The Effects of the Removal of Electronic Devices for 48 Hours on Sleep in Elite Judo Athletes.
Dunican, Ian C; Martin, David T; Halson, Shona L; Reale, Reid J; Dawson, Brian T; Caldwell, John A; Jones, Maddison J; Eastwood, Peter R
2017-10-01
This study examined the effects of evening use of electronic devices (i.e., smartphones, etc.) on sleep quality and next-day athletic and cognitive performance in elite judo athletes. Over 6 consecutive days and nights, 23 elite Australian judo athletes were monitored while attending a camp at the Australian Institute of Sport (AIS). In 14 athletes, all electronic devices were removed on days 3 and 4 (i.e., for 48 hours: the "device-restricted group"), whereas 9 were permitted to use their devices throughout the camp (the "control group"). All athletes wore an activity monitor (Readiband) continuously to provide measures of sleep quantity and quality. Other self-reported (diary) measures included time in bed, electronic device use, and rate of perceived exertion during training periods. Cognitive performance (Cogstate) and physical performance (single leg triple hop test) were also measured. When considering night 2 as a "baseline" for each group, removal of electronic devices on nights 3 and 4 (device-restricted group) resulted in no significant differences in any sleep-related measure between the groups. When comparing actigraphy-based measures of sleep to subjective measures, all athletes significantly overestimated sleep duration by 58 ± 85 minutes (p = 0.001) per night and underestimated time of sleep onset by 37 ± 72 minutes (p = 0.001) per night. No differences in physical or cognitive function were observed between the groups. This study has shown that the removal of electronic devices for a period of two nights (48 hours) during a judo camp does not affect sleep quality or quantity or influence athletic or cognitive performance.
Using Nooks to Hook Reluctant Readers
ERIC Educational Resources Information Center
Dierking, Rebecca
2015-01-01
This article presents the findings of a two-year qualitative study of electronic reading device use with high school sophomores, most of whom self-identified as reluctant or struggling readers. Electronic readers were used primarily in one weekly fifty-minute class period, during silent sustained reading, wherein students chose freely their texts.…
NASA Technical Reports Server (NTRS)
1982-01-01
Grace Industries, Inc.'s Electronic Nose is a vapor and gas detector, deriving from NASA's electronic circuitry, capable for sensing the presence of accelerants several days after a fire. The device is powered by rechargeable battery and no special training needed to operate. If an accelerant is present, device will emit a beeping sound and trigger a flashing light; the faster the beep rate, the more volatile the accelerant. Its sensitivity can also detect minute traces of accelerants. Unit saves investigators of fire causes time and expense by providing speedy detection of physical evidence for use in court. Device is also useful for detecting hazardous fumes, locating and detecting gas leaks in refineries and on oil drilling rigs.
Novel denture-cleaning system based on hydroxyl radical disinfection.
Kanno, Taro; Nakamura, Keisuke; Ikai, Hiroyo; Hayashi, Eisei; Shirato, Midori; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro; Sasaki, Keiichi
2012-01-01
The purpose of this study was to evaluate a new denture-cleaning device using hydroxyl radicals generated from photolysis of hydrogen peroxide (H2O2). Electron spin resonance analysis demonstrated that the yield of hydroxyl radicals increased with the concentration of H2O2 and light irradiation time. Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant S aureus were killed within 10 minutes with a > 5-log reduction when treated with photolysis of 500 mM H2O2; Candida albicans was killed within 30 minutes with a > 4-log reduction with photolysis of 1,000 mM H2O2. The clinical test demonstrated that the device could effectively reduce microorganisms in denture plaque by approximately 7-log order within 20 minutes.
Prolonged energy harvesting for ingestible devices.
Nadeau, Phillip; El-Damak, Dina; Glettig, Dean; Kong, Yong Lin; Mo, Stacy; Cleveland, Cody; Booth, Lucas; Roxhed, Niclas; Langer, Robert; Chandrakasan, Anantha P; Traverso, Giovanni
2017-01-01
Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged monitoring systems for patients. Although prior biocompatible power harvesting systems for in vivo use have demonstrated short minute-long bursts of power from the stomach, not much is known about the capacity to power electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 μW per mm 2 of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell has the capacity to provide power for prolonged periods of time to the next generation of ingestible electronic devices located in the gastrointestinal tract.
Prochazka, Ivan; Kodet, Jan; Panek, Petr
2012-11-01
We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.
Dawkins, Lynne; Kimber, Catherine; Puwanesarasa, Yasothani; Soar, Kirstie
2015-04-01
To (1) estimate predictors of first- versus second-generation electronic cigarette (e-cigarette) choice; and (2) determine whether a second-generation device was (i) superior for reducing urge to smoke and withdrawal symptoms (WS) and (ii) associated with enhanced positive subjective effects. Mixed-effects experimental design. Phase 1: reason for e-cigarette choice was assessed via questionnaire. Phase 2: participants were allocated randomly to first- or second-generation e-cigarette condition. Urge to smoke and WS were measured before and 10 minutes after taking 10 e-cigarette puffs. University of East London, UK. A total of 97 smokers (mean age 26; standard deviation 8.7; 54% female). Single-item urge to smoke scale to assess craving and the Mood and Physical Symptoms Scale (MPSS) to assess WS. Subjective effects included: satisfaction, hit, 'felt like smoking' and 'would use to stop smoking' (yes versus no response). Equal numbers chose each device, but none of the predictor variables (gender, age, tobacco dependence, previous e-cigarette use) accounted for choice. Only baseline urge to smoke/WS predicted urge to smoke/WS 10 minutes after use (B =0.38; P <0.001 and B =0.53; P <0.001). E-cigarette device was not a significant predictor. Those using the second-generation device were more likely to report satisfaction and use in a quit attempt (χ(2) = 12.10, P =0.001 and χ(2) = 5.53, P =0.02). First- and second-generation electronic cigarettes appear to be similarly effective in reducing urges to smoke during abstinence, but second-generation devices appear to be more satisfying to users. © 2014 Society for the Study of Addiction.
Melczer, Csaba; Melczer, László; Goják, Ilona; Kónyi, Attila; Szabados, Sándor; Raposa, László Bence; Oláh, András; Ács, Pongrác
2017-09-01
Several studies have demonstrated that the prevalence of heart disease can be accounted for between 0.4 and 2% in developed countries. The present study aimed to use the PA% of the telemetry data to estimate the 6-minute walk test result. A total of seventeen patients with heart disease; 3 females and 14 males; age: 57.35 yrs ± 9.54; body mass 98.71 ± 9.89 kg; average BMI 36.69 ± 3.67 were recruited into the study. Using the two sets of values describing physical performance, linear regression was calculated providing a mathematical equation, thus, the Physical Activity % value is used to estimate the distance traveled over a 6-minute walk test. On further data analysis, we have come to the conclusion that the distance walked during the six-minute-long test may be measured by PA% from the data of CRT device. With our method, based on the values received from the physical activity sensor implanted into the resynchronisation devices, changes in patients' health status could be monitored telemetrically with the assistance from the implanted electronic device. Orv Hetil. 2017; 158(35): 1390-1395.
NASA Technical Reports Server (NTRS)
Bosomworth, D. R.; Moles, W. H.
1969-01-01
A memory and display device has been developed by combing a fast phosphor layer with a cathodochromic layer in a cathode ray tube. Images are stored as patterns of electron beam induced optical density in the cathodo-chromic material. The stored information is recovered by exciting the backing, fast phosphor layer with a constant current electron beam and detecting the emitted radiation which is modulated by absorption in the cathodochromic layer. The storage can be accomplished in one or more TV frames (1/30 sec each). More than 500 TV line resolution and close to 2:1 contrast ratio are possible. The information storage time in a dark environment is approximately 24 hours. A reconstituted (readout) electronic video signal can be generated continuously for times in excess of 10 minutes or periodically for several hours.
Mukasa, Oscar; Mushi, Hildegalda P; Maire, Nicolas; Ross, Amanda; de Savigny, Don
2017-01-01
Data entry at the point of collection using mobile electronic devices may make data-handling processes more efficient and cost-effective, but there is little literature to document and quantify gains, especially for longitudinal surveillance systems. To examine the potential of mobile electronic devices compared with paper-based tools in health data collection. Using data from 961 households from the Rufiji Household and Demographic Survey in Tanzania, the quality and costs of data collected on paper forms and electronic devices were compared. We also documented, using qualitative approaches, field workers, whom we called 'enumerators', and households' members on the use of both methods. Existing administrative records were combined with logistics expenditure measured directly from comparison households to approximate annual costs per 1,000 households surveyed. Errors were detected in 17% (166) of households for the paper records and 2% (15) for the electronic records (p < 0.001). There were differences in the types of errors (p = 0.03). Of the errors occurring, a higher proportion were due to accuracy in paper surveys (79%, 95% CI: 72%, 86%) compared with electronic surveys (58%, 95% CI: 29%, 87%). Errors in electronic surveys were more likely to be related to completeness (32%, 95% CI 12%, 56%) than in paper surveys (11%, 95% CI: 7%, 17%).The median duration of the interviews ('enumeration'), per household was 9.4 minutes (90% central range 6.4, 12.2) for paper and 8.3 (6.1, 12.0) for electronic surveys (p = 0.001). Surveys using electronic tools, compared with paper-based tools, were less costly by 28% for recurrent and 19% for total costs. Although there were technical problems with electronic devices, there was good acceptance of both methods by enumerators and members of the community. Our findings support the use of mobile electronic devices for large-scale longitudinal surveys in resource-limited settings.
Farsalinos, Konstantinos E; Spyrou, Alketa; Tsimopoulou, Kalliroi; Stefopoulos, Christos; Romagna, Giorgio; Voudris, Vassilis
2014-02-26
A wide range of electronic cigarette (EC) devices, from small cigarette-like (first-generation) to new-generation high-capacity batteries with electronic circuits that provide high energy to a refillable atomizer, are available for smokers to substitute smoking. Nicotine delivery to the bloodstream is important in determining the addictiveness of ECs, but also their efficacy as smoking substitutes. In this study, plasma nicotine levels were measured in experienced users using a first- vs. new-generation EC device for 1 hour with an 18 mg/ml nicotine-containing liquid. Plasma nicotine levels were higher by 35-72% when using the new- compared to the first-generation device. Compared to smoking one tobacco cigarette, the EC devices and liquid used in this study delivered one-third to one-fourth the amount of nicotine after 5 minutes of use. New-generation EC devices were more efficient in nicotine delivery, but still delivered nicotine much slower compared to tobacco cigarettes. The use of 18 mg/ml nicotine-concentration liquid probably compromises ECs' effectiveness as smoking substitutes; this study supports the need for higher levels of nicotine-containing liquids (approximately 50 mg/ml) in order to deliver nicotine more effectively and approach the nicotine-delivery profile of tobacco cigarettes.
Measured and Predicted Radiation-Induced Currents in Semirigid Coaxial Cables.
1977-10-11
plasma focus device. Semirigid cables of different size, material, and impedance were tested. Minute gaps and conductor flashings were found to be dominant factors affecting cable response. Response predictions provided by the MCCABE computer code closely correlated with the experimental measurements. Design of low-response semirigid cables matching the metal and dielectric electron emission is discussed.
Operation of SOI P-Channel Field Effect Transistors, CHT-PMOS30, under Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2009-01-01
Electronic systems are required to operate under extreme temperatures in NASA planetary exploration and deep space missions. Electronics on-board spacecraft must also tolerate thermal cycling between extreme temperatures. Thermal management means are usually included in today s spacecraft systems to provide adequate temperature for proper operation of the electronics. These measures, which may include heating elements, heat pipes, radiators, etc., however add to the complexity in the design of the system, increases its cost and weight, and affects its performance and reliability. Electronic parts and circuits capable of withstanding and operating under extreme temperatures would reflect in improvement in system s efficiency, reducing cost, and improving overall reliability. Semiconductor chips based on silicon-on-insulator (SOI) technology are designed mainly for high temperature applications and find extensive use in terrestrial well-logging fields. Their inherent design offers advantages over silicon devices in terms of reduced leakage currents, less power consumption, faster switching speeds, and good radiation tolerance. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. Experimental investigation on the operation of SOI, N-channel field effect transistors under wide temperature range was reported earlier [1]. This work examines the performance of P-channel devices of these SOI transistors. The electronic part investigated in this work comprised of a Cissoid s CHT-PMOS30, high temperature P-channel MOSFET (metal-oxide semiconductor field-effect transistor) device [2]. This high voltage, medium-power transistor is designed for geothermal well logging applications, aerospace and avionics, and automotive industry, and is specified for operation in the temperature range of -55 C to +225 C. Table I shows some specifications of this transistor [2]. The CHT-PMOS30 device was characterized at various temperatures over the range of -190 C to +225 C in terms of its voltage/current characteristic curves. The test temperatures included +22, -50, -100, -150, -175, -190, +50, +100, +150, +175, +200, and +225 C. Limited thermal cycling testing was also performed on the device. These tests consisted of subjecting the transistor to a total of twelve thermal cycles between -190 C and +225 C. A temperature rate of change of 10 C/min and a soak time at the test temperature of 10 minutes were used throughout this work. Post-cycling measurements were also performed at selected temperatures. In addition, re-start capability at extreme temperatures, i.e. power switched on while the device was soaking for a period of 20 minutes at the test temperatures of -190 C and +225 C, was investigated.
Electron transport through magnetic quantum point contacts
NASA Astrophysics Data System (ADS)
Day, Timothy Ellis
Spin-based electronics, or spintronics, has generated a great deal of interest as a possible next-generation integrated circuit technology. Recent experimental and theoretical work has shown that these devices could exhibit increased processing speed, decreased power consumption, and increased integration densities as compared with conventional semiconductor devices. The spintronic device that was designed, fabricated, and tested throughout the course of this work aimed to study the generation of spin-polarized currents in semiconductors using magnetic fringe fields. The device scheme relied on the Zeeman effect in combination with a quantum mechanical barrier to generate spin-polarized currents. The Zeeman effect was used to break the degeneracy of spin-up and spin-down electrons and the quantum mechanical potential to transmit one while rejecting the other. The design was dictated by the drive to maximize the strength of the magnetic fringe field and in turn maximize the energy separation of the two spin species. The device was fabricated using advanced techniques in semiconductor processing including electron beam lithography and DC magnetron sputtering. Measurements were performed in a 3He cryostat equipped with a superconducting magnet at temperatures below 300 mK. Preliminary characterization of the device revealed magnetoconductance oscillations produced by the effect of the transverse confining potential on the density of states and the mobility. Evidence of the effect of the magnetic fringe fields on the transport properties of electrons in the device were observed in multiple device measurements. An abrupt washout of the quantized conductance steps was observed over a minute range of the applied magnetic field. The washout was again observed as electrons were shifted closer to the magnetic gates. In addition, bias spectroscopy demonstrated that the washout occurred despite stronger electron confinement, as compared to a non-magnetic split-gate. Thus, the measurements indicated that conductance quantization breaks down in a non-uniform magnetic field, possibly due to changes to the stationary Landau states. It was also demonstrated that non-integer conductance plateaus at high source-drain bias are not caused by a macroscopic asymmetry in the potential drop.
Ahmed, Imdad; Patel, Amisha S; Balgaard, Timothy J; Rosenfeld, Lynda E
2016-03-01
Interrogation/interpretation of cardiac implantable electronic devices (CIEDs) is frequently required in the emergency department (ED) or perioperative areas (OR) where resources to do this are often not available. CareLink Express (CLE; Medtronic, plc, Mounds View, MN, USA) is a technician-supported real-time remote interrogation system for Medtronic CIEDs. Using data from 136 US locations, this retrospective study was designed to assess CLE efficiency compared to traditional device management, and examine its findings. All 7,044 US CLE transmissions from the ED and OR (January 2012-October 2014) were compared to 217 traditional requests where CIED interrogations/interpretations were performed by calling industry representatives to these sites. CLE reduced the time to device interrogation/interpretation by 78%: 100 ± 140-22 ± 14 minutes, P < 0.0001, improving response time and consistency; ED: 82 ± 103-23 ± 18 minutes, P, ≤ 0.01; OR: 127 ± 181-17 ± 10 minutes, P < 0.0001. Actionable events (AE) (arrhythmia, device/lead abnormalities) were infrequent: 9.1% overall (ED: 9.9%; OR: 4.1%). Only 6.5% of patients with syncope/presyncope and 13.6% with a perceived shock had AE. AEs were more common in those with suspected device problems (30.4%) or audible alerts (52.6%). They were more likely in patients not enrolled in long-term remote monitoring (23.9% vs 8.2%, P < 0.0001) and in those with older CIED systems (7.4% in year 1 vs 31.0% after 10 years). The many patients with CIEDs, and the ability to quickly identify the minority with high-risk AE from the no/low-risk majority, strongly support CLE use in the ED and OR, sites which are expensive and prioritize efficiency. © 2015 Wiley Periodicals, Inc.
Prevalence of musculoskeletal pain in adolescents and association with computer and videogame use.
Silva, Georgia Rodrigues Reis; Pitangui, Ana Carolina Rodarti; Xavier, Michele Katherine Andrade; Correia-Júnior, Marco Aurélio Valois; De Araújo, Rodrigo Cappato
2016-01-01
This study investigated the presence of musculoskeletal symptoms in high school adolescents from public schools and its association with electronic device use. The sample consisted of 961 boys and girls aged 14-19 years who answered a questionnaire regarding the use of computers and electronic games, and questions about pain symptoms and physical activity. Furthermore, anthropometric assessments of all volunteers were performed. The chi-squared test and a multiple logistic regression model were used for the inferential analysis. The presence of musculoskeletal pain symptoms was reported by 65.1% of the adolescents, being more prevalent in the thoracolumbar spine (46.9%), followed by pain in the upper limbs, representing 20% of complaints. The mean time of use for computers and electronic games was 1.720 and 583 minutes per week, respectively. The excessive use of electronic devices was demonstrated to be a risk factor for cervical and lumbar pain. Female gender was associated with the presence of pain in different body parts. Presence of a paid job was associated with cervical pain. A high prevalence of musculoskeletal pain in adolescents, as well as an increased amount of time using digital devices was observed. However, it was only possible to observe an association between the increased use of these devices and the presence of cervical and low back pain. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Ramachandra, Ranjan; Bouwer, James C; Mackey, Mason R; Bushong, Eric; Peltier, Steven T; Xuong, Nguyen-Huu; Ellisman, Mark H
2014-06-01
Energy filtered transmission electron microscopy techniques are regularly used to build elemental maps of spatially distributed nanoparticles in materials and biological specimens. When working with thick biological sections, electron energy loss spectroscopy techniques involving core-loss electrons often require exposures exceeding several minutes to provide sufficient signal to noise. Image quality with these long exposures is often compromised by specimen drift, which results in blurring and reduced resolution. To mitigate drift artifacts, a series of short exposure images can be acquired, aligned, and merged to form a single image. For samples where the target elements have extremely low signal yields, the use of charge coupled device (CCD)-based detectors for this purpose can be problematic. At short acquisition times, the images produced by CCDs can be noisy and may contain fixed pattern artifacts that impact subsequent correlative alignment. Here we report on the use of direct electron detection devices (DDD's) to increase the signal to noise as compared with CCD's. A 3× improvement in signal is reported with a DDD versus a comparably formatted CCD, with equivalent dose on each detector. With the fast rolling-readout design of the DDD, the duty cycle provides a major benefit, as there is no dead time between successive frames.
TEM-EELS Investigation of Boron and Phosphorus Passivated 4H-SiC/SiO2 Interface Structures
NASA Astrophysics Data System (ADS)
Klingshirn, Christopher; Taillon, Joshua; Liu, Gang; Dhar, Sarit; Feldman, Leonard; Zheleva, Tsvetanka; Lelis, Aivars; Salamanca-Riba, Lourdes
A high density of electronic defects at the SiC/SiO2 interface adversely affects SiC-based metal oxide semiconductor devices. Various treatments are known to improve device performance. Annealing in a nitric oxide (NO) environment, for example, passivates electronic defects at the interface and raises the carrier mobility in the active region to 35-40 cm2/Vs, but the effect saturates after about 60 minutes of annealing. Passivation with phosphorus or boron improves upon NO by a factor of 2, increasing the mobility to over 90 cm2/Vs.2 We investigate the chemical and structural effects of these treatments on the SiC/SiO2 transition layer using high-resolution transmission electron microscopy (HRTEM) and high angle annular dark field (HAADF). Electron energy loss spectroscopy Spectrum Imaging (EELS SI) collected across the transition region allow identification of the width, composition and types of bonding at the transition layer. Advanced machine learning techniques applied to the EELS data reveal intermediate bonding states within this region. Supported by ARL under Grant No. W911NF1420110.
Portable Handheld Optical Window Inspection Device
NASA Technical Reports Server (NTRS)
Ihlefeld, Curtis; Dokos, Adam; Burns, Bradley
2010-01-01
The Portable Handheld Optical Window Inspection Device (PHOWID) is a measurement system for imaging small defects (scratches, pits, micrometeor impacts, and the like) in the field. Designed primarily for window inspection, PHOWID attaches to a smooth surface with suction cups, and raster scans a small area with an optical pen in order to provide a three-dimensional image of the defect. PHOWID consists of a graphical user interface, motor control subsystem, scanning head, and interface electronics, as well as an integrated camera and user display that allows a user to locate minute defects before scanning. Noise levels are on the order of 60 in. (1.5 m). PHOWID allows field measurement of defects that are usually done in the lab. It is small, light, and attaches directly to the test article in any orientation up to vertical. An operator can scan a defect and get useful engineering data in a matter of minutes. There is no need to make a mold impression for later lab analysis.
NASA Astrophysics Data System (ADS)
Jasiński, Piotr; Górecki, Krzysztof; Bogdanowicz, Robert
2016-01-01
These proceedings are a collection of the selected articles presented at the 39th International Microelectronics and Packaging IMAPS Poland Conference, held in Gdansk, Poland on September 20-23, 2015 (IMAPS Poland 2015). The conference has been held under the scientific patronage of the International Microelectronics and Packaging Society Poland Chapter and the Committee of Electronics and Telecommunication, Polish Academy of Science and jointly hosted by the Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics (GUT) and the Gdynia Maritime University, Faculty of Electrical Engineering (GMU). The IMAPS Poland conference series aims to advance interdisciplinary scientific information exchange and the discussion of the science and technology of advanced electronics. The IMAPS Poland 2015 conference took place in the heart of Gdansk, two minutes walking distance from the beach. The surroundings and location of the venue guaranteed excellent working and leisure conditions. The three-day conference highlighted invited talks by outstanding scientists working in important areas of electronics and electronic material science. The eight sessions covered areas in the fields of electronics packaging, interconnects on PCB, Low Temperature Co-fired Ceramic (LTCC), MEMS devices, transducers, sensors and modelling of electronic devices. The conference was attended by 99 participants from 11 countries. The conference schedule included 18 invited presentations and 78 poster presentations.
Puffing Topography and Nicotine Intake of Electronic Cigarette Users
Behar, Rachel Z.; Hua, My; Talbot, Prue
2015-01-01
Background Prior electronic cigarette (EC) topography data are based on two video analyses with limited parameters. Alternate methods for measuring topography are needed to understand EC use and nicotine intake. Objectives This study evaluated EC topography with a CReSS Pocket device and quantified nicotine intake. Methods Validation tests on pressure drop, flow rate, and volume confirmed reliable performance of the CReSS Pocket device. Twenty participants used Blu Cigs and V2 Cigs for 10 minute intervals with a 10–15 minute break between brands. Brand order was reversed and repeated within 7 days Data were analyzed to determine puff duration, puff count, volume, flow rate, peak flow, and inter-puff interval. Nicotine intake was estimated from cartomizer fluid consumption and topography data. Results Nine patterns of EC use were identified. The average puff count and inter-puff interval were 32 puffs and 17.9 seconds. All participants, except one, took more than 20 puffs/10 minutes. The averages for puff duration (2.65 seconds/puff), volume/puff (51ml/puff), total puff volume (1,579 ml), EC fluid consumption (79.6 mg), flow rate (20 ml/s), and peak flow rate (27 ml/s) were determined for 10-minute sessions. All parameters except total puff count were significantly different for Blu versus V2 EC. Total volume for Blu versus V2 was four-times higher than for conventional cigarettes. Average nicotine intake for Blu and V2 across both sessions was 1.2 ± 0.5 mg and 1.4 ± 0.7 mg, respectively, which is similar to conventional smokers. Conclusions EC puffing topography was variable among participants in the study, but often similar within an individual between brands or days. Puff duration, inter-puff interval, and puff volume varied from conventional cigarette standards. Data on total puff volume and nicotine intake are consistent with compensatory usage of EC. These data can contribute to the development of a standard protocol for laboratory testing of EC products. PMID:25664463
Ricci, Renato Pietro; Morichelli, Loredana; D'Onofrio, Antonio; Calò, Leonardo; Vaccari, Diego; Zanotto, Gabriele; Curnis, Antonio; Buja, Gianfranco; Rovai, Nicola; Gargaro, Alessio
2014-11-01
This study aimed to assess manpower and resource consumption of the HomeGuide workflow model for remote monitoring (Biotronik Home Monitoring [HM], Biotronik SE & Co. KG, Berlin, Germany) of cardiac implantable electronic devices in daily clinical practice. The model established a cooperative interaction between a reference nurse (RN) for ordinary management, and a responsible physician (RP) for medical decisions in each outpatient clinic. RN reviewed remote transmissions and alerts, addressing critical cases to the RP. A total of 1,650 patients were enrolled in 75 sites: 25% pacemakers (PM), 22% dual-, 27% single-chamber implantable defibrillators (ICD), 2% PM with cardiac resynchronization therapy (CRT), and 24% ICD-CRT. During a median follow-up of 18 (10-31) months, 3,364 HM sessions were performed (74% by the RN, 26% by the RP) to complete 18,478 remote follow-ups. Median duration of remote follow-ups was 1.2 (0.6-2.0) minutes, corresponding to a manpower of 43.3 (4.2-94.8) minutes/month every 100 patients for nurses and 10.2 (0.1-31.1) for physicians (P < 0.0001). RN submitted 15% of remote transmissions to RP, who decided unscheduled follow-ups in 12% of the cases. The median manpower for phone calls was 1.9 (0.8-16.5) minutes/month every 100 contacted patients. There were 2.84 in-hospital visits/patient, 0.46 of which triggered by HM findings. A cumulative per-patient HM follow-up time of 15.4 minutes (20% of total follow-up time) allowed remote detection of 73% of actionable events. HM implemented in the HomeGuide workflow model required <1 hour/month every 100 patients to detect the majority of actionable events with limited administrative workload. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connell, T; Papaconstadopoulos, P; Alexander, A
2014-08-15
Modulated electron radiation therapy (MERT) offers the potential to improve healthy tissue sparing through increased dose conformity. Challenges remain, however, in accurate beamlet dose calculation, plan optimization, collimation method and delivery accuracy. In this work, we investigate the accuracy and efficiency of an end-to-end MERT plan and automated-delivery workflow for the electron boost portion of a previously treated whole breast irradiation case. Dose calculations were performed using Monte Carlo methods and beam weights were determined using a research-based treatment planning system capable of inverse optimization. The plan was delivered to radiochromic film placed in a water equivalent phantom for verification,more » using an automated motorized tertiary collimator. The automated delivery, which covered 4 electron energies, 196 subfields and 6183 total MU was completed in 25.8 minutes, including 6.2 minutes of beam-on time with the remainder of the delivery time spent on collimator leaf motion and the automated interfacing with the accelerator in service mode. The delivery time could be reduced by 5.3 minutes with minor electron collimator modifications and the beam-on time could be reduced by and estimated factor of 2–3 through redesign of the scattering foils. Comparison of the planned and delivered film dose gave 3%/3 mm gamma pass rates of 62.1, 99.8, 97.8, 98.3, and 98.7 percent for the 9, 12, 16, 20 MeV, and combined energy deliveries respectively. Good results were also seen in the delivery verification performed with a MapCHECK 2 device. The results showed that accurate and efficient MERT delivery is possible with current technologies.« less
Carbon activation process for increased surface accessibility in electrochemical capacitors
Doughty, Daniel H.; Eisenmann, Erhard T.
2001-01-01
A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.
Buléon, Clément; Delaunay, Julie; Parienti, Jean-Jacques; Halbout, Laurent; Arrot, Xavier; Gérard, Jean-Louis; Hanouz, Jean-Luc
2016-09-01
Chest compressions require physical effort leading to increased fatigue and rapid degradation in the quality of cardiopulmonary resuscitation overtime. Despite harmful effect of interrupting chest compressions, current guidelines recommend that rescuers switch every 2 minutes. The impact on the quality of chest compressions during extended cardiopulmonary resuscitation has yet to be assessed. We conducted randomized crossover study on manikin (ResusciAnne; Laerdal). After randomization, 60 professional emergency rescuers performed 2 × 10 minutes of continuous chest compressions with and without a feedback device (CPRmeter). Efficient compression rate (primary outcome) was defined as the frequency target reached along with depth and leaning at the same time (recorded continuously). The 10-minute mean efficient compression rate was significantly better in the feedback group: 42% vs 21% (P< .001). There was no significant difference between the first (43%) and the tenth minute (36%; P= .068) with feedback. Conversely, a significant difference was evident from the second minute without feedback (35% initially vs 27%; P< .001). The efficient compression rate difference with and without feedback was significant every minute, from the second minute onwards. CPRmeter feedback significantly improved chest compression depth from the first minute, leaning from the second minute and rate from the third minute. A real-time feedback device delivers longer effective, steadier chest compressions over time. An extrapolation of these results from simulation may allow rescuer switches to be carried out beyond the currently recommended 2 minutes when a feedback device is used. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.
2016-03-01
Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on porous silicon, dissolution tests for 0.1 M and 0.01 M NaOH trigger solutions, EIS analysis for VOx coated devices, and EDS compositional analysis of VOx. (ii) Video showing transient behavior of integrated VOx/porous silicon scaffolds. See DOI: 10.1039/c5nr09095d
Boyce, John M; Farrel, Patricia A; Towle, Dana; Fekieta, Renee; Aniskiewicz, Michael
2016-06-01
OBJECTIVE To evaluate ultraviolet C (UV-C) irradiance, UV-C dosage, and antimicrobial effect achieved by a mobile continuous UV-C device. DESIGN Prospective observational study. METHODS We used 6 UV light sensors to determine UV-C irradiance (W/cm2) and UV-C dosage (µWsec/cm2) at various distances from and orientations relative to the UV-C device during 5-minute and 15-minute cycles in an ICU room and a surgical ward room. In both rooms, stainless-steel disks inoculated with methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and Clostridium difficile spores were placed next to sensors, and UV-C dosages and log10 reductions of target organisms achieved during 5-minute and 15-minute cycles were determined. Mean irradiance and dosage readings were compared using ANOVA. RESULTS Mean UV-C irradiance was nearly 1.0E-03 W/cm2 in direct sight at a distance of 1.3 m (4 ft) from the device but was 1.12E-05 W/cm2 on a horizontal surface in a shaded area 3.3 m (10 ft) from the device (P4 to 1-3 for MRSA, >4 to 1-2 for VRE and >4 to 0 log10 for C. difficile spores, depending on the distance from, and orientation relative to, the device with 5-minute and 15-minute cycles. CONCLUSION UV-C irradiance, dosage, and antimicrobial effect received from a mobile UV-C device varied substantially based on location in a room relative to the UV-C device. Infect Control Hosp Epidemiol 2016;37:667-672.
Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream
Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN
2008-09-09
A microfluidic device and method for forming and dispensing minute volume segments of a material are described. In accordance with the present invention, a microfluidic device and method are provided for spatially confining the material in a focusing element. The device is also adapted for segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.
Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream
Jacobson, Stephen C.; Ramsey, J. Michael
2004-09-14
A microfluidic device for forming and/or dispensing minute volume segments of a material is described. In accordance with one aspect of the present invention, a microfluidic device and method is provided for spatially confining the material in a focusing element. The device is also capable of segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.
Tunable Far Infrared Semiconductor Sources.
1984-01-01
plasmons in Si-MOS4 hot electron transport in Si-MOS-devices a , ABSTR ACT (Coathwe st e verse 8641 It ut’.weemY dmd ideti ty by block tnmber) {fhe...After baking at 900C for 20 minutes the photoresist was -17- exposed for 8 seconds on the SUss-MJB3-contact lithography machine. To obtain grating...could fabricate Al gratings with 1.5 am - periods on Si-MOSFETs and GaAs-samples by optical contact lithography and lift-off metallization. Fig. 8 shows
Akagi, Jin; Zhu, Feng; Skommer, Joanna; Hall, Chris J; Crosier, Philip S; Cialkowski, Michal; Wlodkowic, Donald
2015-03-01
Small vertebrate model organisms have recently gained popularity as attractive experimental models that enhance our understanding of human tissue and organ development. Despite a large body of evidence using optical spectroscopy for the characterization of small model organism on chip-based devices, no attempts have been so far made to interface microfabricated technologies with environmental scanning electron microscopy (ESEM). Conventional scanning electron microscopy requires high vacuum environments and biological samples must be, therefore, submitted to many preparative procedures to dehydrate, fix, and subsequently stain the sample with gold-palladium deposition. This process is inherently low-throughput and can introduce many analytical artifacts. This work describes a proof-of-concept microfluidic chip-based system for immobilizing zebrafish larvae for ESEM imaging that is performed in a gaseous atmosphere, under low vacuum mode and without any need for sample staining protocols. The microfabricated technology provides a user-friendly and simple interface to perform ESEM imaging on zebrafish larvae. Presented lab-on-a-chip device was fabricated using a high-speed infrared laser micromachining in a biocompatible poly(methyl methacrylate) thermoplastic. It consisted of a reservoir with multiple semispherical microwells designed to hold the yolk of dechorionated zebrafish larvae. Immobilization of the larvae was achieved by a gentle suction generated during blotting of the medium. Trapping region allowed for multiple specimens to be conveniently positioned on the chip-based device within few minutes for ESEM imaging. © 2014 International Society for Advancement of Cytometry.
Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface.
Schuhmann, Thomas G; Yao, Jun; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M
2017-09-13
Syringe-injectable mesh electronics represent a new paradigm for brain science and neural prosthetics by virtue of the stable seamless integration of the electronics with neural tissues, a consequence of the macroporous mesh electronics structure with all size features similar to or less than individual neurons and tissue-like flexibility. These same properties, however, make input/output (I/O) connection to measurement electronics challenging, and work to-date has required methods that could be difficult to implement by the life sciences community. Here we present a new syringe-injectable mesh electronics design with plug-and-play I/O interfacing that is rapid, scalable, and user-friendly to nonexperts. The basic design tapers the ultraflexible mesh electronics to a narrow stem that routes all of the device/electrode interconnects to I/O pads that are inserted into a standard zero insertion force (ZIF) connector. Studies show that the entire plug-and-play mesh electronics can be delivered through capillary needles with precise targeting using microliter-scale injection volumes similar to the standard mesh electronics design. Electrical characterization of mesh electronics containing platinum (Pt) electrodes and silicon (Si) nanowire field-effect transistors (NW-FETs) demonstrates the ability to interface arbitrary devices with a contact resistance of only 3 Ω. Finally, in vivo injection into mice required only minutes for I/O connection and yielded expected local field potential (LFP) recordings from a compact head-stage compatible with chronic studies. Our results substantially lower barriers for use by new investigators and open the door for increasingly sophisticated and multifunctional mesh electronics designs for both basic and translational studies.
NASA Astrophysics Data System (ADS)
Kodera, Masako; Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Yoshioka, Akira; Sugiyama, Toru; Hamamoto, Takeshi; Miyashita, Naoto
2018-04-01
Recently, we have developed a two-dimensional (2D) fast-Fourier-transform (FFT) sampling Moiré technique to visually and quantitatively determine the locations of minute defects in a transmission electron microscopy (TEM) image. We applied this technique for defect detection with GaN high electron mobility transistor (HEMT) devices, and successfully and clearly visualized atom-size defects in AlGaN/GaN crystalline structures. The defect density obtained in the AlGaN/GaN structures is ∼1013 counts/cm2. In addition, we have successfully confirmed that the distribution and number of defects closely depend on the process conditions. Thus, this technique is quite useful for a device development. Moreover, the strain fields in an AlGaN/GaN crystal were effectively calculated with nm-scale resolution using this method. We also demonstrated that this sampling Moiré technique is applicable to silicon devices, which have principal directions different from those of AlGaN/GaN crystals. As a result, we believe that the 2D FFT sampling Moiré method has great potential applications to the discovery of new as yet unknown phenomena occurring between the characteristics of a crystalline material and device performance.
Validation of an iPad visual analogue rating system for assessing appetite and satiety.
Brunger, Louise; Smith, Adam; Re, Roberta; Wickham, Martin; Philippides, Andrew; Watten, Phil; Yeomans, Martin R
2015-01-01
The study aimed to validate appetite ratings made on a new electronic device, the Apple iPad Mini, against an existing but now obsolete electronic device (Hewlett Packard iPAQ). Healthy volunteers (9 men and 9 women) rated their appetite before and 0, 30, 60, 90 and 120 minutes after consuming both a low energy (LE: 77 kcal) and high energy (HE: 274 kcal) beverage at breakfast on 2 non-consecutive days in counter-balanced order. Rated hunger, desire to eat and how much participants could consume was significantly lower after HE than LE on both devices, although there was better overall differentiation between HE and LE for ratings on iPad. Rated satiation and fullness, and a composite measure combining all five ratings, was significantly higher after HE than LE on both devices. There was also evidence that differences between conditions were more significant when analysed at each time point than using an overall area under the curve (AUC) measure. Overall, these data confirm that appetite ratings made using iPad are at least as sensitive as those on iPAQ, and offer a new platform for researchers to collect appetite data. Copyright © 2014 Elsevier Ltd. All rights reserved.
Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors.
Fluegel, Brian; Mialitsin, Aleksej V; Beaton, Daniel A; Reno, John L; Mascarenhas, Angelo
2015-05-28
Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10(-4). Comparing our strain sensitivity and signal strength in Al(x)Ga(1-x)As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 10(3), thus obviating key constraints in semiconductor strain metrology.
Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors
Fluegel, Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo
2015-01-01
Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10−4. Comparing our strain sensitivity and signal strength in AlxGa1−xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology. PMID:26017853
Lin, Shi-Ming; Lin, Chen-Chun; Chen, Wei-Ting; Chen, Yi-Chen; Hsu, Chao-Wei
2007-09-01
To compare the effectiveness of ablation techniques for hepatocellular carcinoma (HCC) with the use of four radiofrequency (RF) devices. One hundred patients with 133 HCC lesions no larger than 4 cm were treated with one of four RF devices: RF 2000 (maximum power, 100 W) and RF 3000 generators (maximum power, 200 W) with LeVeen expandable electrodes with a maximum dimension of 3.5 cm or 4 cm, internally cooled single electrode with a thermal dimension of 3 cm, and a RITA RF generator with expandable electrodes with a maximum dimension of 5 cm. Numbers of RF sessions needed per HCC to achieve complete necrosis were 1.4 +/- 0.5 with the RF 2000 device and greater than 1.1 +/- 0.3 with the other three devices (P < .05). The RF 2000 device required a more interactive algorithm than the RF 3000 device. Session times per patient were 31.7 minutes +/- 13.2 in the RF 2000 group and longer than 16.6 minutes +/- 7.5 in the RF 3000 group, 28.3 minutes +/- 12 in the RITA device group, and 27.1 minutes +/- 12 with the internally cooled electrode device (P < .005 for RF 2000 vs other devices and for RF 3000 vs RITA or internally cooled electrode device). Complete necrosis and local tumor progression rates at 2 years in the RF 2000, RF 3000, RITA, and internally cooled electrode device groups were 91.1%, 97.1%, 96.7%, and 96.8% and 12%, 8%, 8.2%, and 8.3%, respectively (P = .37). Ablation with the RF 3000 device required a shorter time than the other three devices and required a less interactive algorithm than the RF 2000 device. However, complete necrosis and local tumor progression rates were similar among devices.
2010-01-01
Background Numerous pen devices are available to administer recombinant Human Growth Hormone (rhGH), and both patients and health plans have varying issues to consider when selecting a particular product and device for daily use. Therefore, the present study utilized multi-dimensional product analysis to assess potential time involvement, required weekly administration steps, and utilization costs relative to daily rhGH administration. Methods Study objectives were to conduct 1) Time-and-Motion (TM) simulations in a randomized block design that allowed time and steps comparisons related to rhGH preparation, administration and storage, and 2) a Cost Minimization Analysis (CMA) relative to opportunity and supply costs. Nurses naïve to rhGH administration and devices were recruited to evaluate four rhGH pen devices (2 in liquid form, 2 requiring reconstitution) via TM simulations. Five videotaped and timed trials for each product were evaluated based on: 1) Learning (initial use instructions), 2) Preparation (arrange device for use), 3) Administration (actual simulation manikin injection), and 4) Storage (maintain product viability between doses), in addition to assessment of steps required for weekly use. The CMA applied micro-costing techniques related to opportunity costs for caregivers (categorized as wages), non-drug medical supplies, and drug product costs. Results Norditropin® NordiFlex and Norditropin® NordiPen (NNF and NNP, Novo Nordisk, Inc., Bagsværd, Denmark) took less weekly Total Time (p < 0.05) to use than either of the comparator products, Genotropin® Pen (GTP, Pfizer, Inc, New York, New York) or HumatroPen® (HTP, Eli Lilly and Company, Indianapolis, Indiana). Time savings were directly related to differences in new package Preparation times (NNF (1.35 minutes), NNP (2.48 minutes) GTP (4.11 minutes), HTP (8.64 minutes), p < 0.05)). Administration and Storage times were not statistically different. NNF (15.8 minutes) and NNP (16.2 minutes) also took less time to Learn than HTP (24.0 minutes) and GTP (26.0 minutes), p < 0.05). The number of weekly required administration steps was also least with NNF and NNP. Opportunity cost savings were greater in devices that were easier to prepare for use; GTP represented an 11.8% drug product savings over NNF, NNP and HTP at time of study. Overall supply costs represented <1% of drug costs for all devices. Conclusions Time-and-motion simulation data used to support a micro-cost analysis demonstrated that the pen device with the greater time demand has highest net costs. PMID:20377905
Nickman, Nancy A; Haak, Sandra W; Kim, Jaewhan
2010-04-08
Numerous pen devices are available to administer recombinant Human Growth Hormone (rhGH), and both patients and health plans have varying issues to consider when selecting a particular product and device for daily use. Therefore, the present study utilized multi-dimensional product analysis to assess potential time involvement, required weekly administration steps, and utilization costs relative to daily rhGH administration. Study objectives were to conduct 1) Time-and-Motion (TM) simulations in a randomized block design that allowed time and steps comparisons related to rhGH preparation, administration and storage, and 2) a Cost Minimization Analysis (CMA) relative to opportunity and supply costs. Nurses naïve to rhGH administration and devices were recruited to evaluate four rhGH pen devices (2 in liquid form, 2 requiring reconstitution) via TM simulations. Five videotaped and timed trials for each product were evaluated based on: 1) Learning (initial use instructions), 2) Preparation (arrange device for use), 3) Administration (actual simulation manikin injection), and 4) Storage (maintain product viability between doses), in addition to assessment of steps required for weekly use. The CMA applied micro-costing techniques related to opportunity costs for caregivers (categorized as wages), non-drug medical supplies, and drug product costs. Norditropin(R) NordiFlex and Norditropin(R) NordiPen (NNF and NNP, Novo Nordisk, Inc., Bagsvaerd, Denmark) took less weekly Total Time (p < 0.05) to use than either of the comparator products, Genotropin(R) Pen (GTP, Pfizer, Inc, New York, New York) or HumatroPen(R) (HTP, Eli Lilly and Company, Indianapolis, Indiana). Time savings were directly related to differences in new package Preparation times (NNF (1.35 minutes), NNP (2.48 minutes) GTP (4.11 minutes), HTP (8.64 minutes), p < 0.05)). Administration and Storage times were not statistically different. NNF (15.8 minutes) and NNP (16.2 minutes) also took less time to Learn than HTP (24.0 minutes) and GTP (26.0 minutes), p < 0.05). The number of weekly required administration steps was also least with NNF and NNP. Opportunity cost savings were greater in devices that were easier to prepare for use; GTP represented an 11.8% drug product savings over NNF, NNP and HTP at time of study. Overall supply costs represented <1% of drug costs for all devices. Time-and-motion simulation data used to support a micro-cost analysis demonstrated that the pen device with the greater time demand has highest net costs.
