78 FR 19982 - Special Conditions: Turbomeca Ardiden 3K Turboshaft Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... novel or unusual design feature that is a 30-minute all engines operating (AEO) power rating for... appropriate safety standards for this design feature. These special conditions contain the additional safety... Ardiden 3K engine is the first variant in the new Ardiden 3 series. This engine incorporates a two-stage...
Done in 60 seconds- See a Massive Rocket Fuel Tank Built in A Minute
2016-08-18
The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.
14 CFR 25.3 - Special provisions for ETOPS type design approvals.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 180 minutes, an applicant must comply with § 25.1535, except that it need not comply with the... ETOPS type design approval of an airplane beyond 180 minutes an applicant must comply with § 25.1535. (c) Airplanes with more than two engines. An applicant for ETOPS type design approval must comply with § 25.1535...
14 CFR 25.3 - Special provisions for ETOPS type design approvals.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 180 minutes, an applicant must comply with § 25.1535, except that it need not comply with the... ETOPS type design approval of an airplane beyond 180 minutes an applicant must comply with § 25.1535. (c) Airplanes with more than two engines. An applicant for ETOPS type design approval must comply with § 25.1535...
14 CFR 25.3 - Special provisions for ETOPS type design approvals.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 180 minutes, an applicant must comply with § 25.1535, except that it need not comply with the... ETOPS type design approval of an airplane beyond 180 minutes an applicant must comply with § 25.1535. (c) Airplanes with more than two engines. An applicant for ETOPS type design approval must comply with § 25.1535...
14 CFR 25.3 - Special provisions for ETOPS type design approvals.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 180 minutes, an applicant must comply with § 25.1535, except that it need not comply with the... ETOPS type design approval of an airplane beyond 180 minutes an applicant must comply with § 25.1535. (c) Airplanes with more than two engines. An applicant for ETOPS type design approval must comply with § 25.1535...
14 CFR 25.3 - Special provisions for ETOPS type design approvals.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 180 minutes, an applicant must comply with § 25.1535, except that it need not comply with the... ETOPS type design approval of an airplane beyond 180 minutes an applicant must comply with § 25.1535. (c) Airplanes with more than two engines. An applicant for ETOPS type design approval must comply with § 25.1535...
Optimizing a liquid propellant rocket engine with an automated combustor design code (AUTOCOM)
NASA Technical Reports Server (NTRS)
Hague, D. S.; Reichel, R. H.; Jones, R. T.; Glatt, C. R.
1972-01-01
A procedure for automatically designing a liquid propellant rocket engine combustion chamber in an optimal fashion is outlined. The procedure is contained in a digital computer code, AUTOCOM. The code is applied to an existing engine, and design modifications are generated which provide a substantial potential payload improvement over the existing design. Computer time requirements for this payload improvement were small, approximately four minutes in the CDC 6600 computer.
14 CFR 29.549 - Fuselage and rotor pylon structures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...
14 CFR 29.549 - Fuselage and rotor pylon structures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...
14 CFR 29.549 - Fuselage and rotor pylon structures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...
14 CFR 29.549 - Fuselage and rotor pylon structures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...
14 CFR 29.549 - Fuselage and rotor pylon structures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...
40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... applicable to the process vent. (iv) Design analysis based on accepted chemical engineering principles..., dry standard cubic meters per minute, at a temperature of 20 °C. (g) Engineering assessment may be... the highest daily emission rate. (1) Engineering assessment includes, but is not limited to, the...
Extended Operation of Turbojet Engine with Pentaborane
NASA Technical Reports Server (NTRS)
Useller, James W; Jones, William L
1957-01-01
A full-scale turbojet engine was operated with pentaborane fuel continuously for 22 minutes at conditions simulating flight at a Mach number of 0.8 at an altitude of 50,000 feet. This period of operation is approximately three times longer than previously reported operation times. Although the specific fuel consumption was reduced from 1.3 with JP-4 fuel to 0.98 with pentaborane, a 13.2-percent reduction in net thrust was also encountered. A portion of this thrust loss is potentially recoverable with proper design of the engine components. The boron oxide deposition and erosion processes within the engine approached an equilibrium condition after approximately 22 minutes of operation with pentaborane.
Using Minute Papers to Determine Student Cognitive Development Levels
ERIC Educational Resources Information Center
Vella, Lia
2015-01-01
Can anonymous written feedback collected during classroom assessment activities be used to assess students' cognitive development levels? After library instruction in a first-year engineering design class, students submitted minute papers that included answers to "what they are left wondering." Responses were coded into low, medium and…
2017-08-09
The 8.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.
2016-08-18
The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.
2016-08-18
The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.
Shuttle Propulsion Overview - The Design Challenges
NASA Technical Reports Server (NTRS)
Owen, James W.
2011-01-01
The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates, about eight and a half minutes into the flight, after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, with only the SSME s continuing operation to achieve orbital velocity. Design and performance challenges were numerous, beginning with development work in the 1970's. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper describes the design challenges and key areas where the design evolved during the program.
Engineering Design Challenges in a Science Curriculum
ERIC Educational Resources Information Center
Eisenkraft, Arthur
2011-01-01
Create a light and sound show to entertain friends. Design an improved safety device for a car. Develop a 2-3 minute voice-over for a sports clip explaining the physics involved in the sport. Modify the design of a roller coaster to meet the needs of a specific group of riders. Design an appliance package for a family limited by the power and…
Contingency power concepts for helicopter turboshaft engine
NASA Technical Reports Server (NTRS)
Hirschkron, R.; Davis, R. H.; Goldstein, D. N.; Haynes, J. F.; Gauntner, J. W.
1984-01-01
Twin helicopter engines are often sized by power requirement of safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 minute Contingency Power rating, permitting an engine size reduction. The merits of water injection, cooling flow modulation, throttle push and an auxiliary power plant were evaluated using military life cycle cost (LCC) and commercial helicopter direct operating cost (DOC) merit factors in a rubber engine/rubber aircraft scenario.
76 FR 18130 - Special Conditions: Turbomeca Arriel 2D Turboshaft Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
... unusual design feature which is a 30-minute power rating. This rating is generally intended to be used for... contain adequate or appropriate safety standards for this design feature. These proposed special... your comments on this proposal, send us a pre-addressed, stamped postcard on which the docket number...
Compound cycle engine for helicopter application
NASA Technical Reports Server (NTRS)
Castor, Jere; Martin, John; Bradley, Curtiss
1987-01-01
The compound cycle engine (CCE) is a highly turbocharged, power-compounded, ultra-high-power-density, lightweight diesel engine. The turbomachinery is similar to a moderate-pressure-ratio, free-power-turbine gas turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military helicopter applications. Cycle thermodynamic specific fuel consumption (SFC) and engine weight analyses performed to establish general engine operating parameters and configurations are presented. An extensive performance and weight analysis based on a typical 2-hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a contemporary gas turbine engine. The CCE had a 31 percent lower-fuel consumption and resulted in a 16 percent reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb/hp-hr and installed wet weight is 0.43 lb/hp. The major technology development areas required for the CCE are identified and briefly discussed.
Compound cycle engine for helicopter application
NASA Technical Reports Server (NTRS)
Castor, Jere G.
1986-01-01
The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded, ultra-high power density, light-weight diesel engine. The turbomachinery is similar to a moderate pressure ratio, free power turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military light helicopter applications. This executive summary presents cycle thermodynamic (SFC) and engine weight analyses performed to establish general engine operating parameters and configuration. An extensive performance and weight analysis based on a typical two hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a T-800 class gas turbine engine. The CCE had a 31% lower-fuel consumption and resulted in a 16% reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb-HP-HR and installed wet weight is 0.43 lbs/HP. The major technology development areas required for the CCE are identified and briefly discussed.
Nuclear Thermal Propulsion Ground Test History
NASA Technical Reports Server (NTRS)
Gerrish, Harold P.
2014-01-01
Nuclear Thermal Propulsion (NTP) was started in 1955 under the Atomic Energy Commission as project Rover and was assigned to Los Alamos National Laboratory. The Nevada Test Site was selected in 1956 and facility construction began in 1957. The KIWI-A was tested on July 1, 1959 for 5 minutes at 70MW. KIWI-A1 was tested on July 8, 1960 for 6 minutes at 85MW. KIWI-A3 was tested on October 10, 1960 for 5 minutes at 100MW. The National Aeronautics and Space Administration (NASA) was formed in 1958. On August 31, 1960 the AEC and NASA established the Space Nuclear Propulsion Office and named Harold Finger as Director. Immediately following the formation of SNPO, contracts were awarded for the Reactor In Flight Test (RIFT), master plan for the Nuclear Rocket Engine Development Station (NRDS), and the Nuclear Engine for Rocket Vehicle Application (NERVA). From December 7, 1961 to November 30, 1962, the KIWI-B1A, KIWI-B1B, and KIWI-B4A were tested at test cell A. The last two engines were only tested for several seconds before noticeable failure of the fuel elements. Harold Finger called a stop to any further hot fire testing until the problem was well understood. The KIWI-B4A cold flow test showed the problem to be related to fluid dynamics of hydrogen interstitial flow causing fuel element vibrations. President Kennedy visited the NTS one week after the KIWI-B4A failure and got to see the engine starting to be disassembled in the maintenance facility. The KIWI-B4D and KIWI-B4E were modified to not have the vibration problems and were tested in test cell C. The NERVA NRX program started testing in early 1964 with NRX-A1 cold flow test series (unfueled graphite core), NRX-A2 and NRX-A3 power test series up to 1122 MW for 13 minutes. In March 1966, the NRX-EST (Engine System Test) was the first breadboard using flight functional relationship and total operating time of 116 minutes. The NRX-EST demonstrated the feasibility of a hot bleed cycle. The NRX-A5 had multiple start-ups in May-June 1966 with 30.75 minutes accumulative operating time at or above 1GW. The NRX-A6 was tested in December 1969 and ran for 62 minutes at 1100 MW. Each engine had post-test examination and found various structure anomalies which were identified for correction and the fuel element corrosion rate was reduced. The Phoebus series of research reactors began testing at test cell C, in June 1965 with Phoebus 1A. Phoebus 1A operated for 10.5 minutes at 1100 MW before unexpected loss of propellant and leading to an engine breakdown. Phoebus 1B ran for 30 minutes in February of 1967. Phoebus 2A was the highest steady state reactor built at 5GW. Phoebus 2A ran for 12 minutes at 4100 MW demonstrating sufficient power is available. The Peewee test bed reactor was tested November- December 1968 in test cell C for 40 minutes at 500MW with overall performance close to pre-run predictions. The XE' engine was the only engine tested with close to a flight configuration and fired downward into a diffuser at the Engine Test Stand (ETS) in 1969. The XE' was 1100 MW and had 28 start-ups. The nuclear furnace NF-1 was operated at 44 MW with multiple test runs at 90 minutes in the summer of 1972. The NF-1 was the last NTP reactor tested. The Rover/NERVA program was cancelled in 1973. However, before cancellation, a lot of other engineering work was conducted by Aerojet on a 75, 000 lbf prototype flight engine and by Los Alamos on a 16,000 lbf "Small Engine" nuclear rocket design. The ground test history of NTP at the NRDS also offers many lessons learned on how best to setup, operate, emergency shutdown, and post-test examine NTP engines. The reactor and engine maintenance and disassembly facilities were used for assembly and inspection of radioactive engines after testing. Most reactor/ engines were run at test cell A or test cell C with open air exhaust. The Rover/NERVA program became aware of a new environmental regulation that would restrict the amount of radioactive particulates allowed to be release in open air and successfully demonstrated a scrubber concept with the NF-1. The ETS stand was the only one with a high altitude test chamber used for XE'. The ETS and other test cells showed the effects the engine's radiation had on the facility materials and instrumentation as well as side effects the ground test facility has back on the engine operation. The breakdown of Phoebus 1A at test cell C showed how the site was cleaned up and back to operation for five more engines before the program was cancelled.
German Jumo 004 Engine at the Lewis Flight Propulsion Laboratory
1946-03-21
Researcher Robert Miller led an investigation into the combustor performance of a German Jumo 004 engine at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Jumo 004 powered the world's first operational jet fighter, the Messerschmitt Me 262, beginning in 1942. The Me 262 was the only jet aircraft used in combat during World War II. The eight-stage axial-flow compressor Jumo 004 produced 2000 pounds of thrust. The US Army Air Forces provided the NACA with a Jumo 004 engine in 1945 to study the compressor’s design and performance. Conveniently the engine’s designer Anselm Franz had recently arrived at Wright-Patterson Air Force Base in nearby Dayton, Ohio as part of Project Paperclip. The Lewis researchers used a test rig in the Engine Research Building to analyze one of the six combustion chambers. It was difficult to isolate a single combustor’s performance when testing an entire engine. The combustion efficiency, outlet-temperature distribution, and total pressure drop were measured. The researchers determined the Jumo 004’s maximum performance was 5000 revolutions per minute at a 27,000 foot altitude and 11,000 revolutions per minute at a 45,000 foot altitude. The setup in this photograph was created for a tour of NACA Lewis by members of the Institute of Aeronautical Science on March 22, 1945.
Investigation of the Muffling Problem for Airplane Engines
NASA Technical Reports Server (NTRS)
Upton, G B; Gage, V R
1920-01-01
The experimentation presented in this report falls in two divisions: first, the determination of the relation between back pressure in the exhaust line and consequent power loss, for various combinations of speed and throttle positions of the engine; second, the construction and trial of muffler designs covering both type and size. Report deals with experiments in the development of a muffler designed on the principle which will give the maximum muffling effect with a minimum loss of power. The main body of the work has been done on a Curtiss OX eight-cylinder airplane engine, 4 by 5 inches, rated 70 horsepower at 1,200 revolutions per minute. For estimation of the muffling ability and suppression of "bark" of individual exhausts, the "Ingeco" stationary, single cylinder, 5 1/2 by 10 inch, throttling governed gasoline engine, and occasionally other engines were used.
NASA Technical Reports Server (NTRS)
Robinson, David; Okajima, Takashi; Serlemitsos, Peter; Soong, Yang
2012-01-01
The Astro-H is led by the Japanese Space Agency (JAXA) in collaboration with many other institutions including the NASA Goddard Space Flight Center. Goddard's contributions include two soft X-ray telescopes (SXTs). The telescopes have an effective area of 562 square cm at 1 keV and 425 square cm at 6 keV with an image quality requirement of 1.7 arc-minutes half power diameter (HPD). The engineering model has demonstrated 1.1 arc-minutes HPD error. The design of the SXT is based on the successful Suzaku mission mirrors with some enhancements to improve the image quality. Two major enhancements are bonding the X-ray mirror foils to alignment bars instead of allowing the mirrors to float, and fabricating alignment bars with grooves within 5 microns of accuracy. An engineering model SXT was recently built and subjected to several tests including vibration, thermal, and X-ray performance in a beamline. Several lessons were learned during this testing that will be incorporated in the flight design. Test results and optical performance are discussed, along with a description of the design of the SXT.
Herbert Easterly auxiliary truck heater. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle`s primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work ninemore » different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.« less
Herbert Easterly auxiliary truck heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle's primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work ninemore » different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.« less
NASA Technical Reports Server (NTRS)
Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd
1990-01-01
A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.
VIPR III VADR SPIDER Structural Design and Analysis
NASA Technical Reports Server (NTRS)
Li, Wesley; Chen, Tony
2016-01-01
In support of the National Aeronautics and Space Administration (NASA) Vehicle Integrated Propulsion Research (VIPR) Phase III team to evaluate the volcanic ash environment effects on the Pratt & Whitney F117-PW-100 turbofan engine, NASA Armstrong Flight Research Center has successfully performed structural design and analysis on the Volcanic Ash Distribution Rig (VADR) and the Structural Particulate Integration Device for Engine Research (SPIDER) for the ash ingestion test. Static and dynamic load analyses were performed to ensure no structural failure would occur during the test. Modal analysis was conducted, and the results were used to develop engine power setting avoidance zones. These engine power setting avoidance zones were defined to minimize the dwell time when the natural frequencies of the VADR/SPIDER system coincided with the excitation frequencies of the engine which was operating at various revolutions per minute. Vortex-induced vibration due to engine suction air flow during the ingestion test was also evaluated, but was not a concern.
Synchronizing Photography For High-Speed-Engine Research
NASA Technical Reports Server (NTRS)
Chun, K. S.
1989-01-01
Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.
Technology Allows Engineers to Make Solid Objects from Computer Designs.
ERIC Educational Resources Information Center
Wheeler, David L.
1992-01-01
Computer operators using the technique of three-dimensional printing or rapid prototyping may soon be able to sculpt an object on the screen and within minutes, have a paper, plastic, or ceramic version of the object in hand. The process uses the principle that physical objects can be created in layers. (MSE)
Rain rate intensity model for communication link design across the Indian region
NASA Astrophysics Data System (ADS)
Kilaru, Aravind; Kotamraju, Sarat K.; Avlonitis, Nicholas; Sri Kavya, K. Ch.
2016-07-01
A study on rain statistical parameters such as one minute rain intensity, possible number of minute occurrences with respective percentage of time in a year has been evaluated for the purpose of communication link design at Ka, Q, V bands as well as at Free-Space Optical communication links (FSO). To understand possible outage period of a communication links due to rainfall and to investigate rainfall pattern, Automatic Weather Station (AWS) rainfall data is analysed due its ample presence across India. The climates of the examined AWS regions vary from desert to cold climate, heavy rainfall to variable rainfall regions, cyclone effective regions, mountain and coastal regions. In this way a complete and unbiased picture of the rainfall statistics for Indian region is evaluated. The analysed AWS data gives insight into yearly accumulated rainfall, maximum hourly accumulated rainfall, mean hourly accumulated rainfall, number of rainy days and number of rainy hours from 668 AWS locations. Using probability density function the one minute rainfall measurements at KL University is integrated with AWS measurements for estimating number of rain occurrences in terms of one minute rain intensity for annual rainfall accumulated between 100 mm and 5000 mm to give an insight into possible one minute accumulation pattern in an hour for comprehensive analysis of rainfall influence on a communication link for design engineers. So that low availability communications links at higher frequencies can be transformed into a reliable and economically feasible communication links for implementing High Throughput Services (HTS).
Automation of Design Engineering Processes
NASA Technical Reports Server (NTRS)
Torrey, Glenn; Sawasky, Gerald; Courey, Karim
2004-01-01
A method, and a computer program that helps to implement the method, have been developed to automate and systematize the retention and retrieval of all the written records generated during the process of designing a complex engineering system. It cannot be emphasized strongly enough that all the written records as used here is meant to be taken literally: it signifies not only final drawings and final engineering calculations but also such ancillary documents as minutes of meetings, memoranda, requests for design changes, approval and review documents, and reports of tests. One important purpose served by the method is to make the records readily available to all involved users via their computer workstations from one computer archive while eliminating the need for voluminous paper files stored in different places. Another important purpose served by the method is to facilitate the work of engineers who are charged with sustaining the system and were not involved in the original design decisions. The method helps the sustaining engineers to retrieve information that enables them to retrace the reasoning that led to the original design decisions, thereby helping them to understand the system better and to make informed engineering choices pertaining to maintenance and/or modifications of the system. The software used to implement the method is written in Microsoft Access. All of the documents pertaining to the design of a given system are stored in one relational database in such a manner that they can be related to each other via a single tracking number.
Lunabotics Mining: Evolution of ARTEMIS PRIME
NASA Technical Reports Server (NTRS)
Bertke, Sarah; Gries, Christine; Huff, Amanda; Logan, Brittany; Oliver, Kaitlin; Rigney, Erica; Tyree, Whitney; Young, Maegan
2010-01-01
This slide presentation reviews the development of Amassing Regolith with Topper Engineers eMploying Innovative Solutions (ARTEMIS) in a competition to develop robotic lunar mining capabilities. The goal of the competition was to design, build and operate a remotely controlled device that is capable of excavating, transporting and discharging lunar regolith simulant in a lunar environment over a 13 minute period.
Space Radiation Transport Methods Development
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.
2002-01-01
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be utilized in the final design as verification of the deterministic method optimized design.
1981-03-01
meticulous and well thought out designs and work brought excellent solutions to our many electrical and mechanical problems. He is a gifted person with many...thorough study of the gyro design , as well as other low temperature sensors, is now called for. 1.4 Low Temperature Inertial Sensors The precision of...can only begin to imagine some of the forms that low temperature inertial sensors could take in the hands of creative design and development engineers
NASA Technical Reports Server (NTRS)
Myrabo, Leik N.; Smith, Wayne L. (Editor); Decusatis, Casimer; Frazier, Scott R.; Garrison, James L., Jr.; Meltzer, Jonathan S.; Minucci, Marco A.; Moder, Jeffrey P.; Morales, Ciro; Mueller, Mark T.
1988-01-01
This second year of the NASA/USRA-sponsored Advanced Aeronautical Design effort focused on systems integration and analysis of the Apollo Lightcraft. This beam-powered, single-stage-to-orbit vehicle is envisioned as the shuttlecraft of the 21st century. The five person vehicle was inspired largely by the Apollo Command Module, then reconfigured to include a new front seat with dual cockpit controls for the pilot and co-pilot, while still retaining the 3-abreast crew accommodations in the rear seat. The gross liftoff mass is 5550 kg, of which 500 kg is the payload and 300 kg is the LH2 propellant. The round trip cost to orbit is projected to be three orders of magnitude lower than the current space shuttle orbiter. The advanced laser-driven 5-speed combined-cycle engine has shiftpoints at Mach 1, 5, 11 and 25+. The Apollo Lightcraft can climb into low Earth orbit in three minutes, or fly to any spot on the globe in less than 45 minutes. Detailed investigations of the Apollo Lightcraft Project this second year further evolved the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) re-entry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis. The principal new findings are documented. Advanced design efforts for the next academic year (1988/1989) will center on a one meter+ diameter spacecraft: the Lightcraft Technology Demonstrator (LTD). Detailed engineering design and analyses, as well as critical proof-of-concept experiments, will be carried out on this small, near-term machine. As presently conceived, the LTD could be constructed using state of the art components derived from existing liquid chemical rocket engine technology, advanced composite materials, and high power laser optics.
Solar dynamic heat receiver technology
NASA Technical Reports Server (NTRS)
Sedgwick, Leigh M.
1991-01-01
A full-size, solar dynamic heat receiver was designed to meet the requirements specified for electrical power modules on the U.S. Space Station, Freedom. The heat receiver supplies thermal energy to power a heat engine in a closed Brayton cycle using a mixture of helium-xenon gas as the working fluid. The electrical power output of the engine, 25 kW, requires a 100 kW thermal input throughout a 90 minute orbit, including when the spacecraft is eclipsed for up to 36 minutes from the sun. The heat receiver employs an integral thermal energy storage system utilizing the latent heat available through the phase change of a high-temperature salt mixture. A near eutectic mixture of lithium fluoride and calcium difluoride is used as the phase change material. The salt is contained within a felt metal matrix which enhances heat transfer and controls the salt void distribution during solidification. Fabrication of the receiver is complete and it was delivered to NASA for verification testing in a simulated low-Earth-orbit environment. This document reviews the receiver design and describes its fabrication history. The major elements required to operate the receiver during testing are also described.
A space radiation transport method development
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.
2004-01-01
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design. Published by Elsevier Ltd on behalf of COSPAR.
A high efficiency motor/generator for magnetically suspended flywheel energy storage system
NASA Technical Reports Server (NTRS)
Niemeyer, W. L.; Studer, P.; Kirk, J. A.; Anand, D. K.; Zmood, R. B.
1989-01-01
The authors discuss the theory and design of a brushless direct current motor for use in a flywheel energy storage system. The motor design is optimized for a nominal 4.5-in outside diameter operating within a speed range of 33,000-66,000 revolutions per minute with a 140-V maximum supply voltage. The equations which govern the motor's operation are used to compute a series of acceptable design parameter combinations for ideal operation. Engineering tradeoffs are then performed to minimize the irrecoverable energy loss while remaining within the design constraint boundaries. A final integrated structural design whose features allow it to be incorporated with the 500-Wh magnetically suspended flywheel is presented.
MacCall, Steven L.
2006-01-01
Objective: The paper describes and evaluates the use of Clinical Digital Libraries Project (CDLP) digital library collections in terms of their facilitation of timely clinical information seeking. Design: A convenience sample of CDLP Web server log activity over a twelve-month period (7/2002 to 6/2003) was analyzed for evidence of timely information seeking after users were referred to digital library clinical topic pages from Web search engines. Sample searches were limited to those originating from medical schools (26% North American and 19% non-North American) and from hospitals or clinics (51% North American and 4% non-North American). Measurement: Timeliness was determined based on a calculation of the difference between the timestamps of the first and last Web server log “hit” during each search in the sample. The calculated differences were mapped into one of three ranges: less than one minute, one to three minutes, and three to five minutes. Results: Of the 864 searches analyzed, 48% were less than 1 minute, 41% were 1 to 3 minutes, and 11% were 3 to 5 minutes. These results were further analyzed by environment (medical schools versus hospitals or clinics) and by geographic location (North America versus non-North American). Searches reflected a consistent pattern of less than 1 minute in these environments. Though the results were not consistent on a month-by-month basis over the entire time period, data for 8 of 12 months showed that searches shorter than 1 minute predominated and data for 1 month showed an equal number of less than 1 minute and 1 to 3 minute searches. Conclusions: The CDLP digital library collections provided timely access to high-quality Web clinical resources when used for information seeking in medical education and hospital or clinic environments from North American and non–North American locations and consistently provided access to the sought information within the documented two-minute standard. The limitations of the use of Web server data warrant an exploratory assessment. This research also suggests the need for further investigation in the area of timely digital library collection services to clinical environments. PMID:16636712
2001-01-01
The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.
1975-01-01
The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.
Demand, Energy, and Power Factor
1994-08-01
POWER FACTOR DEFINITION I Basically , power factor (pf) is a measure of how effectively the plant uses the electricity it purchases from the utility. It...not be made available by the plant. U 24 This video is relatively short, less than fifteen-minutes, and covers the basics on demand, block extenders...designing, implementing, and evaluation of the resultant project. 1 2. Thumann, Albeit. Plant Engineer and Managers Guide to Energv Conservation, 5th ed
SES cupola interactive display design environment
NASA Technical Reports Server (NTRS)
Vu, Bang Q.; Kirkhoff, Kevin R.
1989-01-01
The Systems Engineering Simulator, located at the Lyndon B. Johnson Space Center in Houston, Texas, is tasked with providing a real-time simulator for developing displays and controls targeted for the Space Station Freedom. These displays and controls will exist inside an enclosed workstation located on the space station. The simulation is currently providing the engineering analysis environment for NASA and contractor personnel to design, prototype, and test alternatives for graphical presentation of data to an astronaut while he performs specified tasks. A highly desirable aspect of this environment is to have the capability to rapidly develop and bring on-line a number of different displays for use in determining the best utilization of graphics techniques in achieving maximum efficiency of the test subject fulfilling his task. The Systems Engineering Simulator now has available a tool which assists in the rapid development of displays for these graphic workstations. The Display Builder was developed in-house to provide an environment which allows easy construction and modification of displays within minutes of receiving requirements for specific tests.
Emergency and microfog lubrication and cooling of bearings for Army helicopters
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1978-01-01
An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once-through oil-mist (microfog) and coolant air system. A system was designed, manufactured, coupled with an existing rig and evaluation tests were performed using 46 mm bore split-inner angular-contact ball bearings under 1779N (400 lb.) thrust load. An emergency lubrication aspirator system was also manufactured and tested under lost lubricant conditions. The testing demonstrated the feasibility of using a mist oil and cooling air system to lubricate and cool a high speed helicopter engine mainshaft bearing. The testing also demonstrated the feasibility of using an emergency aspirator lubrication system as a viable survivability concept for helicopter mainshaft engine bearing for periods as long as 30 minutes.
14 CFR 33.88 - Engine overtemperature test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.88 Engine overtemperature test. (a) Each engine must run for 5 minutes at maximum permissible rpm with the gas temperature at... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine overtemperature test. 33.88 Section...
14 CFR 33.84 - Engine overtorque test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed at...
14 CFR 33.84 - Engine overtorque test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed at...
14 CFR 33.84 - Engine overtorque test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed at...
14 CFR 33.88 - Engine overtemperature test.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine overtemperature test. 33.88 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.88 Engine overtemperature test. (a) Each engine must run for 5 minutes at maximum permissible rpm with the gas temperature at...
NASA Technical Reports Server (NTRS)
2010-01-01
A fast growing approach in determining the best design concept for a problem is to hold a competition in which the rules are based on requirements similar to the actual problem. By going public with such competitions, sponsoring entities receive some of the most innovative engineering solutions in a fraction of the time and cost it would have taken to develop such concepts internally. Space exploration is a large benefactor of such design competitions as seen by the results of X-Prize Foundation and NASA lunar excavation competitions [1]. The results of NASA's past lunar excavator challenges has led to the need for an effective means of collecting lunar regolith in the absence of human beings. The 2010 Exploration Systems Mission Directorate (ESMD) Lunar Excavation Challenge was created "to engage and retain students in science, technology, engineering, and mathematics, or STEM, in a competitive environment that may result in innovative ideas and solutions, which could be applied to actual lunar excavation for NASA." [2]. The ESMD Challenge calls for "teams to use telerobotics or autonomous operations to excavate at least 10kg of lunar regolith simulant in a 15 minute time limit" [2]. The Systems Engineering approach was used in accordance with Auburn University's mechanical engineering senior design course (MECH 4240-50) to develop a telerobotic lunar excavator, seen in Fig. 1, that fulfilled requirements imposed by the NASA ESMD Competition Rules. The goal of the senior design project was to have a validated lunar excavator that would be used in the NASA ESMD lunar excavation challenge.
OVRhyp, Scramjet Test Aircraft
NASA Technical Reports Server (NTRS)
Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.
1990-01-01
A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; DeHaye, Michael; DeLessio, Steven
2011-01-01
The LOX-Hydrogen J-2X Rocket Engine, which is proposed for use as an upper-stage engine for numerous earth-to-orbit and heavy lift launch vehicle architectures, is presently in the design phase and will move shortly to the initial development test phase. Analysis of the design has revealed numerous potential resonance issues with hardware in the turbomachinery turbine-side flow-path. The analysis of the fuel pump turbine blades requires particular care because resonant failure of the blades, which are rotating in excess of 30,000 revolutions/minutes (RPM), could be catastrophic for the engine and the entire launch vehicle. This paper describes a series of probabilistic analyses performed to assess the risk of failure of the turbine blades due to resonant vibration during past and present test series. Some significant results are that the probability of failure during a single complete engine hot-fire test is low (1%) because of the small likelihood of resonance, but that the probability increases to around 30% for a more focused turbomachinery-only test because all speeds will be ramped through and there is a greater likelihood of dwelling at more speeds. These risk calculations have been invaluable for use by program management in deciding if risk-reduction methods such as dampers are necessary immediately or if the test can be performed before the risk-reduction hardware is ready.
Reactor Operations Monitoring System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, M.M.
1989-01-01
The Reactor Operations Monitoring System (ROMS) is a VME based, parallel processor data acquisition and safety action system designed by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The ROMS will be analyzing over 8 million signal samples per minute. Sixty-eight microprocessors are used in the ROMS in order to achieve a real-time data analysis. The ROMS is composed of multiple computer subsystems. Four redundant computer subsystems monitor 600 temperatures with 2400 thermocouples. Two computer subsystems share the monitoring of 600 reactor coolant flows. Additional computer subsystems are dedicated to monitoring 400 signals from assortedmore » process sensors. Data from these computer subsystems are transferred to two redundant process display computer subsystems which present process information to reactor operators and to reactor control computers. The ROMS is also designed to carry out safety functions based on its analysis of process data. The safety functions include initiating a reactor scram (shutdown), the injection of neutron poison, and the loadshed of selected equipment. A complete development Reactor Operations Monitoring System has been built. It is located in the Program Development Center at the Savannah River Site and is currently being used by the Reactor Engineering Department in software development. The Equipment Engineering Section is designing and fabricating the process interface hardware. Upon proof of hardware and design concept, orders will be placed for the final five systems located in the three reactor areas, the reactor training simulator, and the hardware maintenance center.« less
40 CFR 1048.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2011 CFR
2011-07-01
... engine-diagnostic requirements apply for engines equipped with three-way catalysts and closed-loop... malfunction whenever the air-fuel ratio does not cross stoichiometry for one minute of intended closed-loop...
1993-10-17
34, "in criteria, and scoring each applicable high resolution mode’, "within 10 minutes of element as I (satisfactory) or 0 power -on...everone ese, humanity. We humans are kowledg limited and we The specificatio concept development design, and ye the problem caused by that limitation...human task that is component, we would have 53=125 integration spaces. within the power of a normal, single, specialized As you can imagine this could
Engineering-scale experiments of solar photocatalytic oxidation of trichloroethylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacheco, J.; Prairie, M.; Evans, L.
1990-01-01
A photocatalytic process is being developed to destroy organic contaminants in water. Tests with a common water pollutant, trichlorethylene (TCE), were conducted at the Solar Thermal Test Facility at Sandia with trough systems. Tests at this scale provide verification of laboratory studies and allow examination of design and operation issues that only arise in experiments on a realistic scale. The catalyst, titanium dioxide (TiO{sub 2}), is a harmless material found in paint, cosmetics and even toothpaste. We examined the effect of initial contaminant concentration and the effect of hydrogen peroxide on the photocatalytic decomposition of trichlorethylene (TCE). An aqueous solutionmore » of 5000 parts per billion (ppB) TCE with 0.1 weight {percent} suspended titanium dioxide catalyst required approximately 4.2 minutes of exposure to destroy the TCE to a detection limit of 5 ppB. For a 300 ppB TCE solution, the time required was only 2.5 minutes to reach the same level of destruction. Adding 250 parts per million (ppM) of hydrogen peroxide reduced the time required by about 1 minute. A two parameter Langmuir Hinshelwood model was able to describe the data. A simple flow apparatus was built to test four fixed catalyst supports and to measure their pressure drop and assess their ability to withstand flow conditions typical of a full-sized system. In this paper, we summarize the engineering-scale testing and results. 16 refs., 5 figs.« less
Interfacing of differential-capacitive biomimetic hair flow-sensors for optimal sensitivity
NASA Astrophysics Data System (ADS)
Dagamseh, A. M. K.; Bruinink, C. M.; Wiegerink, R. J.; Lammerink, T. S. J.; Droogendijk, H.; Krijnen, G. J. M.
2013-03-01
Biologically inspired sensor-designs are investigated as a possible path to surpass the performance of more traditionally engineered designs. Inspired by crickets, artificial hair sensors have shown the ability to detect minute flow signals. This paper addresses developments in the design, fabrication, interfacing and characterization of biomimetic hair flow-sensors towards sensitive high-density arrays. Improvement of the electrode design of the hair sensors has resulted in a reduction of the smallest hair movements that can be measured. In comparison to the arrayed hairs-sensor design, the detection-limit was arguably improved at least twelve-fold, down to 1 mm s-1 airflow amplitude at 250 Hz as measured in a bandwidth of 3 kHz. The directivity pattern closely resembles a figure-of-eight. These sensitive hair-sensors open possibilities for high-resolution spatio-temporal flow pattern observations.
Altitude Wind Tunnel Drive Fan being Assembled
1943-07-21
National Advisory Committee for Aeronautics (NACA) engineers assembled the Altitude Wind Tunnel’s (AWT) large wooden drive fan inside the hangar at the Aircraft Engine Research Laboratory. When it was built at the in the early 1940s the AWT was among the most complex test facilities ever designed. It was the first wind tunnel capable of operating full-scale engines under realistic flight conditions. This simulation included the reduction of air temperature, a decrease in air pressure, and the creation of an airstream velocity of up to 500 miles per hour. The AWT was constructed in 1942 and 1943. This photograph shows NACA engineers Lou Hermann and Jack Aust assembling the tunnel’s drive fan inside the hangar. The 12-bladed, 31-foot-diameter spruce wood fan would soon be installed inside the wind tunnel to create the high-speed airflow. This massive propeller was designed and constructed by the engine lab's design team at Langley Field. John Breisch, a Langley technician with several years of wind tunnel installation experience, arrived in Cleveland at the time of this photograph to supervise the fan assembly inside the hangar. He would return several weeks later to oversee the actual installation in the tunnel. The fan was driven at 410 revolutions per minute by an 18,000-horsepower General Electric induction motor that was located in the rear corner of the Exhauster Building. An extension shaft connected the motor to the fan. A bronze screen protected the fan against damage from failed engine parts sailing through the tunnel. Despite this screen the blades did become worn or cracked over time and had to be replaced. An entire new fan was installed in 1951.
Group dynamics for the acquisition of competences in Project Management
NASA Astrophysics Data System (ADS)
Taguas, E. V.; Aguilar, M. C.; Castillo, C.; Polo, M. J.; Pérez, R.
