MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori)
Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou
2009-01-01
Background MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Results Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). Conclusion We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal. PMID:19785751
MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori).
Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou
2009-09-28
MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal.
MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes
Polioudakis, Damon; Abell, Nathan S.; Iyer, Vishwanath R.
2015-01-01
miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191’s regulation of primary human fibroblast proliferation. PMID:25992613
Boo, Lily; Ho, Wan Yong; Mohd Ali, Norlaily; Yeap, Swee Keong; Ky, Huynh; Chan, Kok Gan; Yin, Wai Fong; Satharasinghe, Dilan Amila; Liew, Woan Charn; Tan, Sheau Wei; Cheong, Soon Keng; Ong, Han Kiat
2017-01-01
Breast cancer spheroids have been widely used as in vitro models of cancer stem cells (CSCs), yet little is known about their phenotypic characteristics and microRNAs (miRNAs) expression profiles. The objectives of this research were to evaluate the phenotypic characteristics of MDA-MB-231 spheroid-enriched cells for their CSCs properties and also to determine their miRNAs expression profile. Similar to our previously published MCF-7 spheroid, MDA-MB-231 spheroid also showed typical CSCs characteristics namely self-renewability, expression of putative CSCs-related surface markers and enhancement of drug resistance. From the miRNA profile, miR-15b, miR-34a, miR-148a, miR-628 and miR-196b were shown to be involved in CSCs-associated signalling pathways in both models of spheroids, which highlights the involvement of these miRNAs in maintaining the CSCs features. In addition, unique clusters of miRNAs namely miR-205, miR-181a and miR-204 were found in basal-like spheroid whereas miR-125, miR-760, miR-30c and miR-136 were identified in luminal-like spheroid. Our results highlight the roles of miRNAs as well as novel perspectives of the relevant pathways underlying spheroid-enriched CSCs in breast cancer.
The role of microRNAs in myopia.
Jiang, Bo; Huo, Yanan; Gu, Yangshun; Wang, Jianyong
2017-01-01
In recent years, research on microRNAs (miRNAs) has become popular because of the critical role these macromolecules play in post-transcriptional gene regulation. Recent efforts have been made to identify miRNAs and their possible roles in myopia. The aim of this review was to summarize the expression and function of miRNAs during the development of myopia. In this article, we reviewed the current research on the mechanisms that regulate miRNA expression, the potential for miRNAs as a diagnostic biomarker for myopia, and the mechanisms by which miRNAs promote the development of myopia. We also discussed the miRNA expression profiles in human fetal sclera. We summarized the miRNA expression profiles in myopia, including miR-328, miR-184, miR-29a, and miR-let-7i, and also the miRNA expression profiles in fetal sclera, including miR-214, miR-let-7, miR-103, miR-107, miR-29b, miR-328, and miR-98. Such knowledge could lead to more precise diagnosis, prognosis, and response predictions for future treatments for myopia, and the pace of discovery is expected to accelerate dramatically in the near future.