Protas, Elizabeth J; Raines, Mary Lynn; Tissier, Sandrine
2007-06-01
To compare temporal, spatial, and oxygen costs of gait while elderly subjects walked without an assistive device, with a new assistive device, and with 2 other commercially available assistive devices. Descriptive, repeated measures. University-based research laboratory. Thirteen healthy older subjects who could walk without an assistive device. Not applicable. Gait speed, normalized gait speed, cadence, stride lengths, 5-minute walk distance and gait speed, oxygen consumption (Vo2) per meter walked, respiratory exchange ratio (RER) per meter walked, and minute ventilation per meter walked. Gait speed, normalized gait speed, and stride lengths decreased when the Merry Walker device was used, compared with walking without an assistive device. Outcome measures when walking with either the wheeled walker or the WalkAbout did not differ significantly from walking without a device except for a faster cadence with the WalkAbout. The distance walked and gait speed were decreased and the RER and minute ventilation were increased during the 5-minute walk with the Merry Walker compared with normal walking. The Vo2 was higher with the wheeled walker and Merry Walker than when walking without an assistive device, but there was no difference when the WalkAbout was used. Older adults walked in the new assistive device, the WalkAbout, with parameters that did not differ significantly from their gait without a device. The oxygen demands of walking were similar to unassisted walking for the WalkAbout, but were higher for the wheeled walker and Merry Walker. These results may help guide the prescription of assistive devices for older adults.
Automatic bio-sample bacteria detection system
NASA Technical Reports Server (NTRS)
Chappelle, E. W.; Colburn, M.; Kelbaugh, B. N.; Picciolo, G. L.
1971-01-01
Electromechanical device analyzes urine specimens in 15 minutes and processes one sample per minute. Instrument utilizes bioluminescent reaction between luciferase-luciferin mixture and adenosine triphosphate (ATP) to determine number of bacteria present in the sample. Device has potential application to analysis of other body fluids.
van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; Lupton, John M.; Boehme, Christoph
2015-01-01
Weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices, which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm. PMID:25868686
van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; ...
2015-04-14
Here, weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices,more » which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair’s zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm.« less
Highly Sophisticated Virtual Laboratory Instruments in Education
NASA Astrophysics Data System (ADS)
Gaskins, T.
2006-12-01
Many areas of Science have advanced or stalled according to the ability to see what can not normally be seen. Visual understanding has been key to many of the world's greatest breakthroughs, such as discovery of DNAs double helix. Scientists use sophisticated instruments to see what the human eye can not. Light microscopes, scanning electron microscopes (SEM), spectrometers and atomic force microscopes are employed to examine and learn the details of the extremely minute. It's rare that students prior to university have access to such instruments, or are granted full ability to probe and magnify as desired. Virtual Lab, by providing highly authentic software instruments and comprehensive imagery of real specimens, provides them this opportunity. Virtual Lab's instruments let explorers operate virtual devices on a personal computer to examine real specimens. Exhaustive sets of images systematically and robotically photographed at thousands of positions and multiple magnifications and focal points allow students to zoom in and focus on the most minute detail of each specimen. Controls on each Virtual Lab device interactively and smoothly move the viewer through these images to display the specimen as the instrument saw it. Users control position, magnification, focal length, filters and other parameters. Energy dispersion spectrometry is combined with SEM imagery to enable exploration of chemical composition at minute scale and arbitrary location. Annotation capabilities allow scientists, teachers and students to indicate important features or areas. Virtual Lab is a joint project of NASA and the Beckman Institute at the University of Illinois at Urbana- Champaign. Four instruments currently compose the Virtual Lab suite: A scanning electron microscope and companion energy dispersion spectrometer, a high-power light microscope, and a scanning probe microscope that captures surface properties to the level of atoms. Descriptions of instrument operating principles and uses are also part of Virtual Lab. The Virtual Lab software and its increasingly rich collection of specimens are free to anyone. This presentation describes Virtual Lab and its uses in formal and informal education.
Farsalinos, Konstantinos E; Tsiapras, Dimitris; Kyrzopoulos, Stamatis; Savvopoulou, Maria; Voudris, Vassilis
2014-06-23
Electronic cigarettes have been developed and marketed in recent years as smoking substitutes. However, no studies have evaluated their effects on the cardiovascular system. The purpose of this study was to examine the immediate effects of electronic cigarette use on left ventricular (LV) function, compared to the well-documented acute adverse effects of smoking. Echocardiographic examinations were performed in 36 healthy heavy smokers (SM, age 36 ± 5 years) before and after smoking 1 cigarette and in 40 electronic cigarette users (ECIG, age 35 ± 5 years) before and after using the device with "medium-strength" nicotine concentration (11 mg/ml) for 7 minutes. Mitral flow diastolic velocities (E, A), their ratio (E/A), deceleration time (DT), isovolumetric relaxation time (IVRT) and corrected-to-heart rate IVRT (IVRTc) were measured. Mitral annulus systolic (Sm), and diastolic (Em, Am) velocities were estimated. Myocardial performance index was calculated from Doppler flow (MPI) and tissue Doppler (MPIt). Longitudinal deformation measurements of global strain (GS), systolic (SRs) and diastolic (SRe, SRa) strain rate were also performed. Baseline measurements were similar in both groups. In SM, IVRT and IVRTc were prolonged, Em and SRe were decreased, and both MPI and MPIt were elevated after smoking. In ECIG, no differences were observed after device use. Comparing after-use measurements, ECIG had higher Em (P = 0.032) and SRe (P = 0.022), and lower IVRTc (P = 0.011), MPI (P = 0.001) and MPIt (P = 0.019). The observed differences were significant even after adjusting for changes in heart rate and blood pressure. Although acute smoking causes a delay in myocardial relaxation, electronic cigarette use has no immediate effects. Electronic cigarettes' role in tobacco harm reduction should be studied intensively in order to determine whether switching to electronic cigarette use may have long-term beneficial effects on smokers' health. Current Controlled Trials ISRCTN16974547.
Effects of electrical muscle stimulation on oxygen consumption.
Hayter, Tina L; Coombes, Jeff S; Knez, Wade L; Brancato, Tania L
2005-02-01
Electrical muscle stimulation (EMS) devices are being marketed as weight/ fat loss devices throughout the world. Commercially available stimulators have the ability to evoke muscle contractions that may affect caloric expenditure while the device is being used. The aim of this study was to test the effects of two different EMS devices (Abtronic and Feminique) on oxygen consumption at rest. Subjects arrived for testing after an overnight fast, had the devices fitted, and then positioned supine with expired air measured to determine oxygen consumption. After a 10-minute acclimation period, oxygen consumption was measured for 20 minutes with the device switched off (resting) then 20 minutes with the device switched on (stimulated). There were no significant differences (p > 0.05) in oxygen consumption between the resting and stimulated periods with either the Abtronic (mean +/- SD; resting, 3.40 +/- 0.44; stimulated, 3.45 +/- 0.53 ml of O(2).kg(-1).min(-1)) or the Feminique (resting, 3.73 +/- 0.45; stimulated, 3.75 +/- 0.46 ml of O(2).kg(-1).min(-1)). In summary, the EMS devices tested had no effect on oxygen consumption during muscle stimulation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... provisions of 5 U.S.C. 552b(c), copies of transcripts or minutes, or transcriptions of electronic recordings... transcription. Requests for copies of transcripts or minutes, or transcriptions of electronic recordings of...
Decontamination Efficacy of Ultraviolet Radiation against Biofilms of Common Nosocomial Bacteria.
Tingpej, Pholawat; Tiengtip, Rattana; Kondo, Sumalee
2015-06-01
Ultraviolet radiation (UV) is commonly used to destroy microorganisms in the health-care environment. However, the efficacy of UV radiation against bacteria growing within biofilms has never been studied. To measure the sterilization effectiveness of UV radiation against common healthcare associated pathogens growing within biofilms. Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Streptococcus epidermidis, Escherichia coli, ESBL-producing E. coli, Pseudomonas aeruginosa and Acinetobacter baumannii were cultivated in the Calgary Biofilm Device. Their biofilms were placed 50 cm from the UV lamp within the Biosafety Cabinet. Viability test, crystal violet assay and a scanning electron microscope were used to evaluate the germicidal efficacy. Within 5 minutes, UV radiation could kill S. aureus, MRSA, S. epidermidis, A. baumannii and ESBL-producing E. coli completely while it required 20 minutes and 30 minutes respectively to kill E. coli and P. aeruginosa. However, the amounts of biomass and the ultrastructure between UV-exposed biofilms and controls were not significantly different. UV radiation is effective in inactivating nosocomial pathogens grown within biofilms, but not removing biofilms and EPS. The biofilm of P. aeruginosa was the most durable.
Sirota, Benjamin; Glavin, Nicholas; Krylyuk, Sergiy; Davydov, Albert V; Voevodin, Andrey A
2018-06-06
Environmental and thermal stability of two-dimensional (2D) transition metal dichalcogenides (TMDs) remains a fundamental challenge towards enabling robust electronic devices. Few-layer 2H-MoTe 2 with an amorphous boron nitride (a-BN) covering layer was synthesized as a channel for back-gated field effect transistors (FET) and compared to uncovered MoTe 2 . A systematic approach was taken to understand the effects of heat treatment in air on the performance of FET devices. Atmospheric oxygen was shown to negatively affect uncoated MoTe 2 devices while BN-covered FETs showed considerably enhanced chemical and electronic characteristic stability. Uncapped MoTe 2 FET devices, which were heated in air for one minute, showed a polarity switch from n- to p-type at 150 °C, while BN-MoTe 2 devices switched only after 200 °C of heat treatment. Time-dependent experiments at 100 °C showed that uncapped MoTe 2 samples exhibited the polarity switch after 15 min of heat treatment while the BN-capped device maintained its n-type conductivity for the maximum 60 min duration of the experiment. X-ray photoelectron spectroscopy (XPS) analysis suggests that oxygen incorporation into MoTe 2 was the primary doping mechanism for the polarity switch. This work demonstrates the effectiveness of an a-BN capping layer in preserving few-layer MoTe 2 material quality and controlling its conductivity type at elevated temperatures in an atmospheric environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, N; Knutson, N; Schmidt, M
Purpose: To verify a method used to automatically acquire jaw, MLC, collimator and couch star shots for a Varian TrueBeam linear accelerator utilizing Developer Mode and an Electronic Portal Imaging Device (EPID). Methods: An XML script was written to automate motion of the jaws, MLC, collimator and couch in TrueBeam Developer Mode (TBDM) to acquire star shot measurements. The XML script also dictates MV imaging parameters to facilitate automatic acquisition and recording of integrated EPID images. Since couch star shot measurements cannot be acquired using a combination of EPID and jaw/MLC collimation alone due to a fixed imager geometry, amore » method utilizing a 5mm wide steel ruler placed on the table and centered within a 15×15cm2 open field to produce a surrogate of the narrow field aperture was investigated. Four individual star shot measurements (X jaw, Y jaw, MLC and couch) were obtained using our proposed as well as traditional film-based method. Integrated EPID images and scanned measurement films were analyzed and compared. Results: Star shot (X jaw, Y jaw, MLC and couch) measurements were obtained in a single 5 minute delivery using the TBDM XML script method compared to 60 minutes for equivalent traditional film measurements. Analysis of the images and films demonstrated comparable isocentricity results, agreeing within 0.3mm of each other. Conclusion: The presented automatic approach of acquiring star shot measurements using TBDM and EPID has proven to be more efficient than the traditional film approach with equivalent results.« less
Silvetti, Massimo S; Saputo, Fabio A; Palmieri, Rosalinda; Placidi, Silvia; Santucci, Lorenzo; Di Mambro, Corrado; Righi, Daniela; Drago, Fabrizio
2016-01-01
Remote monitoring is increasingly used in the follow-up of patients with cardiac implantable electronic devices. Data on paediatric populations are still lacking. The aim of our study was to follow-up young patients both in-hospital and remotely to enhance device surveillance. This is an observational registry collecting data on consecutive patients followed-up with the CareLink system. Inclusion criteria were a Medtronic device implanted and patient's willingness to receive CareLink. Patients were stratified according to age and presence of congenital/structural heart defects (CHD). A total of 221 patients with a device - 200 pacemakers, 19 implantable cardioverter defibrillators, and two loop recorders--were enrolled (median age of 17 years, range 1-40); 58% of patients were younger than 18 years of age and 73% had CHD. During a follow-up of 12 months (range 4-18), 1361 transmissions (8.9% unscheduled) were reviewed by technicians. Time for review was 6 ± 2 minutes (mean ± standard deviation). Missed transmissions were 10.1%. Events were documented in 45% of transmissions, with 2.7% yellow alerts and 0.6% red alerts sent by wireless devices. No significant differences were found in transmission results according to age or presence of CHD. Physicians reviewed 6.3% of transmissions, 29 patients were contacted by phone, and 12 patients underwent unscheduled in-hospital visits. The event recognition with remote monitoring occurred 76 days (range 16-150) earlier than the next scheduled in-office follow-up. Remote follow-up/monitoring with the CareLink system is useful to enhance device surveillance in young patients. The majority of events were not clinically relevant, and the remaining led to timely management of problems.
Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors
Fluegel., Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; ...
2015-05-28
In this study, the semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10 –4. Comparing our strain sensitivity andmore » signal strength in Al xGa 1–xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 10 3, thus obviating key constraints in semiconductor strain metrology.« less
NASA Astrophysics Data System (ADS)
Deepak, G. Divya; Joshi, N. K.; Prakash, Ram
2018-05-01
In this study, both model analysis and electrical characterization of a dielectric barrier discharge based argon plasma jet have been carried at atmospheric pressure in a pin electrode configuration. The plasma and fluid dynamics modules of COMSOL multi-physics code have been used for the modeling of the plasma jet. The plasma parameters, such as, electron density, electron temperature and electrical potential have been analyzed with respect to the electrical parameters, i.e., supply voltage and supply frequency with and without the flow of gas. In all the experiments, gas flow rate has been kept constant at 1 liter per minute. This electrode configuration is subjected to a range of supply frequencies (10-25 kHz) and supply voltages (3.5-6.5 kV). The power consumed by the device has been estimated at different applied combinations (supply voltage & frequency) for optimum power consumption at maximum jet length. The maximum power consumed by the device in this configuration for maximum jet length of ˜26 mm is just ˜1 W.
Design of wearable health monitoring device
NASA Astrophysics Data System (ADS)
Devara, Kresna; Ramadhanty, Savira; Abuzairi, Tomy
2018-02-01
Wearable smart health monitoring devices have attracted considerable attention in both research community and industry. Some of the causes are the increasing healthcare costs, along with the growing technology. To address this demand, in this paper, design and evaluation of wearable health monitoring device integrated with smartphone were presented. This device was designed for patients in need of constant health monitoring. The performance of the proposed design has been tested by conducting measurement once in 2 minutes for 10 minutes to obtain heart rate and body temperature data. The comparation between data measured by the proposed device and that measured by the reference device yields only an average error of 1.45% for heart rate and 1.04% for body temperature.
Advancements of labelled radio-pharmaceutics imaging with the PIM-MPGD
NASA Astrophysics Data System (ADS)
Donnard, J.; Arlicot, N.; Berny, R.; Carduner, H.; Leray, P.; Morteau, E.; Servagent, N.; Thers, D.
2009-11-01
The Beta autoradiography is widely used in pharmacology or in biological fields to study the response of an organism to a certain kind of molecule. The image of the distribution is processed by studying the concentration of the radioactivity into different organs. We report on the development of an integrated apparatus based on a PIM device (Parallel Ionization Multiplier) able to process the image of 10 microscope slides at the same time over an area of 18*18 cm2. Thanks to a vacuum pump and a regulation gas circuit, 5 minutes is sufficient to begin an acquisition. All the electronics and the gas distribution are included in the structure leading to a transportable device. Special software has been developed to process data in real time with image visualization. Biological samples can be labelled with β emitters of low energy like 3H/14C or Auger electrons of 125I/99mTc. The measured spatial resolution is 30 μm in 3H and the trigger and the charge rate are constant over more than 6 days of acquisition showing good stability of the device. Moreover, collaboration with doctors and biologists of INSERM (National Institute for Medical Research in France) has started in order to demonstrate that MPGD's can be easily proposed outside a physics laboratory.
Sanderson, Alicia R; Wu, Edward C; Liaw, Lih-Huei L; Garg, Rohit; Gangnes, Richard A
2014-02-01
The plasma skin regeneration (PSR) device delivers thermal energy to the skin by converting nitrogen gas to plasma. Prior to treatment, hydration of the skin is recommended as it is thought to limit the zone of thermal damage. However, there is limited data on optimal hydration time. This pilot study aims to determine the effect of topical anesthetic application time on the depth of thermal injury from a PSR device using histology. PSR (1.8 and 3.5 J) was performed after 0, 30, or 60 minutes of topical anesthetic application. Rhytidectomy was then performed and skin was fixed for histologic analysis. Four patients (two control and four treatment sites per patient) undergoing rhytidectomy were recruited for the study. Each patient served as his/her own control (no hydration). A scoring system for tissue injury was developed. Epidermal injury, the presence of vacuolization, blistering, damage to adnexal structures, and depth of dermal collagen changes were evaluated in over 1,400 high-power microscopy fields. There was a significant difference in the average thermal injury score, depth of thermal damage, and epidermal injury when comparing controls to 30 minutes of hydration (P = 0.012, 0.012, 0.017, respectively). There was no statistical difference between controls and 60 minutes of hydration or between 30 and 60 minutes of hydration. Epidermal vacuolization at low energy and patchy distribution of thermal injury was also observed. Topical hydration influences the amount of thermal damage when applied to skin for 30 minutes prior to treatment with the PSR device. There was a trend toward decreasing thermal damage at 60 minutes, and there was no difference between treatment for 30 or 60 minutes. The data suggest that application of topical anesthetic for a short period of time prior to treatment with the PSR device is cost-effective, safe, and may be clinically beneficial. © 2013 Wiley Periodicals, Inc.
Glow discharge based device for solving mazes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinov, Alexander E., E-mail: dubinov-ae@yandex.ru; Mironenko, Maxim S.; Selemir, Victor D.
2014-09-15
A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in themore » maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.« less
Bedtime Electronic Media Use and Sleep in Children with Autism Spectrum Disorder.
Mazurek, Micah O; Engelhardt, Christopher R; Hilgard, Joseph; Sohl, Kristin
2016-09-01
The purpose of this study was to better understand the use of screen-based media at bedtime among children with autism spectrum disorder (ASD). The study specifically examined whether the presence of media devices in the child's bedroom, the use of media as part of the bedtime routine, and exposure to media with violent content just before bedtime were associated with sleep difficulties. Parents of 101 children with ASD completed questionnaires assessing their children's sleep habits, bedroom media access (including television, video game devices, and computers), and patterns of nighttime media use (including timing of media exposure and violent media content). Children with ASD who used media as part of the bedtime routine showed significantly greater sleep onset latency than those who did not (39.8 vs 16.0 minutes). Similarly, children who were exposed to media with violent content within the 30-minute period before bedtime experienced significantly greater sleep onset delays and shorter overall sleep duration. In contrast, the mere presence of bedroom media was not associated with either sleep onset latency or sleep duration. Overall, these findings indicate that incorporating television and video games into the bedtime routine is associated with sleep onset difficulties among children with ASD. Exposure to violent media before bed is also associated with poor sleep. Families of children with ASD should be encouraged to regulate and monitor the timing and content of television and video game use, whether or not such devices are physically present in the child's bedroom.
Effectiveness of a myocardial infarction protocol in reducing door-to-ballon time.
Correia, Luis Cláudio Lemos; Brito, Mariana; Kalil, Felipe; Sabino, Michael; Garcia, Guilherme; Ferreira, Felipe; Matos, Iracy; Jacobs, Peter; Ronzoni, Liliana; Noya-Rabelo, Márcia
2013-07-01
An adequate door-to-balloon time (<120 minutes) is the necessary condition for the efficacy of primary angioplasty in infarction to translate into effectiveness. To describe the effectiveness of a quality of care protocol in reducing the door-to-balloon time. Between May 2010 and August 2012, all individuals undergoing primary angioplasty in our hospital were analyzed. The door time was electronically recorded at the moment the patient took a number to be evaluated in the emergency room, which occurred prior to filling the check-in forms and to the triage. The balloon time was defined as the beginning of artery opening (introduction of the first device). The first 5 months of monitoring corresponded to the period of pre-implementation of the protocol. The protocol comprised the definition of a flowchart of actions from patient arrival at the hospital, the team's awareness raising in relation to the prioritization of time, and provision of a periodic feedback on the results and possible inadequacies. A total of 50 individuals were assessed. They were divided into five groups of 10 sequential patients (one group pre- and four groups post-protocol). The door-to-balloon time regarding the 10 cases recorded before protocol implementation was 200 ± 77 minutes. After protocol implementation, there was a progressive reduction of the door-to-balloon time to 142±78 minutes in the first 10 patients, then to 150±50 minutes, 131±37 minutes and, finally, 116±29 minutes in the three sequential groups of 10 patients, respectively. Linear regression between sequential patients and the door-to-balloon time (r = - 0.41) showed a regression coefficient of - 1.74 minutes. The protocol implementation proved effective in the reduction of the door-to-balloon time.
Chemical Modification of Semiconductor Surfaces for Molecular Electronics.
Vilan, Ayelet; Cahen, David
2017-03-08
Inserting molecular monolayers within metal/semiconductor interfaces provides one of the most powerful expressions of how minute chemical modifications can affect electronic devices. This topic also has direct importance for technology as it can help improve the efficiency of a variety of electronic devices such as solar cells, LEDs, sensors, and possible future bioelectronic ones. The review covers the main aspects of using chemistry to control the various aspects of interface electrostatics, such as passivation of interface states and alignment of energy levels by intrinsic molecular polarization, as well as charge rearrangement with the adjacent metal and semiconducting contacts. One of the greatest merits of molecular monolayers is their capability to form excellent thin dielectrics, yielding rich and unique current-voltage characteristics for transport across metal/molecular monolayer/semiconductor interfaces. We explain the interplay between the monolayer as tunneling barrier on the one hand, and the electrostatic barrier within the semiconductor, due to its space-charge region, on the other hand, as well as how different monolayer chemistries control each of these barriers. Practical tools to experimentally identify these two barriers and distinguish between them are given, followed by a short look to the future. This review is accompanied by another one, concerning the formation of large-area molecular junctions and charge transport that is dominated solely by molecules.
Toman, Huseyin; Erbas, Mesut; Sahin, Hasan; Kiraz, Hasan Ali; Uzun, Metehan; Ovali, Mehmet Akif
2015-12-01
In this study, we aimed to compare the effects of various airway devices on QTc interval in rabbits under general anesthesia. The subjects were randomly separated into four groups: Group ETT, Group LMA, Group PLA, Group V-gel. Baseline values and hearth rate, mean arterial pressure and ECG was obtained at the 1st, 5th and 30th minutes after administration of anesthesia and placement of airway device and, QTc interval was evaluated. Difference was observed between ET group and V-gel group in the 5th minute mean arterial pressure values (p < 0.05). It was observed that QTc intervals at the 1st and 5th minute in the ET group significantly increased when compared with the other groups (p < 0.05). Again, it was observed that QTc interval of ET group at the 15th and 30th minute was longer when compared with PLA and V-gel groups (p < 0.05). It was also observed that QTc interval of LMA Group at the 5th minute after intubation significantly increased when compared with V-gel group (p < 0.05). It was observed that HR values of ETT group at the 1st, 5th and 15th minutes after intubation increased with regards to PLA and V-gel groups (p < 0.05). It was determined that the 30th minute hearth rate of ETT group was higher when compared to V-gel group (p < 0.05). In our study we observed that V-gel Rabbit affected both hemodynamic response and QT interval less than other airway devices.
NASA Technical Reports Server (NTRS)
1994-01-01
When power outages occurred at Landmark Plastic Corporation, it took seven to twelve minutes for the primary mercury lamps to cool down enough to relight and two to seven minutes for the ELS incandescent lamps to relight. Production could not resume for as much as seven minutes. An article in NASA Tech Briefs describing the capabilities of photosensing devices led Landmark employee, Steve Keller to design a system now activated by any voltage loss in the main lamp circuit and coupled with photosensing devices used to keep them on until the primary mercury lamps reach full brightness.
Room Temperature Silicene Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Akinwande, Deji
Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.
NASA Astrophysics Data System (ADS)
Hut, Rolf; Bogaard, Thom
2017-04-01
Throwing something in a river and seeing how fast it floats downstream is the first thing that every hydrologists does when encountering a new river. Using a collection of floats allows estimation of gauge surface water velocity and dispersion characteristics. To use floats over long (hundreds of kilometers) stretches of river requires either a crew that keeps an eye on the floats (labor intensive) or having high-tech floats that upload their location on regular intervals, such that they can be retrieved at the end of the experiment. GPS floats with communication units have been custom build by scientists before. Connecting GPS units to GSM modems used to require deep knowledge on micro-electronics and network protocols. In this work we present a version that is build using only off-the-shelf electronics that require no deep knowledge of either micro electronics nor network protocols. The new cellular enabled Particle Electron development board made it possible to connect a Sparkfun OpenLog (SD-card based logger) to a GPS tracker with no soldering and little programming. Because scientist can program the device themselves, settings like sample time can be adapted to the needs of specific experiments and additional sensors can be easily added. When writing GPS location every minute to SD and reporting every fifteen minutes online, our logger can run for three days on a single 2200 mAh LiPo battery (provided with the Particle Electron). Cost of components for our logger is less than 150. The durability of our GPS loggers will be tested during a field campaign at the end of January 2017 where 15 floats will float down the Irrawaddy river over a length of more than 200 km, during two days.
Safety and efficiency of emergency department interrogation of cardiac devices
Neuenschwander, James F.; Peacock, W. Frank; Migeed, Madgy; Hunter, Sara A.; Daughtery, John C.; McCleese, Ian C.; Hiestand, Brian C.
2016-01-01
Objective Patients with implanted cardiac devices may wait extended periods for interrogation in emergency departments (EDs). Our purpose was to determine if device interrogation could be done safely and faster by ED staff. Methods Prospective randomized, standard therapy controlled, trial of ED staff device interrogation vs. standard process (SP), with 30-day follow-up. Eligibility criteria: ED presentation with a self-report of a potential device related complaint, with signed informed consent. SP interrogation was by company representative or hospital employee. Results Of 60 patients, 42 (70%) were male, all were white, with a median (interquartile range) age of 71 (64 to 82) years. No patient was lost to follow up. Of all patients, 32 (53%) were enrolled during business hours. The overall median (interquartile range) ED vs. SP time to interrogation was 98.5 (40 to 260) vs. 166.5 (64 to 412) minutes (P=0.013). While ED and SP interrogation times were similar during business hours, 102 (59 to 138) vs. 105 (64 to 172) minutes (P=0.62), ED interrogation times were shorter vs. SP during non-business hours; 97 (60 to 126) vs. 225 (144 to 412) minutes, P=0.002, respectively. There was no difference in ED length of stay between the ED and SP interrogation, 249 (153 to 390) vs. 246 (143 to 333) minutes (P=0.71), regardless of time of presentation. No patient in any cohort suffered an unplanned medical contact or post-discharge adverse device related event. Conclusion ED staff cardiac device interrogations are faster, and with similar 30-day outcomes, as compared to SP. PMID:28168230
Safety and efficiency of emergency department interrogation of cardiac devices.
Neuenschwander, James F; Peacock, W Frank; Migeed, Madgy; Hunter, Sara A; Daughtery, John C; McCleese, Ian C; Hiestand, Brian C
2016-12-01
Patients with implanted cardiac devices may wait extended periods for interrogation in emergency departments (EDs). Our purpose was to determine if device interrogation could be done safely and faster by ED staff. Prospective randomized, standard therapy controlled, trial of ED staff device interrogation vs. standard process (SP), with 30-day follow-up. Eligibility criteria: ED presentation with a self-report of a potential device related complaint, with signed informed consent. SP interrogation was by company representative or hospital employee. Of 60 patients, 42 (70%) were male, all were white, with a median (interquartile range) age of 71 (64 to 82) years. No patient was lost to follow up. Of all patients, 32 (53%) were enrolled during business hours. The overall median (interquartile range) ED vs. SP time to interrogation was 98.5 (40 to 260) vs. 166.5 (64 to 412) minutes (P=0.013). While ED and SP interrogation times were similar during business hours, 102 (59 to 138) vs. 105 (64 to 172) minutes (P=0.62), ED interrogation times were shorter vs. SP during non-business hours; 97 (60 to 126) vs. 225 (144 to 412) minutes, P=0.002, respectively. There was no difference in ED length of stay between the ED and SP interrogation, 249 (153 to 390) vs. 246 (143 to 333) minutes (P=0.71), regardless of time of presentation. No patient in any cohort suffered an unplanned medical contact or post-discharge adverse device related event. ED staff cardiac device interrogations are faster, and with similar 30-day outcomes, as compared to SP.
30 CFR 250.804 - Production safety-system testing and records.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety... minute or a gas leakage rate in excess of 5 cubic feet per minute is observed, the device shall be... cubic centimeters per minute or a gas leakage rate in excess of 5 cubic feet per minute is observed, the...
Pallett, Edward J; Rentowl, Patricia; Johnson, Mark I; Watson, Paul J
2014-03-01
The efficacy of transcutaneous electrical nerve stimulation (TENS) for pain relief has not been reliably established. Inconclusive findings could be due to inadequate TENS delivery and inappropriate outcome assessment. Electronic monitoring devices were used to determine patient compliance with a TENS intervention and outcome assessment protocol, to record pain scores before, during, and after TENS, and measure electrical output settings. Patients with chronic back pain consented to use TENS daily for 2 weeks and to report pain scores before, during, and after 1-hour treatments. A ≥ 30% reduction in pain scores was used to classify participants as TENS responders. Electronic monitoring devices "TLOG" and "TSCORE" recorded time and duration of TENS use, electrical settings, and pain scores. Forty-two patients consented to participate. One of 35 (3%) patients adhered completely to the TENS use and pain score reporting protocol. Fourteen of 33 (42%) were TENS responders according to electronic pain score data. Analgesia onset occurred within 30 to 60 minutes for 13/14 (93%) responders. It was not possible to correlate TENS amplitude, frequency, or pulse width measurements with therapeutic response. Findings from TENS research studies depend on the timing of outcome assessment; pain should be recorded during stimulation. TENS device sophistication might be an issue and parameter restriction should be considered. Careful protocol design is required to improve adherence and monitoring is necessary to evaluate the validity of findings. This observational study provides objective evidence to support concerns about poor implementation fidelity in TENS research.
NASA Astrophysics Data System (ADS)
Zulqarnain Haider, Syed; Anwar, Hafeez; Wang, Mingqing
2018-03-01
Hole transport material (HTM) plays an important role in the efficiency and stability of perovskite solar cells (PSCs). Spiro-MeOTAD, the commonly used HTM, is costly and can be easily degraded by heat and moisture, thus offering hindrance to commercialize PSCs. There is dire need to find an alternate inorganic and stable HTM to exploit PSCs with their maximum capability. In this paper, a comprehensive device simulation is used to study various possible parameters that can influence the performance of perovskite solar cell with CuI as HTM. These include the effect of doping density, defect density and thickness of absorber layer, along with the influence of diffusion length of carriers as well as electron affinity of electron transport layer (ETM) and HTM on the performance of PSCs. In addition, hole mobility and doping density of HTM is also investigated. CuI is a p-type inorganic material with low cost and relatively high stability. It is found that concentration of dopant in absorber layer and HTM, the electron affinity of HTM and ETM affect the performance of solar cell minutely, while cell performance improves greatly with the reduction of defect density. Upon optimization of parameters, power conversion efficiency for this device is found to be 21.32%. The result shows that lead-based PSC with CuI as HTM is an efficient system. Enhancing the stability and reduction of defect density are critical factors for future research. These factors can be improved by better fabrication process and proper encapsulation of solar cell.
NASA Astrophysics Data System (ADS)
Ye, Hong; Trippel, Sebastian; Di Fraia, Michele; Fallahi, Arya; Mücke, Oliver D.; Kärtner, Franz X.; Küpper, Jochen
2018-04-01
A velocity-map-imaging spectrometer is demonstrated to characterize the normalized emittance (root-mean-square, rms) of photoemitted electron bunches. Both the two-dimensional spatial distribution and the projected velocity distribution images of photoemitted electrons are recorded by the detection system and analyzed to obtain the normalized emittance (rms). With the presented distribution function of the electron photoemission angles, a mathematical method is implemented to reconstruct the three-dimensional velocity distribution. As a first example, multiphoton emission from a planar Au surface is studied via irradiation at a glancing angle by intense 45-fs laser pulses at a central wavelength of 800 nm. The reconstructed energy distribution agrees very well with the Berglund-Spicer theory of photoemission. The normalized emittance (rms) of the intrinsic electron bunch is characterized to be 128 and 14 nm rad in the X and Y directions, respectively. The demonstrated imaging spectrometer has the ability to characterize the normalized emittance (rms) in a few minutes with a fine energy resolution of 0.2 meV in the image center and will, thereby, foster the further development of x-ray free-electron-laser injectors and ultrafast electron diffraction, and it opens up opportunities for studying correlated electron emission from surfaces and vacuum nanoelectronic devices.
Characterization of high flux magnetized helium plasma in SCU-PSI linear device
NASA Astrophysics Data System (ADS)
Xiaochun, MA; Xiaogang, CAO; Lei, HAN; Zhiyan, ZHANG; Jianjun, WEI; Fujun, GOU
2018-02-01
A high-flux linear plasma device in Sichuan University plasma-surface interaction (SCU-PSI) based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors. In this paper, the helium plasma has been characterized by a double-pin Langmuir probe. The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T. The core density and ion flux of helium plasma have a strong dependence on the applied current, magnetic field strength and gas flow rate. It could reach an electron density of 1.2 × 1019 m-3 and helium ion flux of 3.2 × 1022 m-2 s-1, with a gas flow rate of 4 standard liter per minute, magnetic field strength of 0.2 T and input power of 11 kW. With the addition of -80 V applied to the target to increase the helium ion energy and the exposure time of 2 h, the flat top temperature reached about 530 °C. The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy. These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.
Influence of annealing to the defect of inkjet-printed ZnO thin film
NASA Astrophysics Data System (ADS)
Tran, Van-Thai; Wei, Yuefan; Zhan, Zhaoyao; Du, Hejun
2018-03-01
The advantages of additive manufacturing for electronic devices have led to the demand of printing functional material in search of a replacement for the conventional subtractive fabrication process. Zinc oxide (ZnO), thanks to its interesting properties for the electronic and photonic applications, has gathered many attentions in the effort to fabricate functional devices additively. Although many potential methods have been proposed, most of them focus on the lowtemperature processing of the printed material to be compatible with the polymer substrate. These low-temperature fabrication processes could establish a high concentration of defects in printed ZnO which significantly affect the performance of the device. In this study, ZnO thin film for UV photodetector application was prepared by inkjet printing of zinc acetate dihydrate solution following by different heat treatment schemes. The effects of annealing to the intrinsic defect of printed ZnO and photoresponse characteristics under UV illumination were investigated. A longer response/decay time and higher photocurrent were observed after the annealing at 350°C for 30 minutes. X-ray photoelectron spectroscopy (XPS) analysis suggests that the reducing of defect concentration, such as oxygen vacancy, and excess oxygen species in printed ZnO is the main mechanism for the variation in photoresponse. The result provides a better understanding on the defect of inkjet-printed ZnO and could be applied in engineering the properties of the printed oxide-based semiconductor.
Sensor Amplifier for the Venus Ground Ambient
NASA Technical Reports Server (NTRS)
DelCastillo, Linda Y.; Johnson, Travis W.; Hatake, Toshiro; Mojarradi, Mohammad M.; Kolawa, Elizabeth A.
2006-01-01
Previous Venus Landers employed high temperature pressure vessels, with thermally protected electronics, to achieve successful missions, with a maximum surface lifetime of 127 minutes. Extending the operating range of electronic systems to the temperatures (480 C) and pressures (90 bar) of the Venus ground ambient would significantly increase the science return of future missions. Toward that end, the current work describes the innovative design of a sensor preamplifier, capable of working in the Venus ground ambient and designed using commercial components (thermionic vacuum tubes, wide band gap transistors, thick film resistors, advanced high temperature capacitors, and monometallic interfaces) To identify commercial components and electronic packaging materials that are capable of operation within the specified environment, a series of active devices, passive components, and packaging materials were screened for operability at 500C, assuming a 10x increase in the mission lifetime. In addition. component degradation as a function of time at 500(deg)C was evaluated. Based on the results of these preliminary evaluations, two amplifiers were developed.
Allen, Paul B; Salyer, Steven W; Dubick, Michael A; Holcomb, John B; Blackbourne, Lorne H
2010-07-01
The purpose of this study was to develop an in vitro torso model constructed with fluid bags and to determine whether this model could be used to differentiate between the heat prevention performance of devices with active chemical or radiant forced-air heating systems compared with passive heat loss prevention devices. We tested three active (Hypothermia Prevention Management Kit [HPMK], Ready-Heat, and Bair Hugger) and five passive (wool, space blankets, Blizzard blankets, human remains pouch, and Hot Pocket) hypothermia prevention products. Active warming devices included products with chemically or electrically heated systems. Both groups were tested on a fluid model warmed to 37 degrees C versus a control with no warming device. Core temperatures were recorded every 5 minutes for 120 minutes in total. Products that prevent heat loss with an actively heated element performed better than most passive prevention methods. The original HPMK achieved and maintained significantly higher temperatures than all other methods and the controls at 120 minutes (p < 0.05). None of the devices with an actively heated element achieved the sustained 44 degrees C that could damage human tissue if left in place for 6 hours. The best passive methods of heat loss prevention were the Hot Pocket and Blizzard blanket, which performed the same as two of the three active heating methods tested at 120 minutes. Our in vitro fluid bag "torso" model seemed sensitive to detect heat loss in the evaluation of several active or passive warming devices. All active and most passive devices were better than wool blankets. Under conditions near room temperature, passive warming methods (Blizzard blanket or the Hot Pocket) were as effective as active warming devices other than the original HPMK. Further studies are necessary to determine how these data can translate to field conditions in preventing heat loss in combat casualties.
Microfabricated fuel heating value monitoring device
Robinson, Alex L [Albuquerque, NM; Manginell, Ronald P [Albuquerque, NM; Moorman, Matthew W [Albuquerque, NM
2010-05-04
A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.
Monitoring Single-Molecule Protein Dynamics with a Carbon Nanotube Transistor
NASA Astrophysics Data System (ADS)
Collins, Philip G.
2014-03-01
Nanoscale electronic devices like field-effect transistors have long promised to provide sensitive, label-free detection of biomolecules. Single-walled carbon nanotubes press this concept further by not just detecting molecules but also monitoring their dynamics in real time. Recent measurements have demonstrated this premise by monitoring the single-molecule processivity of three different enzymes: lysozyme, protein Kinase A, and the Klenow fragment of DNA polymerase I. With all three enzymes, single molecules tethered to nanotube transistors were electronically monitored for 10 or more minutes, allowing us to directly observe a range of activity including rare transitions to chemically inactive and hyperactive conformations. The high bandwidth of the nanotube transistors further allow every individual chemical event to be clearly resolved, providing excellent statistics from tens of thousands of turnovers by a single enzyme. Initial success with three different enzymes indicates the generality and attractiveness of the nanotube devices as a new tool to complement other single-molecule techniques. Research on transduction mechanisms provides the design rules necessary to further generalize this architecture and apply it to other proteins. The purposeful incorporation of just one amino acid is sufficient to fabricate effective, single molecule sensors from a wide range of enzymes or proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadroy, Y.; Horbett, T.A.; Hanson, S.R.
1989-04-01
To study mechanisms of complex thrombus formation in vivo, and to compare the relative antithrombotic effects of anticoagulants and antiplatelet agents, a model was developed in baboons. Segments of collagen-coated tubing followed by two sequentially placed expansion chambers exhibiting disturbed flow patterns were exposed to native blood under laminar flow conditions. The device was incorporated for 1 hour into an exteriorized arteriovenous shunt in baboons under controlled blood flow (20 ml/min). Morphologic evaluation by scanning electron microscopy showed that thrombi associated with collagen were relatively rich in platelets but thrombi in the chambers were rich in fibrin and red cells.more » Deposition of indium 111-labeled platelets was continuously measured with a scintillation camera. Platelet deposition increased in a linear (collagen-coated segment) or exponential (chambers 1 and 2) fashion over time, with values after 40 minutes averaging 24.1 +/- 3.3 x 10(8) platelets (collagen segment), 16.7 +/- 3.4 x 10(8) platelets (chamber 1), and 8.4 +/- 2.4 x 10(8) platelets (chamber 2). Total fibrinogen deposition after 40 minutes was determined by using iodine 125-labeled baboon fibrinogen and averaged 0.58 +/- 0.14 mg in the collagen segment, 1.51 +/- 0.27 mg in chamber 1, and 0.95 +/- 0.25 mg in chamber 2. Plasma levels of beta-thromboglobulin (beta TG), platelet-factor 4 (PF4), and fibrinopeptide A (FPA) increased fourfold to fivefold after 60 minutes of blood exposure to the thrombotic device. Platelet deposition onto the collagen segment, chamber 1, and chamber 2 was linearly dependent on the circulating platelet count. Platelet accumulation in chamber 1 and chamber 2 was also dependent on the presence of the proximal collagen segment.« less
Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review.
Sanders, James P; Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart J H; Esliger, Dale W
2016-05-04
It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma). There are a large number of devices that self-monitor PA; however, there is a greater need for the development of tools to self-monitor sedentary time. The novelty of these devices means they have yet to be used in behavior change interventions, although the growing field of wearable technology may facilitate this to change.
Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review
Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart JH; Esliger, Dale W
2016-01-01
Background It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. Objective The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. Methods To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. Results The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma). Conclusions There are a large number of devices that self-monitor PA; however, there is a greater need for the development of tools to self-monitor sedentary time. The novelty of these devices means they have yet to be used in behavior change interventions, although the growing field of wearable technology may facilitate this to change. PMID:27145905
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
...,'' submissions; 75 minutes for paper and 70 minutes for electronic Driver Survey and Job Descriptive Index from... paper Driver Survey and Job Descriptive Index x 75 minutes per driver / 60 minutes + 200 CMV drivers completing paper Driver Survey and Job Descriptive Index x 70 minutes per driver / 60 minutes = 26,466 hours...
Han, Sang-Wan; Lee, Jeong-Woo
2018-06-01
[Purpose] This study aimed to investigate the effects of the therapeutic device combined with LED and microcurrent (MC) on muscle tone and stiffness in the calf muscle after its application during moderate aerobic exercise. [Subjects and Methods] Twenty healthy adult subjects were randomized to either the test group of the therapeutic device combined with LED and MC or the control group, and they walked on a 10%-sloped treadmill with a 5 km/hr speed for 30 minutes. Each of the subjects in the test group performed treadmill exercise with the therapeutic device attached to the edge of his or her calf muscle. After the exercise, the muscle tone and stiffness at the edge of the calf muscle were measured. [Results] With respect to the muscle tone, a statistically significant difference was found between the two groups only 5 minutes after the exercise. Concerning muscle stiffness, significant differences were shown between the two groups right after the exercise and 5 minutes after the exercise. [Conclusion] Integrated treatment with LED and MC on is considered helpful for lowering the muscle tone 5 minutes after the exercise, and for lowering the muscle stiffness right after the exercise and 5 minutes after the exercise.
Electronic Raman Scattering as an Ultra-Sensitive Probe of Strain Effects in Semiconductors
NASA Astrophysics Data System (ADS)
Mascarenhas, Angelo; Fluegel, Brian; Beaton, Dan
Semiconductor strain engineering has become a critical feature of high-performance electronics due to the significant device performance enhancements it enables. These improvements that emerge from strain induced modifications to the electronic band structure necessitate new ultra-sensitive tools for probing strain in semiconductors. Using electronic Raman scattering, we recently showed that it is possible to measure minute amounts of strain in thin semiconductor epilayers. We applied this strain measurement technique to two different semiconductor alloy systems, using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Comparing our strain sensitivity and signal strength in AlxGa1-xAs with those obtained using the industry-standard technique of phonon Raman scattering we found a sensitivity improvement of ×200, and a signal enhancement of 4 ×103 thus obviating key constraints in semiconductor strain metrology. The sensitivity of this approach rivals that of contemporary techniques and opens up a new realm for optically probing strain effects on electronic band structure. We acknowledge the financial support of the DOE Office of Science, BES under DE-AC36-80GO28308.
Photoelectrochemically driven self-assembly method
Nielson, Gregory N.; Okandan, Murat
2017-01-17
Various technologies described herein pertain to assembling electronic devices into a microsystem. The electronic devices are disposed in a solution. Light can be applied to the electronic devices in the solution. The electronic devices can generate currents responsive to the light applied to the electronic devices in the solution, and the currents can cause electrochemical reactions that functionalize regions on surfaces of the electronic devices. Additionally or alternatively, the light applied to the electronic devices in the solution can cause the electronic devices to generate electric fields, which can orient the electronic devices and/or induce movement of the electronic devices with respect to a receiving substrate. Further, electrodes on a receiving substrate can be biased to attract and form connections with the electronic devices having the functionalized regions on the surfaces. The microsystem can include the receiving substrate and the electronic devices connected to the receiving substrate.
7 CFR 1409.8 - Public inspection and copying of records; applicable fees.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., electronic recording, transcription of the recording, or minutes of the discussion of any item on the agenda...., Washington, DC 20250. (c) The transcripts, minutes, or transcriptions of electronic recordings of a Board... of transcription or duplication. ...
