechanisms of resistance to carbapenems, aminoglycosides, glycylcyclines, tetracyclines, and quinolones in 90 multiresistant clinical strains of Acinetobacter baumannii isolated from two genetically unrelated A. baumannii clones: clone PFGE-ROC-1 (53 strains producing the OXA-58 β-lactamase enzyme and 18 strains with the OXA-24 β-lactamase) and clone PFGE-HUI-1 (19 strains susceptible to carbapenems). We used real-time reverse transcriptase PCR to correlate antimicrobial resistance (MICs) with expression of genes encoding chromosomal β-lactamases (AmpC and OXA-51), porins (OmpA, CarO, Omp33, Dcap-like, OprB, Omp25, OprC, OprD, and OmpW), and proteins integral to six efflux systems (AdeABC, AdeIJK, AdeFGH, CraA, AbeM, and AmvA). Overexpression of the AdeABC system (level of expression relative to that by A. baumannii ATCC 17978, 30- to 45-fold) was significantly associated with resistance to tigecycline, minocycline, and gentamicin and other biological functions. However, hyperexpression of the AdeIJK efflux pump (level of expression relative to that by A. baumannii ATCC 17978, 8- to 10-fold) was significantly associated only with resistance to tigecycline and minocycline (to which the TetB efflux system also contributed). TetB and TetA(39) efflux pumps were detected in clinical strains and were associated with resistance to tetracyclines and doxycycline. The absence of the AdeABC system and the lack of expression of other mechanisms suggest that tigecycline-resistant strains of the PFGE-HUI-1 clone may be associated with a novel resistance-nodulation-cell efflux pump (decreased MICs in the presence of the inhibitor Phe-Arg β-naphthylamide dihydrochloride) and the TetA(39) system. PMID:23939894
Miguez, Gonzalo; Soares, Julia S.; Miller, Ralph R.
2015-01-01
Two lick-suppression experiments with rats assessed interference with behavior indicative of conditioned inhibition by a latent inhibition treatment as a function of test context. We asked what effect the test context has, given identical latent inhibition treatment in Phase 1 and identical conditioned inhibition training in Phase 2. In Experiment 1, an AAA vs. AAB context-shift design determined that latent inhibition treatment in Phase 1 attenuated behavior indicative of conditioned inhibition training administered in Phase 2 regardless of the test context, which could reflect a failure to either acquire or express conditioned inhibition. In Experiment 2, an ABA vs. ABB design found that test performance in Contexts A and B reflected the treatments that had been administered in those contexts (i.e., conditioned inhibition was observed in Context B but not A), which could reflect either context specificity of latent inhibition or context specificity of conditioned inhibition. In either case, latent inhibition of conditioned inhibition training in at least some situations was seen to reflect an expression deficit rather than an acquisition deficit. These data, in conjunction with prior reports, suggest that latent inhibition is relatively specific to the context in which it was administered, whereas conditioned inhibition is specific to its training context only when it is the second learned relationship concerning the target cue. These experiments are part of a larger effort to delineate control by the test context of two-phase associative interference as a function of the nature of target training and the nature of interference training. PMID:25875792
Miguez, Gonzalo; Soares, Julia S; Miller, Ralph R
2015-09-01
In two lick suppression experiments with rats, we assessed interference with behavior indicative of conditioned inhibition by a latent inhibition treatment as a function of test context. We asked what effect the test context has, given identical latent inhibition treatments in Phase 1 and identical conditioned inhibition trainings in Phase 2. In Experiment 1, an AAA versus AAB context-shift design determined that the latent inhibition treatment in Phase 1 attenuated behavior indicative of the conditioned inhibition training administered in Phase 2, regardless of the test context, which could reflect a failure to either acquire or express conditioned inhibition. In Experiment 2, an ABA versus ABB design showed that test performance in Contexts A and B reflected the treatments that had been administered in those contexts (i.e., conditioned inhibition was observed in Context B but not A), which could reflect either the context specificity of either latent inhibition or conditioned inhibition. In either case, latent inhibition of conditioned inhibition training in at least some situations was seen to reflect an expression deficit rather than an acquisition deficit. These data, in conjunction with prior reports, suggest that latent inhibition is relatively specific to the context in which it was administered, whereas conditioned inhibition is specific to its training context only when it is the second-learned relationship concerning the target cue. These experiments are part of a larger effort to delineate control by the test context of two-phase associative interference, as a function of the nature of target training and the nature of interference training.
Higa, Futoshi; Kusano, Nobuchika; Tateyama, Masao; Shinzato, Takashi; Arakaki, Noriko; Kawakami, Kazuyoshi; Saito, Atsushi
1998-01-01
We developed a new simple assay for the quantitation of the activities of drugs against intracellular Legionella pneumophila. The cells of a murine macrophage-like cell line (J774.1 cells) allowed the intracellular growth and replication of the bacteria, which ultimately resulted in cell death. The infected J774.1 cell monolayers in 96-well microplates were first treated with antibiotics and were further cultured for 72 h. The number of viable J774.1 cells in each well was quantified by a colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and an enzyme-linked immunosorbent assay reader. The number of growing bacteria in each well was also determined by counting the numbers of CFU on buffered charcoal yeast extract-α agar plates. Viable J774.1 cell counts, determined by the colorimetric assay, were inversely proportional to the number of intracellular replicating bacteria. The minimum extracellular concentrations (MIECs) of 24 antibiotics causing inhibition of intracellular growth of L. pneumophila were determined by the colorimetric assay system. The MIECs of beta-lactams and aminoglycosides were markedly higher than the MICs in buffered yeast extract-α broth. The MIECs of macrolides, fluoroquinolones, rifampin, and minocycline were similar to the respective MICs. According to their intracellular activities, clarithromycin and sparfloxacin were the most potent among the macrolides or fluoroquinolones tested in this study. Our results indicated that the MTT assay system allows comparative and quantitative evaluations of the intracellular activities of antibiotics and efficient processing of a large number of samples. PMID:9574712
Tanaka, Eriko; Okumura, Saya; Takamiya, Rikako; Hosaka, Hitomi; Shimamura, Yuko; Murata, Masatsune
2011-06-22
Cinnamaldehyde treatment inhibited the browning of cut lettuce during cold storage. In this study, to clarify the mechanism of inhibitory action of cinnamaldehyde against the browning and to show its microbiological merit, its effect on the browning of cut lettuce was compared to that of mild heat treatment. Both cinnamaldehyde and mild heat treatments inhibited the induction of phenylalanine ammonia-lyase (PAL) activity because of cutting. As a result, the biosynthesis of polyphenols, which are substrates of polyphenol oxidase, was inhibited. This reduction of polyphenol synthesis caused the inhibition of the browning. Cinnamaldehyde treatment repressed the induction of PAL mRNA, while mild heat treatment did not repress its induction. The increase in microbes in cut lettuce treated with cinnamaldehyde was less than that treated with mild heat after 12 days.
Norden, Diana M.; Bicer, Sabahattin; Clark, Yvonne; Jing, Runfeng; Henry, Christopher J.; Wold, Loren E.; Reiser, Peter J.; Godbout, Jonathan P.; McCarthy, Donna O.
2014-01-01
Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth. PMID:25102452
Nazzal, H; Kenny, K; Altimimi, A; Kang, J; Duggal, M S
2018-04-01
To evaluate the treatment outcomes of a revitalization endodontic technique (RET) for the management of traumatized immature teeth with necrotic pulps in children. Fifteen healthy children (age range = 7-10 years) with traumatized immature maxillary incisors with necrotic pulps treated with bi-antibiotic revitalization endodontic technique were prospectively assessed over approximately two years (mean = 22 months). One operator undertook all treatments, clinical reviews and standardized radiographic exposures with radiographic analysis being carried out by two calibrated experienced clinicians. Crown colour change was assessed using an objective published methodology. Wilcoxon signed-rank test was used to compare root lengths, root dentinal widths and apical foramen widths over time. Interoperator measurement reliability was consistently strong for all measurements. There was no significant difference in root lengths or root dentinal wall widths following RET. A significant difference in apical foramen widths was observed after 2 years (P = 0.013) with resolution of clinical signs of infection in all cases. Despite omitting minocycline and using Portland cement (nonbismuth containing cement), a noticeable crown colour change (yellower, redder and lighter), as measured by an objective colour measurement system with ΔE = 7.39, was recorded. Most patients, however, were satisfied with the aesthetic outcome. Traumatized immature teeth with necrotic pulps treated with revitalization endodontic technique did not demonstrate continuation of root development or dentine formation when assessed by periapical radiographs. However, apical closure and periodontal healing were observed. A measurable change in crown colour (yellower, redder and lighter), with mostly no aesthetic concern to the patients/parents, was also observed. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Garrido-Mesa, José; Algieri, Francesca; Rodriguez-Nogales, Alba; Utrilla, Maria Pilar; Rodriguez-Cabezas, Maria Elena; Zarzuelo, Antonio; Ocete, Maria Angeles; Garrido-Mesa, Natividad; Galvez, Julio
2015-07-01
Immunomodulatory antibiotics have been proposed for the treatment of multifactorial conditions such as inflammatory bowel disease. Probiotics are able to attenuate intestinal inflammation, being considered as safe when chronically administered. The aim of the study was to evaluate the anti-inflammatory effects of doxycycline, a tetracycline with immunomodulatory properties, alone and in association with the probiotic Saccharomyces boulardii CNCMI-745. Doxycycline was assayed both in vitro (Caco-2 epithelial cells and RAW 264.7 macrophages) and in vivo, in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis and the dextran sodium sulfate (DSS) model of mouse colitis. In addition, the anti-inflammatory effect of the association of doxycycline and the probiotic was evaluated in vitro and in vivo in a DSS model of reactivated colitis in mice. Doxycycline displayed immunomodulatory activity in vitro, reducing IL-8 production by intestinal epithelial cells and nitric oxide by macrophages. Doxycycline administration to TNBS-colitic rats (5, 10 and 25 mg/kg) ameliorated the intestinal inflammatory process, being its efficacy comparable to that previously showed by minocycline. Doxycycline treatment was also effective in reducing acute intestinal inflammation in the DSS model of mouse colitis. The association of doxycycline and S. boulardii helped managing colitis in a reactivated model of colitis, by reducing intestinal inflammation and accelerating the recovery and attenuating the relapse. This was evidenced by a reduced disease activity index, colonic tissue damage and expression of inflammatory mediators. This study confirms the intestinal anti-inflammatory activity of doxycycline and supports the potential use of its therapeutic association with S. boulardii for the treatment of inflammatory bowel diseases, in which doxycycline is used to induce remission and long term probiotic administration helps to prevent the relapses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Norden, Diana M; Bicer, Sabahattin; Clark, Yvonne; Jing, Runfeng; Henry, Christopher J; Wold, Loren E; Reiser, Peter J; Godbout, Jonathan P; McCarthy, Donna O
2015-01-01
Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth. Copyright © 2014 Elsevier Inc. All rights reserved.
Wieseler, Julie; Ellis, Amanda; McFadden, Andrew; Stone, Kendra; Brown, Kimberley; Cady, Sara; Bastos, Leandro F; Sprunger, David; Rezvani, Niloofar; Johnson, Kirk; Rice, Kenner C; Maier, Steven F; Watkins, Linda R
2017-06-01
Facial allodynia is a migraine symptom that is generally considered to represent a pivotal point in migraine progression. Treatment before development of facial allodynia tends to be more successful than treatment afterwards. As such, understanding the underlying mechanisms of facial allodynia may lead to a better understanding of the mechanisms underlying migraine. Migraine facial allodynia is modeled by applying inflammatory soup (histamine, bradykinin, serotonin, prostaglandin E2) over the dura. Whether glial and/or immune activation contributes to such pain is unknown. Here we tested if trigeminal nucleus caudalis (Sp5C) glial and/or immune cells are activated following supradural inflammatory soup, and if putative glial/immune inhibitors suppress the consequent facial allodynia. Inflammatory soup was administered via bilateral indwelling supradural catheters in freely moving rats, inducing robust and reliable facial allodynia. Gene expression for microglial/macrophage activation markers, interleukin-1β, and tumor necrosis factor-α increased following inflammatory soup along with robust expression of facial allodynia. This provided the basis for pursuing studies of the behavioral effects of 3 diverse immunomodulatory drugs on facial allodynia. Pretreatment with either of two compounds broadly used as putative glial/immune inhibitors (minocycline, ibudilast) prevented the development of facial allodynia, as did treatment after supradural inflammatory soup but prior to the expression of facial allodynia. Lastly, the toll-like receptor 4 (TLR4) antagonist (+)-naltrexone likewise blocked development of facial allodynia after supradural inflammatory soup. Taken together, these exploratory data support that activated glia and/or immune cells may drive the development of facial allodynia in response to supradural inflammatory soup in unanesthetized male rats. Copyright © 2017 Elsevier B.V. All rights reserved.
[Acne therapy with topical benzoyl peroxide, antibiotics and azelaic acid].