Kapsimali, Marika; Kloosterman, Wigard P; de Bruijn, Ewart; Rosa, Frederic; Plasterk, Ronald HA; Wilson, Stephen W
2007-01-01
Background MicroRNA (miRNA) encoding genes are abundant in vertebrate genomes but very few have been studied in any detail. Bioinformatic tools allow prediction of miRNA targets and this information coupled with knowledge of miRNA expression profiles facilitates formulation of hypotheses of miRNA function. Although the central nervous system (CNS) is a prominent site of miRNA expression, virtually nothing is known about the spatial and temporal expression profiles of miRNAs in the brain. To provide an overview of the breadth of miRNA expression in the CNS, we performed a comprehensive analysis of the neuroanatomical expression profiles of 38 abundant conserved miRNAs in developing and adult zebrafish brain. Results Our results show miRNAs have a wide variety of different expression profiles in neural cells, including: expression in neuronal precursors and stem cells (for example, miR-92b); expression associated with transition from proliferation to differentiation (for example, miR-124); constitutive expression in mature neurons (miR-124 again); expression in both proliferative cells and their differentiated progeny (for example, miR-9); regionally restricted expression (for example, miR-222 in telencephalon); and cell-type specific expression (for example, miR-218a in motor neurons). Conclusion The data we present facilitate prediction of likely modes of miRNA function in the CNS and many miRNA expression profiles are consistent with the mutual exclusion mode of function in which there is spatial or temporal exclusion of miRNAs and their targets. However, some miRNAs, such as those with cell-type specific expression, are more likely to be co-expressed with their targets. Our data provide an important resource for future functional studies of miRNAs in the CNS. PMID:17711588
García-Díaz, Diego F; Pizarro, Carolina; Camacho-Guillén, Patricia; Codner, Ethel; Soto, Néstor; Pérez-Bravo, Francisco
2018-02-01
Objective The aim of this research was to analyze the expression profile of miR-155, miR-146a, and miR-326 in peripheral blood mononuclear cells (PBMC) of 47 patients with type 1 diabetes mellitus (T1D) and 39 control subjects, as well as the possible association with autoimmune or inflammatory markers. Subjects and methods Expression profile of miRs by means of qPCR using TaqMan probes. Autoantibodies and inflammatory markers by ELISA. Statistical analysis using bivariate correlation. Results The analysis of the results shows an increase in the expression of miR-155 in T1D patients in basal conditions compared to the controls (p < 0.001) and a decreased expression level of miR-326 (p < 0.01) and miR-146a (p < 0.05) compared T1D patients to the controls. miR-155 was the only miRs associated with autoinmmunity (ZnT8) and inflammatory status (vCAM). Conclusion Our data show a possible role of miR-155 related to autoimmunity and inflammation in Chilean patients with T1D.
Hu, Yanyan; Wang, Qian; Wang, Zengmin; Wang, Fengxue; Guo, Xiaobo; Li, Guimei
2015-02-01
Since the tissue of children with combined pituitary hormone deficiency (CPHD) is not readily accessible, a new focus in children with CPHD is the blood-based expression profiling of non-protein coding genes, such as microRNAs (miRNAs or miRs), which regulate gene expression by inhibiting the translation of mRNAs. In this study, to address this, we identified potential miRNA signatures for CPHD by comparing genome-wide miRNA expression profiles in the serum of children with CPHD vs. normal (healthy) controls. Human embryonic kidney 293T cells were transfected with miR-593 or miR-511 oligonucleotides. Potential target gene expression was validated by western blot analysis for proteins and by miR-593 or miR-511 reporter assay using PROP1 gene 3'-untranslated region (3'-UTR) reporter. The miR-593 and miR-511 levels in the serum of 103 children with CPHD were assessed using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method. We found 23 upregulated and 19 downregulated miRNAs with abnormal expression in children with CPHD compared with the normal controls using miRNA microarray analysis and RT-qPCR. miR-593 and miR-511 targeted the 3'-UTR of the PROP1 gene and attenuated the expression of PROP1. The levels of miR-593 and miR-511 in the serum of children with CPHD were increased compared with those in the control subjects. According to Youden's index, the sensitivity was 82.54 and 84.86%, and the specificity was 98.15 and 91.36% for miR-593 and miR-511, respectively. The various levels of specific miRNAs, particularly miR-593 and miR-511 whose direct target is the PROP1 gene, may serve as a non-invasive diagnostic biomarkers for children with CPHD.