7 CFR 1409.8 - Public inspection and copying of records; applicable fees.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., electronic recording, transcription of the recording, or minutes of the discussion of any item on the agenda...., Washington, DC 20250. (c) The transcripts, minutes, or transcriptions of electronic recordings of a Board... of transcription or duplication. ...
NASA Astrophysics Data System (ADS)
Abd El-Mohdy, H. L.; Safrany, Agnes
2008-03-01
Macroporous temperature-responsive poly( N-isopropylacrylamide) (PNIPAAm) hydrogels with high equilibrium swelling and fast response rates were obtained by a 60Co γ- and electron beam (EB) irradiation of aqueous N-isopropylacrylamide (NIPAAm) monomer solutions. The effect of irradiation temperatures, the dose, the addition of a pore-forming agent on the swelling ratio, and the kinetics of swelling and shrinking of the PNIPAAm gels was studied. The gels synthesized above the LCST exhibited the highest equilibrium swelling (300-400) and fastest response rate measured by minutes. Scanning electron microscope (SEM) pictures revealed that the gels synthesized above the LCST have larger pores than those prepared at temperatures below the LCST. The gels showed a reversible response to cyclical changes in temperature and might be used in a pulsed drug delivery device. The gels synthesized above the LCST exhibited the highest testosterone propionate release.
Magnetic suspension system for an Annular Momentum Control Device (AMCD)
NASA Technical Reports Server (NTRS)
1979-01-01
A technique to control a rim suspended in a magnetic field was developed. A complete system was developed, incorporating a support structure, magnetic actuators, a rim drive mechanism, an emergency fail-safe system, servo control system, and control electronics. Open loop and closed loop response of the system at zero speed and at 500 revolutions per minute (r/min) of the rim was obtained and analyzed. The rim was then dynamically balanced and a rim speed of 725 r/min was achieved. An analog simulation of the hardware was developed and tested with the actual control electronics connected to the analog computer. The system under development is stable at rim speeds below 700 r/min. Test results indicate that the rim under test is not rigid. The rim has a warp and a number of binding modes which prevented achievement of higher speeds. Further development efforts are required to achieve higher rim speeds.
Electrochemical detection device. [for use in microbiology
NASA Technical Reports Server (NTRS)
Young, R. N.; Wilkins, J. R. (Inventor)
1979-01-01
A standard pH reference electrode and a platinum cathodic electrode are positioned in a container with suitable nutrient medium for microbial growth plus the sample to be tested. The two electrodes are connected to electronic circuitry including an up/down counter whicn counts up for the first 80 minutes after a test has initiated. Then the potential between the two electrodes is tracked by the electronic circuitry and after there is a change of 10 mv a signal is sent to the up/down counter to cause it to reverse its count. When there is a additional 20 mv change in the potential between the two electrodes another signal is sent to the up/down counter, signalling it to stop. The resulting count on the counter is equal to the length of time for the inoculum to begin the production of measurable amounts of H2 after inoculation.
Validity and Reliability of Devices That Assess Body Temperature During Indoor Exercise in the Heat
Ganio, Matthew S; Brown, Christopher M; Casa, Douglas J; Becker, Shannon M; Yeargin, Susan W; McDermott, Brendon P; Boots, Lindsay M; Boyd, Paul W; Armstrong, Lawrence E; Maresh, Carl M
2009-01-01
Context: When assessing exercise hyperthermia outdoors, the validity of certain commonly used body temperature measuring devices has been questioned. A controlled laboratory environment is generally less influenced by environmental factors (eg, ambient temperature, solar radiation, wind) than an outdoor setting. The validity of these temperature measuring devices in a controlled environment may be more acceptable. Objective: To assess the validity and reliability of commonly used temperature devices compared with rectal temperature in individuals exercising in a controlled, high environmental temperature indoor setting and then resting in a cool environment. Design: Time series study. Setting: Laboratory environmental chamber (temperature = 36.4 ± 1.2°C [97.5 ± 2.16°F], relative humidity = 52%) and cool laboratory (temperature = approximately 23.3°C [74.0°F], relative humidity = 40%). Patients or Other Participants: Fifteen males and 10 females. Intervention(s): Rectal, gastrointestinal, forehead, oral, aural, temporal, and axillary temperatures were measured with commonly used temperature devices. Temperature was measured before and 20 minutes after entering the environmental chamber, every 30 minutes during a 90-minute treadmill walk in the heat, and every 20 minutes during a 60-minute rest in mild conditions. Device validity and reliability were assessed with various statistical measures to compare the measurements using each device with rectal temperature. A device was considered invalid if the mean bias (average difference between rectal and device temperatures) was more than ±0.27°C (±0.50°F). Main Outcome Measure(s): Measured temperature from each device (mean and across time). Results: The following devices provided invalid estimates of rectal temperature: forehead sticker (0.29°C [0.52°F]), oral temperature using an inexpensive device (−1.13°C [−2.03°F]), temporal temperature measured according to the instruction manual (−0.87°C [−1.56°F]), temporal temperature using a modified technique (−0.63°C [−1.13°F]), oral temperature using an expensive device (−0.86°C, [−1.55°F]), aural temperature (−0.67°C, [−1.20°F]), axillary temperature using an inexpensive device (−1.25°C, [−2.24°F]), and axillary temperature using an expensive device (−0.94°F [−1.70°F]). Measurement of intestinal temperature (mean bias of −0.02°C [−0.03°F]) was the only device considered valid. Devices measured in succession (intestinal, forehead, temporal, and aural) showed acceptable reliability (all had a mean bias = 0.09°C [0.16°F] and r ≥ 0.94]). Conclusions: Even during laboratory exercise in a controlled environment, devices used to measure forehead, temporal, oral, aural, and axillary body sites did not provide valid estimates of rectal temperature. Only intestinal temperature measurement met the criterion. Therefore, we recommend that rectal or intestinal temperature be used to assess hyperthermia in individuals exercising indoors in the heat. PMID:19295956
Spot fat reduction by red and near infrared LED phototherapy
NASA Astrophysics Data System (ADS)
Lim, Sungkyoo; Park, Eal-Whan
2018-02-01
Low level light therapy (LLLT) using light from red and near infrared LEDs or Lasers have been reported effective as noninvasive methods for reducing spot fat. A total of 55 subjects were randomly divided into test groups and control groups for abdominal fat reduction clinical trial using red and near infrared LED phototherapy devices. Red and near infrared light with irradiance of 10 mW/cm2 were irradiated over the abdominal area to the test group for 30 minutes followed by 30 minutes of aerobic exercise, 3 times a week for 4 weeks. Control group used sham devices for 30 minutes and followed by 30 minutes of aerobic exercise. It is expected that red and near infrared LED phototherapy combined with aerobic exercise would be effective and safe for abdominal fat reduction without any side effects.
Development of analog watch with minute repeater
NASA Astrophysics Data System (ADS)
Okigami, Tomio; Aoyama, Shigeru; Osa, Takashi; Igarashi, Kiyotaka; Ikegami, Tomomi
A complementary metal oxide semiconductor with large scale integration was developed for an electronic minute repeater. It is equipped with the synthetic struck sound circuit to generate natural struck sound necessary for the minute repeater. This circuit consists of an envelope curve drawing circuit, frequency mixer, polyphonic mixer, and booster circuit made by using analog circuit technology. This large scale integration is a single chip microcomputer with motor drivers and input ports in addition to the synthetic struck sound circuit, and it is possible to make an electronic system of minute repeater at a very low cost in comparison with the conventional type.
Muñoz, Daniel; Roettig, Mayme L; Monk, Lisa; Al-Khalidi, Hussein; Jollis, James G; Granger, Christopher B
2012-08-01
For patients with ST-segment elevation myocardial infarction transferred for primary percutaneous coronary intervention, guidelines have called for device activation within 90 minutes of initial presentation. Fewer than 20% of transferred patients are treated in such a timely fashion. We examine the association between transfer drive times and door-to-device (D2D) times in a network of North Carolina hospitals. We compare the feasibility of timely percutaneous coronary intervention using ground versus air transfer. We perform a retrospective analysis of the relationship between transfer drive times and D2D times in a 119-hospital ST-segment-elevation myocardial infarction statewide network. Between July 2008 and December 2009, 1537 ST-segment-elevation myocardial infarction patients underwent interhospital transfer for reperfusion via primary percutaneous coronary intervention. For ground transfers, median D2D time was 93 minutes for drive times ≤30 minutes, 117 minutes for drive times of 31 to 45 minutes, and 121 minutes for drive times >45 minutes. For air transfers, median D2D time was 125 minutes for drive times of 31 to 45 minutes and 138 minutes for drive times >45 minutes. Helicopter transport was associated with longer door-in door-out times and, ultimately, was associated with median D2D times that exceeded guideline recommendations, no matter the transfer drive time category. In a well-developed ST-segment-elevation myocardial infarction system, D2D times within 90 to 120 minutes appear most feasible for hospitals within 30-minute transfer drive time. Helicopter transport did not offer D2D time advantages for transferred STEMI patients. This finding appears to be attributable to comparably longer door-in door-out times for air transfers.
Reading aids for adults with low vision.
Virgili, Gianni; Acosta, Ruthy; Bentley, Sharon A; Giacomelli, Giovanni; Allcock, Claire; Evans, Jennifer R
2018-04-17
The purpose of low-vision rehabilitation is to allow people to resume or to continue to perform daily living tasks, with reading being one of the most important. This is achieved by providing appropriate optical devices and special training in the use of residual-vision and low-vision aids, which range from simple optical magnifiers to high-magnification video magnifiers. To assess the effects of different visual reading aids for adults with low vision. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2017, Issue 12); MEDLINE Ovid; Embase Ovid; BIREME LILACS, OpenGrey, the ISRCTN registry; ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). The date of the search was 17 January 2018. This review includes randomised and quasi-randomised trials that compared any device or aid used for reading to another device or aid in people aged 16 or over with low vision as defined by the study investigators. We did not compare low-vision aids with no low-vision aid since it is obviously not possible to measure reading speed, our primary outcome, in people that cannot read ordinary print. We considered reading aids that maximise the person's visual reading capacity, for example by increasing image magnification (optical and electronic magnifiers), augmenting text contrast (coloured filters) or trying to optimise the viewing angle or gaze position (such as prisms). We have not included studies investigating reading aids that allow reading through hearing, such as talking books or screen readers, or through touch, such as Braille-based devices and we did not consider rehabilitation strategies or complex low-vision interventions. We used standard methods expected by Cochrane. At least two authors independently assessed trial quality and extracted data. The primary outcome of the review was reading speed in words per minute. Secondary outcomes included reading duration and acuity, ease and frequency of use, quality of life and adverse outcomes. We graded the certainty of the evidence using GRADE. We included 11 small studies with a cross-over design (435 people overall), one study with two parallel arms (37 participants) and one study with three parallel arms (243 participants). These studies took place in the USA (7 studies), the UK (5 studies) and Canada (1 study). Age-related macular degeneration (AMD) was the most frequent cause of low vision, with 10 studies reporting 50% or more participants with the condition. Participants were aged 9 to 97 years in these studies, but most were older (the median average age across studies was 71 years). None of the studies were masked; otherwise we largely judged the studies to be at low risk of bias. All studies reported the primary outcome: results for reading speed. None of the studies measured or reported adverse outcomes.Reading speed may be higher with stand-mounted closed circuit television (CCTV) than with optical devices (stand or hand magnifiers) (low-certainty evidence, 2 studies, 92 participants). There was moderate-certainty evidence that reading duration was longer with the electronic devices and that they were easier to use. Similar results were seen for electronic devices with the camera mounted in a 'mouse'. Mixed results were seen for head-mounted devices with one study of 70 participants finding a mouse-based head-mounted device to be better than an optical device and another study of 20 participants finding optical devices better (low-certainty evidence). Low-certainty evidence from three studies (93 participants) suggested no important differences in reading speed, acuity or ease of use between stand-mounted and head-mounted electronic devices. Similarly, low-certainty evidence from one study of 100 participants suggested no important differences between a 9.7'' tablet computer and stand-mounted CCTV in reading speed, with imprecise estimates (other outcomes not reported).Low-certainty evidence showed little difference in reading speed in one study with 100 participants that added electronic portable devices to preferred optical devices. One parallel-arm study in 37 participants found low-certainty evidence of higher reading speed at one month if participants received a CCTV at the initial rehabilitation consultation instead of a standard low-vision aids prescription alone.A parallel-arm study including 243 participants with AMD found no important differences in reading speed, reading acuity and quality of life between prism spectacles and conventional spectacles. One study in 10 people with AMD found that reading speed with several overlay coloured filters was no better and possibly worse than with a clear filter (low-certainty evidence, other outcomes not reported). There is insufficient evidence supporting the use of a specific type of electronic or optical device for the most common profiles of low-vision aid users. However, there is some evidence that stand-mounted electronic devices may improve reading speeds compared with optical devices. There is less evidence to support the use of head-mounted or portable electronic devices; however, the technology of electronic devices may have improved since the studies included in this review took place, and modern portable electronic devices have desirable properties such as flexible use of magnification. There is no good evidence to support the use of filters or prism spectacles. Future research should focus on assessing sustained long-term use of each device and the effect of different training programmes on its use, combined with investigation of which patient characteristics predict performance with different devices, including some of the more costly electronic devices.
Metzger, Zvi; Teperovich, Ehud; Cohen, Raphaela; Zary, Raviv; Paqué, Frank; Hülsmann, Michael
2010-04-01
The aim of this study was to evaluate the cleaning ability of the Self-Adjusting File (SAF) system in terms of removal of debris and smear layer. Root canal preparations were performed in 20 root canals using an SAF operated with a continuous irrigation device. The glide path was initially established using a size 20 K-file followed by the SAF file that was operated in the root canal via a vibrating motion for a total of 4 minutes. Sodium hypochlorite (3%) and EDTA (17%) were used as continuous irrigants and were alternated every minute during this initial 4-minute period. This was followed by a 30-second rinse using EDTA applied through a nonactivated SAF and a final flush with sodium hypochlorite. The roots were split longitudinally and subjected to scanning electron microscopy (SEM). The presence of debris and a smear layer in the coronal, middle, and apical thirds of the canal were evaluated through the analysis of the SEM images using five-score evaluation systems based on reference photographs. The SAF operation with continuous irrigation, using alternating irrigants, resulted in root canal walls that were free of debris in all thirds of the canal in all (100%) of the samples. In addition, smear layer-free surfaces were observed in 100% and 80% of the coronal and middle thirds of the canal, respectively. In the apical third of the canal, smear layer-free surfaces were found in 65% of the root canals. The operation of the SAF system with continuous irrigation coupled with alternating sodium hypochlorite and EDTA treatment resulted in a clean and mostly smear layer-free dentinal surface in all parts of the root canal. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Moisture content and gas sampling device
NASA Technical Reports Server (NTRS)
Krieg, H. C., Jr. (Inventor)
1985-01-01
An apparatus is described for measuring minute quantities of moisture and other contaminants within sealed enclosures such as electronic assemblies which may be subject to large external atmospheric pressure variations. An array of vacuum quality valves is arranged to permit cleansing of the test apparatus of residual atmospheric components from a vacuum source. This purging operation evacuates a gas sample bottle, which is then connected by valve settings to provide the drive for withdrawing a gas sample from the sealed enclosure under test into the sample bottle through a colometric detector tube (Drager tube) which indicates moisture content. The sample bottle may be disconnected and its contents (drawn from the test enclosure) separately subjected to mass spectrograph analysis.
Giant magnetoresistive biosensors for molecular diagnosis: surface chemistry and assay development
NASA Astrophysics Data System (ADS)
Yu, Heng; Osterfeld, Sebastian J.; Xu, Liang; White, Robert L.; Pourmand, Nader; Wang, Shan X.
2008-08-01
Giant magnetoresistive (GMR) biochips using magnetic nanoparticle as labels were developed for molecular diagnosis. The sensor arrays consist of GMR sensing strips of 1.5 μm or 0.75 μm in width. GMR sensors are exquisitely sensitive yet very delicate, requiring ultrathin corrosion-resistive passivation and efficient surface chemistry for oligonucleotide probe immobilization. A mild and stable surface chemistry was first developed that is especially suitable for modifying delicate electronic device surfaces, and a practical application of our GMR biosensors was then demonstrated for detecting four most common human papillomavirus (HPV) subtypes in plasmids. We also showed that the DNA hybridization time could potentially be reduced from overnight to about ten minutes using microfluidics.
Significance of coupling device for vessel anastomosis in esophageal reconstruction.
Watanabe, Y; Horiuchi, A; Yamamoto, Y; Kikkawa, H; Kusunose, H; Sugishita, H; Sato, K; Yoshida, M; Yukumi, S; Kawachi, K
2005-01-01
To prevent an anastomotic failure due to impaired blood supply, several trials have been performed such as preoperative ischemic conditioning by transarterial embolization of the left gastric, right gastric and splenic arteries or microvascular anastomosis. We assess the significance of an automatic anastomotic coupling device for vessel anastomosis, which we have continuously utilized, to simplify the task and shorten the anastomotic time since March 1999. 8 patients who underwent venous anastomosis by an automatic anastomotic coupling device were evaluated for the time of anastomosis, total ischemic time and outcomes. Venous anastomosis was completed within 5 minutes on average. Microscopic arterial anastomosis by hand took 35 minutes on average. For gastric tube reconstruction, venous anastomosis by an automatic coupling device took only 5 minutes. The top of the gastric tube showed congestion before venous anastomosis, but rapidly recovered from it after anastomosis. Postoperative endoscopic observation of the mucosal color of the replaced intestine or gastric tube was started 3 days after surgery and revealed no ischemia or congestion. The postoperative course was uneventful except one case suffering from pneumonia but leakage was not observed in any case. An automatic anastomotic coupling device can perform an easy and reliable vascular anastomosis for patients who undergo esophageal reconstruction. The device may shorten the operating time and consequently the ischemic time of the gastric tube or jejunal or colonic graft, which in turn may lead to a decrease of complications.
Comparison of survey and photogrammetry methods to position gravity data, Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, D.A.; Wu, S.S.C.; Spielman, J.B.
1985-12-31
Locations of gravity stations at Yucca Mountain, Nevada, were determined by a survey using an electronic distance-measuring device and by a photogram-metric method. The data from both methods were compared to determine if horizontal and vertical coordinates developed from photogrammetry are sufficently accurate to position gravity data at the site. The results show that elevations from the photogrammetric data have a mean difference of 0.57 +- 0.70 m when compared with those of the surveyed data. Comparison of the horizontal control shows that the two methods agreed to within 0.01 minute. At a latitude of 45{sup 0}, an error ofmore » 0.01 minute (18 m) corresponds to a gravity anomaly error of 0.015 mGal. Bouguer gravity anomalies are most sensitive to errors in elevation, thus elevation is the determining factor for use of photogrammetric or survey methods to position gravity data. Because gravity station positions are difficult to locate on aerial photographs, photogrammetric positions are not always exactly at the gravity station; therefore, large disagreements may appear when comparing electronic and photogrammetric measurements. A mean photogrammetric elevation error of 0.57 m corresponds to a gravity anomaly error of 0.11 mGal. Errors of 0.11 mGal are too large for high-precision or detailed gravity measurements but acceptable for regional work. 1 ref. 2 figs., 4 tabs.« less
Roswell, Robert O; Greet, Brian; Parikh, Parin; Mignatti, Andrea; Freese, John; Lobach, Iryna; Guo, Yu; Keller, Norma; Radford, Martha; Bangalore, Sripal
2014-07-01
The 2013 American College of Cardiology Foundation/American Heart Association ST-segment elevation myocardial infarction (STEMI) guidelines have shifted focus from door-to-balloon (D2B) time to the time from first medical contact to device activation (contact-to-device time [C2D] ). This study investigates the impact of prehospital wireless electrocardiogram transmission (PHT) on reperfusion times to assess the impact of the new guidelines. From January 2009 to December 2012, data were collected on STEMI patients who received percutaneous coronary interventions; 245 patients were included for analysis. The primary outcome was median C2D time in the PHT group and the secondary outcome was D2B time. Prehospital wireless electrocardiogram transmission was associated with reduced C2D times vs no PHT: 80 minutes (interquartile range [IQR], 64-94) vs 96 minutes (IQR, 79-118), respectively, P < 0.0001. The median D2B time was lower in the PHT group vs the no-PHT group: 45 minutes (IQR, 34-56) vs 63 minutes (IQR, 49-81), respectively, P < 0.0001. Multivariate analysis showed PHT to be the strongest predictor of a C2D time of <90 minutes (odds ratio: 3.73, 95% confidence interval: 1.65-8.39, P = 0.002). Female sex was negatively predictive of achieving a C2D time <90 minutes (odds ratio: 0.23, 95% confidence interval: 0.07-0.73, P = 0.01). In STEMI patients, PHT was associated with significantly reduced C2D and D2B times and was an independent predictor of achieving a target C2D time. As centers adapt to the new guidelines emphasizing C2D time, targeting a shorter D2B time (<50 minutes) is ideal to achieve a C2D time of <90 minutes. © 2014 Wiley Periodicals, Inc.
Rovaris, Giovanni; Solimene, Francesco; D'Onofrio, Antonio; Zanotto, Gabriele; Ricci, Renato P; Mazzella, Tiziana; Iacopino, Saverio; Della Bella, Paolo; Maglia, Giampiero; Senatore, Gaetano; Quartieri, Fabio; Biffi, Mauro; Curnis, Antonio; Calvi, Valeria; Rapacciuolo, Antonio; Santamaria, Matteo; Capucci, Alessandro; Giammaria, Massimo; Campana, Andrea; Caravati, Fabrizio; Giacopelli, Daniele; Gargaro, Alessio; Pisanò, Ennio C
2018-03-01
CHA 2 DS 2 -VASc is a validated score for predicting stroke in patients with atrial fibrillation (AF). The purpose of this study was to assess whether the CHA 2 DS 2 -VASc score can predict new-onset AF in a cohort of patients with a cardiac implantable electronic device (CIED) followed with remote monitoring. Using the database of the Home Monitoring Expert Alliance project, we selected 2410 patients with no documented AF who had received a CIED with diagnostics on atrial high rate episodes (AHREs). The primary endpoint was time to first day with cumulative AHRE burden ≥15 minutes, 5 hours, 24 hours, and ≥7 consecutive days. During a median duration of 24.1(11.5-42.9) months, the incidence of AHRE increased with increasing CHA 2 DS 2 -VASc. At 6 years, occurrence of ≥15-minute AHRE was 80.2% (CHA 2 DS 2 -VASc ≤1) vs 93.7% (CHA 2 DS 2 -VASc ≥5), whereas ≥5-hour AHRE incidence was 68.4% (CHA 2 DS 2 -VASc ≤1) vs 92.5% (CHA 2 DS 2 -VASc ≥5). Occurrence of ≥24-hour and ≥7-day AHREs also increased with increasing CHA 2 DS 2 -VASc: 9.1% and 3.9% (CHA 2 DS 2 -VASc ≤1) vs 40.4% and 28.7% (CHA 2 DS 2 -VASc ≥5), respectively. Adjusted hazard ratio for unitary CHA 2 DS 2 -VASc increase ranged from 1.09 (confidence interval 1.04-1.14; P <.001) with AHRE burden ≥15 minutes to 1.26 (confidence interval 1.11-1.42; P <.001) with AHRE burden ≥7 days. At receiver operating curve analysis, CHA 2 DS 2 -VASc ≥2 was estimated to predict persistent forms of AHREs with 95.8% sensitivity but 11.7% specificity at 3 years. CHA 2 DS 2 -VASc ≥5 had 77.0% specificity but 34.6% sensitivity. In a CIED population with no previous diagnosis of clinical AF, AHRE incidence increased with increasing CHA 2 DS 2 -VASc score. The association was stronger with longer AHREs, but the accuracy of CHA 2 DS 2 -VASc as AHRE predictor was moderate. Copyright © 2018. Published by Elsevier Inc.
Ma, Xinyu; Feng, Shuxuan; He, Liang; Yan, Mengyu; Tian, Xiaocong; Li, Yanxi; Tang, Chunjuan; Hong, Xufeng; Mai, Liqiang
2017-08-17
On-chip electrochemical energy storage devices have attracted growing attention due to the decreasing size of electronic devices. Various approaches have been applied for constructing the microsupercapacitors. However, the microfabrication of high-performance microsupercapacitors by conventional and fully compatible semiconductor microfabrication technologies is still a critical challenge. Herein, unique three-dimensional (3D) Co 3 O 4 nanonetwork microelectrodes formed by the interconnection of Co 3 O 4 nanosheets are constructed by controllable physical vapor deposition combined with rapid thermal annealing. This construction process is an all dry and rapid (≤5 minutes) procedure. Afterward, by sputtering highly electrically conductive Pt nanoparticles on the microelectrodes, the 3D Co 3 O 4 /Pt nanonetworks based microsupercapacitor is fabricated, showing a high volume capacitance (35.7 F cm -3 ) at a scan rate of 20 mV s -1 due to the unique interconnected structures, high electrical conductivity and high surface area of the microelectrodes. This microfabrication process is also used to construct high-performance flexible microsupercapacitors, and it can be applied in the construction of wearable devices. The proposed strategy is completely compatible with the current semiconductor microfabrication and shows great potential in the applications of the large-scale integration of micro/nano and wearable devices.
Guo, Hengyu; Yeh, Min-Hsin; Zi, Yunlong; Wen, Zhen; Chen, Jie; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin
2017-05-23
The development of lightweight, superportable, and sustainable power sources has become an urgent need for most modern personal electronics. Here, we report a cut-paper-based self-charging power unit (PC-SCPU) that is capable of simultaneously harvesting and storing energy from body movement by combining a paper-based triboelectric nanogenerator (TENG) and a supercapacitor (SC), respectively. Utilizing the paper as the substrate with an assembled cut-paper architecture, an ultralight rhombic-shaped TENG is achieved with highly specific mass/volume charge output (82 nC g -1 /75 nC cm -3 ) compared with the traditional acrylic-based TENG (5.7 nC g -1 /5.8 nC cm -3 ), which can effectively charge the SC (∼1 mF) to ∼1 V in minutes. This wallet-contained PC-SCPU is then demonstrated as a sustainable power source for driving wearable and portable electronic devices such as a wireless remote control, electric watch, or temperature sensor. This study presents a potential paper-based portable SCPU for practical and medical applications.
NASA Astrophysics Data System (ADS)
Boggild, Peter; Hjorth Petersen, Dirch; Sardan Sukas, Ozlem; Dam, Henrik Friis; Lei, Anders; Booth, Timothy; Molhave, Kristian; Eicchorn, Volkmar
2010-03-01
We present a range of highly adaptable microtools for direct interaction with nanoscale structures; (i) semiautomatic pick-and-place assembly of multiwalled carbon nanotubes onto cantilevers for high-aspect ratio scanning probe microscopy, using electrothermal microgrippers inside a SEM. Topology optimisation was used to calculate the optimal gripper shape defined by the boundary conditions, resulting in 10-100 times better performance. By instead pre-defining detachable tips using electron beam lithography, free-form scanning probe tips (Nanobits) can be mounted in virtually any position on a cantilever; (ii) scanning micro four point probes allow fast, non- destructive mapping of local electrical properties (sheet resistance and Hall mobility) and hysteresis effects of graphene sheets; (iii) sub 100 nm freestanding devices with wires, heaters, actuators, sensors, resonators and probes were defined in a 100 nm thin membrane with focused ion beam milling. By patterning generic membrane templates (Nembranes) the fabrication time of a TEM compatible NEMS device is effectively reduced to less around 20 minutes.
Gao, Y; Liang, Y C; Yu, H B; Yan, X L; Xu, B G; Liu, R; Wang, N; Xu, G Q; Wang, Z L
2018-03-24
Objective: To investigate the heart rate control situation of chronic heart failure (CHF) patients who received cardiovascular implantable electronic device (CIED) therapy, and to assess the heart rate control efficacy by optimized medication adjustment. Methods: We performed a perspective study in heart failure with reduced left ventricular ejection fraction (HFrEF) patients who received CIED according to guideline recommendations, patients were enrolled from January 2012 to January 2017. Resting heart rate (RHR) recorded by electrocardiogram after 10 minutes' rest and medication usage within 1 month were recorded at baseline. RHR less than 70 beats per minute (bpm) was regarded as well controlled. β-receptor blockers and (or) ivabradine would be added in patients whose RHR were over 70 bpm. RHR after optimized medication adjustment was recorded during follow-up period. Results: One hundred and fifty patients were included in this study with average RHR (80.6±11.9) bpm. RHR was<70 bpm in 27.3% (41/150) patients at baseline and β-receptor blockers was underused in 80.7% patients (88/109) whose RHR was>70 bpm. The overall RHR decreased to (73.1±10.4) bpm and percent of patients with RHR<70 bpm increased to 70.0% (105/150) after up-titration of β-receptor blockers compared to baseline (χ 2 =52.958, P< 0.001). Ivabradine was added in the rest 45 patients and RHR was<70 bpm in 43 out of 45 patients after ivabradine use. The overall RHR decreased to (67.1±2.7) bpm and percent of RHR<70 bpm significantly increased to 98.7% (148/150) (χ 2 =44.504, P< 0.001 vs. up-titration of β-receptor blockers only). Conclusion: RHR in CHF patients who received CIED therapy is not ideally controlled in this patient cohort, individual up-titration ofβ-receptor blockers and ivabradine use may help to optimize RHR in these patients.
Method for integrating microelectromechanical devices with electronic circuitry
Montague, Stephen; Smith, James H.; Sniegowski, Jeffry J.; McWhorter, Paul J.
1998-01-01
A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.
Cornwell, William K; Tarumi, Takashi; Stickford, Abigail; Lawley, Justin; Roberts, Monique; Parker, Rosemary; Fitzsimmons, Catherine; Kibe, Julius; Ayers, Colby; Markham, David; Drazner, Mark H; Fu, Qi; Levine, Benjamin D
2015-12-15
Current-generation left ventricular assist devices provide circulatory support that is minimally or entirely nonpulsatile and are associated with marked increases in muscle sympathetic nerve activity (MSNA), likely through a baroreceptor-mediated pathway. We sought to determine whether the restoration of pulsatile flow through modulations in pump speed would reduce MSNA through the arterial baroreceptor reflex. Ten men and 3 women (54 ± 14 years) with Heartmate II continuous-flow left ventricular assist devices underwent hemodynamic and sympathetic neural assessment. Beat-to-beat blood pressure, carotid ultrasonography at the level of the arterial baroreceptors, and MSNA via microneurography were continuously recorded to determine steady-state responses to step changes (200-400 revolutions per minute) in continuous-flow left ventricular assist device pump speed from a maximum of 10,480 ± 315 revolutions per minute to a minimum of 8500 ± 380 revolutions per minute. Reductions in pump speed led to increases in pulse pressure (high versus low speed: 17 ± 7 versus 26 ± 12 mm Hg; P<0.01), distension of the carotid artery, and carotid arterial wall tension (P<0.05 for all measures). In addition, MSNA was reduced (high versus low speed: 41 ± 15 versus 33 ± 16 bursts per minute; P<0.01) despite a reduction in mean arterial pressure and was inversely related to pulse pressure (P=0.037). Among subjects with continuous-flow left ventricular assist devices, the restoration of pulsatile flow through modulations in pump speed leads to increased distortion of the arterial baroreceptors with a subsequent decline in MSNA. Additional study is needed to determine whether reduction of MSNA in this setting leads to improved outcomes. © 2015 American Heart Association, Inc.
49 CFR 220.305 - Use of personal electronic devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with... 49 Transportation 4 2010-10-01 2010-10-01 false Use of personal electronic devices. 220.305...
49 CFR 220.305 - Use of personal electronic devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with...
49 CFR 220.305 - Use of personal electronic devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with...
Fabrication of a microfluidic device for the compartmentalization of neuron soma and axons.
Harris, Joseph; Lee, Hyuna; Vahidi, Behrad; Tu, Christina; Cribbs, David; Jeon, Noo Li; Cotman, Carl
2007-01-01
In this video, we demonstrate the technique of soft lithography with polydimethyl siloxane (PDMS) which we use to fabricate a microfluidic device for culturing neurons. Previously, a silicon wafer was patterned with the design for the neuron microfluidic device using SU-8 and photolithography to create a master mold, or what we simply refer to as a "master". Next, we pour the silicon polymer PDMS on top of the master which is then cured by heating the PDMS to 80 degrees C for 1 hour. The PDMS forms a negative mold of the device. The PDMS is then carefully cut and lifted away from the master. Holes are punched where the reservoirs will be and the excess PDMS trimmed away from the device. Nitrogen is used to blow away any excess debris from the device. At this point the devices are now ready for use and can either bonded to corning No. 1 cover glass with a plasma sterilizer/cleaner or can be reversibly bound to the cover glass by simply placing the device on top of the cover glass. The reversible bonding of the device to glass is covered in a separate video and requires first that the device be sterilized either with 70% ethanol or by autoclaving. Plasma treating sterilizes the devices so no further treatment is necessary. It is, however, important, when plasma-treating the devices, to add liquid to the devices within 10 minutes of the plasma treatment while the surfaces are still hydrophilic. Waiting longer than 10 minutes to add liquid to the device makes it difficult for the liquid to enter the device. The neuron devices are typically plasma-bound to cover glass and 0.5 mg/ml poly-L-lysine (PLL) in pH 8.5 borate buffer is immediately added to the device. After a minimum of 3 hours incubating with PLL, the devices are washed with dH2O water a minimum of 3 times with at least 15 minutes between each wash. Next, the water is removed and fresh media is added to the device. At this point the device is ready for use. It is important to remember at this point to never remove all the media from the device. Always leave media in the main channel.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and... electronic devices, including wireless communication devices, portable music and data processing devices, and...
49 CFR 220.303 - General use of electronic devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would... 49 Transportation 4 2010-10-01 2010-10-01 false General use of electronic devices. 220.303 Section...
49 CFR 220.303 - General use of electronic devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would...
49 CFR 220.303 - General use of electronic devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
... an International Registration) using the Trademark Electronic Application System (TEAS), which is... hours Application for International Registration (PTO- 15 minutes 3,900 975 2131 TEAS). Application for... minutes 400 100 2132 TEAS). Application for Subsequent Designation (paper, 20 minutes 5 2 no form...
Fordyce, Christopher B; Al-Khalidi, Hussein R; Jollis, James G; Roettig, Mayme L; Gu, Joan; Bagai, Akshay; Berger, Peter B; Corbett, Claire C; Dauerman, Harold L; Fox, Kathleen; Garvey, J Lee; Henry, Timothy D; Rokos, Ivan C; Sherwood, Matthew W; Wilson, B Hadley; Granger, Christopher B
2017-01-01
The Mission: Lifeline STEMI Systems Accelerator program, implemented in 16 US metropolitan regions, resulted in more patients receiving timely reperfusion. We assessed whether implementing key care processes was associated with system performance improvement. Hospitals (n=167 with 23 498 ST-segment-elevation myocardial infarction patients) were surveyed before (March 2012) and after (July 2014) program intervention. Data were merged with patient-level clinical data over the same period. For reperfusion, hospitals were grouped by whether a specific process of care was implemented, preexisting, or never implemented. Uptake of 4 key care processes increased after intervention: prehospital catheterization laboratory activation (62%-91%; P<0.001), single call transfer protocol from an outside facility (45%-70%; P<0.001), and emergency department bypass for emergency medical services direct presenters (48%-59%; P=0.002) and transfers (56%-79%; P=0.001). There were significant differences in median first medical contact-to-device times among groups implementing prehospital activation (88 minutes implementers versus 89 minutes preexisting versus 98 minutes nonimplementers; P<0.001 for comparisons). Similarly, patients treated at hospitals implementing single call transfer protocols had shorter median first medical contact-to-device times (112 versus 128 versus 152 minutes; P<0.001). Emergency department bypass was also associated with shorter median first medical contact-to-device times for emergency medical services direct presenters (84 versus 88 versus 94 minutes; P<0.001) and transfers (123 versus 127 versus 167 minutes; P<0.001). The Accelerator program increased uptake of key care processes, which were associated with improved system performance. These findings support efforts to implement regional ST-segment-elevation myocardial infarction networks focused on prehospital catheterization laboratory activation, single call transfer protocols, and emergency department bypass. © 2017 American Heart Association, Inc.
Expansion of a regional ST-segment-elevation myocardial infarction system to an entire state.
Jollis, James G; Al-Khalidi, Hussein R; Monk, Lisa; Roettig, Mayme L; Garvey, J Lee; Aluko, Akinyele O; Wilson, B Hadley; Applegate, Robert J; Mears, Greg; Corbett, Claire C; Granger, Christopher B
2012-07-10
Despite national guidelines calling for timely coronary artery reperfusion, treatment is often delayed, particularly for patients requiring interhospital transfer. One hundred nineteen North Carolina hospitals developed coordinated plans to rapidly treat patients with ST-segment-elevation myocardial infarction according to presentation: walk-in, ambulance, or hospital transfer. A total of 6841 patients with ST-segment-elevation myocardial infarction (3907 directly presenting to 21 percutaneous coronary intervention hospitals, 2933 transferred from 98 non-percutaneous coronary intervention hospitals) were treated between July 2008 and December 2009 (age, 59 years; 30% women; 19% uninsured; chest pain duration, 91 minutes; shock, 9.2%). The rate of patients not receiving reperfusion fell from 5.4% to 4.0% (P=0.04). Treatment times for hospital transfer patients substantially improved. First-hospital-door-to-device time for hospitals that adopted a "transfer for percutaneous coronary intervention" reperfusion strategy fell from 117 to 103 minutes (P=0.0008), whereas times at hospitals with a mixed strategy of transfer or fibrinolysis fell from 195 to 138 minutes (P=0.002). Median door-to-device times for patients presenting directly to PCI hospitals fell from 64 to 59 minutes (P<0.001). Emergency medical services-transported patients were most likely to reach door-to-device goals, with 91% treated within 90 minutes and 52% being treated with 60 minutes. Patients treated within guideline goals had a mortality of 2.2% compared with 5.7% for those exceeding guideline recommendations (P<0.001). Through extension of regional coordination to an entire state, rapid diagnosis and treatment of ST-segment-elevation myocardial infarction has become an established standard of care independently of healthcare setting or geographic location.
Method for integrating microelectromechanical devices with electronic circuitry
Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.
1998-08-25
A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.
NASA Astrophysics Data System (ADS)
Xu, Dan
Silicon nitride (Si_3N _4) and silicon oxynitride (SiO _{rm x}N_ {rm y}) films in the form of metal -nitride-oxide-silicon (MNOS) structures were investigated to determine the correlation between their electrical characteristics and the nature of the chemical bonding so as to provide guidelines for the next generation of nonvolatile memory devices. The photoionization cross section of electron traps in the oxynitride films of MNOS devices were also measured as a function photon energy and oxygen concentration of the silicon oxynitride films. An effective photoionization cross section associated with electron traps was determined to be between 4.9 times 10 ^{-19} cm^2 to 10.8 times 10^ {-19} cm^2 over the photon energy of 2.06 eV to 3.1 eV for silicon oxynitride films containing 7 atomic % to 17 atomic % of oxygen. The interface state density of metal-nitride-oxide -silicon (MNOS) devices was investigated as a function of processing conditions. The interface state density around the midgap of the oxide-silicon interface of the MNOS structures for deposition temperature between 650^ circC to 850^circC increased from 1.1 to 8.2 times 10 ^{11} cm^ {-2}eV^{-1}, for as-deposited silicon nitride films; but decreased from 5.0 to 3.5 times 10^ {11} cm^{-2} eV^{-1}, for films annealed in nitrogen at 900^circC for 60 minutes; and further decreased and remained constant at 1.5 times 10^{11 } cm^{-2}eV ^{-1}, for films which were further annealed in hydrogen at 900^ circC for an additional 60 minutes. The interface state density increase was due to an increase in the loss of hydrogen at the interfacial region and also due to an increase in the thermal stress caused by differences in thermal expansion coefficients of silicon nitride and silicon dioxide films at higher deposition temperatures. The interface state density was subject to two opposing influences; an increase by thermal stress, and a reduction by hydrogen compensation of these states. The photocurrent-voltage (photoI-V) technique in combination with internal photo-electric technique were employed to determine the trapped charge density and its centroid as a function of processing conditions. Results showed that the trapped charge density was of the order of 10^{18} cm ^{-3}. However, the charge trapping density increased about 30% as the atomic percentage of hydrogen decreased from 6 to 2 atomic %.
Code of Federal Regulations, 2013 CFR
2013-07-01
... to or less than 10.0 parts per million by volume-wet THC as propane corrected to 3.0 percent carbon... 2A at 40 CFR part 60, appendix A-1. Record the start and stop reading for each 60-minute THC test. Record the gas pressure and temperature at 5-minute intervals throughout each 60-minute THC test. (iii...
17 CFR 147.9 - Requests for copies of transcripts, recordings or minutes of closed meetings.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., recordings or minutes of closed meetings. (a) Copies of a transcript transcription of an electronic recording... § 147.8(a), shall be furnished to any person at the actual cost of duplication or transcription pursuant...)(9), (d) and (e). (b) Requests for copies of transcripts, transcriptions of electronic recordings or...
17 CFR 147.9 - Requests for copies of transcripts, recordings or minutes of closed meetings.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., recordings or minutes of closed meetings. (a) Copies of a transcript transcription of an electronic recording... § 147.8(a), shall be furnished to any person at the actual cost of duplication or transcription pursuant...)(9), (d) and (e). (b) Requests for copies of transcripts, transcriptions of electronic recordings or...
Portable sensors for drug and explosive detection
NASA Astrophysics Data System (ADS)
Leginus, Joseph M.
1994-03-01
Westinghouse Electric is developing portable, hand-held sensors capable of detecting numerous drugs of abuse (cocaine, heroin, amphetamines) and explosives (trinitrotoluene, pentaerythritol tetranitrate, nitroglycerin). The easy-to-use system consists of a reusable electronics module and disposable probes. The sensor illuminates and detects light transmitted through optical cells of the probe during an antibody-based latex agglutination reaction. Each probe contains all the necessary reagents to carry out a test in a single step. The probe has the ability to lift minute quantities of samples from a variety of surfaces and deliver the sample to a reaction region within the device. The sensor yields a qualitative answer in 30 to 45 seconds and is able to detect illicit substances at nanogram levels.
The fusion of advanced fuels to produce medical isotopes using inertial electrostatic confinement
NASA Astrophysics Data System (ADS)
Cipiti, Benjamin B.
Experiments are described that used an Inertial Electrostatic Confinement (IEC) fusion device to create radioisotopes for medical diagnostics. The IEC concept utilizes spherically concentric electrodes to accelerate fusion ions to high energies, allowing the use of the D-D and advanced D-3He fusion reactions. The D-3He reaction produces a high-energy 14.7 MeV proton, and this proton is energetic enough to be used to create radioisotopes. This dissertation focuses first on where specifically the fusion reactions are occurring in the IEC device. It was found that at 2 mtorr operating pressures, 70% of the D-D reactions occur throughout the entire volume of the vacuum chamber. About 22% of the reactions occur in a small core in the center of the device, and the other 8% are due to embedded D-D reactions in the cathode of the device. On the other hand, for D-3He, 95% of the reactions are due to embedded reactions, and the other 5% come from a small core in the center of the device. Beam-target D-3He fusion was used to create medical isotopes in two different systems. The designs focused on creating short-lived species capable of use in Positron Emission Tomography. The first isotope created was 94mTc, a positron emitter with a 52-minute half-life. Approximately 1.5 nCi of 94mTc were created using the 94Mo(p,n) 94mTc reaction. The second isotope created was 13N, a positron emitter with a ten-minute half-life. Approximately 1.0 nCi of 13N was created using the 16O(p,alpha)13N reaction. The final part of the research investigated the effects of deuterium and helium implantation in the tungsten-rhenium cathode of the IEC device. The effect of the implantation on the surface morphology of pure tungsten was also determined using scanning electron microscopy. Deuterium did not appear to affect the surface of tungsten after high temperature (>800 C) implantation. Helium created a porous surface structure at the same temperatures starting at about 4 x 1016 ions/cm2. The pores increased in size and decreased in density with increasing temperature and fluence.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...
30 CFR 75.1107-10 - High expansion foam devices; minimum capacity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High expansion foam devices; minimum capacity... foam devices; minimum capacity. (a) On unattended underground equipment the amount of water delivered as high expansion foam for a period of approximately 20 minutes shall be not less than 0.06 gallon...
30 CFR 75.1107-10 - High expansion foam devices; minimum capacity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High expansion foam devices; minimum capacity... foam devices; minimum capacity. (a) On unattended underground equipment the amount of water delivered as high expansion foam for a period of approximately 20 minutes shall be not less than 0.06 gallon...
A Low-Cost Thermistor Device for Measurements of Metabolic Heat in Yeast Cells in Suspension.
ERIC Educational Resources Information Center
Keeling, Richard P.