Worret, Wolf-Ingo; Fluhr, Joachim W
2006-04-01
Benzoyl peroxide (BPO) was introduced in the treatment of acne in 1934. Despite the fact that only few randomized trials have been published, BPO is considered the standard in topical acne treatment. Anaerobic bacteria are reduced by oxidative mechanisms and the induction of resistant strains is reduced. Topical formulations are available at concentrations of 2.5, 5, 10 and 20 %. The effect is dose-dependent, but the irritation increases with higher concentrations. Usually 5 % BPO is sufficient to control acne grade I-II. Due to its strong oxidative potential, patients should be advised that BPO may bleach colored and dark clothing, bedding and even hair. BPO is safe for use in pregnant and lactating females because it is degraded to benzoic acid. It is a cost-effective treatment for acne grade I-II. Patients with papulopustular acne grade I-II, particularly with marked inflammation, show satisfactory improvement with topical antibiotic treatment. The following compounds are available and effective: erythromycin, clindamycin and tetracycline (the latter being less frequently used). A review in 1990 suggested that topical tetracycline was ineffective in the treatment of acne. Along with eliminating Propionibacterium acnes, the main mechanism of topical antibiotics is their antiinflammatory effect. All three penetrate the epidermal barrier well and are similarly efficacious. Randomized trials have shown that in concentrations of 2-4 %, their effects are comparable to oral tetracycline and minocycline. Combination therapy with retinoids or benzoyl peroxide (BPO) increases efficacy. Retinoids increase penetration and reduce comedones, while topical antibiotics primarily address inflammation. One side effect of topical antibacterial treatment is an increase in drug-resistant resident skin flora with gram-negative microorganisms prevailing, which can lead to gram-negative folliculitis. All three antibiotics fluoresce under black light which may produce interesting effects in a discotheque. There are two reports of topical clindamycin causing pseudomembranous colitis after long-term and widespread usage. Azelaic acid has a predominant antibacterial action, although it is not considered as an antibiotic in the classical sense. Furthermore, it possesses a modest comedolytic effect. Burning upon application is common. Since azelaic acid is naturally present, systemic side effects are not likely to occur, making it safe for acne treatment during pregnancy and lactation.
Rodriguez-Maturino, Alfonso; Troncoso-Rojas, Rosalba; Sánchez-Estrada, Alberto; González-Mendoza, Daniel; Ruiz-Sanchez, Esau; Zamora-Bustillos, Roberto; Ceceña-Duran, Carlos; Grimaldo-Juarez, Onecimo; Aviles-Marin, Mónica
2015-01-01
The effect of phenolic and carotenoid extracts from chiltepin fruits on mycelial growth and the inhibition of conidial germination of Alternaria alternata and Fusarium oxysporum were investigated in the present work. Phenolic extracts inhibited mycelial growth of A.alternata by 38.46%, and significantly reduced conidial germination on the fifth day after treatment to 92% in relation to control. No significant changes were observed in the inhibition of mycelial growth in Fusarium oxysporum; however, the number of germinated conidia was reduced, showing 85% inhibition five days after treatment in relation to control. Moreover, carotenoid extracts showed 38.5% inhibition of mycelial growth and 85.3% inhibition of conidial germination of A.alternata, five days after treatment. Carotenoid extracts showed less inhibition of mycelial growth (20.3%) in F.oxysporum, with respect to A.alternata; while there was greater inhibition of conidial germination (96%) on the fifth day after treatment. Phenolic and carotenoid extracts from chiltepin may be a promising alternative as a natural fungicide against fungi of agricultural importance. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Nijs, Jo; Loggia, Marco L; Polli, Andrea; Moens, Maarten; Huysmans, Eva; Goudman, Lisa; Meeus, Mira; Vanderweeën, Luc; Ickmans, Kelly; Clauw, Daniel
2017-08-01
The mechanism of sensitization of the central nervous system partly explains the chronic pain experience in many patients, but the etiological mechanisms of this central nervous system dysfunction are poorly understood. Recently, an increasing number of studies suggest that aberrant glial activation takes part in the establishment and/or maintenance of central sensitization. Areas covered: This review focused on preclinical work and mostly on the neurobiochemistry studied in animals, with limited human studies available. Glial overactivation results in a low-grade neuroinflammatory state, characterized by high levels of BDNF, IL-1β, TNF-α, which in turn increases the excitability of the central nervous system neurons through mechanisms like long-term potentiation and increased synaptic efficiency. Aberrant glial activity in chronic pain might have been triggered by severe stress exposure, and/or sleeping disturbances, each of which are established initiating factors for chronic pain development. Expert opinion: Potential treatment avenues include several pharmacological options for diminishing glial activity, as well as conservative interventions like sleep management, stress management and exercise therapy. Pharmacological options include propentofylline, minocycline, β -adrenergic receptor antagonists, and cannabidiol. Before translating these findings from basic science to clinical settings, more human studies exploring the outlined mechanisms in chronic pain patients are needed.
Wang, Miaoqian; Zhu, Qingli; Yang, Qian; Li, Wenbo; Wang, Xinning; Liu, Wei; Zhou, Baotong; Li, Zhenghong; Yang, Hong
2017-01-01
Brucellosis is a multisystem infection found worldwide that has a broad range of characteristics, which range from acute fever and hepatomegaly to chronic infections that most commonly affect the central nervous system, cardiovascular system, or skeletal system. Gastrointestinal and splanchnic artery involvements in brucellosis are relatively uncommon. We report a case of brucellosis in an adolescent presenting as intermittent abdominal pain, diarrhea, and fever, with intestinal tract involvement. And stenosis of the celiac artery and the superior mesenteric artery was found after exposed to risk factors of Brucella infection. Splanchnic vessels stenosis and an endothelial lesion may exacerbate the prevalent symptom of abdominal pain, as a form of colic pain, occurring after eating. The patient was diagnosed as brucellosis. The narrowing of the SMA and CA was suspected to be vasculitis secondary to the brucellosis. The patient was treated with minocycline and rifampicin for 12 weeks totally. The gastrointestinal manifestations of brucellosis recovered rapidly under intensive treatment. However, follow-up imaging revealed that the superior mesenteric artery and celiac artery stenosis was unimproved. In brucellosis, gastrointestinal manifestations may be the only observable features of the disease. Splanchnic arterial stenosis is a rare complication of brucellosis. Sonography and computed tomography may be useful for both diagnosis and follow-up.
Thaden, Joshua T; Pogue, Jason M; Kaye, Keith S
2017-05-19
Antimicrobial resistance has been identified by the World Health Organization as "one of the three greatest threats to human health." Gram negative bacteria in particular drive this alarming trend. Carbapenem-resistant Enterobacteriaceae (CRE) such as Escherichia coli, Klebsiella pneumoniae, and Enterobacter species are of particular importance as they are associated with poor clinical outcomes and are common causes for a variety of infections including bacteremia, urinary tract infection, intra-abdominal infections and pneumonia. CRE are difficult to treat as carbapenem resistance is often accompanied by resistance to additional drug classes. For example, CRE may be extensively drug resistant or even pandrug resistant. Unfortunately, CRE infections have increased over the past 15 y while new and effective antibiotics have not kept pace. Recently, however, new agents have become available to help treat CRE infection, and several more are under development. This article reviews the efficacy, safety, and pharmacokinetic issues around 4 emerging agents to treat CRE - ceftazidime-avibactam, fosfomycin, tigecycline, and minocycline. In addition, an overview of agents in the antibiotic pipeline - meropenem-vaborbactam, imipenem-relebactam, plazomicin, and eravacycline is provided. More established agents, such as those in the polymyxin class and aminoglycoside class (other than the pipeline agent plazomicin), are not addressed here.
Effect of various concentrations of antibiotics on osteogenic cell viability and activity.
Rathbone, Christopher R; Cross, Jessica D; Brown, Kate V; Murray, Clinton K; Wenke, Joseph C
2011-07-01
Infection is a common complication of open fractures. Systemic antibiotics often cause adverse events before eradication of infected bone occurs. The local delivery of antibiotics and the use of implants that deliver both growth factors and antimicrobials are ways to circumvent systemic toxicity while decreasing infection and to reach extremely high levels required to treat bacterial biofilms. When choosing an antibiotic for a local delivery system, one should consider the effect that the antibiotic has on cell viability and osteogenic activity. To address this concern, osteoblasts were treated with 21 different antibiotics over 8 concentrations from 0 to 5000 µg/ml. Osteoblast deoxyribonucleic acid content and alkaline phosphatase activity (ALP) were measured to determine cell number and osteogenic activity, respectively. Antibiotics that caused the greatest decrement include rifampin, minocycline, doxycycline, nafcillin, penicillin, ciprofloxacin, colistin methanesulfonate, and gentamicin; their cell number and ALP were significantly less than control at drug concentrations ≤ 200 µg/ml. Conversely, amikacin, tobramycin, and vancomycin were the least cytotoxic and did not appreciably affect cell number and ALP until very high concentrations were used. This comprehensive evaluation of numerous antibiotics' effects on osteoblast viability and activity will enable clinicians and researchers to choose the optimal antibiotic for treatment of infection and maintenance of healthy host bone. Copyright © 2011 Orthopaedic Research Society.
Tassone, Flora; González-Teshima, Laura Yuriko; Forero-Forero, Jose Vicente; Ayala-Zapata, Sebastián; Hagerman, Randi
2014-01-01
Fragile X Syndrome (FXS) is a genetic disease due to a CGG trinucleotide expansion, named full mutation (greater than 200 CGG repeats), in the fragile X mental retardation 1 gene locus Xq27.3; which leads to an hypermethylated region in the gene promoter therefore silencing it and lowering the expression levels of the fragile X mental retardation 1, a protein involved in synaptic plasticity and maturation. Individuals with FXS present with intellectual disability, autism, hyperactivity, long face, large or prominent ears and macroorchidism at puberty and thereafter. Most of the young children with FXS will present with language delay, sensory hyper arousal and anxiety. Girls are less affected than boys, only 25% have intellectual disability. Given the genomic features of the syndrome, there are patients with a number of triplet repeats between 55 and 200, known as premutation carriers. Most carriers have a normal IQ but some have developmental problems. The diagnosis of FXS has evolved from karyotype with special culture medium, to molecular techniques that are more sensitive and specific including PCR and Southern Blot. During the last decade, the advances in the knowledge of FXS, has led to the development of investigations on pharmaceutical management or targeted treatments for FXS. Minocycline and sertraline have shown efficacy in children. PMID:25767309
Clinical trials for neuroprotection in ALS.
Siciliano, G; Carlesi, C; Pasquali, L; Piazza, S; Pietracupa, S; Fornai, F; Ruggieri, S; Murri, L
2010-07-01
Owing to uncertainty on the pathogenic mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis (ALS) riluzole remains the only available therapy, with only marginal effects on disease survival. Here we review some of the recent advances in the search for disease-modifying drugs for ALS based on their putative neuroprotective effetcs. A number of more or less established agents have recently been investigated also in ALS for their potential role in neuroprotection and relying on antiglutamatergic, antioxidant or antiapoptotic strategies. Among them Talampanel, beta-lactam antibiotics, Coenzyme Q10, and minocycline have been investigated. Progress has also been made in exploiting growth factors for the treatment of ALS, partly due to advances in developing effective delivery systems to the central nervous system. A number of new therapies have also been identified, including a novel class of compounds, such as heat-shock protein co-inducers, which upregulate cell stress responses, and agents promoting autophagy and mitochondriogenesis, such as lithium and rapamycin. More recently, alterations of mRNA processing were described as a pathogenic mechanism in genetically defined forms of ALS, as those related to TDP-43 and FUS-TLS gene mutations. This knowledge is expected to improve our understanding of the pathogenetic mechanism in ALS and developing more effective therapies.
García, M D Gil; Culzoni, M J; De Zan, M M; Valverde, R Santiago; Galera, M Martínez; Goicoechea, H C
2008-02-01
A new powerful algorithm (unfolded-partial least squares followed by residual bilinearization (U-PLS/RBL)) was applied for first time on second-order liquid chromatography with diode array detection (LC-DAD) data and compared with a well-known established method (multivariate curve resolution-alternating least squares (MCR-ALS)) for the simultaneous determination of eight tetracyclines (tetracycline, oxytetracycline, meclocycline, minocycline, metacycline, chlortetracycline, demeclocycline and doxycycline) in wastewaters. Tetracyclines were pre-concentrated using Oasis Max C18 cartridges and then separated on a Thermo Aquasil C18 (150 mm x 4.6mm, 5 microm) column. The whole method was validated using Milli-Q water samples and both univariate and multivariate analytical figures of merit were obtained. Additionally, two data pre-treatment were applied (baseline correction and piecewise direct standardization), which allowed to correct the effect of breakthrough and to reduce the total interferences retained after pre-concentration of wastewaters. The results showed that the eight tetracycline antibiotics can be successfully determined in wastewaters, the drawbacks due to matrix interferences being adequately handled and overcome by using U-PSL/RBL.
Sachdeva, G S; Sachdeva, L T; Goel, M; Bala, S
2015-09-01
To report the successful clinical and radiographic outcome of a regenerative endodontic treatment. A 16-year-old male patient presented with a discoloured, maxillary left lateral incisor with a necrotic pulp. Radiographic examination revealed an incompletely developed root with an open apex. Under local anaesthesia and rubber dam isolation, an access cavity was prepared and the necrotic pulpal remnants were removed. The canal was disinfected without mechanical instrumentation with 5.25% NaOCl solution and dried with sterile paper points. A triple antibiotic (metronidazole, ciprofloxacin and minocycline) mixed with distilled water was packed in the canal and left for 28 days. Ten millimetres of whole blood was drawn by venipuncture from the patients antecubital vein for preparation of platelet-rich plasma (PRP). After removal of the antibiotic mixture, the PRP was injected into the canal space up to the cementoenamel junction level. Three millimetres of white MTA was placed directly over the PRP clot. Two days later, the tooth was restored with permanent filling materials. The patient was recalled for 3, 6, 12, 24 and 36 months clinical/radiographic follow-up. A 3-year follow-up radiograph revealed resolution of the periapical lesion, increased thickening of the root walls, further root development and continued apical closure of the root apex. The tooth was not responsive to cold tests; however, sensitivity tests with an electric pulp tester (EPT) elicited a delayed positive response. Regeneration is a viable treatment modality that allows continued root development of immature teeth with open apices and necrotic pulps. Platelet-rich plasma appears to be a suitable scaffold for regeneration of vital tissues in teeth with a necrotic pulps and an associated periapical lesion. Regenerative endodontic procedures may offer an effective treatment option to save teeth with compromised structural integrity. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Dries, Jan; Daens, Dominique; Geuens, Luc; Blust, Ronny
2014-01-01
The present study compares conventional wastewater treatment technologies (coagulation-flocculation and activated sludge) and powdered activated carbon (PAC) treatment for the removal of acute ecotoxicity from wastewater generated by tank truck cleaning (TTC) processes. Ecotoxicity was assessed with a battery of four commercially available rapid biological toxicity testing systems, verified by the US Environmental Protection Agency. Chemical coagulation-flocculation of raw TTC wastewater had no impact on the inhibition of the bioluminescence by Vibrio fischeri (BioTox assay). Subsequent biological treatment with activated sludge without PAC resulted in BioTox inhibition-free effluent (<10% inhibition). In contrast, activated sludge treatment without PAC produced an effluent that significantly inhibited (>50%) (i) the bioluminescence by Photobacterium leiognathi (ToxScreen³ test kit), (ii) the photosynthesis by the green algae Chlorella vulgaris (LuminoTox SAPS test kit), and (iii) the particle ingestion by the crustacean Thamnocephalus platyurus (Rapidtoxkit test kit). The lowest inhibition was measured after activated sludge treatment with the highest PAC dose (400 mg/L), demonstrating the effectiveness of PAC treatment for ecotoxicity removal from TTC wastewater. In conclusion, the combination of bioassays applied in the present study represents a promising test battery for rapid ecotoxicty assessment in wastewater treatment.