Yilmaz, Ismail; Narli, Gizem; Haholu, Aptullah; Kucukodaci, Zafer; Demirel, Dilaver
2014-01-01
Purpose We examined expression profiles of 16 micro RNAs (miRNAs) in triple negative breast cancers to identify their potential as biomarkers for lymph node metastasis. Methods The expression profiles of miR-9, miR-21, miR-30a, miR-30d, miR-31, miR-34a, miR-34c, miR-100, miR-122, miR-125b, miR-146a, miR-146b, miR-155, miR-181a, miR-200c, and miR-205 were examined by using real-time quantitative reverse transcription polymerase chain reaction in tumor samples and corresponding benign breast tissues. Their associations with histopathological features and prognostic parameters were assessed. Results When compared with the expression in benign breast tissues, seven of the miRNAs (miR-31, miR-205, miR-34a, miR-146a, miR-125b, miR-34c, and miR-181a) were downregulated more than 1.5-fold in tumor tissues, whereas, only miR-21 was found to be upregulated more than 1.5-fold in tumor tissues. Although miR-200c levels were decreased only 1.12-fold in tumor tissues, the reduced expressions of miR-200c and miR-205 were significantly associated with lymph node metastasis (p=0.021 and p=0.016, respectively). Conclusion Our results demonstrate that miR-205 and miR-200c expression levels may be useful in predicting lymph node metastasis in triple negative breast cancer patients. PMID:25013435
Rachagani, Satyanarayana; Macha, Muzafar A; Menning, Melanie S; Dey, Parama; Pai, Priya; Smith, Lynette M; Mo, Yin-Yuan; Batra, Surinder K
2015-11-24
Differential expression of microRNAs (miRNAs) has been demonstrated in various cancers, including pancreatic cancer (PC). Due to the lack of tissue samples from early-stages of PC, the stage-specific alteration of miRNAs during PC initiation and progression is largely unknown. In this study, we investigated the global miRNA expression profile and their processing machinery during PC progression using the KrasG12D;Pdx1-Cre (KC) mouse model. At 25 weeks, the miRNA microarray analysis revealed significant downregulation of miR-150, miR-494, miR-138, miR-148a, miR-216a, and miR-217 and upregulation of miR-146b, miR-205, miR-31, miR-192, and miR-21 in KC mice compared to controls. Further, expression of miRNA biosynthetic machinery including Dicer, Exportin-5, TRKRA, and TARBP2 were downregulated, while DGCR8 and Ago2 were upregulated in KC mice. In addition, from 10 to 50 weeks of age, stage-specific expression profiling of miRNA in KC mice revealed downregulation of miR-216, miR-217, miR-100, miR-345, miR-141, miR-483-3p, miR-26b, miR-150, miR-195, Let-7b and Let-96 and upregulation of miR-21, miR-205, miR-146b, miR-34c, miR-1273, miR-223 and miR-195 compared to control mice. Interestingly, the differential expression of miRNA in mice also corroborated with the miRNA expression in human PC cell lines and tissue samples; ectopic expression of Let-7b in CD18/HPAF and Capan1 cells resulted in the downregulation of KRAS and MSST1 expression. Overall, the present study aids an understanding of miRNA expression patterns during PC pathogenesis and helps to facilitate the identification of promising and novel early diagnostic/prognostic markers and therapeutic targets.
Rachagani, Satyanarayana; Dey, Parama; Pai, Priya; Smith, Lynette M.; Mo, Yin-Yuan; Batra, Surinder K.
2015-01-01
Differential expression of microRNAs (miRNAs) has been demonstrated in various cancers, including pancreatic cancer (PC). Due to the lack of tissue samples from early-stages of PC, the stage-specific alteration of miRNAs during PC initiation and progression is largely unknown. In this study, we investigated the global miRNA expression profile and their processing machinery during PC progression using the KrasG12D;Pdx1-Cre (KC) mouse model. At 25 weeks, the miRNA microarray analysis revealed significant downregulation of miR-150, miR-494, miR-138, miR-148a, miR-216a, and miR-217 and upregulation of miR-146b, miR-205, miR-31, miR-192, and miR-21 in KC mice compared to controls. Further, expression of miRNA biosynthetic machinery including Dicer, Exportin-5, TRKRA, and TARBP2 were downregulated, while DGCR8 and Ago2 were upregulated in KC mice. In addition, from 10 to 50 weeks of