1980-01-01
Provides illustrated directions for the construction and use of a low-cost thermistor device. Attached to a servo-type millivolt chart recorder, the device will record minute temperature changes and will simulate data obtained from an oxygen polarograph. Includes results of experiments with baker's yeast. (Author/CS)
Debaty, Guillaume; Metzger, Anja; Rees, Jennifer; McKnite, Scott; Puertas, Laura; Yannopoulos, Demetris; Lurie, Keith
2016-01-01
Objective To improve the likelihood for survival with favorable neurologic function after cardiac arrest, we assessed a new advanced life support approach using active compression-decompression cardiopulmonary resuscitation plus an intrathoracic pressure regulator. Design Prospective animal investigation. Setting Animal laboratory. Subjects Female farm pigs (n = 25) (39 ± 3 kg). Interventions Protocol A: After 12 minutes of untreated ventricular fibrillation, 18 pigs were randomized to group A—3 minutes of basic life support with standard cardiopulmonary resuscitation, defibrillation, and if needed 2 minutes of advanced life support with standard cardiopulmonary resuscitation; group B—3 minutes of basic life support with standard cardiopulmonary resuscitation, defibrillation, and if needed 2 minutes of advanced life support with active compression-decompression plus intrathoracic pressure regulator; and group C—3 minutes of basic life support with active compression-decompression cardiopulmonary resuscitation plus an impedance threshold device, defibrillation, and if needed 2 minutes of advanced life support with active compression-decompression plus intrathoracic pressure regulator. Advanced life support always included IV epinephrine (0.05 μg/kg). The primary endpoint was the 24-hour Cerebral Performance Category score. Protocol B: Myocardial and cerebral blood flow were measured in seven pigs before ventricular fibrillation and then following 6 minutes of untreated ventricular fibrillation during sequential 5 minutes treatments with active compression-decompression plus impedance threshold device, active compression-decompression plus intrathoracic pressure regulator, and active compression-decompression plus intrathoracic pressure regulator plus epinephrine. Measurements and Main Results Protocol A: One of six pigs survived for 24 hours in group A versus six of six in groups B and C (p = 0.002) and Cerebral Performance Category scores were 4.7 ± 0.8, 1.7 ± 0.8, and 1.0 ± 0, respectively (p = 0.001). Protocol B: Brain blood flow was significantly higher with active compression-decompression plus intrathoracic pressure regulator compared with active compression-decompression plus impedance threshold device (0.39 ± 0.23 vs 0.27 ± 0.14 mL/min/g; p = 0.03), whereas differences in myocardial perfusion were not statistically significant (0.65 ± 0.81 vs 0.42 ± 0.36 mL/min/g; p = 0.23). Brain and myocardial blood flow with active compression-decompression plus intrathoracic pressure regulator plus epinephrine were significantly increased versus active compression-decompression plus impedance threshold device (0.40 ± 0.22 and 0.84 ± 0.60 mL/min/g; p = 0.02 for both). Conclusion Advanced life support with active compression-decompression plus intrathoracic pressure regulator significantly improved cerebral perfusion and 24-hour survival with favorable neurologic function. These findings support further evaluation of this new advanced life support methodology in humans. PMID:25756411
Methods for synchronizing a countdown routine of a timer key and electronic device
Condit, Reston A.; Daniels, Michael A.; Clemens, Gregory P.; Tomberlin, Eric S.; Johnson, Joel A.
2015-06-02
A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.
Teaching Electronic Health Record Communication Skills.
Palumbo, Mary Val; Sandoval, Marie; Hart, Vicki; Drill, Clarissa
2016-06-01
This pilot study investigated nurse practitioner students' communication skills when utilizing the electronic health record during history taking. The nurse practitioner students (n = 16) were videotaped utilizing the electronic health record while taking health histories with standardized patients. The students were videotaped during two separate sessions during one semester. Two observers recorded the time spent (1) typing and talking, (2) typing only, and (3) looking at the computer without talking. Total history taking time, computer placement, and communication skills were also recorded. During the formative session, mean history taking time was 11.4 minutes, with 3.5 minutes engaged with the computer (30.6% of visit). During the evaluative session, mean history taking time was 12.4 minutes, with 2.95 minutes engaged with the computer (24% of visit). The percentage of time individuals spent changed over the two visits: typing and talking, -3.1% (P = .3); typing only, +12.8% (P = .038); and looking at the computer, -9.6% (P = .039). This study demonstrated that time spent engaged with the computer during a patient encounter does decrease with student practice and education. Therefore, students benefit from instruction on electronic health record-specific communication skills, and use of a simple mnemonic to reinforce this is suggested.
Schober, P; Krage, R; Lagerburg, V; Van Groeningen, D; Loer, S A; Schwarte, L A
2014-04-01
Current cardiopulmonary resuscitation (CPR)-guidelines recommend an increased chest compression depth and rate compared to previous guidelines, and the use of automatic feedback devices is encouraged. However, it is unclear whether this compression depth can be maintained at an increased frequency. Moreover, the underlying surface may influence accuracy of feedback devices. We investigated compression depths over time and evaluated the accuracy of a feedback device on different surfaces. Twenty-four volunteers performed four two-minute blocks of CPR targeting at current guideline recommendations on different surfaces (floor, mattress, 2 backboards) on a patient simulator. Participants rested for 2 minutes between blocks. Influences of time and different surfaces on chest compression depth (ANOVA, mean [95% CI]) and accuracy of a feedback device to determine compression depth (Bland-Altman) were assessed. Mean compression depth did not reach recommended depth and decreased over time during all blocks (first block: from 42 mm [39-46 mm] to 39 mm [37-42 mm]). A two-minute resting period was insufficient to restore compression depth to baseline. No differences in compression depth were observed on different surfaces. The feedback device slightly underestimated compression depth on the floor (bias -3.9 mm), but markedly overestimated on the mattress (bias +12.6 mm). This overestimation was eliminated after correcting compression depth by a second sensor between manikin and mattress. Strategies are needed to improve chest compression depth, and more than two providers should alternate with chest compressions. The underlying surface does not necessarily adversely affect CPR performance but influences accuracy of feedback devices. Accuracy is improved by a second, posterior, sensor.
Assessing the Energy Consumption of Smartphone Applications
NASA Astrophysics Data System (ADS)
Abousaleh, Mustafa M.
Mobile devices are increasingly becoming essential in people's lives. The advancement in technology and mobility factor are allowing users to utilize mobile devices for communication, entertainment, financial planning, fitness tracking, etc. As a result, mobile applications are also becoming important factors contributing to user utility. However, battery capacity is the limiting factor impacting the quality of user experience. Hence, it is imperative to understand how much energy impact do mobile apps have on the system relative to other device activities. This thesis presents a systematic studying of the energy impact of mobile apps features. Time-series electrical current measurements are collected from 4 different modern smartphones. Statistical analysis methodologies are used to calculate the energy impact of each app feature by identifying and extracting mobile app-feature events from the overall current signal. In addition, the app overhead energy costs are also computed. Total energy consumption equations for each component is developed and an overall total energy consumption equation is presented. Minutes Lost (ML) of normal phone operations due to the energy consumption of the mobile app functionality is computed for cases where the mobile app is simulated to run on the various devices for 30 minutes. Tutela Technologies Inc. mobile app, NAT, is used for this study. NAT has two main features: QoS and Throughput. The impact of the QoS feature is indistinguishable, i.e. ML is zero, relative to other phone activities. The ML with only the TP feature enabled is on average 2.1 minutes. Enabling the GPS increases the ML on average to 11.5 minutes. Displaying the app GUI interface in addition to running the app features and enabling the GPS results in an average ML of 12.4 minutes. Amongst the various mobile app features and components studied, the GPS consumes the highest amount of energy. It is estimated that the GPS increases the ML by about 448%.
Antecedent rest may not be necessary for automated office blood pressure at lower treatment targets.
Colella, Tracey J F; Tahsinul, Anam; Gatto, Hannah; Oh, Paul; Myers, Martin G
2018-06-14
In SPRINT (Systolic Blood Pressure Intervention Trial), use of the Omron 907XL blood pressure (BP) monitor set at 5 minutes of antecedent rest to record BP produced an automated office BP value 7/6 mm Hg lower than awake ambulatory BP at 27 months. The authors studied the impact on automated office BP of setting the Omron 907XL to 0 minutes instead of 5 minutes of rest in patients with readings in the lower normal BP range, similar to on-treatment BP in the SPRINT intensive therapy group. Patients (n = 100) in cardiac rehabilitation were randomized to three BP readings at 1-minute intervals using an Omron 907XL BP device set for 5 or 0 minutes of antecedent rest. Mean (±standard deviation) automated office BP (mm Hg) after 5 minutes of rest (120.2 ± 14.6/66.9 ± 8.6 mm Hg) was lower (P < .001/P < .01) than without rest (124.2 ± 16.4/67.9 ± 9.1 mm Hg). When target BP is in the lower normal range, automated office BP recorded without antecedent rest using an Omron 907XL device should be higher and closer to the awake ambulatory BP, compared with readings taken after 5 minutes of rest. ©2018 Wiley Periodicals, Inc.
12 CFR 261b.11 - Transcripts, recordings, and minutes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... minutes. (a) The agency will maintain a complete transcript or electronic recording or transcription... § 261b.5 of this part. Transcriptions of recordings will disclose the identity of each speaker. (b) The agency will maintain either such a transcript, recording or transcription thereof, or a set of minutes...
Sosa, Anna V
2016-02-01
The early language environment of a child influences language outcome, which in turn affects reading and academic success. It is unknown which types of everyday activities promote the best language environment for children. To investigate whether the type of toy used during play is associated with the parent-infant communicative interaction. Controlled experiment in a natural environment of parent-infant communication during play with 3 different toy sets. Participant recruitment and data collection were conducted between February 1, 2013, and June 30, 2014. The volunteer sample included 26 parent-infant (aged 10-16 months) dyads. Fifteen-minute in-home parent-infant play sessions with electronic toys, traditional toys, and books. Numbers of adult words, child vocalizations, conversational turns, parent verbal responses to child utterances, and words produced by parents in 3 different semantic categories (content-specific words) per minute during play sessions. Among the 26 parent-infant dyads, toy type was associated with all outcome measures. During play with electronic toys, there were fewer adult words (mean, 39.62; 95% CI, 33.36-45.65), fewer conversational turns (mean, 1.64; 95% CI, 1.12-2.19), fewer parental responses (mean, 1.31; 95% CI, 0.87-1.77), and fewer productions of content-specific words (mean, 1.89; 95% CI, 1.49-2.35) than during play with traditional toys or books. Children vocalized less during play with electronic toys (mean per minute, 2.9; 95% CI, 2.16-3.69) than during play with books (mean per minute, 3.91; 95% CI, 3.09-4.68). Parents produced fewer words during play with traditional toys (mean per minute, 55.56; 95% CI, 46.49-64.17) than during play with books (mean per minute, 66.89; 95% CI, 59.93-74.19) and use of content-specific words was lower during play with traditional toys (mean per minute, 4.09; 95% CI, 3.26-4.99) than during play with books (mean per minute, 6.96; 95% CI, 6.07-7.97). Play with electronic toys is associated with decreased quantity and quality of language input compared with play with books or traditional toys. To promote early language development, play with electronic toys should be discouraged. Traditional toys may be a valuable alternative for parent-infant play time if book reading is not a preferred activity.
Spintronic microfluidic platform for biomedical and environmental applications
NASA Astrophysics Data System (ADS)
Cardoso, F. A.; Martins, V. C.; Fonseca, L. P.; Germano, J.; Sousa, L. A.; Piedade, M. S.; Freitas, P. P.
2010-09-01
Faster, more sensitive and easy to operate biosensing devices still are a need at important areas such as biomedical diagnostics, food control and environmental monitoring. Recently, spintronic-devices have emerged as a promising alternative to the existent technologies [1-3]. A number of advantages, namely high sensitivity, easy integration, miniaturization, scalability, robustness and low cost make these devices potentially capable of responding to the existent technological need. In parallel, the field of microfluidics has shown great advances [4]. Microfluidic systems allow the analysis of small sample volumes (from micro- down to pico-liters), often by automate sample processing with the ability to integrate several steps into a single device (analyte amplification, concentration, separation and/or labeling), all in a reduced assay time (minutes to hours) and affordable cost. The merging of these two technologies, magnetoresistive biochips and microfluidics, will enable the development of highly competitive devices. This work reports the integration of a magnetoresistive biochip with a microfluidic system inside a portable and autonomous electronic platform aiming for a fully integrated device. A microfluidic structure fabricated in polydimethylsiloxane with dimensions of W: 0.5mm, H: 0.1mm, L: 10mm, associated to a mechanical system to align and seal the channel by pressure is presented (Fig. 1) [5]. The goal is to perform sample loading and transportation over the chip and simultaneously control the stringency and uniformity of the wash-out process. The biochip output is acquired by an electronic microsystem incorporating the circuitry to control, address and read-out the 30 spin-valve sensors sequentially (Fig. 1) [2]. This platform is being applied to the detection of water-borne microbial pathogens (e.g. Salmonella and Escherichia coli) and genetic diseases diagnosis (e.g. cystic fibrosis) through DNA hybridization assays. Open chamber measurements were performed as described elsewhere [2]. Briefly, a 20 μl sample droplet is manually dispensed over the chip, limited by a polymeric frame. When using the microfluidic system for sample loading, a known volume of sample is introduced into the fluidic system through the help of a syringe pump at a controlled velocity.
Graphene-Based Flexible and Stretchable Electronics.
Jang, Houk; Park, Yong Ju; Chen, Xiang; Das, Tanmoy; Kim, Min-Seok; Ahn, Jong-Hyun
2016-06-01
Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salib, Mina; Hoffmann, Raymond G; Dasgupta, Mahua; Zimmerman, Haydee; Hanson, Sheila
2015-10-01
Studies showing the changes in workflow during transition from semi to full electronic medical records are lacking. This objective study is to identify the changes in workflow in the PICU during transition from semi to full electronic health record. Prospective observational study. Children's Hospital of Wisconsin Institutional Review Board waived the need for approval so this study was institutional review board exempt. This study measured clinical workflow variables at a 72-bed PICU during different phases of transition to a full electronic health record, which occurred on November 4, 2012. Phases of electronic health record transition were defined as follows: pre-electronic health record (baseline data prior to transition to full electronic health record), transition phase (3 wk after electronic health record), and stabilization (6 mo after electronic health record). Data were analyzed for the three phases using Mann-Whitney U test with a two-sided p value of less than 0.05 considered significant. Seventy-two bed PICU. All patients in the PICU were included during the study periods. Five hundred and sixty-four patients with 2,355 patient days were evaluated in the three phases. Duration of rounds decreased from a median of 9 minutes per patient pre--electronic health record to 7 minutes per patient post electronic health record. Time to final note decreased from 2.06 days pre--electronic health record to 0.5 days post electronic health record. Time to first medication administration after admission also decreased from 33 minutes pre--electronic health record and 7 minutes post electronic health record. Time to Time to medication reconciliation was significantly higher pre-electronic health record than post electronic health record and percent of medication reconciliation completion was significantly lower pre--electronic health record than post electronic health record and percent of medication reconciliation completion was significantly higher pre--electronic health record than. There was no significant change in time between placement of discharge order and physical transfer from the unit [corrected].changes clinical workflow in a PICU with decreased duration of rounds, time to final note, time to medication administration, and time to medication reconciliation completion. There was no change in the duration from medical to physical transfer.
Benda, Natalie C; Meadors, Margaret L; Hettinger, A Zachary; Ratwani, Raj M
2016-06-01
We evaluate how the transition from a homegrown electronic health record to a commercial one affects emergency physician work activities from initial introduction to long-term use. We completed a quasi-experimental study across 3 periods during the transition from a homegrown system to a commercially available electronic health record with computerized provider order entry. Observation periods consisted of pre-implementation, 1 month before the implementation of the commercial electronic health record; "go-live" 1 week after implementation; and post-implementation, 3 to 4 months after use began. Fourteen physicians were observed in each period (N=42) with a minute-by-minute observation template to record emergency physician time allocation across 5 task-based categories (computer, verbal communication, patient room, paper [chart/laboratory results], and other). The average number of tasks physicians engaged in per minute was also analyzed as an indicator of task switching. From pre- to post-implementation, there were no significant differences in the amount of time spent on the various task categories. There were changes in time allocation from pre-implementation to go-live and go-live to pre-implementation, characterized by a significant increase in time spent on computer tasks during go-live relative to the other periods. Critically, the number of tasks physicians engaged in per minute increased from 1.7 during pre-implementation to 1.9 during post-implementation (difference 0.19 tasks per minute; 95% confidence interval 0.039 to 0.35). The increase in the number of tasks physicians engaged in per minute post-implementation indicates that physicians switched tasks more frequently. Frequent task switching behavior raises patient safety concerns. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
49 CFR 220.307 - Use of railroad-supplied electronic devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.307 Use of railroad-supplied electronic devices. (a) General restriction. A railroad operating employee... 49 Transportation 4 2010-10-01 2010-10-01 false Use of railroad-supplied electronic devices. 220...
Palte, Howard D; Gayer, Steven; Arrieta, Esdras; Scot Shaw, Eric; Nose, Izuru; Lee, Elizabete; Arheart, Kristopher L; Dubovy, Sander; Birnbach, David J; Parel, Jean-Marie
2012-07-01
Since Atkinson's original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade, but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The US Food and Drug Administration (FDA) has defined guidelines for safe use of ultrasound for ophthalmic examination, but most ultrasound devices used by anesthesiologists are not FDA-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examinations can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital- and nonorbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from 2 devices: (1) the Sonosite Micromaxx (nonorbital rated) and (2) the Sonomed VuMax (orbital rated) machines. In phase I, temperatures were continuously monitored via thermocouples implanted within specific eye structures (n = 4). In phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n = 4). All eyes underwent light microscopy examinations, followed at different intervals by histology evaluations conducted by an ophthalmic pathologist. Temperature changes were monitored in the eyes of 4 rabbits. The nonorbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases >1.5°C) in the lens of 3 rabbits (at 5.0, 5.5, and 1.5 minutes) and cornea of 2 rabbits (both at 1.5 minutes). A secondary analysis of temporal temperature differences between the orbital-rated and nonorbital transducers revealed statistically significant differences (Bonferroni-adjusted P < 0.05) in the cornea at 3.5 minutes, the lens at 2.5 minutes, and the vitreous at 4.0 minutes. Light microscopy and histology failed to elicit ocular injury in either group. The nonorbital-rated ultrasound machine (Sonosite Micromaxx) increases the ocular tissue temperature. A larger study is needed to establish safety. Until then, ophthalmic ultrasound-guided blocks should only be performed with ocular-rated devices.
Palte, Howard D.; Gayer, Steven; Arrieta, Esdras; Shaw, Eric Scot; Nose, Izuru; Lee, Elizabete; Arheart, Kristopher L.; Dubovy, Sander; Birnbach, David J.; Parel, Jean-Marie
2012-01-01
Background Since Atkinson’s original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The United States Food and Drug Administration have defined guidelines for safe use of ultrasound for ophthalmic examination but most ultrasound devices used by anesthesiologists are not Food and Drug Administration-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examination can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. Methods Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital and non-orbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from two devices: 1) the Sonosite Micromaxx (non-orbital-rated) and 2) the Sonomed VuMax (orbital-rated) machines. In Phase I temperatures were continuously monitored via thermocouples implanted within specific eye structures (n=4). In Phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n=4). All eyes underwent light microscopy examinations followed, at different intervals, by histology evaluations conducted by an ophthalmic pathologist. Results Temperature changes were monitored in the eyes of four rabbits. The non-orbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases> 1.50C ) in the lens of three rabbits (at 5.0, 5.5 and 1.5 minutes) and cornea of two rabbits (both at 1.5 minutes). A secondary analysis of temporal temperature differences between the orbital-rated and non-orbital transducers revealed statistically significant differences (Bonferroni-adjusted p < 0.05) in the cornea at 3.5 minutes, the lens at 2.5 minutes and the vitreous at 4.0 minutes. Light microscopy and histology failed to elicit ocular injury in either group. Conclusions The non-orbital-rated ultrasound machine (Sonosite Micromaxx) increases the ocular tissue temperature. A larger study is needed to establish safety. Until then, ophthalmic blocks performed with ultrasound should be performed only with ocular-rated devices. PMID:22504211
Shavadia, Jay S; French, William; Hellkamp, Anne S; Thomas, Laine; Bates, Eric R; Manoukian, Steven V; Kontos, Michael C; Suter, Robert; Henry, Timothy D; Dauerman, Harold L; Roe, Matthew T
2018-03-01
Assessing hospital-related network-level primary percutaneous coronary intervention (PCI) performance for ST-segment elevation myocardial infarction (STEMI) is challenging due to differential time-to-treatment metrics based on location of diagnostic electrocardiogram (ECG) for STEMI. STEMI patients undergoing primary PCI at 588 PCI-capable hospitals in AHA Mission: Lifeline (2008-2013) were categorized by initial STEMI identification location: PCI-capable hospitals (Group 1); pre-hospital setting (Group 2); and non-PCI-capable hospitals (Group 3). Patient-specific time-to-treatment categories were converted to minutes ahead of or behind their group-specific mean; average time-to-treatment difference for all patients at a given hospital was termed comprehensive ECG-to-device time. Hospitals were then stratified into tertiles based on their comprehensive ECG-to-device times with negative values below the mean representing shorter (faster) time intervals. Of 117,857 patients, the proportion in Groups 1, 2, and 3 were 42%, 33%, and 25%, respectively. Lower rates of heart failure and cardiac arrest at presentation are noted within patients presenting to high-performing hospitals. Median comprehensive ECG-to-device time was shortest at -9 minutes (25th, 75th percentiles: -13, -6) for the high-performing hospital tertile, 1 minute (-1, 3) for middle-performing, and 11 minutes (7, 16) for low-performing. Unadjusted rates of in-hospital mortality were 2.3%, 2.6%, and 2.7%, respectively, but the adjusted risk of in-hospital mortality was similar across tertiles. Comprehensive ECG-to-device time provides an integrated hospital-related network-level assessment of reperfusion timing metrics for primary PCI, regardless of the location for STEMI identification; further validation will delineate how this metric can be used to facilitate STEMI care improvements. Copyright © 2017 Elsevier Inc. All rights reserved.
46 CFR 130.320 - Electronic position-fixing device.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...
46 CFR 130.320 - Electronic position-fixing device.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...
21 CFR 886.4400 - Electronic metal locator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...
21 CFR 886.4400 - Electronic metal locator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...
46 CFR 130.320 - Electronic position-fixing device.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...
21 CFR 886.4400 - Electronic metal locator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...
46 CFR 130.320 - Electronic position-fixing device.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...
21 CFR 886.4400 - Electronic metal locator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...
21 CFR 886.4400 - Electronic metal locator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...
46 CFR 130.320 - Electronic position-fixing device.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...
7 CFR 1600.8 - Transcript, recording or minutes; availability to the public.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., transcription of the recording, or minutes of the discussion of any item on the agenda of a Board meeting..., minutes, or transcriptions of electronic recordings of a Board meeting will disclose the identity of each speaker, and will be furnished to any person at the actual cost of transcription or duplication. ...
7 CFR 1600.8 - Transcript, recording or minutes; availability to the public.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., transcription of the recording, or minutes of the discussion of any item on the agenda of a Board meeting..., minutes, or transcriptions of electronic recordings of a Board meeting will disclose the identity of each speaker, and will be furnished to any person at the actual cost of transcription or duplication. ...
40 CFR 65.160 - Performance test and TRE index value determination records.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...
40 CFR 65.160 - Performance test and TRE index value determination records.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...
40 CFR 65.160 - Performance test and TRE index value determination records.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...
40 CFR 65.160 - Performance test and TRE index value determination records.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...
Thermal electron-tunneling devices as coolers and amplifiers
NASA Astrophysics Data System (ADS)
Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo
2016-02-01
Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices.
Thermal electron-tunneling devices as coolers and amplifiers
Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo
2016-01-01
Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices. PMID:26893109
21 CFR 886.5900 - Electronic vision aid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...
21 CFR 886.5900 - Electronic vision aid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...
21 CFR 886.5900 - Electronic vision aid.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...
14 CFR 121.306 - Portable electronic devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...
14 CFR 121.306 - Portable electronic devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...
14 CFR 121.306 - Portable electronic devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...
14 CFR 121.306 - Portable electronic devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...
14 CFR 135.144 - Portable electronic devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...
46 CFR 121.410 - Electronic position fixing devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...
14 CFR 135.144 - Portable electronic devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...
46 CFR 121.410 - Electronic position fixing devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...
14 CFR 125.204 - Portable electronic devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...
14 CFR 125.204 - Portable electronic devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...
14 CFR 125.204 - Portable electronic devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...
46 CFR 121.410 - Electronic position fixing devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...
21 CFR 886.5900 - Electronic vision aid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...
14 CFR 125.204 - Portable electronic devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...
14 CFR 135.144 - Portable electronic devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...
46 CFR 121.410 - Electronic position fixing devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...
14 CFR 135.144 - Portable electronic devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...
14 CFR 125.204 - Portable electronic devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...
14 CFR 121.306 - Portable electronic devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...
21 CFR 886.5900 - Electronic vision aid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...
14 CFR 135.144 - Portable electronic devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...
46 CFR 121.410 - Electronic position fixing devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...
Electronic Ambient-Temperature Recorder
NASA Technical Reports Server (NTRS)
Russell, Larry; Barrows, William
1995-01-01
Electronic temperature-recording unit stores data in internal memory for later readout. Records temperatures from minus 40 degrees to plus 60 degrees C at intervals ranging from 1.875 to 15 minutes. With all four data channels operating at 1.875-minute intervals, recorder stores at least 10 days' data. For only one channel at 15-minute intervals, capacity extends to up to 342 days' data. Developed for recording temperatures of instruments and life-science experiments on satellites, space shuttle, and high-altitude aircraft. Adaptable to such terrestrial uses as recording temperatures of perishable goods during transportation and of other systems or processes over long times. Can be placed directly in environment to monitor.
Kohan, Luke C; Nagarajan, Vijaiganesh; Millard, Michael A; Loguidice, Michael J; Fauber, Nancy M; Keeley, Ellen C
2017-01-01
To assess if a change in our cardiology fellowship program impacted our ST elevation myocardial infarction (STEMI) program. Fellows covering the cardiac care unit were spending excessive hours in the hospital while on call, resulting in increased duty hours violations. A night float fellow system was started on July 1, 2012, allowing the cardiac care unit fellow to sign out to a night float fellow at 5:30 pm. The night float fellow remained in-house until the morning. We performed a retrospective study assessing symptom onset to arrival, arterial access to first device, and door-to-balloon (D2B) times, in consecutive STEMI patients presenting to our emergency department before and after initiation of the night float fellow system. From 2009 to 2013, 208 STEMI patients presented to our emergency department and underwent primary percutaneous coronary intervention. There was no difference in symptom onset to arrival (150±102 minutes vs 154±122 minutes, p =0.758), arterial access to first device (12±8 minutes vs 11±7 minutes, p =0.230), or D2B times (50±32 minutes vs 52±34 minutes, p =0.681) during regular working hours. However, there was a significant decrease in D2B times seen during off-hours (72±33 minutes vs 49±15 minutes, p =0.007). There was no difference in in-hospital mortality (11% vs 8%, p =0.484) or need for intra-aortic balloon pump placement (7% vs 8%, p =0.793). In academic medical centers, in-house cardiology fellow coverage during off-hours may expedite care of STEMI patients.
Thermoelectric-Driven Autonomous Sensors for a Biomass Power Plant
NASA Astrophysics Data System (ADS)
Rodríguez, A.; Astrain, D.; Martínez, A.; Gubía, E.; Sorbet, F. J.
2013-07-01
This work presents the design and development of a thermoelectric generator intended to harness waste heat in a biomass power plant, and generate electric power to operate sensors and the required electronics for wireless communication. The first objective of the work is to design the optimum thermoelectric generator to harness heat from a hot surface, and generate electric power to operate a flowmeter and a wireless transmitter. The process is conducted by using a computational model, presented in previous papers, to determine the final design that meets the requirements of electric power consumption and number of transmissions per minute. Finally, the thermoelectric generator is simulated to evaluate its performance. The final device transmits information every 5 s. Moreover, it is completely autonomous and can be easily installed, since no electric wires are required.
Ellis, Margaret K Menzel; Treggiari, Miriam M; Robertson, Jamie M; Rozner, Marc A; Graven, Peter F; Aziz, Michael F; Merkel, Matthias J; Kahl, Edward A; Cohen, Norman A; Stecker, Eric C; Schulman, Peter M
2017-07-01
Economic, personnel, and procedural challenges often complicate and interfere with efficient and safe perioperative care of patients with cardiovascular implantable electronic devices (CIEDs). In the context of a process improvement initiative, we created and implemented a comprehensive anesthesiologist-run perioperative CIED service to respond to all routine requests for perioperative CIED consultations at a large academic medical center. This study was designed to determine whether this new care model was associated with improved operating room efficiency, reduced institutional cost, and adequate patient safety. We included patients with a CIED and a concurrent cohort of patients with the same eligibility criteria but without a CIED who underwent first-case-of-the-day surgery during the periods between February 1, 2008, and August 17, 2010 (preintervention) and between March 4, 2012, and August 1, 2014 (postintervention). The primary end point was delay in first-case-of-the day start time. We used multiple linear regression to compare delays in start times during the preintervention and postintervention periods and to adjust for potential confounders. A patient safety database was queried for CIED-related complications. Cost analysis was based on labor minutes saved and was calculated using nationally published administrative estimates. A total of 18,148 first-case surgical procedures were performed in 15,100 patients (preintervention period-7293 patients and postintervention period-7807 patients). Of those, 151 (2.1%) patients had a CIED in the preintervention period, and 146 (1.9%) had a CIED in the postintervention period. After adjustment for imbalances in baseline characteristics (age, American Society of Anesthesiologists physical status, and surgical specialty), the difference in mean first-case start delay between the postintervention and preintervention periods in the cohort of patients with a CIED was -16.7 minutes (95% confidence interval [CI], -26.1 to -7.2). The difference in mean delay between the postintervention and preintervention periods in the cohort without a CIED was -4.7 minutes (95% CI, -5.4 to -3.9). There were 3 CIED-related adverse events during the preintervention period and none during the postintervention period. Based on reduction in first-case start delay, the intervention was associated with cost savings (estimated institutional savings $14,102 annually, or $94.06 per CIED patient), with a return on investment ratio of 2.18 over the course of the postintervention period. Based on our experience, specially trained anesthesiologists can provide efficient and safe perioperative care for patients with CIEDs. Other centers may consider implementing a similar strategy as our specialty adopts the perioperative surgical home model.
Martin, Anne; Adams, Jacob M; Bunn, Christopher; Gill, Jason M R; Gray, Cindy M; Hunt, Kate; Maxwell, Douglas J; van der Ploeg, Hidde P; Wyke, Sally
2017-01-01
Objectives Time spent inactive and sedentary are both associated with poor health. Self-monitoring of walking, using pedometers for real-time feedback, is effective at increasing physical activity. This study evaluated the feasibility of a new pocket-worn sedentary time and physical activity real-time self-monitoring device (SitFIT). Methods Forty sedentary men were equally randomised into two intervention groups. For 4 weeks, one group received a SitFIT providing feedback on steps and time spent sedentary (lying/sitting); the other group received a SitFIT providing feedback on steps and time spent upright (standing/stepping). Change in sedentary time, standing time, stepping time and step count was assessed using activPAL monitors at baseline, 4-week follow-up (T1) and 12-week (T2) follow-up. Semistructured interviews were conducted after 4 and 12 weeks. Results The SitFIT was reported as acceptable and usable and seen as a motivating tool to reduce sedentary time by both groups. On average, participants reduced their sedentary time by 7.8 minutes/day (95% CI −55.4 to 39.7) (T1) and by 8.2 minutes/day (95% CI −60.1 to 44.3) (T2). They increased standing time by 23.2 minutes/day (95% CI 4.0 to 42.5) (T1) and 16.2 minutes/day (95% CI −13.9 to 46.2) (T2). Stepping time was increased by 8.5 minutes/day (95% CI 0.9 to 16.0) (T1) and 9.0 minutes/day (95% CI 0.5 to 17.5) (T2). There were no between-group differences at either follow-up time points. Conclusion The SitFIT was perceived as a useful tool for self-monitoring of sedentary time. It has potential as a real-time self-monitoring device to reduce sedentary and increase upright time. PMID:29081985
Kiselev, Ilia; Sysoev, Victor; Kaikov, Igor; Koronczi, Ilona; Adil Akai Tegin, Ruslan; Smanalieva, Jamila; Sommer, Martin; Ilicali, Coskan; Hauptmannl, Michael
2018-02-11
The paper deals with a functional instability of electronic nose (e-nose) units which significantly limits their real-life applications. Here we demonstrate how to approach this issue with example of an e-nose based on a metal oxide sensor array developed at the Karlsruhe Institute of Technology (Germany). We consider the instability of e-nose operation at different time scales ranging from minutes to many years. To test the e-nose we employ open-air and headspace sampling of analyte odors. The multivariate recognition algorithm to process the multisensor array signals is based on the linear discriminant analysis method. Accounting for the received results, we argue that the stability of device operation is mostly affected by accidental changes in the ambient air composition. To overcome instabilities, we introduce the add-training procedure which is found to successfully manage both the temporal changes of ambient and the drift of multisensor array properties, even long-term. The method can be easily implemented in practical applications of e-noses and improve prospects for device marketing.
Micro-architecture embedding ultra-thin interlayer to bond diamond and silicon via direct fusion
NASA Astrophysics Data System (ADS)
Kim, Jong Cheol; Kim, Jongsik; Xin, Yan; Lee, Jinhyung; Kim, Young-Gyun; Subhash, Ghatu; Singh, Rajiv K.; Arjunan, Arul C.; Lee, Haigun
2018-05-01
The continuous demand on miniaturized electronic circuits bearing high power density illuminates the need to modify the silicon-on-insulator-based chip architecture. This is because of the low thermal conductivity of the few hundred nanometer-thick insulator present between the silicon substrate and active layers. The thick insulator is notorious for releasing the heat generated from the active layers during the operation of devices, leading to degradation in their performance and thus reducing their lifetime. To avoid the heat accumulation, we propose a method to fabricate the silicon-on-diamond (SOD) microstructure featured by an exceptionally thin silicon oxycarbide interlayer (˜3 nm). While exploiting the diamond as an insulator, we employ spark plasma sintering to render the silicon directly fused to the diamond. Notably, this process can manufacture the SOD microarchitecture via a simple/rapid way and incorporates the ultra-thin interlayer for minute thermal resistance. The method invented herein expects to minimize the thermal interfacial resistance of the devices and is thus deemed as a breakthrough appealing to the current chip industry.
Kaikov, Igor; Koronczi, Ilona; Adil Akai Tegin, Ruslan; Smanalieva, Jamila; Sommer, Martin; Ilicali, Coskan; Hauptmannl, Michael
2018-01-01
The paper deals with a functional instability of electronic nose (e-nose) units which significantly limits their real-life applications. Here we demonstrate how to approach this issue with example of an e-nose based on a metal oxide sensor array developed at the Karlsruhe Institute of Technology (Germany). We consider the instability of e-nose operation at different time scales ranging from minutes to many years. To test the e-nose we employ open-air and headspace sampling of analyte odors. The multivariate recognition algorithm to process the multisensor array signals is based on the linear discriminant analysis method. Accounting for the received results, we argue that the stability of device operation is mostly affected by accidental changes in the ambient air composition. To overcome instabilities, we introduce the add-training procedure which is found to successfully manage both the temporal changes of ambient and the drift of multisensor array properties, even long-term. The method can be easily implemented in practical applications of e-noses and improve prospects for device marketing. PMID:29439468
Ambulatory ventricular function monitor: validation and preliminary clinical results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, R.A.; Sullivan, P.J.; Moore, R.H.
1983-09-01
A device for the continuous measurement of left ventricular (LV) function was tested in a series of 34 subjects. The instrument consisted of 2 arrays of radiation sensitive cadmium telluride detectors held in place over the region of the left ventricle and lung by a vest-like garment (hence the name VEST). The VEST electronic instrumentation included analog-to-digital converters, a battery pack, microprocessor and gating device, which were worn in a back pack. Data generated by the VEST, including the digitized average electrocardiogram, RR interval, counts/13 ms in each radiation detector, and time since commencement of data recording, were recorded onmore » a cassette tape recorder every 2 minutes for subsequent analysis. At the conclusion of conventional multigated blood pool imaging, the VEST was positioned and worn by the subjects while supine, standing in place and walking. The correlation of ejection fraction calculated independently from the VEST and scintillation camera data was >0.95. The inter-record reproducibility of the ejection fraction measured by the VEST in sedentary subjects was <3%. 22 references, 6 figures.« less
NASA Astrophysics Data System (ADS)
Tai, Yanlong; Lubineau, Gilles
2016-01-01
Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).
Schmidt, Arthur; Riecken, Bettina; Damm, Michael; Cahyadi, Oscar; Bauder, Markus; Caca, Karel
2014-09-01
Over-the-scope clips (OTSCs; Ovesco Endoscopy, Tübingen, Germany) are extensively used for treatment of gastrointestinal perforations, leakages, fistulas, and bleeding. In this report, a new method of removing OTSCs using a prototype bipolar cutting device is described. A total of 11 patients underwent endoscopic removal of an OTSC. The OTSC was cut at two opposing sites by a prototype device (DC ClipCutter; Ovesco Endoscopy). The remaining clip fragments were extracted using a standard forceps. Mean procedure time was 47 minutes (range 35 - 75 minutes). Cutting of the OTSC at two opposing sites was successful in all cases (100 %). Complete retrieval of all clip fragments was possible in 10 patients (91 %). The overall success rate for cutting and complete removal of the clip was 91 %. No major complications were observed. Removal of OTSCs with the prototype device was feasible and effective. The device may be valuable for OTSC removal in emergency as well as elective indications. © Georg Thieme Verlag KG Stuttgart · New York.
Portable Intravenous Fluid Production Device for Ground Use
NASA Technical Reports Server (NTRS)
Scarpa, Philip J.; Scheuer, Wolfgang K.
2012-01-01
There are several medical conditions that require intravenous (IV) fluids. Limitations of mass, volume, storage space, shelf-life, transportation, and local resources can restrict the availability of such important fluids. These limitations are expected in long-duration space exploration missions and in remote or austere environments on Earth. Current IV fluid production requires large factory-based processes. Easy, portable, on-site production of IV fluids can eliminate these limitations. Based on experience gained in developing a device for spaceflight, a ground-use device was developed. This design uses regular drinking water that is pumped through two filters to produce, in minutes, sterile, ultrapure water that meets the stringent quality standards of the United States Pharmacopeia for Water for Injection (Total Bacteria, Conductivity, Endotoxins, Total Organic Carbon). The device weighs 2.2 lb (1 kg) and is 10 in. long, 5 in. wide, and 3 in. high (.25, 13, and 7.5 cm, respectively) in its storage configuration. This handheld device produces one liter of medical-grade water in 21 minutes. Total production capacity for this innovation is expected to be in the hundreds of liters.
ERIC Educational Resources Information Center
Koesdjojo, Myra T.; Pengpumkiat, Sumate; Wu, Yuanyuan; Boonloed, Anukul; Huynh, Daniel; Remcho, Thomas P.; Remcho, Vincent T.
2015-01-01
We have developed a simple and direct method to fabricate paper-based microfluidic devices that can be used for a wide range of colorimetric assay applications. With these devices, assays can be performed within minutes to allow for quantitative colorimetric analysis by use of a widely accessible iPhone camera and an RGB color reader application…
Apparatus, system, and method for synchronizing a timer key
Condit, Reston A; Daniels, Michael A; Clemens, Gregory P; Tomberlin, Eric S; Johnson, Joel A
2014-04-22
A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... Electronics Devices and Components Thereof; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U... importation of certain wireless consumer electronics devices and components thereof by reason of infringement... wireless consumer electronics devices and components thereof that infringe one or more of claims 1, 6, 7, 9...
21 CFR 25.34 - Devices and electronic products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...
21 CFR 25.34 - Devices and electronic products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...
46 CFR 28.260 - Electronic position fixing devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...
46 CFR 28.260 - Electronic position fixing devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...
14 CFR 91.21 - Portable electronic devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...
21 CFR 25.34 - Devices and electronic products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...
14 CFR 91.21 - Portable electronic devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...
46 CFR 28.260 - Electronic position fixing devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...
14 CFR 91.21 - Portable electronic devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...
14 CFR 91.21 - Portable electronic devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...
46 CFR 28.260 - Electronic position fixing devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...
46 CFR 28.260 - Electronic position fixing devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...
21 CFR 25.34 - Devices and electronic products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...
14 CFR 91.21 - Portable electronic devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...
21 CFR 25.34 - Devices and electronic products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...
Non-fullerene electron acceptors for organic photovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik
Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.
Yavelberg, Loren; Zaharieva, Dessi; Cinar, Ali; Riddell, Michael C; Jamnik, Veronica
2018-05-01
The increasing popularity of wearable technology necessitates the evaluation of their accuracy to differentiate physical activity (PA) intensities. These devices may play an integral role in customizing PA interventions for primary prevention and secondary management of chronic diseases. For example, in persons with type 1 diabetes (T1D), PA greatly affects glucose concentrations depending on the intensity, mode (ie, aerobic, anaerobic, mixed), and duration. This variability in glucose responses underscores the importance of implementing dependable wearable technology in emerging avenues such as artificial pancreas systems. Participants completed three 40-minute, dynamic non-steady-state exercise sessions, while outfitted with multiple research (Fitmate, Metria, Bioharness) and consumer (Garmin, Fitbit) grade wearables. The data were extracted according to the devices' maximum sensitivity (eg, breath by breath, beat to beat, or minute time stamps) and averaged into minute-by-minute data. The variables of interest, heart rate (HR), breathing frequency, and energy expenditure (EE), were compared to validated criterion measures. Compared to deriving EE by laboratory indirect calorimetry standard, the Metria activity patch overestimates EE during light-to-moderate PA intensities (L-MI) and moderate-to-vigorous PA intensities (M-VI) (mean ± SD) (0.28 ± 1.62 kilocalories· minute -1 , P < .001, 0.64 ± 1.65 kilocalories· minute -1 , P < .001, respectively). The Metria underestimates EE during vigorous-to-maximal PA intensity (V-MI) (-1.78 ± 2.77 kilocalories · minute -1 , P < .001). Similarly, compared to Polar HR monitor, the Bioharness underestimates HR at L-MI (-1 ± 8 bpm, P < .001) and M-VI (5 ± 11 bpm, P < .001), respectively. A significant difference in EE was observed for the Garmin device, compared to the Fitmate ( P < .001) during continuous L-MI activity. Overall, our study demonstrates that current research-grade wearable technologies operate within a ~10% error for both HR and EE during a wide range of dynamic exercise intensities. This level of accuracy for emerging research-grade instruments is considered both clinically and practically acceptable for research-based or consumer use. In conclusion, research-grade wearable technology that uses EE kilocalories · minute -1 and HR reliably differentiates PA intensities.
Systems, methods, and products for graphically illustrating and controlling a droplet actuator
NASA Technical Reports Server (NTRS)
Brafford, Keith R. (Inventor); Pamula, Vamsee K. (Inventor); Paik, Philip Y. (Inventor); Pollack, Michael G. (Inventor); Sturmer, Ryan A. (Inventor); Smith, Gregory F. (Inventor)
2010-01-01
Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator. According to yet another embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, a display device displaying a user interface electronically coupled to the controller, and software for executing a protocol loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller.
14 CFR 25.1439 - Protective breathing equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... altitude of 8,000 feet with a respiratory minute volume of 30 liters per minute BTPD. The equipment and system must be designed to prevent any inward leakage to the inside of the device and prevent any outward... oxygen system is used, a supply of 300 liters of free oxygen at 70 °F. and 760 mm. Hg. pressure is...
14 CFR 25.1439 - Protective breathing equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... altitude of 8,000 feet with a respiratory minute volume of 30 liters per minute BTPD. The equipment and system must be designed to prevent any inward leakage to the inside of the device and prevent any outward... oxygen system is used, a supply of 300 liters of free oxygen at 70 °F. and 760 mm. Hg. pressure is...
A molecular shift register based on electron transfer
NASA Technical Reports Server (NTRS)
Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.
1988-01-01
An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.
Implementing mobile devices to reduce non-rostered workload for junior doctors
Plant, Allan; Round, Suzanne; Bourne, Joe
2016-01-01
There is a large body of evidence demonstrating the detrimental effect of long work hours on the performance, mood, and job satisfaction of junior doctors. By extension these effects carry over into the realm of patient safety, compromising the quality of care provision. House officers in the general surgery department of Tauranga Hospital, New Zealand are often required to arrive at work well before their rostered start time of 7.30am to hand write the results of clinical investigations on their patient lists. Baseline measurement demonstrated that each house officer was spending an average of 28 minutes a day of non-rostered time completing this task, increasing to 33 minutes on post-acute days. This quality improvement project trialed the use of a mobile device for accessing clinical results in real-time on surgical ward rounds with the ultimate aim of reducing non-rostered workload by one hour per house officer, per week. A sustainable reduction to a median of 15 minutes non-rostered work per day for each house officer was achieved, translating into 75 minutes less non-rostered work for each house officer every week. Importantly, this result was sustained for more than seven working weeks and spanned a changeover in house officer rotation. Furthermore, the use of the devices was associated with a perceived improvement in the accuracy and timeliness of access to clinical results with no perceived detriment to the speed or flow of the ward round. PMID:27933150
Implementing mobile devices to reduce non-rostered workload for junior doctors.