Treatment of infections due to resistant Staphylococcus aureus.
Anstead, Gregory M; Cadena, Jose; Javeri, Heta
2014-01-01
This chapter reviews data on the treatment of infections caused by drug-resistant Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA). This review covers findings reported in the English language medical literature up to January of 2013. Despite the emergence of resistant and multidrug-resistant S. aureus, we have seven effective drugs in clinical use for which little resistance has been observed: vancomycin, quinupristin-dalfopristin, linezolid, tigecycline, telavancin, ceftaroline, and daptomycin. However, vancomycin is less effective for infections with MRSA isolates that have a higher MIC within the susceptible range. Linezolid is probably the drug of choice for the treatment of complicated MRSA skin and soft tissue infections (SSTIs); whether it is drug of choice in pneumonia remains debatable. Daptomycin has shown to be non-inferior to either vancomycin or β-lactams in the treatment of staphylococcal SSTIs, bacteremia, and right-sided endocarditis. Tigecycline was also non-inferior to comparator drugs in the treatment of SSTIs, but there is controversy about whether it is less effective than other therapeutic options in the treatment of more serious infections. Telavancin has been shown to be non-inferior to vancomycin in the treatment of SSTIs and pneumonia, but has greater nephrotoxicity. Ceftaroline is a broad-spectrum cephalosporin with activity against MRSA; it is non-inferior to vancomycin in the treatment of SSTIs. Clindamycin, trimethoprim-sulfamethoxazole, doxycycline, rifampin, moxifloxacin, and minocycline are oral anti-staphylococcal agents that may have utility in the treatment of SSTIs and osteomyelitis, but the clinical data for their efficacy is limited. There are also several drugs with broad-spectrum activity against Gm-positive organisms that have reached the phase II and III stages of clinical testing that will hopefully be approved for clinical use in the upcoming years: oritavancin, dalbavancin, omadacycline, tedizolid, delafloxacin, and JNJ-Q2. Thus, there are currently many effective drugs to treat resistant S. aureus infections and many promising agents in the pipeline. Nevertheless, S. aureus remains a formidable adversary, and despite our deep bullpen of potential therapies, there are still frequent treatment failures and unfortunate clinical outcomes. The following discussion summarizes the clinical challenges presented by MRSA, the clinical experience with our current anti-MRSA antibiotics, and the gaps in our knowledge on how to use these agents to most effectively combat MRSA infections.
Wladis, Edward J; Bradley, Elizabeth A; Bilyk, Jurij R; Yen, Michael T; Mawn, Louise A
2016-03-01
To review the existing medical literature on the role of oral antibiotics in the management of ocular surface disease (OSD) that arises from disorders of the meibomian glands and to assess the efficacy of oral antibiotics in the management of this common ocular disease. A literature search was last conducted on August 12, 2015, in the PubMed and Cochrane databases for English-language original research investigations that evaluated the role of doxycycline, minocycline, and azithromycin in OSD among adult patients. The searches identified 87 articles, and 8 studies ultimately met the criteria outlined for this assessment. The 8 studies identified in the search documented an improvement in meibomian gland-related OSD after treatment with these agents, although side effects were common. This search identified only 1 randomized, controlled trial to assess the efficacy of these medications. Although oral antibiotics are used commonly in the management of OSD, there is no level I evidence to support their use. There are only a few studies that have assessed the efficacy of oral antibiotics in clinically meaningful ways in the management of OSD that arises from disorders of the meibomian glands. The current level of evidence is insufficient to conclude that antibiotics are useful in managing OSD arising from disorders of the meibomian glands. The few existing studies on the topic indicate that oral antibiotics may be an effective treatment for OSD that results from meibomian gland disease. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Santos, Luciane Geanini Pena Dos; Felippe, Wilson Tadeu; Souza, Beatriz Dulcineia Mendes de; Konrath, Andrea Cristina; Cordeiro, Mabel Mariela Rodríguez; Felippe, Mara Cristina Santos
2017-01-01
To assess tooth crown's color after intracanal treatment with triple antibiotic paste (TAP) or calcium hydroxide (CH); cervical sealing with glass ionomer cement (GIC) or mineral trioxide aggregate (MTA); and bleaching with carbamide peroxide. After pulp removal and color spectrophotometer measurement, 50 bovine incisors were divided into 4 experimental groups and one control (untreated). Experiments were performed in phases (Ph). Ph1: TAP (ciprofloxacin, metronidazole, minocycline), TAPM (ciprofloxacin, metronidazole, amoxicillin), DAP (ciprofloxacin, metronidazole), or CH treatment groups. After 1 and 3 days (d); 1, 2, 3 weeks (w); and 1, 2, 3 and 4 months (m), color was measured and medications were removed. Ph2: GIC or MTA cervical sealing, each using half of the specimens from each group. Color was assessed after 1d, 3d; 1w, 2w, 3w; 1m and 2m. Ph3: Two bleaching sessions, each followed by color measurement. Data were analyzed with ANOVA and post-hoc Holm-Sidak method. Ph1: Specimens of TAP group presented higher color alteration (ΔE) mean than those of TAPM group. No significant difference was found among TAP or TAPM and CH, DAP or Control groups. Ph2: cervical sealing materials showed no influence on color alteration. Ph3: Different ΔE means (from different groups), prior to bleaching, became equivalent after one bleaching session. TAP induces higher color alteration than TAPM; color alteration increases over time; cervical sealing material has no influence on color alteration; and, dental bleaching was able to recover, at least partially, the tooth crown's color.
Neural Correlates of Inhibition and Contextual Cue Processing Related to Treatment Response in PTSD
van Rooij, Sanne JH; Geuze, Elbert; Kennis, Mitzy; Rademaker, Arthur R; Vink, Matthijs
2015-01-01
Thirty to fifty percent of posttraumatic stress disorder (PTSD) patients do not respond to treatment. Understanding the neural mechanisms underlying treatment response could contribute to improve response rates. PTSD is often associated with decreased inhibition of fear responses in a safe environment. Importantly, the mechanism of effective treatment (psychotherapy) relies on inhibition and so-called contextual cue processing. Therefore, we investigate inhibition and contextual cue processing in the context of treatment. Forty-one male war veterans with PTSD and 22 healthy male war veterans (combat controls) were scanned twice with a 6- to 8-month interval, in which PTSD patients received treatment (psychotherapy). We distinguished treatment responders from nonresponders on the base of percentage symptom decrease. Inhibition and contextual cue processing were assessed with the stop-signal anticipation task. Behavioral and functional MRI measures were compared between PTSD patients and combat controls, and between responders and nonresponders using repeated measures analyses. PTSD patients showed behavioral and neural deficits in inhibition and contextual cue processing at both time points compared with combat controls. These deficits were unaffected by treatment; therefore, they likely represent vulnerability factors or scar aspects of PTSD. Second, responders showed increased pretreatment activation of the left inferior parietal lobe (IPL) during contextual cue processing compared with nonresponders. Moreover, left IPL activation predicted percentage symptom improvement. The IPL has an important role in contextual cue processing, and may therefore facilitate the effect of psychotherapy. Hence, increased left IPL activation may represent a potential predictive biomarker for PTSD treatment response. PMID:25154707
Comparing Context Specificity of Extinction and Latent Inhibition
Miller, Ralph R.; Laborda, Mario A.; Polack, Cody W.; Miguez, Gonzalo
2015-01-01
Exposure to a cue alone either before (i.e., latent inhibition treatment) or after (i.e., extinction) the cue is paired with an unconditioned stimulus (US) results in attenuated conditioned responding to the cue. Here we report two experiments in which potential parallels between the context specificity of the effects of extinction and latent inhibition treatments were directly compared in a lick suppression preparation with rats. The reversed ordering of conditioning and nonreinforcement in extinction and latent inhibition designs allowed us to examine the effect of training order on the context specificity of what is learned given phasic reinforcement and nonreinforcement of a target cue. Experiment 1 found that when CS conditioning and CS nonreinforcement were administered in the same context, both extinction and latent inhibition treatments had reduced impact on test performance relative to excitatory conditioning when testing occurred outside the treatment context. Similarly, Experiment 2 found that when conditioning was administered in one context and nonreinforcement was administered in a second context, the effects of both extinction and latent inhibition treatments were attenuated when testing occurred in a neutral context relative to the context in which the CS was nonreinforced. The observed context specificity of extinction and latent inhibition treatments have both been previously reported, but not in a single experiment under otherwise identical conditions. The results of the two experiments convergently suggest that memory of nonreinforcement becomes context dependent after a cue is both reinforced and nonreinforced independent of the order of training. PMID:26100525
Comparing the context specificity of extinction and latent inhibition.
Miller, Ralph R; Laborda, Mario A; Polack, Cody W; Miguez, Gonzalo
2015-12-01
Exposure to a cue alone either before (i.e., latent inhibition treatment) or after (i.e., extinction) the cue is paired with an unconditioned stimulus results in attenuated conditioned responding to the cue. Here we report two experiments in which potential parallels between the context specificity of the effects of extinction and latent inhibition treatments were directly compared in a lick suppression preparation with rats. The reversed ordering of conditioning and nonreinforcement in extinction and latent inhibition designs allowed us to examine the effect of training order on the context specificity of what is learned given phasic reinforcement and nonreinforcement of a target cue. Experiment 1 revealed that when conditioned-stimulus (CS) conditioning and CS nonreinforcement were administered in the same context, both extinction and latent inhibition treatments had reduced impacts on test performance, relative to excitatory conditioning when testing occurred outside the treatment context. Similarly, Experiment 2 showed that when conditioning was administered in one context and nonreinforcement was administered in a second context, the effects of both extinction and latent inhibition treatments were attenuated when testing occurred in a neutral context, relative to the context in which the CS was nonreinforced. The observed context specificity of extinction and latent inhibition treatments has been previously reported in both cases, but not in a single experiment under otherwise identical conditions. The results of the two experiments convergently suggest that memory of nonreinforcement becomes context dependent after a cue is both reinforced and nonreinforced, independent of the order of training.
NASA Technical Reports Server (NTRS)
McElmurray, J. H. 3rd; Mukherjee, R.; New, R. B.; Sampson, A. C.; King, M. K.; Hendrick, J. W.; Goldberg, A.; Peterson, T. J.; Hallak, H.; Zile, M. R.;
1999-01-01
The progression of congestive heart failure (CHF) is left ventricular (LV) myocardial remodeling. The matrix metalloproteinases (MMPs) contribute to tissue remodeling and therefore MMP inhibition may serve as a useful therapeutic target in CHF. Angiotensin converting enzyme (ACE) inhibition favorably affects LV myocardial remodeling in CHF. This study examined the effects of specific MMP inhibition, ACE inhibition, and combined treatment on LV systolic and diastolic function in a model of CHF. Pigs were randomly assigned to five groups: 1) rapid atrial pacing (240 beats/min) for 3 weeks (n = 8); 2) ACE inhibition (fosinopril, 2.5 mg/kg b.i.d. orally) and rapid pacing (n = 8); 3) MMP inhibition (PD166793 2 mg/kg/day p.o.) and rapid pacing (n = 8); 4) combined ACE and MMP inhibition (2.5 mg/kg b.i.d. and 2 mg/kg/day, respectively) and rapid pacing (n = 8); and 5) controls (n = 9). LV peak wall stress increased by 2-fold with rapid pacing and was reduced in all treatment groups. LV fractional shortening fell by nearly 2-fold with rapid pacing and increased in all treatment groups. The circumferential fiber shortening-systolic stress relation was reduced with rapid pacing and increased in the ACE inhibition and combination groups. LV myocardial stiffness constant was unchanged in the rapid pacing group, increased nearly 2-fold in the MMP inhibition group, and was normalized in the ACE inhibition and combination treatment groups. Increased MMP activation contributes to the LV dilation and increased wall stress with pacing CHF and a contributory downstream mechanism of ACE inhibition is an effect on MMP activity.
Photohemolytic potency of tetracyclines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjellerup, M.; Ljunggren, B.