age, stage-specific expression profiling of miRNA in KC mice revealed downregulation of miR-216, miR-217, miR-100, miR-345, miR-141, miR-483-3p, miR-26b, miR-150, miR-195, Let-7b and Let-96 and upregulation of miR-21, miR-205, miR-146b, miR-34c, miR-1273, miR-223 and miR-195 compared to control mice. Interestingly, the differential expression of miRNA in mice also corroborated with the miRNA expression in human PC cell lines and tissue samples; ectopic expression of Let-7b in CD18/HPAF and Capan1 cells resulted in downregulation of KRAS and MSST1 expression. Overall, the present study aids an understanding of miRNA expression patterns during PC pathogenesis and helps to facilitate the identification of promising and novel early diagnostic/prognostic markers and therapeutic targets. PMID:26516699
Exosomal microRNA profiling to identify hypoxia-related biomarkers in prostate cancer
Panigrahi, Gati K.; Ramteke, Anand; Birks, Diane; Abouzeid Ali, Hamdy E.; Venkataraman, Sujatha; Agarwal, Chapla; Vibhakar, Rajeev; Miller, Lance D.; Agarwal, Rajesh; Abd Elmageed, Zakaria Y.; Deep, Gagan
2018-01-01
Hypoxia and expression of hypoxia-related biomarkers are associated with disease progression and treatment failure in prostate cancer (PCa). We have reported that exosomes (nanovesicles of 30-150 nm in diameter) secreted by human PCa cells under hypoxia promote invasiveness and stemness in naïve PCa cells. Here, we identified the unique microRNAs (miRNAs) loaded in exosomes secreted by PCa cells under hypoxia. Using TaqMan® array microRNA cards, we analyzed the miRNA profile in exosomes secreted by human PCa LNCaP cells under hypoxic (ExoHypoxic) and normoxic (ExoNormoxic) conditions. We identified 292 miRNAs loaded in both ExoHypoxic and ExoNormoxic. The top 11 miRNAs with significantly higher level in ExoHypoxic compared to ExoNormoxic were miR-517a, miR-204, miR-885, miR-143, miR-335, miR-127, miR-542, miR-433, miR-451, miR-92a and miR-181a; and top nine miRNA with significantly lower expression level in ExoHypoxic compared to ExoNormoxic were miR-521, miR-27a, miR-324, miR-579, miR-502, miR-222, miR-135b, miR-146a and miR-491. Importantly, the two differentially expressed miRNAs miR-885 (increased expression) and miR-521 (decreased expression) showed similar expression pattern in exosomes isolated from the serum of PCa patients compared to healthy individuals. Additionally, miR-204 and miR-222 displayed correlated expression patterns in prostate tumors (Pearson R = 0.66, p < 0.0001) by The Cancer Genome Atlas (TCGA) prostate adenocarcinoma (PRAD) genomic dataset analysis. Overall, the present study identified unique miRNAs with differential expression in exosomes secreted from hypoxic PCa cells and suggests their potential usefulness as a biomarker of hypoxia in PCa patients. PMID:29568403
Braza-Boïls, Aitana; Salloum-Asfar, Salam; Marí-Alexandre, Josep; Arroyo, Ana Belén; González-Conejero, Rocío; Barceló-Molina, Moisés; García-Oms, Javier; Vicente, Vicente; Estellés, Amparo; Gilabert-Estellés, Juan; Martínez, Constantino
2015-10-01
Could peritoneal fluid (PF) from patients with endometriosis alter the microRNA (miRNA) expression profile in endometrial and endometriotic cells from patients? PF from patients with endometriosis modifies the miRNA expression profile in endometrial cells from patients. Angiogenesis is a pivotal system in the development of endometriosis, and dysregulated miRNA expression in this disease has been reported. However, to our knowledge, the effect of PF from patients on the miRNA expression profile of patient endometrial cells has not been reported. Moreover, an effect of three miRNAs (miR-16-5p, miR-29c-3p and miR-424-5p) on the regulation of vascular endothelial growth factor (VEGF)-A mRNA translation in endometrial cells from patients with endometriosis has not been demonstrated. Primary cultures of stromal cells from endometrium from 8 control women (control cells) and 11 patients with endometriosis (eutopic cells) and ovarian endometriomas (ectopic cells) were treated with PF from control women (CPF) and patients (EPF) or not treated (0PF) in order to evaluate the effect of PF on miRNA expression in these cells. MiRNA expression arrays (Affymetrix platform) were prepared from cells (control, eutopic, ectopic) treated with CPF, EPF or 0PF. Results from arrays were validated by quantitative reverse transcription-polymerase chain reaction in cultures from 8 control endometrium, 11 eutopic endometrium and 11 ovarian endometriomas. Functional experiments were performed in primary cell cultures using mimics for miRNAs miR-16-5p, miR-29c-3p and miR-424-5p to assess their effect as VEGF-A expression regulators. To confirm a repressive action of miR-29c-3p through forming miRNA:VEGFA duplexes, we performed luciferase expression assays. EPF modified the miRNA expression profile in eutopic cells. A total of 267 miRNAs were modified in response to EPF compared with 0PF in eutopic cells. Nine miRNAs (miR-16-5p, miR-21-5p, miR-29c-3p, miR-106b-5p, miR-130a-5p, miR-149-5p, miR-185-5p, miR-195-5p, miR-424-5p) that were differently expressed in response to EPF, and which were potential targets involved in angiogenesis, proteolysis or endometriosis, were validated in further experiments (control = 8, eutopic = 11, ectopic = 11). Except for miR-149-5p, all validated miRNAs showed significantly lower levels (miR-16-5p, miR-106b-5p, miR-130a-5p; miR-195-5p and miR-424-5p, P < 0.05; miR-21-5p, miR-29c-3p and miR-185-5p, P < 0.01) after EPF treatment in primary cell cultures from eutopic endometrium from patients in comparison with 0PF. Transfection of stromal cells with mimics of miRNAs miR-16-5p, miR-29c-3p and miR-424-5p showed a significant down-regulation of VEGF-A protein expression. However, VEGFA mRNA expression after mimic transfection was not significantly modified, indicating the miRNAs inhibited VEGF-A mRNA translation rather than degrading VEGFA mRNA. Luciferase experiments also corroborated VEGF-A as a target gene of miR-29c-3p. The study was performed in an in vitro model of endometriosis using stromal cells. This model is just a representation to try to elucidate the molecular mechanisms involved in the development of endometriosis. Further studies to identify the pathways involved in this miRNA expression modification in response to PF from patients are needed. This is the first study describing a modified miRNA expression profile in eutopic cells from patients in response to PF from patients. These promising results improve the body of knowledge on endometriosis pathogenesis and could open up new therapeutic strategies for the treatment of endometriosis through the use of miRNAs. This work was supported by research grants by ISCIII and FEDER (PI11/00091, PI11/00566, PI14/01309, PI14/00253 and FI12/00012), RIC (RD12/0042/0029 and RD12/0042/0050), IIS La Fe 2011-211, Prometeo 2011/027 and Contrato Sara Borrell CD13/0005. There are no conflicts of interest to declare. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Khosravi, Maryam; Azarpira, Negar; Shamdani, Sara; Hojjat-Assari, Suzzan; Naserian, Sina; Karimi, Mohammad Hossein
2018-08-15
Studying the profile of micro RNAs (miRs) elucidated the highest expressed miRs in hepatic differentiation. In this study, we investigated to clarify the role of three embryonic overexpressed miRs (miR-106a, miR-574-3p and miR-451) during hepatic differentiation of human umbilical cord derived mesenchymal stem cells (UC-MSCs). We furthermore, aimed to explore whether overexpression of any of these miRs alone is sufficient to induce the differentiation of the UC-MSCs into hepatocyte-like cells. UC-MSCs were transfected either alone or together with miR-106a, miR-574-3p and miR-451 and their potential hepatic differentiation and alteration in gene expression profile, morphological changes and albumin secretion ability were investigated. We found that up-regulation of any of these three miRs alone cannot induce expression of all hepatic specific genes. Transfection of each miR alone, led to Sox17, FoxA2 expression that are related to initiation step of hepatic differentiation. However, concurrent ectopic overexpression of three miRs together can induce UC-MSCs differentiation into functionally mature hepatocytes. These results show that miRs have the capability to directly convert UC-MSCs to a hepatocyte phenotype in vitro. Copyright © 2018. Published by Elsevier B.V.