Plant, Allan; Round, Suzanne; Bourne, Joe
2016-01-01
There is a large body of evidence demonstrating the detrimental effect of long work hours on the performance, mood, and job satisfaction of junior doctors. By extension these effects carry over into the realm of patient safety, compromising the quality of care provision. House officers in the general surgery department of Tauranga Hospital, New Zealand are often required to arrive at work well before their rostered start time of 7.30am to hand write the results of clinical investigations on their patient lists. Baseline measurement demonstrated that each house officer was spending an average of 28 minutes a day of non-rostered time completing this task, increasing to 33 minutes on post-acute days. This quality improvement project trialed the use of a mobile device for accessing clinical results in real-time on surgical ward rounds with the ultimate aim of reducing non-rostered workload by one hour per house officer, per week. A sustainable reduction to a median of 15 minutes non-rostered work per day for each house officer was achieved, translating into 75 minutes less non-rostered work for each house officer every week. Importantly, this result was sustained for more than seven working weeks and spanned a changeover in house officer rotation. Furthermore, the use of the devices was associated with a perceived improvement in the accuracy and timeliness of access to clinical results with no perceived detriment to the speed or flow of the ward round.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... Electronics Devices and Components Thereof; Commission Determination To Review in Part A Final Initial... sale within the United States after importation of certain wireless consumer electronics devices and... Electronics, Inc. of Seoul, Korea and LG Electronics U.S.A., Inc. of Englewood Cliffs, New Jersey...
A device and method for rapid indirect measurement of human systolic and diastolic blood pressures.
DOT National Transportation Integrated Search
1970-12-01
An indirect blood pressure measuring device and method were evolved for human use. This system is capable of providing 30 measurements each of systolic and diastolic pressures per minute. The system utilizes two brachial blood pressure cuffs (one on ...
System and method for interfacing large-area electronics with integrated circuit devices
Verma, Naveen; Glisic, Branko; Sturm, James; Wagner, Sigurd
2016-07-12
A system and method for interfacing large-area electronics with integrated circuit devices is provided. The system may be implemented in an electronic device including a large area electronic (LAE) device disposed on a substrate. An integrated circuit IC is disposed on the substrate. A non-contact interface is disposed on the substrate and coupled between the LAE device and the IC. The non-contact interface is configured to provide at least one of a data acquisition path or control path between the LAE device and the IC.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...
NASA Astrophysics Data System (ADS)
Seeley, Alexander J. A. B.; Friend, Richard H.; Kim, Ji-Seon; Burroughes, Jeremy H.
2004-12-01
We report a reversible many-fold quantum efficiency enhancement during electrical driving of polymer light-emitting diodes (LEDs) containing poly(9,9' dioctylfluorene-alt-benzothiadiazole) (F8BT), developing over several minutes or hours at low applied bias and recovering on similar time scales after driving. This phenomenon is observed only in devices containing F8BT as an emissive layer in pure or blended form, regardless of anode and cathode choices and even in the absence of a poly(styrene-sulphonate)-doped poly(3,4-ethylene-dioxythiophene) (PEDOT:PSS) layer. We report detailed investigations using a standardized device structure containing PEDOT:PSS and a calcium cathode. Direct measurements of trapped charge recovered from the device after driving significantly exceed the unipolar limit, and thermally activated relaxation suggests a maximum trap depth around 0.6eV. Neither photoluminescence nor electroluminescence spectra reveal any change in the bulk optoelectronic properties of the emissive polymer nor any new emissive species. During the quantum efficiency (QE) enhancement process, the bulk conduction of the device increases. Reverse bias treatment of the device significantly reinforces the QE enhancement. Based on these observations, we propose a simple model in which interfacial dipoles are generated by trapped holes near the anode combining with injected electrons, to produce a narrow tunneling barrier for easy hole injection. The new injection pathway leads to a higher hole current density and thus a better charge injection balance. This produces the relatively high quantum efficiency observed in all F8BT LEDs.
NASA Astrophysics Data System (ADS)
Bondarenko, Valery; Shurshakov, Vyacheslav; Bondarenko, Valentina; Markina, Irina
The portable autonomous device for detection of soft x-ray radiation is described. Source of x-ray radiation is transition and brake radiations high-energy particles at passage through a material of a wall of the ISS and internal covering of the ship. A detecting elements of the device are gas proportional chambers of type straw in diameter 10 mm, length 140 mm. The wall chambers (cathode) is made from capton by thickness 70 microns. The anode of the chamber represents the gold-plated tungsten wire in diameter 30 microns. The general sensitive area of the detector is equal 110 cm2. Straw of the chambers (8 pieces) are connected consistently and are continuously blown by a gas mixture with a speed of 0,1 cm3/minute. The gas balloon in capacity of 200 cm3 under pressure 8 atm is used for flow. The device is capable to work long time in radiating fields. High radiating stability of the detector is reached by application of a radiation-steady material for manufacturing of chambers, constant gas flow during an irradiation and use of a clearing mixture on the basis of CF4. The electronic part of the device consists of the preamplifiers connected to chambers, the adder -splitter of analog signals, the spectrometer amplifier and amplitude - digitizer converter (ADC). From a splitter the signal acts on the discriminator for management ADC. Use of the discriminator allows to cut out registration of high-energy particles. The information is written on silicon disk.
Woo, Eugenia H C; White, Peter; Lai, Christopher W K
2016-12-01
Despite the increasingly widespread popularity of electronic devices, there are limited comprehensive studies on the effects of usage and exposure to multiple electronic devices over extended periods of time. Therefore, this study explored the cumulative musculoskeletal implications of exposure to various electronic devices among university students. A self-reported questionnaire was administered in the university in Hong Kong and students provided information about the frequency and duration of electronic devices use, including computers, mobile phones and game consoles, and reported on any musculoskeletal pain or discomfort that may relate to electronic devices usage in the immediate 12 months prior to the survey date. A total of 503 university students (59% males and 41% females) aged 18-25 years completed the questionnaire. The results showed that 251 (49.9%) respondents reported upper limb musculoskeletal symptoms, particularly in the neck and shoulder regions. Among these, 155 (61.8%) indicated that their discomfort was related to electronic device usage. Statistically significant differences in exposure to electronic devices and musculoskeletal outcomes between genders were found (p < 0.05). The use of electronic devices and habitual postures were associated with musculoskeletal problems among university students in Hong Kong. This phenomenon highlights the urgent need for ergonomics education and recommendations to increase students' awareness of musculoskeletal wellbeing. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.
Robinson, June K; Gaber, Rikki; Hultgren, Brittney; Eilers, Steven; Blatt, Hanz; Stapleton, Jerod; Mallett, Kimberly; Turrisi, Rob; Duffecy, Jenna; Begale, Mark; Martini, Mary; Bilimoria, Karl; Wayne, Jeffrey
2014-01-13
Early detection of melanoma improves survival. Since many melanoma patients and their spouses seek the care of a physician after discovering their melanoma, an ongoing study will determine the efficacy of teaching at-risk melanoma patients and their skin check partner how to conduct skin self-examinations (SSEs). Internet-based health behavior interventions have proven efficacious in creating behavior change in patients to better prevent, detect, or cope with their health issues. The efficacy of electronic interactive SSE educational intervention provided on a tablet device has not previously been determined. The electronic interactive educational intervention was created to develop a scalable, effective intervention to enhance performance and accuracy of SSE among those at-risk to develop melanoma. The intervention in the office was conducted using one of the following three methods: (1) in-person through a facilitator, (2) with a paper workbook, or (3) with a tablet device used in the clinical office. Differences related to method of delivery were elucidated by having the melanoma patient and their skin check partner provide a self-report of their confidence in performing SSE and take a knowledge-based test immediately after receiving the intervention. The three interventions used 9 of the 26 behavioral change techniques defined by Abraham and Michie to promote planning of monthly SSE, encourage performing SSE, and reinforce self-efficacy by praising correct responses to knowledge-based decision making and offering helpful suggestions to improve performance. In creating the electronic interactive SSE educational intervention, the educational content was taken directly from both the scripted in-person presentation delivered with Microsoft PowerPoint by a trained facilitator and the paper workbook training arms of the study. Enrollment totaled 500 pairs (melanoma patient and their SSE partner) with randomization of 165 pairs to the in-person, 165 pairs to the workbook, and 70 pairs to electronic interactive SSE educational intervention. The demographic survey data showed no significant mean differences between groups in age, education, or income. The tablet usability survey given to the first 30 tablet pairs found that, overall, participants found the electronic interactive intervention easy to use and that the video of the doctor-patient-partner dialogue accompanying the dermatologist's examination was particularly helpful in understanding what they were asked to do for the study. The interactive group proved to be just as good as the workbook group in self-confidence of scoring moles, and just as good as both the workbook and the in-person intervention groups in self-confidence of monitoring their moles. While the in-person intervention performed significantly better on a skill-based quiz, the electronic interactive group performed significantly better than the workbook group. The electronic interactive and in-person interventions were more efficient (30 minutes), while the workbook took longer (45 minutes). This study suggests that an electronic interactive intervention can deliver skills training comparable to other training methods, and the experience can be accommodated during the customary outpatient office visit with the physician. Further testing of the electronic interactive intervention's role in the anxiety of the pair and pair-discovered melanomas upon self-screening will elucidate the impact of these tools on outcomes in at-risk patient populations. ClinicalTrials.gov NCT01013844; http://clinicaltrials.gov/show/NCT01013844 (Archived by WebCite at http://www.webcitation.org/6LvGGSTKK).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-12
... Electronics Devices and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U... wireless consumer electronics devices and components thereof imported by respondents Acer, Inc. of Taipei... Communications, Inc. of San Diego, California; LG Electronics, Inc. of Seoul, Korea; LG Electronics U.S.A., Inc...
Electron beam directed energy device and methods of using same
Retsky, Michael W.
2007-10-16
A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.
Encapsulation methods for organic electrical devices
Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian
2013-06-18
The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.
Electronic drop sensing in microfluidic devices: automated operation of a nanoliter viscometer
Srivastava, Nimisha; Burns, Mark A.
2007-01-01
We describe three droplet sensing techniques: a digital electrode, an analog electrode, and a thermal method. All three techniques use a single layer of metal lines that is easy to microfabricate and an electronic signal can be produced using low DC voltages. While the electrode methods utilize changes in electrical conductivity when the air/liquid interface of the droplet passes over a pair of electrodes, the thermal method is based on convective heat loss from a locally heated region. For the electrode method, the analog technique is able to detect 25 nL droplets while the digital technique is capable of detecting droplets as small as 100 pL. For thermal sensing, temperature profiles in the range of 36 °C and higher were used. Finally, we have used the digital electrode method and an array of electrodes located at preset distances to automate the operation of a previously described microfluidic viscometer. The viscometer is completely controlled by a laptop computer, and the total time for operation including setup, calibration, sample addition and viscosity calculation is approximately 4 minutes. PMID:16738725
40 CFR 65.152 - Carbon adsorbers used as control devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better capable of recording the total regeneration stream mass or volumetric flow for each regeneration... after each regeneration and within 15 minutes of completing any cooling cycle, shall be used. Monitoring...
40 CFR 65.152 - Carbon adsorbers used as control devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better capable of recording the total regeneration stream mass or volumetric flow for each regeneration... after each regeneration and within 15 minutes of completing any cooling cycle, shall be used. Monitoring...
40 CFR 65.152 - Carbon adsorbers used as control devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better capable of recording the total regeneration stream mass or volumetric flow for each regeneration... after each regeneration and within 15 minutes of completing any cooling cycle, shall be used. Monitoring...
40 CFR 65.152 - Carbon adsorbers used as control devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better capable of recording the total regeneration stream mass or volumetric flow for each regeneration... after each regeneration and within 15 minutes of completing any cooling cycle, shall be used. Monitoring...
Effect of ototopical medications on tympanostomy tube biofilms.
Oxley, K Scott; Thomas, John G; Ramadan, Hassan H
2007-10-01
Examine how ototopical medications affect biofilms on fluoroplastic tympanostomy tubes. In vitro comparison of different ototopical medications against a clinical isolate of Pseudomonas aeruginosa biofilm on tympanostomy tubes treated for 5, 10, 14, and 21 days. Under sterile conditions 21 tympanostomy tubes were cut in half. These were attached to pegs of two Calgary Biofilm Devices via rubber cement. Device 1 evaluated microbial growth as colony forming units (CFUs). Device 2 evaluated presence of biofilms. Tubes were prepped for biofilm growth, incubated, and stressed for 72 hours. Afterward, one tube per device was removed and forcefully washed. One was sonificated for 5 minutes, serially diluted, and plated for CFUs. Formalin preserved the other for biofilm evaluation by scanning electron microscopy. Next, tubes were exposed to five drops of Ciprofloxacin, Ciprofloxacin/Dexamethasone, Dexamethasone, Ofloxacin, or saline for 1 hour. Afterward, the ototopicals were removed and sterile broth was placed in the wells as a nutrient. This was repeated every 12 hours for 5, 10, 14, and 21 days of treatment. Prior to the last dose of treatment intervals, a streak plate was performed to evaluate for microbial growth in the wells. The tubes were evaluated for CFUs and biofilms at each interval as previously described. Microbial activity in CFUs decreased by day 5 and continued through day 21 for the antibiotic containing drops. Despite treatment, the biofilm was never eradicated and continued to progress. Infectivity of the biofilm is neutralized by antibiotic ototopicals; however, the biofilm will progress despite treatment.
Melczer, Csaba; Melczer, László; Goják, Ilona; Kónyi, Attila; Szabados, Sándor; Raposa, L Bence; Oláh, András; Ács, Pongrác
2017-05-01
The effect of regular physical activity on health is widely recognized, but several studies have shown its key importance for heart patients. The present study aimed to define the PA % values, and to convert them into metabolic equivalent values (MET), which describes oxygen consumption during physical activity. A total of seventeen patients with heart disease; 3 females and 14 males; age: 57.35 yrs ± 9.54; body mass 98.71 ± 9.89 kg; average BMI 36.69 ± 3.67 were recruited into the study. The measured values from Cardiac Resynchronisation Therapy devices and outer accelerometers (ActiGraph GT3X+) were studied over a 7-day time period. Using the two sets of values describing physical performance, linear regression was calculated providing a mathematical equation, thus, the Physical Activity values in percentage were converted into MET values. During the 6-minute walk test the patients achieved an average of 416.6 ± 48.2 m. During 6MWT the measured values averaged at 1.85 ± 0.18 MET's, and MET values averaged at 1.12 ± 0.06 per week. It clearly shows that this test is a challenge for the patients compared to their daily regular physical activity levels. With our method, based on the values received from the physical activity sensor implanted into the resynchronisation devices, changes in patients' health status could be monitored telemetrically with the assistance from the implanted electronic device. Orv Hetil. 2017; 158(17): 748-753.
Integration of Pneumatic Technology in Powered Mobility Devices
Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G.; Schneider, Urs
2017-01-01
Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately $1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs. PMID:29339888
Integration of Pneumatic Technology in Powered Mobility Devices.
Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G; Schneider, Urs; Cooper, Rory A
2017-01-01
Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately $1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs.
A Simple and Scalable Fabrication Method for Organic Electronic Devices on Textiles.
Ismailov, Usein; Ismailova, Esma; Takamatsu, Seiichi
2017-03-13
Today, wearable electronics devices combine a large variety of functional, stretchable, and flexible technologies. However, in many cases, these devices cannot be worn under everyday conditions. Therefore, textiles are commonly considered the best substrate to accommodate electronic devices in wearable use. In this paper, we describe how to selectively pattern organic electroactive materials on textiles from a solution in an easy and scalable manner. This versatile deposition technique enables the fabrication of wearable organic electronic devices on clothes.
Are anesthesia start and end times randomly distributed? The influence of electronic records.
Deal, Litisha G; Nyland, Michael E; Gravenstein, Nikolaus; Tighe, Patrick
2014-06-01
To perform a frequency analysis of start minute digits (SMD) and end minute digits (EMD) taken from the electronic, computer-assisted, and manual anesthesia billing-record systems. Retrospective cross-sectional review. University medical center. This cross-sectional review was conducted on billing records from a single healthcare institution over a 15-month period. A total of 30,738 cases were analyzed. For each record, the start time and end time were recorded. Distributions of SMD and EMD were tested against the null hypothesis of a frequency distribution equivalently spread between zero and nine. SMD and EMD aggregate distributions each differed from equivalency (P < 0.0001). When stratified by type of anesthetic record, no differences were found between the recorded and expected equivalent distribution patterns for electronic anesthesia records for start minute (P < 0.98) or end minute (P < 0.55). Manual and computer-assisted records maintained nonequivalent distribution patterns for SMD and EMD (P < 0.0001 for each comparison). Comparison of cumulative distributions between SMD and EMD distributions suggested a significant difference between the two patterns (P < 0.0001). An electronic anesthesia record system, with automated time capture of events verified by the user, produces a more unified distribution of billing times than do more traditional methods of entering billing times. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Enoki, Toshiaki; Kiguchi, Manabu
2018-03-01
Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.
The immediate effects of a novel auditory and proprioceptive training device on gait after stroke.
Johnson, Eric G; Lohman, Everett B; Rendon, Abel; Dobariya, Ektaben G; Ramani, Shubhada S; Mayer, Lissie E
2011-07-01
This case report describes the immediate effects of a new rehabilitation tool on gait in a chronic stroke patient. Specifically, we measured step length symmetry and gait velocity in a 47 year-old male stroke patient who was currently receiving outpatient physical therapy. Objective gait measurements were taken using the GAITRite before, during, and after a 5 minute training session. Step length symmetry improved 26% during the first minute of training, 71% by the fifth minute of training, and 72% after a 5 minute rest period post-training. Gait velocity increased by 5.5% after 5 minutes of training. Clinical research is warranted to validate this new training tool as a useful adjunctive rehabilitation activity for improving spatial and temporal aspects of gait after stroke.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-13
... in its Silver Strand Training Complex. In short, a TDFD device begins a countdown to a detonation event that cannot be stopped, for example, with a 10-min TDFD, once the detonation has been initiated, 10 minutes pass before the detonation occurs and the event cannot be cancelled during that 10 minutes...
77 FR 38829 - Certain Electronic Imaging Devices; Institution of Investigation
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-29
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-850] Certain Electronic Imaging Devices... States after importation of certain electronic imaging devices by reason of infringement of certain....usitc.gov . The public record for this investigation may be viewed on the Commission's electronic docket...
Ireland, David; Wang, Ziwei; Lamont, Robyn; Liddle, Jacki
2016-01-01
In this work, inertial movement units were placed on people with Parkinsons disease (PwPD) who subsequently performed a standard test of walking endurance (six-minute walk test - 6MWT). Five devices were placed on each the limbs and small of the back. These devices captured the acceleration and rotational motion while the person walked as far as they can in six minutes. The wearable devices can objectively indicate the pattern and rhythmicity of limb and body movements. It is possible that this data, when subject to machine learning could provide additional objective measures that may support clinical observations related to the quality of movement. The aim of this work is two fold. First, to identify the most useful features of the captured signals; second, to identify the accuracy of using these features to predict the severity of PD as measured by standard clinical assessment.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data Processing Devices, and Tablet Computers... communication devices, portable music and data processing devices, and tablet computers, imported by Apple Inc...
49 CFR 220.311 - Railroad operating employees in deadhead status.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices... controlling locomotive may use an electronic device only if the employee is not using the device in such a way... controlling locomotive must have each electronic device turned off with any earpiece removed from the ear— (1...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... INTERNATIONAL TRADE COMMISSION [Docket No. 2904] Certain Wireless Consumer Electronics Devices and.... International Trade Commission has received a complaint entitled Certain Wireless Consumer Electronics Devices... importation, and the sale within the United States after importation of certain wireless consumer electronics...
78 FR 23593 - Certain Mobile Electronic Devices Incorporating Haptics; Termination of Investigation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices... this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov... mobile electronic devices incorporating haptics that infringe certain claims of six Immersion patents. 77...
Miniaturized Ka-Band Dual-Channel Radar
NASA Technical Reports Server (NTRS)
Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian
2011-01-01
Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) radar interferometer were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the radar s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two radar receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) radar transmitter and dual-channel receiver were developed for spaceborne radar interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.
Alivisatos, A. Paul; Colvin, Vickie
1996-01-01
An electroluminescent device is described, as well as a method of making same, wherein the device is characterized by a semiconductor nanocrystal electron transport layer capable of emitting visible light in response to a voltage applied to the device. The wavelength of the light emitted by the device may be changed by changing either the size or the type of semiconductor nanocrystals used in forming the electron transport layer. In a preferred embodiment the device is further characterized by the capability of emitting visible light of varying wavelengths in response to changes in the voltage applied to the device. The device comprises a hole processing structure capable of injecting and transporting holes, and usually comprising a hole injecting layer and a hole transporting layer; an electron transport layer in contact with the hole processing structure and comprising one or more layers of semiconductor nanocrystals; and an electron injecting layer in contact with the electron transport layer for injecting electrons into the electron transport layer. The capability of emitting visible light of various wavelengths is principally based on the variations in voltage applied thereto, but the type of semiconductor nanocrystals used and the size of the semiconductor nanocrystals in the layers of semiconductor nanometer crystals may also play a role in color change, in combination with the change in voltage.
Extended write combining using a write continuation hint flag
Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin; Vranas, Pavlos
2013-06-04
A computing apparatus for reducing the amount of processing in a network computing system which includes a network system device of a receiving node for receiving electronic messages comprising data. The electronic messages are transmitted from a sending node. The network system device determines when more data of a specific electronic message is being transmitted. A memory device stores the electronic message data and communicating with the network system device. A memory subsystem communicates with the memory device. The memory subsystem stores a portion of the electronic message when more data of the specific message will be received, and the buffer combines the portion with later received data and moves the data to the memory device for accessible storage.
Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao
2015-09-08
In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.
Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao
2013-11-26
In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.
NASA Astrophysics Data System (ADS)
Peng, Wanli; Zhang, Yanchao; Yang, Zhimin; Chen, Jincan
2018-02-01
Three-terminal energy selective electron (ESE) devices consisting of three electronic reservoirs connected by two energy filters and an electronic conductor with negligible resistance may work as ESE refrigerators and amplifiers. They have three possible connective ways for the electronic conductor and six electronic transmission forms. The configuration of energy filters may be described by the different transmission functions such as the rectangular and Lorentz transmission functions. The ESE devices with three connective ways can be, respectively, regarded as three equivalent hybrid systems composed of an ESE heat engine and an ESE refrigerator/heat pump. With the help of the theory of the ESE devices operated between two electronic reservoirs, the coefficients of performance and cooling rates (heat-pumping rates) of hybrid systems are directly derived. The general performance characteristics of hybrid systems are revealed. The optimal regions of these devices are determined. The performances of the devices with three connective ways of the electronic conductor and two configurations of energy filters are compared in detail. The advantages and disadvantages of each of three-terminal ESE devices are expounded. The results obtained here may provide some guidance for the optimal design and operation of three-terminal ESE devices.
Motion-gated acquisition for in vivo optical imaging
Gioux, Sylvain; Ashitate, Yoshitomo; Hutteman, Merlijn; Frangioni, John V.
2009-01-01
Wide-field continuous wave fluorescence imaging, fluorescence lifetime imaging, frequency domain photon migration, and spatially modulated imaging have the potential to provide quantitative measurements in vivo. However, most of these techniques have not yet been successfully translated to the clinic due to challenging environmental constraints. In many circumstances, cardiac and respiratory motion greatly impair image quality and∕or quantitative processing. To address this fundamental problem, we have developed a low-cost, field-programmable gate array–based, hardware-only gating device that delivers a phase-locked acquisition window of arbitrary delay and width that is derived from an unlimited number of pseudo-periodic and nonperiodic input signals. All device features can be controlled manually or via USB serial commands. The working range of the device spans the extremes of mouse electrocardiogram (1000 beats per minute) to human respiration (4 breaths per minute), with timing resolution ⩽0.06%, and jitter ⩽0.008%, of the input signal period. We demonstrate the performance of the gating device, including dramatic improvements in quantitative measurements, in vitro using a motion simulator and in vivo using near-infrared fluorescence angiography of beating pig heart. This gating device should help to enable the clinical translation of promising new optical imaging technologies. PMID:20059276
Self-Healing of Proton Damage in Lithium Niobite LiNbO2
NASA Astrophysics Data System (ADS)
Shank, Joshua C.; Tellekamp, M. Brooks; Zhang, En Xia; Bennett, W. Geoff; McCurdy, Michael W.; Fleetwood, Daniel M.; Alles, Michael L.; Schrimpf, Ronald D.; Doolittle, W. Alan
2015-04-01
Proton radiation damage and short-term annealing are investigated for lithium niobite (LiNbO2) mixed electronic-ionic memristors. Radiation damage and short-term annealing were characterized using Electrochemical Impedance Spectroscopy (EIS) to determine changes in the device resistance and the lithium ion mobility. The radiation damage resulted in a 0.48% change in the resistance at a fluence of 1014 cm-2. In-situ short-term annealing at room temperature reduced the net detrimental effect of the damage with a time constant of about 9 minutes. The radiation damage mechanism is attributed predominantly to displacement damage at the niobium and oxygen sites trapping lithium ions that are responsible for induced polarization within the material. Short term annealing is attributed to room temperature thermal annealing of these defects, freeing the highly mobile lithium ions.
NASA Astrophysics Data System (ADS)
Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong
2016-05-01
Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... INTERNATIONAL TRADE COMMISSION [DN 2882] Certain Consumer Electronics and Display Devices and... the U.S. International Trade Commission has received a complaint entitled Certain Consumer Electronics... importation of certain consumer electronics and display devices and products containing same. The complaint...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-23
... INTERNATIONAL TRADE COMMISSION [DN 2858] Certain Consumer Electronics and Display Devices and.... International Trade Commission has received a complaint entitled In Re Certain Consumer Electronics and Display... importation of certain consumer electronics and display devices and products containing same. The complaint...
Code of Federal Regulations, 2010 CFR
2010-10-01
... restrictions on use of electronic devices. 220.315 Section 220.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.315 Operational tests and inspections; further restrictions on use of electronic...
46 CFR 184.410 - Electronic position fixing devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...
46 CFR 184.410 - Electronic position fixing devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...
46 CFR 184.410 - Electronic position fixing devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...
46 CFR 184.410 - Electronic position fixing devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...
46 CFR 184.410 - Electronic position fixing devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...
Acoustic enhancement for photo detecting devices
Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W
2013-02-19
Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.
... to use over a long period of time. Electronic devices Some people who stutter use electronic devices to help control fluency. For example, one ... in unison with another person. In some people, electronic devices may help improve fluency in a relatively ...
Encapsulation methods and dielectric layers for organic electrical devices
Blum, Yigal D; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijan
2013-07-02
The disclosure provides methods and materials suitable for use as encapsulation barriers and dielectric layers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device with a dielectric layer comprising alternating layers of a silicon-containing bonding material and a ceramic material. The methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.
Effect of dehydration in the UV transmittance of "in vitro" corneas
NASA Astrophysics Data System (ADS)
Lincoln, Victor A. C.; Ventura, Liliane; Faria e Sousa, Sidney J.; Mello, Marcio M.
2012-03-01
In ophthalmology the research using "in vitro" corneas are an excellent model for studies of new ophthalmologic procedures, enabling the analysis of effectiveness, performance and even safety parameters of the procedure. In this work we studied four "in vitro" human corneas preserved in OPTISOL-GS, with initial average pachymetry of 542 microns and a post-mortem average of 6 days. The corneas were preserved in OPTISOL-GS and were washed with saline solution to remove the excess the preservative medium. The corneas were placed in a device aligned with an ultraviolet source of 3mw/cm2 and an optical fiber positioned after the device near the endothelium of the cornea. The UV transmittance spectra in the region of 360-370nm were captured by the emission of UV source for 3 seconds. These spectra were captured every 5 minutes in a total of 60 minutes, resulting in 13 spectra per cornea. The measured average initial UV transmittance was 73% and after 50 minutes of dehydration there was no significant difference in the corneal teansmittance properties. However, for the last 10 minutes we have observed a decrease in the UV transmittance of 4%, probably indicated by corneal dehydration and swelling (wrinkling of the cornea tissue. The final average pachymetry was 421 microns and the UV transmittance after the 60 minutes was 69%. Therefore we can suppose that the UV transmittance of corneas "in vitro" is invariant over a period of up to 60 minutes, even with the thickness decrease, since the material that absorbs in the UV region remains intact and only water loss occurs.
Reliability of body temperature measurements in hospitalised older patients.
Giantin, Valter; Toffanello, Elena D; Enzi, Giuliano; Perissinotto, Egle; Vangelista, Stefania; Simonato, Matteo; Ceccato, Corrado; Manzato, Enzo; Sergi, Giuseppe
2008-06-01
To compare different body temperature assessment methods in older people and to assess the role of cognitive and functional characteristics in temperature recordings. Axillary gallium-in-glass thermometers are commonly used. Their accuracy depends on the proper placement of the device and their permanence in place for eight minutes. With adequate instruction, well-functioning patients can measure their axillary temperature by themselves, while in cognitively and functionally impaired older people, inadequate understanding of instructions and misplacement of the thermometer might determine significant recording errors. Electronic ear and axillary temperature measurements are faster, but their accuracy has not been demonstrated convincingly with older people. Patients (n = 107; aged 65-104 years) were recruited. Barthel Index and Short Portable Mental Status Questionnaire (SPMSQ) scores were obtained for each patient. Temperature readings were obtained using: the axillary gallium-in-glass thermometer, with (T(nurse)) and without (T(self)) the nurse's assistance; the electronic axillary thermometer (T(el)) and the infrared tympanic thermometer (T(tymp)). The T(nurse) was considered as the reference method. Mean difference and standard deviation (mean +/- SD) in temperature recordings between the different techniques and T(nurse) differed significantly from zero for T(self) (-0.40 SD 0.42) and T(tymp) (+0.19 SD 0.48). No significant differences in temperature recordings emerged between T(nurse) and T(el). In simple linear regression models, the difference between T(self) and T(nurse) significantly correlated with age, gender, SPMSQ score and Barthel Index. Multiple linear regression analysis showed an underestimation of body temperature in older patients with cognitive impairments. Unassisted gallium-in-glass axillary temperature assessment is inadequate, in older patients. The differences between T(self) and T(nurse) are significantly influenced by age and mental decline. T(el) provides adequate accuracy. Relevance to clinical practice. In geriatric settings, the electronic axillary thermometer is a safe and accurate alternative to the more traditional gallium-in-glass thermometer, with the advantage of saving time (five seconds in recording vs. eight minutes).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-17
... Devices and Related Software; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION... of certain portable electronic devices and related software by reason of infringement of certain... after importation of certain portable electronic devices or related software that infringe one or more...
NASA Astrophysics Data System (ADS)
Greenberg, Mitchell; Sharan, Riti; Galbadage, Thushara; Sule, Preeti; Smith, Robert; Lovelady, April; Cirillo, Jeffrey D.; Glowczwski, Alan; Maitland, Kristen C.
2018-02-01
Surgical site infections (SSIs) are a leading cause of morbidity and mortality and a significant expense to the healthcare system and hospitals. The majority of these infections are preventable; however, increasing bacterial resistance, biofilm persistence, and human error contribute to the occurrence of these healthcare-associated infections. We present a flexible antimicrobial blue-light emitting bandage designed for use on postoperative incisions and wounds. The photonic device is designed to inactivate bacteria present on the skin and prevent bacterial colonization of the site, thus reducing the occurrence of SSIs. This antimicrobial light emitting bandage uses blue light's proven abilities to inactivate a wide range of clinical pathogens regardless of their resistance to antibiotics, inactivate bacteria without harming mammalian cells, improve wound healing, and inactivate bacteria in biofilms. The antimicrobial bandage consists of a thin 2"x2" silicone sheet with an array of 77 LEDs embedded in multiple layers of the material for thermal management. The 405 nm center wavelength LED array is designed to be a wearable device that integrates with standard hospital infection prevention protocols. The device was characterized for irradiance of 44.5 mW/cm2. Methicillin-resistant Staphylococcus aureus seeded in a petri dish was used to evaluate bacterial inactivation in vitro. Starting with a concentration of 2.16 x 107 colony forming units (CFU)/mL, 45% of the bacteria was inactivated within 15 minutes, 65% had been inactivated by 30 minutes, 99% was inactivated by 60 minutes, and a 7 log reduction and complete sterilization was achieved within 120 minutes.
Method for integrating microelectromechanical devices with electronic circuitry
Barron, Carole C.; Fleming, James G.; Montague, Stephen
1999-01-01
A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.
Terrestrial Sources of X-Ray Radiation and Their Effects on NASA Flight Hardware
NASA Technical Reports Server (NTRS)
Kniffin, Scott
2016-01-01
X-rays are an energetic and penetrating form of ionizing electromagnetic radiation, which can degrade NASA flight hardware. The main concern posed by such radiation is degradation of active electronic devices and, in some cases, diodes. Non-electronic components are only damaged at doses that far exceed the point where any electronic device would be destroyed. For the purposes of this document, flight hardware can be taken to mean an entire instrument, the flight electronics within the instrument or the individual microelectronic devices in the flight electronics. This document will discuss and describe the ways in which NASA flight hardware might be exposed to x-rays, what is and isn't a concern, and how to tell the difference. First, we must understand what components in flight hardware may be vulnerable to degradation or failure as a result of being exposed to ionizing radiation, such as x-rays. As stated above, bulk materials (structural metals, plastics, etc.) are generally only affected by ionizing radiation at very high dose levels. Likewise, passive electronic components (e.g. resistors, capacitors, most diodes) are strongly resistant to exposure to x-rays, except at very high doses. The main concerns arise when active components, that is, components like discrete transistors and microelectronic devices, are exposed to ionizing radiation. Active components are designed to respond to minute changes in currents and voltages in the circuit. As such, it is not surprising that exposure to ionizing radiation, which creates ionized and therefore electrically active particles, may degrade the way the hardware performs. For the most part, the mechanism for this degradation is trapping of the charges generated by ionizing radiation by defects in dielectric materials in the hardware. As such, the degree of damage is a function of both the quantity of ionizing radiation exposure and the physical characteristics of the hardware itself. The metric that describes the level of exposure to ionizing radiation is total ionizing dose (TID). The unit of TID is the rad, which is defined as 100 ergs absorbed per gram of material. Dose can be expressed in other units, for example grays (gy), where 1 gy = 100 rads. The actual fluence of radiation needed to deliver a rad depends on the absorbing material, so units of dose are usually stated in reference to the material of interest. That is, for microelectronic devices, the unit of dose is generally rad (Si) or rad (SiO2). However, the definition of absorbed dose in this fashion has the advantage that the type of radiation causing the ionization can be normalized so that a realistic and adequate comparison can be made. The sensitivity of microelectronic parts to TID varies over many orders of magnitude. (Note: Doses to humans are typically expressed in rems-or roentgen-equivalent-man-which measures tissue damage, and depends on the type of radiation, as well as the dose in rads.) Thus far, the "softest" parts tested at NASA showed damage at 500 rads (Si), while parts that are radiation-hardened by design can remain functional to doses on the order of 107 rads (Si). This broad range of sensitivity highlights one of the most important considerations when considering the effects of radiation on electronic parts: In order to determine whether a radiation exposure is a concern for a particular part, one must understand the technologies used in the part and their vulnerabilities to TID damage. A NASA radiation expert should be consulted to obtain such information.
Detection of 3-Minute Oscillations in Full-Disk Lyman-alpha Emission During A Solar Flare
NASA Astrophysics Data System (ADS)
Milligan, R. O.; Ireland, J.; Fleck, B.; Hudson, H. S.; Fletcher, L.; Dennis, B. R.
2017-12-01
We report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyman-alpha (from GOES/EUVS) and Lyman continuum (from SDO/EVE) emission from the 2011 February 15 X-class flare revealed a 3-minute period present during the flare's main phase. The formation temperature of this emission locates this radiation to the flare's chromospheric footpoints, and similar behaviour is found in the SDO/AIA 1600A and 1700A channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray energies (50-100 keV) in RHESSI data we can state that this 3-minute oscillation does not depend on the rate of energization of, or energy deposition by, non-thermal electrons. However, a second period of 120 s found in both hard X-ray and chromospheric emission is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyman-alpha line may influence the composition and dynamics of planetary atmospheres during periods of high activity.
Semiconductor-based, large-area, flexible, electronic devices
Goyal, Amit [Knoxville, TN
2011-03-15
Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates
Goyal, Amit
2014-08-05
Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
[100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices
Goyal, Amit
2015-03-24
Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
Flat panel ferroelectric electron emission display system
Sampayan, Stephen E.; Orvis, William J.; Caporaso, George J.; Wieskamp, Ted F.
1996-01-01
A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.
Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives.
Sekiguchi, Atsuko; Tanaka, Fumiaki; Saito, Takeshi; Kuwahara, Yuki; Sakurai, Shunsuke; Futaba, Don N; Yamada, Takeo; Hata, Kenji
2015-09-09
Clothes represent a unique textile, as they simultaneously provide robustness against our daily activities and comfort (i.e., softness). For electronic devices to be fully integrated into clothes, the devices themselves must be as robust and soft as the clothes themselves. However, to date, no electronic device has ever possessed these properties, because all contain components fabricated from brittle materials, such as metals. Here, we demonstrate robust and soft elastomeric devices where every component possesses elastomeric characteristics with two types of single-walled carbon nanotubes added to provide the necessary electronic properties. Our elastomeric field effect transistors could tolerate every punishment our clothes experience, such as being stretched (elasticity: ∼ 110%), bent, compressed (>4.0 MPa, by a car and heels), impacted (>6.26 kg m/s, by a hammer), and laundered. Our electronic device provides a novel design principle for electronics and wide range applications even in research fields where devices cannot be used.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
... weeks. The device will provide data on travel speeds of participants' vehicles coupled with GPS... session (80 x 30 minutes per session) while the monitoring device is being removed from their vehicle. The...-road instrumented vehicle study. Abstract: Speeding is one of the primary factors leading to vehicle...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... about last minute modifications that impact a previously announced advisory committee meeting cannot... Agency's Web site and call the appropriate advisory committee hot line/ phone line to learn about... intended for use in the immunologically active cells in blood and other tissues and CBER regulates...
30 CFR 75.1100-1 - Type and quality of firefighting equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... extinguishing capacity equivalent to that of a portable water car. (d) Portable foam-generating machines or devices: A portable foam-generating machine or device shall have facilities and equipment for supplying the machine with 30 gallons of water per minute at 30 pounds per square inch for a period of 35...
30 CFR 75.1100-1 - Type and quality of firefighting equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... extinguishing capacity equivalent to that of a portable water car. (d) Portable foam-generating machines or devices: A portable foam-generating machine or device shall have facilities and equipment for supplying the machine with 30 gallons of water per minute at 30 pounds per square inch for a period of 35...
Code of Federal Regulations, 2014 CFR
2014-07-01
... reading for each 60-minute THC test. Record the gas pressure and temperature at 5-minute intervals... paragraph (d)(8) of this section. (iv) THC must be determined as specified in paragraph (d)(9) of this...) Conduct THC sampling using Method 25A, 40 CFR part 60, appendix A-7, except that the option for locating...
Jiang, Zhi-Wei; Zhang, Shu; Wang, Gang; Zhao, Kun; Liu, Jiang; Ning, Li; Li, Jieshou
2015-01-01
We presented a series of single-incision laparoscopic distal gastrectomies for early gastric cancer patients through a type of homemade single port access device and some other conventional laparoscopic instruments. A single-incision laparoscopic distal gastrectomy with D1 + α lymph node dissection was performed on a 46 years old male patient who had an early gastric cancer. This single port access device has facilitated the conventional laparoscopic instruments to accomplish the surgery and we made in only 6 minutes. Total operating time for this surgery was 240 minutes. During the operation, there were about 100 milliliters of blood loss, and 17 lymph-nodes were retrieved. This homemade single port access device shows its superiority in economy and convenience for complex single-incision surgeries. Single-incision laparoscopic distal gastrectomy for early gastric cancer can be conducted by experienced laparoscopic surgeons. Fully take advantage of both SILS and fast track surgery plan can bring to successful surgeries with minimal postoperative pain, quicker mobilization, early recovery of intestinal function, and better cosmesis effect for the patients.
Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity: A Pilot Study.
Ardic, Fusun; Göcer, Esra
2016-03-01
The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer.A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland-Altman analyses were performed to show the relationship and agreement between the results of 2 devices.Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P < 0.001, r = 0.96). Correlations across all three BMI categories and both sex remained consistently high ranging from 0.92 to 0.95. There was a high level of agreement between the ECE PEDO and YX200 pedometer in the Bland-Altman analysis.Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed.
Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity
Ardic, Fusun; Göcer, Esra
2016-01-01
Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P < 0.001, r = 0.96). Correlations across all three BMI categories and both sex remained consistently high ranging from 0.92 to 0.95. There was a high level of agreement between the ECE PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed. PMID:26962822
Modeling and Simulation for Particle Radiation Damage to Electronic and Opto-Electronic Devices
2018-01-25
AFRL-RV-PS- AFRL-RV-PS- TR-2018-0001 TR-2018-0001 MODELING & SIMULATION FOR PARTICLE RADIATION DAMAGE TO ELECTRONIC AND OPTO- ELECTRONIC DEVICES... Electronic and Opto- Electronic Devices 5a. CONTRACT NUMBER FA9453-14-1-0248 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) Sanjay...nBp Diode Assuming the light is incident on the n-side of the photodiode, the drift-diffusion equation for the minority electron of the p-type
21 CFR 880.6310 - Medical device data system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic conversion... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS...
21 CFR 880.6310 - Medical device data system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic conversion... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS...
21 CFR 880.6310 - Medical device data system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic conversion... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS...
21 CFR 880.6310 - Medical device data system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic conversion... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS...
Al-Ghamdi, Bandar; Widaa, Hassan El; Shahid, Maie Al; Aladmawi, Mohammed; Alotaibi, Jawaher; Sanei, Aly Al; Halim, Magid
2016-08-24
Infection of cardiac implantable electronic devices is a serious cardiovascular disease and it is associated with a high mortality. Mycobacterium species may rarely cause cardiac implantable electronic devices infection. We are reporting a case of miliary tuberculosis in an Arab patient with dilated cardiomyopathy and a cardiac resynchronization therapy-defibrillator device that was complicated with infection of his cardiac resynchronization therapy-defibrillator device. To our knowledge, this is the third case in the literature with such a presentation and all patients died during the course of treatment. This underscores the importance of early diagnosis and management. We also performed a literature review of reported cases of cardiac implantable electronic devices infection related to Mycobacterium species. Cardiac implantable electronic devices infection due to Mycobacterium species is an uncommon but a well-known entity. Early diagnosis and prompt management may result in a better outcome.
Goyal, Amit [Knoxville, TN
2012-05-15
Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45.degree.-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
McGuire, N D; Ewen, R J; de Lacy Costello, B; Garner, C E; Probert, C S J; Vaughan, K.; Ratcliffe, N M
2016-01-01
Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor (MOS) sensor and artificial neural network (ANN) software. For direct analysis of biological samples this prototype offers alternatives to conventional GC detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenised in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 minutes compared to 30 minutes for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden. PMID:27212803
The Jordy Electronic Magnification Device: Opinions, Observations, and Commentary
ERIC Educational Resources Information Center
Francis, Barry
2005-01-01
The Jordy electronic magnification device is one of a small number of electronic headborne devices designed to provide people with low vision the capability to perform near-range, intermediate-range, and distance viewing tasks. This report seeks to define the benefits of using the Jordy as a low vision device by people who are legally blind. The…
Appendage mountable electronic devices conformable to surfaces
Rogers, John; Ying, Ming; Bonifas, Andrew; Lu, Nanshu
2017-01-24
Disclosed are appendage mountable electronic systems and related methods for covering and conforming to an appendage surface. A flexible or stretchable substrate has an inner surface for receiving an appendage, including an appendage having a curved surface, and an opposed outer surface that is accessible to external surfaces. A stretchable or flexible electronic device is supported by the substrate inner and/or outer surface, depending on the application of interest. The electronic device in combination with the substrate provides a net bending stiffness to facilitate conformal contact between the inner surface and a surface of the appendage provided within the enclosure. In an aspect, the system is capable of surface flipping without adversely impacting electronic device functionality, such as electronic devices comprising arrays of sensors, actuators, or both sensors and actuators.
Flat panel ferroelectric electron emission display system
Sampayan, S.E.; Orvis, W.J.; Caporaso, G.J.; Wieskamp, T.F.