2012-04-01
The Bologna Process promotes European citizens' employability from teaching fields in the University which implies the design of activities addressed to the development of skills for the labor market and engagement of employers. This work has been conceived for improving the formation of Engineering Project Management through group dynamics focused on: 1) the use of the creativity for solving problems; 2) promoting leadership capacities and social skills in multidisciplinary/multicultural work groups; 3) the ethical, social and environmental compromise; 4) the continuous learning. Different types of activities were designed: short activities of 15-30 minutes where fragments of books or songs are presented and discussed and long activities (2 h) where groups of students take different roles for solving common problems and situations within the Engineering Projects context. An electronic book with the content of the dynamics and the material for the students has been carried out. A sample of 20 students of Electronic Engineering degree which had participated at least in two dynamics, evaluated the utility for improving their formation in Engineering Project Management with a mark of 8.2 (scale 0-10, standard deviation equal to 0.9). On the other hand, the teachers observed how this type of work, promotes the interdisciplinary training and the acquisition of social skills, usually not-included in the objectives of the subjects.
Puolakka, Tuukka; Väyrynen, Taneli; Erkkilä, Elja-Pekka; Kuisma, Markku
2016-06-01
Introduction On-scene time (OST) previously has been shown to be a significant component of Emergency Medical Services' (EMS') operational delay in acute stroke. Since stroke patients are managed routinely by two-person ambulance crews, increasing the number of personnel available on the scene is a possible method to improve their performance. Hypothesis Using fire engine crews to support ambulances on the scene in acute stroke is hypothesized to be associated with a shorter OST. All patients transported to hospital as thrombolysis candidates during a one-year study period were registered by the ambulance crews using a case report form that included patient characteristics and operational EMS data. Seventy-seven patients (41 [53%] male; mean age of 68.9 years [SD=15]; mean Glasgow Coma Score [GCS] of 15 points [IQR=14-15]) were eligible for the study. Forty-five cases were managed by ambulance and fire engine crews together and 32 by the ambulance crews alone. The median ambulance response time was seven minutes (IQR=5-10) and the fire engine response time was six minutes (IQR=5-8). The number of EMS personnel on the scene was six (IQR=5-7) and two (IQR=2-2), and the OST was 21 minutes (IQR=18-26) and 24 minutes (IQR=20-32; P =.073) for the groups, respectively. In a following regression analysis, using stroke as the dispatch code was the only variable associated with short (<22 minutes) OST with an odds ratio of 3.952 (95% CI, 1.279-12.207). Dispatching fire engine crews to support ambulances in acute stroke care was not associated with a shorter on-scene stay when compared to standard management by two-person ambulance crews alone. Using stroke as the dispatch code was the only variable that was associated independently with a short OST. Puolakka T , Väyrynen T , Erkkilä E-P , Kuisma M . Fire engine support and on-scene time in prehospital stroke care - a prospective observational study. Prehosp Disaster Med. 2016;31(3):278-281.
NASA Astrophysics Data System (ADS)
Ardi, S.; Ardyansyah, D.
2018-02-01
In the Manufacturing of automotive spare parts, increased sales of vehicles is resulted in increased demand for production of engine valve of the customer. To meet customer demand, we carry out improvement and overhaul of the NTVS-2894 seat grinder machine on a machining line. NTVS-2894 seat grinder machine has been decreased machine productivity, the amount of trouble, and the amount of downtime. To overcome these problems on overhaul the NTVS-2984 seat grinder machine include mechanical and programs, is to do the design and manufacture of HMI (Human Machine Interface) GP-4501T program. Because of the time prior to the overhaul, NTVS-2894 seat grinder machine does not have a backup HMI (Human Machine Interface) program. The goal of the design and manufacture in this program is to improve the achievement of production, and allows an operator to operate beside it easier to troubleshoot the NTVS-2894 seat grinder machine thereby reducing downtime on the NTVS-2894 seat grinder machine. The results after the design are HMI program successfully made it back, machine productivity increased by 34.8%, the amount of trouble, and downtime decreased 40% decrease from 3,160 minutes to 1,700 minutes. The implication of our design, it could facilitate the operator in operating machine and the technician easer to maintain and do the troubleshooting the machine problems.
Qin, Lingyun; Liu, Huili; Chen, Rong; Zhou, Jingjing; Cheng, Xiyao; Chen, Yao; Huang, Yongqi; Su, Zhengding
2017-11-07
The oncoprotein MdmX (mouse double minute X) is highly homologous to Mdm2 (mouse double minute 2) in terms of their amino acid sequences and three-dimensional conformations, but Mdm2 inhibitors exhibit very weak affinity for MdmX, providing an excellent model for exploring how protein conformation distinguishes and alters inhibitor binding. The intrinsic conformation flexibility of proteins plays pivotal roles in determining and predicting the binding properties and the design of inhibitors. Although the molecular dynamics simulation approach enables us to understand protein-ligand interactions, the mechanism underlying how a flexible binding pocket adapts an inhibitor has been less explored experimentally. In this work, we have investigated how the intrinsic flexible regions of the N-terminal domain of MdmX (N-MdmX) affect the affinity of the Mdm2 inhibitor nutlin-3a using protein engineering. Guided by heteronuclear nuclear Overhauser effect measurements, we identified the flexible regions that affect inhibitor binding affinity around the ligand-binding pocket on N-MdmX. A disulfide engineering mutant, N-MdmX C25-C110/C76-C88 , which incorporated two staples to rigidify the ligand-binding pocket, allowed an affinity for nutlin-3a higher than that of wild-type N-MdmX (K d ∼ 0.48 vs K d ∼ 20.3 μM). Therefore, this mutant provides not only an effective protein model for screening and designing of MdmX inhibitors but also a valuable clue for enhancing the intermolecular interactions of the pharmacophores of a ligand with pronounced flexible regions. In addition, our results revealed an allosteric ligand-binding mechanism of N-MdmX in which the ligand initially interacts with a compact core, followed by augmenting intermolecular interactions with intrinsic flexible regions. This strategy should also be applicable to many other protein targets to accelerate drug discovery.
Algae to Bio-Crude in Less Than 60 Minutes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Doug
Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.
Algae to Bio-Crude in Less Than 60 Minutes
Elliott, Doug
2018-01-16
Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Thomas
2013-04-10
Today it is commonplace to design and construct single silicon chips with billions of transistors. These are complex systems, difficult (but possible) to design, test, and fabricate. Remarkably, simple living systems can be assembled from a similar number of atoms, most of them in water molecules. In this talk I will present the current status of our attempts at full understanding and complexity reduction of one of the simplest living systems, the free-living bacterial species Mesoplasma florum. This 400 nm diameter cell thrives and replicates every 40 minutes with a genome of only 800 kilobases. Our recent experiments using transposonmore » gene knockouts identified 354 of 683 annotated genes as inessential in laboratory culture when inactivated individually. While a functional redesigned genome will certainly not remove all of those genes, this suggests that roughly half the genome can be removed in an intentional redesign. I will discuss our recent knockout results and methodology, and our future plans for Genome re-engineering using targeted knock-in/knock-out double recombination; whole cell metabolic models; comprehensive whole cell metabolite measurement techniques; creation of plug-and-play metabolic modules for the simplified organism; inherent and engineered biosafety control mechanisms. This redesign is part of a comprehensive plan to lay the foundations for a new discipline of engineering biology. Engineering biological systems requires a fundamentally different viewpoint from that taken by the science of biology. Key engineering principles of modularity, simplicity, separation of concerns, abstraction, flexibility, hierarchical design, isolation, and standardization are of critical importance. The essence of engineering is the ability to imagine, design, model, build, and characterize novel systems to achieve specific goals. Current tools and components for these tasks are primitive. Our approach is to create and distribute standard biological parts, organisms, assembly techniques, and measurement techniques as a way of enabling this new field.« less
The Effect of Prior Exposures on the Notched Fatigue Behavior of Disk Superalloy ME3
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gabb, Tim P.; Hull, David R.; Perea, Daniel E.; Schreiber, Daniel K.
2013-01-01
Environmental attack has the potential to limit turbine disk durability, particularly in next generation engines which will run hotter; there is a need to understand better oxidation at potential service conditions and develop models that link microstructure to fatigue response. More efficient gas turbine engine designs will require higher operating temperatures. Turbine disks are regarded as critical flight safety components; a failure is a serious hazard. Low cycle fatigue is an important design criteria for turbine disks. Powder metallurgy alloys, like ME3, have led to major improvements in temperature performance through refractory additions (e.g. Mo,W) at the expense of environmental resistance (Al, Cr). Service conditions for aerospace disks can produce major cycle periods extending from minutes to hours and days with total service times exceeding 1,000 hours in aerospace applications. Some of the effects of service can be captured by extended exposures at elevated temperature prior to LCF testing. Some details of the work presented here have been published.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission standard. For turboprop engines, use the procedures specified for turbofan engines, consistent... § 87.60—LTO Test Cycles Mode Turboprop Percent of rated output Time in mode(minutes) Subsonic turbofan...
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Kim, K. S.; Yau, J. F.; Vanstone, R. H.; Laflen, J. H.
1984-01-01
Critical gas turbine engine hot section components such as blades, vanes, and combustor liners tend to develop minute cracks during early stages of operations. The ability of currently available path-independent (P-I) integrals to correlate fatigue crack propagation under conditions that simulate the turbojet engine combustor liner environment was determined. To date, an appropriate specimen design and a crack displacement measurement method were determined. Alloy 718 was selected as the analog material based on its ability to simulate high temperature behavior at lower temperatures in order to facilitate experimental measurements. Available P-I integrals were reviewed and the best approaches are being programmed into a finite element post processor for eventual comparison with experimental data. The experimental data will include cyclic crack growth tests under thermomechanical conditions, and, additionally, thermal gradients.
1999-03-06
Student teams behind protective walls operate remote controls to maneuver their robots around the playing field during the 1999 FIRST Southeastern Regional robotic competition held at KSC. The robotic gladiators spent two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Teams played defense by taking away competitors' pillows and generally harassing opposing machines. On the side of the field are the judges, including (far left) Deputy Director for Launch and Payload Processing Loren Shriver and former KSC Director of Shuttle Processing Robert Sieck. A giant screen TV displays the action on the field. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers
1985-11-01
the group to be alert to changes in goals, noting that if the model is not sensitive to goal changes , it will lack validity. Mr. Hartzell announced...This increased emphasis on the soldier-machine interface has not been a sudden change . Instead it has been a gradual one coincident with and...point alone in affecting both design changes and operational doctrine for the system. Analysis of these data should first compare achieved
1980-05-01
be used in any application in which its movement is likely to be ambiguously interpreted . (Example--the manipulation required is opposite to that...fixtures shall be sufficient to permit unambiguous labeling, indicator interpretation , and convenient bulb removal. 5.2.2.3.3 Codinq - Simple...low-resolution for Imagery Interpretation applications, line spacing need not be closer than needed to sub- Equipment, 1975, Ch. 4. tend I minute-of
ANS hard X-ray experiment development program. [emission from X-ray sources
NASA Technical Reports Server (NTRS)
Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.
1974-01-01
The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.
A discrete gust model for use in the design of wind energy conversion systems
NASA Technical Reports Server (NTRS)
Frost, W.; Turner, R. E.
1982-01-01
A discrete gust model has been designed which includes an expression for the number of times per unit time thy wind exceeds a specific value. This expression, based on Rice's (1944, 1945) number-of-crossings model, assumes that the yearly mean wind speed is averaged over a period of 10 minutes to 1 (one) hour. Vertical and lateral coherence functions are the basis for a mathematical filter which isolates atmospheric disturbances of a characteristic size (e. g., those which would completely engulf a rotor). Predictions are calculated usising the given definition of cut-off frequency, then they are compared with actual data, showing that the model is reliable. The expression is provided in a format such that it may be used for engineering design calculations.
Preliminary design of a solar heat receiver for a Brayton cycle space power system
NASA Technical Reports Server (NTRS)
Cameron, H. M.; Mueller, L. A.; Namkoong, D.
1972-01-01
The preliminary design of a solar heat receiver for use as a heat source for an earth-orbiting 11-kWe Brayton-cycle engine is described. The result was a cavity heat receiver having the shape of a frustum of a cone. The wall of the cone is formed by 48 heat-transfer tubes, each tube containing pockets of lithium fluoride for storing heat for as much as 38 minutes of fullpower operation in the shade. Doors are provided in order to dump excess heat especially during operation in orbits with full sun exposure. The receiver material is predominantly columbium - 1-percent-zironium (Cb-1Zr) alloy. Full-scale testing of three heat-transfer tubes for more than 2000 hours and 1250 sun-shade cycles verified the design concept.
Hybrid Engine Powered City Car: Fuzzy Controlled Approach
NASA Astrophysics Data System (ADS)
Rahman, Ataur; Mohiuddin, AKM; Hawlader, MNA; Ihsan, Sany
2017-03-01
This study describes a fuzzy controlled hybrid engine powered car. The car is powered by the lithium ion battery capacity of 1000 Wh is charged by the 50 cc hybrid engine and power regenerative mode. The engine is operated with lean mixture at 3000 rpm to charge the battery. The regenerative mode that connects with the engine generates electrical power of 500-600 W for the deceleration of car from 90 km/h to 20 km/h. The regenerated electrical power has been used to power the air-conditioning system and to meet the other electrical power. The battery power only used to propel the car. The regenerative power also found charging the battery for longer operation about 40 minutes and more. The design flexibility of this vehicle starts with whole-vehicle integration based on radical light weighting, drag reduction, and accessory efficiency. The energy efficient hybrid engine cut carbon dioxide (CO2) and nitrogen oxides (N2O) emission about 70-80% as the loads on the crankshaft such as cam-follower and its associated rotating components are replaced by electromagnetic systems, and the flywheel, alternator and starter motor are replaced by a motor generator. The vehicle was tested and found that it was able to travel 70 km/litre with the power of hybrid engine.
Maccall, Steven L
2006-04-01
The paper describes and evaluates the use of Clinical Digital Libraries Project (CDLP) digital library collections in terms of their facilitation of timely clinical information seeking. A convenience sample of CDLP Web server log activity over a twelve-month period (7/2002 to 6/2003) was analyzed for evidence of timely information seeking after users were referred to digital library clinical topic pages from Web search engines. Sample searches were limited to those originating from medical schools (26% North American and 19% non-North American) and from hospitals or clinics (51% North American and 4% non-North American). Timeliness was determined based on a calculation of the difference between the timestamps of the first and last Web server log "hit" during each search in the sample. The calculated differences were mapped into one of three ranges: less than one minute, one to three minutes, and three to five minutes. Of the 864 searches analyzed, 48% were less than 1 minute, 41% were 1 to 3 minutes, and 11% were 3 to 5 minutes. These results were further analyzed by environment (medical schools versus hospitals or clinics) and by geographic location (North America versus non-North American). Searches reflected a consistent pattern of less than 1 minute in these environments. Though the results were not consistent on a month-by-month basis over the entire time period, data for 8 of 12 months showed that searches shorter than 1 minute predominated and data for 1 month showed an equal number of less than 1 minute and 1 to 3 minute searches. The CDLP digital library collections provided timely access to high-quality Web clinical resources when used for information seeking in medical education and hospital or clinic environments from North American and non-North American locations and consistently provided access to the sought information within the documented two-minute standard. The limitations of the use of Web server data warrant an exploratory assessment. This research also suggests the need for further investigation in the area of timely digital library collection services to clinical environments.
49 CFR 325.59 - Measurement procedure; stationary test.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) If the motor vehicle's engine radiator fan drive is equipped with a clutch or similar device that... minutes, to permit the engine radiator fan to automatically disengage when the vehicle's noise emissions...
New course in bioengineering and bioinspired design.
Erickson, Jonathan C
2012-01-01
The past two years, a new interdisciplinary course has been offered at Washington and Lee University (Lexington, VA, USA), which seeks to surmount barriers that have traditionally existed between the physical and life sciences. The course explores the physiology leading to the physical mechanisms and engineering principles that endow the astonishing navigation abilities and sensory mechanisms of animal systems. The course also emphasizes how biological systems are inspiring novel engineering designs. Two (among many) examples are how the adhesion of the gecko foot inspired a new class of adhesives based on Van der Waals forces; and how the iridophore protein plates found in mimic octopus and squid act as tunable ¼ wave stacks, thus inspiring the engineering of optically tunable block copolymer gels for sensing temperature, pressure, or chemical gradients. A major component of this course is the integration of a 6-8 week long research project. To date, projects have included engineering: a soft-body robot whose motion mimics the inchworm; an electrical circuit to sense minute electric fields in aqueous environments based on the shark electrosensory system; and cyborg grasshoppers whose jump motion is controlled via an electronic-neural interface. Initial feedback has indicated that this course has served to increase student interaction and cross-pollination of ideas between the physical and life sciences. Student feedback also indicated a marked increase in desire and confidence to continue to pursue problems at the boundary of biology and engineeringbioengineering.
75 FR 55393 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-10
... Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT... Rulemaking Advisory Committee (ARAC) to discuss transport airplane and engine (TAE) issues. DATES: The...: Opening Remarks, Review Agenda and Minutes. FAA Report. ARAC Executive Committee Report. Transport Canada...
78 FR 57672 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT... Rulemaking Advisory Committee (ARAC) Transport Airplane and Engine (TAE) Subcommittee to discuss TAE issues... meeting is as follows: Opening Remarks, Review Agenda and Minutes FAA Report ARAC Report Transport Canada...
Iroquois Engine for the Avro Arrow in the Propulsion Systems Laboratory
1957-08-21
A researcher examines the Orenda Iroquois PS.13 turbojet in a Propulsion Systems Laboratory test chamber at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Iroquois was being developed to power the CF-105 Arrow fighter designed by the Avro Canada Company. Avro began design work on the Arrow jet fighter in 1952. The company’s Orenda branch suggested building a titanium-based PS.13 Iroquois engine after development problems arose with the British engines that Avro had originally intended to use. The 10-stage, 20,000-pound-thrust Iroquois would prove to be more powerful than any contemporary US or British turbojet. It was also significantly lighter and more fuel efficient. An Iroquois was sent to Cleveland in April 1957 so that Lewis researchers could study the engine’s basic performance for the air force in the Propulsion Systems Laboratory. The tests were run over a wide range of speeds and altitudes with variations in exhaust-nozzle area. Initial studies determined the Iroquois’s windmilling and ignition characteristics at high altitude. After operating for 64 minutes, the engine was reignited at altitudes up to the 63,000-foot limit of the facility. Various modifications were attempted to reduce the occurrence of stall but did not totally eradicate the problem. The Arrow jet fighter made its initial flight in March 1958 powered by a substitute engine. In February 1959, however, both the engine and the aircraft programs were cancelled. The world’s superpowers had quickly transitioned from bombers to ballistic missiles which rendered the Avro Arrow prematurely obsolete.
Convair F-106B Delta Dart with Research Engines
1969-08-21
A Convair F-106B Delta Dart rolls to the right to reveal the two research engines installed under its wings by the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis acquired the aircraft in October of 1966 to study inlet and nozzle designs for the supersonic transport engine program. Two General Electric J85 engines were mounted beneath the F-106B’s wings and operated from Mach 1 to 1.5. The right wing always carried reference nozzle for which the performance was known. Six supersonic nozzle variations and two inlets were tested on the left engine. The designs had already been studied in the Lewis wind tunnels, but those tests were limited by shock waves in the tunnels. Most F-106B flights were flown in a 200-mile path over the lake between Buffalo and Sandusky, known as the Lake Erie Corridor. The 1100-mile-per-hour flight took only 11 minutes at an altitude of 30,000 feet. The aircraft almost always returned with a depleted fuel supply so a Visual Flight Rules operation was required. Following the crash of another jet fighter at Lewis in July 1969, the F-106s were stationed at Selfridge Air Force Base in Michigan. NASA pilots flew transport planes each morning to the base before commencing the F-106B missions. After the supersonic transport program was cancelled, the F-106B was used as a test bed for additional engine exhaust nozzle configurations. The F-106B was also used to test inlet configurations for the noise reduction program.
Convair F-106B Delta Dart Prepares for a Flight
1969-05-21
National Aeronautics and Space Administration (NASA) pilot Cliff Crabbs and the flight operations crew prepare a Convair F-106B Delta Dart for a flight from the Lewis Research Center in Cleveland, Ohio. NASA acquired the aircraft three years earlier to investigate noise-reducing inlet and nozzle designs for the supersonic transport engine program. Two General Electric J85 engines were installed underneath the aircraft’s delta wings to simulate the general shape of the supersonic transport’s engines. One of the engines was modified with experimental inlet or nozzle configurations. The unmodified engine was used for comparison. Most F-106B flights were flown in a 200-mile path over the lake between Buffalo and Sandusky, known as the Lake Erie Corridor. The 1100-miles per hour flight took only 11 minutes at an altitude of 30,000 feet. The aircraft almost always returned with a depleted fuel supply so a Visual Flight Rules operation was required. Following the crash of another jet fighter at Lewis in July 1969, the F-106s were stationed at Selfridge Air Force Base in Michigan. NASA pilots flew transport planes each morning to the base before commencing the F-106B missions.
NASA Engineer and Technician Instrument Zero Gravity Spheres
1961-08-21
An engineer and technician at the National Aeronautics and Space Administration (NASA) Lewis Research Center install the instrumentation on spherical fuel tanks for an investigation of the behavior of liquids in microgravity. Lewis researchers were undertaking a broad effort to study the heat transfer properties of high energy propellants such as liquid hydrogen in microgravity. In the center’s 2.2-Second Drop Tower they investigated the wetting characteristics of liquid and the liquid-vapor configurations, and predicted the equilibrium state in microgravity conditions. Lewis was also conducting a series microgravity investigations which launched 9-inch diameter spherical dewars, seen here, on an Aerobee sounding rocket. A camera inside the rocket filmed the liquid hydrogen’s behavior during its 4 to 7 minutes of freefall. The researchers concluded, however, that they needed to extend the weightlessness period to obtain better results. So they designed an experiment to be launched on an Atlas missile that would provide 21 minutes of weightlessness. The experiment was flight qualified at Lewis. The 36-percent full liquid hydrogen stainless steel dewar was launched on the Atlas on February 25, 1964. The instrumentation measured temperature, pressure, vacuum, and liquid level. Temperature instrumentation indicated wall drying during the freefall. The resultant pressure-rise characteristics were similar to those used for the normal-gravity test.
2012-11-26
Minutes Required 116 64 142 58 380 No. of Contractor Meeting Minutes Available Preparatory Meetings Initial Meetings 0 0 18 15 0 0 20 2 38...work, for which the contractors should have prepared a total of 190 preparatory and 190 initial meeting minutes (total of 380 meeting minutes...27, 2012 DoD IG Report No. D-2010-059, “Contingency Contracting: A Framework for Reform,” May 14, 2010 DoD IG Report No. SPO -2009-005, “Assessment
49 CFR 571.104 - Standard No. 104; Windshield wiping and washing systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... difference between one-half of the shoulder room dimension and the steering wheel centerline-to-car... frequency or speed shall be at least 45 cycles per minute regardless of engine load and engine speed. S4.1.1.3Regardless of engine speed and engine load, the highest and one lower frequency or speed shall differ by at...
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... percent of maximum continuous power. (b) Turbine engines. (1) Each turbine engine must operate throughout... turbine engine must idle for 30 minutes on the ground, with the air bleed available for engine icing... between 15° and 30 °F (between −9° and −1 °C) and has a liquid water content not less than 0.3 grams per...
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... percent of maximum continuous power. (b) Turbine engines. (1) Each turbine engine must operate throughout... turbine engine must idle for 30 minutes on the ground, with the air bleed available for engine icing... between 15° and 30 °F (between −9° and −1 °C) and has a liquid water content not less than 0.3 grams per...
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... percent of maximum continuous power. (b) Turbine engines. (1) Each turbine engine must operate throughout... turbine engine must idle for 30 minutes on the ground, with the air bleed available for engine icing... between 15° and 30 °F (between −9° and −1 °C) and has a liquid water content not less than 0.3 grams per...
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... percent of maximum continuous power. (b) Turbine engines. (1) Each turbine engine must operate throughout... turbine engine must idle for 30 minutes on the ground, with the air bleed available for engine icing... between 15° and 30 °F (between −9° and −1 °C) and has a liquid water content not less than 0.3 grams per...
Environmental Testing of the NEXT PM1 Ion Engine
NASA Technical Reports Server (NTRS)
Synder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.
2008-01-01
The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The Prototype Model engine PM1 was subjected to qualification-level environmental testing to demonstrate compatibility with environments representative of anticipated mission requirements. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 minutes in each of three axes. Thermal-vacuum testing included a deep cold soak of the engine to temperatures of -168 C and thermal cycling from -120 to 203 C. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. Thruster performance was nominal throughout the test program, with minor variations in some engine operating parameters likely caused by facility effects. In general, the NEXT PM1 engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. After resolution of the findings from this test program the hardware environmental qualification program can proceed with confidence.
The effect of observing session duration on OPUS-RS results
NASA Astrophysics Data System (ADS)
Dincer Dogru, A.; Ugur Sanli, D.; Hayal, Adem G.; Berber, Mustafa
2016-04-01
Online GPS positioning software has now a widespread interest among practitioners and researchers. Researchers rescently use online software to monitor natural hazards such as landslides. The fact that this software usually employs continuously operating GPS stations of the International GNSS Service (IGS) as reference stations in the processing, the community of world-wide users is growing day by day. In the monitoring of landslides, rapid static mode of a GPS surveying is usually preferred because it is possible to have wider field coverage with only a few minutes of data and low cost ground markers. Results comparable to static positioning can be obtained with careful network design and processing strategies. Some online software such as OPUS-RS developed by the National Geodetic Survey (NGS) of the USA provides rapid static positioning engine that processes GPS data from sessions of only a few minutes. 15-minute is the recommended/standard observing session duration for OPUS-RS processing. In this study, using the CORS data operating in the US, we carried out some tests in which the observing session duration is changed from 8 through 118 minutes, and observed the accuracy change on the OPUS-RS solutions. Then we compared the results with the accuracy levels given for 15-min solutions by the NGS. We determined that there is the effect of changing observing session duration on the obtained results, and we report them in this study.
40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... analysis based on accepted chemical engineering principles, measurable process parameters, or physical or... minute, at a temperature of 20 °C. (g) Engineering assessment may be used to determine the TOC emission...) Engineering assessment includes, but is not limited to, the following: (i) Previous test results provided the...
40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... analysis based on accepted chemical engineering principles, measurable process parameters, or physical or... minute, at a temperature of 20 °C. (g) Engineering assessment may be used to determine the TOC emission...) Engineering assessment includes, but is not limited to, the following: (i) Previous test results provided the...
40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... analysis based on accepted chemical engineering principles, measurable process parameters, or physical or... minute, at a temperature of 20 °C. (g) Engineering assessment may be used to determine the TOC emission...) Engineering assessment includes, but is not limited to, the following: (i) Previous test results provided the...
TechXcite: Discover Engineering--A New STEM Curriculum
ERIC Educational Resources Information Center
Sallee, Jeff; Schmitt-McQuitty, Lynn; Swint, Sherry; Meek, Amanda; Ybarra, Gary; Dalton, Rodger
2015-01-01
TechXcite is an engineering-focused, discovery-based after-school science, technology, engineering, and math (STEM) program. The free curriculum is downloadable from http://techxcite.pratt.duke.edu/ and is comprised of eight Modules, each with four to five 45-minute activities that exercise the science and math learned in school by using…
2004-04-15
The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.
NASA Technical Reports Server (NTRS)
2004-01-01
The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.
1999-03-06
Robots, maneuvered by student teams behind protective walls, raise their caches of pillow-like disks to earn points in competition while spectators in the bleachers and on the sidelines cheer their favorite teams. Held at the KSC Visitor Complex, the 1999 Southeastern Regional robotic competition, sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST, comprises 27 teams pairing high school students with engineer mentors and corporations, pitting gladiator robots against each other in an athletic-style competition. Powered by 12-volt batteries and operated by remote control, the robotic gladiators spend two minutes each trying to grab, claw and hoist the pillows onto their machines. Teams play defense by taking away competitors' pillows and generally harassing opposing machines. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Student teams behind protective walls operate remote controls to maneuver their robots around the playing field during the 1999 FIRST Southeastern Regional robotic competition held at KSC. The robotic gladiators spent two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Teams played defense by taking away competitors' pillows and generally harassing opposing machines. On the side of the field are the judges, including (far left) Deputy Director for Launch and Payload Processing Loren Shriver and former KSC Director of Shuttle Processing Robert Sieck. A giant screen TV displays the action on the field. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques
Kim, Joonhoon; Reed, Jennifer L.; Maravelias, Christos T.
2011-01-01
The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering. PMID:21949695
Large-scale bi-level strain design approaches and mixed-integer programming solution techniques.
Kim, Joonhoon; Reed, Jennifer L; Maravelias, Christos T
2011-01-01
The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering.
NASA Technical Reports Server (NTRS)
Povolny, John H.; Bogdan, Louis J.
1947-01-01
An investigation was conducted to determine the coolant-flow distribu tion, the cylinder temperatures, and the heat rejections of the V-165 0-7 engine . The tests were run a t several power levels varying from minimum fuel consumption to war emergency power and at each power l evel the coolant flows corresponded to the extremes of those likely t o be encountered in typical airplane installations, A mixture of 30-p ercent ethylene glycol and 70-percent water was used as the coolant. The temperature of each cylinder was measured between the exhaust val ves, between the intake valves, in the center of the head, on the exh aust-valve guide, at the top of the barrel on the exhaust side, and o n each exhaust spark-plug gasket. For an increase in engine power fro m 628 to approximately 1700 brake horsepower the average temperature for the cylinder heads between the exhaust valves increased from 437 deg to 517 deg F, the engine coolant heat rejection increased from 12 ,600 to 22,700 Btu. per minute, the oil heat rejection increased from 1030 to 4600 Btu per minute, and the aftercooler-coolant heat reject ion increased from 450 to 3500 Btu -per minute.
49 CFR 571.104 - Standard No. 104; Windshield wiping and washing systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... outboard of the steering wheel centerline 0.15 times the difference between one-half of the shoulder room... frequency or speed shall be at least 45 cycles per minute regardless of engine load and engine speed. S4.1.1.3Regardless of engine speed and engine load, the highest and one lower frequency or speed shall differ by at...
Decision making in family medicine
Labrecque, Michel; Ratté, Stéphane; Frémont, Pierre; Cauchon, Michel; Ouellet, Jérôme; Hogg, William; McGowan, Jessie; Gagnon, Marie-Pierre; Njoya, Merlin; Légaré, France
2013-01-01
Abstract Objective To compare the ability of users of 2 medical search engines, InfoClinique and the Trip database, to provide correct answers to clinical questions and to explore the perceived effects of the tools on the clinical decision-making process. Design Randomized trial. Setting Three family medicine units of the family medicine program of the Faculty of Medicine at Laval University in Quebec city, Que. Participants Fifteen second-year family medicine residents. Intervention Residents generated 30 structured questions about therapy or preventive treatment (2 questions per resident) based on clinical encounters. Using an Internet platform designed for the trial, each resident answered 20 of these questions (their own 2, plus 18 of the questions formulated by other residents, selected randomly) before and after searching for information with 1 of the 2 search engines. For each question, 5 residents were randomly assigned to begin their search with InfoClinique and 5 with the Trip database. Main outcome measures The ability of residents to provide correct answers to clinical questions using the search engines, as determined by third-party evaluation. After answering each question, participants completed a questionnaire to assess their perception of the engine’s effect on the decision-making process in clinical practice. Results Of 300 possible pairs of answers (1 answer before and 1 after the initial search), 254 (85%) were produced by 14 residents. Of these, 132 (52%) and 122 (48%) pairs of answers concerned questions that had been assigned an initial search with InfoClinique and the Trip database, respectively. Both engines produced an important and similar absolute increase in the proportion of correct answers after searching (26% to 62% for InfoClinique, for an increase of 36%; 24% to 63% for the Trip database, for an increase of 39%; P = .68). For all 30 clinical questions, at least 1 resident produced the correct answer after searching with either search engine. The mean (SD) time of the initial search for each question was 23.5 (7.6) minutes with InfoClinique and 22.3 (7.8) minutes with the Trip database (P = .30). Participants’ perceptions of each engine’s effect on the decision-making process were very positive and similar for both search engines. Conclusion Family medicine residents’ ability to provide correct answers to clinical questions increased dramatically and similarly with the use of both InfoClinique and the Trip database. These tools have strong potential to increase the quality of medical care. PMID:24130286
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full size, solar dynamic heat receiver in a partially simulated, low Earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment were designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed Brayton cycle engine simulator to circulate and condition the helium xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Astrophysics Data System (ADS)
Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
40 CFR 91.409 - Engine dynamometer test run.
Code of Federal Regulations, 2014 CFR
2014-07-01
... all pre-test data specified in § 91.405(c). (4) Start the test cycle (see § 91.410) within 10 minutes... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine dynamometer test run. 91.409... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.409...
40 CFR 91.409 - Engine dynamometer test run.
Code of Federal Regulations, 2010 CFR
2010-07-01
... all pre-test data specified in § 91.405(c). (4) Start the test cycle (see § 91.410) within 10 minutes... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine dynamometer test run. 91.409... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.409...
40 CFR 91.409 - Engine dynamometer test run.
Code of Federal Regulations, 2013 CFR
2013-07-01
... all pre-test data specified in § 91.405(c). (4) Start the test cycle (see § 91.410) within 10 minutes... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine dynamometer test run. 91.409... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.409...
40 CFR 91.409 - Engine dynamometer test run.
Code of Federal Regulations, 2012 CFR
2012-07-01
... all pre-test data specified in § 91.405(c). (4) Start the test cycle (see § 91.410) within 10 minutes... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine dynamometer test run. 91.409... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.409...
40 CFR 91.409 - Engine dynamometer test run.
Code of Federal Regulations, 2011 CFR
2011-07-01
... all pre-test data specified in § 91.405(c). (4) Start the test cycle (see § 91.410) within 10 minutes... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine dynamometer test run. 91.409... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.409...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 23.1093 - Induction system icing protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 75 percent of its maximum continuous power. (b) Turbine engines. (1) Each turbine engine and its air... established for the airplane for such operation. (2) Each turbine engine must idle for 30 minutes on the...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
14 CFR 23.1093 - Induction system icing protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 75 percent of its maximum continuous power. (b) Turbine engines. (1) Each turbine engine and its air... established for the airplane for such operation. (2) Each turbine engine must idle for 30 minutes on the...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 23.1093 - Induction system icing protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 75 percent of its maximum continuous power. (b) Turbine engines. (1) Each turbine engine and its air... established for the airplane for such operation. (2) Each turbine engine must idle for 30 minutes on the...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 23.1093 - Induction system icing protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 75 percent of its maximum continuous power. (b) Turbine engines. (1) Each turbine engine and its air... established for the airplane for such operation. (2) Each turbine engine must idle for 30 minutes on the...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 23.1093 - Induction system icing protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 75 percent of its maximum continuous power. (b) Turbine engines. (1) Each turbine engine and its air... established for the airplane for such operation. (2) Each turbine engine must idle for 30 minutes on the...) and has a liquid water content not less than 0.3 grams per cubic meter in the form of drops having a...
Temperature characteristics for PTC material heating diesel fuel
NASA Astrophysics Data System (ADS)
Gu, Lefeng; Li, Xiaolu; Wang, Jun; Li, Ying; Li, Ming
2010-08-01
This paper gives a way which utilizes the PTC (Positive Temperature Coefficient) material to preheat diesel fuel in the injector in order to improve the cold starting and emissions of engine. A new injector is also designed. In order to understand the preheating process in this new injector, a dynamic temperature testing system combined with the MSP430F149 data acquisition system is developed for PTC material heating diesel fuel. Especially, the corresponding software and hardware circuits are explained. The temperature of diesel fuel preheating by PTC ceramics is measured under different voltages and distances, which Curie point is 75 °C. Diesel fuel is heated by self-defined temperature around the Curie point of PTC ceramics. The diesel fuel temperature rises rapidly in 2 minutes of the beginning, then can reach 60 °C within 5 minutes as its distance is 5mm away from the surface of PTC ceramics. However, there are a lot of fundamental studies and technology to be resolved in order to apply PTC material in the injector successfully.
Portable Handheld Optical Window Inspection Device
NASA Technical Reports Server (NTRS)
Ihlefeld, Curtis; Dokos, Adam; Burns, Bradley
2010-01-01
The Portable Handheld Optical Window Inspection Device (PHOWID) is a measurement system for imaging small defects (scratches, pits, micrometeor impacts, and the like) in the field. Designed primarily for window inspection, PHOWID attaches to a smooth surface with suction cups, and raster scans a small area with an optical pen in order to provide a three-dimensional image of the defect. PHOWID consists of a graphical user interface, motor control subsystem, scanning head, and interface electronics, as well as an integrated camera and user display that allows a user to locate minute defects before scanning. Noise levels are on the order of 60 in. (1.5 m). PHOWID allows field measurement of defects that are usually done in the lab. It is small, light, and attaches directly to the test article in any orientation up to vertical. An operator can scan a defect and get useful engineering data in a matter of minutes. There is no need to make a mold impression for later lab analysis.