Expression Profile of C19MC microRNAs in Placental Tissue in Pregnancy-Related Complications
Kotlabova, Katerina; Ondrackova, Marketa; Pirkova, Petra; Kestlerova, Andrea; Novotna, Veronika; Hympanova, Lucie; Krofta, Ladislav
2015-01-01
To demonstrate that pregnancy-related complications are associated with alterations in placental microRNA expression. Gene expression of 15 C19MC microRNAs (miR-512-5p, miR-515-5p, miR-516-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-524-5p, miR-525, miR-526a, and miR-526b) was assessed in placental tissues, compared between groups (21 gestational hypertension [GH], 63 preeclampsia, 36 fetal growth restriction [FGR], and 42 normal pregnancies), and correlated with the severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound parameters. The expression profile of microRNAs was different between pregnancy-related complications and controls. The downregulation of 4 of 15 (miR-517-5p, miR-519d, miR-520a-5p, and miR-525), 6 of 15 (miR-517-5p, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, and miR-525), and 11 of 15 (miR-515-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, miR-520h, miR-524-5p, miR-525, and miR-526a) microRNAs was associated with GH, FGR, and preeclampsia, respectively. Sudden onset of severe preeclampsia requiring immediate termination of gestation and mild forms of preeclampsia (persisting for several weeks) were associated with similar microRNA expression profile (downregulation of miR-517-5p, miR-520a-5p, miR-524-5p, and miR-525). In addition, miR-519a was found to be associated with severe preeclampsia. The longer the pregnancy-related disorder lasted, the more extensive was the downregulation of microRNAs (miR-515-5p, miR-518b, miR-518f-5p, miR-519d, and miR-520h). The downregulation of some C19MC microRNAs is a common phenomenon shared between GH, preeclampsia, and FGR. On the other hand, some of the C19MC microRNAs are only downregulated just in preeclampsia. PMID:25825993
mirEX: a platform for comparative exploration of plant pri-miRNA expression data.
Bielewicz, Dawid; Dolata, Jakub; Zielezinski, Andrzej; Alaba, Sylwia; Szarzynska, Bogna; Szczesniak, Michal W; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia; Karlowski, Wojciech M
2012-01-01
mirEX is a comprehensive platform for comparative analysis of primary microRNA expression data. RT-qPCR-based gene expression profiles are stored in a universal and expandable database scheme and wrapped by an intuitive user-friendly interface. A new way of accessing gene expression data in mirEX includes a simple mouse operated querying system and dynamic graphs for data mining analyses. In contrast to other publicly available databases, the mirEX interface allows a simultaneous comparison of expression levels between various microRNA genes in diverse organs and developmental stages. Currently, mirEX integrates information about the expression profile of 190 Arabidopsis thaliana pri-miRNAs in seven different developmental stages: seeds, seedlings and various organs of mature plants. Additionally, by providing RNA structural models, publicly available deep sequencing results, experimental procedure details and careful selection of auxiliary data in the form of web links, mirEX can function as a one-stop solution for Arabidopsis microRNA information. A web-based mirEX interface can be accessed at http://bioinfo.amu.edu.pl/mirex.
Shift of microRNA profile upon orthotopic xenografting of glioblastoma spheroid cultures.