1996-04-16
A device is disclosed which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density. 6 figs.
Kobak, Mallory S; Lepp, Andrew; Rebold, Michael J; Faulkner, Hannah; Martin, Shannon; Barkley, Jacob E
2018-02-01
Mobile Internet-connected electronic devices provide access to activities that have traditionally been associated with sedentary behavior. Because they are portable, these devices can be utilized in any environment. Therefore, providing children with access to these devices in environments that typically promote physical activity may result in a reduction in physical activity behavior. To assess children's physical and sedentary (ie, sitting) activity with and without the presence of a mobile Internet-connected tablet computer. A total of 20 children [6.7 (1.9) y old] participated in 2 simulated recess conditions in a gymnasium on separate days. During each condition, children had free-choice access physical activity options and a table of sedentary activities for 40 minutes. During 1 session, the iPad was present, and in the other session, it was not. Physical activity was monitored via an accelerometer, and sedentary time was monitored via a stopwatch. Children significantly (P ≤ .03) reduced average physical activity intensity and increased their sedentary behavior with the iPad present [4.4 (4.0) metabolic equivalents/min and 20.9 (12.4) min sitting] versus the condition without the iPad present [5.3 (4.0) metabolic equivalents/min and 13.6 (13.2) min sitting]. Introducing an mobile Internet-connected tablet computer into a gymnasium reduced children's physical activity intensity by 17% and increased sedentary behavior by 54%.
Material growth and characterization for solid state devices
NASA Technical Reports Server (NTRS)
Stefanakos, E. K.; Collis, W. J.; Abul-Fadl, A.; Iyer, S.
1984-01-01
During the reporting period, InGaAs was grown on Fe-doped (semi-insulating) (100) InP substrates by current controlled liquid phase epitaxy (CCLPE) at 640 C and current densities of 2.5A sq/cm to 5 A/sq cm for periods from 5 to 30 minutes. Special efforts were made to reduce the background carrier concentration in the grown layers as much as possible. The best layers exhibited carrier concentrations in the mid-10 to the 15th power/cu cm range and up to 10,900 sq cm/V-sec room temperature mobility. InGaAsP quaternary layers of energy gap corresponding to wavelengths of approximately 1.5 microns and 1.3 microns were grown on (100) InP substrates by CCLPE. In the device fabrication area, work was directed toward processing MISFET's using InGaAs. SiO2, Si3N4 and Al2O3 were deposited by ion beam sputtering, electron beam evaporation and chemical vapor reaction on Si, GaAs, and InGaAs substrates. SiO2 and Si3N4 sputtered layers were found to possess a high density of pinhole defects that precluded capacitance-voltage analysis. Chemical vapor deposited Al2O3 layers on Si, GaAs and InGaAs substrates also exhibited a large number of pinhole defects. This prevented achieving good MIS devices over most of the substrate surface area.
Photoemission-based microelectronic devices
Forati, Ebrahim; Dill, Tyler J.; Tao, Andrea R.; Sievenpiper, Dan
2016-01-01
The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and power beyond what is available today. However, liberating electrons into gas/vacuum in a practical microelectronic device is quite challenging. It often requires heating, applying high voltages, or using lasers with short wavelengths or high powers. Here, we show that the interaction between an engineered resonant surface and a low-power infrared laser can cause enough photoemission via electron tunnelling to implement feasible microelectronic devices such as transistors, switches and modulators. The proposed photoemission-based devices benefit from the advantages of gas-plasma/vacuum electronic devices while preserving the integrability of semiconductor-based devices. PMID:27811946
Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components.
Trung, Tran Quang; Lee, Nae-Eung
2017-01-01
Stretchable electronic devices with intrinsically stretchable components have significant inherent advantages, including simple fabrication processes, a high integrity of the stacked layers, and low cost in comparison with stretchable electronic devices based on non-stretchable components. The research in this field has focused on developing new intrinsically stretchable components for conductors, semiconductors, and insulators. New methodologies and fabrication processes have been developed to fabricate stretchable devices with intrinsically stretchable components. The latest successful examples of stretchable conductors for applications in interconnections, electrodes, and piezoresistive devices are reviewed here. Stretchable conductors can be used for electrode or sensor applications depending on the electrical properties of the stretchable conductors under mechanical strain. A detailed overview of the recent progress in stretchable semiconductors, stretchable insulators, and other novel stretchable materials is also given, along with a discussion of the associated technological innovations and challenges. Stretchable electronic devices with intrinsically stretchable components such as field-effect transistors (FETs), photodetectors, light-emitting diodes (LEDs), electronic skins, and energy harvesters are also described and a new strategy for development of stretchable electronic devices is discussed. Conclusions and future prospects for the development of stretchable electronic devices with intrinsically stretchable components are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.313 Instruction. (a) Program... explanation of the following: (i) When a railroad operating employee must have personal electronic devices... supplies an electronic device to its railroad operating employees, when a railroad operating employee may...
Novel hole transport materials for organic light emitting devices
NASA Astrophysics Data System (ADS)
Shi, Jianmin; Forsythe, Eric; Morton, David
2008-08-01
Organic electronic devices generally have a layered structure with organic materials sandwiched between an anode and a cathode, such organic electronic devices of organic light-emitting diode (OLED), organic photovoltaic (OPV), organic thin-film transistor (OTFT). There are many advantages of these organic electronic devices as compared to silicon-based devices. However, one of key challenge for an organic electronic device is to minimize the charge injection barrier from electrodes to organic materials and improve the charge transport mobility. In order to overcome these circumstances, there are many approaches including, designing organic materials with minimum energy barriers and improving charge transport mobility. Ideally organic materials or complex with Ohmic contact will be the most desired.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... Systems, Including Software and Handheld Electronic Devices; Notice of Investigation AGENCY: U.S... software and handheld electronic devices, by reason of infringement of certain claims of U.S. Patent No 7... software and handheld electronic devices, that infringe one or more of claims 31-35, 38, 41, 51, 54, 56, 58...
Electronics materials research
NASA Technical Reports Server (NTRS)
1982-01-01
The electronic materials and is aimed at the establishment of quantitative relationships underlying crystal growth parameters, materials properties, electronic characteristics and device applications. The overall program evolves about the following main thrust areas: (1) crystal growth novel approaches to engineering of semiconductor materials; (2) investigation of materials properties and electronic characteristics on a macro and microscale; (3) surface properties and surface interactions with the bulk and ambients; (4) electronic properties controlling device applications and device performance.
A detachable electronic device for use with a long white cane to assist with mobility.
O'Brien, Emily E; Mohtar, Aaron A; Diment, Laura E; Reynolds, Karen J
2014-01-01
Vision-impaired individuals often use a long white cane to assist them with gathering information about their surroundings. However, these aids are generally not used to detect obstacles above knee height. The purpose of this study is to determine whether a low-cost, custom-built electronic device clipped onto a traditional cane can provide adequate vibratory warning to the user of obstacles above knee height. Sixteen normally sighted blindfolded individuals participated in two mobility courses which they navigated using a normal white cane and a white cane with the electronic device attached. Of the 16 participants, 10 hit fewer obstacles, and 12 covered less ground with the cane when the electronic device was attached. Ten participants found navigating with the electronic device easier than just the white cane alone. However, the time taken on the mobility courses, the number of collisions with obstacles, and the area covered by participants using the electronic device were not significantly different (p > 0.05). A larger sample size is required to determine if the trends found have real significance. It is anticipated that additional information provided by this electronic device about the surroundings would allow users to move more confidently within their environment.
Sketched oxide single-electron transistor
NASA Astrophysics Data System (ADS)
Cheng, Guanglei; Siles, Pablo F.; Bi, Feng; Cen, Cheng; Bogorin, Daniela F.; Bark, Chung Wung; Folkman, Chad M.; Park, Jae-Wan; Eom, Chang-Beom; Medeiros-Ribeiro, Gilberto; Levy, Jeremy
2011-06-01
Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly `sketch' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides. In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ~1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.
Inverted organic electronic and optoelectronic devices
NASA Astrophysics Data System (ADS)
Small, Cephas E.
The research and development of organic electronics for commercial application has received much attention due to the unique properties of organic semiconductors and the potential for low-cost high-throughput manufacturing. For improved large-scale processing compatibility and enhanced device stability, an inverted geometry has been employed for devices such as organic light emitting diodes and organic photovoltaic cells. These improvements are attributed to the added flexibility to incorporate more air-stable materials into the inverted device geometry. However, early work on organic electronic devices with an inverted geometry typically showed reduced device performance compared to devices with a conventional structure. In the case of organic light emitting diodes, inverted devices typically show high operating voltages due to insufficient carrier injection. Here, a method for enhancing hole injection in inverted organic electronic devices is presented. By incorporating an electron accepting interlayer into the inverted device, a substantial enhancement in hole injection efficiency was observed as compared to conventional devices. Through a detailed carrier injection study, it is determined that the injection efficiency enhancements in the inverted devices are due to enhanced charge transfer at the electron acceptor/organic semiconductor interface. A similar situation is observed for organic photovoltaic cells, in which devices with an inverted geometry show limited carrier extraction in early studies. In this work, enhanced carrier extraction is demonstrated for inverted polymer solar cells using a surface-modified ZnO-polymer composite electron-transporting layer. The insulating polymer in the composite layer inhibited aggregation of the ZnO nanoparticles, while the surface-modification of the composite interlayer improved the electronic coupling with the photoactive layer. As a result, inverted polymer solar cells with power conversion efficiencies of over 8% were obtained. To further study carrier extraction in inverted polymer solar cells, the active layer thickness dependence of the efficiency was investigated. For devices with active layer thickness < 200 nm, power conversion efficiencies over 8% was obtained. This result is important for demonstrating improved large-scale processing compatibility. Above 200 nm, significant reduction in cell efficiency were observed. A detailed study of the loss processes that contributed to the reduction in efficiency for thick-film devices are presented.
Improved model for detection of homogeneous production batches of electronic components
NASA Astrophysics Data System (ADS)
Kazakovtsev, L. A.; Orlov, V. I.; Stashkov, D. V.; Antamoshkin, A. N.; Masich, I. S.
2017-10-01
Supplying the electronic units of the complex technical systems with electronic devices of the proper quality is one of the most important problems for increasing the whole system reliability. Moreover, for reaching the highest reliability of an electronic unit, the electronic devices of the same type must have equal characteristics which assure their coherent operation. The highest homogeneity of the characteristics is reached if the electronic devices are manufactured as a single production batch. Moreover, each production batch must contain homogeneous raw materials. In this paper, we propose an improved model for detecting the homogeneous production batches of shipped lot of electronic components based on implementing the kurtosis criterion for the results of non-destructive testing performed for each lot of electronic devices used in the space industry.
NOTE: Blood irradiation with accelerator produced electron beams
NASA Astrophysics Data System (ADS)
Butson, M. J.; Cheung, T.; Yu, P. K. N.; Stokes, M. J.
2000-11-01
Blood and blood products are irradiated with gamma rays to reduce the risk of graft versus host disease (GVHD). A simple technique using electron beams produced by a medical linear accelerator has been studied to evaluate irradiation of blood and blood products. Variations in applied doses for a single field 20 MeV electron beam are measured in a phantom study. Doses have been verified with ionization chambers and commercial diode detectors. Results show that the blood product volume can be given a relatively homogeneous dose to within 6% using 20 MeV electrons without the need to rotate the blood bags or the beam entry point. The irradiation process takes approximately 6.5 minutes for 30 Gy applied dose to complete as opposed to 12 minutes for a dual field x-ray field irradiation at our centre. Electron beams can be used to satisfactorily irradiate blood and blood products in a minimal amount of time.
Envisaging quantum transport phenomenon in a muddled base pair of DNA
NASA Astrophysics Data System (ADS)
Vohra, Rajan; Sawhney, Ravinder Singh
2018-05-01
The effect of muddled base pair on electron transfer through a deoxyribonucleic acid (DNA) molecule connected to the gold electrodes has been elucidated using tight binding model. The effect of hydrogen and nitrogen bonds on the resistance of the base pair has been minutely observed. Using the semiempirical extended Huckel approach within NEGF regime, we have determined the current and conductance vs. bias voltage for disordered base pairs of DNA made of thymine (T) and adenine (A). The asymmetrical behaviour amid five times depreciation in the current characteristics has been observed for deviated Au-AT base pair-Au devices. An interesting revelation is that the conductance of the intrinsic AT base pair configuration attains dramatically high values with the symmetrical zig-zag pattern of current, which clearly indicates the transformation of the bond length within the strands of base pair when compared with other samples. A thorough investigation of the transmission coefficients T( E) and HOMO-LUMO gap reveals the misalignment of the strands in base pairs of DNA. The observed results present an insight to extend this work to build biosensing devices to predict the abnormality with the DNA.
Tai, Yanlong; Lubineau, Gilles
2016-01-01
Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels). PMID:26818091
NASA Technical Reports Server (NTRS)
Thakoor, Sarita (Inventor)
1992-01-01
Thin film ferroelectric capacitors comprising a ferroelectric film sandwiched between electrodes for nonvolatile memory operations are rendered more stable by subjecting the capacitors to an anneal following deposition of the top electrode. The anneal is done so as to form the interface between the ferroelectric film and the top electrode. Heating in an air oven, laser annealing, or electron bombardment may be used to form the interface. Heating in an air oven is done at a temperature at least equal to the crystallization temperature of the ferroelectric film. Where the ferroelectric film comprises lead zirconate titanate, annealing is done at about 550 to 600 C for about 10 to 15 minutes. The formation treatment reduces the magnitude of charge associated with the nonswitching pulse in the thin film ferroelectric capacitors. Reduction of this charge leads to significantly more stable nonvolatile memory operations in both digital and analog memory devices. The formation treatment also reduces the ratio of change of the charge associated with the nonswitching pulse as a function of retention time. These improved memory devices exhibit greater performance in retention and reduced fatigue in memory arrays.
NASA Technical Reports Server (NTRS)
Thakoor, Sarita (Inventor)
1994-01-01
Thin film ferroelectric capacitors (10) comprising a ferroelectric film (18) sandwiched between electrodes (16 and 20) for nonvolatile memory operations are rendered more stable by subjecting the capacitors to an anneal following deposition of the top electrode (20). The anneal is done so as to form the interface (22) between the ferroelectric film and the top electrode. Heating in an air oven, laser annealing, or electron bombardment may be used to form the interface. Heating in an air oven is done at a temperature at least equal to the crystallization temperature of the ferroelectric film. Where the ferroelectric film comprises lead zirconate titanate, annealing is done at about 550.degree. to 600.degree. C. for about 10 to 15 minutes. The formation treatment reduces the magnitude of charge associated with the non-switching pulse in the thin film ferroelectric capacitors. Reduction of this charge leads to significantly more stable nonvolatile memory operations in both digital and analog memory devices. The formation treatment also reduces the ratio of change of the charge associated with the non-switching pulse as a function of retention time. These improved memory devices exhibit greater performance in retention and reduced fatigue in memory arrays.
NASA Astrophysics Data System (ADS)
de Leon, Nathalie Pulmones
2011-12-01
With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Correction to Notice of Receipt of Complaint; Solicitation... of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-15
... INTERNATIONAL TRADE COMMISSION [DN 2875] Certain Mobile Electronic Devices Incorporating Haptics.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received an amended complaint entitled Certain Mobile Electronic Devices...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-769] Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof; Termination of the Investigation Based on... electronic computing devices, related software, and components thereof by reason of infringement of certain...
NASA Astrophysics Data System (ADS)
Ulla, Hidayath; Kiran, M. Raveendra; Garudachari, B.; Ahipa, T. N.; Tarafder, Kartick; Adhikari, Airody Vasudeva; Umesh, G.; Satyanarayan, M. N.
2017-09-01
In this article, the synthesis, characterization and use of two novel naphthalimides as electron-transporting emitter materials for organic light emitting diode (OLED) applications are reported. The molecules were obtained by substituting electron donating chloro-phenoxy group at the C-4 position. A detailed optical, thermal, electrochemical and related properties were systematically studied. Furthermore, theoretical calculations (DFT) were performed to get a better understanding of the electronic structures. The synthesized molecules were used as electron transporters and emitters in OLEDs with three different device configurations. The devices with the molecules showed blue emission with efficiencies of 1.89 cdA-1, 0.98 lmW-1, 0.71% at 100 cdm-2. The phosphorescent devices with naphthalimides as electron transport materials displayed better performance in comparison to the device without any electron transporting material and were analogous with the device using standard electron transporting material, Alq3. The results demonstrate that the naphthalimides could play a significant part in the progress of OLEDs.
Validity of Devices That Assess Body Temperature During Outdoor Exercise in the Heat
Casa, Douglas J; Becker, Shannon M; Ganio, Matthew S; Brown, Christopher M; Yeargin, Susan W; Roti, Melissa W; Siegler, Jason; Blowers, Julie A; Glaviano, Neal R; Huggins, Robert A; Armstrong, Lawrence E; Maresh, Carl M
2007-01-01
Context: Rectal temperature is recommended by the National Athletic Trainers' Association as the criterion standard for recognizing exertional heat stroke, but other body sites commonly are used to measure temperature. Few authors have assessed the validity of the thermometers that measure body temperature at these sites in athletic settings. Objective: To assess the validity of commonly used temperature devices at various body sites during outdoor exercise in the heat. Design: Observational field study. Setting: Outdoor athletic facilities. Patients or Other Participants: Fifteen men and 10 women (age = 26.5 ± 5.3 years, height = 174.3 ± 11.1 cm, mass = 72.73 ± 15.95 kg, body fat = 16.2 ± 5.5%). Intervention(s): We simultaneously tested inexpensive and expensive devices orally and in the axillary region, along with measures of aural, gastrointestinal, forehead, temporal, and rectal temperatures. Temporal temperature was measured according to the instruction manual and a modified method observed in medical tents at local road races. We also measured forehead temperatures directly on the athletic field (other measures occurred in a covered pavilion) where solar radiation was greater. Rectal temperature was the criterion standard used to assess the validity of all other devices. Subjects' temperatures were measured before exercise, every 60 minutes during 180 minutes of exercise, and every 20 minutes for 60 minutes of postexercise recovery. Temperature devices were considered invalid if the mean bias (average difference between rectal temperature and device temperature) was greater than ±0.27°C (±0.5°F). Main Outcome Measure(s): Temperature from each device at each site and time point. Results: Mean bias for the following temperatures was greater than the allowed limit of ±0.27°C (±0.5°F): temperature obtained via expensive oral device (−1.20°C [−2.17°F]), inexpensive oral device (−1.67°C [−3.00°F]), expensive axillary device (−2.58°C [−4.65°F]), inexpensive axillary device (−2.07°C [−3.73°F]), aural method (−1.00°C [−1.80°F]), temporal method according to instruction manual (−1.46°C [−2.64°F]), modified temporal method (−1.36°C [−2.44°F]), and forehead temperature on the athletic field (0.60°C [1.08°F]). Mean bias for gastrointestinal temperature (−0.19°C [−0.34°F]) and forehead temperature in the pavillion (−0.14°C [−0.25°F]) was less than the allowed limit of ±0.27°C (±0.5°F). Forehead temperature depended on the setting in which it was measured and showed greater variation than other temperatures. Conclusions: Compared with rectal temperature (the criterion standard), gastrointestinal temperature was the only measurement that accurately assessed core body temperature. Oral, axillary, aural, temporal, and field forehead temperatures were significantly different from rectal temperature and, therefore, are considered invalid for assessing hyperthermia in individuals exercising outdoors in the heat. PMID:18059987
Sleep and use of electronic devices in adolescence: results from a large population-based study
Hysing, Mari; Pallesen, Ståle; Stormark, Kjell Morten; Jakobsen, Reidar; Lundervold, Astri J; Sivertsen, Børge
2015-01-01
Objectives Adolescents spend increasingly more time on electronic devices, and sleep deficiency rising in adolescents constitutes a major public health concern. The aim of the present study was to investigate daytime screen use and use of electronic devices before bedtime in relation to sleep. Design A large cross-sectional population-based survey study from 2012, the youth@hordaland study, in Hordaland County in Norway. Setting Cross-sectional general community-based study. Participants 9846 adolescents from three age cohorts aged 16–19. The main independent variables were type and frequency of electronic devices at bedtime and hours of screen-time during leisure time. Outcomes Sleep variables calculated based on self-report including bedtime, rise time, time in bed, sleep duration, sleep onset latency and wake after sleep onset. Results Adolescents spent a large amount of time during the day and at bedtime using electronic devices. Daytime and bedtime use of electronic devices were both related to sleep measures, with an increased risk of short sleep duration, long sleep onset latency and increased sleep deficiency. A dose–response relationship emerged between sleep duration and use of electronic devices, exemplified by the association between PC use and risk of less than 5 h of sleep (OR=2.70, 95% CI 2.14 to 3.39), and comparable lower odds for 7–8 h of sleep (OR=1.64, 95% CI 1.38 to 1.96). Conclusions Use of electronic devices is frequent in adolescence, during the day as well as at bedtime. The results demonstrate a negative relation between use of technology and sleep, suggesting that recommendations on healthy media use could include restrictions on electronic devices. PMID:25643702
Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns
NASA Technical Reports Server (NTRS)
Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.
2013-01-01
Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.
What people know about electronic devices: A descriptive study
NASA Astrophysics Data System (ADS)
Kieras, D. E.
1982-10-01
Informal descriptive results on the nature of people's natural knowledge of electronic devices are presented. Expert and nonexpert subjects were given an electronic device to examine and describe orally. The devices ranged from familiar everyday devices, to those familiar only to the expert, to unusual devices unfamiliar even to an expert. College students were asked to describe everyday devices from memory. The results suggest that device knowledge consists of the major categories of what the device is for, how it is used, its structure in terms of subdevices, its physical layout, how it works, and its behavior. A preliminary theoretical framework for device knowledge is that it consists of a hierarchy of schemas, corresponding to a hierarchial decomposition of the device into subdevices, with each level containing the major categories of information.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Code of Federal Regulations, 2011 CFR
2011-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Code of Federal Regulations, 2012 CFR
2012-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Code of Federal Regulations, 2010 CFR
2010-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
An automatic camera device for measuring waterfowl use
Cowardin, L.M.; Ashe, J.E.
1965-01-01
A Yashica Sequelle camera was modified and equipped with a timing device so that it would take pictures automatically at 15-minute intervals. Several of these cameras were used to photograph randomly selected quadrats located in different marsh habitats. The number of birds photographed in the different areas was used as an index of waterfowl use.
78 FR 46977 - Ophthalmic Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... Sealant is an in situ formed hydrogel that is applied topically to clear corneal incisions to create [email protected] , or FDA Advisory Committee Information Line, 1-800-741-8138 (301-443-0572 in the Washington, DC area). A notice in the Federal Register about last minute modifications that impact a...
49 CFR 220.309 - Permitted uses; exceptions to other restrictions.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices... an electronic device to refer to a railroad rule, special instruction, timetable, or other directive, if such use is authorized under a railroad operating rule or instruction. (b) An electronic device as...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-22
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having Placeshifting or Display Replication and Products Containing Same; Commission Determination Not To Review an... States after importation of certain electronic devices having placeshifting or display replication...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-831] Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Commission Determination Not To Review an Initial... certain electronic devices for capturing and transmitting images, and components thereof. The complaint...
2015-12-17
temperature . New device architecture that utilizes cold-electron transport for ultra-low energy consumption electronics has been designed in a configuration...the oxygen has also been found important for the SiC>2 sputter deposition. The sputter was carried out at room temperature . Our optimized process...have been pursued for two electronic devices, 1) room- temperature single-electron transistors, and 2) ultralow energy consumption transistors. For
Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures
2017-06-27
realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widjaja, Ongky, E-mail: wijayaongky@yahoo.co.id; Arie, Arenst Andreas, E-mail: arenst@unpar.ac.id; Halim, Martin
In this work, kerosene oil based nanocarbons were synthesized by a nebulized spray pyrolysis method. This method was conducted at temperature of 700°C under a nitrogen inert atmospheric condition. Activated carbon and ferrocene were used as substrate and catalyst, respectively. Initially, ferrocene was dissolved in the oil with fixed concentration of 0.02 g/ml. The pyrolysis reaction was carried out by varying the operating time of 15, 30 and 45 minutes. The main aim of this work was to investigate the effect of varying the operation time on the morphology and structural characteristics of as-prepared carbon products. The morphology and structural characteristicsmore » of synthesized nanocarbons were examined by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and Raman Spectroscopy, respectively. SEM and TEM observations showed that nano carbons were formed as agglomerated carbon nanospheres (CNSs) and graphene for all variation of operating time. Furthermore, it was observed that the size of agglomerated CNSs was proportional with the operating time from 15 to 45 minutes. Raman analysis showed that the ratio between graphite like and disorder carbon structure (I{sub G}/I{sub D})of carbon samples increased from operating time of 15 to 30 minutes, however the ratio decreased from 30 minutes to 45 minutes.« less
Recent progress on thin-film encapsulation technologies for organic electronic devices
NASA Astrophysics Data System (ADS)
Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei
2016-03-01
Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.
5 CFR 1632.10 - Transcripts, recordings, and minutes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and clearly...
5 CFR 1632.10 - Transcripts, recordings, and minutes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and clearly...
Technique for analyzing human respiratory process
NASA Technical Reports Server (NTRS)
Liu, F. F.
1970-01-01
Electronic system /MIRACLE 2/ places frequency and gas flow rate of the respiratory process within a common frame of reference to render them comparable and compatible with ''real clock time.'' Numerous measurements are accomplished accurately on a strict one-minute half-minute, breath-by-breath, or other period basis.
Dose Analysis of the Model 112A Pulserad Pulsed X-Ray Generator by Its Cyltran
1989-12-01
field was performed by R. B. Pietruszka [Ref. 1] using the dosimetry system which consists of Thermoluminescent Dosimeter ( TLD ) and associated TLD ...has the same pattern at a specific angle of the dominant electron flow. For a Marx charge of 75 kV, Figure 18 shows the absorbed dose in TLD normalized... Electron energy (1.66 MeV to 0.05 MeV) 3 materials 56 minutes 45 minutes (Ta, Al, TLD ) 68 APPENDIX F. MEASURED EXPOSURE VARIATION Marx Charge 75 kV
Detection of Three-minute Oscillations in Full-disk Lyα Emission during a Solar Flare
NASA Astrophysics Data System (ADS)
Milligan, Ryan O.; Fleck, Bernhard; Ireland, Jack; Fletcher, Lyndsay; Dennis, Brian R.
2017-10-01
In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyα (from GOES/EUVS) and Lyman continuum (from Solar Dynamics Observatory (SDO)/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a ˜3 minute period present during the flare’s main phase. The formation temperature of this emission locates this radiation at the flare’s chromospheric footpoints, and similar behavior is found in the SDO/Atmospheric Imaging Assembly 1600 and 1700 Å channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray (HXR) energies (50-100 keV) in Reuven Ramaty High Energy Solar Spectroscopic Imager data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both HXR and chromospheric lightcurves is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyα line may influence the composition and dynamics of planetary atmospheres during periods of high activity.
Murakami, Maki; McDill, Tandace L; Cindrick-Pounds, Lori; Loran, David B; Woodside, Kenneth J; Mileski, William J; Hunter, Glenn C; Killewich, Lois A
2003-11-01
Intermittent pneumatic compression (IPC) devices prevent lower-extremity deep venous thrombosis (LEDVT) when used properly, but compliance remains an issue. Devices are frequently discontinued when patients are out of bed, and they are rarely used in emergency departments. Trauma patients are at high risk for LEDVT; however, IPCs are underused in this population because of compliance limitations. The hypothesis of this study was that a new miniaturized, portable, battery-powered pneumatic compression device improves compliance in trauma patients over that provided by a standard device. This was a prospective trial in which trauma patients (mean age, 46 years; revised trauma score, 11.7) were randomized to DVT prophylaxis with a standard calf-length sequential IPC device (SCD group) or a miniaturized sequential device (continuous enhanced-circulation therapy [CECT] group). The CECT device can be battery-operated for up to 6 hours and worn during ambulation. Timers attached to the devices, which recorded the time each device was applied to the legs and functioning, were used to quantify compliance. For each subject in each location during hospitalization, compliance rates were determined by dividing the number of minutes the device was functioning by the total minutes in that location. Compliance rates for all subjects were averaged in each location: emergency department, operating room, intensive care unit, and nursing ward. Total compliance rate in the CECT group was significantly higher than in the SCD group (77.7% vs. 58.9%, P =.004). Compliance in the emergency department and nursing ward were also significantly greater with the CECT device (P =.002 and P =.008 respectively). Previous studies have demonstrated that reduced compliance with IPC devices results in a higher incidence of LEDVT. Given its ability to improve compliance, the CECT may provide superior DVT prevention compared with that provided by standard devices.
Lertsapcharoen, Pornthep; Khongphatthanayothin, Apichai; La-orkhun, Vidhavas; Supachokchaiwattana, Pentip; Charoonrut, Phingphol
2006-01-01
Our purpose was to evaluate self-expanding nanoplatinum-coated nitinol devices for transcatheter closure of atrial septal defects and patent ductus arteriosus in a swine model. The devices were braided from platinum-activated nitinol wires and filled with polyester to enhance thrombogenicity. The platinum activation of the nitinol wires was carried out with the help of Nanofusion technology. The coating of platinum covers the exposed surface of the nitinol wires and prevents the release of nickel into the blood stream after the implantation of the device but does not affect its shape memory, which makes the device self-expanding after it is loaded from the catheter. Atrial septal defects were created in 12 piglets by balloon dilation of the patent foramen ovale. The size of the device was selected on the basis of the diameter of the balloon and the size of the defect, measured by transthoracic echocardiography. The devices were successfully deployed in all 12 piglets under fluoroscopic study. Transthoracic color Doppler echocardiograms showed complete closure of the atrial septal defect within 15 minutes of device implantation. Twelve patent ductus arteriosus closure devices were deployed in the right or left subclavian arteries in 10 piglets. Angiograms showed complete occlusion of the subclavian arteries within a few minutes of device deployment. In the atrial septal defect cases, the autopsy findings showed complete organizing fibrin thrombus formation and complete neo-endothelialization on the outer surface of the devices within one week and six weeks of implantation, respectively. The use of self-expanding nanoplatinum-coated nitinol devices for the transcatheter closure of atrial septal defects and patent ductus arteriosus is feasible. The excellent occlusion result and complete neo-endothelialization of the devices in the swine model is an indication of the potential of these devices in human application.
A comparison of cooling techniques in firefighters after a live burn evolution
Colburn, Deanna; Suyama, Joe; Reis, Steven E; Morley, Julia L; Goss, Fredric L; Chen, Yi-Fan; Moore, Charity G; Hostler, David
2010-01-01
Objective We compared two active cooling devices to passive cooling in a moderate (≈22°C) temperature environment on heart rate (HR) and core temperature (Tc) recovery when applied to firefighters following 20 min. of fire suppression. Methods Firefighters (23 male, 2 female) performed 20 minutes of fire suppression at a live fire evolution. Immediately following the evolution, the subjects removed their thermal protective clothing and were randomized to receive forearm immersion (FI), ice water perfused cooling vest (CV) or passive (P) cooling in an air-conditioned medical trailer for 30 minutes. Heart rate and deep gastric temperature were monitored every five minutes during recovery. Results A single 20-minute bout of fire suppression resulted in near maximal HR (175±13 - P, 172±20 - FI, 177±12 beats•min−1 - CV) when compared to baseline (p < 0.001), a rapid and substantial rise in Tc (38.2±0.7 - P, 38.3±0.4 - FI, 38.3±0.3° - CV) compared to baseline (p < 0.001), and mass lost from sweating of nearly one kilogram. Cooling rates (°C/min) differed (p = 0.036) by device with FI (0.05±0.04) providing higher rates than P (0.03±0.02) or CV (0.03±0.04) although differences over 30 minutes were small and recovery of body temperature was incomplete in all groups. Conclusions During 30 min. of recovery following a 20-minute bout of fire suppression in a training academy setting, there is a slightly higher cooling rate for FI and no apparent benefit to CV when compared to P cooling in a moderate temperature environment. PMID:21294631
Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices
Campbell, Michael G.; Dincă, Mircea
2017-01-01
In the past decade, advances in electrically conductive metal–organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices. PMID:28498308
Sketched Oxide Single-Electron Transistor
NASA Astrophysics Data System (ADS)
Cheng, Guanglei
2012-02-01
Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly ``sketch'' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides.ootnotetextCheng et al., Nature Nanotechnology 6, 343 (2011). In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ˜1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.
Comparison between a disposable and an electronic PCA device for labor epidural analgesia.
Sumikura, Hiroyuki; van de Velde, Marc; Tateda, Takeshi
2004-01-01
The aims of the present study were (1) to investigate if a disposable patient-controlled analgesia (PCA) device can be used for labor analgesia and (2) to evaluate the device by midwives and parturients. Forty healthy parturients were divided into two groups and received combined spinal epidural analgesia for labor pain relief. Following intrathecal administration of 3 mg ropivacaine and 1.5 microg sufentanil, either a disposable PCA device (Coopdech Syrinjector; Daiken Medical, Osaka, Japan) or an electronic PCA device (IVAC PCAM PCA Syringe Pump; Alaris, Basingstoke, UK) was connected to the epidural catheter, and 0.15% ropivacaine with sufentanil 0.75 microg/ml was used for continuous infusion and PCA. For an electronic PCA device, continuous infusion rate, bolus dose, lockout time, and hourly limit were set at 4 ml/h, 3 ml, 15 min, and 16 ml, respectively. For a disposable PCA device, continuous infusion rate, bolus dose, and an hourly limit were set at 4 ml/h, 3 ml, and 16 ml, respectively, but lockout function was not available. No differences were observed between the groups concerning demographic data, obstetric data, and outcome of labor. Anesthetic requirements (disposable, 9.7 +/- 4.7 ml/h; electronic, 8.2 +/- 4.0 ml/h) and VAS score during the delivery (disposable, 26 +/- 25; electronic, 21 +/- 22) were similar between the groups. Midwives praised the disposable PCA device as well as the electronic one. The present results imply that the disposable PCA device can be an alternative to the electronic PCA device for labor analgesia.
Protano, C; Manigrasso, M; Avino, P; Sernia, S; Vitali, M
2016-01-01
Passive exposure profiles to submicronic particles (SMPs, 5.6-560 nm) of traditional cigarettes and new electronic commercial devices (e-cig and IQOS®, a new heat-not-burn smoking device) were compared. During smoking, SMPs released by traditional cigarettes resulted four-times higher than those released by electronic and heat-not-burn devices and remained high for at least one hour, while SMPs values returned immediately similar to background for electronic and heat-not-burn devices. In all experiments, approximately half of SMPs resulted so small to reach the alveolar region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subbarao, Krishnappa; Fuller, Jason C.; Kalsi, Karanjit
2015-02-01
The purpose of this project is to develop a plausible transactive framework for DER participation in a regulation market. This document focuses on the methodology for creating a transactive-based regulation market, using one class of end-use devices as an example. The system contains two parts, one for acquiring resources at a longer timescale and a second for controlling the devices in a distributed manner at much shorter timescales. The first is based on a formal double-auction market where every five minutes each device bids the amount of resource it is able to provide and the minimum price that it wouldmore » accept to provide that resource. The bid price is determined by the current state of the device and the willingness of the consumer to participate. The market system collects and orders the bids by price, and then determines a cleared price to meet the level of regulation needed. It broadcasts the cleared price to the devices, which results in contracting the services of the least cost resources. By contract, the devices that cleared the market are now engaged for the next five-minute market period. They are part of a distributed control system that allows them to respond at four-second intervals to a broadcasted regulation signal. The approach also limits the number of times devices can cycle between states (say on to off) in a given amount of time to protect the equipment life.« less
Direct Detection and Imaging of Low-Energy Electrons with Delta-Doped Charge-Coupled Devices
NASA Technical Reports Server (NTRS)
Nikzad, S.; Yu, Q.; Smith, A. L.; Jones, T. J.; Tombrello, T. A.; Elliott, S. T.
1998-01-01
We report the use fo delta-doped charge-coupled devices (CCDs) for direct detection of electrons in the 50-1500 eV energy range. These are the first measurements with a solid state device to detect electrons in this energy range.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices Corrected.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the...
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Lee, Mincheol; Lee, Hyunjae
2016-05-01
Recent advances in soft electronics have attracted great attention, largely due to their potential applications in personalized, bio-integrated healthcare devices. The mechanical mismatch between conventional electronic/optoelectronic devices and soft human tissues/organs have presented many challenges, such as the low signalto- noise ratio of biosensors because of the incomplete integration of rigid devices with the body, inflammation and excessive immune responses of implanted stiff devices originated from friction and their foreign nature to biotic systems, and the considerable discomfort and consequent stress experienced by users when wearing/implanting these devices. Ultra-flexible and stretchable electronic devices are being highlighted due to their low system modulus and the intrinsic system-level softness that are important to solve these issues. Here, we describe our unique strategies for the nanomaterial synthesis and fabrication, their seamless assembly and integration, and the design and development of corresponding wearable healthcare devices and minimally invasive surgical tools. These bioelectronic systems fully utilize recent breakthroughs in unconventional soft electronics based on nanomaterials to address unsolved issues in clinical medicine and to provide new opportunities in the personalized healthcare.
Thompson, Dylan; Batterham, Alan M; Peacock, Oliver J; Western, Max J; Booso, Rahuman
2016-10-01
Wearable devices to self-monitor physical activity have become popular with individuals and healthcare practitioners as a route to the prevention of chronic disease. It is not currently possible to reconcile feedback from these devices with activity recommendations because the guidelines refer to the amount of activity required on top of normal lifestyle activities (e.g., 150 minutes of moderate-to-vigorous intensity activity per week over-and-above normal moderate-to-vigorous lifestyle activities). The aim of this study was to recalibrate the feedback from self-monitoring. We pooled data from four studies conducted between 2006 and 2014 in patients and volunteers from the community that included both sophisticated measures of physical activity and 10-year risk for cardiovascular disease and type 2 diabetes (n=305). We determined the amount of moderate-to-vigorous intensity activity that corresponded to FAO/WHO/UNU guidance for a required PAL of 1.75 (Total Energy Expenditure/Basal Metabolic Rate). Our results show that, at the UK median PAL, total moderate-to-vigorous intensity physical activity will be around 735 minutes per week (~11% of waking time). We estimate that a 4% increase in moderate-to-vigorous intensity activity will achieve standardised guidance from FAO/WHO/UNU and will require ~1000 minutes of moderate-to-vigorous intensity activity per week. This study demonstrates that feedback from sophisticated wearable devices is incompatible with current physical activity recommendations. Without adjustment, people will erroneously form the view that they are exceeding recommendations by several fold. A more appropriate target from self-monitoring that accounts for normal moderate-to-vigorous lifestyle activities is ~1000 minutes per week, which represents ~15% of waking time. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Accuracy of Consumer Monitors for Estimating Energy Expenditure and Activity Type.
Woodman, James A; Crouter, Scott E; Bassett, David R; Fitzhugh, Eugene C; Boyer, William R
2017-02-01
Increasing use of consumer-based physical activity (PA) monitors necessitates that they are validated against criterion measures. Thus, the purpose of this study was to examine the accuracy of three consumer-based PA monitors for estimating energy expenditure (EE) and PA type during simulated free-living activities. Twenty-eight participants (mean ± SD: age, 25.5 ± 3.7 yr; body mass index, 24.9 ± 2.6 kg·m) completed 11 activities ranging from sedentary behaviors to vigorous intensities. Simultaneous measurements were made with an Oxycon portable calorimeter (criterion), a Basis Peak and Garmin Vivofit on the nondominant wrist, and three Withings Pulse devices (right hip, shirt collar, dominant wrist). Repeated-measures ANOVA were used to examine differences between measured and predicted EE. Intraclass correlation coefficients were calculated to determine reliability of EE predictions between Withings placements. Paired samples t tests were used to determine mean differences between observed minutes and Basis Peak predictions during walking, running, and cycling. On average, the Basis Peak was within 8% of measured EE for the entire PA routine (P > 0.05); however, there were large individual errors (95% prediction interval, -290.4 to +233.1 kcal). All other devices were significantly different from measured EE for the entire PA routine (P < 0.05). For activity types, Basis Peak correctly identified ≥92% of actual minutes spent walking and running (P > 0.05), and 40.4% and 0% of overground and stationary cycling minutes, respectively (P < 0.001). The Basis Peak was the only device that did not significantly differ from measured EE; however, it also had the largest individual errors. Additionally, the Basis Peak accurately predicted minutes spent walking and running, but not cycling.
Kondo, Yusuke; Tanabe, Tsuyoshi; Kobayashi-Miura, Mikiko; Amano, Hiroki; Yamaguchi, Natsu; Kamura, Masanori; Fujita, Yasuyuki
2012-01-01
The objective of this study was to clarify the relationship between feeling upon awakening (FA) and time spent using information technology (IT) devices by children in kindergartens, elementary schools, and junior high schools in Shimane, Japan. In October 2008, a self-report survey was distributed to 2075 children in kindergartens (n = 261), elementary schools (n = 1162), and junior high schools (n = 652) in Shimane, Japan. The questionnaire gathered data on sex, school year, feeling upon awakening, and time spent using IT devices after school (television, videos on television, video games, personal computers, and cellular phones). After adjusting for sex and school year, data were analyzed by multivariate logistic regression analysis to calculate odds ratios (ORs) and 95% confidence intervals (CIs). A total of 2030 children completed this survey (response rate, 97.8%). Negative FA was associated with watching television more than 2 hours/day (OR = 1.51, 95% CI = 1.23-1.85), playing video games more than 30 minutes/day (1.50, 1.20-1.87), and using personal computers more than 30 minutes/day (1.35, 1.04-1.75). Time spent using IT devices affected the FA of children in kindergarten through junior high school. We propose the development of guidelines regarding the appropriate amount of time this population should spend using IT devices.
Breadboard Amplifier: Building and Using Simple Electrophysiology Equipment.
Crisp, Kevin M; Lin, Hunter; Prosper, Issa
2016-01-01
Electrophysiology is a valuable skill for the neuroscientist, but the learning curve for students can be steep. Here we describe a very simple electromyography (EMG) amplifier that can be built from scratch by students with no electronics experience in about 30 minutes, making it ideal for incorporating into a laboratory activity. With few parts and no adjustments except the gain, students can begin physiology experiments quickly while having the satisfaction of having built the equipment themselves. Because the output of the circuit goes to a computer sound card, students can listen to electrophysiological activity as they see it on the computer screen, a feature many of our students greatly appreciated. Various applications are discussed, including dual channel recording, using streaming media platforms with remote lab partners and acquiring data in the field on a smart phone. Our students reported that they enjoyed being able to build a working device and using it to record from their own muscles.
Design and Preliminary Testing of a High Performance Antiproton Trap (HiPAT)
NASA Technical Reports Server (NTRS)
Martin, James; Meyer, Kirby; Kramer, Kevin; Smith, Gerald; Lewis, Raymond; Rodgers, Stephen L. (Technical Monitor)
2000-01-01
Antimatter represents the pinnacle of energy density, offering the potential to enhance current fusion/fission concepts enabling various classes of deep space missions. Current production rates are sufficient to support proof-of-concept evaluation of many key technologies associated with antimatter-derived propulsion. Storage has been identified as a key enabling technology for all antimatter-related operations, and as such is the current focus of this NASA-MSFC effort to design and fabricate a portable device capable of holding up to 10(exp 12) particles. Hardware has been assembled and initial tests are underway to evaluate the trap behavior using electron gun generated, positive hydrogen ions. Ions have been stored for tens of minutes, limited by observed interaction with background gas. Additionally, radio frequency manipulation is being tested to increase lifetime by stabilizing the stored particles, potentially reducing their interaction with background gas, easing requirements on ultimate trap vacuum and precision mechanical alignment.
NASA Astrophysics Data System (ADS)
Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut
2018-04-01
In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.
NASA Astrophysics Data System (ADS)
Mathai, Pramod P.