Storage requirement definition study
NASA Technical Reports Server (NTRS)
Stacy, L. E.; Wesling, G. C.; Zimmerman, W. F.
1980-01-01
A dish Stirling solar receiver (DSSR) and a heat pipe solar receiver with TES (HPSR) for a 25 kWe dish Stirling solar power system are described. The thermal performance and cost effectiveness of each are analyzed minute by minute over the equivalent of one year of solar insolation. Existing designs of these two systems were used as a basis for the study; TES concepts for the DSSR and alternative TES concepts for the HPSR are presented. Parametric performance and cost studies were performed to determine the operating and cost characteristics of these systems. Data are reported for systems (1) without TES and with varying amounts of TES, (2) with and without a fossil fuel combustor, (3) with varying solar to fossil power input, and (4) with different system control assumptions. The principal effects of TES duration, collector area, engine efficiency, and fuel cost sensitivity are indicated. Development needs for each of the systems are discussed and the need and nature of possible future TES solar modular experiments are presented and discussed.
16. INTERIOR VIEW OF HILLMAN FAN HOUSE ENGINE ROOM LOOKING ...
16. INTERIOR VIEW OF HILLMAN FAN HOUSE ENGINE ROOM LOOKING EAST This overview of the 1883 Pittston Engine and Machine Company steam engine includes the flywheel and pillowblock in the foreground, with the shaft and cylinder in the background. The engine is a horizontal, slide valve type of 30 inch bore and 60 inch stroke that turned the fan at 49 revolutions per minute. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA
Science& Technology Review September 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, D
2003-09-01
This September 2003 issue of ''Science and Technology Review'' covers the following articles: (1) ''The National Ignition Facility Is Born''; (2) ''The National Ignition Facility Comes to Life'' Over the last 15 years, thousands of Livermore engineers, scientists, and technicians as well as hundreds of industrial partners have worked to bring the National Ignition Facility into being. (3) ''Tracking the Activity of Bacteria Underground'' Using real-time polymerase chain reaction and liquid chromatography/tandem mass spectrometry, researchers at Livermore are gaining knowledge on how bacteria work underground to break down compounds of environmental concern. (4) ''When Every Second Counts--Pathogen Identification in Lessmore » Than a Minute'' Livermore has developed a system that can quickly identify airborne pathogens such as anthrax. (5) ''Portable Radiation Detector Provides Laboratory-Scale Precision in the Field'' A team of Livermore physicists and engineers has developed a handheld, mechanically cooled germanium detector designed to identify radioisotopes.« less
1999-03-06
During the 1999 FIRST Southeastern Regional robotic competition held at KSC, a robot carrying its cache of pillow-like disks maneuvers to move around another at left. Powered by 12-volt batteries and operated by remote control, the robotic gladiators spend two minutes each trying to grab, claw and hoist the pillows onto their machines. Teams play defense by taking away competitors' pillows and generally harassing opposing machines. Behind the field are a group of judges, including KSC former KSC Director of Shuttle Processing Robert Sieck (left, in cap), and Center Director Roy Bridges (in white shirt). A giant screen TV in the background displays the action on the playing field. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers
1999-03-06
Watching the 1999 FIRST Southeastern Regional robotic competition held at KSC are (left to right) FIRST representative Vince Wilczynski and Executive Director of FIRST David Brown, Center Director Roy Bridges, former KSC Director of Shuttle Processing Robert Sieck (pointing), and astronaut David Brown. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. Brown and Sieck served as judges for the event that pits gladiator robots against each other in an athletic-style competition. Powered by 12-volt batteries and operated by remote control, the robotic gladiators spend two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Teams play defense by taking away competitors' pillows and generally harassing opposing machines. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers
1999-03-06
Four robots vie for position on the playing field during the 1999 FIRST Southeastern Regional robotic competition held at KSC. Powered by 12-volt batteries and operated by remote control, the robotic gladiators spent two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Student teams, shown behind protective walls, play defense by taking away competitors' pillows and generally harassing opposing machines. Two of the robots have lifted their caches of pillows above the field, a movement which earns them points. Along with the volunteer referees, at the edge of the playing field, judges at right watch the action. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Four robots vie for position on the playing field during the 1999 FIRST Southeastern Regional robotic competition held at KSC. Powered by 12-volt batteries and operated by remote control, the robotic gladiators spent two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Student teams, shown behind protective walls, play defense by taking away competitors' pillows and generally harassing opposing machines. Two of the robots have lifted their caches of pillows above the field, a movement which earns them points. Along with the volunteer referees, at the edge of the playing field, judges at right watch the action. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
NASA Astrophysics Data System (ADS)
Entsminger, J. R., II
From a sociocultural point of view, this qualitative case study explored how upper-level, female undergraduate engineering students perceived the possibility of or experience with stereotype threat as shaping their experiences. The study also investigated how these students explained their reasons for choosing their engineering major, the challenges they encountered in the major, and their reasons for persevering in spite of those challenges. Using Steele and Aronson's (1995) stereotype threat theory as a framework, and considering the documented underrepresentation of females in engineering, the study sought to examine how stereotype threat shaped the experiences of these students and if stereotype threat could be considered a valid reason for the underrepresentation. The study was conducted at a large, four-year public university. First, students in the College of Engineering and Engineering Technology completed the Participant Screening Survey. Based on responses from the survey, six female engineering students from the college were identified and invited to participate in the study. The participants came from the following majors: Electrical Engineering, Industrial and Systems Engineering, and Mechanical Engineering. After receiving the study consent letter and agreeing to participate, the students were involved in a 90-minute focus group meeting, a 45-minute one-on-one interview, and a 30-minute follow-up interview. After conducting the data collection methods, the data were then transcribed, analyzed, and coded for theme development. The themes that emerged coincided with each research question. The themes highlighted the complex interactions and experiences shared by the female engineering majors. The female students were enveloped in an environment where there existed an increased risk for activating stereotype threat. In addition, the female students described feeling pushed to prove to themselves and to others that the negative stereotype that 'females are bad at engineering' was untrue. The findings illustrated the need for systematic changes at the university level. Intervention recommendations were provided. In regards to female underrepresentation in science fields, including engineering, stereotype threat certainly had the potential to cause the female students to question themselves, their abilities, their choice of an academic major, and subsequently remove themselves from a hostile learning or working environment. Thus, educational institutions and workplace organizations are responsible for not only educating themselves regarding stereotype threat, but also for taking steps to alleviate the pernicious effects of stereotype threat.
NASA Collaborative Design Processes
NASA Technical Reports Server (NTRS)
Jones, Davey
2017-01-01
This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.
A spatially localized architecture for fast and modular DNA computing
NASA Astrophysics Data System (ADS)
Chatterjee, Gourab; Dalchau, Neil; Muscat, Richard A.; Phillips, Andrew; Seelig, Georg
2017-09-01
Cells use spatial constraints to control and accelerate the flow of information in enzyme cascades and signalling networks. Synthetic silicon-based circuitry similarly relies on spatial constraints to process information. Here, we show that spatial organization can be a similarly powerful design principle for overcoming limitations of speed and modularity in engineered molecular circuits. We create logic gates and signal transmission lines by spatially arranging reactive DNA hairpins on a DNA origami. Signal propagation is demonstrated across transmission lines of different lengths and orientations and logic gates are modularly combined into circuits that establish the universality of our approach. Because reactions preferentially occur between neighbours, identical DNA hairpins can be reused across circuits. Co-localization of circuit elements decreases computation time from hours to minutes compared to circuits with diffusible components. Detailed computational models enable predictive circuit design. We anticipate our approach will motivate using spatial constraints for future molecular control circuit designs.
Design optimum frac jobs using virtual intelligence techniques
NASA Astrophysics Data System (ADS)
Mohaghegh, Shahab; Popa, Andrei; Ameri, Sam
2000-10-01
Designing optimal frac jobs is a complex and time-consuming process. It usually involves the use of a two- or three-dimensional computer model. For the computer models to perform as intended, a wealth of input data is required. The input data includes wellbore configuration and reservoir characteristics such as porosity, permeability, stress and thickness profiles of the pay layers as well as the overburden layers. Among other essential information required for the design process is fracturing fluid type and volume, proppant type and volume, injection rate, proppant concentration and frac job schedule. Some of the parameters such as fluid and proppant types have discrete possible choices. Other parameters such as fluid and proppant volume, on the other hand, assume values from within a range of minimum and maximum values. A potential frac design for a particular pay zone is a combination of all of these parameters. Finding the optimum combination is not a trivial process. It usually requires an experienced engineer and a considerable amount of time to tune the parameters in order to achieve desirable outcome. This paper introduces a new methodology that integrates two virtual intelligence techniques, namely, artificial neural networks and genetic algorithms to automate and simplify the optimum frac job design process. This methodology requires little input from the engineer beyond the reservoir characterizations and wellbore configuration. The software tool that has been developed based on this methodology uses the reservoir characteristics and an optimization criteria indicated by the engineer, for example a certain propped frac length, and provides the detail of the optimum frac design that will result in the specified criteria. An ensemble of neural networks is trained to mimic the two- or three-dimensional frac simulator. Once successfully trained, these networks are capable of providing instantaneous results in response to any set of input parameters. These networks will be used as the fitness function for a genetic algorithm routine that will search for the best combination of the design parameters for the frac job. The genetic algorithm will search through the entire solution space and identify the optimal combination of parameters to be used in the design process. Considering the complexity of this task this methodology converges relatively fast, providing the engineer with several near-optimum scenarios for the frac job design. These scenarios, which can be achieved in just a minute or two, can be valuable initial points for the engineer to start his/her design job and save him/her hours of runs on the simulator.
Rocketdyne - F-1 Saturn V First Stage Engine. Chapter 1, Appendix C
NASA Technical Reports Server (NTRS)
Biggs, Robert
2009-01-01
Before I go into the history of F-1, I want to discuss the F-1 engine s role in putting man on the moon. The F-1 engine was used in a cluster of five on the first stage, and that was the only power during the first stage. It took the Apollo launch vehicle, which was 363 feet tall and weighed six million pounds, and threw it downrange fifty miles, threw it up to forty miles of altitude, at Mach 7. It took two and one-half minutes to do that and, in the process, burned four and one-half million pounds of propellant, a pretty sizable task. (See Slide 2, Appendix C) My history goes back to the same year I started working at Rocketdyne. That s where the F-1 had its beginning, back early in 1957. In 1957, there was no space program. Rocketdyne was busy working overtime and extra days designing, developing, and producing rocket engines for weapons of mass destruction, not for scientific reasons. The Air Force contracted Rocketdyne to study how to make a rocket engine that had a million pounds of thrust. The highest thing going at the time had 150,000 pounds of thrust. Rocketdyne s thought was the new engine might be needed for a ballistic missile, not that it was going to go on a moon shot.
The Feasibility of Six-Minute and Two-Minute Walk Tests in In-patient Geriatric Rehabilitation
ERIC Educational Resources Information Center
Brooks, Dina; Davis, Aileen M.; Naglie, Gary
2007-01-01
Objective: To evaluate the feasibility of the 6-minute and 2-minute walk tests in frail older persons. Design: Pre/post-design with measures at admission and discharge to in-patient geriatric rehabilitation. Participants: Fifty-two subjects (35 women, 17 men; age 80 plus or minus 8 years). Results: Only 1 of the first 8 subjects could complete a…
40 CFR 86.535-90 - Dynamometer procedure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... minutes. Engine startup (with all accessories turned off), operation over the driving schedule, and engine... driving schedule complete the hot start test. The exhaust emissions are diluted with ambient air and a... Administrator. (d) Practice runs over the prescribed driving schedule may be performed at test points, provided...
40 CFR 86.535-90 - Dynamometer procedure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... minutes. Engine startup (with all accessories turned off), operation over the driving schedule, and engine... driving schedule complete the hot start test. The exhaust emissions are diluted with ambient air and a... Administrator. (d) Practice runs over the prescribed driving schedule may be performed at test points, provided...
40 CFR 86.535-90 - Dynamometer procedure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... minutes. Engine startup (with all accessories turned off), operation over the driving schedule, and engine... driving schedule complete the hot start test. The exhaust emissions are diluted with ambient air and a... Administrator. (d) Practice runs over the prescribed driving schedule may be performed at test points, provided...
40 CFR 86.535-90 - Dynamometer procedure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... minutes. Engine startup (with all accessories turned off), operation over the driving schedule, and engine... driving schedule complete the hot start test. The exhaust emissions are diluted with ambient air and a... Administrator. (d) Practice runs over the prescribed driving schedule may be performed at test points, provided...
Labrecque, Michel; Ratté, Stéphane; Frémont, Pierre; Cauchon, Michel; Ouellet, Jérôme; Hogg, William; McGowan, Jessie; Gagnon, Marie-Pierre; Njoya, Merlin; Légaré, France
2013-10-01
To compare the ability of users of 2 medical search engines, InfoClinique and the Trip database, to provide correct answers to clinical questions and to explore the perceived effects of the tools on the clinical decision-making process. Randomized trial. Three family medicine units of the family medicine program of the Faculty of Medicine at Laval University in Quebec city, Que. Fifteen second-year family medicine residents. Residents generated 30 structured questions about therapy or preventive treatment (2 questions per resident) based on clinical encounters. Using an Internet platform designed for the trial, each resident answered 20 of these questions (their own 2, plus 18 of the questions formulated by other residents, selected randomly) before and after searching for information with 1 of the 2 search engines. For each question, 5 residents were randomly assigned to begin their search with InfoClinique and 5 with the Trip database. The ability of residents to provide correct answers to clinical questions using the search engines, as determined by third-party evaluation. After answering each question, participants completed a questionnaire to assess their perception of the engine's effect on the decision-making process in clinical practice. Of 300 possible pairs of answers (1 answer before and 1 after the initial search), 254 (85%) were produced by 14 residents. Of these, 132 (52%) and 122 (48%) pairs of answers concerned questions that had been assigned an initial search with InfoClinique and the Trip database, respectively. Both engines produced an important and similar absolute increase in the proportion of correct answers after searching (26% to 62% for InfoClinique, for an increase of 36%; 24% to 63% for the Trip database, for an increase of 39%; P = .68). For all 30 clinical questions, at least 1 resident produced the correct answer after searching with either search engine. The mean (SD) time of the initial search for each question was 23.5 (7.6) minutes with InfoClinique and 22.3 (7.8) minutes with the Trip database (P = .30). Participants' perceptions of each engine's effect on the decision-making process were very positive and similar for both search engines. Family medicine residents' ability to provide correct answers to clinical questions increased dramatically and similarly with the use of both InfoClinique and the Trip database. These tools have strong potential to increase the quality of medical care.
Stirling Engine Dynamic System Modeling
NASA Technical Reports Server (NTRS)
Nakis, Christopher G.
2004-01-01
The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.
An experiment of used palm oil refinery using the value engineering method
NASA Astrophysics Data System (ADS)
Sumiati; Waluyo, M.
2018-01-01
Palm Oil is one of prime materials which very necessary for Indonesia. In the development of palm oil industry the constraint which faced is raw material availability and the economic crisis that attack Indonesia which cause increasing of cost industry so that the salaes price become very expensive . With using alternative raw material namely used palm oil them be made palm oil design to solve this problems. In the designing which comply the consideration of good pal oil planning aspect be use value engineer study. While the criteria parameter of hygienic palm oil which obtained from the questioner area free fatty acid, water content, Iodine number, peroxide number, odor, taste and the color. The research which use value engineer study is throught any phase that is information phase, analyzes phase, creative phase, development phase and presentation phase. This research began with doing the identification of palm oil demand, continued by methodology development in order to measure oil design. By using creative process could be obtained flow rate position, the amount of adsorbent and the best settling time for palm oil alternative that is in the flow rate 70 ml/sec, 4% of adsorbent and the 70 minute for the settling time with free fatty acid value: 0.299. While the best palm oil alternative are palm oil with free fatty acid value = 0.299, water content = 0.31, Iodine number = 40.08, Peroxide number = 3.72, odor and taste = Normal, the color = Normal. The Evalution which done by value engineer study generate the value from alternative palm oil is 1.330 and market palm oil 1.392. Thus, can be conclude thet the value engineer study can be good implemented in the alternative palm oil planning so that alternative palm oil can be produced largely because they have better value that market palm oil and appropriate for little industries.
Ten Minutes Wide: Human Walking Capacities and the Experiential Quality of Campus Design
ERIC Educational Resources Information Center
Spooner, David
2011-01-01
Whether a campus is large or small, the idea of a 10-minute walk is an important human-scaled design standard that affects an institution in significant ways beyond just getting students to class on time. Designing a 10-minute walk seems like a simple exercise. Based on earlier information, all one needs to do is provide a walking surface and make…
The Numerical Propulsion System Simulation: An Overview
NASA Technical Reports Server (NTRS)
Lytle, John K.
2000-01-01
Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
14 CFR 33.49 - Endurance test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... higher gear ratio under sea level conditions. The condition for operation for the alternate 5 minutes in... suppress detonation. (d) Helicopter engines. To be eligible for use on a helicopter each engine must either... sea level carburetor entrance pressure, if 105 percent of the rated maximum continuous power is not...
14 CFR 33.49 - Endurance test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... higher gear ratio under sea level conditions. The condition for operation for the alternate 5 minutes in... suppress detonation. (d) Helicopter engines. To be eligible for use on a helicopter each engine must either... sea level carburetor entrance pressure, if 105 percent of the rated maximum continuous power is not...
X-43C Flight Demonstrator Project Overview
NASA Technical Reports Server (NTRS)
Moses, Paul L.
2003-01-01
The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.
2009-01-01
Closed Brayton Cycle (CBC) and Closed Supercritical Cycle (CSC) engines are prime candidates to convert heat from a reactor into electric power for robotic space exploration and habitation. These engine concepts incorporate a permanent magnet starter/generator mounted on the engine shaft along with the requisite turbomachinery. Successful completion of the long-duration missions currently anticipated for these engines will require designs that adequately address all losses within the machine. The preliminary thermal management concept for these engine types is to use the cycle working fluid to provide the required cooling. In addition to providing cooling, the working fluid will also serve as the bearing lubricant. Additional requirements, due to the unique application of these microturbines, are zero contamination of the working fluid and entirely maintenance-free operation for many years. Losses in the gas foil bearings and within the rotor-stator gap of the generator become increasingly important as both rotational speed and mean operating pressure are increased. This paper presents the results of an experimental study, which obtained direct torque measurements on gas foil bearings and generator rotor-stator gaps. Test conditions for these measurements included rotational speeds up to 42,000 revolutions per minute, pressures up to 45 atmospheres, and test gases of nitrogen, helium, and carbon dioxide. These conditions provided a maximum test Taylor number of nearly one million. The results show an exponential rise in power loss as mean operating density is increased for both the gas foil bearing and generator windage. These typical "secondary" losses can become larger than the total system output power if conventional design paradigms are followed. A nondimensional analysis is presented to extend the experimental results into the CSC range for the generator windage.
Re-engineering pre-employment check-up systems: a model for improving health services.
Rateb, Said Abdel Hakim; El Nouman, Azza Abdel Razek; Rateb, Moshira Abdel Hakim; Asar, Mohamed Naguib; El Amin, Ayman Mohammed; Gad, Saad abdel Aziz; Mohamed, Mohamed Salah Eldin
2011-01-01
The purpose of this paper is to develop a model for improving health services provided by the pre-employment medical fitness check-up system affiliated to Egypt's Health Insurance Organization (HIO). Operations research, notably system re-engineering, is used in six randomly selected centers and findings before and after re-engineering are compared. The re-engineering model follows a systems approach, focusing on three areas: structure, process and outcome. The model is based on six main components: electronic booking, standardized check-up processes, protected medical documents, advanced archiving through an electronic content management (ECM) system, infrastructure development, and capacity building. The model originates mainly from customer needs and expectations. The centers' monthly customer flow increased significantly after re-engineering. The mean time spent per customer cycle improved after re-engineering--18.3 +/- 5.5 minutes as compared to 48.8 +/- 14.5 minutes before. Appointment delay was also significantly decreased from an average 18 to 6.2 days. Both beneficiaries and service providers were significantly more satisfied with the services after re-engineering. The model proves that re-engineering program costs are exceeded by increased revenue. Re-engineering in this study involved multiple structure and process elements. The literature review did not reveal similar re-engineering healthcare packages. Therefore, each element was compared separately. This model is highly recommended for improving service effectiveness and efficiency. This research is the first in Egypt to apply the re-engineering approach to public health systems. Developing user-friendly models for service improvement is an added value.
Improvement of laboratory turnaround time using lean methodology.
Gupta, Shradha; Kapil, Sahil; Sharma, Monica
2018-05-14
Purpose The purpose of this paper is to discuss the implementation of lean methodology to reduce the turnaround time (TAT) of a clinical laboratory in a super speciality hospital. Delays in report delivery lead to delayed diagnosis increased waiting time and decreased customer satisfaction. The reduction in TAT will lead to increased patient satisfaction, quality of care, employee satisfaction and ultimately the hospital's revenue. Design/methodology/approach The generic causes resulting in increasing TAT of clinical laboratories were identified using lean tools and techniques such as value stream mapping (VSM), Gemba, Pareto Analysis and Root Cause Analysis. VSM was used as a tool to analyze the current state of the process and further VSM was used to design the future state with suggestions for process improvements. Findings This study identified 12 major non-value added factors for the hematology laboratory and 5 major non-value added factors for the biochemistry lab which were acting as bottlenecks resulting in limiting throughput. A four-month research study by the authors together with hospital quality department and laboratory staff members led to reduction of the average TAT from 180 to 95minutes in the hematology lab and from 268 to 208 minutes in the biochemistry lab. Practical implications Very few improvement initiatives in Indian healthcare are based on industrial engineering tools and techniques, which might be due to a lack of interaction between healthcare and engineering. The study provides a positive outcome in terms of improving the efficiency of services in hospitals and identifies a scope for lean in the Indian healthcare sector. Social implications Applying lean in the Indian healthcare sector gives its own potential solution to the problem caused, due to a wide gap between lean accessibility and lean implementation. Lean helped in changing the mindset of an organization toward providing the highest quality of services with faster delivery at an optimal cost. Originality/value This paper is an effort to reduce the gap between healthcare and industrial engineering and enhancing the use of lean practices in Indian healthcare. The study is motivated toward implementing lean methodology successfully in services.
18. INTERIOR VIEW OF BALTIMORE FAN HOUSE ENGINE ROOM LOOKING ...
18. INTERIOR VIEW OF BALTIMORE FAN HOUSE ENGINE ROOM LOOKING EAST The flywheel of the 1908 Allis-Chalmers Corliss steam engine and flywheel are in the foreground. The engine is a horizontal slide valve type with a 24 inch bore and 48 inch stroke. It was direct connected to the Dickson Guibal fan which rotated at 69 revolutions per minute. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA
Coal desulfurization by low temperature chlorinolysis, phase 2
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Grohmann, K.; Rohatgi, N.; Ernest, J.; Feller, D.
1980-01-01
An engineering scale reactor system was constructed and operated for the evaluation of five high sulfur bituminous coals obtained from Kentucky, Ohio, and Illinois. Forty-four test runs were conducted under conditions of 100 by 200 mesh coal,solvents - methlychloroform and water, 60 to 130 C, 0 to 60 psig, 45 to 90 minutes, and gaseous chlorine flow rate of up to 24 SCFH. Sulfur removals demonstrated for the five coals were: maximum total sulfur removal of 46 to 89% (4 of 5 coals with methylchloroform) and 0 to 24% with water. In addition, an integrated continuous flow mini-pilot plant was designed and constructed for a nominal coal rate of 2 kilograms/hour which will be operated as part of the follow-on program. Equipment flow sheets and design drawings are included for both the batch and continuous flow mini-pilot plants.
Applying Systems Engineering Reduces Radiology Transport Cycle Times in the Emergency Department.
White, Benjamin A; Yun, Brian J; Lev, Michael H; Raja, Ali S
2017-04-01
Emergency department (ED) crowding is widespread, and can result in care delays, medical errors, increased costs, and decreased patient satisfaction. Simultaneously, while capacity constraints on EDs are worsening, contributing factors such as patient volume and inpatient bed capacity are often outside the influence of ED administrators. Therefore, systems engineering approaches that improve throughput and reduce waste may hold the most readily available gains. Decreasing radiology turnaround times improves ED patient throughput and decreases patient waiting time. We sought to investigate the impact of systems engineering science targeting ED radiology transport delays and determine the most effective techniques. This prospective, before-and-after analysis of radiology process flow improvements in an academic hospital ED was exempt from institutional review board review as a quality improvement initiative. We hypothesized that reorganization of radiology transport would improve radiology cycle time and reduce waste. The intervention included systems engineering science-based reorganization of ED radiology transport processes, largely using Lean methodologies, and adding no resources. The primary outcome was average transport time between study order and complete time. All patients presenting between 8/2013-3/2016 and requiring plain film imaging were included. We analyzed electronic medical record data using Microsoft Excel and SAS version 9.4, and we used a two-sample t-test to compare data from the pre- and post-intervention periods. Following the intervention, average transport time decreased significantly and sustainably. Average radiology transport time was 28.7 ± 4.2 minutes during the three months pre-intervention. It was reduced by 15% in the first three months (4.4 minutes [95% confidence interval [CI] 1.5-7.3]; to 24.3 ± 3.3 min, P=0.021), 19% in the following six months (5.4 minutes, 95% CI [2.7-8.2]; to 23.3 ± 3.5 min, P=0.003), and 26% one year following the intervention (7.4 minutes, 95% CI [4.8-9.9]; to 21.3 ± 3.1 min, P=0.0001). This result was achieved without any additional resources, and demonstrated a continual trend towards improvement. This innovation demonstrates the value of systems engineering science to increase efficiency in ED radiology processes. In this study, reorganization of the ED radiology transport process using systems engineering science significantly increased process efficiency without additional resource use.
Applying Systems Engineering Reduces Radiology Transport Cycle Times in the Emergency Department
White, Benjamin A.; Yun, Brian J.; Lev, Michael H.; Raja, Ali S.
2017-01-01
Introduction Emergency department (ED) crowding is widespread, and can result in care delays, medical errors, increased costs, and decreased patient satisfaction. Simultaneously, while capacity constraints on EDs are worsening, contributing factors such as patient volume and inpatient bed capacity are often outside the influence of ED administrators. Therefore, systems engineering approaches that improve throughput and reduce waste may hold the most readily available gains. Decreasing radiology turnaround times improves ED patient throughput and decreases patient waiting time. We sought to investigate the impact of systems engineering science targeting ED radiology transport delays and determine the most effective techniques. Methods This prospective, before-and-after analysis of radiology process flow improvements in an academic hospital ED was exempt from institutional review board review as a quality improvement initiative. We hypothesized that reorganization of radiology transport would improve radiology cycle time and reduce waste. The intervention included systems engineering science-based reorganization of ED radiology transport processes, largely using Lean methodologies, and adding no resources. The primary outcome was average transport time between study order and complete time. All patients presenting between 8/2013–3/2016 and requiring plain film imaging were included. We analyzed electronic medical record data using Microsoft Excel and SAS version 9.4, and we used a two-sample t-test to compare data from the pre- and post-intervention periods. Results Following the intervention, average transport time decreased significantly and sustainably. Average radiology transport time was 28.7 ± 4.2 minutes during the three months pre-intervention. It was reduced by 15% in the first three months (4.4 minutes [95% confidence interval [CI] 1.5–7.3]; to 24.3 ± 3.3 min, P=0.021), 19% in the following six months (5.4 minutes, 95% CI [2.7–8.2]; to 23.3 ± 3.5 min, P=0.003), and 26% one year following the intervention (7.4 minutes, 95% CI [4.8–9.9]; to 21.3 ± 3.1 min, P=0.0001). This result was achieved without any additional resources, and demonstrated a continual trend towards improvement. This innovation demonstrates the value of systems engineering science to increase efficiency in ED radiology processes. Conclusion In this study, reorganization of the ED radiology transport process using systems engineering science significantly increased process efficiency without additional resource use. PMID:28435492
40 CFR 1048.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2013 CFR
2013-07-01
... control of air-fuel ratios: (a) Equip your engines with a diagnostic system. Starting in the 2007 model... malfunction whenever the air-fuel ratio does not cross stoichiometry for one minute of intended closed-loop operation. You may use other diagnostic strategies if we approve them in advance. (2) If the protocol...
40 CFR 1048.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2012 CFR
2012-07-01
... control of air-fuel ratios: (a) Equip your engines with a diagnostic system. Starting in the 2007 model... malfunction whenever the air-fuel ratio does not cross stoichiometry for one minute of intended closed-loop operation. You may use other diagnostic strategies if we approve them in advance. (2) If the protocol...
40 CFR 1048.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2014 CFR
2014-07-01
... control of air-fuel ratios: (a) Equip your engines with a diagnostic system. Starting in the 2007 model... malfunction whenever the air-fuel ratio does not cross stoichiometry for one minute of intended closed-loop operation. You may use other diagnostic strategies if we approve them in advance. (2) If the protocol...
Design of a High Temperature Radiator for the Variable Specific Impulse Magnetoplasma Rocket
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Ungar, Eugene K.; Chambliss, Joe P.
2012-01-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company (Webster, TX), is a unique propulsion system that could change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduces the propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station (ISS). The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster core generates 27 kW of waste heat during its 15 minute firing time. The rocket core will be maintained between 283 and 573 K by a pumped thermal control loop. The design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient-based radiator design. The paper will describe the radiator design option selected for the VASIMR thermal control system for use on ISS, and how the system relates to future exploration vehicles.
NASA Technical Reports Server (NTRS)
Winterton, Joyce L.
2016-01-01
A 50 minute-workshop based on NASA publicly available information will be conducted at the International Technology and Engineering Educator Association annual conference. Attendees will include middle and high school teachers and university teacher educators. Engineering and technology are essential to NASA's suborbital missions including sounding rockets, scientific balloon and airborne science. The attendees will learn how to include NASA information on these missions in their teaching.
A light- and calcium-gated transcription factor for imaging and manipulating activated neurons
Wang, W.; Wildes, C. P.; Pattarabanjird, T.; Sanchez, M. I.; Glober, G.F.; Matthews, G. A.; Tye, K. M.; Ting, A. Y
2017-01-01
Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically-encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally-applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high-to-low calcium signal ratio of 10 after 10 minutes of stimulation. Channelrhodopsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium. PMID:28650461
Results of Tests on Radiators for Aircraft Engines
NASA Technical Reports Server (NTRS)
Dickinson, H C; James, W S; Kleinschmidt, R V
1920-01-01
Part 1 is to present the results of tests on 56 types of core in a form convenient for use in the study of the performance of and possible improvements in existing designs. Working rules are given by which the data contained in the report may be used, and the most obvious conclusions as to the behavior of cores are summarized. Part 2 presents the results of tests made to determine the pressure necessary to produce water flows up to 50 gallons per minute through an 8-inch square section of radiator core. These data are of special value in evaluating the hydraulic head against which the circulating pump is required to operate.
Return to flight SSME test at A2 test stand
2004-07-16
The Space Shuttle Main Engine (SSME) reached a historic milestone July 16, 2004, when a successful flight acceptance test was conducted at NASA Stennis Space Center (SSC). The engine tested today is the first complete engine to be tested and shipped in its entirety to Kennedy Space Center for installation on Space Shuttle Discovery for STS-114, NASA's Return to Flight mission. The engine test, which began about 3:59 p.m. CDT, ran for 520 seconds (8 minutes), the length of time it takes for the Space Shuttle to reach orbit.
40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Observe pre-test procedures; § 86.339; (3) Start cooling system; (4) Start engine and operate in... be 5 minutes ±30 seconds. Sample flow may begin during the warm-up; (5) Read and record all pre-test... test run. 86.340-79 Section 86.340-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Observe pre-test procedures; § 86.339; (3) Start cooling system; (4) Start engine and operate in... be 5 minutes ±30 seconds. Sample flow may begin during the warm-up; (5) Read and record all pre-test... test run. 86.340-79 Section 86.340-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Observe pre-test procedures; § 86.339; (3) Start cooling system; (4) Start engine and operate in... be 5 minutes ±30 seconds. Sample flow may begin during the warm-up; (5) Read and record all pre-test... test run. 86.340-79 Section 86.340-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Observe pre-test procedures; § 86.339; (3) Start cooling system; (4) Start engine and operate in... be 5 minutes ±30 seconds. Sample flow may begin during the warm-up; (5) Read and record all pre-test... test run. 86.340-79 Section 86.340-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
Computer-Assisted Instruction in Engineering Dynamics. CAI-Systems Memo Number 18.
ERIC Educational Resources Information Center
Sheldon, John W.
A 90-minute computer-assisted instruction (CAI) unit course supplemented by a 1-hour lecture on the dynamic nature of three-dimensional rotations and Euler angles was given to 29 undergraduate engineering students. The area of Euler angles was selected because it is essential to problem-working in three-dimensional rotations of a rigid body, yet…
Near Earth Asteroid Human Mission Possibilities Using Nuclear Thermal Rocket (NTR) Propulsion
NASA Technical Reports Server (NTRS)
Borowski, Stanley; McCurdy, David R.; Packard, Thomas W.
2012-01-01
The NTR is a proven technology that generates high thrust and has a specific impulse (Isp (is) approximately 900 s) twice that of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - all the requirements needed for a human mission to Mars. Ceramic metal fuel was also evaluated as a backup option. In NASA's recent Mars Design reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program - the 25 klbf 'Pewee' engine is sufficient for a human Mars mission when used in a clustered engine configuration. The 'Copernicus crewed NTR Mars transfer vehicle design developed for DRA 5.0 has significant capability that can enable reusable '1-year' round trip human missions to candidate near Earth asteroids (NEAs) like 1991 JW in 2027, or 2000 SG344 and Apophis in 2028. A robotic precursor mission to 2000 SG344 in late 2023 could provide an attractive Flight Technology Demonstration of a small NTR engine that is scalable to the 25 klbf-class engine used for human missions 5 years later. In addition to the detailed scientific data gathered from on-site inspection, human NEA missions would also provide a valuable 'check out' function for key elements of the NTR transfer vehicle (its propulsion module, TransHab and life support systems, etc.) in a 'deep space' environment prior to undertaking the longer duration Mars orbital and landing missions that would follow. The initial mass in low Earth orbit required for a mission to Apophis is approximately 323 t consisting of the NTR propulsion module ((is) approximately 138 t), the integrated saddle truss and LH2 drop tank assembly ((is) approximately 123 t), and the 6-crew payload element ((is) approximately 62 t). The later includes a multi-mission Space Excursion Vehicle (MMSEV) used for close-up examination and sample gathering. The total burn time and required restarts on the three 25 klbf 'Pewee-class' engines operating at Isp (is) approximately 906 s, are approximately 76.2 minutes and 4, respectively, well below the 2 hours and 27 restarts demonstrated on the NERVA eXperimental Engine, the NRX-XE. The paper examines the benefits, requirements and characteristics of using NTP for the above NEA missions. The impacts on vehicle design of HLV payload volume and lift capability, crew size, and reusability are also quantified.
Space Shuttle guidance for multiple main engine failures during first stage
NASA Technical Reports Server (NTRS)
Sponaugle, Steven J.; Fernandes, Stanley T.
1987-01-01
This paper presents contingency abort guidance schemes recently developed for multiple Space Shuttle main engine failures during the first two minutes of flight (first stage). The ascent and entry guidance schemes greatly improve the possibility of the crew and/or the Orbiter surviving a first stage contingency abort. Both guidance schemes were required to meet certain structural and controllability constraints. In addition, the systems were designed with the flexibility to allow for seasonal variations in the atmosphere and wind. The ascent scheme guides the vehicle to a desirable, lofted state at solid rocket booster burnout while reducing the structural loads on the vehicle. After Orbiter separation from the solid rockets and the external tank, the entry scheme guides the Orbiter through one of two possible entries. If the proper altitude/range/velocity conditions have been met, a return-to-launch-site 'Split-S' maneuver may be attempted. Otherwise, a down-range abort to an equilibrium glide and subsequent crew bailout is performed.
Spin-Selective Transmission and Devisable Chirality in Two-Layer Metasurfaces.
Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo
2017-08-15
Chirality is a nearly ubiquitous natural phenomenon. Its minute presence in most naturally occurring materials makes it incredibly difficult to detect. Recent advances in metasurfaces indicate that they exhibit devisable chirality in novel forms; this finding offers an effective opening for studying chirality and its features in such nanostructures. These metasurfaces display vast possibilities for highly sensitive chirality discrimination in biological and chemical systems. Here, we show that two-layer metasurfaces based on twisted nanorods can generate giant spin-selective transmission and support engineered chirality in the near-infrared region. Two designed metasurfaces with opposite spin-selective transmission are proposed for treatment as enantiomers and can be used widely for spin selection and enhanced chiral sensing. Specifically, we demonstrate that the chirality in these proposed metasurfaces can be adjusted effectively by simply changing the orientation angle between the twisted nanorods. Our results offer simple and straightforward rules for chirality engineering in metasurfaces and suggest intriguing possibilities for the applications of such metasurfaces in spin optics and chiral sensing.