1985-04-01
Hemolysis induced by long-wave ultraviolet radiation (UVA) and 8 different commercial tetracycline derivatives was studied in a model using human red blood cells. Demethylchlortetracycline and doxycycline were shown to have pronounced hemolytic properties causing 88% and 85% hemolysis, respectively, at a concentration of 50 micrograms/ml and 72 J/ cm2 of UVA. Tetracycline, oxytetracycline, and chlortetracycline caused maximally 18% hemolysis at 200 micrograms/ml and lymecycline only 7% at 100 micrograms/ml. Methacycline showed intermediate hemolytic effect of 36% at 200 micrograms/ml. Minocycline had no hemolytic effect whatsoever. These experimental data correlate very well with clinical reports and comparative phototoxicity trials in humans.more » Photohemolysis may thus be of value for predicting tetracycline phototoxicity.« less
Kitadai, Noriyuki; Obi, Takeshi; Yamashita, Shogo; Murase, Toshiyuki; Takase, Kozo
2012-03-01
Susceptibility to 13 antimicrobial agents was examined for 138 Escherichia coli isolates obtained from 192 fecal samples of wild cranes that migrated for wintering to the Izumi plain, Kagoshima prefecture in Japan. The numbers of isolates that were resistant to the antimicrobials used in this study are as follows: oxytetracycline (OTC), 22 isolates; minocycline, 7 isolates; ampicillin (ABPC), 4 isolates; nalidixic acid, 4 isolates; enrofloxacin, 2 isolates; kanamycin, one isolate. Multidrug resistant isolates exhibiting 2-4 drug resistances were obtained. All of the OTC-resistant isolates carried either the tet (A) or tet(B) gene. The bla(TEM) gene was found in all of the ABPC-resistant isolates.
Wang, Mingyu; Mu, Ziming; Wang, Junli; Hou, Shaoli; Han, Lijuan; Dong, Yanmei; Xiao, Lin; Xia, Ruirui; Fang, Xu
2013-04-01
Lignocellulosic biomass is an underutilized, renewable resource that can be converted to biofuels. The key step in this conversion is cellulose saccharification catalyzed by cellulase. In this work, the effect of metal ions on cellulose hydrolysis by cellulases from Penicillium decumbens was reported for the first time. Fe(3+) and Cu(2+) were shown to be inhibitory. Further studies on Fe(3+) inhibition showed the inhibition takes place on both enzyme and substrate levels. Fe(3+) treatment damages cellulases' capability to degrade cellulose and inhibits all major cellulase activities. Fe(3+) treatment also reduces the digestibility of cellulose, due to its oxidation. Treatment of Fe(3+)-treated cellulose with DTT and supplementation of EDTA to saccharification systems partially relieved Fe(3+) inhibition. It was concluded that Fe(3+) inhibition in cellulose degradation is a complicated process in which multiple inhibition events occur, and that relief from Fe(3+) inhibition can be achieved by the supplementation of reducing or chelating agents. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gas injection to inhibit migration during an in situ heat treatment process
Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren
2010-11-30
Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.
DOT National Transportation Integrated Search
1999-06-01
Four bridge decks were overlayed and patched and one bridge pier was patched using concrete with and without corrosion inhibiting admixtures. Some concrete surfaces received topically applied corrosion-inhibiting treatments prior to placement of the ...
Sayce, Andrew C; Alonzi, Dominic S; Killingbeck, Sarah S; Tyrrell, Beatrice E; Hill, Michelle L; Caputo, Alessandro T; Iwaki, Ren; Kinami, Kyoko; Ide, Daisuke; Kiappes, J L; Beatty, P Robert; Kato, Atsushi; Harris, Eva; Dwek, Raymond A; Miller, Joanna L; Zitzmann, Nicole
2016-03-01
It has long been thought that iminosugar antiviral activity is a function of inhibition of endoplasmic reticulum-resident α-glucosidases, and on this basis, many iminosugars have been investigated as therapeutic agents for treatment of infection by a diverse spectrum of viruses, including dengue virus (DENV). However, iminosugars are glycomimetics possessing a nitrogen atom in place of the endocyclic oxygen atom, and the ubiquity of glycans in host metabolism suggests that multiple pathways can be targeted via iminosugar treatment. Successful treatment of patients with glycolipid processing defects using iminosugars highlights the clinical exploitation of iminosugar inhibition of enzymes other than ER α-glucosidases. Evidence correlating antiviral activity with successful inhibition of ER glucosidases together with the exclusion of alternative mechanisms of action of iminosugars in the context of DENV infection is limited. Celgosivir, a bicyclic iminosugar evaluated in phase Ib clinical trials as a therapeutic for the treatment of DENV infection, was confirmed to be antiviral in a lethal mouse model of antibody-enhanced DENV infection. In this study we provide the first evidence of the antiviral activity of celgosivir in primary human macrophages in vitro, in which it inhibits DENV secretion with an EC50 of 5 μM. We further demonstrate that monocyclic glucose-mimicking iminosugars inhibit isolated glycoprotein and glycolipid processing enzymes and that this inhibition also occurs in primary cells treated with these drugs. By comparison to bicyclic glucose-mimicking iminosugars which inhibit glycoprotein processing but do not inhibit glycolipid processing and galactose-mimicking iminosugars which do not inhibit glycoprotein processing but do inhibit glycolipid processing, we demonstrate that inhibition of endoplasmic reticulum-resident α-glucosidases, not glycolipid processing, is responsible for iminosugar antiviral activity against DENV. Our data suggest that inhibition of ER α-glucosidases prevents release of virus and is the primary antiviral mechanism of action of iminosugars against DENV.
Sulfonamides as Inhibitors of Leishmania – Potential New Treatments for Leishmaniasis
Katinas, Jade; Epplin, Rachel; Hamaker, Christopher; Jones, Marjorie A.
2017-01-01
Introduction: Leishmaniasis is an endemic disease caused by the protozoan parasite Leishmania. Current treatments for the parasite are limited by cost, availability and drug resistance as the occurrence of leishmaniasis continues to be more prevalent. Sulfonamides are a class of compounds with medicinal properties which have been used to treat bacterial and parasitic disease via various pathways especially as antimetabolites for folic acid. Methods: New derivatives of sulfonamide compounds were assessed for their impact on Leishmania cell viability and potential pathways for inhibition were evaluated. Leishmania tarentolae (ATCC Strain 30143) axenic promastigote cells were grown in brain heart infusion (BHI) medium and treated with varying concentrations of the new sulfonamide compounds. Light microscopy and viability tests were used to assess the cells with and without treatment. Discussion: A non-water soluble sulfonamide was determined to have 90-96% viability inhibition 24 hours after treatment with 100 µM final concentration. Because Leishmania are also autotrophs for folate precursors, the folic acid pathway was identified as a target for sulfonamide inhibition. When folic acid was added to untreated Leishmania, cell proliferation increased. A water soluble derivative of the inhibitory sulfonamide was synthesized and evaluated, resulting in less viability inhibition with a single dose (approximately 70% viability inhibition after 24 hours with 100 µM final concentration), but additive inhibition with multiple doses of the compound. Results: However, the potential mechanism of inhibition was different between the water-soluble and non-water soluble sulfonamides. The inhibitory effects and potential pathways of inhibition indicate that these compounds may be new treatments for this disease. PMID:29399442
Schech, Amanda J.; Nemieboka, Brandon E.; Brodie, Angela H.
2012-01-01
Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole for 72 hours. This combination significantly increased inhibition of aromatase activity of AC-1 cells by compared to letrozole alone. Combination treatment of 1nM letrozole and 1μM and 10μM zoledronic acid resulted in an additive drug interaction on inhibiting cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine 473. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1μM and 10μM ZA on cell viability following treatment for 72 hours, as shown by a shift to the right in the estradiol dose response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability. PMID:22659283
Shibuta, Kazuo; Suzuki, Ikuko; Shinoda, Masamichi; Tsuboi, Yoshiyuki; Honda, Kuniya; Shimizu, Noriyoshi; Sessle, Barry J; Iwata, Koichi
2012-04-27
The aim of this study was to evaluate spatial organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1), and to clarify the involvement in mechanisms underlying orofacial secondary hyperalgesia following infraorbital nerve injury. We found that the head-withdrawal threshold to non-noxious mechanical stimulation of the maxillary whisker pad skin was significantly reduced in chronic constriction injury of the infraorbital nerve (ION-CCI) rats from day 1 to day 14 after ION-CCI. On day 3 after ION-CCI, mechanical allodynia was obvious in the orofacial skin areas innervated by the 1st and 3rd branches of the trigeminal nerve as well as the 2nd branch area. Hyperactive microglial cells in Vc and C1 were observed on days 3 and 7 after ION-CCI. On day 3 after ION-CCI, a large number of phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells were observed in Vc and C1. Many hyperactive microglial cells were also distributed over a wide area of Vc and C1 innervated by the trigeminal nerve. The intraperitoneal administration of minocycline significantly reduced the activation of microglial cells and the number of pERK-IR cells in Vc and C1, and also significantly attenuated the development of mechanical allodynia. Furthermore, enhanced background activity and mechanical evoked responses of Vc wide dynamic range neurons in ION-CCI rats were significantly reversed following minocycline administration. These findings suggest that activation of microglial cells over a wide area of Vc and C1 is involved in the enhancement of Vc and C1 neuronal excitability in the early period after ION-CCI, resulting in the neuropathic pain in orofacial areas innervated by the injured as well as uninjured nerves. Copyright © 2012 Elsevier B.V. All rights reserved.
Miguez, Gonzalo; McConnell, Bridget; Polack, Cody W; Miller, Ralph R
2018-01-08
This report is part of a larger project examining associative interference as a function of the nature of the interfering and target associations. Lick suppression experiments with rats assessed the effects of context shifts on proactive outcome interference by latent inhibition (LI) and Pavlovian conditioned inhibition (CI) treatments on subsequently trained Pavlovian conditioned excitation treatment. LI and CI were trained in Context A during Phase 1, and then excitation treatment was administered in Context B during Phase 2, followed by tests for conditioned excitation in Contexts A, B, or C. Experiment 1 preliminarily established our LI and CI treatments and resulted in equally retarded acquisition of behavioral control when the target cue was subsequently trained as a conditioned excitor and tested in Context A. However, only CI treatment caused the target to pass a summation test for inhibition. Centrally, Experiment 2 consisted of LI and CI treatments in Context A followed by excitatory training in Context B. Testing found low excitatory control by both LI and CI cues in Context A relative to strong excitatory control in Context B, but CI treatment transferred to Context C more strongly than LI treatment. Experiment 3 determined that LI treatment failed to transfer to Context C even when the number of LI trials was greatly increased. Thus, first-learned LI appears to be relatively context specific, whereas first-learned CI generalizes to a neutral context. These observations add to existing evidence that LI and CI treatments result in different types of learning that diverge sharply in transfer to a novel test context.
Lin, Lianzhu; Deng, Wuguo; Tian, Yun; Chen, Wangbing; Wang, Jingshu; Fu, Lingyi; Shi, Dingbo; Zhao, Mouming; Luo, Wei
2014-01-01
Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC) cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid). The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.
X-ray radiation and development inhibition of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)
NASA Astrophysics Data System (ADS)
Kim, Junheon; Jung, Soon-Oh; Jang, Sin Ae; Kim, Jeongmin; Park, Chung Gyoo
2015-10-01
Effect of X-ray radiation on the development inhibition was evaluated for all stages of the life cycle of Helicoverpa armigera to determine a radiation dose for potential quarantine treatment against the insect. ED99 values for inhibition of hatching, pupation, and adult emergence from irradiated eggs were 413, 210, and 154 Gy, respectively. ED99 values for inhibition of pupation and adult emergence from irradiated larvae were 221 and 167 Gy, respectively. Pupa was the most tolerant to X-ray radiation. ED99 value for inhibition of adult emergence from irradiated pupae was as high as 2310 Gy, whereas that for inhibition of F1 egg hatching was only 66 Gy. ED99 value for inhibition of hatching of F1 eggs which were laid by irradiated adults was estimated to 194 Gy. X-ray irradiation against H. armigera is recommended as an alternative method to methyl bromide fumigation for phytosanitary treatments during quarantine. X-ray radiation dose of 200 Gy is proposed as a potential quarantine treatment dose for H. armigera eggs and larvae.
Fukumoto, Takeshi; Kano, Akihito; Ohtani, Kouhei; Yamasaki-Kokudo, Yumiko; Kim, Bong-Gyu; Hosotani, Kouji; Saito, Miu; Shirakawa, Chikage; Tajima, Shigeyuki; Izumori, Ken; Ohara, Toshiaki; Shigematsu, Yoshio; Tanaka, Keiji; Ishida, Yutaka; Nishizawa, Yoko; Tada, Yasuomi; Ichimura, Kazuya; Gomi, Kenji; Akimitsu, Kazuya
2011-12-01
One of the rare sugars, D-allose, which is the epimer of D-glucose at C3, has an inhibitory effect on rice growth, but the molecular mechanisms of the growth inhibition by D-allose were unknown. The growth inhibition caused by D-allose was prevented by treatment with hexokinase inhibitors, D-mannoheptulose and N-acetyl-D-glucosamine. Furthermore, the Arabidopsis glucose-insensitive2 (gin2) mutant, which is a loss-of-function mutant of the glucose sensor AtHXK1, showed a D-allose-insensitive phenotype. D-Allose strongly inhibited the gibberellin-dependent responses such as elongation of the second leaf sheath and induction of α-amylase in embryo-less half rice seeds. The growth of the slender rice1 (slr1) mutant, which exhibits a constitutive gibberellin-responsive phenotype, was also inhibited by D-allose, and the growth inhibition of the slr1 mutant by D-allose was also prevented by D-mannoheptulose treatment. The expressions of gibberellin-responsive genes were down-regulated by D-allose treatment, and the down-regulations of gibberellin-responsive genes were also prevented by D-mannoheptulose treatment. These findings reveal that D-allose inhibits the gibberellin-signaling through a hexokinase-dependent pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke
Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metforminmore » significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.« less
Combination Kinase Inhibitor Treatment Suppresses Rift Valley Fever Virus Replication.