This thesis focuses on applying and augmenting 'Reduced Order Modeling' (ROM) techniques to large scale problems. ROM refers to the set of mathematical techniques that are used to reduce the computational expense of conventional modeling techniques, like finite element and finite difference methods, while minimizing the loss of accuracy that typically accompanies such a reduction. The first problem that we address pertains to the prediction of the level of heat dissipation in electronic and MEMS devices. With the ever decreasing feature sizes in electronic devices, and the accompanied rise in Joule heating, the electronics industry has, since the 1990s, identified a clear need for computationally cheap heat transfer modeling techniques that can be incorporated along with the electronic design process. We demonstrate how one can create reduced order models for simulating heat conduction in individual components that constitute an idealized electronic device. The reduced order models are created using Krylov Subspace Techniques (KST). We introduce a novel 'plug and play' approach, based on the small gain theorem in control theory, to interconnect these component reduced order models (according to the device architecture) to reliably and cheaply replicate whole device behavior. The final aim is to have this technique available commercially as a computationally cheap and reliable option that enables a designer to optimize for heat dissipation among competing VLSI architectures. Another place where model reduction is crucial to better design is Isoelectric Focusing (IEF) - the second problem in this thesis - which is a popular technique that is used to separate minute amounts of proteins from the other constituents that are present in a typical biological tissue sample. Fundamental questions about how to design IEF experiments still remain because of the high dimensional and highly nonlinear nature of the differential equations that describe the IEF process as well as the uncertainty in the parameters of the differential equations. There is a clear need to design better experiments for IEF without the current overhead of expensive chemicals and labor. We show how with a simpler modeling of the underlying chemistry, we can still achieve the accuracy that has been achieved in existing literature for modeling small ranges of pH (hydrogen ion concentration) in IEF, but with far less computational time. We investigate a further reduction of time by modeling the IEF problem using the Proper Orthogonal Decomposition (POD) technique and show why POD may not be sufficient due to the underlying constraints. The final problem that we address in this thesis addresses a certain class of dynamics with high stiffness - in particular, differential algebraic equations. With the help of simple examples, we show how the traditional POD procedure will fail to model certain high stiffness problems due to a particular behavior of the vector field which we will denote as twist. We further show how a novel augmentation to the traditional POD algorithm can model-reduce problems with twist in a computationally cheap manner without any additional data requirements.
ERIC Educational Resources Information Center
Sanga, Sushma
2016-01-01
Identity-theft means stealing someone's personal information and using it without his or her permission. Each year, millions of Americans are becoming the victims of identity-theft, and this is one of the seriously growing and widespread issues in the U.S. This study examines the effect of electronic devices self-efficacy, electronic devices…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-836] Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not To Review Initial Determination To Amend... electronics and display devices and products containing the same by reason of infringement of U.S. Patent Nos...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices.... 1337 in the importation, sale for importation, and sale within the United States after importation of certain mobile electronic devices incorporating haptics, by reason of the infringement of claims of six...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices; Notice of... Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the Commission is...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-06
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having... AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has issued (1) a limited exclusion order against infringing electronic devices...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-09
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-797] Certain Portable Electronic Devices and Related Software; Determination Not To Review Initial Determination Granting Motion To Amend the... the United States after importation of certain portable electronic devices and related software. 76 FR...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-701] In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission... States after importation of certain electronic devices, including mobile phones, portable music players...
Tissue-electronics interfaces: from implantable devices to engineered tissues
NASA Astrophysics Data System (ADS)
Feiner, Ron; Dvir, Tal
2018-01-01
Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.
Endotoxin removal by radio frequency gas plasma (glow discharge)
NASA Astrophysics Data System (ADS)
Poon, Angela
2011-12-01
Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to < 0.5 EU/ml in sterile water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR-IR measurements were repeated after employing 3-minute RFGD treatments sequentially for more than 10 cycles to observe removal of deposited matter that correlated with diminished EU titers. The results showed that 5 cycles, for a total exposure time of 15 minutes to low-temperature gas plasma, was sufficient to reduce endotoxin titers to below 0.05 EU/ml, and correlated with concurrent reduction of major endotoxin reference standard absorption bands at 3391 cm-1, 2887 cm-1, 1646 cm -1 1342 cm-1, and 1103 cm-1 to less than 0.05 Absorbance Units. Band depletion varied from 15% to 40% per 3-minute cycle of RFGD exposure, based on peak-to-peak analyses. In some cases, 100% of all applied biomass was removed within 5 sequential 3-minute RFGD cycles. The lipid ester absorption band expected at 1725 cm-1 was not detectable until after the first RFGD cycle, suggesting an unmasking of the actual bacterial endotoxin membrane induced within the gas plasma environment. Future work must determine the applicability of this low-temperature, quick depyrogenation process to medical devices of more complicated geometry than the flat surfaces tested here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, Ryan O.; Fletcher, Lyndsay; Fleck, Bernhard
In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Ly α (from GOES /EUVS) and Lyman continuum (from Solar Dynamics Observatory ( SDO )/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a ∼3 minute period present during the flare’s main phase. The formation temperature of this emission locates this radiation at the flare’s chromospheric footpoints, and similar behavior is found in the SDO /Atmospheric Imaging Assembly 1600 and 1700 Å channels, which are dominated by chromospheric continuum. The implication is thatmore » the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray (HXR) energies (50–100 keV) in Reuven Ramaty High Energy Solar Spectroscopic Imager data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both HXR and chromospheric lightcurves is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Ly α line may influence the composition and dynamics of planetary atmospheres during periods of high activity.« less
Rapid Protein Separations in Microfluidic Devices
NASA Technical Reports Server (NTRS)
Fan, Z. H.; Das, Champak; Xia, Zheng; Stoyanov, Alexander V.; Fredrickson, Carl K.
2004-01-01
This paper describes fabrication of glass and plastic microfluidic devices for protein separations. Although the long-term goal is to develop a microfluidic device for two-dimensional gel electrophoresis, this paper focuses on the first dimension-isoelectric focusing (IEF). A laser-induced fluorescence (LIF) imaging system has been built for imaging an entire channel in an IEF device. The whole-channel imaging eliminates the need to migrate focused protein bands, which is required if a single-point detector is used. Using the devices and the imaging system, we are able to perform IEF separations of proteins within minutes rather than hours in traditional bench-top instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
"Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.
Irimia-Vladu, Mihai
2014-01-21
"Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.
Yoon, Jongwon; Jeong, Yunkyung; Kim, Heeje; Yoo, Seonggwang; Jung, Hoon Sun; Kim, Yonghun; Hwang, Youngkyu; Hyun, Yujun; Hong, Woong-Ki; Lee, Byoung Hun; Choa, Sung-Hoon; Ko, Heung Cho
2016-01-01
Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indirect method that enables conformal wrapping of surface with arbitrary yet complex shapes. Artificial cilia are introduced in the periphery of electronic devices as adhesive elements. The cilia also play an important role in confining a small amount of glue and damping mechanical stress to maintain robust electronic performance under mechanical deformation. The example of electronic applications depicts the feasibility of cilia for ‘stick-&-play' systems, which provide electronic functions by transfer printing on unconventional complex surfaces. PMID:27248982
New barrierless copper-alloy film for future applications
NASA Astrophysics Data System (ADS)
Lin, Chon-Hsin Lin
2015-09-01
Since Cu metallization results in a conductivity and an electromigration resistance greater than those of Al, it has become popular for making Si-based interconnects for numerous devices in the field of microelectronics. Following the current trend of miniaturization required for most electronic components, there is a greater need for further size reduction in Si-based devices. The most critical side effect of size reduction is the increase in electronic scattering and resistivity when the barrier-layer thickness is further reduced. To explore advanced Cu-metallization methods and to develop a more economical manufacturing process for Cu-alloy films, the development of Cu materials having better quality and higher thermal stability becomes imperative for the metallization and annealing processes. For this purpose, we first fabricated Cu(GeNx) films and examined their thermal stability and electrical reliability after either cyclic or isothermal annealing. The excellent thermal and electrical properties make these new Cu-alloy films highly promising for applications that require more reliable and inexpensive copper interconnects. In this study, we fabricated Cu alloy films by doping a minute amount of Ge or GeNx, respectively, into the Cu films via barrierless Cu metallization, an inexpensive manufacturing method. Using these newly fabricated alloy films, we were able to eliminate or at least substantially reduce the detrimental interaction between the alloy and the barrierless Si substrate. The Cu(GeNx) films also exhibited high thermal stability, low resistivity and leakage current, and long time-dependent dielectric breakdown (TDDB) lifetimes, making such novel films a candidate for high-quality, economical, and more reliable Cu interconnects.
Lee, Du-Hyeong; Kim, Yong-Gun; Lee, Jong-Ho; Hong, Sam-Pyo; Lim, Young-Jun; Lee, Kyu-Bok
2015-01-01
To determine the accuracy of applied torque of different implant controller and handpiece combinations by using an electronic torque gauge. Four combinations of the following devices were tested: Surgic XT controller (NSK), XIP10 controller (Saeshin), X-SG20L handpiece (NSK), CRB26LX handpiece (Saeshin). For five torque settings, 30 measurements were recorded at 30 revolutions per minute by using an electronic torque gauge fixed to jigs, and means were calculated. Applied torques were generally higher than the set torque of 10 and 20 Ncm and lower than the set values of 40 and 50 Ncm. The average torque deviations differed significantly among the combinations (P < .05). At 10 and 20 Ncm, the Surgic XT/X-SG20L combination yielded the closest value to the intended torque, followed by the XIP10/X-SG20L combination. At 30 Ncm, the XIP10/X-SG20L combination showed the nearest value. At 40 Ncm, the Surgic XT/X-SG20L, XIP10/CRB26LX, and XIP10/X-SG20L combinations showed deviations within 10%. At 50 Ncm, all the combinations showed lower applied torque than the set value. Large standard deviations were observed in the Surgic XT/CRB26LX (13.288) and Surgic XT/X-SG20L (7.858) combinations. Different combinations of implant controllers and handpieces do not generate significant variations in applied torque. The actual torque varies according to the torque setting. It is necessary to calibrate devices before use to reduce potentially problematic torque.
Light weight Heat-Sink, Based on Phase-Change-Material for a High powered - Time limited application
NASA Astrophysics Data System (ADS)
Leibovitz, Johnathan
2002-01-01
When designing components for an aerospace application, whether it is an aircraft, satellite, space station or a launcher - a major considered parameter is its weight . For a combat aircraft, an addition of such a lightweight Heat sink to a high power component, can extend significantly avionics performance at very high altitude - when cooling means are poor. When dealing with a satellite launcher, each pound saved from the launcher in favor of the satellite - may contribute, for instance, several months of satellite life. The solution presented in this paper deals with an electronic device producing high power, for limited time and requires relatively low temperature base plate. The requirements demand that a base plate temperature should not exceed 70°c while exposed to a heat- flux of about 1.5W/cm^2 from an electronic device, during approximately 14 minutes. The classical solution for this transient process requires an Aluminum block heat sink of about 1100 grams . The PCM based heat-sink gives the solution for this case with about 400 grams only with a compact package. It also includes an option for cooling the system by forced convection (and in principle by radiation), when those means of heat dissipation - are available. The work includes a thermal analysis for the Aluminum - PCM heat sink and a series of validation tests of a model. The paper presents results of the analysis and results of the tests, including comparison to the classical robust solution. A parametric performance envelope for customizing to other potential applications is presented as well.
Carbon nanotube chemistry and assembly for electronic devices
NASA Astrophysics Data System (ADS)
Derycke, Vincent; Auvray, Stéphane; Borghetti, Julien; Chung, Chia-Ling; Lefèvre, Roland; Lopez-Bezanilla, Alejandro; Nguyen, Khoa; Robert, Gaël; Schmidt, Gregory; Anghel, Costin; Chimot, Nicolas; Lyonnais, Sébastien; Streiff, Stéphane; Campidelli, Stéphane; Chenevier, Pascale; Filoramo, Arianna; Goffman, Marcelo F.; Goux-Capes, Laurence; Latil, Sylvain; Blase, Xavier; Triozon, François; Roche, Stephan; Bourgoin, Jean-Philippe
2009-05-01
Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties; (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes (this route being particularly relevant for gas- and bio-sensors, opto-electronic devices and energy sources); and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we review our recent results concerning nanotube chemistry and assembly and their use to develop electronic devices. In particular, we present carbon nanotube field effect transistors and their chemical optimization, high frequency nanotube transistors, nanotube-based opto-electronic devices with memory capabilities and nanotube-based nano-electromechanical systems (NEMS). The impact of chemical functionalization on the electronic properties of CNTs is analyzed on the basis of theoretical calculations. To cite this article: V. Derycke et al., C. R. Physique 10 (2009).
Methods and devices for fabricating and assembling printable semiconductor elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Methods and devices for fabricating and assembling printable semiconductor elements
Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao
2014-03-04
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Single Molecule Nano-Metronome
Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip
2008-01-01
We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule sensor of minute sequence differences of a target DNA. PMID:16522050
Solution processed molecular floating gate for flexible flash memories
NASA Astrophysics Data System (ADS)
Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.
2013-10-01
Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices.
Solution processed molecular floating gate for flexible flash memories
Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.
2013-01-01
Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices. PMID:24172758
ERIC Educational Resources Information Center
Xu, Chunxiu; Lin, Wanqi; Cai, Longfei
2016-01-01
A demonstration is described of electrophoretic separation of carmine and sunset yellow with a paper-based device. The channel in the paper device was fabricated by hand with a wax pen. Electrophoretic separation of carmine and sunset yellow was achieved within a few minutes by applying potential on the channel using a simple and inexpensive power…
Percutaneous puncture of renal calyxes guided by a novel device coupled with ultrasound
Chan, Chen Jen; Srougi, Victor; Tanno, Fabio Yoshiaki; Jordão, Ricardo Duarte; Srougi, Miguel
2015-01-01
ABSTRACT Purpose: To evaluate the efficiency of a novel device coupled with ultrassound for renal percutaneous puncture. Materials and Methods: After establishing hydronephrosis, ten pigs had three calyxes of each kidney punctured by the same urology resident, with and without the new device (“Punctiometer”). Time for procedure completion, number of attempts to reach the calyx, puncture precision and puncture complications were recorded in both groups and compared. Results: Puncture success on the first attempt was achieved in 25 punctures (83%) with the Punctiometer and in 13 punctures (43%) without the Punctiometer (p=0.011). The mean time required to perform three punctures in each kidney was 14.5 minutes with the Punctiometer and 22.4 minutes without the Punctiometer (p=0.025). The only complications noted were renal hematomas. In the Punctiometer group, all kidneys had small hematomas. In the no Punctiometer group 80% had small hematomas, 10% had a medium hematoma and 10% had a big hematoma. There was no difference in complications between both groups. Conclusions: The Punctiometer is an effective device to increase the likelihood of an accurate renal calyx puncture during PCNL, with a shorter time required to perform the procedure. PMID:26689521
Flashback flame arrester devices for fuel cargo tank vapor vents
NASA Technical Reports Server (NTRS)
Bjorklund, R. A.; Kushida, R. O.
1981-01-01
The flame quenching capability of four types of flame arresting devices suitable for installation on fuel cargo tank vents of marine transport vessels is evaluated. A single 30 mesh screen, a dual 20 mesh screen, a spiral wound crimped metal ribbon, and a packed bed of ballast rings were tested. Flame speed and flame penetration of the test arresters were determined. Eight fuels representative of bulk cargoes were tested. The test arresters quenched a minimum of three flashback flames from all eight fuels, with one exception: high speed ethylene flames penetrated the dual 20 mesh screen on three tests. The arresters withstood the sustained flame from a propane/air mixture for 30 minutes. None of the arresters withstood the sustained flame from an ethylene/air mixture for more than 7 minutes.
Electronic media use by children in families of high socioeconomic level and familial factors.
Kayiran, Sinan Mahir; Soyak, Güzide; Gürakan, Berkan
2010-01-01
The aim of this research was to describe electronic media access and use among children aged 6 months to 15 years and to identify familial factors. Data was collected with a questionnaire from 724 parents of children seen in the pediatric outpatient clinic of a private hospital while they awaited examination. Questions included electronic media ownership at home or in the child's bedroom, household habits of electronic media use, educational and occupational status of parents, smoking and alcohol consumption at home, and family income. The top three electronic media devices present at home were television, computer and DVD. On a typical day, 32% of children watched television for approximately less than 1 hour, 36% for 2 hours and 22% for 3 hours. Mean television viewing time was 1.89 +/- 0.76 hours. Nearly 12% of parents spent less than 30 minutes with their children, whereas 28% spent 1 hour, and 59% more than 1 hour. Older children spent more time watching television than the younger ones. Forty-six percent of children used computer and the internet at home on a typical day. Almost 20% of children also had a television in their bedroom and spent more time watching television than those without a television in their bedroom, and the ratio increased by age (one-fifth of 3-5-year olds, one-fourth of 6-10-year-olds and half of 11-15-year-olds, on average). The present study provides data for the education and counselling of parents about the use of electronic media by children and it will contribute to increasing the awareness and sensitivity of the population by drawing attention to the subject.
Recent developments of truly stretchable thin film electronic and optoelectronic devices.
Zhao, Juan; Chi, Zhihe; Yang, Zhan; Chen, Xiaojie; Arnold, Michael S; Zhang, Yi; Xu, Jiarui; Chi, Zhenguo; Aldred, Matthew P
2018-03-29
Truly stretchable electronics, wherein all components themselves permit elastic deformation as the whole devices are stretched, exhibit unique advantages over other strategies, such as simple fabrication process, high integrity of entire components and intimate integration with curvilinear surfaces. In contrast to the stretchable devices using stretchable interconnectors to integrate with rigid active devices, truly stretchable devices are realized with or without intentionally employing structural engineering (e.g. buckling), and the whole device can be bent, twisted, or stretched to meet the demands for practical applications, which are beyond the capability of conventional flexible devices that can only bend or twist. Recently, great achievements have been made toward truly stretchable electronics. Here, the contribution of this review is an effort to provide a panoramic view of the latest progress concerning truly stretchable electronic devices, of which we give special emphasis to three kinds of thin film electronic and optoelectronic devices: (1) thin film transistors, (2) electroluminescent devices (including organic light-emitting diodes, light-emitting electrochemical cells and perovskite light-emitting diodes), and (3) photovoltaics (including organic photovoltaics and perovskite solar cells). We systematically discuss the device design and fabrication strategies, the origin of device stretchability and the relationship between the electrical and mechanical behaviors of the devices. We hope that this review provides a clear outlook of these attractive stretchable devices for a broad range of scientists and attracts more researchers to devote their time to this interesting research field in both industry and academia, thus encouraging more intelligent lifestyles for human beings in the coming future.
Using old technology to implement modern computer-aided decision support for primary diabetes care.
Hunt, D. L.; Haynes, R. B.; Morgan, D.
2001-01-01
BACKGROUND: Implementation rates of interventions known to be beneficial for people with diabetes mellitus are often suboptimal. Computer-aided decision support systems (CDSSs) can improve these rates. The complexity of establishing a fully integrated electronic medical record that provides decision support, however, often prevents their use. OBJECTIVE: To develop a CDSS for diabetes care that can be easily introduced into primary care settings and diabetes clinics. THE SYSTEM: The CDSS uses fax-machine-based optical character recognition software for acquiring patient information. Simple, 1-page paper forms, completed by patients or health practitioners, are faxed to a central location. The information is interpreted and recorded in a database. This initiates a routine that matches the information against a knowledge base so that patient-specific recommendations can be generated. These are formatted and faxed back within 4-5 minutes. IMPLEMENTATION: The system is being introduced into 2 diabetes clinics. We are collecting information on frequency of use of the system, as well as satisfaction with the information provided. CONCLUSION: Computer-aided decision support can be provided in any setting with a fax machine, without the need for integrated electronic medical records or computerized data-collection devices. PMID:11825194
Using old technology to implement modern computer-aided decision support for primary diabetes care.
Hunt, D L; Haynes, R B; Morgan, D
2001-01-01
Implementation rates of interventions known to be beneficial for people with diabetes mellitus are often suboptimal. Computer-aided decision support systems (CDSSs) can improve these rates. The complexity of establishing a fully integrated electronic medical record that provides decision support, however, often prevents their use. To develop a CDSS for diabetes care that can be easily introduced into primary care settings and diabetes clinics. THE SYSTEM: The CDSS uses fax-machine-based optical character recognition software for acquiring patient information. Simple, 1-page paper forms, completed by patients or health practitioners, are faxed to a central location. The information is interpreted and recorded in a database. This initiates a routine that matches the information against a knowledge base so that patient-specific recommendations can be generated. These are formatted and faxed back within 4-5 minutes. The system is being introduced into 2 diabetes clinics. We are collecting information on frequency of use of the system, as well as satisfaction with the information provided. Computer-aided decision support can be provided in any setting with a fax machine, without the need for integrated electronic medical records or computerized data-collection devices.
Measuring Nanoscale Heat Transfer for Gold-(Gallium Oxide)-Gallium Nitride Interfaces as a Function
NASA Astrophysics Data System (ADS)
Szwejkowski, Chester; Sun, Kai; Constantin, Costel; Giri, Ashutosh; Saltonstall, Christopher; Hopkins, Patrick; NanoSynCh Team; Exsite Team
2014-03-01
Gallium nitride (GaN) is considered the most important semiconductor after the discovery of Silicon. Understanding the properties of GaN is imperative in determining the utility and applicability of this class of materials to devices. We present results of time domain thermoreflectance (TDTR) measurements as a function of surface root mean square (RMS) roughness. We used commercially available 5mm x 5mm, single-side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a Wurtzite crystal structure and are slightly n-type doped. The GaN substrates were annealed in the open atmosphere for 10 minutes (900-1000 °C). This high-temperature treatment produced RMS values from 1-60 nm and growth of gallium oxide (GaO) as measured with an atomic force microscopy and transmission electron microscopy respectively. A gold film (80nm) was deposited on the GaN surface using electron beam physical vapor deposition which was verified using ellipsometry and profilometry. The TDTR measurements suggest that the thermal conductivity decays exponentially with RMS roughness and that there is a minimum value for thermal boundary conductance at a roughness of 15nm.
Experimental evaluation of cooling efficiency of the high performance cooling device
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2016-06-01
This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.
Optoelectronic devices utilizing materials having enhanced electronic transitions
Black, Marcie R [Newton, MA
2011-02-22
An optoelectronic device that includes a material having enhanced electronic transitions. The electronic transitions are enhanced by mixing electronic states at an interface. The interface may be formed by a nano-well, a nano-dot, or a nano-wire.
Optoelectronic devices utilizing materials having enhanced electronic transitions
Black, Marcie R.
2013-04-09
An optoelectronic device that includes a material having enhanced electronic transitions. The electronic transitions are enhanced by mixing electronic states at an interface. The interface may be formed by a nano-well, a nano-dot, or a nano-wire.
Disabling CNT Electronic Devices by Use of Electron Beams
NASA Technical Reports Server (NTRS)
Petkov, Mihail
2008-01-01
Bombardment with tightly focused electron beams has been suggested as a means of electrically disabling selected individual carbon-nanotubes (CNTs) in electronic devices. Evidence in support of the suggestion was obtained in an experiment in which a CNT field-effect transistor was disabled (see figure) by focusing a 1-keV electron beam on a CNT that served as the active channel of a field-effect transistor (FET). Such bombardment could be useful in the manufacture of nonvolatile-memory circuits containing CNT FETs. Ultimately, in order to obtain the best electronic performances in CNT FETs and other electronic devices, it will be necessary to fabricate the devices such that each one contains only a single CNT as an active element. At present, this is difficult because there is no way to grow a single CNT at a specific location and with a specific orientation. Instead, the common practice is to build CNTs into electronic devices by relying on spatial distribution to bridge contacts. This practice results in some devices containing no CNTs and some devices containing more than one CNT. Thus, CNT FETs have statistically distributed electronic characteristics (including switching voltages, gains, and mixtures of metallic and semiconducting CNTs). According to the suggestion, by using a 1-keV electron beam (e.g., a beam from a scanning electron microscope), a particular nanotube could be rendered electrically dysfunctional. This procedure could be repeated as many times as necessary on different CNTs in a device until all of the excess CNTs in the device had been disabled, leaving only one CNT as an active element (e.g., as FET channel). The physical mechanism through which a CNT becomes electrically disabled is not yet understood. On one hand, data in the literature show that electron kinetic energy >86 keV is needed to cause displacement damage in a CNT. On the other hand, inasmuch as a 1-keV beam focused on a small spot (typically a few tens of nanometers wide) deposits a significant amount of energy in a small volume, the energy density may suffice to thermally induce structural and/or electronic changes that disable the CNT. Research may be warranted to investigate this effect in detail.
Gold nanostructures and methods of use
Zhang, Jin Z [Santa Cruz, CA; Schwartzberg, Adam [Santa Cruz, CA; Olson, Tammy Y [Santa Cruz, CA
2012-03-20
The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.
Gold nanostructures and methods of use
Zhang, Jin Z.; Schwartzberg, Adam; Olson, Tammy Y.
2016-03-01
The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.
Sleep and use of electronic devices in adolescence: results from a large population-based study.
Hysing, Mari; Pallesen, Ståle; Stormark, Kjell Morten; Jakobsen, Reidar; Lundervold, Astri J; Sivertsen, Børge
2015-02-02
Adolescents spend increasingly more time on electronic devices, and sleep deficiency rising in adolescents constitutes a major public health concern. The aim of the present study was to investigate daytime screen use and use of electronic devices before bedtime in relation to sleep. A large cross-sectional population-based survey study from 2012, the youth@hordaland study, in Hordaland County in Norway. Cross-sectional general community-based study. 9846 adolescents from three age cohorts aged 16-19. The main independent variables were type and frequency of electronic devices at bedtime and hours of screen-time during leisure time. Sleep variables calculated based on self-report including bedtime, rise time, time in bed, sleep duration, sleep onset latency and wake after sleep onset. Adolescents spent a large amount of time during the day and at bedtime using electronic devices. Daytime and bedtime use of electronic devices were both related to sleep measures, with an increased risk of short sleep duration, long sleep onset latency and increased sleep deficiency. A dose-response relationship emerged between sleep duration and use of electronic devices, exemplified by the association between PC use and risk of less than 5 h of sleep (OR=2.70, 95% CI 2.14 to 3.39), and comparable lower odds for 7-8 h of sleep (OR=1.64, 95% CI 1.38 to 1.96). Use of electronic devices is frequent in adolescence, during the day as well as at bedtime. The results demonstrate a negative relation between use of technology and sleep, suggesting that recommendations on healthy media use could include restrictions on electronic devices. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Effects of the Effect of Ultra High Frequency Mobile Phone Radiation on Human Health.
Moradi, Mosa; Naghdi, Nasrollah; Hemmati, Hamidreza; Asadi-Samani, Majid; Bahmani, Mahmoud
2016-05-01
Public and occupational exposure to electromagnetic fields due to the growing trend of electronic devices may cause adverse effects on human health. This paper describes the risk of mutation and sexual trauma and infertility in masculine sexual cell by mobile phone radiations. In this study, we measured the emitted dose from a radiofrequency device, such as switching high voltage at different frequencies using a scintillation detector. The switching high voltage power supply (HVPS) was built for the Single Photon Emission Computed Tomography (SPECT) system. For radiation dosimetry, we used an ALNOR scintillator that can measure gamma radiation. The simulation was performed by MATLAB software, and data from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) were used to verify the simulation. We investigated the risks that result from the waves, according to a report by International Commission on Non Ionizing Radiation Protection (ICNIRP), to every organ of the body is defined by the beam and electromagnetic radiation from this electronic device on people. The results showed that the maximum personal dose over a 15-min period working at the mentioned HVPS did not exceed 0.31 μSV/h (with an aluminum shield). So, according to other sources of radiation, continuous working time of the system should not be more than 10 hours. Finally, a characteristic curve for secure working with modules at different frequencies was reported. The RF input signal to the body for maximum penetration depth (δ) and electromagnetic energy absorption rate (SAR) of biological tissue were obtained for each tissue. The results of this study and International Commission of Non Ionization Radiation Protection (ICNIRP) reports showed the people who spend more than 50 minutes a day using a cell phone could have early dementia or other thermal damage due to the burning of glucose in the brain.
Effect of Ultra High Frequency Mobile Phone Radiation on Human Health
Moradi, Mosa; Naghdi, Nasrollah; Hemmati, Hamidreza; Asadi-Samani, Majid; Bahmani, Mahmoud
2016-01-01
Introduction Public and occupational exposure to electromagnetic fields due to the growing trend of electronic devices may cause adverse effects on human health. This paper describes the risk of mutation and sexual trauma and infertility in masculine sexual cell by mobile phone radiations. Methods In this study, we measured the emitted dose from a radiofrequency device, such as switching high voltage at different frequencies using a scintillation detector. The switching high voltage power supply (HVPS) was built for the Single Photon Emission Computed Tomography (SPECT) system. For radiation dosimetry, we used an ALNOR scintillator that can measure gamma radiation. The simulation was performed by MATLAB software, and data from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) were used to verify the simulation. Results We investigated the risks that result from the waves, according to a report by International Commission on Non Ionizing Radiation Protection (ICNIRP), to every organ of the body is defined by the beam and electromagnetic radiation from this electronic device on people. The results showed that the maximum personal dose over a 15-min period working at the mentioned HVPS did not exceed 0.31 μSV/h (with an aluminum shield). So, according to other sources of radiation, continuous working time of the system should not be more than 10 hours. Finally, a characteristic curve for secure working with modules at different frequencies was reported. The RF input signal to the body for maximum penetration depth (δ) and electromagnetic energy absorption rate (SAR) of biological tissue were obtained for each tissue. Conclusion The results of this study and International Commission of Non Ionization Radiation Protection (ICNIRP) reports showed the people who spend more than 50 minutes a day using a cell phone could have early dementia or other thermal damage due to the burning of glucose in the brain. PMID:27382458
Alger, Terry W.; Schlitt, Leland G.; Bradley, Laird P.
1976-06-15
A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
..., Modifications and Rulings: Certain Consumer Electronics and Display Devices and Products Containing Same AGENCY... the sale within the United States after importation of certain consumer electronics devices and..., Washington; LG Electronics, Inc. of Seoul, South Korea; LG Electronics, Mobilecomm U.S.A., Inc. of San Diego...
Engineered phages for electronics.
Cui, Yue
2016-11-15
Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Koo, Hyung-Jun; Velev, Orlin D
2013-05-09
We review the recent progress in the emerging area of devices and circuits operating on the basis of ionic currents. These devices operate at the intersection of electrochemistry, electronics, and microfluidics, and their potential applications are inspired by essential biological processes such as neural transmission. Ionic current rectification has been demonstrated in diode-like devices containing electrolyte solutions, hydrogel, or hydrated nanofilms. More complex functions have been realized in ionic current based transistors, solar cells, and switching memory devices. Microfluidic channels and networks-an intrinsic component of the ionic devices-could play the role of wires and circuits in conventional electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk
This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heatmore » of electronic components in range from 250 to 740 W.« less
The rise of plastic bioelectronics.
Someya, Takao; Bao, Zhenan; Malliaras, George G
2016-12-14
Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic-biological interface as seamless as possible.
The rise of plastic bioelectronics
NASA Astrophysics Data System (ADS)
Someya, Takao; Bao, Zhenan; Malliaras, George G.
2016-12-01
Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic-biological interface as seamless as possible.
12 CFR 407.6 - Transcripts, recordings and minutes of closed meetings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Transcripts, recordings and minutes of closed meetings. 407.6 Section 407.6 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES REGULATIONS... meetings. Eximbank will maintain a complete transcript or electronic recording of the proceedings of every...
Electrical and electronic devices and components: A compilation
NASA Technical Reports Server (NTRS)
1975-01-01
Components and techniques which may be useful in the electronics industry are described. Topics discussed include transducer technology, printed-circuit technology, solid state devices, MOS transistors, Gunn device, microwave antennas, and position indicators.
Determining Resident Sleep During and After Call With Commercial Sleep Monitoring Devices.
Morhardt, Duncan R; Luckenbaugh, Amy; Goldstein, Cathy; Faerber, Gary J
2017-08-01
To demonstrate that commercial activity monitoring devices (CAMDs) are practical for monitoring resident sleep while on call. Studies that have directly monitored resident sleep are limited, likely owing to both cost and difficulty in study interpretation. The advent of wearable CAMDs that estimate sleep presents the opportunity to more readily evaluate resident sleep in physically active settings and "home call," a coverage arrangement familiar to urology programs. Twelve urology residents were outfitted with Fitbit Flex devices during "home call" for a total of 57 (out of 64, or 89%) call or post-call night pairs. Residents were surveyed with the Stanford Sleepiness Scale (SSS), a single-question alertness survey. Time in bed (TIB) was "time to bed" to "rise for day." Fitbit accelerometers register activity as follows: (1) not moving; (2) minimal movement or restless; or (3) above threshold for accelerometer to register steps. Total sleep time (TST) was the number of minutes in level 1 activity during TIB. Sleep efficiency (SE) was defined as TST divided by TIB. While on call, 10 responding (of 12 available, 83%) residents on average reported TIB as 347 minutes, TST as 165 minutes, and had an SE of 47%. Interestingly, SSS responses did not correlate with sleep parameters. Post-call sleep demonstrated increases in TIB, SE, and TST (+23%, +15%, and +44%, respectively) while sleepiness was reduced by 22%. We demonstrate that urologic residents can consistently wear CAMDs while on home call. SSS did not correlate with Fitbit-estimated sleep duration. Further study with such devices may enhance sleep deprivation recognition to improve resident sleep. Copyright © 2017 Elsevier Inc. All rights reserved.
Singh, Sarguni; Cortez, Dagoberto; Maynard, Douglas; Cleary, James F.; DuBenske, Lori
2017-01-01
Introduction: Patients with incurable cancer have poor prognostic awareness. We present a detailed analysis of the dialogue between oncologists and patients in conversations with prognostic implications. Methods: A total of 128 audio-recorded encounters from a large multisite trial were obtained, and 64 involved scan results. We used conversation analysis, a qualitative method for studying human interaction, to analyze typical patterns and conversational devices. Results: Four components consistently occurred in sequential order: symptom-talk, scan-talk, treatment-talk, and logistic-talk. Six of the encounters (19%) were identified as good news, 15 (45%) as stable news, and 12 (36%) as bad news. The visit duration varied by the type of news: good, 15 minutes (07:00-29:00); stable, 17 minutes (07:00-41:00); and bad, 20 minutes (07:00-28:00). Conversational devices were common, appearing in half of recordings. Treatment-talk occupied 50% of bad-news encounters, 31% of good-news encounters, and 19% of stable-news encounters. Scan-talk occupied less than 10% of all conversations. There were only four instances of frank prognosis discussion. Conclusion: Oncologists and patients are complicit in constructing the typical encounter. Oncologists spend little time discussing scan results and the prognostic implications in favor of treatment-related talk. Conversational devices routinely help transition from scan-talk to detailed discussions about treatment options. We observed an opportunity to create prognosis-talk after scan-talk with a new conversational device, the question “Would you like to talk about what this means?” as the oncologist seeks permission to disclose prognostic information while ceding control to the patient. PMID:28095172
Hostler, David; Reis, Steven E; Bednez, James C; Kerin, Sarah; Suyama, Joe
2010-01-01
Background Thermal protective clothing (TPC) worn by firefighters provides considerable protection from the external environment during structural fire suppression. However, TPC is associated with physiological derangements that may have adverse cardiovascular consequences. These derangements should be treated during on-scene rehabilitation periods. Objective The present study examined heart rate and core temperature responses during the application of four active cooling devices, currently being marketed to the fire service for on-scene rehab, and compared them to passive cooling in a moderate temperature (approximately 24°C) and to an infusion of cold (4°C) saline. Methods Subjects exercised in TPC in a heated room. Following an initial exercise period (BOUT 1) the subjects exited the room, removed TPC, and for 20 minutes cooled passively at room temperature, received an infusion of cold normal saline, or were cooled by one of four devices (fan, forearm immersion in water, hand cooling, water perfused cooling vest). After cooling, subjects donned TPC and entered the heated room for another 50-minute exercise period (BOUT 2). Results Subjects were not able to fully recover core temperature during a 20-minute rehab period when provided rehydration and the opportunity to completely remove TPC. Exercise duration was shorter during BOUT 2 when compared to BOUT 1 but did not differ by cooling intervention. The overall magnitude and rate of cooling and heart rate recovery did not differ by intervention. Conclusions No clear advantage was identified when active cooling devices and cold intravenous saline were compared to passive cooling in a moderate temperature after treadmill exercise in TPC. PMID:20397868
Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers
NASA Astrophysics Data System (ADS)
Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing
2016-12-01
We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.
ERIC Educational Resources Information Center
Wijtmans, Maikel; van Rens, Lisette; van Muijlwijk-Koezen, Jacqueline E.
2014-01-01
Interactive teaching with larger groups of students can be a challenge, but the use of mobile electronic devices by students (smartphones, tablets, laptops) can be used to improve classroom interaction. We have examined several types of tasks that can be electronically enacted in classes and practical courses using these devices: multiple choice…
NASA Astrophysics Data System (ADS)
Svimonishvili, Tengiz; Zameroski, Nathan; Gilmore, Mark; Schamiloglu, Edl; Gaudet, John; Yan, Lincan
2004-11-01
Secondary Electron Emission (SEE) results from bombarding materials with electrons, atoms, or ions. The amount of secondary emission depends on factors such as bulk and surface properties of materials, energy of incident particles, and their angle of incidence. Total secondary electron emission yield, defined as the number of secondary electrons ejected per primary electron, is an important material parameter. Materials with high yield find use, for instance, in photomultiplier tubes, whereas materials with low yield, such as graphite, are used for SEE suppression in high-power microwave devices. The lower the SEE yield, the better the performance of high-power microwave devices (for example, gyrotrons). Employing a low-energy electron gun (energy range from 5 eV to 2000 eV), our work aims at characterizing and eventually identifying novel materials (with the lowest possible SEE yield) that will enhance operation and efficiency of high-power microwave devices.
Chun, K R Julian; Bordignon, Stefano; Urban, Verena; Perrotta, Laura; Dugo, Daniela; Fürnkranz, Alexander; Nowak, Bernd; Schmidt, Boris
2013-12-01
Currently, 2 different left atrial appendage (LAA) closure systems are available for stroke prevention in nonvalvular atrial fibrillation but comparative data are lacking. To prospectively compare procedural data and patient outcome for 2 contemporary LAA closure systems and to investigate an alternative antithrombotic treatment regimen in high-risk patients. Patients with nonvalvular atrial fibrillation, with high risk for stroke, and who either had contraindication or were not willing to accept oral anticoagulation were prospectively enrolled. Watchman (Boston Scientific, Natick, MA; group A) or Amplatzer Cardiac Plug (St Jude Medical, Minneapolis, MN; group B) devices were implanted. All patients received antithrombotic therapy for 6 weeks. After repeat transesophageal echocardiography, patients were switched to aspirin. Eighty patients were enrolled. There was no statistical difference in patient characteristics in groups A and B: CHA2DS2VASC score: 4.1 ± 1.5 versus 4.5 ± 1.8; HASBLED score: 3.1 ± 1.1 versus 3.1 ± 1.1, respectively. LAA closure was achieved in 78 of 80 patients (98%) (group A: 38 of 40 [95%] vs group B: 40 of 40 [100%]). There was no difference in procedure time (group A: 48 ± 16 minutes vs group B: 47 ± 15 minutes; P = .69) and fluoroscopy time (group A: 6.0 ± 4.7 minutes vs group B: 7.3 ± 4.4 minutes; P = .25). Major complications included 1 air embolism and delayed tamponade in each group. After 6 weeks, 1 device dislodgment and 4 device-related thrombi were detected. Ninety-four percent of the patients (73 of 77) were switched to aspirin after 6 weeks. During a median follow-up of 364 days (Q1-Q3: 283-539 days), no systemic embolism occurred, but 3 patients died (heart failure: n = 2; bleeding: n = 1). Implantation of both LAA closure devices can be performed with high success rates in high-risk patients. Postprocedural 6 weeks antithrombotic therapy followed by aspirin therapy needs to be confirmed in a larger study. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Strategies to optimize the performance of Robotic-assisted laparoscopic hysterectomy
Lambrou, N.; Diaz, R.E.; Hinoul, P.; Parris, D.; Shoemaker, K.; Yoo, A.; Schwiers, M.
2014-01-01
A hybrid technique of robot-assisted, laparoscopic hysterectomy using the ENSEAL® Tissue Sealing Device is described in a retrospective, consecutive, observational case series. Over a 45 month period, 590 robot-assisted total laparoscopic hysterectomies +/- oophorectomy for benign and malignant indications were performed by a single surgeon with a bedside assistant at a tertiary healthcare center. Patient demographics, indications for surgery, comorbidities, primary and secondary surgical procedures, total operative and surgical time, estimated blood loss (EBL), length of stay (LOS), complications, transfusions and subsequent readmissions were analyzed. The overall complication rate was 5.9% with 35 patients experiencing 69 complications. Mean (SD) surgery time, operating room (OR) time, EBL, and LOS for the entire cohort were 75.5 (39.42) minutes, 123.8 (41.15) minutes, 83.1 (71.29) millilitres, and 1.2 (0.93) days, respectively. Mean surgery time in the first year (2009) was 91.6 minutes, which declined significantly each year by 18.0, 19.0, and 24.3 minutes, respectively. EBL and LOS did not vary significantly across the entire series. Using the cumulative sum method, an optimization curve for surgery time was evaluated, with three distinct optimization phases observed. In summary, the use of an advanced laparoscopic tissue-sealing device by a bedside surgical assistant provided an improved operative efficiency and reliable vessel sealing during robotic hysterectomy. PMID:25374656
Thermo-Electron Ballistic Coolers or Heaters
NASA Technical Reports Server (NTRS)
Choi, Sang H.
2003-01-01
Electronic heat-transfer devices of a proposed type would exploit some of the quantum-wire-like, pseudo-superconducting properties of single-wall carbon nanotubes or, optionally, room-temperature-superconducting polymers (RTSPs). The devices are denoted thermo-electron ballistic (TEB) coolers or heaters because one of the properties that they exploit is the totally or nearly ballistic (dissipation or scattering free) transport of electrons. This property is observed in RTSPs and carbon nanotubes that are free of material and geometric defects, except under conditions in which oscillatory electron motions become coupled with vibrations of the nanotubes. Another relevant property is the high number density of electrons passing through carbon nanotubes -- sufficient to sustain electron current densities as large as 100 MA/square cm. The combination of ballistic motion and large current density should make it possible for TEB devices to operate at low applied potentials while pumping heat at rates several orders of magnitude greater than those of thermoelectric devices. It may also enable them to operate with efficiency close to the Carnot limit. In addition, the proposed TEB devices are expected to operate over a wider temperature range
Khokhar, Bushra; Jones, Jessica; Ronksley, Paul E; Armstrong, Marni J; Caird, Jeff; Rabi, Doreen
2014-01-01
Mobile electronic devices, such as mobile phones and PDAs, have emerged as potentially useful tools in the facilitation and maintenance of weight loss. While RCTs have demonstrated a positive impact of mobile interventions, the extent to which mobile electronic devices are more effective than usual care methods is still being debated. Electronic databases were systematically searched for RCTs evaluating the effectiveness of mobile electronic device interventions among overweight and obese adults. Weighted mean difference for change in body weight was the primary outcome. The search strategy yielded 559 citations and of the 108 potentially relevant studies, six met the criteria. A total of 632 participants were included in the six studies reporting a mean change in body weight. Using a random-effects model, the WMD for the effect of using mobile electronic devices on reduction in body weight was -1.09 kg (95% CI -2.12, -0.05). When stratified by the type of mobile electronic device used, it suggests that interventions using mobile phones were effective at achieving weight loss, WMD = -1.78 kg (95% CI -2.92, -0.63). This systematic review and meta-analysis suggests that mobile electronic devices have the potential to facilitate weight loss in overweight and obese populations, but further work is needed to understand if these interventions have sustained benefit and how we can make these mHealth tools most effective on a large scale. As the field of healthcare increasingly utilizes novel mobile technologies, the focus must not be on any one specific device but on the best possible use of these tools to measure and understand behavior. As mobile electronic devices continue to increase in popularity and the associated technology continues to advance, the potential for the use of mobile devices in global healthcare is enormous. More RCTs with larger sample sizes need to be conducted to look at the cost-effectiveness, technical and financial feasibility of adapting such mHealth interventions in a real clinical setting.
An examination of safety reports involving electronic flight bags and portable electronic devices
DOT National Transportation Integrated Search
2014-06-01
The purpose of this research was to develop a better understanding of safety considerations with the use of Electronic Flight Bags (EFBs) and Portable Electronic Devices (PEDs) by examining safety reports from Aviation Safety Reporting System (ASRS),...
Negative differential resistance in GaN tunneling hot electron transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhichao; Nath, Digbijoy; Rajan, Siddharth
Room temperature negative differential resistance is demonstrated in a unipolar GaN-based tunneling hot electron transistor. Such a device employs tunnel-injected electrons to vary the electron energy and change the fraction of reflected electrons, and shows repeatable negative differential resistance with a peak to valley current ratio of 7.2. The device was stable when biased in the negative resistance regime and tunable by changing collector bias. Good repeatability and double-sweep characteristics at room temperature show the potential of such device for high frequency oscillators based on quasi-ballistic transport.
Molecular electronics with single molecules in solid-state devices.
Moth-Poulsen, Kasper; Bjørnholm, Thomas
2009-09-01
The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.
Clinical use of a cordless laparoscopic ultrasonic device.