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
During the 1999 FIRST Southeastern Regional robotic competition held at KSC, a robot carrying its cache of pillow-like disks maneuvers to move around another at left. Powered by 12-volt batteries and operated by remote control, the robotic gladiators spend two minutes each trying to grab, claw and hoist the pillows onto their machines. Teams play defense by taking away competitors' pillows and generally harassing opposing machines. Behind the field are a group of judges, including KSC former KSC Director of Shuttle Processing Robert Sieck (left, in cap), and Center Director Roy Bridges (in white shirt). A giant screen TV in the background displays the action on the playing field. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
NASA Technical Reports Server (NTRS)
Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will
2015-01-01
As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.
Trajectory Design for the Microwave Anisotropy Probe (MAP)
NASA Technical Reports Server (NTRS)
Newman, Lauri Kraft; Rohrbaugh, David; Bauer, Frank H. (Technical Monitor)
2001-01-01
The Microwave Anisotropy, Probe (MAP) is a Medium Class Explorers (MIDEX) Mission produced in partnership between Goddard Space Flight Center (GSFC) and Princeton University. The goal of the MAP mission is to produce an accurate fill-sky, map of the cosmic microwave background temperature fluctuations (anisotropy). The mission orbit is a Lissajous orbit about the L(sub 2) Sun-Earth Lagrange point. The trajectory design for MAP is complex, having many requirements that must be met including shadow avoidance, sun angle constraints, Lissqjous size and shape characteristics, and limited Delta-V budget. In order to find a trajectory that met the design requirements for the entire 4-year mission lifetime goal, GSFC Flight Dynamics engineers performed many analyses, the results of which are presented herein. The paper discusses the preliminary trade-offs to establish a baseline trajectory, analysis to establish the nominal daily trajectory, and the launch window determination to widen the opportunity from instantaneous to several minutes for each launch date.
1967-07-28
This photograph depicts a view of the test firing of all five F-1 engines for the Saturn V S-IC test stage at the Marshall Space Flight Center. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. The S-IC Static Test Stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level, and was required to hold down the brute force of the 7,500,000-pound thrust. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900-ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minutes
1965-05-01
This photograph depicts a view of the test firing of all five F-1 engines for the Saturn V S-IC test stage at the Marshall Space Flight Center. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. The S-IC Static Test Stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level, and was required to hold down the brute force of the 7,500,000-pound thrust. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900-ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minutes.
1975-10-10
This diagram illustrates the Space Shuttle mission sequence. The Space Shuttle was approved as a national program in 1972 and developed through the 1970s. Part spacecraft and part aircraft, the Space Shuttle orbiter, the brain and the heart of the Space Transportation System (STS), required several technological advances, including thousands of insulating tiles able to stand the heat of reentry over the course of many missions, as well as sophisticated engines that could be used again and again without being thrown away. The airplane-like orbiter has three main engines, that burn liquid hydrogen and oxygen stored in the large external tank, the single largest structure in the Shuttle. Attached to the tank are two solid rocket boosters that provide the vehecile with most of the thrust needed for liftoff. Two minutes into the flight, the spent solids drop into the ocean to be recovered and refurbished for reuse, while the orbiter engines continue burning until approximately 8 minutes into the flight. After the mission is completed, the orbiter lands on a runway like an airplane.
2013-11-20
VAN HORN, Texas – Blue Origin test fires a powerful new hydrogen- and oxygen-fueled American rocket engine at the company's West Texas facility. During the test, the BE-3 engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett
2013-11-20
VAN HORN, Texas – Blue Origin test fires a powerful new hydrogen- and oxygen-fueled American rocket engine at the company's West Texas facility. During the test, the BE-3 engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Blue Origin
46 CFR 108.487 - Helicopter deck fueling operations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...
46 CFR 108.487 - Helicopter deck fueling operations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...
46 CFR 108.487 - Helicopter deck fueling operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...
46 CFR 108.487 - Helicopter deck fueling operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...
46 CFR 108.487 - Helicopter deck fueling operations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...
NASA Technical Reports Server (NTRS)
Haithcock, Stephen; Koncak, Kyle; Neufang, Rich; Paufler, David; Snow, Russ; Wlad, Frank
1992-01-01
The design specification of the primary flight trainer are: must conform to F.A.R. 23, including the crashworthiness standards; is limited to two to four occupants; engine must be FAA certified; must comply with FAA standards for VFR and allow for upgrade to IFR flights; must be at least utility category with good spin recovery characteristics; must have a structural lifetime of at least 10,000 flight hours; capable of either of two training missions: climb to 5,000 ft., cruise 500 Nm. plus reserve, land, or climb to 1,000 ft. and descend ten cycles for landing practice, climb to 3,000 ft., maneuver at two g's for 15 minutes, cruise 100 Nm. and land; must have a cruise speed of at least 120 knots; must take-off or land on a runway no longer than 3,000 ft; and has a cost goal of $50,000, not including avionics, for production of 1,000 airplanes over a five year period.
Kappa Group: The initial guess. A proposal in response to a commercial air transportation study
NASA Technical Reports Server (NTRS)
1991-01-01
Kappa Aerospace presents their Aeroworld Aircraft, the Initial Guess (IG). This aircraft is designed to generate profit in the market which is currently controlled by the train and boat industry. The main priority of the design team was to develop an extremely efficient aircraft that could be sold at a reasonable price. The IG offers a quick and safe alternative to the existing means of transportation at a competitive price. The cruise velocity of 28 ft/sec. allows all flights to be between 20 and 45 minutes, which is a remarkable savings in time compared to travel by boat or train. The IG is propelled by a single Astro-05 engine with a Zinger 10-6 propeller. The Astro-05 is not an extremely powerful engine; however, it provides enough thrust to meet the design and safety requirements. The major advantage of the Astro-05 is that it is the most efficient engine available. The fuel efficiency of the Astro-05 is what puts the aircraft ahead of the competition. The money saved on an efficient engine can be passed on as lower ticket prices or increased revenue. The IG has a payload of 56 passengers and a wingspan of 7 ft. The 7 ft. wingspan allows the aircraft to fit into the gates of all of the cities that are targeted. Future endeavors of Kappa Aerospace will include fitting a stretch version of the IG with a larger propulsion system. This derivative aircraft will be able to carry more passengers and will be placed on the routes which have the greatest demand for travel. The fuselage and empennage are made of a wooden truss configuration, while the wing is made of a rib/spare configuration. The stress carrying elements are made of spruce, the nonstress carrying elements are made of balsa. The wing is removable for easy access into the fuselage. The easy access to the batteries will keep maintenance costs down.
Brayton Cycle Power System in the Space Power Facility
1969-07-21
Set up of a Brayton Cycle Power System test in the Space Power Facility’s massive vacuum chamber at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It can produce a vacuum deep enough to simulate the conditions at 300 miles altitude. The Space Power Facility was originally designed to test nuclear-power sources for spacecraft, but it was never used for that purpose. The Space Power Facility was first used to test a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the tests. Lewis researchers studied the Brayton power system extensively in the 1960s and 1970s. The Brayton engine converted solar thermal energy into electrical power. The system operated on a closed-loop Brayton thermodynamic cycle with a helium-xenon gas mixture as its working fluid. A space radiator was designed to serve as the system’s waste heat rejecter. The radiator was later installed in the vacuum chamber and tested in a simulated space environment to determine its effect on the power conversion system. The Brayton system was subjected to simulated orbits with 62 minutes of sun and 34 minutes of shade.
STS-47 Pilot Brown on OV-105's flight deck ten minutes after SSME cutoff
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Pilot Curtis L. Brown, Jr, is photographed at Endeavour's, Orbiter Vehicle (OV) 105's, pilot station about ten minutes after space shuttle main engine (SSME) cutoff on launch day. Brown smiles from inside the launch and entry suit (LES) and launch and entry helmet (LEH). In the background are the flight mirror assembly silhouetted against forward window W5, control panels, and a checklist.
Neural Network and Regression Soft Model Extended for PAX-300 Aircraft Engine
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2002-01-01
In fiscal year 2001, the neural network and regression capabilities of NASA Glenn Research Center's COMETBOARDS design optimization testbed were extended to generate approximate models for the PAX-300 aircraft engine. The analytical model of the engine is defined through nine variables: the fan efficiency factor, the low pressure of the compressor, the high pressure of the compressor, the high pressure of the turbine, the low pressure of the turbine, the operating pressure, and three critical temperatures (T(sub 4), T(sub vane), and T(sub metal)). Numerical Propulsion System Simulation (NPSS) calculations of the specific fuel consumption (TSFC), as a function of the variables can become time consuming, and numerical instabilities can occur during these design calculations. "Soft" models can alleviate both deficiencies. These approximate models are generated from a set of high-fidelity input-output pairs obtained from the NPSS code and a design of the experiment strategy. A neural network and a regression model with 45 weight factors were trained for the input/output pairs. Then, the trained models were validated through a comparison with the original NPSS code. Comparisons of TSFC versus the operating pressure and of TSFC versus the three temperatures (T(sub 4), T(sub vane), and T(sub metal)) are depicted in the figures. The overall performance was satisfactory for both the regression and the neural network model. The regression model required fewer calculations than the neural network model, and it produced marginally superior results. Training the approximate methods is time consuming. Once trained, the approximate methods generated the solution with only a trivial computational effort, reducing the solution time from hours to less than a minute.
Banerjee, Anirudha; Williams, Ian; Azevedo, Rodrigo Nery; Squires, Todd M.
2016-01-01
Equilibrium interactions between particles in aqueous suspensions are limited to distances less than 1 μm. Here, we describe a versatile concept to design and engineer nonequilibrium interactions whose magnitude and direction depends on the surface chemistry of the suspended particles, and whose range may extend over hundreds of microns and last thousands of seconds. The mechanism described here relies on diffusiophoresis, in which suspended particles migrate in response to gradients in solution. Three ingredients are involved: a soluto-inertial “beacon” designed to emit a steady flux of solute over long time scales; suspended particles that migrate in response to the solute flux; and the solute itself, which mediates the interaction. We demonstrate soluto-inertial interactions that extend for nearly half a millimeter and last for tens of minutes, and which are attractive or repulsive, depending on the surface chemistry of the suspended particles. Experiments agree quantitatively with scaling arguments and numerical computations, confirming the basic phenomenon, revealing design strategies, and suggesting a broad set of new possibilities for the manipulation and control of suspended particles. PMID:27410044
SR-71 LASRE during in-flight cold flow test
NASA Technical Reports Server (NTRS)
1998-01-01
This shot, from above and behind the SR-71 in flight, runs 11 seconds and shows the Aerospike engine and its fuel system being charged with gaseous helium and liquid nitrogen during one of two tests. The tests are to check for leaks and check the flow characteristics of cryogenic fuels to be used in the engine. The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at the NASA Dryden Flight Research Center, Edwards, California, in November 1998. The goal of this experiment was to provide in-flight data to help Lockheed Martin, Bethesda, Maryland, validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how the engine plume of a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds reaching approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 and a maximum altitude of 33,000 feet before landing at Edwards, California, at 10:21 a.m. PST, successfully validating the SR-71/pod configuration. Five follow-on flights focused on the experiment; two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to check engine operation characteristics. The first of these flights occurred March 4, 1998. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for 1 hour and 57 minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards, California, at 12:13 p.m. PST. During further flights in the spring and summer of 1998, liquid oxygen was cycled through the engine. In addition, two engine hot firings were conducted on the ground. It was decided not to do a final hot-fire flight test as a result of the liquid oxygen leaks in the test apparatus. The ground firings and the airborne cryogenic gas flow tests provided enough information to predict the hot gas effects of an aerospike engine firing during flight. The experiment itself was a small, half-span model that contained eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium and instrumentation. The model, engine, and canoe together were called the 'pod.' The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on the NASA SR-71, on loan to NASA from the U.S. Air Force. Lockheed Martin may use information gained from LASRE and the X-33 Advanced Technology Demonstrator to develop a potential future reusable launch vehicle. NASA and Lockheed Martin are partners in the X-33 program through a cooperative agreement. The goal of the X-33 program, and a major goal for the NASA Office of Aero-Space Technology, has been to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. The program implements the National Space Transportation Policy, which was designed to accelerate the development of new launch technologies and concepts that contribute to the continuing commercialization of the national space launch industry. Both the flagship X-33 and the smaller X-34 technology testbed demonstrator fall under the Space Transportation Program Offices at NASA Marshall Space Flight Center, Huntsville, Alabama. The air-launched, winged X-34 also will demonstrate technologies applicable to future-generation reusable launch vehicles designed to dramatically lower the cost of access to space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montalvo, D.A.; Hare, C.T.
1985-03-01
The report describes the laboratory testing of nine in-use light-duty gasoline passenger cars using up to four PCV disablement configurations. The nine vehicles included 1975 to 1983 model years, with odometer readings generally between 20,000 and 60,000 miles. No two vehicles were identical in make and engine type, and engine displacements ranged from 89 to 403 cu in. The vehicles were tested over the 1975 Federal Test Procedure, with sampling for crankcase HC conducted during each individual cycle of the 3-bag FTP and during the 10-minute hot soak. Emissions of crankcase HC are provided in g/mi for the 3-bag FTP,more » and in g/min for the 10-minute soak.« less
Comparative Characteristics of Main Battle Tanks.
1973-06-01
Depth Ford up to 7.4 feet, snorkel 13.1 feet, preparation time for snorkel @ 10 minutes 2-1 June 1973 q.- 4V-~v~W-. U W U U U POWER TRAIN Engine Mercedes ... Benz 4-stroke diesel, 10- cylinder, 900 V upright Engine hp 830 hp @ 2,200 rpm Maximum Torque/rpm 1, 989 ft/lb @ 1, 200 rpm Type Cooling Liquid @ 25
Redefining What's Possible for Renewable Energy: Grid Integration
Cochran, Jaquelin; Milligan, Michael; Bloom, Aaron; Lopez, Anthony; Mai, Trieu
2018-05-16
The Energy Department's National Renewable Energy Laboratory (NREL) is spearheading engineering innovations that will help optimize the entire energy system, and the lab's analysis capabilities complement that engineering work by identifying ways to integrate renewable energy effectively and economically. This 3-minute video shows how NREL research and analysis are redefining whatâs possible for renewable energy on the grid.
Operation of a T63 Turbine Engine Using F24 Contaminated Skydrol 5 Hydraulic Fluid
2016-09-01
was to determine the potential effects on engine operability and the likelihood for accelerated turbine blade and nozzle wear while operating on fuel...Figure 9. Slight purplish discoloration is present on the surfaces. The turbine and nozzles indicate no major loss of blade /nozzle material. The...minus the 4 minutes described previously. The 3-day run totaled up to 25 hours of engine operation using the 1% Skydrol 5 with F-24 for fuel. The
Characterisation of diesel particulate emission from engines using commercial diesel and biofuels
NASA Astrophysics Data System (ADS)
Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.
2016-06-01
In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.
Orozco, Raquel; Godfrey, Scott; Coffman, Jon; Amarikwa, Linus; Parker, Stephanie; Hernandez, Lindsay; Wachuku, Chinenye; Mai, Ben; Song, Brian; Hoskatti, Shashidhar; Asong, Jinkeng; Shamlou, Parviz; Bardliving, Cameron; Fiadeiro, Marcus
2017-07-01
We designed, built or 3D printed, and screened tubular reactors that minimize axial dispersion to serve as incubation chambers for continuous virus inactivation of biological products. Empirical residence time distribution data were used to derive each tubular design's volume equivalent to a theoretical plate (VETP) values at a various process flow rates. One design, the Jig in a Box (JIB), yielded the lowest VETP, indicating optimal radial mixing and minimal axial dispersion. A minimum residence time (MRT) approach was employed, where the MRT is the minimum time the product spends in the tubular reactor. This incubation time is typically 60 minutes in a batch process. We provide recommendations for combinations of flow rates and device dimensions for operation of the JIB connected in series that will meet a 60-min MRT. The results show that under a wide range of flow rates and corresponding volumes, it takes 75 ± 3 min for 99% of the product to exit the reactor while meeting the 60-min MRT criterion and fulfilling the constraint of keeping a differential pressure drop under 5 psi. Under these conditions, the VETP increases slightly from 3 to 5 mL though the number of theoretical plates stays constant at about 1326 ± 88. We also demonstrated that the final design volume was only 6% ± 1% larger than the ideal plug flow volume. Using such a device would enable continuous viral inactivation in a truly continuous process or in the effluent of a batch chromatography column. Viral inactivation studies would be required to validate such a design. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:954-965, 2017. © 2017 American Institute of Chemical Engineers.
Modulation of high frequency noise by engine tones of small boats.
Pollara, Alexander; Sutin, Alexander; Salloum, Hady
2017-07-01
The effect of modulation of high frequency ship noise by propeller rotation frequencies is well known. This modulation is observed with the Detection of Envelope Modulation on Noise (DEMON) algorithm. Analysis of the DEMON spectrum allows the revolutions per minute and number of blades of the propeller to be determined. This work shows that the high frequency noise of a small boat can also be modulated by engine frequencies. Prior studies have not reported high frequency noise amplitude modulated at engine frequencies. This modulation is likely produced by bubbles from the engine exhaust system.
1975-01-01
maneuverings- shenanigans in local straight talk-were deemed necessary at times to bring about certain results , that is here, too. It is the...Pinkey, Executive Vice President, made the financial records, correspondence, minutes of membership meetings, minutes of meetings of the Board of...it financially and sending represen- tatives to its annual meetings. Muskogee leaders seem also to have supported the Rivers and Harbors Congress
Rocket Engine Turbine Blade Surface Pressure Distributions Experiment and Computations
NASA Technical Reports Server (NTRS)
Hudson, Susan T.; Zoladz, Thomas F.; Dorney, Daniel J.; Turner, James (Technical Monitor)
2002-01-01
Understanding the unsteady aspects of turbine rotor flow fields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with miniature surface mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in two respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. A three-dimensional unsteady Navier-Stokes analysis was also used to blindly predict the unsteady flow field in the turbine at the design operating conditions and at +15 degrees relative incidence to the first-stage rotor. The predicted time-averaged and unsteady pressure distributions show good agreement with the experimental data. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools are contributing significantly to current Space Launch Initiative turbine airflow test and blade surface pressure prediction efforts.
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Vincent, Danny; Tobias, Leonard (Technical Monitor)
1997-01-01
NASA and the FAA have designed and developed and an automation tool known as the Traffic Management Advisor (TMA). The system was operationally evaluated at the Ft. Worth Air Route Traffic Control Center (ARTCC). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators and En Route Air Traffic Controllers the ability to efficiently optimize the capacity of a demand impacted airport. The TMA consists of trajectory prediction, constraint-based runway scheduling, traffic flow visualization and controllers advisories. The TMA was used and operationally evaluated for forty-one rush traffic periods during a one month period in the Summer of 1996. The evaluations included all shifts of air traffic operations as well as periods of inclement weather. Performance data was collected for engineering and human factor analysis and compared with similar operations without the TMA. The engineering data indicates that the operations with the TMA show a one to two minute per aircraft delay reduction during rush periods. The human factor data indicate a perceived reduction in en route controller workload as well as an increase in job satisfaction. Upon completion of the evaluation, the TMA has become part of the normal operations at the Ft. Worth ARTCC.
Fish entrainment rates through towboat propellers in the Upper Mississippi and Illinois rivers
Jack, Killgore K.; Miranda, L.E.; Murphy, C.E.; Wolff, D.M.; Hoover, J.J.; Keevin, T.M.; Maynord, S.T.; Cornish, M.A.
2011-01-01
Aspecially designed netwas used to study fish entrainment and injury through towboat propellers in 13 pools of the Upper Mississippi and Illinois rivers. The net was attached to the stern of a 48.8-m-long towboat with twin propellers (in Kort propulsion nozzles), and sampling typically took place while the towboat pushed 15 loaded barges upstream at a time. In total, 254 entrainment samples over 894 km of the 13 study pools were collected. The sampling efforts produced 16,005 fish representing 15 families and at least 44 species; fish ranged in total length from 3 to 123 cm, but only 12.5-cm or longer fish were analyzed because smaller fish could escape through the mesh of the trawl. Clupeidae (68% of total catch) and Sciaenidae (21%) were the dominant families. We detected no effects of towboat operation variables (speed and engine [i.e., propeller] revolutions per minute [RPM]) on entrainment rate (i.e., fish/km), but entrainment rate showed a wedge-shaped distribution relative to hydraulic and geomorphic characteristics of the channel. Entrainment rate was low (30 fish/km). Although total entrainment rate was not related to engine RPM, the probability of being struck by a propeller increased with fish length and engine RPM. Limits on engine RPM in narrow, shallow, and sluggish reaches could reduce entrainment impact, particularly for large-bodied fish. ?? American Fisheries Society 2011.
NASA Technical Reports Server (NTRS)
Moses, Paul L.
2003-01-01
X-43C Project is a hypersonic flight demonstration being executed as a collaboration between the National Aeronautics and Space Administration (NASA) and the United States Air Force (USAF). X-43C will expand the hypersonic flight envelope for air breathing engines beyond the history making efforts of the Hyper-X Program (X-43A). X-43C will demonstrate sustained accelerating flight during three flight tests of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs are to be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA s Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center over water off the coast of California in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration ( 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavyweight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 ( 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides background for NASA s current hypersonic flight demonstration efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Jason
Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.
Code of Federal Regulations, 2013 CFR
2013-07-01
... following emission limitation, except during periods of startup . . . During periods of startup you must... the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.1 b. Limit the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... following emission limitation, except during periods of startup . . . During periods of startup you must... the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.1 b. Limit the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... following emission limitation, except during periods of startup . . . During periods of startup you must... the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.1 b. Limit the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... within the regulated navigation area and: (i) Sustained winds are greater than 25 knots but less than 40 knots, ensure the main engines are ready to provide full power in five minutes or less; and (ii) Sustained winds are 40 knots or over, ensure that the main engines are on line to immediately provide...
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Ungar, Eugene K.; Chambliss, Joe P.; Cassady, Leonard D.
2011-01-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company, is a unique propulsion system that can potentially change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduce propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station. The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster unit has a unique heat rejection requirement of about 27 kW over a firing time of 15 minutes. In order to control rocket core temperatures, peak operating temperatures of about 300 C are expected within the thermal control loop. Design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient based radiator design. The paper will describe radiator design options for the VASIMR thermal control system for use on ISS as well as future exploration vehicles.
NASA Technical Reports Server (NTRS)
Oldrieve, R. E.
1971-01-01
Fourteen materials were evaluated in engine screening tests on full-size thermal reactors for automobile engine pollution control systems. Cyclic test-stand engine operation provided 2 hours at 1040 C and a 20-minute air-cool to 70 C each test cycle. Each reactor material was exposed to 83 cycles in 200 hours of engine testing. On the basis of resistance to oxidation and distortion, the best materials included two ferritic iron alloys (Ge 1541 and Armco 18S/R), several commercial oxidation-resistant coatings on AlSl 651 (19-9 DL), and possibly uncoated AISI 310. The best commercial coatings were Cr-Al, Ni-Cr, and a glass ceramic.
2014-05-30
ISS040-E-006569 (2 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs an Advanced Colloids Experiment (ACE) sample 40-minute mixing activity in the Destiny laboratory of the International Space Station.
2014-05-30
ISS040-E-006567 (2 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs an Advanced Colloids Experiment (ACE) sample 40-minute mixing activity in the Destiny laboratory of the International Space Station.
NASA Astrophysics Data System (ADS)
Mehne, P.; Lickert, F.; Bäumker, E.; Kroener, M.; Woias, P.
2016-11-01
In this paper we will first present the measurement of temperatures on different positions at a diesel-powered car. As a result, several locations are identified as suitable to implement a wireless sensor node powered by thermal energy harvesting. Based on the data gained a thermoelectric generator (TEG) has been selected, and measurements of energy generation have been performed. Further, a complete energy-autonomous wireless sensor node was designed, including the TEG with its mounting bracket, an electronic power management, and a Bluetooth Low Energy (BLE) sensor node. Based on temperature differences from -10 K up to 75.3 K occurring in test drives, a low power set up was chosen to achieve a system startup time below 10 minutes and to ensure service even under difficult ambient conditions, like high ambient temperatures or a slow movement of the car in stocking traffic. 2 minutes after starting the engine a power about of 10 mW is available from the chosen TEG, and in peak the power exceeds 1 W. In a 50 minute test drive it was possible to generate 650 J of energy. This information was used to develop the complete system, demonstrating the opportunity to deploy energy-autonomous wireless sensor nodes in a car, e.g. for exhaust gas monitoring. The system is used to gather sensor data, like temperature and humidity, and transmits data successfully via BLE to a prepared main node based on a Raspberry Pi.
1981-01-01
of 140 beats per minute Upper limb prosthetic terminal devices have remained un- could either crutch walk at 60 meters per minute or run at 134...Responses During Binaural Stimulation, TN. Decker and S.W. Howe; J. Functional Effectiveness of a Myo-Electric Prosthesis Compared Acoust. Soc. Amer., 69(4...were whether the aid(s) should be fitted monaurally, binaurally or fitted with hearing aids. Of these, roughly 9,000 were CROS. About 95 percent of
2013-11-20
VAN HORN, Texas – Blue Origin’s test stand, back right, is framed by a wind mill at the company’s West Texas facility. The company used this test stand to fire its powerful new hydrogen- and oxygen-fueled American rocket engine, the BE-3. The engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett
Evaluation of 2004 Toyota Prius Hybrid Electric Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.
2006-05-01
The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].« less
Testing a new engine controller system for the RS-25
2017-07-25
Engineers conduct the third in a series of RS-25 flight controller tests on July 25, 2017, for NASA’s Space Launch System (SLS) rocket. The more than 8 1/2 minute test on the A-1 Test Stand at NASA’s Stennis Space Center in Mississippi signaled another step toward launch of NASA’s new Space Launch System (SLS). The SLS rocket, powered by four RS-25 engines, along with the Orion spacecraft will take astronauts on a new era of exploration beyond Earth’s orbit into deep space.
Strauss, Daniel; Goldstein, Joshua; Hongo-Hirasaki, Tomoko; Yokoyama, Yoshiro; Hirotomi, Naokatsu; Miyabayashi, Tomoyuki; Vacante, Dominick
2017-09-01
Virus filtration provides robust removal of potential viral contaminants and is a critical step during the manufacture of biotherapeutic products. However, recent studies have shown that small virus removal can be impacted by low operating pressure and depressurization. To better understand the impact of these conditions and to define robust virus filtration design spaces, we conducted multivariate analyses to evaluate parvovirus removal over wide ranges of operating pressure, solution pH, and conductivity for three mAb products on Planova™ BioEX and 20N filters. Pressure ranges from 0.69 to 3.43 bar (10.0-49.7 psi) for Planova BioEX filters and from 0.50 to 1.10 bar (7.3 to 16.0 psi) for Planova 20N filters were identified as ranges over which effective removal of parvovirus is achieved for different products over wide ranges of pH and conductivity. Viral clearance at operating pressure below the robust pressure range suggests that effective parvovirus removal can be achieved at low pressure but that Minute virus of mice (MVM) logarithmic reduction value (LRV) results may be impacted by product and solution conditions. These results establish robust design spaces for Planova BioEX and 20N filters where high parvovirus clearance can be expected for most antibody products and provide further understanding of viral clearance mechanisms. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1294-1302, 2017. © 2017 American Institute of Chemical Engineers.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
... an International Registration) using the Trademark Electronic Application System (TEAS), which is... hours Application for International Registration (PTO- 15 minutes 3,900 975 2131 TEAS). Application for... minutes 400 100 2132 TEAS). Application for Subsequent Designation (paper, 20 minutes 5 2 no form...
Particulate matter from tobacco versus diesel car exhaust: an educational perspective
Invernizzi, G; Ruprecht, A; Mazza, R; Rossetti, E; Sasco, A; Nardini, S; Boffi, R
2004-01-01
Methods: A 60 m3 garage was chosen to assess PM emission from three smouldering cigarettes (lit sequentially for 30 minutes) and from a TDCi 2000cc, idling for 30 minutes. Results: Particulate was measured with a portable analyser with readings every two minutes. Background PM10, PM2.5, and PM1 levels (mean (SD)) were 15 (1), 13 (0.7), and 7 (0.6) µg/m3 in the car experiment and 36 (2), 28 (1), and 14 (0.8) µg/m3 in the ETS experiment, respectively. Mean (SD) PM recorded in the first hour after starting the engine were 44 (9), 31 (5), and 13 (1) µg/m3, while mean PM in the first hour after lighting cigarettes were 343 (192), 319 (178), and 168 (92) µg/m3 for PM10, PM2.5, and PM1, respectively (p < 0.001, background corrected). Conclusions: ETS is a major source of PM pollution, contributing to indoor PM concentrations up to 10-fold those emitted from an idling ecodiesel engine. Besides its educational usefulness, this knowledge should also be considered from an ecological perspective. PMID:15333875
Harper, Jason
2018-03-02
Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.
Application of Hybrid Geo-Spatially Granular Fragility Curves to Improve Power Outage Predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Steven J; Allen, Melissa R; Omitaomu, Olufemi A
2014-01-01
Fragility curves depict the relationship between a weather variable (wind speed, gust speed, ice accumulation, precipitation rate) and the observed outages for a targeted infrastructure network. This paper describes an empirical study of the county by county distribution of power outages and one minute weather variables during Hurricane Irene with the objective of comparing 1) as built fragility curves (statistical approach) to engineering as designed (bottom up) fragility curves for skill in forecasting outages during future hurricanes; 2) county specific fragility curves to find examples of significant deviation from average behavior; and 3) the engineering practices of outlier counties tomore » suggest future engineering studies of robustness. Outages in more than 90% of the impacted counties could be anticipated through an average or generic fragility curve. The remaining counties could be identified and handled as exceptions through geographic data sets. The counties with increased or decreased robustness were characterized by terrain more or less susceptible to persistent flooding in areas where above ground poles located their foundations. Land use characteristics of the area served by the power distribution system can suggest trends in the as built power grid vulnerabilities to extreme weather events that would be subjects for site specific studies.« less
NASA Technical Reports Server (NTRS)
1997-01-01
The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at NASA Dryden Flight Research Center, Edwards, California, in November 1998. The experiment's goal was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds of up to approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 and a maximum altitude of 33,000 feet before landing at Edwards, California, at 10:21 a.m. PST, successfully validating the SR-71/pod configuration. Five follow-on flights focused on the experiment; two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to check engine operation characteristics. The first of these flights occurred March 4, 1998. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards, California, at 12:13 p.m. PST. During further flights in the spring and summer of 1998, liquid oxygen was cycled through the engine. In addition, two engine hot firings were conducted on the ground. It was decided not to do a final hot-fire flight test as a result of the liquid oxygen leaks in the test apparatus. The ground firings and the airborne cryogenic gas flow tests provided enough information to predict the hot gas effects of an aerospike engine firing during flight. The experiment itself was a small, half-span model that contained eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium and instrumentation. The model, engine and canoe together were called the 'pod.' The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on NASA's SR-71, on loan to NASA from the U.S. Air Force. Lockheed Martin may use information gained from LASRE and the X-33 Advanced Technology Demonstrator to develop a potential future reusable launch vehicle. NASA and Lockheed Martin are partners in the X-33 program through a cooperative agreement.The goal of the X-33 program, and a major goal for NASA's Office of Aero-Space Technology, has been to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. The program implements the National Space Transportation Policy, which was designed to accelerate the development of new launch technologies and concepts that contribute to the continuing commercialization of the national space launch industry. Both the flagship X-33 and the smaller X-34 technology testbed demonstrator fall under the Space Transportation Program Offices at NASA Marshall Space Flight Center, Huntsville, Alabama. The air-launched, winged X-34 also will demonstrate technologies applicable to future-generation reusable launch vehicles designed to dramatically lower the cost of access to space. The following 19-second clip shows one of two 'hot firings' of the Linear Aerospike engine on it's SR-71 test aircraft while on the ground at NASA Dryden Flight Research Center.
Team Science: Organizing Classroom Experiments That Develop Group Skills.
ERIC Educational Resources Information Center
Coffin, Marilyn
This book contains classroom experiments designed to promote group skills. Each lesson has 4 parts: a 3-minute set-up; 5-minute warm-up, 25-minute experiment, and 5-minute clean-up. During each part, each member of the group is responsible for performing a specific task. Included are 34 labs that cover a range of topics: observations, physical…
NASA Technical Reports Server (NTRS)
Hudson, Susan T.; Zoladz, Thomas F.; Griffin, Lisa W.; Turner, James E. (Technical Monitor)
2000-01-01
Understanding the unsteady aspects of turbine rotor flowfields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with surface-mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in three respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, two independent unsteady data acquisition systems and fundamental signal processing approaches were used. Finally, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools will contribute to future turbine programs such as those for reusable launch vehicles.
In-line wear monitor. Final report, July 1988-April 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pieper, K.A.; Taylor, I.J.
This report describes construction and test results of an in-line monitor for critical ferrous and nonferrous metal debris in turbine engine lubrication systems. The in-line wear monitor (ILWM) uses the X-ray fluorescence principle for detecting metal debris on a continuous basis while the engine is running. The sensor portion of the system is engine mounted and contains a radioactive X-ray source, a flow cell to direct the oil across an X-ray permeable window, a proportional counter X-ray detector and its associated preamplifier and amplifier electronics. The data acquisition electronics is mounted on the airframe and contains a microprocessor based systemmore » for inputting pulses from the sensor, classifying and counting them according to energy bands, and analyzing the data and outputting metal concentration values to the engine monitoring system. The sensor portion of the system is designed to fit on a TF41 turbine engine in place of a tube between the oil tank and the oil pump. A TF41 engine monitoring system has been modified to accept the new signals from the ILWM on spare inputs so that none of the existing functions were disturbed. The ILWM has been flow tested at various flow rates, concentration levels, oil temperatures, and aerations. The wear monitor detected iron, copper, and both iron and copper together with less than 2 ppm one sigma statistical uncertainty for 30 minute count times over the 0-50 ppm range. There was no significant effect of flow rate or aeration on accuracy. The system is developed to the point that it can be tested in an actual flight environment.« less
Forsetlund, Louise; Kirkehei, Ingvild; Harboe, Ingrid; Odgaard-Jensen, Jan
2012-01-01
This study aims to compare two different search methods for determining the scope of a requested systematic review or health technology assessment. The first method (called the Direct Search Method) included performing direct searches in the Cochrane Database of Systematic Reviews (CDSR), Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessments (HTA). Using the comparison method (called the NHS Search Engine) we performed searches by means of the search engine of the British National Health Service, NHS Evidence. We used an adapted cross-over design with a random allocation of fifty-five requests for systematic reviews. The main analyses were based on repeated measurements adjusted for the order in which the searches were conducted. The Direct Search Method generated on average fewer hits (48 percent [95 percent confidence interval {CI} 6 percent to 72 percent], had a higher precision (0.22 [95 percent CI, 0.13 to 0.30]) and more unique hits than when searching by means of the NHS Search Engine (50 percent [95 percent CI, 7 percent to 110 percent]). On the other hand, the Direct Search Method took longer (14.58 minutes [95 percent CI, 7.20 to 21.97]) and was perceived as somewhat less user-friendly than the NHS Search Engine (-0.60 [95 percent CI, -1.11 to -0.09]). Although the Direct Search Method had some drawbacks such as being more time-consuming and less user-friendly, it generated more unique hits than the NHS Search Engine, retrieved on average fewer references and fewer irrelevant results.
NASA Technical Reports Server (NTRS)
Busch, Arthur M.; Campbell, John A.
1959-01-01
A crash-fire protection system to suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbopropeller engine is described. This system includes means for rapidly extinguishing the combustor flame and means for cooling and inerting with water the hot engine parts likely to ignite engine-ingested fuel. Combustion-chamber flames were extinguished in 0.07 second at the engine fuel manifold. Hot engine parts were inerted and cooled by 52 pounds of water discharged at ten engine stations. Performance trials of the crash-fire prevention system were conducted by bringing the engine up to takeoff temperature, stopping the normal fuel flow to the engine, starting the water discharge, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
Industrial-hygiene characterization of ethylene oxide exposures of hospital and nursing-home workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringenburg, V.L.; Elliott, L.J.; Morelli-Schroth, P.
Industrial-hygiene surveys were conducted at 12 hospitals and one nursing home to determine possible employee exposure to ethylene oxide (EtO). Different types of exposure situations existed at each of the facilities as a result of various engineering controls, administrative controls and work practices. Sampling indicated that the time-weighted averages (TWAs) of exposure over periods of 36 to 724 minutes ranged from below the limit of detection to 6.7 parts per million (ppm). Personal short-term exposure levels covering 2 to 30 minutes ranged from less than the limit of detection to 103.2ppm. Factors found to be responsible for these higher-than-permissible levelsmore » of EtO exposure included improper installation or lack of engineering controls (such as improper placement of the sterilizing operations), unbalanced ventilation systems, and lack of administrative controls resulting in inappropriate work practices.« less
NASA Astrophysics Data System (ADS)
Harun, S. I.; Idris, S. R. A.; Tamar Jaya, N.