Bell, Todd M; Espina, Virginia; Lundberg, Lindsay; Pinkham, Chelsea; Brahms, Ashwini; Carey, Brian D; Lin, Shih-Chao; Dahal, Bibha; Woodson, Caitlin; de la Fuente, Cynthia; Liotta, Lance A; Bailey, Charles L; Kehn-Hall, Kylene
2018-04-13
Viruses must parasitize host cell translational machinery in order to make proteins for viral progeny. In this study, we sought to use this signal transduction conduit against them by inhibiting multiple kinases that influence translation. Previous work indicated that several kinases involved in translation, including p70 S6K, p90RSK, ERK, and p38 MAPK, are phosphorylated following Rift Valley fever virus (RVFV) infection. Furthermore, inhibiting p70 S6K through treatment with the FDA approved drug rapamycin prevents RVFV pathogenesis in a mouse model of infection. We hypothesized that inhibiting either p70 S6K, p90RSK, or p90RSK’s upstream kinases, ERK and p38 MAPK, would decrease translation and subsequent viral replication. Treatment with the p70 S6K inhibitor PF-4708671 resulted in decreased phosphorylation of translational proteins and reduced RVFV titers. In contrast, treatment with the p90RSK inhibitor BI-D1870, p38MAPK inhibitor SB203580, or the ERK inhibitor PD0325901 alone had minimal influence on RVFV titers. The combination of PF-4708671 and BI-D1870 treatment resulted in robust inhibition of RVFV replication. Likewise, a synergistic inhibition of RVFV replication was observed with p38MAPK inhibitor SB203580 or the ERK inhibitor PD0325901 combined with rapamycin treatment. These findings serve as a proof of concept regarding combination kinase inhibitor treatment for RVFV infection.
Combination Kinase Inhibitor Treatment Suppresses Rift Valley Fever Virus Replication
Bell, Todd M.; Espina, Virginia; Lundberg, Lindsay; Pinkham, Chelsea; Brahms, Ashwini; Dahal, Bibha; Woodson, Caitlin; de la Fuente, Cynthia; Liotta, Lance A.; Bailey, Charles L.
2018-01-01
Viruses must parasitize host cell translational machinery in order to make proteins for viral progeny. In this study, we sought to use this signal transduction conduit against them by inhibiting multiple kinases that influence translation. Previous work indicated that several kinases involved in translation, including p70 S6K, p90RSK, ERK, and p38 MAPK, are phosphorylated following Rift Valley fever virus (RVFV) infection. Furthermore, inhibiting p70 S6K through treatment with the FDA approved drug rapamycin prevents RVFV pathogenesis in a mouse model of infection. We hypothesized that inhibiting either p70 S6K, p90RSK, or p90RSK’s upstream kinases, ERK and p38 MAPK, would decrease translation and subsequent viral replication. Treatment with the p70 S6K inhibitor PF-4708671 resulted in decreased phosphorylation of translational proteins and reduced RVFV titers. In contrast, treatment with the p90RSK inhibitor BI-D1870, p38MAPK inhibitor SB203580, or the ERK inhibitor PD0325901 alone had minimal influence on RVFV titers. The combination of PF-4708671 and BI-D1870 treatment resulted in robust inhibition of RVFV replication. Likewise, a synergistic inhibition of RVFV replication was observed with p38MAPK inhibitor SB203580 or the ERK inhibitor PD0325901 combined with rapamycin treatment. These findings serve as a proof of concept regarding combination kinase inhibitor treatment for RVFV infection. PMID:29652799
Amin, A R M Ruhul; Khuri, Fadlo R; Chen, Zhuo Georgia; Shin, Dong M
2009-06-01
We have previously reported that the green tea polyphenol epigallocatechin-3-gallate (EGCG) and the epidermal growth factor receptor-tyrosine kinase inhibitor erlotinib had synergistic growth-inhibitory effects in cell culture and a nude mouse xenograft model of squamous cell carcinoma of the head and neck. However, the mechanism of their antitumor synergism is not fully understood. In the current study, we investigate the mechanism of their synergistic growth-inhibitory effects. The treatment of squamous cell carcinoma of the head and neck cell lines with erlotinib time-dependently increased the expression of cell cycle regulatory proteins p21 and p27 and apoptosis regulatory protein Bim. EGCG alone had very little or no effect on the expression of these proteins among the cell lines. However, simultaneous treatment with EGCG and erlotinib strongly inhibited erlotinib-induced expression of p21 and p27 without affecting the expression of Bim. Moreover, erlotinib increased the expression of p53 protein, the ablation of which by short hairpin RNA strongly inhibited EGCG- and erlotinib-mediated growth inhibition and the expression of p21, p27, and Bim. In addition, combined treatment with erlotinib and EGCG inhibited the protein level of p65 subunit of nuclear factor-kappaB and its transcriptional target Bcl-2, but failed to do so in cells with ablated p53. Taken together, our results, for the first time, suggest that erlotinib treatment activates p53, which plays a critical role in synergistic growth inhibition by erlotinib and EGCG via inhibiting nuclear factor-kappaB signaling pathway. Characterizing the underlying mechanisms of EGCG and erlotinib synergism will provide an important rationale for chemoprevention or treatment trials using this combination.
Khan, Md Asaduzzaman; Tania, Mousumi; Wei, Chunli; Mei, Zhiqiang; Fu, Shelly; Cheng, Jingliang; Xu, Jianming; Fu, Junjiang
2015-08-14
Proteins that promote epithelial to mesenchymal transition (EMT) are associated with cancer metastasis. Inhibition of EMT regulators may be a promising approach in cancer therapy. In this study, Thymoquinone (TQ) was used to treat cancer cell lines to investigate its effects on EMT-regulatory proteins and cancer metastasis. We show that TQ inhibited cancer cell growth, migration and invasion in a dose-dependent manner. At the molecular level, TQ treatment decreased the transcriptional activity of the TWIST1 promoter and the mRNA expression of TWIST1, an EMT-promoting transcription factor. Accordingly, TQ treatment also decreased the expression of TWIST1-upregulated genes such as N-Cadherin and increased the expression of TWIST1-repressed genes such as E-Cadherin, resulting in a reduction of cell migration and invasion. TQ treatment also inhibited the growth and metastasis of cancer cell-derived xenograft tumors in mice but partially attenuated the migration and invasion in TWIST1-overexpressed cell lines. Furthermore, we found that TQ treatment enhanced the promoter DNA methylation of the TWIST1 gene in BT 549 cells. Together, these results demonstrate that TQ treatment inhibits TWIST1 promoter activity and decreases its expression, leading to the inhibition of cancer cell migration, invasion and metastasis. These findings suggest TQ as a potential small molecular inhibitor of cancer growth and metastasis.
Khan, Md. Asaduzzaman; Tania, Mousumi; Wei, Chunli; Mei, Zhiqiang; Fu, Shelly; Cheng, Jingliang; Xu, Jianming; Fu, Junjiang
2015-01-01
Proteins that promote epithelial to mesenchymal transition (EMT) are associated with cancer metastasis. Inhibition of EMT regulators may be a promising approach in cancer therapy. In this study, Thymoquinone (TQ) was used to treat cancer cell lines to investigate its effects on EMT-regulatory proteins and cancer metastasis. We show that TQ inhibited cancer cell growth, migration and invasion in a dose-dependent manner. At the molecular level, TQ treatment decreased the transcriptional activity of the TWIST1 promoter and the mRNA expression of TWIST1, an EMT-promoting transcription factor. Accordingly, TQ treatment also decreased the expression of TWIST1-upregulated genes such as N-Cadherin and increased the expression of TWIST1-repressed genes such as E-Cadherin, resulting in a reduction of cell migration and invasion. TQ treatment also inhibited the growth and metastasis of cancer cell-derived xenograft tumors in mice but partially attenuated the migration and invasion in TWIST1-overexpressed cell lines. Furthermore, we found that TQ treatment enhanced the promoter DNA methylation of the TWIST1 gene in BT 549 cells. Together, these results demonstrate that TQ treatment inhibits TWIST1 promoter activity and decreases its expression, leading to the inhibition of cancer cell migration, invasion and metastasis. These findings suggest TQ as a potential small molecular inhibitor of cancer growth and metastasis. PMID:26023736
Effect of oral ketoconazole on first-pass effect of nifedipine after oral administration in dogs.
Kuroha, Masanori; Kayaba, Hideki; Kishimoto, Shizuka; Khalil, Waleed F; Shimoda, Minoru; Kokue, Eiichi
2002-03-01
The long-term oral ketoconazole (KTZ) treatment extensively inhibits hepatic CYP3A activity. We investigated the effect of the KTZ treatment on hepatic and intestinal extraction of nifedipine (NIF) using beagle dogs. Four dogs were given orally KTZ for 20 days (200 mg, bid). NIF was administered either intravenously (0.5 mg/kg) or orally (20 mg) 10 and 20 days before the KTZ treatment and 10 and 20 days after start of KTZ treatment. CLtot of NIF after intravenous administration decreased to about 50% during the KTZ treatment. C(max) and AUC after oral administration increased to 2.5-fold and fourfold, respectively, by the KTZ treatment. The hepatic extraction ratio of NIF decreased to about a half by KTZ. A significant decrease in intestinal extraction ratio was not observed. In conclusion, the KTZ treatment inhibits hepatic extraction more profoundly than intestinal extraction of NIF. Therefore, inhibition of hepatic extraction of NIF by the KTZ treatment mainly results in substantial increase in systemic bioavailability in dogs. Because KTZ inhibits human CYP3A activities similar to canine CYP3A activities, the long-term oral KTZ treatment may dramatically increase bioavailability of NIF or other CYP3A substrates in humans. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association.
Folliculitis decalvans--a retrospective study in a tertiary referred centre, over five years.
Chandrawansa, P H; Giam, Y C
2003-02-01
Folliculitis decalvans is a rare condition affecting mainly the scalp leading to scarring alopecia. Aetiology of the condition is still unknown, abnormal host response to Staphylococcus aureus has been postulated. We present a retrospective analysis of six cases of folliculitis decalvans presented to National Skin Centre (NSC), Singapore for the past five years, 1995-2000. The mean age of presentation was 39 years and ages ranged from 17 to 62 years. There were five male patients and one female patient. Duration of symptoms at presentation varied from six months to seven years. Occipital and vertex areas of the scalp were the only regions involved. Staphylococcus aureus was isolated in three patients; in one patient culture yielded negative results and no culture was done in the other two patients. All our patients were treated with several separate courses of systemic antibiotics which include doxycycline, erythromycin, minocycline, co-trimoxazole, cloxacillin, erythromycin, rifampicin and clindamycin. In addition one patient was treated with fucidic acid and zinc sulphate. The disease ran a protracted course with temporary improvement while on antibiotic and flare up of disease when antibiotics were stopped. The effectiveness of early treatment with rifampicin has been highlighted in some case reports in the past. We did use rifampicin in one of our patients. Our concern over emergence of antibiotic resistance, if used widely, may not permit us to use rifampicin on a wide scale.
Kafle, Santosh U; Swe, Sai Myint; Hsiao, Pa-Fan; Tsai, Yi-Chiun; Wu, Yu-Hung
2017-01-01
Prurigo pigmentosa is a rare inflammatory dermatosis whose exact etiology is not understood yet. The purpose of this study was to provide evidence of hair follicle involvement in the pathogenesis by analyzing its clinicopathologic features. Patients who fulfilled both the clinical and histological diagnostic criteria of prurigo pigmentosa were recruited. Their histopathologic findings, clinical features and medical histories were analyzed. A total of 32 confirmed patients were enrolled from 2002 to 2013. Their ages ranged from 11 to 79 years with a female predominance. Patient lesions were primarily reddish-brown and located on the back. A total of 25 patients (78%) had pathological involvement of hair follicles, either bacterial colonies in the hair follicles (21/32, 66%), folliculitis (8/32, 25%) or perifolliculitis (15/32, 47%). There was a significantly higher proportion of patients with hair follicle involvement compared with control groups with either noninflammatory (5/43, 12%, p < 0.001) or inflammatory skin diseases (12/32, 38%, p = 0.002) on the back. Minocycline was an effective antibiotic treatment either singly or in combination with steroids. The frequent presence of bacterial colonies along with sequelae of inflammatory changes on biopsy provides new evidence to support the theory that prurigo pigmentosa is a reactive inflammation associated with bacterial folliculitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Munyeza, Chiedza F; Shobo, Adeola; Baijnath, Sooraj; Bratkowska, Dominika; Naiker, Suhashni; Bester, Linda A; Singh, Sanil D; Maguire, Glenn E M; Kruger, Hendrik G; Naicker, Tricia; Govender, Thavendran
2016-06-01
Tigecycline (TIG), a derivative of minocycline, is the first in the novel class of glycylcyclines and is currently indicated for the treatment of complicated skin structure and intra-abdominal infections. A selective, accurate and reversed-phase high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of TIG in rat brain tissues. Sample preparation was based on protein precipitation and solid phase extraction using Supel-Select HLB (30 mg/1 mL) cartridges. The samples were separated on a YMC Triart C18 column (150 mm x 3.0 mm. 3.0 µm) using gradient elution. Positive electrospray ionization (ESI+) was used for the detection mechanism with the multiple reaction monitoring (MRM) mode. The method was validated over the concentration range of 150-1200 ng/mL for rat brain tissue. The precision and accuracy for all brain analyses were within the acceptable limit. The mean extraction recovery in rat brain was 83.6%. This validated method was successfully applied to a pharmacokinetic study in female Sprague Dawley rats, which were given a dose of 25 mg/kg TIG intraperitoneally at various time-points. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
[A Patient with a Wedge-shaped Pulmonary Lesion Associated with Streptococcus parasanguinis].