Kim, Fernando J; Sehrt, David; Molina, Wilson R; Pompeo, Alexandre
2014-01-01
On April 25, 2012, the first laparoscopic cordless ultrasonic device (Sonicision, Covidien, Mansfield, Massachusetts) was used in a clinical setting. We describe our initial experience. The cordless device is assembled with a reusable battery and generator on a base hand-piece. It has a minimum and maximum power setting controlled by a single trigger for both coagulation and cutting. A laparoscopic radical nephrectomy was performed on a 56-year-old man with a 7-cm right renal mass. A laparoscopic pelvic lymphadenectomy was performed in a 51-year-old man with high-risk prostate cancer. Data on surgical team satisfaction, operative time, number of activations, and times the laparoscope was removed as a result of plume were collected. The surgical technician successfully assembled the device at the beginning of the cases with verbal instructions from the surgeon. Operative time for nephrectomy was 77 minutes, with 143 total activations (minimum = 86, maximum = 57). The operative time for the pelvic lymphadenectomy was 27 minutes, with 38 total activations (minimum = 27, maximum = 11). One battery was used in each case. The laparoscope was removed twice during the nephrectomy and once during the lymphadenectomy. Surgical staff satisfaction survey results revealed easier and faster assembly, more space in the operating room, ergonomic handle, and comparable cutting/coagulation, weight, and plume generation with other devices (Table 1). [Table: see text]. The first clinical application of the pioneering cordless dissector was successfully performed, resulting in surgeons' perceptions of comparable results with other devices of easier and safer use and faster assembly.
Fabrication techniques and applications of flexible graphene-based electronic devices
NASA Astrophysics Data System (ADS)
Luqi, Tao; Danyang, Wang; Song, Jiang; Ying, Liu; Qianyi, Xie; He, Tian; Ningqin, Deng; Xuefeng, Wang; Yi, Yang; Tian-Ling, Ren
2016-04-01
In recent years, flexible electronic devices have become a hot topic of scientific research. These flexible devices are the basis of flexible circuits, flexible batteries, flexible displays and electronic skins. Graphene-based materials are very promising for flexible electronic devices, due to their high mobility, high elasticity, a tunable band gap, quantum electronic transport and high mechanical strength. In this article, we review the recent progress of the fabrication process and the applications of graphene-based electronic devices, including thermal acoustic devices, thermal rectifiers, graphene-based nanogenerators, pressure sensors and graphene-based light-emitting diodes. In summary, although there are still a lot of challenges needing to be solved, graphene-based materials are very promising for various flexible device applications in the future. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) Program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and China's Postdoctoral Science Foundation (CPSF).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...
Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY
2011-12-20
A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.
Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau
2009-01-01
We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility. PMID:22408473
Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau
2009-01-01
We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility.
Total Ionizing Dose and Displacement Damage Compendium of Candidate Spacecraft Electronics for NASA
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Chen, Dakai; Oldham, Timothy R.; Sanders, Anthony B.; Kim, Hak S.; Campola, Michael J.; Buchner, Stephen P.; LaBel, Kenneth A.; Marshall, Cheryl J.; Pellish, Jonathan A.;
2010-01-01
Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
1993-02-10
new technology is to have sufficient control of processing to *- describable by an appropriate elecromagnetic model . build useful devices. For example...3. W aveguide Modulators .................................. 7 B. Integrated Optical Device and Circuit Modeling ... ................... .. 10 C...following categories: A. Integrated Optical Devices and Technology B. Integrated Optical Device and Circuit Modeling C. Cryogenic Etching for Low
Chemical and charge transfer studies on interfaces of a conjugated polymer and ITO
NASA Astrophysics Data System (ADS)
David, Tanya M. S.; Arasho, Wondwosson; Smith, O'Neil; Hong, Kunlun; Bonner, Carl; Sun, Sam-Shajing
2017-08-01
Conjugated oligomers and polymers are very attractive for potential future plastic electronic and opto-electronic device applications such as plastic photo detectors and solar cells, thermoelectric devices, field effect transistors, and light emitting diodes. Understanding and optimizing charge transport between an active polymer layer and conductive substrate is critical to the optimization of polymer based electronic and opto-electronic devices. This study focused on the design, synthesis, self-assembly, and electron transfers and transports of a phosphonic acid end-functionalized polyphenylenevinylene (PPV) that was covalently attached and self-assembled onto an Indium Tin Oxide (ITO) substrate. This study demonstrated how atomic force microscopy (AFM) can be an effective characterization technique in conjunction with conventional electron transfer methods, including cyclic voltammetry (CV), towards determining electron transfer rates in polymer and polymer/conductor interface systems. This study found that the electron transfer rates of covalently attached and self-assembled films were much faster than the spin coated films. The knowledge from this study can be very useful for designing potential polymer based electronic and opto-electronic thin film devices.
Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
Rogers, John A; Cao, Qing; Alam, Muhammad; Pimparkar, Ninad
2015-02-03
The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.
Foo, Ning-Ping; Chang, Jer-Hao; Su, Shih-Bin; Chen, Kow-Tong; Cheng, Ching-Fa; Chen, Pei-Chung
2014-01-01
Background The survival rate of patients with out-of-hospital cardiac arrest is low, and measures to improve the quality of cardiopulmonary resuscitation (CPR) during ambulance transportation are desirable. We designed a stabilization device, and in a randomized crossover trial we found performing CPR in a moving ambulance with the device (MD) could achieve better efficiency than that without the device (MND), but the efficiency was lower than that in a non-moving ambulance (NM). Purpose To evaluate whether a modified version of the stabilization device, can promote further the quality of CPR during ambulance transportation. Methods Participants of the previous study were recruited, and they performed CPR for 10 minutes in a moving ambulance with the modified version of the stabilization device (MVSD). The primary outcomes were effective chest compressions and no-flow fraction recorded by a skill-reporter manikin. The secondary outcomes included back pain, physiological parameters, and the participants' rating about the device after performing CPR. Results The overall effective compressions in 10 minutes were 86.4±17.5% for NM, 60.9±14.6% for MND, 69.7±22.4% for MD, and 86.6%±13.2% for MVSD (p<0.001). Whereas changes in back pain severity and physiology parameters were similar under all conditions, MVSD had the lowest no-flow fraction. Differences in effective compressions and the no-flow fraction between MVSD and NM did not reach statistical significance. Conclusions The use of the modified device can improve quality of CPR in a moving ambulance to a level similar to that in a non-moving condition without increasing the severity of back pain. PMID:25329643
Foo, Ning-Ping; Chang, Jer-Hao; Su, Shih-Bin; Chen, Kow-Tong; Cheng, Ching-Fa; Chen, Pei-Chung; Lin, Tsung-Yi; Guo, How-Ran
2014-01-01
The survival rate of patients with out-of-hospital cardiac arrest is low, and measures to improve the quality of cardiopulmonary resuscitation (CPR) during ambulance transportation are desirable. We designed a stabilization device, and in a randomized crossover trial we found performing CPR in a moving ambulance with the device (MD) could achieve better efficiency than that without the device (MND), but the efficiency was lower than that in a non-moving ambulance (NM). To evaluate whether a modified version of the stabilization device, can promote further the quality of CPR during ambulance transportation. Participants of the previous study were recruited, and they performed CPR for 10 minutes in a moving ambulance with the modified version of the stabilization device (MVSD). The primary outcomes were effective chest compressions and no-flow fraction recorded by a skill-reporter manikin. The secondary outcomes included back pain, physiological parameters, and the participants' rating about the device after performing CPR. The overall effective compressions in 10 minutes were 86.4±17.5% for NM, 60.9±14.6% for MND, 69.7±22.4% for MD, and 86.6%±13.2% for MVSD (p<0.001). Whereas changes in back pain severity and physiology parameters were similar under all conditions, MVSD had the lowest no-flow fraction. Differences in effective compressions and the no-flow fraction between MVSD and NM did not reach statistical significance. The use of the modified device can improve quality of CPR in a moving ambulance to a level similar to that in a non-moving condition without increasing the severity of back pain.
76 FR 17106 - Ashley Resource Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-28
... who use telecommunication devices for the deaf (TDD) may call the Federal Information Relay Service...) Welcome and roll call; (2) Approval of meeting minutes; (3) Roll call voting on projects; (4) Development...
Use of mobile high-resolution device for remote frozen section evaluation of whole slide images.
Ramey, Joel; Fung, Kar Ming; Hassell, Lewis A
2011-01-01
With recent advances, it is now possible to view whole slide images (WSI) on mobile, high-resolution, viewing devices (MVD). This creates a new paradigm in which MVDs may be used for consultation and/or diagnosis. Validation of the results with devices is important for practitioners and regulators. We evaluated the use of MVDs in frozen section (FS) interpretation. A series of 72 consecutive FS cases were selected for potential inclusion in the study. A 67 case subset of these were successfully scanned at 20x magnification. Scan times were recorded. A sample of WSI FS cases, with gross and clinical information, was presented to six pathologists on an iPad MVD using the Interpath application. Times to diagnosis were recorded. Results were compared with the original reported and final diagnosis. Participants also completed a survey assessing image quality, interface, and diagnostic comfort level. Scan times averaged two minutes and 46 seconds per slide, (standard deviation [SD] 2 minutes 46 seconds). Evaluation times averaged 4 minutes and 59 seconds per case, range to 13 minutes and 50 seconds, SD 3 minutes 48 seconds. Concordance between initial FS diagnosis and rendered through the MVD was 89%. Minor discrepancies made up 8% and major disagreements 3%. The kappa statistic for this series is 0.85. Participants rated the experience at 5 on a 10-point scale, range 3 to 7. Two-thirds found the image quality to be adequate, half were satisfied with image resolution, and 33% would be willing to make a diagnosis on the iPad, plus one only for special cases. Five of six respondents (83%) found the navigation with the study software difficult. Image fidelity and resolution makes the iPad potentially suitable for WSI evaluation of FS. Acceptable accuracy is attainable for FS interpretation. But, although possible to obtain acceptable results, use of the iPad with Interpath to view WSI is not easy and meets user resistance. The obstacle of slide navigation at high magnification could introduce frustrations, delays, or errors.
Window-assisted nanosphere lithography for vacuum micro-nano-electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nannan; Institute of Electronic Engineering, Chinese Academy of Engineering Physics, Mianyang, 621900; Pang, Shucai
2015-04-15
Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided amore » new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics.« less
17 CFR 23.202 - Daily trading records.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., instant messaging, chat rooms, electronic mail, mobile device, or other digital or electronic media. Such...; (ii) Moneys borrowed and moneys loaned; (iii) The daily calculation of the value of each outstanding... rooms, electronic mail, mobile device, or other digital or electronic media; (2) Reliable timing data...
17 CFR 23.202 - Daily trading records.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., instant messaging, chat rooms, electronic mail, mobile device, or other digital or electronic media. Such...; (ii) Moneys borrowed and moneys loaned; (iii) The daily calculation of the value of each outstanding... rooms, electronic mail, mobile device, or other digital or electronic media; (2) Reliable timing data...
Beckner, E.H.; Clauser, M.J.
1975-08-12
This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)
Nonlinear dynamics of a rack-pinion-rack device powered by the Casimir force.
Miri, MirFaez; Nekouie, Vahid; Golestanian, Ramin
2010-01-01
Using the lateral Casimir force-a manifestation of the quantum fluctuations of the electromagnetic field between objects with corrugated surfaces-as the main force transduction mechanism, a nanomechanical device with rich dynamical behaviors is proposed. The device is made of two parallel racks that are moving in the same direction and a pinion in the middle that couples with both racks via the noncontact lateral Casimir force. The built-in frustration in the device causes it to be very sensitive and react dramatically to minute changes in the geometrical parameters and initial conditions of the system. The noncontact nature of the proposed device could help with the ubiquitous wear problem in nanoscale mechanical systems.
NASA Astrophysics Data System (ADS)
Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.
2018-01-01
Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.
Measurement of the^ 235U(n,n')^235mU Integral Cross Section in a Pulsed Reactor
NASA Astrophysics Data System (ADS)
Vieira, D. J.; Bond, E. M.; Belier, G.; Meot, V.; Becker, J. A.; Macri, R. A.; Authier, N.; Hyneck, D.; Jacquet, X.; Jansen, Y.; Legrendre, J.
2009-10-01
We will present the integral measurement of the neutron inelastic cross section of ^235U leading to the 26-minute, E*=76.5 eV isomer state. Small samples (5-20 microgm) of isotope-enriched ^235U were activated in the central cavity of the CALIBAN pulsed reactor at Valduc where a nearly pure fission neutron spectrum is produced with a typical fluence of 3x10^14 n/cm^2. After 30 minutes the samples were removed from the reactor and counted in an electrostatic-deflecting electron spectrometer that was optimized for the detection of ^235mU conversion electrons. From the decay curve analysis of the data, the 26-minute ^235mU component was extracted. Preliminary results will be given and compared to gamma-cascade calculations assuming complete K-mixing or with no K-mixing.
Zhang, Guang; Jiang, Shaohui; Yao, Wei; Liu, Changhong
2016-11-16
Owing to the outstanding properties of thermal conduction, lightweight, and chemical durability, carbon nanotubes (CNTs) have revealed promising applications in thermal management materials. Meanwhile, the increasingly popular portable electronics and the rapid development of space technology need lighter weight, smaller size, and more effective thermal management devices. Here, a novel kind of heat dissipation devices based on the superaligned CNT films and underlying microchannels is proposed, and the heat dissipation properties are measured at the natural condition. Distinctive from previous studies, by combining the advantages of microchannels and CNTs, such a novel heat dissipation device enables superior natural convection heat transfer properties. Our findings prove that the novel CNT-based devices could show an 86.6% larger total natural heat dissipation properties than bare copper plate. Further calculations of the radiation and natural convection heat transfer properties demonstrate that the excellent passive cooling properties of these CNT-based devices are primarily caused by the reinforcement of the natural convection heat transfer properties. Furthermore, the heat dissipation mechanisms are briefly discussed, and we propose that the very high heat transfer coefficients and the porous structures of superaligned CNT films play critical roles in reinforcing the natural convection. The novel CNT-based heat dissipation devices also have advantages of energy-saving, free-noise, and without additional accessories. So we believe that the CNT-based heat dissipation devices would replace the traditional metal-finned heat dissipation devices and have promising applications in electronic devices, such as photovoltaic devices, portable electronic devices, and electronic displays.
Kondo, Yusuke; Tanabe, Tsuyoshi; Kobayashi-Miura, Mikiko; Amano, Hiroki; Yamaguchi, Natsu; Kamura, Masanori; Fujita, Yasuyuki
2012-01-01
Background The objective of this study was to clarify the relationship between feeling upon awakening (FA) and time spent using information technology (IT) devices by children in kindergartens, elementary schools, and junior high schools in Shimane, Japan. Methods In October 2008, a self-report survey was distributed to 2075 children in kindergartens (n = 261), elementary schools (n = 1162), and junior high schools (n = 652) in Shimane, Japan. The questionnaire gathered data on sex, school year, feeling upon awakening, and time spent using IT devices after school (television, videos on television, video games, personal computers, and cellular phones). After adjusting for sex and school year, data were analyzed by multivariate logistic regression analysis to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results A total of 2030 children completed this survey (response rate, 97.8%). Negative FA was associated with watching television more than 2 hours/day (OR = 1.51, 95% CI = 1.23–1.85), playing video games more than 30 minutes/day (1.50, 1.20–1.87), and using personal computers more than 30 minutes/day (1.35, 1.04–1.75). Conclusions Time spent using IT devices affected the FA of children in kindergarten through junior high school. We propose the development of guidelines regarding the appropriate amount of time this population should spend using IT devices. PMID:22041529
Portable electrocardiogram device using Android smartphone.
Brucal, S G E; Clamor, G K D; Pasiliao, L A O; Soriano, J P F; Varilla, L P M
2016-08-01
Portable electrocardiogram (ECG) capturing device can be interfaced to a smart phone installed with an android-based application (app). This app processes and analyses the data sent by the device to provide an interpretation of the patient/user's heart current condition (e.g.: beats per minute, heart signal waveform, R-R interval). The ECG recorded by the app is stored in the smart phone's Secure Digital (SD) card and cloud storage which can be accessed remotely by a physician to aid in providing medical diagnosis. The project aims to help patients living at a far distance from hospitals and experience difficulty in consulting their physician for regular check-ups, and assist doctors in regularly monitoring their patient's heart condition. The hardware data acquisition device and software application were subjected to trials in a clinic with volunteer-patients to measure the ECG and heart rate, data saving speed on the SD card, success rate of the saved data and uploaded file. Different ECG tests using the project prototype were done for 12 patients/users and yielded a reading difference of 7.61% in an R-R interval reading and 5.35% in heart rate reading as compared with the cardiologist's conventional 12-electrode ECG machine. Using the developed ECG device, it took less than 5 seconds to save ECG reading using SD card and approximately 2 minutes to upload via cloud.
SU-E-T-457: Design and Characterization of An Economical 192Ir Hemi-Brain Small Animal Irradiator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grams, M; Wilson, Z; Sio, T
Purpose: To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Methods: A high dose rate 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 centimeter thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit is equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film. The penumbra from the small animal irradiator was compared under similar collimating conditions to the penumbra from 6 MV photons, 6 MeV electrons, and 20 MeV electrons frommore » a linear accelerator as well as 300 kVp photons from an orthovoltage unit and Monte Carlo simulated 90 MeV protons. Results: The tungsten collimator provides a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator. Additionally, the penumbra was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions: The small animal irradiator described here can be built for under $1,000 and used in conjunction with any commercial brachytherapy afterloader to provide a convenient and cost-effective option for small animal irradiation experiments. The unit offers high dose rate delivery and sharp penumbra, which is ideal for hemi-brain irradiation of mice. With slight modifications to the design, irradiation of sites other than the brain could be accomplished easily. Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring a sharp penumbra.« less
Materials and processing approaches for foundry-compatible transient electronics.
Chang, Jan-Kai; Fang, Hui; Bower, Christopher A; Song, Enming; Yu, Xinge; Rogers, John A
2017-07-11
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are ( i ) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, ( ii ) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and ( iii ) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.
Materials and processing approaches for foundry-compatible transient electronics
NASA Astrophysics Data System (ADS)
Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.
2017-07-01
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.
NASA Astrophysics Data System (ADS)
Takeda, Kotaro; Honda, Kentaro; Takeya, Tsutomu; Okazaki, Kota; Hiraki, Tatsurou; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Fukuda, Hiroshi; Usui, Mitsuo; Nosaka, Hideyuki; Yamamoto, Tsuyoshi; Yamada, Koji
2015-01-01
We developed a design technique for a photonics-electronics convergence system by using an equivalent circuit of optical devices in an electrical circuit simulator. We used the transfer matrix method to calculate the response of an optical device. This method used physical parameters and dimensions of optical devices as calculation parameters to design a device in the electrical circuit simulator. It also used an intermediate frequency to express the wavelength dependence of optical devices. By using both techniques, we simulated bit error rates and eye diagrams of optical and electrical integrated circuits and calculated influences of device structure change and wavelength shift penalty.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Casey, Megan C.; Chen, Dakai; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Marshall, Cheryl J.;
2011-01-01
Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
NASA Astrophysics Data System (ADS)
Yu, Deying
Stretchable organic electronics have emerged as interesting technologies for several applications where stretchability is considered important. The easy and low-cost deposition procedures for the fabrication of stretchable organic solar cells and organic light emitting devices reduce the overall cost for the fabrication of these devices. However, the interfacial cracks and defects at the interfaces of the devices, during fabrication, are detrimental to the performance of stretchable organic electronic devices. Also, as the devices are deformed under service conditions, it is possible for cracks to grow. Furthermore, the multilayered structures of the devices can fail due to the delamination and buckling of the layered structures. There is, therefore, a need to study the failure mechanism in the layered structures that are relevant to stretchable organic electronic devices. Hence, in this study, a combined experimental, analytical and computational approach is used to study the effects of adhesion and deformation on the failure mechanisms in structures that are relevant to stretchable electronic devices. First, the failure mechanisms are studied in stretchable inorganic electronic structures. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure, after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. Analytical models are used to determine the critical stresses for wrinkling and buckling. The interfacial cracking and film buckling that can occur are also studied using finite element simulations. The implications of the results are then discussed for the potential applications of micro-wrinkles and micro-buckles in the stretchable electronic structures and biomedical devices. Subsequently, the adhesion between bi-material pairs that are relevant to organic light emitting devices, composite organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and composite organic/inorganic solar cells on flexible substrates, is measured using force microscopy (AFM) techniques. The AFM measurements are incorporated into the Derjaguin-Muller-Toporov model to calculate the adhesion energies. The implications of the results are then discussed for the design of robust organic and composite organic/inorganic electronic devices. Finally, the lamination of organic solar cells and organic light emitting devices is studied using a combination of experimental, computational, and analytical approaches. First, the effects of applied lamination force (on contact between the laminated layers) are studied using experiments and models. The crack driving forces associated with the interfacial cracks that form at the interfaces between layers (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and models. Guidelines are developed for the lamination of low-cost organic electronic structures.
Transverse Mode Electron Beam Microwave Generator
NASA Technical Reports Server (NTRS)
Wharton, Lawrence E.
1994-01-01
An electron beam microwave device having an evacuated interaction chamber to which are coupled a resonant cavity which has an opening between the resonant cavity and the evacuated interaction chamber and an electron gun which causes a narrow beam of electrons to traverse the evacuated interaction chamber. The device also contains a mechanism for feeding back a microwave electromagnetic field from the resonant cavity to the evacuated interaction chamber in such a way as to modulate the direction of propagation of the electron beam, thereby further amplifyjng the microwave electromagnetic field. Furthermore, provision is made for coupling the electromagnetic field out of the electron beam microwave device.
Recent Advancements in Functionalized Paper-Based Electronics.
Lin, Yang; Gritsenko, Dmitry; Liu, Qian; Lu, Xiaonan; Xu, Jie
2016-08-17
Building electronic devices on ubiquitous paper substrates has recently drawn extensive attention due to its light weight, low cost, environmental friendliness, and ease of fabrication. Recently, a myriad of advancements have been made to improve the performance of paper electronics for various applications, such as basic electronic components, energy storage devices, generators, antennas, and electronic circuits. This review aims to summarize this progress and discuss different perspectives of paper electronics as well as the remaining challenges yet to be overcome in this field. Other aspects included in this review are the fundamental characteristics of paper, modification of paper with functional materials, and various methods for device fabrication.
López-Sanromán, F J; de la Riva Andrés, S; Holmbak-Petersen, R; Pérez-Nogués, M; Forés Jackson, P; Santos González, M
2014-10-01
The locomotor pattern alterations produced after the administration of a sublingual detomidine gel was measured by an accelerometric method in horses. Using a randomized two-way crossover design, all animals (n = 6) randomly received either detomidine gel or a placebo administered sublingually. A triaxial accelerometric device was used for gait assessment 15 minutes before (baseline) and every 10 minutes after each treatment for a period of 180 minutes. Eight different parameters were calculated, including speed, stride frequency, stride length, regularity, dorsoventral, propulsion, mediolateral, and total power. Force of acceleration and the three components of power were also calculated. Significant statistical differences were observed between groups in all the parameters but stride length. The majority of significant changes started between 30 and 70 minutes after drug administration and lasted for 160 minutes. This route of administration is definitely useful in horses in which a prolonged sedation is required, with stability being a major concern. Copyright © 2014 Elsevier Ltd. All rights reserved.
Knight, Vickie; Guy, Rebecca J; Handan, Wand; Lu, Heng; McNulty, Anna
2014-06-01
In 2010, we introduced an express sexually transmitted infection/HIV testing service at a large metropolitan sexual health clinic, which significantly increased clinical service capacity. However, it also increased reception staff workload and caused backlogs of patients waiting to register or check in for appointments. We therefore implemented a new electronic self-registration and appointment self-arrival system in March 2012 to increase administrative efficiency and reduce waiting time for patients. We compared the median processing time overall and for each step of the registration and arrival process as well as the completeness of patient contact information recorded, in a 1-week period before and after the redesign of the registration system. χ2 Test and rank sum tests were used. Before the redesign, the median processing time was 8.33 minutes (interquartile range [IQR], 6.82-15.43), decreasing by 30% to 5.83 minutes (IQR, 4.75-7.42) when the new electronic self-registration and appointment self-arrival system was introduced (P < 0.001). The largest gain in efficiency was in the time taken to prepare the medical record for the clinician, reducing from a median of 5.31 minutes (IQR, 4.02-8.29) to 0.57 minutes (IQR, 0.38-1) in the 2 periods. Before implementation, 20% of patients provided a postal address and 31% an e-mail address, increasing to 60% and 70% post redesign, respectively (P < 0.001). Our evaluation shows that an electronic patient self-registration and appointment self-arrival system can improve clinic efficiency and save patient time. Systems like this one could be used by any outpatient service with large patient volumes as an integrated part of the electronic patient management system or as a standalone feature.
Rugged switch responds to minute pressure differentials
NASA Technical Reports Server (NTRS)
Friend, L. C.; Shaub, K. D.
1967-01-01
Pressure responsive switching device exhibits high sensitivity but is extremely rugged and resistant to large amplitude shock and velocity loading. This snap-action, single pole-double throw switch operates over a wide temperature range.
49 CFR 325.59 - Measurement procedure; stationary test.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) If the motor vehicle's engine radiator fan drive is equipped with a clutch or similar device that... minutes, to permit the engine radiator fan to automatically disengage when the vehicle's noise emissions...
A novel device for delivery of intranasal particulate medication: a pilot study.
Khalili, Sammy; Tkachenko, Natalia; Rotenberg, Brian
2013-11-01
Intranasal medication delivery for allergic rhinitis (AR) is considered a mainstay of therapy but is hampered by poor compliance. Among reasons given are unpleasant sensations associated with spray penetration into the pharynx. Our objective was to study a novel method of particle delivery to the nose that would abrogate these issues. This was a double-blind, randomized study. Subjects who met study criteria underwent intranasal particle delivery using a novel device (Trivair Nasal Deposition System; Trimel Pharmaceuticals, Toronto, Canada) that delivered anhydrous lactose particles into the nose via a transoral air puff (thus elevating soft palate and blocking the nasopharynx). Subjects had nostrils randomized into 4 groups (particle sizes 5 μm and 50 μm × doses 12.5 mg and 25 mg). Particle deposition was assessed at 1 minute, 10 minutes, and 30 minutes on the inferior turbinate, middle turbinate, and nasopharynx, respectively, using high-definition endoscopic photography. Each image was compared using an expert blinded 2-person panel for percentage particles remaining. Nonparametric data was assessed using the Wilcoxon signed-rank test via Strata software. Twelve nostrils in total met study criteria. The results showed no difference in effectiveness of nasal particle retention between the groups based on particle size or dose. No particles entered the nasopharynx or oropharynx. This study provides proof-of-principle data that the Trivair Nasal Deposition System is effective at retaining medication in the nose without pharyngeal penetration. Larger studies on this device are warranted. © 2013 ARS-AAOA, LLC.
a Thermally Desorbable Miniature Passive Dosimeter for Organic Vapors
NASA Astrophysics Data System (ADS)
Gonzalez, Jesus Antonio
A thermally desorbable miniature passive dosimeter (MPD) for organic vapors has been developed in conformity with theoretical and practical aspects of passive dosimeter design. The device was optimized for low sample loadings resulting from short-term and/or low concentration level exposure. This was accomplished by the use of thermal desorption rather than solvent elution, which provided the GC method with significantly higher sensitivity. Laboratory evaluation of this device for factors critical to the performance of passive dosimeters using benzene as the test vapor included: desorption efficiency (97.2%), capacity (1400 ppm-min), sensitivity (7ng/sample or 0.06 ppmv for 15 minutes sampling) accuracy and precision, concentration level, environmental conditions (i.e., air face velocity, relative humidity) and sample stability during short (15 minutes) and long periods of time (15 days). This device has demonstrated that its overall accuracy meets NIOSH and OSHA requirements for a sampling and analytical method for the exposure concentration range of 0.1 to 50 ppm (v/v) and 15 minutes exposures. It was demonstrated that the MPD operates in accordance with theoretically predicted performance and should be adequate for short-term and/or low concentration exposure monitoring of organic vapors in the workplace. In addition a dynamic vapor exposure evaluation system for passive dosimeters have been validated using benzene as the test vapor. The system is capable of generating well defined short-square wave concentration profiles suitable for the evaluation of passive dosimeters for ceiling exposure monitoring.
Theoretical and material studies of thin-film electroluminescent devices
NASA Technical Reports Server (NTRS)
Summers, C. J.
1989-01-01
Thin-film electroluminescent (TFEL) devices are studied for a possible means of achieving a high resolution, light weight, compact video display panel for computer terminals or television screens. The performance of TFEL devices depends upon the probability of an electron impact exciting a luminescent center which in turn depends upon the density of centers present in the semiconductor layer, the possibility of an electron achieving the impact excitation threshold energy, and the collision cross section itself. Efficiency of such a device is presently very poor. It can best be improved by increasing the number of hot electrons capable of impact exciting a center. Hot electron distributions and a method for increasing the efficiency and brightness of TFEL devices (with the additional advantage of low voltage direct current operation) are investigated.
Future opportunities for advancing glucose test device electronics.
Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z
2011-09-01
Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers. © 2011 Diabetes Technology Society.
NASA Astrophysics Data System (ADS)
Nie, Qu-yang; Zhang, Fang-hui
2018-05-01
The inverted bottom-emitting organic light-emitting devices (IBOLEDs) were prepared, with the structure of ITO/Al ( x nm)/LiF (1 nm)/Bphen (40 nm)/CBP: GIr1 (14%):R-4b (2%) (10 nm)/BCP (3 nm)/CBP:GIr1 (14%):R-4b (2%) (20 nm)/TCTA (10 nm)/NPB (40 nm)/MoO3 (40 nm)/Al (100 nm), where the thickness of electron injection layer Al ( x) are 0 nm, 2 nm, 3 nm, 4 nm and 5 nm, respectively. In this paper, the electron injection condition and luminance properties of inverted devices were investigated by changing the thickness of Al layer in Al/LiF compound thin film. It turns out that the introduction of Al layer can improve electron injection of the devices dramatically. Furthermore, the device exerts lower driving voltage and higher current efficiency when the thickness of electron injection Al layer is 3 nm. For example, the current efficiency of the device with 3-nm-thick Al layer reaches 19.75 cd·A-1 when driving voltage is 7 V, which is 1.24, 1.17 and 17.03 times larger than those of the devices with 2 nm, 4 nm and 5 nm Al layer, respectively. The device property reaches up to the level of corresponding conventional device. In addition, all inverted devices with electron injection Al layer show superior stability of color coordinate due to the adoption of co-evaporation emitting layer and BCP spacer-layer, and the color coordinate of the inverted device with 3-nm-thick Al layer only changes from (0.580 6, 0.405 6) to (0.532 8, 0.436 3) when driving voltage increases from 6 V to 10 V.
Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities
NASA Astrophysics Data System (ADS)
Jung, Yei Hwan; Seo, Jung-Hun; Zhang, Huilong; Lee, Juhwan; Cho, Sang June; Chang, Tzu-Hsuan; Ma, Zhenqiang
2017-05-01
Successful integration of ultrathin flexible or stretchable systems with new applications, such as medical devices and biodegradable electronics, have intrigued many researchers and industries around the globe to seek materials and processes to create high-performance, non-invasive and cost-effective electronics to match those of state-of-the-art devices. Nevertheless, the crucial concept of transmitting data or power wirelessly for such unconventional devices has been difficult to realize due to limitations of radio-frequency (RF) electronics in individual components that form a wireless circuitry, such as antenna, transmission line, active devices, passive devices etc. To overcome such challenges, these components must be developed in a step-by-step manner, as each component faces a number of different challenges in ultrathin formats. Here, we report on materials and design considerations for fabricating flexible and stretchable electronics systems that operate in the microwave level. High-speed flexible active devices, including cost effective Si-based strained MOSFETs, GaAs-based HBTs and GaN-based HEMTs, performing at multi-gigahertz frequencies are presented. Furthermore, flexible or stretchable passive devices, including capacitors, inductors and transmission lines that are vital parts of a microwave circuitry are also demonstrated. We also present unique applications using the presented flexible or stretchable RF components, including wearable RF electronics and biodegradable RF electronics, which were impossible to achieve using conventional rigid, wafer-based technology. Further opportunities like implantable systems exist utilizing such ultrathin RF components, which are discussed in this report as well.
ERIC Educational Resources Information Center
Broward County Schools, Fort Lauderdale, FL.
Part of a series on special educaton procedures in Florida, the manual presents information for teachers of visually impaired students regarding the use of electronic communication devices. Each of four types of devices is profiled: closed circuit television (CCTV), compressed speech devices, typewriter attachments for the Optacon (a device that…
Dooley, Erin E; Golaszewski, Natalie M
2017-01-01
Background Physical activity tracking wearable devices have emerged as an increasingly popular method for consumers to assess their daily activity and calories expended. However, whether these wearable devices are valid at different levels of exercise intensity is unknown. Objective The objective of this study was to examine heart rate (HR) and energy expenditure (EE) validity of 3 popular wrist-worn activity monitors at different exercise intensities. Methods A total of 62 participants (females: 58%, 36/62; nonwhite: 47% [13/62 Hispanic, 8/62 Asian, 7/62 black/ African American, 1/62 other]) wore the Apple Watch, Fitbit Charge HR, and Garmin Forerunner 225. Validity was assessed using 2 criterion devices: HR chest strap and a metabolic cart. Participants completed a 10-minute seated baseline assessment; separate 4-minute stages of light-, moderate-, and vigorous-intensity treadmill exercises; and a 10-minute seated recovery period. Data from devices were compared with each criterion via two-way repeated-measures analysis of variance and Bland-Altman analysis. Differences are expressed in mean absolute percentage error (MAPE). Results For the Apple Watch, HR MAPE was between 1.14% and 6.70%. HR was not significantly different at the start (P=.78), during baseline (P=.76), or vigorous intensity (P=.84); lower HR readings were measured during light intensity (P=.03), moderate intensity (P=.001), and recovery (P=.004). EE MAPE was between 14.07% and 210.84%. The device measured higher EE at all stages (P<.01). For the Fitbit device, the HR MAPE was between 2.38% and 16.99%. HR was not significantly different at the start (P=.67) or during moderate intensity (P=.34); lower HR readings were measured during baseline, vigorous intensity, and recovery (P<.001) and higher HR during light intensity (P<.001). EE MAPE was between 16.85% and 84.98%. The device measured higher EE at baseline (P=.003), light intensity (P<.001), and moderate intensity (P=.001). EE was not significantly different at vigorous (P=.70) or recovery (P=.10). For Garmin Forerunner 225, HR MAPE was between 7.87% and 24.38%. HR was not significantly different at vigorous intensity (P=.35). The device measured higher HR readings at start, baseline, light intensity, moderate intensity (P<.001), and recovery (P=.04). EE MAPE was between 30.77% and 155.05%. The device measured higher EE at all stages (P<.001). Conclusions This study provides one of the first validation assessments for the Fitbit Charge HR, Apple Watch, and Garmin Forerunner 225. An advantage and novel approach of the study is the examination of HR and EE at specific physical activity intensities. Establishing validity of wearable devices is of particular interest as these devices are being used in weight loss interventions and could impact findings. Future research should investigate why differences between exercise intensities and the devices exist. PMID:28302596
Recent advances in self-assembled monolayers based biomolecular electronic devices.
Arya, Sunil K; Solanki, Pratima R; Datta, Monika; Malhotra, Bansi D
2009-05-15
Self-assembled monolayers (SAMs) have aroused much interest due to their potential applications in biosensors, biomolecular electronics and nanotechnology. This has been largely attributed to their inherent ordered arrangement and controllable properties. SAMs can be formed by chemisorption of organic molecules containing groups like thiols, disulphides, amines, acids or silanes, on desired surfaces and can be used to fabricate biomolecular electronic devices. We focus on recent applications of organosulphur compounds (thiols) based SAMs to biomolecular electronic devices in the last about 3 years.
Rational design of metal-organic electronic devices: A computational perspective
NASA Astrophysics Data System (ADS)
Chilukuri, Bhaskar
Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device engineers to choose the appropriate metal electrodes considering the chemical interactions at the interface. Additionally, the calculations performed on the interfaces provided valuable insight into binding energies, charge redistribution, change in the energy levels, dipole formation, etc., which are important parameters to consider while fabricating an electronic device. The research described in this dissertation highlights the application of unique computational modeling methods at different levels of theory to guide the experimental chemists and device engineers toward a rational design of transition metal based electronic devices with low cost and high performance.
Do, Thanh Nho; Visell, Yon
2017-05-11
Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; O'Bryan, Martha V.; Buchner, Stephen P.; Poivey, Christian; Ladbury, Ray L.; LaBel, Kenneth A.
2007-01-01
Sensitivity of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
1981-01-01
of 140 beats per minute Upper limb prosthetic terminal devices have remained un- could either crutch walk at 60 meters per minute or run at 134...Responses During Binaural Stimulation, TN. Decker and S.W. Howe; J. Functional Effectiveness of a Myo-Electric Prosthesis Compared Acoust. Soc. Amer., 69(4...were whether the aid(s) should be fitted monaurally, binaurally or fitted with hearing aids. Of these, roughly 9,000 were CROS. About 95 percent of
2014-09-09
hypotensive patient. Crystalloid infusion is not necessarily benign.1,2 Difficult vascular access, hemodilution, acidosis , decreased oxygen delivery, and...blood pressure, heart rate (HR), respiratory rate, and arterial oxygen saturation (SpO2) were recorded im- mediately before application of the ITD...per minute (p = 0.007). The respiratory rate was constant: 19 (7) breaths before to 18 (4) breaths (p = 0.31) per minute after ITD use. Oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; Zhu, Zihua; Yu, Xiao-Ying
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a unique surface analysis technique because it can provide molecular recognition for organic and biological molecules. However, analyzing aqueous solution surfaces by ToF-SIMS is difficult, because ToF-SIMS is a high-vacuum technique, while the vapor pressure of water is about 2.3 kPa at room temperature (20 C). We designed and fabricated a self-contained microfluidic device, enabling in situ analysis of aqueous surfaces by scanning electron microscope (SEM) and ToF-SIMS, which has been briefly reported.1,2 In this study, we report more performance data, focusing on the performance of this device for in situ analysis ofmore » organic molecules at aqueous surfaces using ToF-SIMS. Three representative organic compounds (formic acid, glycerol, and glutamic acid) were tested, and their molecular signals were successfully observed. The device can be self-running in vacuum for 8 hours, and SIMS measurements are feasible at any time in this time range. The stability of this device under primary ion beam bombardment is also impressive. High fluence (6 × 1012 ions cm-2 s-1) measurements can be operated continuously for up to 30 minutes without any significant damage to the aperture. However, extra-high fluence measurements (>1 × 1014 ions cm-2 s-1) may lead to liquid bumping in the aperture, and the aqueous solutions may spread out quickly. Signal reproducibility is reasonably good, and relative standard deviation (RSD) for molecular ion signals can be controlled to be smaller than ±15% for consecutive measurements. Measurements at long time intervals (e.g., 60 min) show RSDs of ±40-50%. In addition, the detection limits of formic acid, glycerol, and glutamic acid are estimated to be 0.04%, 0.008%, and 0.002% (weight ratio), respectively.« less
Fabrication of an Organic Light-Emitting Diode from New Host π Electron Rich Zinc Complex
NASA Astrophysics Data System (ADS)
Jafari, Mohammad Reza; Janghouri, Mohammad; Shahedi, Zahra
2017-01-01
A new π electron rich zinc complex was used as a fluorescent material in organic light-emitting diodes (OLEDs). Devices with a structure of indium tin oxide/poly (3,4-ethylenedi-oxythiophene):poly(styrenesulfonate) (PEDOT: PSS) (50 nm)/polyvinylcarbazole (60 nm)/Zn: %2 porphyrin derivatives (45 nm)/Al (150 nm) were fabricated. Porphyrin derivatives accounting for 2 wt.% in the π electron rich zinc complex were used as a host. The electroluminescence (EL) spectra of porphyrin derivatives indicated a red shift, as π electron rich zinc complex EL spectra. The device (4) has also a luminance of 3420 cd/m2 and maximum efficiency of 1.58 cd/A at 15 V, which are the highest values among four devices. The result of Commission International del'Eclairage (CIE) (X, Y) coordinate and EL spectrum of device (3) indicated that it is more red shifted compared to other devices. Results of this work indicate that π electron rich zinc complex is a promising host material for high efficiency red OLEDs and has a simple structure compared to Alq3-based devices.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-796] Certain Electronic Digital Media... electronic digital media devices and components thereof imported by respondents Samsung Electronics Co, Ltd... Samsung. FOR FURTHER INFORMATION CONTACT: Cathy Chen, Office of the General Counsel, U.S. International...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
Cho, Kwang Rae; Kim, Myoung-Hun; Ko, Myoung Jin; Jung, Jae Wook; Lee, Ki Hwa; Park, Yei-Heum; Kim, Yong Han; Kim, Ki Hoon; Kim, Jin Soo
2014-12-01
Hypothermia generates potentially severe complications in operating or recovery room. Forced air warmer is effective to maintain body temperature. Extremely low frequency electromagnetic field (ELF-EMF) is harmful to human body and mainly produced by electronic equipment including convective air warming system. We investigated ELF-EMF from convective air warming device on various temperature selection and distance for guideline to protect medical personnel and patients. The intensity of ELF-EMF was measured as two-second interval for five minutes on various distance (0.1, 0.2, 0.3, 0.5 and 1meter) and temperature selection (high, medium, low and ambient). All of electrical devices were off including lamp, computer and air conditioner. Groups were compared using one-way ANOVA. P<0.05 was considered significant. Mean values of ELF-EMF on the distance of 30 cm were 18.63, 18.44, 18.23 and 17.92 milligauss (mG) respectively (high, medium, low and ambient temperature set). ELF-EMF of high temperature set was higher than data of medium, low and ambient set in all the distances. ELF-EMF from convective air warming system is higher in condition of more close location and higher temperature. ELF-EMF within thirty centimeters exceeds 2mG recommended by Swedish TCO guideline.
Chinese medicine shenfu injection for heart failure: a systematic review and meta-analysis.
Wen-Ting, Song; Fa-Feng, Cheng; Li, Xu; Cheng-Ren, Lin; Jian-Xun, Liu
2012-01-01
Objective. Heart failure (HF) is a global public health problem. Early literature studies manifested that Shenfu injection (SFI) is one of the most commonly used traditional Chinese patent medicine for HF in China. This article intended to systematically evaluate the efficacy and safety of SFI for HF. Methods. An extensive search was performed within 6 English and Chinese electronic database up to November 2011. Ninety-nine randomized controlled trails (RCTs) were collected, irrespective of languages. Two authors extracted data and assessed the trial quality independently. RevMan 5.0.2 was used for data analysis. Results. Compared with routine treatment and/or device support, SFI combined with routine treatment and/or device support showed better effect on clinical effect rate, mortality, heart rate, NT-proBNP and 6-minute walk distance. Results in ultrasonic cardiography also showed that SFI combined with routine treatment improved heart function of HF patients. There were no significant difference in blood pressure between SFI and routine treatment groups. Adverse events were reported in thirteen trails with thirteen specific symptoms, while no serious adverse effect was reported. Conclusion. SFI appear to be effective for treating HF. However, further rigorously designed RCTs are warranted because of insufficient methodological rigor in the majority of included trials.
Characterization of Graphene-based FET Fabricated using a Shadow Mask
Tien, Dung Hoang; Park, Jun-Young; Kim, Ki Buem; Lee, Naesung; Seo, Yongho
2016-01-01
To pattern electrical metal contacts, electron beam lithography or photolithography are commonly utilized, and these processes require polymer resists with solvents. During the patterning process the graphene surface is exposed to chemicals, and the residue on the graphene surface was unable to be completely removed by any method, causing the graphene layer to be contaminated. A lithography free method can overcome these residue problems. In this study, we use a micro-grid as a shadow mask to fabricate a graphene based field-effect-transistor (FET). Electrical measurements of the graphene based FET samples are carried out in air and vacuum. It is found that the Dirac peaks of the graphene devices on SiO2 or on hexagonal boron nitride (hBN) shift from a positive gate voltage region to a negative region as air pressure decreases. In particular, the Dirac peaks shift very rapidly when the pressure decreases from ~2 × 10−3 Torr to ~5 × 10−5 Torr within 5 minutes. These Dirac peak shifts are known as adsorption and desorption of environmental gases, but the shift amounts are considerably different depending on the fabrication process. The high gas sensitivity of the device fabricated by shadow mask is attributed to adsorption on the clean graphene surface. PMID:27169620
Materials Advances for Next-Generation Ingestible Electronic Medical Devices.
Bettinger, Christopher J
2015-10-01
Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lettow, John S. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)
2016-01-01
Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.
NASA Technical Reports Server (NTRS)
Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Lettow, John S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)
2018-01-01
Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.
NASA Technical Reports Server (NTRS)
Aksay, Ilhan A. (Inventor); Chen, Chuan-Hua (Inventor); Lettow, John S. (Inventor); Chiang, Katherine S. (Inventor); Prud'Homme, Robert K. (Inventor); Crain, John M. (Inventor); Korkut, Sibel (Inventor)
2015-01-01
Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.
NASA Technical Reports Server (NTRS)
Aksay, Ilhan A. (Inventor); Crain, John M. (Inventor); Chiang, Katherine S. (Inventor); Prud'Homme, Robert K. (Inventor); Lettow, John S. (Inventor); Korkut, Sibel A. (Inventor); Chen, Chuan-Hua (Inventor)
2014-01-01
Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.