2017-09-01
Local exhaust ventilation (LEV) is an engineering system frequently used in the workplace to protect operators from hazardous substances. The objective of this project is design and fabricate the ventilation system as installation for chamber room of laser cutting machine and to stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed. LEV’s fabricated with rated voltage D.C 10.8V and 1.5 ampere. Its capacity 600 ml, continuously use limit approximately 12-15 minute, overall length LEV’s fabricated is 966 mm with net weight 0.88 kg and maximum airflow is 1.3 meter cubic per minute. Stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed and fabricated overall result get 2 main gas vapor which air and carbon dioxide. For air gas which experimented by using anemometer, general duct velocity that produce is same with other gas produce, carbon dioxide which 5 m/s until 10 m/s. Overall result for 5 m/s and 10 m/s as minimum and maximum duct velocity produce for both air and carbon dioxide. The air gas flow velocity that captured by LEV’s fabricated, 3.998 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 79.960% and 7.667 m/s average velocity captured from 10 m/s duct velocity with efficiency of 76.665%. For carbon dioxide gas flow velocity that captured by LEV’s fabricated, 3.674 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 73.480% and 8.255 m/s average velocity captured from 10 m/s duct velocity with efficiency of 82.545%.
NASA Technical Reports Server (NTRS)
May, Philip J.
1998-01-01
The Center for High Technology's journey to the competition named For Inspiration of Science and Technology, or FIRST began on Monday December 16, 1996 when there was a meeting with officials and engineers to discuss the FIRST competition. The task was to research, design, and construct a robot to take inner tubes from- designated places or the human player and place the inner tubes on a goal during a two minute period. The goal had nine branches and a place on the top for the inner tubes and was later described as looking like a giant coat hanger. The human player, who could either hand the robot inner tubes or could throw the inner tubes on the goal, had to stand in a certain area during the competition and could only move in a certain parameter. The playing field which was described by the rules, was a carpeted, hexagon shaped area and allowed each team to have one side between them. Around the perimeter were the stations for the robot, the robot's controller, and the other human player.
Jones, Christopher G.; Mills, Bernice E.; Nishimoto, Ryan K.; ...
2017-10-25
A simple procedure has been developed to create palladium (Pd) films on the surface of several common polymers used in commercial fused deposition modeling (FDM) and stereolithography (SLA) based three-dimensional (3D) printing by an electroless deposition process. The procedure can be performed at room temperature, with equipment less expensive than many 3D printers, and occurs rapidly enough to achieve full coverage of the film within a few minutes. 3D substrates composed of dense logpile or cubic lattices with part sizes in the mm to cm range, and feature sizes as small as 150 μm were designed and printed using commerciallymore » available 3D printers. The deposition procedure was successfully adapted to show full coverage in the lattice substrates. As a result, the ability to design, print, and metallize highly ordered three-dimensional microscale structures could accelerate development of a range of optimized chemical and mechanical engineering systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Christopher G.; Mills, Bernice E.; Nishimoto, Ryan K.
A simple procedure has been developed to create palladium (Pd) films on the surface of several common polymers used in commercial fused deposition modeling (FDM) and stereolithography (SLA) based three-dimensional (3D) printing by an electroless deposition process. The procedure can be performed at room temperature, with equipment less expensive than many 3D printers, and occurs rapidly enough to achieve full coverage of the film within a few minutes. 3D substrates composed of dense logpile or cubic lattices with part sizes in the mm to cm range, and feature sizes as small as 150 μm were designed and printed using commerciallymore » available 3D printers. The deposition procedure was successfully adapted to show full coverage in the lattice substrates. As a result, the ability to design, print, and metallize highly ordered three-dimensional microscale structures could accelerate development of a range of optimized chemical and mechanical engineering systems.« less
Programmable motion of DNA origami mechanisms.
Marras, Alexander E; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E
2015-01-20
DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank-slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼ minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.
Programmable motion of DNA origami mechanisms
Marras, Alexander E.; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E.
2015-01-01
DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank–slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach. PMID:25561550
Service-oriented architecture for the ARGOS instrument control software
NASA Astrophysics Data System (ADS)
Borelli, J.; Barl, L.; Gässler, W.; Kulas, M.; Rabien, Sebastian
2012-09-01
The Advanced Rayleigh Guided ground layer Adaptive optic System, ARGOS, equips the Large Binocular Telescope (LBT) with a constellation of six rayleigh laser guide stars. By correcting atmospheric turbulence near the ground, the system is designed to increase the image quality of the multi-object spectrograph LUCIFER approximately by a factor of 3 over a field of 4 arc minute diameter. The control software has the critical task of orchestrating several devices, instruments, and high level services, including the already existing adaptive optic system and the telescope control software. All these components are widely distributed over the telescope, adding more complexity to the system design. The approach used by the ARGOS engineers is to write loosely coupled and distributed services under the control of different ownership systems, providing a uniform mechanism to offer, discover, interact and use these distributed capabilities. The control system counts with several finite state machines, vibration and flexure compensation loops, and safety mechanism, such as interlocks, aircraft, and satellite avoidance systems.
2014-10-07
ISS041-E-067002 (7 Oct. 2014) --- NASA astronaut Reid Wiseman, Expedition 41 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 13-minute spacewalk, Wiseman and European Space Agency astronaut Alexander Gerst (out of frame), flight engineer, worked outside the space station's Quest airlock relocating a failed cooling pump to external stowage and installing gear that provides back up power to external robotics equipment.
2014-10-07
ISS041-E-067002 (7 Oct. 2014) --- NASA astronaut Reid Wiseman, Expedition 41 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 13-minute spacewalk, Wiseman and European Space Agency astronaut Alexander Gerst (out of frame), flight engineer, worked outside the space station's Quest airlock relocating a failed cooling pump to external stowage and installing gear that provides back up power to external robotics equipment.
2014-10-07
ISS041-E-067002 (7 Oct. 2014) --- NASA astronaut Reid Wiseman, Expedition 41 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 13-minute spacewalk, Wiseman and European Space Agency astronaut Alexander Gerst (out of frame), flight engineer, worked outside the space station's Quest airlock relocating a failed cooling pump to external stowage and installing gear that provides back up power to external robotics equipment.
2001-05-15
Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.
Heart tissue grown in NASA Bioreactor
NASA Technical Reports Server (NTRS)
2001-01-01
Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.
Closed-loop systems for drug delivery.
Fields, Aaron M; Fields, Kevin M; Cannon, Jeremy W
2008-08-01
To discuss closed-loop systems, the engineering behind them, and the application of these systems. The literature demonstrates that closed-loop systems can be used for controlling the depth of anesthesia, muscle relaxation, blood pressure, intravascular volume, and blood glucose levels. The future anesthesiologist may devote less time to easily delegated tasks when in the operating room. The ability of computers to maintain variables in a set range allows some tasks to be automated. Although monitoring of these systems will never be completely eliminated, the necessity for minute-to-minute intervention may.
STS-47 Pilot Brown on OV-105's flight deck ten minutes after SSME cutoff
1992-09-12
STS047-28-002 (20 Sept. 1992) --- Astronaut Curtis L. Brown, Jr., STS-47 pilot, is photographed at the Space Shuttle Endeavour's pilot station about ten minutes after main engine cutoff on launch day of the eight-day Spacelab-J mission. Wearing the partial-pressure launch and entry suit, Brown shared the forward cabin with astronaut Robert L. Gibson (out of frame at left), mission commander. Endeavour was beginning its second mission in space, this one devoted to research supporting the Spacelab-J mission.
78 FR 25058 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
... tags: designation 10 minutes, requests for tags, 2 minutes; lobster area waiver, 20 minutes and request... also required to request gillnet and lobster tags through the Northeast region permit office when using gillnet gear or lobster traps. Lastly, vessel owners that own multiple vessels, but would like to request...
Space telescope phase B definition study. Volume 2A: Science instruments, f24 field camera
NASA Technical Reports Server (NTRS)
Grosso, R. P.; Mccarthy, D. J.
1976-01-01
The analysis and design of the F/24 field camera for the space telescope are discussed. The camera was designed for application to the radial bay of the optical telescope assembly and has an on axis field of view of 3 arc-minutes by 3 arc-minutes.
75 FR 63449 - Chief of Engineers Environmental Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... Mexico, sea level rise in south Florida, and progress and status of South Florida ecosystem restoration..., Florida 33134. Time: 9 a.m. to 12 p.m. Thirty minutes will be set aside for public comment. Members of the...
3-minute diagnosis: Researchers develop new method to recognize pathogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Reg
Imagine knowing precisely why you feel sick ... before the doctor's exam is over. Lawrence Livermore researcher Reg Beer and his engineering colleagues have developed a new method to recognize disease-causing pathogens quicker than ever before.
3-minute diagnosis: Researchers develop new method to recognize pathogens
Beer, Reg
2018-01-16
Imagine knowing precisely why you feel sick ... before the doctor's exam is over. Lawrence Livermore researcher Reg Beer and his engineering colleagues have developed a new method to recognize disease-causing pathogens quicker than ever before.
1960-01-01
This chart is an illustration of J-2 Engine characteristics. A cluster of five J-2 engines powered the Saturn V S-II (second) stage with each engine providing a thrust of 200,000 pounds. A single J-2 engine powered the S-IVB stage, the Saturn IB second stage, and the Saturn V third stage. The engine was uprated to provide 230,000 pounds of thrust for the fourth Apollo Saturn V flight and subsequent missions. Burning liquid hydrogen as fuel and using liquid oxygen as the oxidizer, the cluster of five J-2 engines for the S-II stage burned over one ton of propellant per second, during about 6 1/2 minutes of operation, to take the vehicle to an altitude of about 108 miles and a speed of near orbital velocity, about 17,400 miles per hour.
Change control microcomputer device for vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morishita, M.; Kouge, S.
1986-08-19
A charge control microcomputer device for a vehicle is described which consists of: a clutch device for transmitting the rotary output of an engine; a charging generator driven by the clutch device; a battery charged by an output of the charging generator; a voltage regulator for controlling an output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving engine data, to control the engine; and a charge control microcomputer for processing the engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage datamore » from the charging generator, to determine a reference voltage for the voltage regulator in accordance with the engine data and the charge system data, and for processing an engine rotation signal to generate and apply an operating instruction to the clutch device in accordance with the engine data and the charge system data, such that the charging generator is driven within a predetermined range of revolutions per minute at all times.« less
1960-01-01
This chart provides the vital statistics for the F-1 rocket engine. Developed by Rocketdyne, under the direction of the Marshall Space Flight Center, the F-1 engine was utilized in a cluster of five engines to propel the Saturn V's first stage, the S-IC. Liquid oxygen and kerosene were used as its propellant. Initially rated at 1,500,000 pounds of thrust, the engine was later uprated to 1,522,000 pounds of thrust after the third Saturn V launch (Apollo 8, the first marned Saturn V mission) in December 1968. The cluster of five F-1 engines burned over 15 tons of propellant per second, during its two and one-half minutes of operation, to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour.
1976-01-01
This is a cutaway illustration of the Space Shuttle external tank (ET) with callouts. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27.5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the ET also acts as a backbone for the orbiter and solid rocket boosters. Separate pressurized tank sections within the external tank hold the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts that branch off into smaller lines that feed directly into the main engines. The main engines consume 64,000 gallons (242,260 liters) of fuel each minute. Machined from aluminum alloys, the Space Shuttle's external tank is currently the only part of the launch vehicle that is not reused. After its 526,000-gallons (1,991,071 liters) of propellants are consumed during the first 8.5-minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET.
Exterior view of ISS during EVA 28
2014-10-15
ISS041-E-067002 (7 Oct. 2014) --- NASA astronaut Reid Wiseman, Expedition 41 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 13-minute spacewalk, Wiseman and European Space Agency astronaut Alexander Gerst (out of frame), flight engineer, worked outside the space station's Quest airlock relocating a failed cooling pump to external stowage and installing gear that provides back up power to external robotics equipment.
Expedition 41 Crewmember during EVA 28
2014-10-15
ISS041-E-067002 (7 Oct. 2014) --- NASA astronaut Reid Wiseman, Expedition 41 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 13-minute spacewalk, Wiseman and European Space Agency astronaut Alexander Gerst (out of frame), flight engineer, worked outside the space station's Quest airlock relocating a failed cooling pump to external stowage and installing gear that provides back up power to external robotics equipment.
2011-02-16
ISS026-E-027391 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.
Army Engineer Divers: First In Port-Au-Prince Harbor
2010-12-01
to the pile once the concrete was poured. This step was com- pleted in a few minutes for each pile. Last, a prefabricated wooden form was emplaced...September-December 201010 Engineer This prefabricated wooden form was emplaced around a rebar cage at the top of damaged piles to hold concrete until it...the mainland into the harbor. Waste from tugboats and sewage from the mainland compounded ecological hazards. The only alternative for the Army and
2011-02-16
ISS026-E-027361 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.
2011-02-16
ISS026-E-027368 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.
Performance Probability Distributions for Sediment Control Best Management Practices
NASA Astrophysics Data System (ADS)
Ferrell, L.; Beighley, R.; Walsh, K.
2007-12-01
Controlling soil erosion and sediment transport can be a significant challenge during the construction process due to the extent and conditions of bare, disturbed soils. Best Management Practices (BMPs) are used as the framework for the design of sediment discharge prevention systems in stormwater pollution prevention plans which are typically required for construction sites. This research focuses on commonly-used BMP systems for perimeter control of sediment export: silt fences and fiber rolls. Although these systems are widely used, the physical and engineering parameters describing their performance are not well understood. Performance expectations are based on manufacturer results, but due to the dynamic conditions that exist on a construction site performance expectations are not always achievable in the field. Based on experimental results product performance is shown to be highly variable. Experiments using the same installation procedures show inconsistent sediment removal performances ranging from (>)85 percent to zero. The goal of this research is to improve the determination of off-site sediment yield based on probabilistic performance results of perimeter control BMPs. BMPs are evaluated in the Soil Erosion Research Laboratory (SERL) in the Civil and Environmental Engineering department at San Diego State University. SERL experiments are performed on a 3-m by 10-m tilting soil bed with a soil depth of 0.5 meters and a slope of 33 percent. The simulated storm event consists of 17 mm/hr for 20 minutes followed by 51 mm/hr for 30 minutes. The storm event is based on an ASTM design storm intended to simulate BMP failures. BMP performance is assessed based on experiments where BMPs are installed per manufacture specifications, less than optimal installations, and no treatment conditions. Preliminary results from 30 experiments are presented and used to develop probability distributions for BMP sediment removal efficiencies. The results are then combined with spatial and temporal distributions of perimeter sediment loadings for a construction site to estimate the time dependent risk of off-site sediment discharge over the duration of a project (ex., 0, 25, 50, 75 and 100 percent complete). The results are used to highlight the importance of considering all phases of construction when developing stormwater pollution prevention plans.
NASA Astrophysics Data System (ADS)
Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.
2016-03-01
Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on porous silicon, dissolution tests for 0.1 M and 0.01 M NaOH trigger solutions, EIS analysis for VOx coated devices, and EDS compositional analysis of VOx. (ii) Video showing transient behavior of integrated VOx/porous silicon scaffolds. See DOI: 10.1039/c5nr09095d
Design analysis and risk assessment for a single stage to orbit nuclear thermal rocket
NASA Astrophysics Data System (ADS)
Labib, Satira I.
Recent advances in high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This thesis describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1-15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 700 seconds. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. At the same power level, the 40 cm reactor results in the lowest radiation dose rate of the three reactors. Radiation dose rates decrease to background levels ~3.5 km from the launch site. After a one-year decay time, all of the activated materials produced by an NTR launch would be classified as Class A low-level waste. The activation of air produces significant amounts of argon-41 and nitrogen-16 within 100 m of the launch. The derived air concentration, DAC, from the activation products decays to less than unity within two days, with only argon-41 remaining. After 10 minutes of full power operation the 120 cm core corresponding to a 15 MT payload contains 2.5 x 1013, 1.4 x 1012, 1.5 x 1012, and 7.8 x 10 7 Bq of 131I, 137Cs, 90Sr, and 239Pu respectively. The decay heat after shutdown increases with increasing reactor power with a maximum decay heat of 108 kW immediately after shutdown for the 15 MT payload.
The application of CFD to rotary wing flow problems
NASA Technical Reports Server (NTRS)
Caradonna, F. X.
1990-01-01
Rotorcraft aerodynamics is especially rich in unsolved problems, and for this reason the need for independent computational and experimental studies is great. Three-dimensional unsteady, nonlinear potential methods are becoming fast enough to enable their use in parametric design studies. At present, combined CAMRAD/FPR analyses for a complete trimmed rotor soltution can be performed in about an hour on a CRAY Y-MP (or ten minutes, with multiple processors). These computational speeds indicate that in the near future many of the large CFD problems will no longer require a supercomputer. The ability to convect circulation is routine for integral methods, but only recently was it discovered how to do the same with differential methods. It is clear that the differential CFD rotor analyses are poised to enter the engineering workplace. Integral methods already constitute a mainstay. Ultimately, it is the users who will integrate CFD into the entire engineering process and provide a new measure of confidence in design and analysis. It should be recognized that the above classes of analyses do not include several major limiting phenomena which will continue to require empirical treatment because of computational time constraints and limited physical understanding. Such empirical treatment should be included, however, into the developing CFD, engineering level analyses. It is likely that properly constructed flow models containing corrections from physical testing will be able to fill in unavoidable gaps in the experimental data base, both for basic studies and for specific configuration testing. For these kinds of applications, computational cost is not an issue. Finally, it should be recognized that although rotorcraft are probably the most complex of aircraft, the rotorcraft engineering community is very small compared to the fixed-wing community. Likewise, rotorcraft CFD resources can never achieve fixed-wing proportions and must be used wisely. Therefore the fixed-wing work must be gleaned for many of the basic methods.
Propulsion engineering study for small-scale Mars missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, J.
1995-09-12
Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardwaremore » mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.« less
An Evaluation of Infrastructure for Tsunami Evacuation in Padang, West Sumatra, Indonesia (Invited)
NASA Astrophysics Data System (ADS)
Cedillos, V.; Canney, N.; Deierlein, G.; Diposaptono, S.; Geist, E. L.; Henderson, S.; Ismail, F.; Jachowski, N.; McAdoo, B. G.; Muhari, A.; Natawidjaja, D. H.; Sieh, K. E.; Toth, J.; Tucker, B. E.; Wood, K.
2009-12-01
Padang has one of the world’s highest tsunami risks due to its high hazard, vulnerable terrain and population density. The current strategy to prepare for tsunamis in Padang is focused on developing early warning systems, planning evacuation routes, conducting evacuation drills, and raising local awareness. Although these are all necessary, they are insufficient. Padang’s proximity to the Sunda Trench and flat terrain make reaching safe ground impossible for much of the population. The natural warning in Padang - a strong earthquake that lasts over a minute - will be the first indicator of a potential tsunami. People will have about 30 minutes after the earthquake to reach safe ground. It is estimated that roughly 50,000 people in Padang will be unable to evacuate in that time. Given these conditions, other means to prepare for the expected tsunami must be developed. With this motivation, GeoHazards International and Stanford University’s Chapter of Engineers for a Sustainable World partnered with Indonesian organizations - Andalas University and Tsunami Alert Community in Padang, Laboratory for Earth Hazards, and the Ministry of Marine Affairs and Fisheries - in an effort to evaluate the need for and feasibility of tsunami evacuation infrastructure in Padang. Tsunami evacuation infrastructure can include earthquake-resistant bridges and evacuation structures that rise above the maximum tsunami water level, and can withstand the expected earthquake and tsunami forces. The choices for evacuation structures vary widely - new and existing buildings, evacuation towers, soil berms, elevated highways and pedestrian overpasses. This interdisciplinary project conducted a course at Stanford University, undertook several field investigations, and concluded that: (1) tsunami evacuation structures and bridges are essential to protect the people in Padang, (2) there is a need for a more thorough engineering-based evaluation than conducted to-date of the suitability of existing buildings to serve as evacuation structures, and of existing bridges to serve as elements of evacuation routes, and (3) additions to Padang’s tsunami evacuation infrastructure must carefully take into account technical matters (e.g. expected wave height, debris impact forces), social considerations (e.g. cultural acceptability, public’s confidence in the structure’s integrity), and political issues (e.g. land availability, cost, maintenance). Future plans include collaboration between U.S. and Indonesian engineers in developing designs for new tsunami evacuation structures, as well as providing training for Indonesian authorities on: (1) siting, designing, and constructing tsunami evacuation structures, and (2) evaluating the suitability of existing buildings to serve as tsunami evacuation shelters.
Ablation-cooled material removal with ultrafast bursts of pulses
NASA Astrophysics Data System (ADS)
Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K.; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D.; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer
2016-09-01
The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.
Ablation-cooled material removal with ultrafast bursts of pulses.
Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer
2016-09-01
The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.
76 FR 11172 - Special Conditions: Pratt and Whitney Canada Model PW210S Turboshaft Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... expected to make an assessment of the expected usage and publish ICA's and ALS limits in accordance with... section (ALS), any mandatory inspections and serviceability limits related to the use of the 30-minute AEO...
1964-01-01
This close-up view of the F-1 engine for the Saturn V S-IC (first) stage shows the engine's complexity, and also its large size as it dwarfs the technician. Developed by Rocketdyne, under the direction of the Marshall Space Flight Center, the F-1 engine was utilized in a cluster of five engines to propel the Saturn V's first stage, the S-IC. Liquid oxygen and kerosene were used as its propellant. Initially rated at 1,500,000 pounds of thrust, the engine was later uprated to 1,522,000 pounds of thrust after the third Saturn V launch (Apollo 8, the first marned Saturn V mission) in December 1968. The cluster of five F-1 engines burned over 15 tons of propellant per second, during its two and one-half minutes of operation, to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour.
1963-01-01
A close-up view of the F-1 Engine for the Saturn V S-IC (first) stage depicts the complexity of the engine. Developed by Rocketdyne under the direction of the Marshall Space Flight Center, the F-1 engine was utilized in a cluster of five engines to propel the Saturn V's first stage, the S-IC. Liquid oxygen and kerosene were used as its propellant. Initially rated at 1,500,000 pounds of thrust, the engine was later uprated to 1,522,000 pounds of thrust after the third Saturn V launch (Apollo 8, the first marned Saturn V mission) in December 1968. The cluster of five F-1 engines burned over 15 tons of propellant per second, during its two and one-half minutes of operation, to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour.
1965-04-16
This photograph depicts a dramatic view of the first test firing of all five F-1 engines for the Saturn V S-IC stage at the Marshall Space Flight Center. The testing lasted a full duration of 6.5 seconds. It also marked the first test performed in the new S-IC static test stand and the first test using the new control blockhouse. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. Required to hold down the brute force of a 7,500,000-pound thrust, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900 ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minute.
Lim, Chun Ping; Mai, Phuong Nguyen Quoc; Roizman Sade, Dan; Lam, Yee Cheong; Cohen, Yehuda
2016-01-01
Life of bacteria is governed by the physical dimensions of life in microscales, which is dominated by fast diffusion and flow at low Reynolds numbers. Microbial biofilms are structurally and functionally heterogeneous and their development is suggested to be interactively related to their microenvironments. In this study, we were guided by the challenging requirements of precise tools and engineered procedures to achieve reproducible experiments at high spatial and temporal resolutions. Here, we developed a robust precise engineering approach allowing for the quantification of real-time, high-content imaging of biofilm behaviour under well-controlled flow conditions. Through the merging of engineering and microbial ecology, we present a rigorous methodology to quantify biofilm development at resolutions of single micrometre and single minute, using a newly developed flow cell. We designed and fabricated a high-precision flow cell to create defined and reproducible flow conditions. We applied high-content confocal laser scanning microscopy and developed image quantification using a model biofilm of a defined opportunistic strain, Pseudomonas putida OUS82. We observed complex patterns in the early events of biofilm formation, which were followed by total dispersal. These patterns were closely related to the flow conditions. These biofilm behavioural phenomena were found to be highly reproducible, despite the heterogeneous nature of biofilm. PMID:28721252
NASA Technical Reports Server (NTRS)
Perrell, Eric R.
2005-01-01
The recent bold initiatives to expand the human presence in space require innovative approaches to the design of propulsion systems whose underlying technology is not yet mature. The space propulsion community has identified a number of candidate concepts. A short list includes solar sails, high-energy-density chemical propellants, electric and electromagnetic accelerators, solar-thermal and nuclear-thermal expanders. For each of these, the underlying physics are relatively well understood. One could easily cite authoritative texts, addressing both the governing equations, and practical solution methods for, e.g. electromagnetic fields, heat transfer, radiation, thermophysics, structural dynamics, particulate kinematics, nuclear energy, power conversion, and fluid dynamics. One could also easily cite scholarly works in which complete equation sets for any one of these physical processes have been accurately solved relative to complex engineered systems. The Advanced Concepts and Analysis Office (ACAO), Space Transportation Directorate, NASA Marshall Space Flight Center, has recently released the first alpha version of a set of computer utilities for performing the applicable physical analyses relative to candidate deep-space propulsion systems such as those listed above. PARSEC, Preliminary Analysis of Revolutionary in-Space Engineering Concepts, enables rapid iterative calculations using several physics tools developed in-house. A complete cycle of the entire tool set takes about twenty minutes. PARSEC is a level-zero/level-one design tool. For PARSEC s proof-of-concept, and preliminary design decision-making, assumptions that significantly simplify the governing equation sets are necessary. To proceed to level-two, one wishes to retain modeling of the underlying physics as close as practical to known applicable first principles. This report describes results of collaboration between ACAO, and Embry-Riddle Aeronautical University (ERAU), to begin building a set of level-two design tools for PARSEC. The "CFD Multiphysics Tool" will be the propulsive element of the tool set. The name acknowledges that space propulsion performance assessment is primarily a fluid mechanics problem. At the core of the CFD Multiphysics Tool is an open-source CFD code, HYP, under development at ERAU. ERAU is renowned for its undergraduate degree program in Aerospace Engineering the largest in the nation. The strength of the program is its applications-oriented curriculum, which culminates in one of three two-course Engineering Design sequences: Aerospace Propulsion, Spacecraft, or Aircraft. This same philosophy applies to the HYP Project, albeit with fluid physics modeling commensurate with graduate research. HYP s purpose, like the Multiphysics Tool s, is to enable calculations of real (three-dimensional; geometrically complex; intended for hardware development) applications of high speed and propulsive fluid flows.
Sefton, JoEllen M.; Yarar, Ceren; Berry, Jack W.
2012-01-01
Objectives: Falls in older adults represent a primary cause of decreased mobility and independence, increased morbidity, and accidental death. Research and clinical reports indicate that therapeutic massage (TM) may positively influence suggested causative factors. The second in a two-part study, this project assessed the effects of six weeks of TM treatment on balance, nervous system, and cardiovascular measures in older adults. Design: A randomized controlled trial assessed the effects of six weekly 60-minute sessions of TM on balance, cardiovascular, and nervous system measures. Thirty-five volunteers (19 male and 16 female; ages 62.9 ± 4.6) were randomly assigned to relaxation control or TM groups. A 2 × 4 [treatment condition X time (week 1 and 6)] mixed factorial experimental design was utilized for cardiovascular/balance variables assessed at pretreatment baseline, immediate post-treatment, and 20- and 60-minutes post-treatment; nervous system measures were assessed only at pretreatment and at 60-minute follow-up (2 × 2 mixed design). Long-term benefits were assessed by comparing the TM and control groups on pretreatment baseline measures at week six and a follow-up assessment at week seven (2 × 3 mixed design). Setting: Laboratory Intervention: Six weekly 60-minute, full-body TM. Outcome Measures: Postural control/cardiovascular measures were assessed weeks one, six, and seven; pretreatment and immediate, 20- and 60-minutes post-treatment. Motoneuron pool excitability was assessed pretreatment and 60 minutes post-treatment. Results: The TM group showed significant differences relative to controls in cardiovascular and displacement area/velocity after the week six session, with decreasing blood pressure and increasing stability over time from immediate post-TM to 60 minutes post-TM. The TM group revealed lower H-max/M-max ratios 60-minutes post-treatment. Long-term differences between the groups were detected at week seven in displacement area/velocity and systolic blood pressure. Conclusions: Results suggest six weeks of TM resulted in immediate and long-term improvements in postural stability and blood pressure, compared to a controlled condition. PMID:23087776
2012-09-05
ISS032-E-025152 (5 Sept. 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 32 flight engineer, participates in the mission?s third session of extravehicular activity (EVA). During the six-hour, 28-minute spacewalk, Hoshide and NASA astronaut Sunita Williams (out of frame), flight engineer, completed the installation of a Main Bus Switching Unit (MBSU) that was hampered last week by a possible misalignment and damaged threads where a bolt must be placed. They also installed a camera on the International Space Station?s robotic arm, Canadarm2.
2012-09-05
ISS032-E-025234 (5 Sept. 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 32 flight engineer, participates in the mission?s third session of extravehicular activity (EVA). During the six-hour, 28-minute spacewalk, Hoshide and NASA astronaut Sunita Williams (out of frame), flight engineer, completed the installation of a Main Bus Switching Unit (MBSU) that was hampered last week by a possible misalignment and damaged threads where a bolt must be placed. They also installed a camera on the International Space Station?s robotic arm, Canadarm2.
1981-08-01
by psychological tests and EEG recordings. No statistically significant differences between the two groups were found. In our opinion, the lack of...phenomena. A jet engine test facility is located immediately south of the site. Engines are tested at the facility approximately 20 times a year. The...duration of each test is approximately 68 minutes. Noise monitoring data for operation of this facility are not available; however, it is clear that
2009-10-11
KAZAKHASTAN - Seated left to right, Spaceflight participant Guy Laliberte, Expedition 20 Commander Gennady Padalka, and Expedition 20 Flight Engineer Michael Barratt sit in chairs outside the Soyuz capsule just minutes after they landed near the town of Arkalyk, Kazakhstan, on Sunday, Oct. 11, 2009. Padalka and Barratt are returning from six months onboard the International Space Station, along with Laliberte who arrived at the station on Oct. 2 with Expedition 21 Flight Engineers Jeff Williams and Maxim Suraev aboard the Soyuz TMA-16 spacecraft. Photo Credit: NASA/Bill Ingalls
Engineering monolayer poration for rapid exfoliation of microbial membranes.
Pyne, Alice; Pfeil, Marc-Philipp; Bennett, Isabel; Ravi, Jascindra; Iavicoli, Patrizia; Lamarre, Baptiste; Roethke, Anita; Ray, Santanu; Jiang, Haibo; Bella, Angelo; Reisinger, Bernd; Yin, Daniel; Little, Benjamin; Muñoz-García, Juan C; Cerasoli, Eleonora; Judge, Peter J; Faruqui, Nilofar; Calzolai, Luigi; Henrion, Andre; Martyna, Glenn J; Grovenor, Chris R M; Crain, Jason; Hoogenboom, Bart W; Watts, Anthony; Ryadnov, Maxim G
2017-02-01
The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.
Ocean Engineering Studies. Volume 1. Acrylic Submersibles
1990-04-01
2.3 ASTM-DIO03-61 Heat distortion temperature +3.60F/minute at 264 psi 200OF: ASTM-0648-56 +3.60F/minute at 66 psi 220OF ASTM-0648-56 Thermal...of Revolution with Axisymmetric Pressures, Temperatures, and Distributed Loads", WAPD -TM-398, December 1963. 4. Stachiw, J. D., Mack, K. L., "The...at 264 psi 200°F +3.6°F/min at 66 psi 220°F Thermal expansion/°F at 20°F 35 x 10-6 Fed. Stan. 406 Method 2031 Water absorpt,.on; 1/8 inch ASTM-D570
Outlaw, G.S.; Butner, D.E.; Kemp, R.L.; Oaks, A.T.; Adams, G.S.
1992-01-01
Rainfall, stage, and streamflow data in the Murfreesboro area, Middle Tennessee, were collected from March 1989 through July 1992 from a network of 68 gaging stations. The network consists of 10 tipping-bucket rain gages, 2 continuous-record streamflow gages, 4 partial-record flood hydrograph gages, and 72 crest-stage gages. Data collected by the gages includes 5minute time-step rainfall hyetographs, 15-minute time-step flood hydrographs, and peak-stage elevations. Data are stored in a computer data base and are available for many computer modeling and engineering applications.
ERIC Educational Resources Information Center
Koszalka, Tiffany A.; Wu, Yiyan
2010-01-01
Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…
Alaska Volcano's Latest Eruption
Atmospheric Science Data Center
2017-06-06
... the Alaskan Volcano Observatory to issue a red alert for air travel in the area. Volcanic ash can cause major damage to aircraft engines, ... On May 28, 2017, at approximately 2:23 p.m. local time, NASA's Terra satellite passed over Bogoslof, less than 10 minutes after ...
ERIC Educational Resources Information Center
Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward
2016-01-01
The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…
Gillet, François-Xavier; Garcia, Rayssa A.; Macedo, Leonardo L. P.; Albuquerque, Erika V. S.; Silva, Maria C. M.; Grossi-de-Sa, Maria F.
2017-01-01
Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis), we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests. PMID:28503153
Gillet, François-Xavier; Garcia, Rayssa A; Macedo, Leonardo L P; Albuquerque, Erika V S; Silva, Maria C M; Grossi-de-Sa, Maria F
2017-01-01
Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil ( Anthonomus grandis ), we showed that the chimeric protein PTD-DRBD (peptide transduction domain-dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.
Stator Blade with Thermal Barrier Testing on Hot Gas Rig
1975-04-21
A 1-foot long stator blade with a thermal coating subjected to intense heat in order to test its strength at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers sought to determine optimal types of ceramic coatings to increase the durability of metals. The research was primarily intended to support the design of stator blades for high-performance axial-flow compressor and turbofan engines. The coatings reduced the temperature of the metal and the amount of required cooling. As engines became more and more sophisticated, compressor blades were required to withstand higher and higher temperatures. Lewis researchers developed a dual-layer thermal-barrier coating that could be applied to turbine vanes and blades and combustion liners. This new sprayable thermal-barrier coating was evaluated for its durability, strength, fatigue, and aerodynamic penalties. This hot-gas rig fired the scorching gas at the leading edge of a test blade. The blade was cooled by an internal air flow. The blades were heated at two different velocities during the program. When using Mach 0.3 gases the entire heating and cooling cycle only lasted 30 seconds. The cycle lasted 60 minutes during tests at Mach 1.
Engineering design skills coverage in K-12 engineering program curriculum materials in the USA
NASA Astrophysics Data System (ADS)
Chabalengula, Vivien M.; Mumba, Frackson
2017-11-01
The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.
Econometric Assessment of "One Minute" Paper as a Pedagogic Tool
ERIC Educational Resources Information Center
Das, Amaresh
2010-01-01
This paper makes an econometric testing of one-minute paper used as a tool to manage and assess instruction in my statistics class. One of our findings is that the one minute paper when I have tested it by using an OLS estimate in a controlled Vs experimental design framework is found to statistically significant and effective in enhancing…
Civil engineering reference guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, F.S.
1986-01-01
The civil engineering reference guide contains the following: Structural theory. Structural steel design. Concrete design and construction. Wood design and construction. Bridge engineering. Geotechnical engineering. Water engineering. Environmental engineering. Surveying.
NASA Technical Reports Server (NTRS)
Biermann, A.E.; Braithwaite, Willis M.
1955-01-01
An investigation of the endurance characteristics, at high Mach number, of the J65-W-7 engine was made in an altitude chamber at the Lewis laboratory. The investigation was made to determine whether this engine can be operated at flight conditions of Mach 2 at 35,000-feet altitude (inlet temperature, 250 F) as a limited-service-life engine Failure of the seventh-stage aluminum compressor blades occurred in both engines tested and was attributed to insufficient strength of the blade fastenings at the elevated temperatures. For the conditions of these tests, the results showed that it is reasonable to expect 10 to 15 minutes of satisfactory engine operation before failure. The high temperatures and pressures imposed upon the compressor housing caused no permanent deformation. In general, the performance of the engines tested was only slightly affected by the high ram conditions of this investigation. There was no discernible depreciation of performance with time prior to failure.
NASA Astrophysics Data System (ADS)
Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik
2017-10-01
The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.
Fast and accurate modeling of stray light in optical systems
NASA Astrophysics Data System (ADS)
Perrin, Jean-Claude
2017-11-01
The first problem to be solved in most optical designs with respect to stray light is that of internal reflections on the several surfaces of individual lenses and mirrors, and on the detector itself. The level of stray light ratio can be considerably reduced by taking into account the stray light during the optimization to determine solutions in which the irradiance due to these ghosts is kept to the minimum possible value. Unhappily, the routines available in most optical design software's, for example CODE V, do not permit all alone to make exact quantitative calculations of the stray light due to these ghosts. Therefore, the engineer in charge of the optical design is confronted to the problem of using two different software's, one for the design and optimization, for example CODE V, one for stray light analysis, for example ASAP. This makes a complete optimization very complex . Nevertheless, using special techniques and combinations of the routines available in CODE V, it is possible to have at its disposal a software macro tool to do such an analysis quickly and accurately, including Monte-Carlo ray tracing, or taking into account diffraction effects. This analysis can be done in a few minutes, to be compared to hours with other software's.