Miyamoto, Hiroya; Gomi, Harumi; Ishioka, Haruhiko; Shirokawa, Taijiro
2016-05-01
An 84-year-old man was admitted to our hospital with bloody sputum. He was found to have a right lower lobe wedge-shaped nodular lesion with chest X-ray and computed tomography of the chest. Ceftriaxone and minocycline were started empirically based on a working diagnosis of community-acquired pneumonia. Streptococcus parasanguinis was isolated with sputum cultures obtained on three consecutive days and was identified based on its biochemical properties. S. parasanguinis is a member of the sanguinis group of viridans Streptococci. It is known as a causative pathogen for endocarditis. There are very few reports of S. parasanguinis associated with pulmonary infections. The present report describes the association of S. parasanguinis with a wedge-shaped nodular lesion in the lungs.
Gong, Y L; Yang, Z C; Yin, S P; Liu, M X; Zhang, C; Luo, X Q; Peng, Y Z
2016-09-20
To analyze the distribution and drug resistance of pathogen isolated from severely burned patients with bloodstream infection, so as to provide reference for the clinical treatment of these patients. Blood samples of 162 severely burned patients (including 120 patients with extremely severe burn) with bloodstream infection admitted into our burn ICU from January 2011 to December 2014 were collected. Pathogens were cultured by fully automatic blood culture system, and API bacteria identification panels were used to identify pathogen. Kirby-Bauer paper disk diffusion method was used to detect the drug resistance of major Gram-negative and -positive bacteria to 37 antibiotics including ampicillin, piperacillin and teicoplanin, etc. (resistance to vancomycin was detected by E test), and drug resistance of fungi to 5 antibiotics including voriconazole and amphotericin B, etc. Modified Hodge test was used to further identify imipenem and meropenem resistant Klebsiella pneumonia. D test was used to detect erythromycin-induced clindamycin resistant Staphylococcus aureus. The pathogen distribution and drug resistance rate were analyzed by WHONET 5.5. Mortality rate and infected pathogens of patients with extremely severe burn and patients with non-extremely severe burn were recorded. Data were processed with Wilcoxon rank sum test. (1) Totally 1 658 blood samples were collected during the four years, and 339 (20.4%) strains of pathogens were isolated. The isolation rate of Gram-negative bacteria, Gram-positive bacteria, and fungi were 68.4% (232/339), 24.5% (83/339), and 7.1% (24/339), respectively. The top three pathogens with isolation rate from high to low were Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa in turn. (2) Except for the low drug resistance rate to polymyxin B and minocycline, drug resistance rate of Acinetobacter baumannii to the other antibiotics were relatively high (81.0%-100.0%). Pseudomonas aeruginosa was sensitive to polymyxin B but highly resistant to other antibiotics (57.7%-100.0%). Enterobacter cloacae was sensitive to imipenem and meropenem, while its drug resistance rates to ciprofloxacin, levofloxacin, cefoperazone/sulbactam, cefepime, piperacillin/tazobactam were 25.0%-49.0%, and those to the other antibiotics were 66.7%-100.0%. Drug resistance rates of Klebsiella pneumoniae to cefoperazone/sulbactam, imipenem, and meropenem were low (5.9%-15.6%, two imipenem- and meropenem-resistant strains were identified by modified Hodge test), while its drug resistance rates to amoxicillin/clavulanic acid, piperacillin/tazobactam, cefepime, cefoxitin, amikacin, levofloxacin were 35.3%-47.1%, and those to the other antibiotics were 50.0%-100.0%. (3) Drug resistance rates of methicillin-resistant Staphylococcus aureus (MRSA) to most of the antibiotics were higher than those of the methicillin-sensitive Staphylococcus aureus (MSSA). MRSA was sensitive to linezolid, vancomycin, and teicoplanin, while its drug resistance rates to compound sulfamethoxazole, clindamycin, minocycline, and erythromycin were 5.3%-31.6%, and those to the other antibiotics were 81.6%-100.0%. Except for totally resistant to penicillin G and tetracycline, MSSA was sensitive to the other antibiotics. Fourteen Staphylococcus aureus strains were resistant to erythromycin-induced clindamycin. Enterococcus was sensitive to vancomycin and teicoplanin, while its drug resistance rates to linezolid, chloramphenicol, nitrofurantoin, and high unit gentamicin were low (10.0%-30.0%), and those to ciprofloxacin, erythromycin, minocycline, and ampicillin were high (60.0%-80.0%). Enterococcus was fully resistant to rifampicin. (4) Fungi was sensitive to amphotericin B, and drug resistance rates of fungi to voriconazole, fluconazole, itraconazole, and ketoconazole were 7.2%-12.5%. (5) The mortality of patients with extremely severe burn was higher than that of patients with non-extremely severe burn. The variety of infected pathogens in patients with extremely severe burn significantly outnumbered that in patients with non-extremely severe burn (Z=-2.985, P=0.005). The variety of pathogen in severely burned patients with bloodstream infection is wide, with the main pathogens as Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa, and the drug resistance situation is grim. The types of infected pathogen in patients with extremely severe burn are more complex, and the mortality of these patients is higher when compared with that of patients with non-extremely severe burn.
A pilot investigation of acute inhibitory control training in cocaine users.
Alcorn, Joseph L; Pike, Erika; Stoops, William S; Lile, Joshua A; Rush, Craig R
2017-05-01
Disrupted response inhibition and presence of drug-cue attentional bias in cocaine-using individuals have predicted poor treatment outcomes. Inhibitory control training could help improve treatment outcomes by strengthening cognitive control. This pilot study assessed the effects of acute inhibitory control training to drug- and non-drug-related cues on response inhibition performance and cocaine-cue attentional bias in cocaine-using individuals. Participants who met criteria for a cocaine-use disorder underwent five sessions of inhibitory control training to either non-drug-related cues (i.e., rectangles) or cocaine cues (n=10/condition) in a single day. Response inhibition and attentional bias were assessed prior to and following training using the stop-signal task and visual-probe task with eye tracking, respectively. Training condition groups did not differ on demographics, inhibitory control training performance, response inhibition, or cocaine-cue attentional bias. Response inhibition performance improved as a function of inhibitory control training in both conditions. Cocaine-cue attentional bias was observed, but did not change as a function of inhibitory control training in either condition. Response inhibition in cocaine-using individuals was augmented by acute inhibitory control training, which may improve treatment outcomes through better behavioral inhibition. Future studies should investigate longer-term implementation of inhibitory control training, as well as combining inhibitory control training with other treatment modalities. Copyright © 2017 Elsevier B.V. All rights reserved.
Zang, Mingde; Hu, Lei; Zhang, Baogui; Zhu, Zhenglun; Li, Jianfang; Zhu, Zhenggang; Yan, Min; Liu, Bingya
2017-08-26
Gastric cancer is a great threat to the health of the people worldwide and lacks effective therapeutic regimens. Luteolin is one of Chinese herbs and presents in many fruits and green plants. In our previous study, we observed that luteolin inhibited cell migration and promoted cell apoptosis in gastric cancer. In the present study, luteolin significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) through decreasing cell migration and proliferation of HUVECs in a dose-dependent manner. Vasculogenic mimicry (VM) tubes formed by gastric cancer cells were also inhibited with luteolin treatment. To explore how luteolin inhibited tubes formation, ELISA assay for VEGF was performed. Both of the VEGF secretion from Hs-746T cells and HUVECs were significantly decreased subsequent to luteolin treatment. In addition, cell migration was increased with the interaction between gastric cancer cells and HUVECs in co-culture assays. However, the promoting effects were abolished subsequent to luteolin treatment. Furthermore, luteolin inhibited VEGF secretion through suppressing Notch1 expression in gastric cancer. Overexpression of Notch1 in gastric cancer cells partially rescued the effects on cell migration, proliferation, HUVECs tube formation, and VM formation induced by luteolin treatment. In conclusion, luteolin inhibits angiogenesis and VM formation in gastric cancer through suppressing VEGF secretion dependent on Notch1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Wei; Hosford, Sarah R.; Dillon, Lloye M.; Shee, Kevin; Liu, Stephanie C.; Bean, Jennifer R.; Salphati, Laurent; Pang, Jodie; Zhang, Xiaolin; Nannini, Michelle A.; Demidenko, Eugene; Bates, Darcy; Lewis, Lionel D.; Marotti, Jonathan D.; Eastman, Alan R.; Miller, Todd W.
2016-01-01
Purpose Phosphatidylinositol 3-kinase (PI3K) inhibitors are being developed for the treatment of estrogen receptor α (ER)-positive breast cancer in combination with anti-estrogens. Understanding the temporal response and pharmacodynamic effects of PI3K inhibition in ER+ breast cancer will provide rationale for treatment scheduling to maximize therapeutic index. Experimental Design Anti-estrogen-sensitive and -resistant ER+ human breast cancer cell lines, and mice bearing PIK3CA-mutant xenografts were treated with the anti-estrogen fulvestrant, the PI3K inhibitor GDC-0941 (pictilisib; varied doses/schedules that provided similar amounts of drug each week), or combinations. Cell viability, signaling pathway inhibition, proliferation, apoptosis, tumor volume, and GDC-0941 concentrations in plasma and tumors were temporally measured. Results Treatment with the combination of fulvestrant and GDC-0941, regardless of dose/schedule, was significantly more effective than single-agent treatments in fulvestrant-resistant tumors. Short-term, complete PI3K inhibition blocked cell growth in vitro more effectively than chronic, incomplete inhibition. Longer-term PI3K inhibition hypersensitized cells to growth factor signaling upon drug withdrawal. Different schedules of GDC-0941 elicited similar tumor responses. While weekly high-dose GDC-0941 with fulvestrant continuously suppressed PI3K signaling for 72 hours, inducing a bolus of apoptosis and inhibiting proliferation, PI3K reactivation upon GDC-0941 washout induced a proliferative burst. Fulvestrant with daily low-dose GDC-0941 metronomically suppressed PI3K for 6–9 hours/day, repeatedly inducing small amounts of apoptosis and temporarily inhibiting proliferation, followed by proliferative rebound compared to fulvestrant alone. Conclusions Continuous and metronomic PI3K inhibition elicit robust anti-cancer effects in ER+, PIK3CA-mutant breast cancer. Clinical exploration of alternate treatment schedules of PI3K inhibitors with anti-estrogens is warranted. PMID:26733612
Yang, Wei; Hosford, Sarah R; Dillon, Lloye M; Shee, Kevin; Liu, Stephanie C; Bean, Jennifer R; Salphati, Laurent; Pang, Jodie; Zhang, Xiaolin; Nannini, Michelle A; Demidenko, Eugene; Bates, Darcy; Lewis, Lionel D; Marotti, Jonathan D; Eastman, Alan R; Miller, Todd W
2016-05-01
Phosphatidylinositol 3-kinase (PI3K) inhibitors are being developed for the treatment of estrogen receptor α (ER)-positive breast cancer in combination with antiestrogens. Understanding the temporal response and pharmacodynamic effects of PI3K inhibition in ER(+) breast cancer will provide a rationale for treatment scheduling to maximize therapeutic index. Antiestrogen-sensitive and antiestrogen-resistant ER(+) human breast cancer cell lines and mice bearing PIK3CA-mutant xenografts were treated with the antiestrogen fulvestrant, the PI3K inhibitor GDC-0941 (pictilisib; varied doses/schedules that provided similar amounts of drug each week), or combinations. Cell viability, signaling pathway inhibition, proliferation, apoptosis, tumor volume, and GDC-0941 concentrations in plasma and tumors were temporally measured. Treatment with the combination of fulvestrant and GDC-0941, regardless of dose/schedule, was significantly more effective than that with single-agent treatments in fulvestrant-resistant tumors. Short-term, complete PI3K inhibition blocked cell growth in vitro more effectively than chronic, incomplete inhibition. Longer-term PI3K inhibition hypersensitized cells to growth factor signaling upon drug withdrawal. Different schedules of GDC-0941 elicited similar tumor responses. While weekly high-dose GDC-0941 with fulvestrant continuously suppressed PI3K signaling for 72 hours, inducing a bolus of apoptosis and inhibiting proliferation, PI3K reactivation upon GDC-0941 washout induced a proliferative burst. Fulvestrant with daily low-dose GDC-0941 metronomically suppressed PI3K for 6 to 9 hours/day, repeatedly inducing small amounts of apoptosis and temporarily inhibiting proliferation, followed by proliferative rebound compared with fulvestrant alone. Continuous and metronomic PI3K inhibition elicits robust anticancer effects in ER(+), PIK3CA-mutant breast cancer. Clinical exploration of alternate treatment schedules of PI3K inhibitors with antiestrogens is warranted. Clin Cancer Res; 22(9); 2250-60. ©2016 AACRSee related commentary by Toska and Baselga, p. 2099. ©2016 American Association for Cancer Research.
Brandt, Bernd W.; Teixeira de Mattos, M. Joost; Buijs, Mark J.; Caspers, Martien P. M.; Rashid, Mamun-Ur; Weintraub, Andrej; Nord, Carl Erik; Savell, Ann; Hu, Yanmin; Coates, Antony R.; Hubank, Mike; Spratt, David A.; Wilson, Michael; Keijser, Bart J. F.; Crielaard, Wim
2015-01-01
ABSTRACT Due to the spread of resistance, antibiotic exposure receives increasing attention. Ecological consequences for the different niches of individual microbiomes are, however, largely ignored. Here, we report the effects of widely used antibiotics (clindamycin, ciprofloxacin, amoxicillin, and minocycline) with different modes of action on the ecology of both the gut and the oral microbiomes in 66 healthy adults from the United Kingdom and Sweden in a two-center randomized placebo-controlled clinical trial. Feces and saliva were collected at baseline, immediately after exposure, and 1, 2, 4, and 12 months after administration of antibiotics or placebo. Sequences of 16S rRNA gene amplicons from all samples and metagenomic shotgun sequences from selected baseline and post-antibiotic-treatment sample pairs were analyzed. Additionally, metagenomic predictions based on 16S rRNA gene amplicon data were performed using PICRUSt. The salivary microbiome was found to be significantly more robust, whereas the antibiotics negatively affected the fecal microbiome: in particular, health-associated butyrate-producing species became strongly underrepresented. Additionally, exposure to different antibiotics enriched genes associated with antibiotic resistance. In conclusion, healthy individuals, exposed to a single antibiotic treatment, undergo considerable microbial shifts and enrichment in antibiotic resistance in their feces, while their salivary microbiome composition remains unexpectedly stable. The health-related consequences for the gut microbiome should increase the awareness of the individual risks involved with antibiotic use, especially in a (diseased) population with an already dysregulated microbiome. On the other hand, understanding the mechanisms behind the resilience of the oral microbiome toward ecological collapse might prove useful in combating microbial dysbiosis elsewhere in the body. PMID:26556275
Influence of the bleaching interval on the luminosity of long-term discolored enamel-dentin discs.