Multiple Restart Testing of a Stainless Steel Sodium Heat Pipe Module
NASA Technical Reports Server (NTRS)
Martin, James; Mireles, Omar; Reid, Robert
2005-01-01
A heat pipe cooled reactor is one of several candidate reactor cores being considered for space power and propulsion systems to support future space exploration activities. Long life heat pipe modules. with designs verified through a combination of theoretical analysis and experimental evaluations. would be necessary to establish the viability of this option. A hardware-based program was initiated to begin experimental testing of components to verify compliance of proposed designs. To this end, a number of stainless steel/sodium heat pipe modules have been designed and fabricated to support experimental testing of a Safe Affordable Fission Engine (SAFE) project, a 100-kWt core design pursued jointly by the Marshall Space Flight Center and the Los Alamos National Laboratory. One of the SAFE heat pipe modules was successfully subjected to over 200 restarts. examining the behavior of multiple passive freeze/thaw operations. Typical operation included a 1-hour startup to an average evaporator temperature of 1000 K followed by a 15 minute hold at temperature. Nominal maximum input power during the hold period was 1.9 kW. Between heating cycles the module was cooled to less than 325 K, returning the sodium to a frozen state in preparation fop the next startup cycle.
A Combined Water-Bromotrifluoromethane Crash-Fire Protection System for a T-56 Turbopropeller Engine
NASA Technical Reports Server (NTRS)
Campbell, John A.; Busch, Arthur M.
1959-01-01
A crash-fire protection system is described which will suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbo-propeller engine. This system includes means for rapidly extinguishing the combustor flame, means for cooling and inerting with water the hot engine parts likely to ignite engine ingested fuel, and means for blanketing with bromotrifluoromethane massive metal parts that may reheat after the engine stops rotating. Combustion-chamber flames were rapidly extinguished at the engine fuel nozzles by a fuel shutoff and drain valve. Hot engine parts were inerted and cooled by 42 pounds of water discharged at seven engine stations. Massive metal parts that could reheat were inerted with 10 pounds of bromotrifluoromethane discharged at two engine stations. Performance trials of the crash-fire protection system were conducted by bringing the engine up to takeoff temperature, actuating the crash-fire protection system, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
Electron Bombardment Ion Thruster
1970-08-21
Researchers at the Lewis Research Center had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. Over the ensuing decades Lewis researchers continued to advance the original ion thruster concept. A Space Electric Rocket Test (SERT) spacecraft was launched in June 1964 to test Kaufman’s engine in space. SERT I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. This was followed in 1966 by the even more successful SERT II, which operated on and off for over ten years. Lewis continued studying increasingly more powerful ion thrusters. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust and are therefore not capable of lifting a spaceship from the surface of the Earth. Once lofted into orbit, however, electric engines are can produce small, continuous streams of thrust for several years.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the ratio of an automobile's engine rotational speed (in revolutions per minute) to the automobile's... defined in 40 CFR 600.002-77. (3) The term automobile means a vehicle determined by the Administrator under 49 CFR part 523 to be an automobile. (4) The term passenger automobile means an automobile...
Code of Federal Regulations, 2010 CFR
2010-10-01
... the ratio of an automobile's engine rotational speed (in revolutions per minute) to the automobile's... defined in 40 CFR 600.002-77. (3) The term automobile means a vehicle determined by the Administrator under 49 CFR part 523 to be an automobile. (4) The term passenger automobile means an automobile...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the ratio of an automobile's engine rotational speed (in revolutions per minute) to the automobile's... defined in 40 CFR 600.002-77. (3) The term automobile means a vehicle determined by the Administrator under 49 CFR part 523 to be an automobile. (4) The term passenger automobile means an automobile...
Code of Federal Regulations, 2011 CFR
2011-10-01
... the ratio of an automobile's engine rotational speed (in revolutions per minute) to the automobile's... defined in 40 CFR 600.002-77. (3) The term automobile means a vehicle determined by the Administrator under 49 CFR part 523 to be an automobile. (4) The term passenger automobile means an automobile...
14 CFR 29.927 - Additional tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... controlled by the pilot under normal operating conditions (such as where the primary engine power control is accomplished through the flight control), the following test must be made: (1) Under conditions associated with... applicant for continued flight, for at least 30 minutes after perception by the flightcrew of the...
Group Design Problems in Engineering Design Graphics.
ERIC Educational Resources Information Center
Kelley, David
2001-01-01
Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)
Engineers conduct key water test for A-3 stand
NASA Technical Reports Server (NTRS)
2009-01-01
Water cascades from the A-2 Test Stand at Stennis Space Center as engineers challenge the limits of the high-pressure water system as part of the preparation process for the A-3 Test Stand under construction. Jeff Henderson, test director for Stennis' A Complex, led a series of tests Nov. 16-20, flowing water simultaneously on the A-1 and A-2 stands, followed by the A-1 and B-1 stands, to determine if the high-pressure industrial water facility pumps and the existing pipe system can support the needs of the A-3 stand. The stand is being built to test rocket engines that will carry astronauts beyond low-Earth orbit and will need about 300,000 gallons of water per minute when operating, but the Stennis system never had been tested to that level. The recent tests were successful in showing the water facility pumps can operate at that capacity - reaching 318,000 gallons per minute in one instance. However, officials continue to analyze data to determine if the system can provide the necessary pressure at that capacity and if the delivery system piping is adequate. 'We just think if there's a problem, it's better to identify and address it now rather than when A-3 is finished and it has to be dealt with,' Henderson said.
1983-07-01
This photograph was taken during the final assembly phase of the Space Shuttle light weight external tanks (LWT) 5, 6, and 7 at the Michoud Assembly Facility in New Orleans, Louisiana. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27.5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the external tank (ET) acts as a backbone for the orbiter and solid rocket boosters. In separate, internal pressurized tank sections, the ET holds the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts which branch off into smaller lines that feed directly into the main engines. Some 64,000 gallons (242,260 liters) of fuel are consumed by the main engines each minute. Machined from aluminum alloys, the Space Shuttle's ET is the only part of the launch vehicle that currently is not reused. After its 526,000 gallons (1,991,071 liters) of propellants are consumed during the first 8.5 minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET
1989-03-01
This STS-29 mission onboard photo depicts the External Tank (ET) falling toward the ocean after separation from the Shuttle orbiter Discovery. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27,5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the ET also acts as a backbone for the orbiter and solid rocket boosters. In separate, internal pressurized tank sections, the ET holds the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts which branch off into smaller lines that feed directly into the main engines. Some 64,000 gallons (242,260 liters) of fuel are consumed by the main engines each minute. Machined from aluminum alloys, the Space Shuttle's ET is the only part of the launch vehicle that currently is not reused. After its 526,000 gallons (1,991,071 liters) of propellants are consumed during the first 8.5 minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET.
A high velocity impact experiment of micro-scale ice particles using laser-driven system
NASA Astrophysics Data System (ADS)
Yu, Hyeonju; Kim, Jungwook; Yoh, Jack J.
2014-11-01
A jet engine for high speed air breathing propulsion is subject to continuous wear as a result of impacts of micro-scale ice particles during a flight in the atmosphere. The inlet duct and compressor blades are exposed to on-coming frozen moisture particles that may result in the surface damage and significantly shorten the designed lifetime of the aircraft. Under such prolonged high-speed impact loading, the performance parameters such as flight instability and power loss of a jet engine can be significantly degraded. In this work, a laser-driven system was designed to accelerate micro-scale ice particles to the velocity up to Mach 2 using a Q-switched Nd:YAG laser beam at 100-600 mJ with 1064 nm wavelength and 9 ns pulse duration. The high speed images (Phantom v711) and double exposure shadowgraphs were used to calculate the average velocity of ice particles and their deceleration. Velocity Interferometer System for Any Reflector measurements were also utilized for the analysis of free surface velocity of a metal foil in order to understand the interfacial dynamics between the impacting particles and accepting metal target. The velocity of our ice particles is sufficiently fast for studying the effect of moisture particle collision on an air-breathing duct of high speed aircraft, and thus the results can provide insight into how minute space debris or micrometeorites cause damage to the orbiting spacecraft at large.
Evaluation of 2004 Toyota Prius Hybrid Electric Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staunton, R. H.; Ayers, C. W.; Marlino, L. D.
2006-05-01
The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200–1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) – Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available. This report summarizes vehicle-level and subsystem-level test results obtained for the 2004 Prius and various electrical and mechanical subassemblies of its hybrid electric drive system. The primary objective of these tests was to (1) characterize the electrical and mechanical performance of the 2004 Prius, and (2) map the performance of the inverter/motor system over the full design speed and load ranges.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... also received a comment that asked FDA to provide more detail about the design of the proposed consumer... respondents respondent responses Pretest 60 1 60 0.5 (30 minutes) 30 Screener 15,000 1 15,000 0.016 (1 minute.... Sixty panel members will take part in a pretest of the study, estimated to last 30 minutes (0.5 hours...
Collaborative engineering-design support system
NASA Technical Reports Server (NTRS)
Lee, Dong HO; Decker, D. Richard
1994-01-01
Designing engineering objects requires many engineers' knowledge from different domains. There needs to be cooperative work among engineering designers to complete a design. Revisions of a design are time consuming, especially if designers work at a distance and with different design description formats. In order to reduce the design cycle, there needs to be a sharable design describing the engineering community, which can be electronically transportable. Design is a process of integrating that is not easy to define definitively. This paper presents Design Script which is a generic engineering design knowledge representation scheme that can be applied in any engineering domain. The Design Script is developed through encapsulation of common design activities and basic design components based on problem decomposition. It is implemented using CLIPS with a Windows NT graphical user interface. The physical relationships between engineering objects and their subparts can be constructed in a hierarchical manner. The same design process is repeatedly applied at each given level of hierarchy and recursively into lower levels of the hierarchy. Each class of the structure can be represented using the Design Script.
Small solar electric system components demonstration. [thermal storage modules for Brayton systems
NASA Technical Reports Server (NTRS)
1980-01-01
The design and testing of high temperature thermal storage modules (TSM) are reported. The test goals were to demonstrate the thermocline propagation in the TSM, to measure the steepness of the thermocline, and to measure the effectiveness of the TSM when used in a Brayton system. In addition, a high temperature valve suitable for switching the TSM at temperatures to 1700 F is described and tested. Test results confirm the existence of a sharp thermocline under design conditions. The thermal profile was steeper than expected and was insensitive to air density over the range of the test conditions. Experiments were performed which simulated the airflow of a small Brayton engine, 20 KWe, having a pair of thermal storage modules acting as efficient recuperators. Low pressure losses, averaging 12 inches of water, and high effectiveness, 93% for a 15 minute switching cycle, were measured. The insulation surrounding the ceramic core limited thermal losses to approximately 1 KWt. The hot valve was operated over 100 cycles and performed well at temperatures up to 1700 F.
Physical quality of Simental Ongole crossbred silverside meat at various boiling times
NASA Astrophysics Data System (ADS)
Riyanto, J.; Cahyadi, M.; Guntari, W. S.
2018-03-01
This study aims to determine the physical quality of silverside beef meat at various boiling times. Samples that have been used are the back thigh or silverside meat. Treatment of boiling meat included TR (meat without boiled), R15 (boiled 15 minutes), and R30 (boiled for 30 minutes). The experimental design using Completely Randomized Design with 3 replications. Each replication was done in triple physical quality test. Determination of physical quality was performed at the Livestock Industry and Processing Laboratory at Sebelas Maret University Surakarta and the Meat Technology Laboratory at the Faculty of Animal Husbandry of Gadjah Mada University. The result of variance analysis showed that boiling affect cooking loss (P≥0.05) and but did not affect (P≤0,05) pH, water holding capacity and meat tenderness. The conclusions of the study showed that boiling for 15 minutes and 30 minutes decreased the cooking loss of Simental Ongole Crossbred silverside meat. Meat physical quality of pH, water holding capacity and the value of tenderness is not affected by boiling for 15 and 30 minutes.
78 FR 7718 - Review of the General Purpose Costing System
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... for switching cars, regardless of car ownership. These costs are referred to as ``switch engine minute... provide the railroad industry and shippers with a standardized costing model; to cost the Board's Car Load... movement. Next, URCS applies ``efficiency adjustments'' to higher-volume movements (multi-car and trainload...
NASA Technical Reports Server (NTRS)
Lundin, Bruce T; Povolny, John H; Chelko, Louis J
1949-01-01
Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.
Development of an advanced Sabatier CO2 reduction subsystem
NASA Technical Reports Server (NTRS)
Kleiner, G. N.; Cusick, R. J.
1981-01-01
A preprototype Sabatier CO2 reduction subsystem was successfully designed, fabricated and tested. The lightweight, quick starting (less than 5 minutes) reactor utlizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a simple, passively controlled reactor design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with process flows equivalent to a crew size of up to five persons. The subsystem requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation.
Space Transportation Main Engine
NASA Technical Reports Server (NTRS)
Monk, Jan C.
1992-01-01
The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.
Computational Earth Science: Big Data Transformed Into Insight
NASA Astrophysics Data System (ADS)
Sellars, Scott; Nguyen, Phu; Chu, Wei; Gao, Xiaogang; Hsu, Kuo-lin; Sorooshian, Soroosh
2013-08-01
More than ever in the history of science, researchers have at their fingertips an unprecedented wealth of data from continuously orbiting satellites, weather monitoring instruments, ecological observatories, seismic stations, moored buoys, floats, and even model simulations and forecasts. With just an internet connection, scientists and engineers can access atmospheric and oceanic gridded data and time series observations, seismographs from around the world, minute-by-minute conditions of the near-Earth space environment, and other data streams that provide information on events across local, regional, and global scales. These data sets have become essential for monitoring and understanding the associated impacts of geological and environmental phenomena on society.
NASA Astrophysics Data System (ADS)
McMahon, Ann P.
Educating K-12 students in the processes of design engineering is gaining popularity in public schools. Several states have adopted standards for engineering design despite the fact that no common agreement exists on what should be included in the K-12 engineering design process. Furthermore, little pre-service and in-service professional development exists that will prepare teachers to teach a design process that is fundamentally different from the science teaching process found in typical public schools. This study provides a glimpse into what teachers think happens in engineering design compared to articulated best practices in engineering design. Wenger's communities of practice work and van Dijk's multidisciplinary theory of mental models provide the theoretical bases for comparing the mental models of two groups of elementary teachers (one group that teaches engineering and one that does not) to the mental models of design engineers (including this engineer/researcher/educator and professionals described elsewhere). The elementary school teachers and this engineer/researcher/educator observed the design engineering process enacted by professionals, then answered questions designed to elicit their mental models of the process they saw in terms of how they would teach it to elementary students. The key finding is this: Both groups of teachers embedded the cognitive steps of the design process into the matrix of the social and emotional roles and skills of students. Conversely, the engineers embedded the social and emotional aspects of the design process into the matrix of the cognitive steps of the design process. In other words, teachers' mental models show that they perceive that students' social and emotional communicative roles and skills in the classroom drive their cognitive understandings of the engineering process, while the mental models of this engineer/researcher/educator and the engineers in the video show that we perceive that cognitive understandings of the engineering process drive the social and emotional roles and skills used in that process. This comparison of mental models with the process that professional designers use defines a problem space for future studies that investigate how to incorporate engineering practices into elementary classrooms. Recommendations for engineering curriculum development and teacher professional development based on this study are presented.
1968-01-01
This is a cutaway illustration of the Saturn V service module configuration. Packed with plumbing and tanks, the service module was the command module's constant companion until just before reentry. All components not needed during the last few minutes of flight, and therefore requiring no protection against reentry heat, were transported in this module. It carried oxygen for most of the trip, fuel cells to generate electricity (along with the oxygen and hydrogen to run them); small engines to control pitch, roll, and yaw; and a large engine to propel the spacecraft into, and out of, lunar orbit.
2012-09-05
ISS032-E-025098 (5 Sept. 2012) --- Anchored to a Canadarm2 mobile foot restraint, Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 32 flight engineer, participates in the mission?s third session of extravehicular activity (EVA). During the six-hour, 28-minute spacewalk, Hoshide and NASA astronaut Sunita Williams (out of frame), flight engineer, completed the installation of a Main Bus Switching Unit (MBSU) that was hampered last week by a possible misalignment and damaged threads where a bolt must be placed. They also installed a camera on the International Space Station?s robotic arm, Canadarm2.
2012-09-05
ISS032-E-025171 (5 Sept. 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 32 flight engineer, participates in the mission's third session of extravehicular activity (EVA). During the six-hour, 28-minute spacewalk, Hoshide and NASA astronaut Sunita Williams (out of frame), flight engineer, completed the installation of a Main Bus Switching Unit (MBSU) that was hampered last week by a possible misalignment and damaged threads where a bolt must be placed. They also installed a camera on the International Space Station's robotic arm, Canadarm2. A cloud-covered part of Earth is visible in the background
NASA Technical Reports Server (NTRS)
Loomis, W. R.
1976-01-01
The feasibility of an emergency aspirator once-through lubrication system was demonstrated as a viable survivability concept for Army helicopter mainshaft engine bearings for periods as long as 30 minutes. It was also shown in an experimental study using a 46-mm bore bearing test machine that an oil-air mist once-through system with auxiliary air cooling is an effective primary lubrication system at speeds up to 2,500,000 DN for extended operating periods of at least 50 hours.
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1980-01-01
Engine control techniques were established and new technology requirements were identified. The designs of the components and engine were prepared in sufficient depth to calculate engine and component weights and envelopes, turbopump efficiencies and recirculation leakage rates, and engine performance. Engine design assumptions are presented along with the structural design criteria.
Wave rotor demonstrator engine assessment
NASA Technical Reports Server (NTRS)
Snyder, Philip H.
1996-01-01
The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.
Designing for Success: Developing Engineers Who Consider Universal Design Principles
ERIC Educational Resources Information Center
Bigelow, Kimberly Edginton
2012-01-01
Engineers must design for a diverse group of potential users of their products; however, engineering curricula rarely include an emphasis on universal design principles. This research article details the effectiveness of a design project implemented in a first-year engineering course in an effort to raise awareness of the need for engineers to be…
A 3D printing method for droplet-based biomolecular materials
NASA Astrophysics Data System (ADS)
Challita, Elio J.; Najem, Joseph S.; Freeman, Eric C.; Leo, Donald J.
2017-04-01
The field of developing biomolecular droplet-based materials using a bottom-up approach remains underexplored. Producing tissue-like materials, from entirely synthetic components, presents an innovative method to reconstruct the functions of life within artificial materials. Aqueous droplets, encased with lipid monolayers, may be linked via bilayer interfaces to make up structures that resemble biological tissues. Here we present the design and development of an easy-to-build 3D printer for the fabrication of tissue-like biomolecular materials from cell-sized aqueous droplets. The droplets are generated using a snap off technique, capable of generating 30 droplets per minute. The printed network of droplets may also be functionalized with various types of membrane proteins to achieve desired engineering applications like sensing and actuation, or to mimic electrical communication in biological systems. Voltage sensitive channels are introduced into selected droplets to create a conductive path with the material in the presence of an external field.
Microwave and continuous flow technologies in drug discovery.
Sadler, Sara; Moeller, Alexander R; Jones, Graham B
2012-12-01
Microwave and continuous flow microreactors have become mainstream heating sources in contemporary pharmaceutical company laboratories. Such technologies will continue to benefit from design and engineering improvements, and now play a key role in the drug discovery process. The authors review the applications of flow- and microwave-mediated heating in library, combinatorial, solid-phase, metal-assisted, and protein chemistries. Additionally, the authors provide a description of the combination of microwave and continuous flow platforms, with applications in the preparation of radiopharmaceuticals and in drug candidate development. Literature reviewed is chiefly 2000 - 2012, plus key citations from earlier reports. With the advent of microwave irradiation, reactions that normally took days to complete can now be performed in a matter of minutes. Coupled with the introduction of continuous flow microreactors, pharmaceutical companies have an easy way to improve the greenness and efficiency of many synthetic operations. The combined force of these technologies offers the potential to revolutionize discovery and manufacturing processes.
Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors.
Fluegel, Brian; Mialitsin, Aleksej V; Beaton, Daniel A; Reno, John L; Mascarenhas, Angelo
2015-05-28
Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10(-4). Comparing our strain sensitivity and signal strength in Al(x)Ga(1-x)As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 10(3), thus obviating key constraints in semiconductor strain metrology.
Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors
Fluegel, Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo
2015-01-01
Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10−4. Comparing our strain sensitivity and signal strength in AlxGa1−xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology. PMID:26017853
Watt, P; Yoxall, C W; Gallagher, A; Burleigh, A; Bewley, S; Heuchan, A M; Duley, L
2015-01-01
Objective Babies receive oxygen through their umbilical cord while in the uterus and for a few minutes after birth. Currently, if the baby is not breathing well at birth, the cord is cut so as to transfer the newborn to a resuscitation unit. We sought to develop a mobile resuscitation trolley on which newly born babies can be resuscitated while still receiving oxygenated blood and the ‘placental transfusion’ through the umbilical cord. This would also prevent separation of the mother and baby in the first minutes after birth. Design Multidisciplinary iterative product development. Setting Clinical Engineering Department of a University Teaching Hospital. Methods Following an initial design meeting, a series of prototypes were developed. At each stage, the prototype was reviewed by a team of experts in the laboratory and in the hospital delivery suite to determine ease of use and fitness for purpose. A commercial company was identified to collaborate on the trolley's development and secure marking with the Conformité Européenne mark, allowing the trolley to be introduced into clinical practice. Results The trolley is a small mobile resuscitation unit based on the concept of an overbed hospital table. It can be manoeuvred to within 50 cm of the mother's pelvis so that the umbilical cord can remain intact during resuscitation, irrespective of whether the baby is born naturally, by instrumental delivery or by caesarean section. Warmth for the newborn comes from a heated mattress and the trolley has the facility to provide suction, oxygen and air. Conclusions This is the first mobile resuscitation device designed specifically to facilitate newborn resuscitation at the bedside and with an intact cord. The next step is to assess its safety, its acceptability to clinicians and parents, and to determine whether it allows resuscitation with an intact cord. PMID:26191414
EDITORIAL: The Eye and the Chip: World Congress on Artificial Vision 2004
NASA Astrophysics Data System (ADS)
Hessburg, Philip C.; Rizzo, Joseph
2005-03-01
The Eye and the Chip meeting, hosted every other year by the Detroit Institute of Ophthalmology, is a collegial exercise designed to move forward the day when neuro-prosthetic devices afford some level of useful vision to persons now blind from a variety of causes. Our guiding principles are to have an all-inclusive meeting and to permit ample time for discussion among the researchers. Given the growing body of researchers in this exciting field and the significant progress that has been made, our last two meetings of the Eye and the Chip have required three days each to accommodate all who attended. The Eye and the Chip meeting has been successful because of adherence to these guiding principles and to the fact that all three meetings have attracted at least two team members from every research group in the world that is working on developing a visual prosthetic. The model used by the Detroit Institute of Ophthalmology is one used previously in the early days of intraocular lens implantation work. It empowers those sophisticated in the art, working in the field, to interface effectively with research leaders they may or may not have met, who are also heavily involved in the work. Each member of the invited faculty is given a precisely controlled 20-minute period of time to present work of his/her academic department or corporate research laboratory. Following this, there is a full 10-minute discussion with questions coming from the 34 members of the invited faculty, as well as from attendees from the general public, press, engineering, ophthalmology, etc. Often, insights unfold in these discussion periods that are not only of profound significance scientifically, but absolutely fascinating in their contributions to understanding and to the art. We have encouraged patients to attend. The contributions of the patients have helped keep the presentations better grounded. The patients reasonably ask if the researchers understand their needs, and the responses from the researchers make it apparent why the patients are valuable participants in the meeting. This special inaugural issue reflects the importance of the intellectual charter of Journal of Neural Engineering. As can be seen from the table of contents, there is an ample mixture of solid engineering articles and biological investigation. In the domain of retinal prosthetics, and as is generally true for much biomedical research, neither engineers nor biologists can achieve maximally without the strong support of the other community. Journal of Neural Engineering provides a very welcome and much-needed home for engineers and biologists to share their common visions. Both of us are deeply appreciative of the journal, its publisher Jane Roscoe and the referees. We are hopeful that following the Eye and the Chip 2006 meeting we will be provided with a second special issue on this subject.
Hirst, Deborah V.L.; Dunn, Kevin H.; Shulman, Stanley A.; Hammond, Duane R.; Sestito, Nicholas
2015-01-01
Exposures to diacetyl, a primary ingredient of butter flavoring, have been shown to cause respiratory disease among workers who mix flavorings. This study focused on evaluating ventilation controls designed to reduce emissions from the flavor mixing tanks, the major source of diacetyl in the plants. Five exhaust hood configurations were evaluated in the laboratory: standard hinged lid-opened, standard hinged lid-closed, hinged lid-slotted, dome with 38-mm gap, and dome with 114-mm gap. Tracer gas tests were performed to evaluate quantitative capture efficiency for each hood. A perforated copper coil was used to simulate an area source within the 1.2-meter diameter mixing tank. Capture efficiencies were measured at four hood exhaust flow rates (2.83, 5.66, 11.3, and 17.0 cubic meters per minute) and three cross draft velocities (0, 30, and 60 meters per minute). All hoods evaluated performed well with capture efficiencies above 90% for most combinations of exhaust volume and cross drafts. The standard hinged lid was the least expensive to manufacture and had the best average capture efficiency (over 99%) in the closed configuration for all exhaust flow rates and cross drafts. The hinged lid-slotted hood had some of the lowest capture efficiencies at the low exhaust flow rates compared to the other hood designs. The standard hinged lid performed well, even in the open position, and it provided a flexible approach to controlling emissions from mixing tanks. The dome hood gave results comparable to the standard hinged lid but it is more expensive to manufacture. The results of the study indicate that emissions from mixing tanks used in the production of flavorings can be controlled using simple inexpensive exhaust hoods. PMID:24649880
Expert vs. novice: Problem decomposition/recomposition in engineering design
NASA Astrophysics Data System (ADS)
Song, Ting
The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between subsystems, and Level 3 represents designers consider details of subsystems. The results showed that students used more S on Level 1 and 3 but they used less F on Level 1 than engineering experts. The results imply that engineering curriculum should improve the teaching of problem definition in engineering design because students need to understand the problem before solving it.
NREL: News - Solar Decathlon Engineering Design Results Announced
Engineering Design Results Announced Thursday, October 3, 2002 Distinguished Panel Picks University first place in the Engineering Design results announced today at the Department of Energy's (DOE) Solar the University of Maryland remains in third. The Engineering Design panel includes engineers prominent
Incorporating a Product Archaeology Paradigm across the Mechanical Engineering Curriculum
ERIC Educational Resources Information Center
Moore-Russo, Deborah; Cormier, Phillip; Lewis, Kemper; Devendorf, Erich
2013-01-01
Historically, the teaching of design theory in an engineering curriculum has been relegated to a senior capstone design experience. Presently, however, engineering design concepts and courses can be found through the entirety of most engineering programs. Educators have recognized that engineering design provides a foundational platform that can…
Engineering Design Education Program for Graduate School
NASA Astrophysics Data System (ADS)
Ohbuchi, Yoshifumi; Iida, Haruhiko
The new educational methods of engineering design have attempted to improve mechanical engineering education for graduate students in a way of the collaboration in education of engineer and designer. The education program is based on the lecture and practical exercises concerning the product design, and has engineering themes and design process themes, i.e. project management, QFD, TRIZ, robust design (Taguchi method) , ergonomics, usability, marketing, conception etc. At final exercise, all students were able to design new product related to their own research theme by applying learned knowledge and techniques. By the method of engineering design education, we have confirmed that graduate students are able to experience technological and creative interest.
Iteration in Early-Elementary Engineering Design
NASA Astrophysics Data System (ADS)
McFarland Kendall, Amber Leigh
K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.
Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design
NASA Technical Reports Server (NTRS)
Harmon, T. J.; Roschak, E.
1993-01-01
A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.
Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump
NASA Technical Reports Server (NTRS)
Skelley, Stephen; Zoladz, Thomas
1999-01-01
As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6-blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Results showed excellent correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state impeller exit and radial diffuser pressure distributions were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and interesting rotating phenomena at the inducer inlet were observed. These rotating phenomena's cell numbers, direction, and speed were correlated with pump operating parameters. The impact of the unsteady phenomena and their corresponding energy losses on the unexpectedly poor pump performance is also discussed.
Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump
NASA Technical Reports Server (NTRS)
Skelley, Stephen; Zoladz, Thomas
2001-01-01
As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and cavitation-induced flow disturbances at the inducer inlet were observed. Two distinct disturbances were identified, one rotating and one stationary relative to the fixed frame of reference, while the transition from one regime to the next produced significant effects on the steady state pump performance. The impact of the unsteady phenomena and the corresponding energy losses on the unexpectedly poor pump performance is also discussed.
NASA Astrophysics Data System (ADS)
Delgado, Oihane; Campo-Bescós, Miguel A.; López, J. Javier
2017-04-01
Frequently, when we are trying to solve certain hydrological engineering problems, it is often necessary to know rain intensity values related to a specific probability or return period, T. Based on analyses of extreme rainfall events at different time scale aggregation, we can deduce the relationships among Intensity-Duration-Frequency (IDF), that are widely used in hydraulic infrastructure design. However, the lack of long time series of rainfall intensities for smaller time periods, minutes or hours, leads to use mathematical expressions to characterize and extend these curves. One way to deduce them is through the development of synthetic rainfall time series generated from stochastic models, which is evaluated in this work. From recorded accumulated rainfall time series every 10 min in the pluviograph of Igueldo (San Sebastian, Spain) for the time period between 1927-2005, their homogeneity has been checked and possible statistically significant increasing or decreasing trends have also been shown. Subsequently, two models have been calibrated: Bartlett-Lewis and Markov chains models, which are based on the successions of storms, composed for a series of rainfall events, separated by a short interval of time each. Finally, synthetic ten-minute rainfall time series are generated, which allow to estimate detailed IDF curves and compare them with the estimated IDF based on the recorded data.
2002-07-03
KENNEDY SPACE CENTER, FLA. -- NASA's Comet Nucleus Tour (CONTOUR) spacecraft successfully launches at 2:47:41 a.m. EDT aboard a Boeing Delta II rocket from Cape Canaveral Air Force Station, Fla. Designed and built by The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., the 2,138-pound (970-kilogram) spacecraft was placed into an elliptical Earth orbit 63 minutes after launch. About 19 minutes later the mission operations team at APL acquired a signal from the spacecraft through the Deep Space Network antenna station in Goldstone, Calif., and by 5:45 a.m. EDT Mission Director Dr. Robert W. Farquhar of the Applied Physics Lab confirmed the craft was operating normally and ready to carry out its early orbit maneuvers. CONTOUR will orbit Earth until Aug. 15, when it is scheduled to fire its main engine and enter a comet-chasing orbit around the sun. The mission's flexible four-year plan includes encounters with comets Encke (Nov. 12, 2003) and Schwassmann-Wachmann 3 (June 19, 2006), though it can add an encounter with a "new" and scientifically valuable comet from the outer solar system, should one be discovered in time for CONTOUR to fly past it. CONTOUR's four scientific instruments will take detailed pictures and measure the chemical makeup of each comet's nucleus -- a chunk of ice and rock -- while analyzing the surrounding gas and dust.
2002-07-03
KENNEDY SPACE CENTER, FLA. -- NASA's Comet Nucleus Tour (CONTOUR) spacecraft successfully launches at 2:47:41 a.m. EDT aboard a Boeing Delta II rocket from Cape Canaveral Air Force Station, Fla. Designed and built by The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., the 2,138-pound (970-kilogram) spacecraft was placed into an elliptical Earth orbit 63 minutes after launch. About 19 minutes later the mission operations team at APL acquired a signal from the spacecraft through the Deep Space Network antenna station in Goldstone, Calif., and by 5:45 a.m. EDT Mission Director Dr. Robert W. Farquhar of the Applied Physics Lab confirmed the craft was operating normally and ready to carry out its early orbit maneuvers. CONTOUR will orbit Earth until Aug. 15, when it is scheduled to fire its main engine and enter a comet-chasing orbit around the sun. The mission's flexible four-year plan includes encounters with comets Encke (Nov. 12, 2003) and Schwassmann-Wachmann 3 (June 19, 2006), though it can add an encounter with a "new" and scientifically valuable comet from the outer solar system, should one be discovered in time for CONTOUR to fly past it. CONTOUR's four scientific instruments will take detailed pictures and measure the chemical makeup of each comet's nucleus -- a chunk of ice and rock -- while analyzing the surrounding gas and dust.
The Complex Dynamics of Student Engagement in Novel Engineering Design Activities
NASA Astrophysics Data System (ADS)
McCormick, Mary
In engineering design, making sense of "messy," design situations is at the heart of the discipline (Schon, 1983); engineers in practice bring structure to design situations by organizing, negotiating, and coordinating multiple aspects (Bucciarelli, 1994; Stevens, Johri, & O'Connor, 2014). In classroom settings, however, students are more often given well-defined, content-focused engineering tasks (Jonassen, 2014). These tasks are based on the assumption that elementary students are unable to grapple with the complexity or open-endedness of engineering design (Crismond & Adams, 2012). The data I present in this dissertation suggest the opposite. I show that students are not only able to make sense of, or frame (Goffman, 1974), complex design situations, but that their framings dynamically involve their nascent abilities for engineering design. The context of this work is Novel Engineering, a larger research project that explores using children's literature as an access point for engineering design. Novel Engineering activities are inherently messy: there are characters with needs, settings with implicit constraints, and rich design situations. In a series of three studies, I show how students' framings of Novel Engineering design activities involve their reasoning and acting as beginning engineers. In the first study, I show two students whose caring for the story characters contributes to their stability in framing the task: they identify the needs of their fictional clients and iteratively design a solution to meet their clients' needs. In the second, I show how students' shifting and negotiating framings influence their engineering assumptions and evaluation criteria. In the third, I show how students' coordinating framings involve navigating a design process to meet clients' needs, classroom expectations, and technical requirements. Collectively, these studies contribute to literature by documenting students' productive beginnings in engineering design. The implications span research and practice, specifically targeting how we attend to and support students as they engage in engineering design.
Surface flow observations from a gauge-cam station on the Tiber river
NASA Astrophysics Data System (ADS)
Tauro, Flavia; Porfiri, Maurizio; Petroselli, Andrea; Grimaldi, Salvatore
2016-04-01
Understanding the kinematic organization of natural water bodies is central to hydrology and environmental engineering practice. Reliable and continuous flow observations are essential to comprehend flood generation and propagation mechanisms, erosion dynamics, sediment transport, and drainage network evolution. In engineering practice, flood warning systems largely rely on real-time discharge measurements, and flow velocity monitoring is important for the design and management of hydraulic structures, such as reservoirs and hydropower plants. Traditionally, gauging stations have been equipped with water level meters, and stage-discharge relationships (rating curves) have been established through few direct discharge measurements. Only in rare instances, monitoring stations have integrated radar technology for local measurement of surface flow velocity. Establishing accurate rating curves depends on the availability of a comprehensive range of discharge values, including measurements recorded during extreme events. However, discharge values during high-flow events are often difficult or even impossible to obtain, thereby hampering the reliability of discharge predictions. Fully remote observations have been enabled in the past ten years through optics-based velocimetry techniques. Such methodologies enable the estimation of the surface flow velocity field over extended regions from the motion of naturally occurring debris or floaters dragged by the current. Resting on the potential demonstrated by such approaches, here, we present a novel permanent gauge-cam station for the observation of the flow velocity field in the Tiber river. This new station captures one-minute videos every 10 minutes over an area of up to 20.6 × 15.5m2. In a feasibility study, we demonstrate that experimental images analyzed via particle tracking velocimetry and particle image velocimetry can be used to obtain accurate surface flow velocity estimations in close agreement with radar records. Future efforts will be devoted to the development of a comprehensive testbed infrastructure for investigating the potential of multiple optics-based approaches for surface hydrology.
Catalyst Development for Hydrogen Peroxide Rocket Engines
NASA Technical Reports Server (NTRS)
Morlan, P. W.; Wu, P.-K.; Ruttle, D. W.; Fuller, R. P.; Nejad, A. S.; Anderson, W. E.
1999-01-01
The development of various catalysts of hydrogen peroxide was conducted for the applications of liquid rocket engines. The catalyst development includes silver screen technology, solid catalyst technology, and homogeneous catalyst technology. The silver screen technology development was performed with 85% (by weight) hydrogen peroxide. The results of this investigation were used as the basis for the catalyst design of a pressure-fed liquid-fueled upper stage engine. Both silver-plated nickel 200 screens and pure silver screens were used as the active metal catalyst during the investigation, The data indicate that a high decomposition efficiency (greater than 90%) of 85% hydrogen peroxide can be achieved at a bed loading of 0.5 lbm/sq in/sec with both pure silver and silver plated screens. Samarium oxide coating, however, was found to retard the decomposition process and the catalyst bed was flooded at lower bed loading. A throughput of 200 lbm of hydrogen peroxide (1000 second run time) was tested to evaluate the catalyst aging issue and performance degradation was observed starting at approximately 400 seconds. Catalyst beds of 3.5 inch in diameter was fabricated using the same configuration for a 1,000-lbf rocket engine. High decomposition efficiency was obtained with a low pressure drop across the bed. Solid catalyst using precious metal was also developed for the decomposition of hydrogen peroxide from 85% to 98% by weight. Preliminary results show that the catalyst has a strong reactivity even after 15 minutes of peroxide decomposition. The development effort also includes the homogeneous catalyst technology. Various non-toxic catalysts were evaluated with 98% peroxide and hydrocarbon fuels. The results of open cup drop tests indicate an ignition delay around 11 ms.
NASA Astrophysics Data System (ADS)
Ishin, Artem; Voeykov, Sergey; Perevalova, Natalia; Khakhinov, Vitaliy
2017-12-01
As a part of the Plasma-Progress and Radar-Progress space experiments conducted from 2006 to 2014, effects of the Progress spacecraft engines on the ionosphere have been studied using data from Global Navigation Satellite System (GNSS) receivers. 72 experiments have been carried out. All these experiments were based on data from the International GNSS Service (IGS) to record ionospheric plasma irregularities caused by engine operation. 35 experiments used data from the ISTP SB RAS network SibNet. The analysis of the spatio-temporal structure of total electron content (TEC) variations has shown that the problem of identifying the TEC response to engine operation is complicated by a number of factors: 1) the engine effect on ionospheric plasma is strongly localized in space and has a relatively low intensity; 2) a small number of satellite-receiver radio rays due to the limited number of GNSS stations, particularly before 2013; 3) a potential TEC response is masked with background ionospheric disturbances of various intensities. However, TEC responses are identified with certainty when a satellite-receiver radio ray crosses a disturbed region within minutes after the impact. TEC responses have been registered in 7 experiments (10 % of cases). The amplitude of ionospheric response (0.3-0.16 TECU) exceeded the background TEC variations (~0.25 TECU) several times. The TEC data indicate that the ionospheric irregularity lifetime is from 4 to 10 minutes. According to the estimates we made, the transverse size of irregularities is from 12 to 30 km.
Computer Design Technology of the Small Thrust Rocket Engines Using CAE / CAD Systems
NASA Astrophysics Data System (ADS)
Ryzhkov, V.; Lapshin, E.
2018-01-01
The paper presents an algorithm for designing liquid small thrust rocket engine, the process of which consists of five aggregated stages with feedback. Three stages of the algorithm provide engineering support for design, and two stages - the actual engine design. A distinctive feature of the proposed approach is a deep study of the main technical solutions at the stage of engineering analysis and interaction with the created knowledge (data) base, which accelerates the process and provides enhanced design quality. The using multifunctional graphic package Siemens NX allows to obtain the final product -rocket engine and a set of design documentation in a fairly short time; the engine design does not require a long experimental development.
NASA Astrophysics Data System (ADS)
Yamada, Hirofumi; Ten-Nichi, Michio; Mathui, Hirosi; Nakamura, Akizi
This paper introduces a method of the engineering design education for college of technology mechanical engineering students. In order to teach the practical engineering design, the MIL-STD-499A process is adapted and improved upon for a Mechatronics hands-on lesson used as the MOT method. The educational results in five years indicate that knowledge of the engineering management is useful for college students in learning engineering design. Portfolio for lessons and the hypothesis method also have better effects on the understanding of the engineering specialty.
Chiou, Chei-Chang; Wang, Yu-Min; Lee, Li-Tze
2014-08-01
Statistical knowledge is widely used in academia; however, statistics teachers struggle with the issue of how to reduce students' statistics anxiety and enhance students' statistics learning. This study assesses the effectiveness of a "one-minute paper strategy" in reducing students' statistics-related anxiety and in improving students' statistics-related achievement. Participants were 77 undergraduates from two classes enrolled in applied statistics courses. An experiment was implemented according to a pretest/posttest comparison group design. The quasi-experimental design showed that the one-minute paper strategy significantly reduced students' statistics anxiety and improved students' statistics learning achievement. The strategy was a better instructional tool than the textbook exercise for reducing students' statistics anxiety and improving students' statistics achievement.
Construction of an Engineer's Notebook Rubric
ERIC Educational Resources Information Center
Kelley, Todd R.
2014-01-01
It is evident that there is a need for assessment instruments that measure design and engineering design skills, knowledge, and ways of design thinking. These student assessments must be authentic to engineering design practices and measure key elements of the engineering design process. Kelley (2011) presented a rationale to include…
The Effects of Professors' Race and Gender on Student Evaluations and Performance
ERIC Educational Resources Information Center
Basow, Susan A.; Codos, Stephanie; Martin, Julie L.
2013-01-01
This experimental study examined the effects of professor gender, professor race, and student gender on student ratings of teaching effectiveness and amount learned. After watching a three-minute engineering lecture presented by a computer-animated professor who varied by gender and race (African American, White), female and male undergraduates…
40 CFR 1051.805 - What symbols, acronyms, and abbreviations does this part use?
Code of Federal Regulations, 2012 CFR
2012-07-01
...—American Society for Testing and Materials. ATV—all-terrain vehicle. cc—cubic centimeters. CFR—Code of...—pounds per square inches of gauge pressure. rpm—revolutions per minute. SAE—Society of Automotive Engineers. SI—spark-ignition. THC—total hydrocarbon. THCE—total hydrocarbon equivalent. U.S.C.—United States...
40 CFR 1051.805 - What symbols, acronyms, and abbreviations does this part use?
Code of Federal Regulations, 2014 CFR
2014-07-01
...—American Society for Testing and Materials. ATV—all-terrain vehicle. cc—cubic centimeters. CFR—Code of...—pounds per square inches of gauge pressure. rpm—revolutions per minute. SAE—Society of Automotive Engineers. SI—spark-ignition. THC—total hydrocarbon. THCE—total hydrocarbon equivalent. U.S.C.—United States...
40 CFR 1051.805 - What symbols, acronyms, and abbreviations does this part use?
Code of Federal Regulations, 2013 CFR
2013-07-01
...—American Society for Testing and Materials. ATV—all-terrain vehicle. cc—cubic centimeters. CFR—Code of...—pounds per square inches of gauge pressure. rpm—revolutions per minute. SAE—Society of Automotive Engineers. SI—spark-ignition. THC—total hydrocarbon. THCE—total hydrocarbon equivalent. U.S.C.—United States...
30 CFR 36.45 - Quantity of ventilating air.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Quantity of ventilating air. 36.45 Section 36... TRANSPORTATION EQUIPMENT Test Requirements § 36.45 Quantity of ventilating air. (a) Results of the engine tests shall be used to calculate ventilation (cubic feet of air per minute) that shall be supplied by positive...
30 CFR 36.45 - Quantity of ventilating air.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Quantity of ventilating air. 36.45 Section 36... TRANSPORTATION EQUIPMENT Test Requirements § 36.45 Quantity of ventilating air. (a) Results of the engine tests shall be used to calculate ventilation (cubic feet of air per minute) that shall be supplied by positive...
30 CFR 36.45 - Quantity of ventilating air.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Quantity of ventilating air. 36.45 Section 36... TRANSPORTATION EQUIPMENT Test Requirements § 36.45 Quantity of ventilating air. (a) Results of the engine tests shall be used to calculate ventilation (cubic feet of air per minute) that shall be supplied by positive...
40 CFR 89.406 - Pre-test procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Pre-test procedures. 89.406 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.406 Pre-test procedures. (a) Allow a minimum of 30 minutes warmup in the standby or operating...
40 CFR 89.406 - Pre-test procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Pre-test procedures. 89.406 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.406 Pre-test procedures. (a) Allow a minimum of 30 minutes warmup in the standby or operating...
40 CFR 89.406 - Pre-test procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Pre-test procedures. 89.406 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.406 Pre-test procedures. (a) Allow a minimum of 30 minutes warmup in the standby or operating...
40 CFR 89.406 - Pre-test procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Pre-test procedures. 89.406 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.406 Pre-test procedures. (a) Allow a minimum of 30 minutes warmup in the standby or operating...
40 CFR 89.406 - Pre-test procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Pre-test procedures. 89.406 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.406 Pre-test procedures. (a) Allow a minimum of 30 minutes warmup in the standby or operating...
40 CFR 1066.845 - AC17 air conditioning efficiency test procedure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... solar heating is disabled for certain test intervals as described in this section. (d) Interior air... vehicle's windows and operate the vehicle over a preconditioning UDDS with no solar heating and with the... cooling fans. (3) Turn on solar heating within one minute after turning off the engine. Once the solar...
NASA Astrophysics Data System (ADS)
Sonoda, Jun; Yamaki, Kota
We develop an automatic Live Linux rebuilding system for science and engineering education, such as information processing education, numerical analysis and so on. Our system is enable to easily and automatically rebuild a customized Live Linux from a ISO image of Ubuntu, which is one of the Linux distribution. Also, it is easily possible to install/uninstall packages and to enable/disable init daemons. When we rebuild a Live Linux CD using our system, we show number of the operations is 8, and the rebuilding time is about 33 minutes on CD version and about 50 minutes on DVD version. Moreover, we have applied the rebuilded Live Linux CD in a class of information processing education in our college. As the results of a questionnaires survey from our 43 students who used the Live Linux CD, we obtain that the our Live Linux is useful for about 80 percents of students. From these results, we conclude that our system is able to easily and automatically rebuild a useful Live Linux in short time.
2013-11-20
VAN HORN, Texas – The sun sets over a test stand at Blue Origin’s West Texas facility. The company used this test stand to fire its powerful new hydrogen- and oxygen-fueled American rocket engine, the BE-3, on Nov. 20. The BE-3 fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett
Performance and Preference with Various VDT (Video Display Terminal) Phosphors
1987-04-24
Unit M\\100.001-1302. was submitted for review on 13 March 1987, approved for publication on 24 April 1987, and has been designated as Naval Submarine... designed to investigate reading fatigue, Nordqvist et al. (1986) had their subjects read texts for 15 minutes, followed by 5 minutes of performance tests...Doc, Ophthalmol. 3: 138-163. Tu-lis, T.S. (1981). An evaluation of alphanumeric, graphic , and color information displays. -_pman Factors 23: 541-550
Laursen, Esben Skov; Møller, Louise
2015-01-01
This paper describes a case study comparing the understanding of design intent between industrial designers and design engineers. The study is based on the hypothesis that it is not all aspects of the design intent that are equally difficult to share between industrial designers and design engineers in the product development process. The study builds on five semi-structured interviews, where two industrial designers and three design engineers were interviewed about different aspects of the design intent. Based on our results, there seem to be indications that the more complex and abstract elements of industrial design knowledge such as the meaning, semantics, values, emotions and social aspects of the product are less shared by the design engineers. Moreover, the results also indicate that the different aspects of the design intent are perceived separately, rather than as part of a whole by the design engineers. The connection between the different aspects of the design intent is not shared between the industrial designer and design engineer making the shared knowledge less meaningful to the design engineers. The results of this study cannot be claimed to be conclusive due to the limited empirical material. Further investigation and analytically richer data are required in order to verify and broaden the findings. More case studies have therefore been planned in order to understand the area better.
Design of a miniature hydrogen fueled gas turbine engine
NASA Technical Reports Server (NTRS)
Burnett, M.; Lopiccolo, R. C.; Simonson, M. R.; Serovy, G. K.; Okiishi, T. H.; Miller, M. J.; Sisto, F.
1973-01-01
The design, development, and delivery of a miniature hydrogen-fueled gas turbine engine are discussed. The engine was to be sized to approximate a scaled-down lift engine such as the teledyne CAE model 376. As a result, the engine design emerged as a 445N(100 lb.)-thrust engine flowing 0.86 kg (1.9 lbs.) air/sec. A 4-stage compressor was designed at a 4.0 to 1 pressure ratio for the above conditions. The compressor tip diameter was 9.14 cm (3.60 in.). To improve overall engine performance, another compressor with a 4.75 to 1 pressure ratio at the same tip diameter was designed. A matching turbine for each compressor was also designed. The turbine tip diameter was 10.16 cm (4.0 in.). A combustion chamber was designed, built, and tested for this engine. A preliminary design of the mechanical rotating parts also was completed and is discussed. Three exhaust nozzle designs are presented.
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
Engineering Design Handbook. Helicopter Engineering. Part One. Preliminary Design
1974-08-30
1.3 ENGINE REPLACEMENT .............. ......................... 8-1 8-1.4 ENGINE AIR INDUCTION SYSTEM .............................. 8-2 8-1.5 ENGINE ...8-5 8-2.2 ENGINE AIR INDUCTION SYSTEM .............................. 8-5 8-2.2.1 G eneral Design...8-5 8-2.2.2 Air Induction System Inlet Location ............................... 8-6 8-2.2.3 Engine Air Induction System Pressure Losses
Preschoolers' Cognitive Performance Improves Following Massage.
ERIC Educational Resources Information Center
Hart, Sybil; Field, Tiffany; Hernandez-Reif, Maria; Lundy, Brenda
1998-01-01
Effects of massage on preschoolers' cognitive performance were assessed. Preschoolers were given Wechsler Preschool and Primary Scale of Intelligence-Revised subtests before and after receiving 15-minute massage or spending 15 minutes reading stories with the experimenter. Children's performance on Block Design improved following massage, and…
Design of wearable health monitoring device
NASA Astrophysics Data System (ADS)
Devara, Kresna; Ramadhanty, Savira; Abuzairi, Tomy
2018-02-01
Wearable smart health monitoring devices have attracted considerable attention in both research community and industry. Some of the causes are the increasing healthcare costs, along with the growing technology. To address this demand, in this paper, design and evaluation of wearable health monitoring device integrated with smartphone were presented. This device was designed for patients in need of constant health monitoring. The performance of the proposed design has been tested by conducting measurement once in 2 minutes for 10 minutes to obtain heart rate and body temperature data. The comparation between data measured by the proposed device and that measured by the reference device yields only an average error of 1.45% for heart rate and 1.04% for body temperature.
Lizarraga, Ignacio; Castillo-Alcala, Fernanda; Varner, Kelley M; Robinson, Lauren S
2016-07-01
OBJECTIVE To compare sedative and mechanical hypoalgesic effects of sublingual administration of 2 doses of detomidine gel to donkeys. DESIGN Randomized blinded controlled trial. ANIMALS 6 healthy castrated male donkeys. PROCEDURES In a crossover study design, donkeys received each of the following sublingual treatments 1 week apart in a randomly assigned order: 1 mL of molasses (D0) or detomidine hydrochloride gel at 20 μg/kg (9 μg/lb; D20) or 40 μg/kg (18 μg/lb; D40). Sedation score (SS), head height above the ground (HHAG), and mechanical nociceptive threshold (MNT) were assessed before and for 180 minutes after treatment. Areas under the effect change-versus-time curves (AUCs) from 0 to 30, 30 to 60, 60 to 120, and 120 to 180 minutes after administration were computed for SS, HHAG, and MNT and compared among treatments. RESULTS D20 and D40 resulted in greater SS AUCs from 60 to 120 minutes and smaller HHAG AUCs from 30 through 180 minutes than did D0. The D40 resulted in smaller HHAG AUCs from 60 to 120 minutes than did D20. Compared with D0 values, MNT AUCs from 60 to 120 minutes were higher for D20, whereas MNT AUCs from 30 through 180 minutes were higher for D40. CONCLUSIONS AND CLINICAL RELEVANCE D20 and D40 induced sedation and mechanical hypoalgesia in donkeys by > 30 minutes after administration, but only sedation was dose dependent. Sublingual administration of detomidine gel at 40 μg/kg may be useful for sedation of standing donkeys prior to potentially painful minor procedures.
Engine Development Design Margins Briefing Charts
NASA Technical Reports Server (NTRS)
Bentz, Chuck
2006-01-01
New engines experience durability problems after entering service. The most prevalent and costly is the hot section, particularly the high-pressure turbine. The origin of durability problems can be traced back to: 1) the basic aero-mechanical design systems, assumptions, and design margins used by the engine designers, 2) the available materials systems, and 3) to a large extent, aggressive marketing in a highly competitive environment that pushes engine components beyond the demonstrated capability of the basic technology available for the hardware designs. Unfortunately the user must operate the engine in the service environment in order to learn the actual thrust loading and the time at max effort take-off conditions used in service are needed to determine the hot section life. Several hundred thousand hours of operational service will be required before the demonstrated reliability of a fleet of engines or the design deficiencies of the engine hot section parts can be determined. Also, it may take three to four engine shop visits for heavy maintenance on the gas path hardware to establish cost effective build standards. Spare parts drive the oerator's engine maintenance costs but spare parts also makes lots of money for the engine manufacturer during the service life of an engine. Unless competition prevails for follow-on engine buys, there is really no motivation for an OEM to spend internal money to improve parts durability and reduce earnings derived from a lucrative spare parts business. If the hot section life is below design goals or promised values, the OEM migh argue that the engine is being operated beyond its basic design intent. On the other hand, the airframer and the operator will continue to remind the OEM that his engine was selected based on a lot of promises to deliver spec thrust with little impact on engine service life if higher thrust is used intermittently. In the end, a standoff prevails and nothing gets fixed. This briefing will propose ways to hold competing engine manufacturers more accountable for engine hot section design margins during the entire Engine Development process as well as provide tools to assess the design temperature margins in the hot section parts of Service Engines.
Ultrasonics and space instrumentation
NASA Technical Reports Server (NTRS)
1987-01-01
The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.
SPHINX Satellite Testing in the Electric Propulsion Laboratory
1973-12-21
Researchers examine the Space Plasma-High Voltage Interaction Experiment (SPHINX) satellite in the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis’ Spacecraft Technology Division designed SPHINX to study the electrical interaction of its experimental surfaces with space plasma. They sought to determine if higher orbits would improve the transmission quality of communications satellites. Robert Lovell, the Project Manager, oversaw vibrational and plasma simulation testing of the satellite in the Electric Propulsion Laboratory, seen here. SPHINX was an add-on payload for the first Titan/Centaur proof launch in early 1974. Lewis successfully managed the Centaur Program since 1962, but this would be the first Centaur launch with a Titan booster. Since the proof test did not have a scheduled payload, the Lewis-designed SPHINX received a free ride. The February 11, 1974 launch, however, proved to be one of the Launch Vehicle Division’s lowest days. Twelve minutes after the vehicle departed the launch pad, the booster and Centaur separated as designed, but Centaur’s two RL-10 engines failed to ignite. The launch pad safety officer destroyed the vehicle, and SPHINX never made it into orbit. Overall Centaur has an excellent success rate, but the failed SPHINX launch attempt caused deep disappointment across the center.
Orbit transfer vehicle advanced expander cycle engine point design study. Volume 2: Study results
NASA Technical Reports Server (NTRS)
Diem, H. G.
1980-01-01
The design characteristics of the baseline engine configuration of the advanced expander cycle engine are described. Several aspects of engine optimization are considered which directly impact the design of the baseline thrust chamber. Four major areas of the power cycle optimization are emphasized: main turbine arrangement; cycle engine source; high pressure pump design; and boost pump drive.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Training Auditorium, astronaut Mike Foale speaks to the audience about his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.
SSC_NASA Tests Upgraded Water System for the B-2 Test Stand - Highlights with Music
2017-12-04
On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.
NASA Tests Upgraded Water System for Stennis Space Center's B-2 Test Stand
2017-12-04
On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.
Shedding Light on Engineering Design
ERIC Educational Resources Information Center
Capobianco, Brenda M.; Nyquist, Chell; Tyrie, Nancy
2013-01-01
This article describes the steps incorporated to teach an engineering design process in a fifth-grade science classroom. The engineering design-based activity was an existing scientific inquiry activity using UV light--detecting beads and purposefully creating a series of engineering design-based challenges around the investigation. The…
A low cost, low power, S-band radar for atmospheric turbulence studies
NASA Astrophysics Data System (ADS)
Farrell, Thomas C.
2015-05-01
We present a frequency modulated continuous wave (FMCW) radar capable of measuring atmospheric turbulence profiles within the Earth's surface layer. Due to the low cost and easily automated design, a number of units may be built and deployed to sites of interest around the world. Each unit would be capable of collecting turbulence strength, as a function of altitude, with a range of about 50 meters above the antenna plane. Such data is valuable to developers of directed energy, laser communications, imaging, and other optical systems, where good engineering design is based on an understanding of the details of the turbulence in which those systems will have to operate. The radar is based on the MIT "coffee can" design1,2. It is FCC compliant, operating in the 2.4 GHz instrumentation, science, and medical (ISM) band with less than 1 watt effective isotropic radiated power (EIRP). It is expected to cost less than $1000 per unit and is built from commercial off the shelf parts, along with easily constructed horn antennas. Major modifications to the design in 1,2 are the inclusion of horn antennas for directivity, and a straight forward processing software change that increases integration times to the order of tens of seconds to a minute. Here, a prototype system is described and preliminary data is presented.
High-Melt Carbon-Carbon Coating for Nozzle Extensions
NASA Technical Reports Server (NTRS)
Thompson, James
2015-01-01
Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.
Wireless just-in-time training of mobile skilled support personnel
NASA Astrophysics Data System (ADS)
Bandera, Cesar; Marsico, Michael; Rosen, Mitchel; Schlegel, Barry
2006-05-01
Skilled Support Personnel (SSP) serve emergency response organizations during an emergency incident, and include laborers, operating engineers, carpenters, ironworkers, sanitation workers and utility workers. SSP called to an emergency incident rarely have recent detailed training on the chemical, biological, radiological, nuclear and/or explosives (CBRNE) agents or the personal protection equipment (PPE) relevant to the incident. This increases personal risk to the SSP and mission risk at the incident site. Training for SSP has been identified as a critical need by the National Institute for Environmental Health Sciences, Worker Education and Training Program. We present a system being developed to address this SSP training shortfall by exploiting a new training paradigm called just-in-time training (JITT) made possible by advances in distance learning and cellular telephony. In addition to the current conventional training at regularly scheduled instructional events, SSP called to an emergency incident will have secure access to short (<5 minutes) training modules specific to the incident and derived from the Occupational Safety and Health Administration (OSHA) Disaster Site Worker Course. To increase retention, each learning module incorporates audio, video, interactive simulations, graphics, animation, and assessment designed for the user interface of most current cell phones. Engineering challenges include compatibility with current cell phone technologies and wireless service providers, integration with the incident management system, and SCORM compliance.
Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-03-01
A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.
Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-01-01
A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.
Anesthetic efficacy of a repeated intraosseous injection following a primary intraosseous injection.
Jensen, Joanne; Nusstein, John; Drum, Melissa; Reader, Al; Beck, Mike
2008-02-01
The purpose of this prospective, randomized, single-blinded study was to determine the anesthetic efficacy of a repeated intraosseous injection given 30 minutes after a primary intraosseous injection. Using a crossover design, 55 subjects randomly received a primary X-tip intraosseous injection (Dentsply Inc, York, PA) of 1.4 mL of 2% lidocaine with epinephrine (using the Wand; Milestone Scientific, Deerfield, IL) and a repeated intraosseous or mock injection at 30 minutes in two appointments. The first molar and adjacent teeth were pulp tested every 2 minutes for a total of 120 minutes. Success was defined as obtaining two consecutive 80 readings with the electric pulp tester. Success of the initial intraosseous injection was 100% for the first molar. The repeated intraosseous injection mimicked the initial intraosseous injection in terms of pulpal anesthesia and statistically provided another 15 minutes of pulpal anesthesia. In conclusion, using the methodology presented, repeating the intraosseous injection 30 minutes after an initial intraosseous injection will provide an additional 15 minutes of pulpal anesthesia.
Węgrzynowska-Teodorczyk, Kinga; Mozdzanowska, Dagmara; Josiak, Krystian; Siennicka, Agnieszka; Nowakowska, Katarzyna; Banasiak, Waldemar; Jankowska, Ewa A; Ponikowski, Piotr; Woźniewski, Marek
2016-08-01
The consequence of exercise intolerance for patients with heart failure is the difficulty climbing stairs. The two-minute step test is a test that reflects the activity of climbing stairs. The aim of the study design is to evaluate the applicability of the two-minute step test in an assessment of exercise tolerance in patients with heart failure and the association between the six-minute walk test and the two-minute step test. Participants in this study were 168 men with systolic heart failure (New York Heart Association (NYHA) class I-IV). In the study we used the two-minute step test, the six-minute walk test, the cardiopulmonary exercise test and isometric dynamometer armchair. Patients who performed more steps during the two-minute step test covered a longer distance during the six-minute walk test (r = 0.45). The quadriceps strength was correlated with the two-minute step test and the six-minute walk test (r = 0.61 and r = 0.48). The greater number of steps performed during the two-minute step test was associated with higher values of peak oxygen consumption (r = 0.33), ventilatory response to exercise slope (r = -0.17) and longer time of exercise during the cardiopulmonary exercise test (r = 0.34). Fatigue and leg fatigue were greater after the two-minute step test than the six-minute walk test whereas dyspnoea and blood pressure responses were similar. The two-minute step test is well tolerated by patients with heart failure and may thus be considered as an alternative for the six-minute walk test. © The European Society of Cardiology 2016.
Bright x-ray flares in gamma-ray burst afterglows.
Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N
2005-09-16
Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.
2012-09-05
ISS032-E-025275 (5 Sept. 2012) --- NASA astronaut Sunita Williams, Expedition 32 flight engineer, appears to touch the bright sun during the mission?s third session of extravehicular activity (EVA). During the six-hour, 28-minute spacewalk, Williams and Japan Aerospace Exploration Agency astronaut Aki Hoshide (visible in the reflections of Williams? helmet visor), flight engineer, completed the installation of a Main Bus Switching Unit (MBSU) that was hampered last week by a possible misalignment and damaged threads where a bolt must be placed. They also installed a camera on the International Space Station?s robotic arm, Canadarm2.
Table-Top Robotics for Engineering Design
ERIC Educational Resources Information Center
Wilczynski, Vincent; Dixon, Gregg; Ford, Eric
2005-01-01
The Mechanical Engineering Section at the U.S. Coast Guard Academy has developed a comprehensive activity based course to introduce second year students to mechanical engineering design. The culminating design activity for the course requires students to design, construct and test robotic devices that complete engineering challenges. Teams of…
77 FR 53802 - Procurement, Management, and Administration of Engineering and Design Related Services
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
...-2012-0043] RIN 2125-AF44 Procurement, Management, and Administration of Engineering and Design Related... regulations governing the procurement, management, and administration of engineering and design related... . Background The FHWA proposes to modify existing regulations for the administration of engineering and design...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2014 CFR
2014-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
NASA Astrophysics Data System (ADS)
Kaźmierczak, Bartosz; Wartalska, Katarzyna; Wdowikowski, Marcin; Kotowski, Andrzej
2017-11-01
Modern scientific research in the area of heavy rainfall analysis regarding to the sewerage design indicates the need to develop and use probabilistic rain models. One of the issues that remains to be resolved is the length of the shortest amount of rain to be analyzed. It is commonly believed that the best time is 5 minutes, while the least rain duration measured by the national services is often 10 or even 15 minutes. Main aim of this paper is to present the difference between probabilistic rainfall models results given from rainfall time series including and excluding 5 minutes rainfall duration. Analysis were made for long-time period from 1961-2010 on polish meteorological station Legnica. To develop best fitted to measurement rainfall data probabilistic model 4 probabilistic distributions were used. Results clearly indicates that models including 5 minutes rainfall duration remains more appropriate to use.
NASA Astrophysics Data System (ADS)
Nor, N. F. M.; Hafidzal, M. H. M.; Shamsuddin, S. A.; Ismail, M. S.; Hashim, A. H.
2015-05-01
The use of nonedible oil as a feedstock is needed to replace edible oil as an alternative fuel for diesel engine. This nonedible oils in diesel engine however leads to low performance and higher emission due to its high viscosity. The characteristics of the fuel can be improved through transesterification process. The yield of biodiesel from Jatropha oil using potassium hydroxide catalyst concentration of 1%, reaction temperature 60°C, reaction time 40 minutes and molar ratio methanol to oil 6:1 was 70.1% from the lab scale. The experimental study on the performances and emissions of a diesel engine is carried out using the Jatropha biodiesel produced from the transesterification process and compared with pure diesel. Results show that B20 has closer performance to diesel and lower emission compared to B5 and diesel in terms of CO2 and HC.
Real-time earthquake monitoring using a search engine method.
Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong
2014-12-04
When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake's parameters in <1 s after receiving the long-period surface wave data.
Real-time earthquake monitoring using a search engine method
Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong
2014-01-01
When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake’s parameters in <1 s after receiving the long-period surface wave data. PMID:25472861
Rocket Engine Innovations Advance Clean Energy
NASA Technical Reports Server (NTRS)
2012-01-01
During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.
Interactive-graphic flowpath plotting for turbine engines
NASA Technical Reports Server (NTRS)
Corban, R. R.
1981-01-01
An engine cycle program capable of simulating the design and off-design performance of arbitrary turbine engines, and a computer code which, when used in conjunction with the cycle code, can predict the weight of the engines are described. A graphics subroutine was added to the code to enable the engineer to visualize the designed engine with more clarity by producing an overall view of the designed engine for output on a graphics device using IBM-370 graphics subroutines. In addition, with the engine drawn on a graphics screen, the program allows for the interactive user to make changes to the inputs to the code for the engine to be redrawn and reweighed. These improvements allow better use of the code in conjunction with the engine program.
Green engineering education through a U.S. EPA/academia collaboration.
Shonnard, David R; Allen, David T; Nguyen, Nhan; Austin, Sharon Weil; Hesketh, Robert
2003-12-01
The need to use resources efficiently and reduce environmental impacts of industrial products and processes is becoming increasingly important in engineering design; therefore, green engineering principles are gaining prominence within engineering education. This paper describes a general framework for incorporating green engineering design principles into engineering curricula, with specific examples for chemical engineering. The framework for teaching green engineering discussed in this paper mirrors the 12 Principles of Green Engineering proposed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), especially in methods for estimating the hazardous nature of chemicals, strategies for pollution prevention, and approaches leading to efficient energy and material utilization. The key elements in green engineering education, which enlarge the "box" for engineering design, are environmental literacy, environmentally conscious design, and beyond-the-plant boundary considerations.
Floares, Alexandru George
2008-01-01
Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.
System Engineering of Autonomous Space Vehicles
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis
2014-01-01
Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.
Han, Rui; Geng, Chengkui; Wang, Yongnian; Wei, Lei
2008-01-01
The objective of this research was to induce a new animal model of osteonecrosis of the femoral head (ONFH) by microwave heating and then repair with tissue engineered bone. The bilateral femoral heads of 84 rabbits were heated by microwave at various temperatures. Tissue engineered bone was used to repair the osteonecrosis of femoral heads induced by microwave heating. The roentgenographic and histological examinations were used to evaluate the results. The femoral heads heated at 55°C for ten minutes showed low density and cystic changes in X-ray photographs, osteonecrosis and repair occurred simultaneously in histology at four and eight weeks, and 69% femoral heads collapsed at 12 weeks. The ability of tissue engineered bone to repair the osteonecrosis was close to that of cancellous bone autograft. The new animal model of ONFH could be induced by microwave heating, and the tissue engineering technique will provide an effective treatment. PMID:18956184
ERIC Educational Resources Information Center
Atman, Cindy; Kilgore, Deborah; McKenna, Ann
2009-01-01
This analysis, that utilizes data from part of the Academic Pathways Study (APS) of the Center for the Advancement of Engineering Education (CAEE), found that as a result of taking a course in engineering design and/or studying engineering for four years, students acquire engineering design language that is common to a larger community of practice…
Easy method of matching fighter engine to airframe for use in aircraft engine design courses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattingly, J.D.
1989-01-01
The proper match of the engine(s) to the airframe affects both aircraft size and life cycle cost. A fast and straightforward method is developed and used for the matching of fighter engine(s) to airframes during conceptual design. A thrust-lapse equation is developed for the dual-spool, mixed-flow, afterburning turbofan type of engine based on the installation losses of 'Aircraft Engine Design' and the performance predictions of the cycle analysis programs ONX and OFFX. Using system performance requirements, the effects of aircraft thrust-to-weight, wing loading, and engine cycle on takeoff weight are analyzed and example design course results presented. 5 refs.
Mechanical Engineering Senior Design Project Final Presentations | College
Mechanical Engineering Senior Design Project Final Presentations December 7, 2015 Mechanical Engineering On Wednesday, Dec. 9th, the mechanical engineering senior design project final presentations will be made in and Steven Keller Objective: Design a temperature controlled unit that would cool and maintain a
Introducing Engineering Design through an Intelligent Rube Goldberg Implementation
ERIC Educational Resources Information Center
Acharya, Sushil; Sirinterlikci, Arif
2010-01-01
Engineering students need a head start on designing a component, a process, or a system early in their educational endeavors, and engineering design topics need to be introduced appropriately without negatively affecting students' motivation for engineering. In ENGR1010 at Robert Morris University, freshmen engineering students are introduced to…
Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA
ERIC Educational Resources Information Center
Chabalengula, Vivien M.; Mumba, Frackson
2017-01-01
The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, R.; Jones, J. M.
2006-07-01
With the renewed interest in nuclear power and the possibility of constructing new reactors within the next decade in the U.S., there are several challenges for the regulators, designers, and vendors. One challenge is to ensure that Human Factors Engineering (HFE) is involved, and correctly applied in the life-cycle design of the Nuclear Power Plant (NPP). As an important part of the effort, people would ask: 'is the system-design engineer effectively incorporating HFE in the NPPs design?' The present study examines the sagacity of Instrumentation and Control design engineers on issues relating to awareness, attitude, and application of HFE inmore » NPP design. A questionnaire was developed and distributed, focusing on the perceptions and attitudes of the design engineers. The responses revealed that, while the participants had a relatively high positive attitude about HFE, their awareness and application of HFE were moderate. The results also showed that senior engineers applied HFE more frequently in their design work than young engineers. This study provides some preliminary results and implications for improved HFE education and application in NPP design. (authors)« less
Rethinking the Systems Engineering Process in Light of Design Thinking
2016-04-30
systems engineering process models (Blanchard & Fabrycky, 1990) and the majority of engineering design education (Dym et al., 2005). The waterfall model ...Engineering Career Competency Model Clifford Whitcomb, Systems Engineering Professor, NPS Corina White, Systems Engineering Research Associate, NPS...Postgraduate School (NPS) in Monterey, CA. He teaches and conducts research in the design of enterprise systems, systems modeling , and system
The common engine concept for ALS application - A cost reduction approach
NASA Technical Reports Server (NTRS)
Bair, E. K.; Schindler, C. M.
1989-01-01
Future launch systems require the application of propulsion systems which have been designed and developed to meet mission model needs while providing high degrees of reliability and cost effectiveness. Vehicle configurations which utilize different propellant combinations for booster and core stages can benefit from a common engine approach where a single engine design can be configured to operate on either set of propellants and thus serve as either a booster or core engine. Engine design concepts and mission application for a vehicle employing a common engine are discussed. Engine program cost estimates were made and cost savings, over the design and development of two unique engines, estimated.
Stirling engine design manual, 2nd edition
NASA Technical Reports Server (NTRS)
Martini, W. R.
1983-01-01
This manual is intended to serve as an introduction to Stirling cycle heat engines, as a key to the available literature on Stirling engines and to identify nonproprietary Stirling engine design methodologies. Two different fully described Stirling engines are discussed. Engine design methods are categorized as first order, second order, and third order with increased order number indicating increased complexity. FORTRAN programs are listed for both an isothermal second order design program and an adiabatic second order design program. Third order methods are explained and enumerated. In this second edition of the manual the references are updated. A revised personal and corporate author index is given and an expanded directory lists over 80 individuals and companies active in Stirling engines.
Clements, Julie M.; Casa, Douglas J.; Knight, J. Chad; McClung, Joseph M.; Blake, Alan S.; Meenen, Paula M.; Gilmer, Allison M.; Caldwell, Kellie A.