Zaugg, Lucia K; Lenherr, Patrik; Zaugg, Judith B; Weiger, Roland; Krastl, Gabriel
2016-04-01
The aim of this study is to investigate the influence of changing the sodium perborate-tetrahydrate (PBS-4) at a 4-day interval versus no change after 16 days of internal bleaching. Two hundred and ten bovine enamel-dentin discs were discolored for 3.5 years with 14 different endodontic materials. All groups with a discoloring index of ∆E (mean) ≥ 5.5 were included in the present investigation: ApexCal (APCA), MTA white + blood (WMTA+BL), Portland cement + blood (PC+BL), blood (BL), MTA gray (GMTA), MTA gray + blood (GMTA+BL), Ledermix (LED), and triple antibiotic paste containing minocycline (3Mix). Fourteen specimens of each group were randomly assigned into two treatment groups: (1) no change of the PBS-4 (n = 7); (2) change of the PBS-4 every 4 days (n = 7). Color measurements were taken at 10 different time intervals and the L*a*b* values were recorded with a spectrophotometer (VITA Easyshade® compact). In the group 3Mix, significantly better results were achieved by changing the bleaching agent every 4 days (P = 0.0049; q = 0.04), while the group WMTA+BL indicated better results by no change of the bleaching agent (P = 0.0222, q = 0.09). All remaining groups showed no statistical difference between the two treatment procedures. Moderate discolorations can be successfully treated without changing the bleaching agent over a period of 16 days. Changing the sodium perborate-tetrahydrate every 4 days is preferred in case of severe discolored enamel-dentin discs only. This approach may offer a reduced number of clinical appointments and a secondary cost reduction to the patient.
HTB140 melanoma cells under proton irradiation and/or alkylating agents
NASA Astrophysics Data System (ADS)
Korićanac, L.; Petrović, I.; Privitera, G.; Cuttone, G.; Ristić-Fira, A.
2007-09-01
Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Atsushi; Graduate School of Science and Engineering, Saitama University, Saitama 338-8570; Green Tea Laboratory, Saitama Prefectural Agriculture and Forestry Research Center, Saitama 358-0042
Highlights: •EGCG reduced cell motility of highly metastatic human lung cancer cells. •EGCG increased cell stiffness of the cells, indicating the inhibition of phenotypes of EMT. •EGCG inhibited expression of vimentin and Slug in the cells at the leading edge of scratch. •Treatment of MβCD increased cell stiffness, and inhibited cell motility and vimentin expression. •Inhibition of EMT phenotypes with EGCG is a mechanism-based inhibition of cancer metastasis. -- Abstract: Cell motility and cell stiffness are closely related to metastatic activity of cancer cells. (−)-Epigallocatechin gallate (EGCG) has been shown to inhibit spontaneous metastasis of melanoma cell line into themore » lungs of mice, so we studied the effects of EGCG on cell motility, cell stiffness, and expression of vimentin and Slug, which are molecular phenotypes of epithelial–mesenchymal transition (EMT). Treatments of human non-small cell lung cancer cell lines H1299 and Lu99 with 50 and 100 μM EGCG reduced cell motility to 67.5% and 43.7% in H1299, and 71.7% and 31.5% in Lu99, respectively in in vitro wound healing assay. Studies on cell stiffness using atomic force microscope (AFM) revealed that treatment with 50 μM EGCG increased Young’s modulus of H1299 from 1.24 to 2.25 kPa and that of Lu99 from 1.29 to 2.28 kPa, showing a 2-fold increase in cell stiffness, i.e. rigid elasticity of cell membrane. Furthermore, treatment with 50 μM EGCG inhibited high expression of vimentin and Slug in the cells at a leading edge of scratch. Methyl-β-cyclodextrin, a reagent to deplete cholesterol in plasma membrane, showed inhibition of EMT phenotypes similar that by EGCG, suggesting that EGCG induces inhibition of EMT phenotypes by alteration of membrane organization.« less
Cash, Harrison; Shah, Sujay; Moore, Ellen; Caruso, Andria; Uppaluri, Ravindra; Van Waes, Carter; Allen, Clint
2015-01-01
We investigated the effects of mTOR and MEK1/2 inhibition on tumor growth and the tumor microenvironment in immunogenic and poorly immunogenic models of murine oral cancer. In vitro, rapamycin and PD901 inhibited signaling through expected downstream targets, but only PD901 reduced viability and altered function of MOC cells. Following transplantation of MOC cells into immune-competent mice, effects on both cancer and infiltrating immune cells were characterized following rapamycin and/or PD901 treatment for 21 days. In vivo, both rapamycin and PD901 inhibition reduced primary growth of established MOC tumors on treatment. Following withdrawal of PD901, rapid rebound of tumor growth limited survival, whereas durable tumor control was observed following rapamycin treatment in immunogenic MOC1 tumors despite more robust inhibition of oncogenic signaling by PD901. Characterization of the immune microenvironment revealed diminished infiltration and activation of antigen-specific CD8+ T-cells and other immune cells following PD901 but not rapamycin in immunogenic tumors. Subsequent in vitro T-cell assays validated robust inhibition of T-cell expansion and activation following MEK inhibition compared to mTOR inhibition. CD8 cell depletion abrogated rapamycin-induced primary tumor growth inhibition in MOC1 mice. These data have critical implications in the design of combination targeted and immune therapies in oral cancer. PMID:26506415
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkert, N.M.; Schulz, S.; Wille, T.
2011-05-15
Standard treatment of organophosphorus (OP) poisoning includes administration of an antimuscarinic (e.g., atropine) and of an oxime-based reactivator. However, successful oxime treatment in soman poisoning is limited due to rapid aging of phosphylated acetylcholinesterase (AChE). Hence, the inability of standard treatment procedures to counteract the effects of soman poisoning resulted in the search for alternative strategies. Recently, results of an in vivo guinea pig study indicated a therapeutic effect of physostigmine given after soman. The present study was performed to investigate a possible pre- and post-treatment effect of physostigmine on soman-inhibited human AChE given at different time intervals before ormore » after perfusion with soman by using a well-established dynamically working in vitro model for real-time analysis of erythrocyte and muscle AChE. The major findings were that prophylactic physostigmine prevented complete inhibition of AChE by soman and resulted in partial spontaneous recovery of the enzyme by decarbamylation. Physostigmine given as post-treatment resulted in a time-dependent reduction of the protection from soman inhibition and recovery of AChE. Hence, these date indicate that physostigmine given after soman does not protect AChE from irreversible inhibition by the OP and that the observed therapeutic effect of physostigmine in nerve agent poisoning in vivo is probably due to other factors.« less
Kim, Dong Hwan; Sung, Bokyung; Kang, Yong Jung; Hwang, Seong Yeon; Kim, Min Jeong; Yoon, Jeong-Hyun; Im, Eunok; Kim, Nam Deuk
2015-12-01
The effects of sulforaphane (a natural product commonly found in broccoli) was investigated on hypoxia inducible factor-1α (HIF-1α) expression in HCT116 human colon cancer cells and AGS human gastric cancer cells. We found that hypoxia-induced HIF-1α protein expression in HCT116 and AGS cells, while treatment with sulforaphane markedly and concentration-dependently inhibited HIF-1α expression in both cell lines. Treatment with sulforaphane inhibited hypoxia-induced vascular endothelial growth factor (VEGF) expression in HCT116 cells. Treatment with sulforaphane modulated the effect of hypoxia on HIF-1α stability. However, degradation of HIF-1α by sulforaphane was not mediated through the 26S proteasome pathway. We also found that the inhibition of HIF-1α by sulforaphane was not mediated through AKT and extracellular signal-regulated kinase phosphorylation under hypoxic conditions. Finally, hypoxia-induced HCT116 cell migration was inhibited by sulforaphane. These data suggest that sulforaphane may inhibit human colon cancer progression and cancer cell angiogenesis by inhibiting HIF-1α and VEGF expression. Taken together, these results indicate that sulforaphane is a new and potent chemopreventive drug candidate for treating patients with human colon cancer.
Response inhibition predicts poor antidepressant treatment response in very old depressed patients.
Sneed, Joel R; Roose, Steven P; Keilp, John G; Krishnan, K Ranga Rama; Alexopoulos, George S; Sackeim, Harold A
2007-07-01
There have been mixed findings regarding the prognostic significance of age of onset, executive dysfunction, and hyperintensity burden on treatment outcome in late-life depression. Growth curve models were fit to data from the only 8-week, double-blind, placebo controlled trial of citalopram (20-40 mg/day) in patients aged 75 years and older with unipolar depression. Baseline assessment included Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) (to determine age at onset), Stroop Color-Word Test (to assess the response inhibition component of execution dysfunction), and structural magnetic resonance imaging (to determine hyperintensity burden). In the citalopram condition, patients with response inhibition (most impaired quartile) scored higher at endpoint than those without response inhibition. There were no effects for age of onset or hyperintensity load on response in the citalopram condition. In the placebo condition, patients with early-onset depression had higher depression scores at endpoint than patients with late-onset depression. Only response inhibition, a fundamental executive function, predicted poor treatment response to antidepressant medication. Although patients with response inhibition also showed deficits in reaction time, adjusting for reaction time in our final response inhibition model did not substantively change the findings.
Chen, Jun; Wang, Bihang; Zhang, Jialing; Yang, Ruiqi; Fan, Limei
2015-08-04
To establish the research model of ovarian carcinoma in nude mice, and to explore the effect of Paris Phyllin VII combined with silica nano complex on the inhibition and the antioxidant ability of ovarian carcinoma in nude mice. Nude mice models with ovarian carcinoma were established by axillary subcutaneous inoculation of human SKOV3/DDP resistant ovarian cancer cell 200 µl and were used in the experiment. Treating the nude mice with Paris Phyllin VII combined with silica nano complex by gavage for 15 days to observe the weight change of the nude mice, tumor inhibition effect and changes of serum antioxidant capacity. Compared with the negative control group, tumor inhibition rate increased significantly in Paris Phyllin VII combined with silica nano complex treatment group, and was higher than that in both Paris Phyllin VII treatment only and silica nano composites treatment only group. The serum superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) level of Paris Phyllin VII combined with silica nano complex treatment group was significantly higher than that of control group, Paris Phyllin VII treatment only and silica nano composites treatment only group. The serum malonaldehyde (MDA) level of Paris Phyllin VII combined with silica nano complex treatment group was significantly lower than that of the negative control group. Paris Phyllin VII combined with silica nano complex treatment can inhibit the ovarian carcinoma in nude mice, which may mediate by the enhancement of antioxidant capability in nude mice with ovarian cancer.
The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells.
Huang, Bo Yuan; Zhan, Yi Ping; Zong, Wen Jing; Yu, Chun Jiang; Li, Jun Fa; Qu, Yan Ming; Han, Song
2015-01-01
Glioblastoma multiforme (GBM) is the most malignant primary type of brain tumor in adults. There has been increased focus on the immunotherapies to treat GBM patients, the therapeutic value of natural killer (NK) cells is still unknown. Programmed death-1 (PD-1) is a major immunological checkpoint that can negatively regulate the T-cell-mediated immune response. We tested the combination of the inhibiting the PD-1/B7H1 pathway with a NK-cell mediated immune response in an orthotopic mouse model of GBM. Mouse glioma stem cells (GL261GSCs) and mouse NK cells were isolated and identified. A lactate dehydrogenase (LDH) assay was perfomed to detect the cytotoxicity of NK cells against GL261GSCs. GL261GSCs were intracranially implanted into mice, and the mice were stratified into 3 treatment groups: 1) control, 2) NK cells treatment, and 3) PD-1 inhibited NK cells treatment group. Overall survival was quantified, and animal magnetic resonance imaging (MRI) was performed to determine tumor growth. The brains were harvested after the mice were euthanized, and immunohistochemistry against CD45 and PCNA was performed. The mouse NK cells were identified as 90% CD3- NK1.1+CD335+ by flow cytometric analysis. In the LDH assay, the ratios of the damaged GL261GSCs, with the E:T ratios of 2.5:1, 5:1, and 10:1, were as follows: 1) non-inhibited group: 7.42%, 11.31%, and 15.1%, 2) B7H1 inhibited group: 14.75%, 18.25% and 29.1%, 3) PD-1 inhibited group: 15.53%, 19.21% and 29.93%, 4) double inhibited group: 33.24%, 42.86% and 54.91%. In the in vivo experiments, the mice in the PD-1 inhibited NK cells treatment group and IL-2-stimulated-NK cells treatment group displayed a slowest tumor growth (F = 308.5, P<0.01) and a slower tumor growth compared with control group (F = 118.9, P<0.01), respectively. The median survival of the mice in the three groups were as follows: 1) conrol group: 29 days, 2) NK cells treatment group: 35 days (P = 0.0012), 3) PD-1 inhibited NK cells treatment group: 44 days (P = 0.0024). Immunologic data of PCNA-positive cell ratios and CD45-positive cell ratios of the tumor specimens in the three groups were as follows: 1) control group: 65.72% (PCNA) and 0.92% (CD45), 2) NK treatment group: 27.66% (PCNA) and 13.46% (CD45), and 3) PD-1 inhibited NK cells treatment group: 13.66% (PCNA) and 23.66% (CD45) (P<0.001). The results demonstrated that blockade of PD-1/B7H1 pathway could promote mouse NK cells to kill the GL261GSCs, and the PD-1-inhibited NK cells could be a feasible immune therapeutic approach against GBM.