2002-01-01
Objective: To assess whether ice-water immersion or cold-water immersion is the more effective treatment for rapidly cooling hyperthermic runners. Design and Setting: 17 heat-acclimated highly trained distance runners (age = 28 ± 2 years, height = 180 ± 2 cm, weight = 68.5 ± 2.1 kg, body fat = 11.2 ± 1.3%, training volume = 89 ± 10 km/wk) completed a hilly trail run (approximately 19 km and 86 minutes) in the heat (wet-bulb globe temperature = 27 ± 1°C) at an individually selected “comfortable” pace on 3 occasions 1 week apart. The random, crossover design included (1) distance run, then 12 minutes of ice-water immersion (5.15 ± 0.20°C), (2) distance run, then 12 minutes of cold-water immersion (14.03 ± 0.28°C), or (3) distance run, then 12 minutes of mock immersion (no water, air temperature = 28.88 ± 0.76°C). Measurements: Each subject was immersed from the shoulders to the hip joints for 12 minutes in a tub. Three minutes elapsed between the distance run and the start of immersion. Rectal temperature was recorded at the start of immersion, at each minute of immersion, and 3, 6, 10, and 15 minutes postimmersion. No rehydration occurred during any trial. Results: Length of distance run, time to complete distance run, rectal temperature, and percentage of dehydration after distance run were similar (P > .05) among all trials, as was the wet-bulb globe temperature. No differences (P > .05) for cooling rates were found when comparing ice-water immersion, cold-water immersion, and mock immersion at the start of immersion to 4 minutes, 4 to 8 minutes, and the start of immersion to 8 minutes. Ice-water immersion and cold-water immersion cooling rates were similar (P > .05) to each other and greater (P < .05) than mock immersion at 8 to 12 minutes, the start of immersion to 10 minutes, and the start of immersion to every other time point thereafter. Rectal temperatures were similar (P > .05) between ice-water immersion and cold-water immersion at the completion of immersion and 15 minutes postimmersion, but ice-water immersion rectal temperatures were less (P < .05) than cold-water immersion at 6 and 10 minutes postimmersion. Conclusions: Cooling rates were nearly identical between ice-water immersion and cold-water immersion, while both were 38% more effective in cooling after 12 minutes of immersion than the mock-immersion trial. Given the similarities in cooling rates and rectal temperatures between ice-water immersion and cold-water immersion, either mode of cooling is recommended for treating the hyperthermic individual. PMID:12937427
Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701
NASA Technical Reports Server (NTRS)
1974-01-01
A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.
Engineering Design vs. Artistic Design: Some Educational Consequences
ERIC Educational Resources Information Center
Eder, Wolfgang Ernst
2013-01-01
"Design" can be a noun, or a verb. Six paths for research into engineering design (as verb) are identified, they must be coordinated for internal consistency and plausibility. Design research tries to clarify design processes and their underlying theories--for designing in general, and for particular forms, e.g., design engineering. Theories are a…
Concept Maps for Evaluating Learning of Sustainable Development
ERIC Educational Resources Information Center
Shallcross, David C.
2016-01-01
Concept maps are used to assess student and cohort learning of sustainable development. The concept maps of 732 first-year engineering students were individually analyzed to detect patterns of learning and areas that were not well understood. Students were given 20 minutes each to prepare a concept map of at least 20 concepts using paper and pen.…
Expedition Two's Jim Voss looks through the PMA2 window minutes before the STS-100 ingress
2001-04-23
STS100-E-5283 (23 April 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, peers into the Pressurized Mating Adapter (PMA-2) prior to hatch opening. The picture was taken with a digital still camera by one of the STS-100 crew members in the PMA. Photo credit: NASA
Code of Federal Regulations, 2010 CFR
2010-07-01
... qualifying shall be a 1.4 kg (3.0 lbs) capacity orifice tube/accumulator system in a 2005 Chevrolet Suburban... engine/system operation for up to 15 minutes, up to 2000 rpm. 1. You must start with an empty system...
40 CFR 86.339-79 - Pre-test procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Pre-test procedures. 86.339-79 Section... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.339-79 Pre-test procedures. (a) Allow a minimum of 30 minutes warm-up in the stand-by or operating mode prior...
40 CFR 86.339-79 - Pre-test procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Pre-test procedures. 86.339-79 Section... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.339-79 Pre-test procedures. (a) Allow a minimum of 30 minutes warm-up in the stand-by or operating mode prior...
40 CFR 86.339-79 - Pre-test procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Pre-test procedures. 86.339-79 Section... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.339-79 Pre-test procedures. (a) Allow a minimum of 30 minutes warm-up in the stand-by or operating mode prior...
40 CFR 86.339-79 - Pre-test procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Pre-test procedures. 86.339-79 Section... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.339-79 Pre-test procedures. (a) Allow a minimum of 30 minutes warm-up in the stand-by or operating mode prior...
America's Space Program: Exploring a New Frontier. Teaching with Historic Places.
ERIC Educational Resources Information Center
Koman, Rita G.
Several hundred thousand people converged on the Kennedy Space Center (Florida) on July 16, 1969, to view the launch of the "Saturn V" rocket that would propel "Apollo 11" to the moon. The engineers and technicians watching their computer screens may secretly have kept their fingers crossed, but at two minutes before launch, a…
Potential of Spark Ignition Engine : Engine Design Concepts
DOT National Transportation Integrated Search
1980-03-01
This report provides a review and assessment of potential improvements in fuel economy for a selected number of spark ignition engine design technologies for passenger cars and light trucks. The engine design technologies examined include: : a) optim...
Evolutionary engineering for industrial microbiology.
Vanee, Niti; Fisher, Adam B; Fong, Stephen S
2012-01-01
Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.
Optimal Solution for an Engineering Applications Using Modified Artificial Immune System
NASA Astrophysics Data System (ADS)
Padmanabhan, S.; Chandrasekaran, M.; Ganesan, S.; patan, Mahamed Naveed Khan; Navakanth, Polina
2017-03-01
An Engineering optimization leads a essential role in several engineering application areas like process design, product design, re-engineering and new product development, etc. In engineering, an awfully best answer is achieved by comparison to some completely different solutions by utilization previous downside information. An optimization algorithms provide systematic associate degreed economical ways that within which of constructing and comparison new design solutions so on understand at best vogue, thus on best solution efficiency and acquire the foremost wonderful design impact. In this paper, a new evolutionary based Modified Artificial Immune System (MAIS) algorithm used to optimize an engineering application of gear drive design. The results are compared with existing design.
The Engineering Design Process: Conceptions Along the Learning-to-Teach Continuum
NASA Astrophysics Data System (ADS)
Iveland, Ashley
In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering education. Additionally, I reviewed literature on the methods used in teaching engineering design at the secondary (grade 7-12) level - to describe the various models used in classrooms, even before the implementation of the Next Generation Science Standards (NGSS Lead States, 2013). Last, I defined four groups along the learning-to-teach continuum: prospective, preservice, and practicing teachers, as well as teacher educators. The context of this study centered around a California public university, including an internship program where undergraduates engaged with practicing mentor teachers in science and engineering teaching at local high schools, and a teacher education program where secondary science preservice teachers and the teacher educators who taught them participated. Interviews were conducted with all participants to gain insights into their views and understandings of engineering design. Prospective and preservice teachers were interviewed multiple times throughout the year and completed concept maps of the engineering design process multiple times as well; practicing teachers and teacher educators were interviewed once. Three levels of analyses were conducted. I identified 30 aspects of engineering discussed by participants. Through phenomenographic methods, I also constructed six conceptual categories for engineering design to organize those aspects most commonly discussed. These categories were combined to demonstrate a participant's view of engineering design (e.g., business focused, human centered, creative, etc.) as well as their complexity of understanding of engineering design overall (the more categories their ideas fit within, the more complex their understanding was thought to be). I found that the most commonly referenced aspects of engineering design were in line with the three main dimensions described in the Next Generation Science Standards (NGSS Lead States, 2013). I also found that the practicing teacher participants overall conveyed the most complex and integrated understandings of engineering design, with the undergraduate, prospective teachers not far behind. One of the most important factors related to a more integrated understanding of engineering design was having formal engineering experience, especially in the form of conducting engineering research or having been a professional engineer. Further, I found that female participants were more likely than their male counterparts to view engineering as having a human element--recognizing the need to collaborate with others throughout the process and the need to think about the potential user of the product the engineer is solving the problem for. These findings suggest that prior experience with engineering, and not experience in the classroom or with engineering education, tends to lead to a deeper, more authentic view of engineering. Finally, I close with a discussion of the overall findings, limitations of the study, potential implications, and future work.
Unified Engineering Software System
NASA Technical Reports Server (NTRS)
Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.
1989-01-01
Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.
NASA Technical Reports Server (NTRS)
Crowe, Kathryn; Williams, Michael
2015-01-01
Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space Shuttle. The test plan for the integrated core stage was broken down into several segments: Component testing, system level testing, and element level testing. In this context, components are items such as valves, controllers, sensors, etc. Systems are items such as an entire engine, a tank, or the outer stage body. The core stage itself is considered to be an element. The rocket engines are also considered an element. At the program level, it was decided to perform a single green run test on the integrated core stage prior to shipment of it to Kennedy Space Center (KSC) for use in the EM-1 test flight of the SLS vehicle. A green run test is the first live fire of the new integrated core stage and engine elements - without boosters of course. The SLS Program had to decide where to perform SLS green run testing.
Energy Efficient Engine: Control system component performance report
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Bennett, G. W.
1984-01-01
An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.
NASA Astrophysics Data System (ADS)
Goncher, Andrea M.
thResearch on engineering design is a core area of concern within engineering education, and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. This dissertation contributes to scholarship on engineering design by addressing a critical, but as yet underexplored, problem: how does the context in which students design shape their design practices? Using a qualitative study comprising of video data of design sessions, focus group interviews with students, and archives of their design work, this research explored how design decisions and actions are shaped by context, specifically the context of higher education. To develop a theoretical explanation for observed behavior, this study used the nested structuration. framework proposed by Perlow, Gittell, & Katz (2004). This framework explicated how teamwork is shaped by mutually reinforcing relationships at the individual, organizational, and institutional levels. I appropriated this framework to look specifically at how engineering students working on a course-related design project identify constraints that guide their design and how these constraints emerge as students interact while working on the project. I first identified and characterized the parameters associated with the design project from the student perspective and then, through multi-case studies of four design teams, I looked at the role these parameters play in student design practices. This qualitative investigation of first-year engineering student design teams revealed mutual and interconnected relationships between students and the organizations and institutions that they are a part of. In addition to contributing to research on engineering design, this work provides guidelines and practices to help design educators develop more effective design projects by incorporating constraints that enable effective design and learning. Moreover, I found that when appropriated in the context of higher education, multiple sublevels existed within nested structuration's organizational context and included course-level and project-level factors. The implications of this research can be used to improve the design of engineering course projects as well as the design of research efforts related to design in engineering education.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Koenig, R. W.
1972-01-01
A computer program which calculates steady-state design and off-design jet engine performance for two- or three-spool turbofans with one, two, or three nozzles is described. Included in the report are complete FORTRAN 4 listings of the program with sample results for nine basic turbofan engines that can be calculated: (1) three-spool, three-stream engine; (2) two-spool, three-stream, boosted-fan engine; (3) two-spool, three-stream, supercharged-compressor engine; (4) three-spool, two-stream engine; (5) two-spool, two-stream engine; (6) three-spool, three-stream, aft-fan engine; (7) two-spool, three-stream, aft-fan engine; (8) two-spool, two-stream, aft-engine; and (9) three-spool, two-stream, aft-fan engine. The simulation of other engines by using logical variables built into the program is also described.
Code of Federal Regulations, 2014 CFR
2014-01-01
... series, displacement, and design characteristics and are approved under the same type certificate... engines. Class TF means all turbofan or turbojet aircraft engines or aircraft engines designed for... turbine engines employed for propulsion of aircraft designed to operate at supersonic flight speeds...
Code of Federal Regulations, 2013 CFR
2013-01-01
... series, displacement, and design characteristics and are approved under the same type certificate... engines. Class TF means all turbofan or turbojet aircraft engines or aircraft engines designed for... turbine engines employed for propulsion of aircraft designed to operate at supersonic flight speeds...
ERIC Educational Resources Information Center
Smith, David R.; Cole, Joanne
2012-01-01
The School of Engineering and Design Multidisciplinary Project (MDP) at Brunel University is a one week long project based activity involving first year undergraduate students from across the School subject areas of Electronic and Computer Engineering, Mechanical Engineering, Civil Engineering and Design. This paper describes the main aims of the…
Brittin, Jeri; Frerichs, Leah; Sirard, John R; Wells, Nancy M; Myers, Beth M; Garcia, Jeanette; Sorensen, Dina; Trowbridge, Matthew J; Huang, Terry
2017-01-01
Children spend a significant portion of their days in sedentary behavior (SB) and on average fail to engage in adequate physical activity (PA). The school built environment may influence SB and PA, but research is limited. This natural experiment evaluated whether an elementary school designed to promote movement impacted students' school-time SB and PA. Accelerometers measured SB and PA at pre and post time-points in an intervention group who moved to the new school (n = 21) and in a comparison group experiencing no school environmental change (n = 20). Difference-in-difference (DD) analysis examined SB and PA outcomes in these groups. Measures were also collected post-intervention from an independent, grade-matched group of students in the new school (n = 21). As expected, maturational increases in SB were observed. However, DD analysis estimated that the intervention attenuated increase in SB by 81.2 ± 11.4 minutes/day (p<0.001), controlling for time in moderate to vigorous physical activity (MVPA). The intervention was also estimated to increase daily number of breaks from SB by 23.4 ± 2.6 (p < .001) and to increase light physical activity (LPA) by 67.7 ± 10.7 minutes/day (p<0.001). However, the intervention decreased MVPA by 10.3 ± 2.3 minutes/day (p<0.001). Results of grade-matched independent samples analysis were similar, with students in the new vs. old school spending 90.5 ± 16.1 fewer minutes/day in SB, taking 21.1 ± 2.7 more breaks from SB (p<0.001), and spending 64.5 ± 14.8 more minutes in LPA (p<0.001), controlling for time in MVPA. Students in the new school spent 13.1 ± 2.7 fewer minutes in MVPA (p<0.001) than their counterparts in the old school. This pilot study found that active school design had beneficial effects on SB and LPA, but not on MVPA. Mixed results point to a need for active classroom design strategies to mitigate SB, and quick access from classrooms to areas permissive of high-intensity activities to promote MVPA. Integrating active design with programs/policies to promote PA may yield greatest impact on PA of all intensities.
Frerichs, Leah; Sirard, John R.; Wells, Nancy M.; Myers, Beth M.; Garcia, Jeanette; Sorensen, Dina; Trowbridge, Matthew J.; Huang, Terry
2017-01-01
Background Children spend a significant portion of their days in sedentary behavior (SB) and on average fail to engage in adequate physical activity (PA). The school built environment may influence SB and PA, but research is limited. This natural experiment evaluated whether an elementary school designed to promote movement impacted students’ school-time SB and PA. Methods Accelerometers measured SB and PA at pre and post time-points in an intervention group who moved to the new school (n = 21) and in a comparison group experiencing no school environmental change (n = 20). Difference-in-difference (DD) analysis examined SB and PA outcomes in these groups. Measures were also collected post-intervention from an independent, grade-matched group of students in the new school (n = 21). Results As expected, maturational increases in SB were observed. However, DD analysis estimated that the intervention attenuated increase in SB by 81.2 ± 11.4 minutes/day (p<0.001), controlling for time in moderate to vigorous physical activity (MVPA). The intervention was also estimated to increase daily number of breaks from SB by 23.4 ± 2.6 (p < .001) and to increase light physical activity (LPA) by 67.7 ± 10.7 minutes/day (p<0.001). However, the intervention decreased MVPA by 10.3 ± 2.3 minutes/day (p<0.001). Results of grade-matched independent samples analysis were similar, with students in the new vs. old school spending 90.5 ± 16.1 fewer minutes/day in SB, taking 21.1 ± 2.7 more breaks from SB (p<0.001), and spending 64.5 ± 14.8 more minutes in LPA (p<0.001), controlling for time in MVPA. Students in the new school spent 13.1 ± 2.7 fewer minutes in MVPA (p<0.001) than their counterparts in the old school. Conclusions This pilot study found that active school design had beneficial effects on SB and LPA, but not on MVPA. Mixed results point to a need for active classroom design strategies to mitigate SB, and quick access from classrooms to areas permissive of high-intensity activities to promote MVPA. Integrating active design with programs/policies to promote PA may yield greatest impact on PA of all intensities. PMID:29216300
NASA Technical Reports Server (NTRS)
Bair, E. K.
1986-01-01
The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.
NASA Technical Reports Server (NTRS)
German, J.; Fogel, P.; Wilson, C.
1980-01-01
The design was based on the LTS-101 engine family for the core engine. A high bypass fan design (BPR=9.4) was incorporated to provide reduced fuel consumption for the design mission. All acoustic and pollutant emissions goals were achieved. A discussion of the preliminary design of a business jet suitable for the developed propulsion system is included. It is concluded that large engine technology can be successfully applied to small turbofans, and noise or pollutant levels need not be constraints for the design of future small general aviation turbofan engines.
Multi-fuel rotary engine for general aviation aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.
Lean methodology improves efficiency in outpatient academic uro-oncology clinics.
Skeldon, Sean C; Simmons, Andrea; Hersey, Karen; Finelli, Antonio; Jewett, Michael A; Zlotta, Alexandre R; Fleshner, Neil E
2014-05-01
To determine if lean methodology, an industrial engineering tool developed to optimize manufacturing efficiency, can successfully be applied to improve efficiencies and quality of care in a hospital-based high-volume uro-oncology clinic. Before the lean initiative, baseline data were collected on patient volumes, wait times, cycle times (patient arrival to discharge), nursing assessment time, patient teaching, and physician ergonomics (via spaghetti diagram). Value stream analysis and a rapid improvement event were carried out, and significant changes were made to patient check-in, work areas, and nursing face time. Follow-up data were obtained at 30, 60, and 90 days. The Student t test was used for analysis to compare performance metrics with baseline. The median cycle time before the lean initiative was 46 minutes. This remained stable at 46 minutes at 30 days but improved to 35 minutes at 60 days and 41 minutes at 90 days. Shorter wait times allowed for increased nursing and physician face time. The average length of the physician assessment increased from 7.5 minutes at baseline to 10.6 minutes at 90 days. The average proportion of value-added time compared with the entire clinic visit increased from 30.6% at baseline to 66.3% at 90 days. Using lean methodology, we were able to shorten the patient cycle time and the time to initial assessment as well as integrate both an initial registered nurse assessment and registered nurse teaching to each visit. Lean methodology can effectively be applied to improve efficiency and patient care in an academic outpatient uro-oncology clinic setting. Copyright © 2014 Elsevier Inc. All rights reserved.
SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool
NASA Technical Reports Server (NTRS)
Boyer, Jeffrey S.
1994-01-01
Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.
SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool
NASA Astrophysics Data System (ADS)
Boyer, Jeffrey S.
1994-11-01
Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.
A Holistic Approach to Systems Development
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
2008-01-01
Introduces a Holistic and Iterative Design Process. Continuous process but can be loosely divided into four stages. More effort spent early on in the design. Human-centered and Multidisciplinary. Emphasis on Life-Cycle Cost. Extensive use of modeling, simulation, mockups, human subjects, and proven technologies. Human-centered design doesn t mean the human factors discipline is the most important Disciplines should be involved in the design: Subsystem vendors, configuration management, operations research, manufacturing engineering, simulation/modeling, cost engineering, hardware engineering, software engineering, test and evaluation, human factors, electromagnetic compatibility, integrated logistics support, reliability/maintainability/availability, safety engineering, test equipment, training systems, design-to-cost, life cycle cost, application engineering etc. 9
NASA Technical Reports Server (NTRS)
Reynolds, C. N.
1985-01-01
The preliminary design of advanced technology (1992) prop-fan engines for single-rotation prop-fans, the conceptual design of the entire propulsion system, and an aircraft evaluation of the resultant designs are discussed. Four engine configurations were examined. A two-spool engine with all axial compressors and a three-spool engine with axial/centrifugal compressors were selected. Integrated propulsion systems were designed in conjunction with airframe manufacturers. The design efforts resulted in 12,000 shaft horsepower engines installed in over the installations with in-line and offset gearboxes. The prop-fan powered aircraft used 21 percent less fuel and cost 10 percent less to operate than a similar aircraft powered by turbofan engines with comparable technology.
Energy Efficient Engine (E3) controls and accessories detail design report
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Lavash, J. P.
1982-01-01
An Energy Efficient Engine program has been established by NASA to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, a new turbofan engine was designed. This report describes the fuel and control system for this engine. The system design is based on many of the proven concepts and component designs used on the General Electric CF6 family of engines. One significant difference is the incorporation of digital electronic computation in place of the hydromechanical computation currently used.
A Geometry Based Infra-structure for Computational Analysis and Design
NASA Technical Reports Server (NTRS)
Haimes, Robert
1997-01-01
The computational steps traditionally taken for most engineering analysis (CFD, structural analysis, and etc.) are: Surface Generation - usually by employing a CAD system; Grid Generation - preparing the volume for the simulation; Flow Solver - producing the results at the specified operational point; and Post-processing Visualization - interactively attempting to understand the results For structural analysis, integrated systems can be obtained from a number of commercial vendors. For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. Specifically the problems with this procedure are: (1) File based. Information flows from one step to the next via data files with formats specified for that procedure. (2) 'Good' Geometry. A bottleneck in getting results from a solver is the construction of proper geometry to be fed to the grid generator. With 'good' geometry a grid can be constructed in tens of minutes (even with a complex configuration) using unstructured techniques. (3) One-Way communication. All information travels on from one phase to the next. Until this process can be automated, more complex problems such as multi-disciplinary analysis or using the above procedure for design becomes prohibitive.
NASA Astrophysics Data System (ADS)
1990-01-01
System 8400 is an advanced system for measurement of gas and liquid pressure, along with a variety of other parameters, including voltage, frequency and digital inputs. System 8400 offers exceptionally high speed data acquisition through parallel processing, and its modular design allows expansion from a relatively inexpensive entry level system by the addition of modular Input Units that can be installed or removed in minutes. Douglas Juanarena was on the team of engineers that developed a new technology known as ESP (electronically scanned pressure). The Langley ESP measurement system was based on miniature integrated circuit pressure-sensing transducers that communicated pressure information to a minicomputer. In 1977, Juanarena formed PSI to exploit the NASA technology. In 1978 he left Langley, obtained a NASA license for the technology, introduced the first commercial product, the 780B pressure measurement system. PSI developed a pressure scanner for automation of industrial processes. Now in its second design generation, the DPT-6400 is capable of making 2,000 measurements a second and has 64 channels by addition of slave units. New system 8400 represents PSI's bid to further exploit the 600 million U.S. industrial pressure measurement market. It is geared to provide a turnkey solution to physical measurement.
NASA Astrophysics Data System (ADS)
Hughes, Shawn M.; Alamir, Mohammed; Neas, Brian; Alzahrani, Naif; Asmatulu, Ramazan
2017-04-01
Over the last few years, tremendous amount of research efforts has been conducted on 3D printing materials, methods and systems. Various 3D printer materials in different size, shape and geometry can be used for advanced designs, modeling, and manufacturing for different industrial applications. In the present study, dog bone shape specimen was designed via a CATIA CAD model, and then printed by a 3D printer using a polymeric filament (acrylonitrile butadiene styrene - ABS). Some of the prepared samples were heat treated at 40 °C, 60 °C, and 80 °C for 30 minutes, while the others were exposed to the UV light in a chamber for 0, 5, 10, 15 and 20 days. The surface and mechanical properties of the conditioned samples were determined using water contact angle and tensile test units, respectively. The test results indicated that the heat treatment process increased the mechanical properties; however, the UV exposure tests significantly reduced the water contact angle and properties of the samples. During these studies, undergraduate engineering students were involved in the tests, and gained a lot of hands-on research experiences.
Bringing Engineering Design into High School Science Classrooms: The Heating/Cooling Unit
ERIC Educational Resources Information Center
Apedoe, Xornam S.; Reynolds, Birdy; Ellefson, Michelle R.; Schunn, Christian D.
2008-01-01
Infusing engineering design projects in K-12 settings can promote interest and attract a wide range of students to engineering careers. However, the current climate of high-stakes testing and accountability to standards leaves little room to incorporate engineering design into K-12 classrooms. We argue that design-based learning, the combination…
Code of Federal Regulations, 2014 CFR
2014-07-01
... engines designed for lawn and garden applications? 1048.615 Section 1048.615 Protection of Environment... designed for lawn and garden applications? This section is intended for engines designed for lawn and garden applications, but it applies to any engines meeting the criteria in paragraph (a) of this section...
Code of Federal Regulations, 2013 CFR
2013-07-01
... engines designed for lawn and garden applications? 1048.615 Section 1048.615 Protection of Environment... designed for lawn and garden applications? This section is intended for engines designed for lawn and garden applications, but it applies to any engines meeting the criteria in paragraph (a) of this section...
Code of Federal Regulations, 2011 CFR
2011-07-01
... engines designed for lawn and garden applications? 1048.615 Section 1048.615 Protection of Environment... designed for lawn and garden applications? This section is intended for engines designed for lawn and garden applications, but it applies to any engines meeting the criteria in paragraph (a) of this section...
Code of Federal Regulations, 2012 CFR
2012-07-01
... engines designed for lawn and garden applications? 1048.615 Section 1048.615 Protection of Environment... designed for lawn and garden applications? This section is intended for engines designed for lawn and garden applications, but it applies to any engines meeting the criteria in paragraph (a) of this section...
Engineering Design for Engineering Design: Benefits, Models, and Examples from Practice
ERIC Educational Resources Information Center
Turner, Ken L., Jr.; Kirby, Melissa; Bober, Sue
2016-01-01
Engineering design, a framework for studying and solving societal problems, is a key component of STEM education. It is also the area of greatest challenge within the Next Generation Science Standards, NGSS. Many teachers feel underprepared to teach or create activities that feature engineering design, and integrating a lesson plan of core content…
High School Engineering and Technology Education Integration through Design Challenges
ERIC Educational Resources Information Center
Mentzer, Nathan
2011-01-01
This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…
The Engineering of Engineering Education: Curriculum Development from a Designer's Point of View
ERIC Educational Resources Information Center
Rompelman, Otto; De Graaff, Erik
2006-01-01
Engineers have a set of powerful tools at their disposal for designing robust and reliable technical systems. In educational design these tools are seldom applied. This paper explores the application of concepts from the systems approach in an educational context. The paradigms of design methodology and systems engineering appear to be suitable…
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.
Building Safer Systems With SpecTRM
NASA Technical Reports Server (NTRS)
2003-01-01
System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.
Energy efficient engine. Core engine bearings, drives and configuration: Detailed design report
NASA Technical Reports Server (NTRS)
Broman, C. L.
1981-01-01
The detailed design of the forward and aft sumps, the accessory drive system, the lubrication system, and the piping/manifold configuration to be employed in the core engine test of the Energy Efficient Engine is addressed. The design goals for the above components were established based on the requirements of the test cell engine.
1+1=3: Cross-Discipline Collaboration Really Adds Up!
ERIC Educational Resources Information Center
Breen, Mindy
2006-01-01
The Department of Engineering & Design at Eastern Washington University (EWU) offers a bachelor of arts degree in visual communication design and bachelor of science degrees in mechanical engineering technology, manufacturing technology, construction technology, design technology, electrical engineering, computer engineering technology and…
Potential of Diesel Engine, Diesel Engine Design Concepts, Control Strategy and Implementation
DOT National Transportation Integrated Search
1980-03-01
Diesel engine design concepts and control system strategies are surveyed with application to passenger cars and light trucks. The objective of the study is to indicate the fuel economy potential of the technologies investigated. The engine design par...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Blarigan, P.
A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueledmore » operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.« less
ERIC Educational Resources Information Center
de Vere, Ian; Melles, Gavin; Kapoor, Ajay
2010-01-01
Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering…
Design issues for lunar in situ aluminum/oxygen propellant rocket engines
NASA Technical Reports Server (NTRS)
Meyer, Michael L.
1992-01-01
Design issues for lunar ascent and lunar descent rocket engines fueled by aluminum/oxygen propellant produced in situ at the lunar surface were evaluated. Key issues are discussed which impact the design of these rockets: aluminum combustion, throat erosion, and thrust chamber cooling. Four engine concepts are presented, and the impact of combustion performance, throat erosion and thrust chamber cooling on overall engine design are discussed. The advantages and disadvantages of each engine concept are presented.
Optical engineering capstone design projects with industry sponsors
NASA Astrophysics Data System (ADS)
Bunch, Robert M.; Leisher, Paul O.; Granieri, Sergio C.
2014-09-01
Capstone senior design is the culmination of a student's undergraduate engineering education that prepares them for engineering practice. In fact, any engineering degree program that pursues accreditation by the Engineering Accreditation Commission of ABET must contain "a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints." At Rose-Hulman, we offer an interdisciplinary Optical Engineering / Engineering Physics senior design curriculum that meets this requirement. Part of this curriculum is a two-course sequence where students work in teams on a design project leading to a functional prototype. The students begin work on their capstone project during the first week of their senior year. The courses are deliverable-driven and the students are held accountable for regular technical progress through weekly updates with their faculty advisor and mid-term design reviews. We have found that client-sponsored projects offer students an enriched engineering design experience as it ensures consideration of constraints and standards requirements similar to those that they will encounter as working engineers. Further, client-sponsored projects provide teams with an opportunity for regular customer interactions which help shape the product design. The process that we follow in both soliciting and helping to scope appropriate industry-related design projects will be described. In addition, an outline of the capstone course structure as well as methods used to hold teams accountable for technical milestones will be discussed. Illustrative examples of past projects will be provided.
Eliciting and characterizing students' mental models within the context of engineering design
NASA Astrophysics Data System (ADS)
Dankenbring, Chelsey
Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.
Nuclear thermal propulsion engine system design analysis code development
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.
1992-01-01
A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.
14 CFR Appendix P to Part 121 - Requirements for ETOPS and Polar Operations
Code of Federal Regulations, 2013 CFR
2013-01-01
... the airplane's time-limited systems may not be less than 138 minutes calculated in accordance with... addition to the equipment specified in the certificate holder's MEL for 180-minute ETOPS, the following... electrical and pneumatic supply and operating to the APU's designed capability). (iii) The auto throttle...
14 CFR Appendix P to Part 121 - Requirements for ETOPS and Polar Operations
Code of Federal Regulations, 2014 CFR
2014-01-01
... the airplane's time-limited systems may not be less than 138 minutes calculated in accordance with... addition to the equipment specified in the certificate holder's MEL for 180-minute ETOPS, the following... electrical and pneumatic supply and operating to the APU's designed capability). (iii) The auto throttle...
14 CFR Appendix P to Part 121 - Requirements for ETOPS and Polar Operations
Code of Federal Regulations, 2012 CFR
2012-01-01
... the airplane's time-limited systems may not be less than 138 minutes calculated in accordance with... addition to the equipment specified in the certificate holder's MEL for 180-minute ETOPS, the following... electrical and pneumatic supply and operating to the APU's designed capability). (iii) The auto throttle...
14 CFR Appendix P to Part 121 - Requirements for ETOPS and Polar Operations
Code of Federal Regulations, 2011 CFR
2011-01-01
... the airplane's time-limited systems may not be less than 138 minutes calculated in accordance with... addition to the equipment specified in the certificate holder's MEL for 180-minute ETOPS, the following... electrical and pneumatic supply and operating to the APU's designed capability). (iii) The auto throttle...
14 CFR Appendix P to Part 121 - Requirements for ETOPS and Polar Operations
Code of Federal Regulations, 2010 CFR
2010-01-01
... the airplane's time-limited systems may not be less than 138 minutes calculated in accordance with... addition to the equipment specified in the certificate holder's MEL for 180-minute ETOPS, the following... electrical and pneumatic supply and operating to the APU's designed capability). (iii) The auto throttle...
A dual-slot microwave antenna for more spherical ablation zones: ex vivo and in vivo validation.
Chiang, Jason; Hynes, Kieran A; Bedoya, Mariajose; Brace, Christopher L
2013-08-01
To compare the performance of a microwave antenna design with two annular slots to that of a monopole antenna design in creating a more spherical ablation zone. Animal care and use committee approval was obtained before in vivo experiments were performed. Microwave ablation zones were created by using dual-slot and monopole control antennas for 2, 5, and 10 minutes at 50 and 100 W in ex vivo bovine livers. Dual-slot and monopole antennas were then used to create ablation zones at 100 W for 5 minutes in in vivo porcine livers, which also underwent intraprocedural imaging. Ablation diameter, length, and aspect ratio (diameter ÷ length) were measured at gross pathologic examination and compared at each combination of power and time by using the paired Student t test. A P value less than .05 was considered to indicate a significant difference. Aspect ratios closer to 1 reflected a more spherical ablation zone. The dual-slot antenna created ablation zones with a higher aspect ratio at 50 W for 2 minutes (0.75 vs 0.53, P = .003) and 5 minutes (0.82 vs 0.63, P = .053) than did the monopole antenna in ex vivo liver tissue, although the difference was only significant at 2 minutes. At 100 W, the dual-slot antenna had a significantly higher aspect ratio at 2 minutes (0.52 vs 0.42, P = .002). In vivo studies showed significantly higher aspect ratios at 100 W for 5 minutes (0.63 vs 0.53, respectively, P = .029). Intraprocedural imaging confirmed this characterization, showing higher rates of ablation zone growth and heating primarily at the early stages of the ablation procedure when the dual-slot antenna was used. The dual-slot microwave antenna created a more spherical ablation zone than did the monopole antenna both in vivo and ex vivo liver tissue. Greater control over power delivery can potentially extend the advantages of the dual-slot antenna design to higher power and longer treatment times.
Inclusion by Design: Engineering Inclusive Practices in Secondary Schools
ERIC Educational Resources Information Center
Dukes, Charles; Lamar-Dukes, Pamela
2009-01-01
In order to help teachers understand the importance of intentional design for inclusive education, this article describes the design process an engineer might use when designing a new project. If teachers learn to think like engineers, it is possible for them to design inclusive education. This conceptual design can then be combined with…
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Mike Foale, left, joins Center Director Jim Kennedy, right, in the Training Auditorium. Foale spoke to the audience about his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. After his presentation in the Training Auditorium, astronaut Mike Foale greets employees and signs autographs. Foale shared his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. After his presentation in the Training Auditorium, astronaut Mike Foale greets employees and signs autographs. Foale shared his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Training Auditorium, Center Director Jim Kennedy presents a framed photo to astronaut Mike Foale, who spoke to the audience about his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.
Investigating the Impact of Using a CAD Simulation Tool on Students' Learning of Design Thinking
NASA Astrophysics Data System (ADS)
Taleyarkhan, Manaz; Dasgupta, Chandan; Garcia, John Mendoza; Magana, Alejandra J.
2018-02-01
Engineering design thinking is hard to teach and still harder to learn by novices primarily due to the undetermined nature of engineering problems that often results in multiple solutions. In this paper, we investigate the effect of teaching engineering design thinking to freshmen students by using a computer-aided Design (CAD) simulation software. We present a framework for characterizing different levels of engineering design thinking displayed by students who interacted with the CAD simulation software in the context of a collaborative assignment. This framework describes the presence of four levels of engineering design thinking—beginning designer, adept beginning designer, informed designer, adept informed designer. We present the characteristics associated with each of these four levels as they pertain to four engineering design strategies that students pursued in this study—understanding the design challenge, building knowledge, weighing options and making tradeoffs, and reflecting on the process. Students demonstrated significant improvements in two strategies—understanding the design challenge and building knowledge. We discuss the affordances of the CAD simulation tool along with the learning environment that potentially helped students move towards Adept informed designers while pursuing these design strategies.
Automotive Stirling Engine Mod 1 Design Review, Volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
Risk assessment, safety analysis of the automotive stirling engine (ASE) mod I, design criteria and materials properties for the ASE mod I and reference engines, combustion are flower development, and the mod I engine starter motor are discussed. The stirling engine system, external heat system, hot engine system, cold engine system, and engine drive system are also discussed.
Genome scale engineering techniques for metabolic engineering.
Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T
2015-11-01
Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Effect of surgical hand scrub time on subsequent bacterial growth.
Wheelock, S M; Lookinland, S
1997-06-01
In this experimental study, the researchers evaluated the effect of surgical hand scrub time on subsequent bacterial growth and assessed the effectiveness of the glove juice technique in a clinical setting. In a randomized crossover design, 25 perioperative staff members scrubbed for two or three minutes in the first trial and vice versa in the second trial, after which the wore sterile surgical gloves for one hour under clinical conditions. The researchers then sampled the subjects' nondominant hands for bacterial growth, cultured aliquots from the sampling solution, and counted microorganisms. Scrubbing for three minutes produced lower mean log bacterial counts than scrubbing for two minutes. Although the mean bacterial count differed significantly (P = .02) between the two-minute and three-minute surgical hand scrub times, it fell below 0.5 log, which is the threshold for practical and clinical significance. This finding suggests that a two-minute surgical hand scrub is clinically as effective as a three-minute surgical had scrub. The glove juice technique demonstrated sensitivity and reliability in enumerating bacteria on the hands of perioperative staff members in a clinical setting.
The Topology Optimization Design Research for Aluminum Inner Panel of Automobile Engine Hood
NASA Astrophysics Data System (ADS)
Li, Minhao; Hu, Dongqing; Liu, Xiangzheng; Yuan, Huanquan
2017-11-01
This article discusses the topology optimization methods for automobile engine hood design. The aluminum inner panel of engine hood and mucilage glue regions are set as design areas, and the static performances of engine hood included modal frequency, lateral stiffness, torsional stiffness and indentation stiffness are set as the optimization objectives. The topology optimization results about different objective functions are contrasted for analysis. And based on the reasonable topology optimization result, a suited automobile engine hood designs are raised to further study. Finally, an automobile engine hood that good at all of static performances is designed, and a favorable topology optimization method is put forward for discussion.