Wang, Jianzhang; Man, Gene Chi Wai; Chan, Tak Hang; Kwong, Joseph; Wang, Chi Chiu
2018-01-01
Anti-angiogenesis effect of a prodrug of green tea polyphenol (-)-epigallocatechin-3-gallate (Pro-EGCG) in malignant tumors is not well studied. Here, we investigated how the treatment with Pro-EGCG inhibited tumor angiogenesis in endometrial cancer. Tumor xenografts of human endometrial cancer were established and subjected to microarray analysis after Pro-EGCG treatment. First, we showed Pro-EGCG inhibited tumor angiogenesis in xenograft models through down-regulation of vascular endothelial growth factor A (VEGFA) and hypoxia inducible factor 1 alpha (HIF1α) in tumor cells and chemokine (C-X-C motif) ligand 12 (CXCL12) in host stroma by immunohistochemical staining. Next, we investigated how HIF1α/VEGFA was down-regulated and how the reduction of CXCL12 inhibited tumor angiogenesis. We found that VEGFA secretion from endometrial cancer cells was decreased by Pro-EGCG treatment through inhibiting PI3K/AKT/mTOR/HIF1α pathway. Furthermore, the down-regulation of CXCL12 in stromal cells by Pro-EGCG treatment restricted migration and differentiation of macrophages thereby inhibited infiltration of VEGFA-expressing tumor-associated macrophages (TAMs). Taken together, we demonstrated that treatment with Pro-EGCG not only decreases cancer cell-secreted VEGFA but also inhibits TAM-secreted VEGFA in endometrial cancer. These findings demonstrate that Pro-EGCG is a novel angiogenesis inhibitor for endometrial cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae
2015-01-01
Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.
Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae
2015-01-01
Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging. PMID:26185518
Effect of Environmental Cues on Behavioral Efficacy of Haloperidol, Olanzapine and Clozapine in Rats
Sun, Tao; Liu, Xinfeng; Li, Ming
2014-01-01
Previous studies have reported that context can powerfully modulate the inhibitory effect of an antipsychotic drug on phencyclidine (PCP)-induced hyperlocomotion (a behavioral test used to evaluate putative antipsychotic drugs). The present study investigated the experimental conditions under which environmental stimuli exert their influence through associative conditioning processes. Experiment 1 examined the extent to which prior antipsychotic treatment in the home cages affected a drug’s ability to inhibit PCP-induced hyperlocomotion in a novel motor activity test apparatus. Five days of repeated haloperidol (0.05 mg/kg, sc) and olanzapine (2.0 mg/kg, sc) treatment in the home cages still potentiated their inhibition of PCP-induced hyperlocomotion (i.e. sensitization) assessed in a new environment, whereas the clozapine (10.0 mg/kg, sc) treatment enhanced the development of clozapine tolerance, indicating a lack of environmental modulation of antipsychotic efficacy. Experiment 2 assessed the impact of different numbers of antipsychotic administrations in either the home environment or test environment (e.g. 4, 2 or 0) on a drug’s ability to inhibit PCP-induced hyperlocomotion. Repeated administration of clozapine (5.0 mg/kg, sc) or olanzapine (1.0 mg/kg, sc) for 4 consecutive days, regardless of where these treatments occurred, caused a similar level of inhibition on PCP-induced hyperlocomotion. However, 4-day haloperidol (0.03 mg/kg, sc) treatment in the test apparatus caused a significant higher inhibition than 4-day home cage treatment. Thus, more exposures to the test environment under the influence of haloperidol (but not clozapine or olanzapine) cause a stronger inhibition than fewer exposures, indicating a strong environmental modulation. Collectively, these findings suggest that prior antipsychotic treatment in one environment could alter later antipsychotic-like response assessed in a different environment under certain test conditions. Therefore, whether the circumstances surrounding antipsychotic drug administration exert a powerful control of the expression of antipsychotic-like efficacy is dependent on specific experimental and drug treatment factors. PMID:24949569
Pharmacologic inhibition of lactate production prevents myofibroblast differentiation.
Kottmann, Robert Matthew; Trawick, Emma; Judge, Jennifer L; Wahl, Lindsay A; Epa, Amali P; Owens, Kristina M; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J
2015-12-01
Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis. Copyright © 2015 the American Physiological Society.
Gu, Ha Ra; Choi, Su Jin; Lee, Jae Cheol; Kim, You Cheoul; Han, Chul Ju; Kim, Jin; Yang, Ki Young; Kim, Yeon Joo; Noh, Geum Youb; No, So Hyeon; Jeong, Jae-Hoon
2015-01-01
Background/Aims Silibinin, the main component of silymarin, is used as a hepatoprotectant and exhibits anticancer effects against various cancer cells. This study evaluated the effects of a combination of silibinin with either gefitinib or sorafenib on hepatocellular carcinoma (HCC) cells. Methods Several different human HCC cell lines were used to test the growth-inhibiting effects and cell toxicity of silibinin both alone and in combination with either gefitinib or sorafenib. The cell viability and growth inhibition were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, trypan blue staining, and a colony-forming assay. Furthermore, changes in epidermal growth factor receptor (EGFR)-related signals were evaluated by Western blot analysis. Results Gefitinib, sorafenib, and silibinin individually exhibited dose-dependent antiproliferative effects on HCC cells. Combined treatment with silibinin enhanced the gefitinib-induced growth-inhibiting effects in some HCC cell lines. The combination effect of gefitinib and silibinin was synergistic in the SNU761 cell line, but was only additive in the Huh-BAT cell line. The combination effect may be attributable to inhibition of EGFR-dependent Akt signaling. Enhanced growth-inhibiting effects were also observed in HCC cells treated with a combination of sorafenib and silibinin. Conclusions Combined treatment with silibinin enhanced the growth-inhibiting effects of both gefitinib and sorafenib. Therefore, the combination of silibinin with either sorafenib or gefitinib could be a useful treatment approach for HCC in the future. PMID:25834802
Gu, Ha Ra; Park, Su Cheol; Choi, Su Jin; Lee, Jae Cheol; Kim, You Cheoul; Han, Chul Ju; Kim, Jin; Yang, Ki Young; Kim, Yeon Joo; Noh, Geum Youb; No, So Hyeon; Jeong, Jae-Hoon
2015-03-01
Silibinin, the main component of silymarin, is used as a hepatoprotectant and exhibits anticancer effects against various cancer cells. This study evaluated the effects of a combination of silibinin with either gefitinib or sorafenib on hepatocellular carcinoma (HCC) cells. Several different human HCC cell lines were used to test the growth-inhibiting effects and cell toxicity of silibinin both alone and in combination with either gefitinib or sorafenib. The cell viability and growth inhibition were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, trypan blue staining, and a colony-forming assay. Furthermore, changes in epidermal growth factor receptor (EGFR)-related signals were evaluated by Western blot analysis. Gefitinib, sorafenib, and silibinin individually exhibited dose-dependent antiproliferative effects on HCC cells. Combined treatment with silibinin enhanced the gefitinib-induced growth-inhibiting effects in some HCC cell lines. The combination effect of gefitinib and silibinin was synergistic in the SNU761 cell line, but was only additive in the Huh-BAT cell line. The combination effect may be attributable to inhibition of EGFR-dependent Akt signaling. Enhanced growth-inhibiting effects were also observed in HCC cells treated with a combination of sorafenib and silibinin. Combined treatment with silibinin enhanced the growth-inhibiting effects of both gefitinib and sorafenib. Therefore, the combination of silibinin with either sorafenib or gefitinib could be a useful treatment approach for HCC in the future.
Mifepristone inhibits extracellular matrix formation in uterine leiomyoma.
Patel, Amrita; Malik, Minnie; Britten, Joy; Cox, Jeris; Catherino, William H
2016-04-01
To characterize the efficacy of mifepristone treatment on extracellular matrix (ECM) production in leiomyomas. Laboratory study. University research laboratory. None. Treatment of human immortalized two-dimensional (2D) and three-dimensional (3D) leiomyoma and myometrial cells with mifepristone and the progestin promegestone (R5020). Expression of COL1A1, fibronectin, versican variant V0, and dermatopontin in treated leiomyoma cells by Western blot analysis and confirmatory immunohistochemistry staining of treated 3D cultures. Treatment with progestin stimulated production of COL1A1, fibronectin, versican, and dermatopontin. Mifepristone treatment inhibited protein production of these genes, most notably with versican expression. Combination treatment with both the agonist and antagonist further inhibited protein expression of these genes. Immunohistochemistry performed on 3D cultures demonstrated generalized inhibition of ECM protein concentration. Our study demonstrated that the progesterone agonist R5020 directly stimulated extracellular matrix components COL1A1, fibronectin, versican, and dermatopontin production in human leiomyoma cells. Progesterone antagonist mifepristone decreased protein production of these genes to levels comparable with untreated leiomyoma cells. Published by Elsevier Inc.
Sun, Shuben; Gong, Fanger; Liu, Ping; Miao, Qilong
2018-04-17
The aim of present study was to examine whether metformin in association with quercetin has any synergistically anti-tumor effects on prostate cancer. Our findings showed that metformin in combination with quercetin synergistically inhibited the growth, migration and invasion of both PC-3 and LNCaP cells. Co-treatment of these two agents induced more apoptosis than single agent treatment. The co-treatment-induced apoptosis was caspase-dependent and accompanied by the down-regulation of Bcl-2 family members. Our data also indicated that co-treatment of metformin and quercetin strongly inhibited the VEGF/Akt/PI3K pathway. Moreover, these two agents acted synergistically to repress the growth of human prostate cancer cell xenograft in vivo in nude mice. In conclusion, our findings indicate that the combination therapy of metformin and quercetin exerted synergistic antitumor effects in prostate cancers via inhibition of VEGF/Akt/PI3K pathway. Thus, combination treatment of metformin and quercetin would be a promising therapeutic strategy for prostate cancer patients. Copyright © 2017. Published by Elsevier B.V.
Zaffryar-Eilot, Shelly; Marshall, Derek; Voloshin, Tali; Bar-Zion, Avinoam; Spangler, Rhyannon; Kessler, Ofra; Ghermazien, Haben; Brekhman, Vera; Suss-Toby, Edith; Adam, Dan; Shaked, Yuval; Smith, Victoria; Neufeld, Gera
2013-10-01
Lysyl oxidase-like 2 (LOXL2), a secreted enzyme that catalyzes the cross-linking of collagen, plays an essential role in developmental angiogenesis. We found that administration of the LOXL2-neutralizing antibody AB0023 inhibited bFGF-induced angiogenesis in Matrigel plug assays and suppressed recruitment of angiogenesis promoting bone marrow cells. Small hairpin RNA-mediated inhibition of LOXL2 expression or inhibition of LOXL2 using AB0023 reduced the migration and network-forming ability of endothelial cells, suggesting that the inhibition of angiogenesis results from a direct effect on endothelial cells. To examine the effects of AB0023 on tumour angiogenesis, AB0023 was administered to mice bearing tumours derived from SKOV-3 ovarian carcinoma or Lewis lung carcinoma (LLC) cells. AB0023 treatment significantly reduced the microvascular density in these tumours but did not inhibit tumour growth. However, treatment of mice bearing SKOV-3-derived tumours with AB0023 also promoted increased coverage of tumour vessels with pericytes and reduced tumour hypoxia, providing evidence that anti-LOXL2 therapy results in the normalization of tumour blood vessels. In agreement with these data, treatment of mice bearing LLC-derived tumours with AB0023 improved the perfusion of the tumour-associated vessels as determined by ultrasonography. Improved perfusion and normalization of tumour vessels after treatment with anti-angiogenic agents were previously found to improve the delivery of chemotherapeutic agents into tumours and to result in an enhancement of chemotherapeutic efficiency. Indeed, treatment with AB0023 significantly enhanced the anti-tumourigenic effects of taxol. Our results suggest that inhibition of LOXL2 may prove beneficial for the treatment of angiogenic tumours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shih, T.M.
1993-12-31
The ability of three oximes, HI-6, MMB-4 and ICD-467, to reactivate cholinesterase (ChE) inhibited by the organophosphorus compound soman was compared in blood (plasma and erythrocytes), brain regions (including spinal cord) and peripheral tissues of rats. Animals were intoxicated with soman (100 ttg/kg. SC; equivalent to 0.9 x LDs0 dose) and treated 1 min later with one of these oximes (100 or 200 ttmo1/kg, IM). Toxic sign scores and total tissue ChE activities were determined 30 min later. Soman markedly inhibited ChE activity in blood (93 - 96%), brain regions (ranging from 78% to 95%), and all peripheral tissues (rangingmore » from 48.9% to 99.8%) except liver (11.9%). In blood, treatment with HI-6 or ICD-467 resulted in significant reactivation of soman-inhibited ChE. in contrast, MMB-4 was completely ineffective. HI-6 and ICD-467 were equally effective at the high dose. At the low dose ICD-467 treatment resulted in significantly higher plasma ChE than Hl-6 treatment, whereas HI-6 treatment resulted in higher erythrocyte ChE than ICD-467 treatment. However, none of these three oximesreactivated or protected soman-inhibited ChE in the brain. In all peripheral tissues (except liver) studied, MMB-4 was not effective. 111-6 reactivated soman-inhibited ChE in all tis- sues except lung, heart, and skeletal muscle. ICD-467 was highly effective in reactivating ChE in all tissues and afforded a complete recovery of ChE to control levels in Intercostal muscle and salivary gland. Oxime treatments did not modify the toxic scores produced by soman.« less