Halle, Bo; Thomassen, Mads; Venkatesan, Ranga; Kaimal, Vivek; Marcusson, Eric G; Munthe, Sune; Sørensen, Mia D; Aaberg-Jessen, Charlotte; Jensen, Stine S; Meyer, Morten; Kruse, Torben A; Christiansen, Helle; Schmidt, Steffen; Mollenhauer, Jan; Schulz, Mette K; Andersen, Claus; Kristensen, Bjarne W
2016-07-01
Glioblastomas always recur despite surgery, radiotherapy and chemotherapy. A key player in the therapeutic resistance may be immature tumor cells with stem-like properties (TSCs) escaping conventional treatment. A group of promising molecular targets are microRNAs (miRs). miRs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. In this study we aimed to identify over-expressed TSC-related miRs potentially amenable for therapeutic targeting. We used non-differentiated glioblastoma spheroid cultures (GSCs) containing TSCs and compared these to xenografts using a NanoString nCounter platform. This revealed 19 over-expressed miRs in the non-differentiated GSCs. Additionally, non-differentiated GSCs were compared to neural stem cells (NSCs) using a microarray platform. This revealed four significantly over-expressed miRs in the non-differentiated GSCs in comparison to the NSCs. The three most over-expressed miRs in the non-differentiated GSCs compared to xenografts were miR-126, -137 and -128. KEGG pathway analysis suggested the main biological function of these over-expressed miRs to be cell-cycle arrest and diminished proliferation. To functionally validate the profiling results suggesting association of these miRs with stem-like properties, experimental over-expression of miR-128 was performed. A consecutive limiting dilution assay confirmed a significantly elevated spheroid formation in the miR-128 over-expressing cells. This may provide potential therapeutic targets for anti-miRs to identify novel treatment options for GBM patients.
HU, YANYAN; WANG, QIAN; WANG, ZENGMIN; WANG, FENGXUE; GUO, XIAOBO; LI, GUIMEI
2015-01-01
Since the tissue of children with combined pituitary hormone deficiency (CPHD) is not readily accessible, a new focus in children with CPHD is the blood-based expression profiling of non-protein coding genes, such as microRNAs (miRNAs or miRs), which regulate gene expression by inhibiting the translation of mRNAs. In this study, to address this, we identified potential miRNA signatures for CPHD by comparing genome-wide miRNA expression profiles in the serum of children with CPHD vs. normal (healthy) controls. Human embryonic kidney 293T cells were transfected with miR-593 or miR-511 oligonucleotides. Potential target gene expression was validated by western blot analysis for proteins and by miR-593 or miR-511 reporter assay using PROP1 gene 3′-untranslated region (3′-UTR) reporter. The miR-593 and miR-511 levels in the serum of 103 children with CPHD were assessed using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method. We found 23 upregulated and 19 down-regulated miRNAs with abnormal expression in children with CPHD compared with the normal controls using miRNA microarray analysis and RT-qPCR. miR-593 and miR-511 targeted the 3′-UTR of the PROP1 gene and attenuated the expression of PROP1. The levels of miR-593 and miR-511 in the serum of children with CPHD were increased compared with those in the control subjects. According to Youden’s index, the sensitivity was 82.54 and 84.86%, and the specificity was 98.15 and 91.36% for miR-593 and miR-511, respectively. The various levels of specific miRNAs, particularly miR-593 and miR-511 whose direct target is the PROP1 gene, may serve as a non-invasive diagnostic biomarkers for children with CPHD. PMID:25434367
Xu, Xianfeng; Li, Zhenzhou; Liu, Jin; Yu, Sha; Wei, Zhaolian
2017-01-01
To investigate the microRNA expression profiling in endometriosis-associate infertility, and relationship between the microRNA expression and endometrial receptivity evaluated by ultrasound. First, miRNA expression profiling difference of ectopic endometrium between 8 endometriosis patients and 6 endometriosis-free patients were compared. Bioinformatics analyses detected 61 differentially expressed (DE) known miRNAs and 57 DE novel miRNAs. Next, other 24 patients were selected for checking the microRNAs in differential expression by RT-PCR. Among them, case and control groups include 14 endometriosis and 10 endometriosis-free infertility patients, respectively. Last, endometrial receptivity of other 20 endometriosis patients was evaluated by ultrasound. In this group of patients, 12 had high endometrial receptivity, in which infertility is caused by fallopian tube occlusion, and 8 had low endometrial receptivity. The study compared endometrial miRNAs expression between two groups, and also evaluated the relationship between the endometrial miRNAs expression and the endometrial receptivity. First, study indicated that "proteinaceous extracellular matrix," "laminin binding" and "extracellular matrix binding" were enriched in 6 up-regulated miRNA targets, while "cell proliferation" was enriched in the 4 down-regulated miRNA targets. Second, 10 miRNAs in different expression (miR-1304- 3p, miR-544b, miR-3684, miR-494-5p, miR-4683, miR-6747-3p; miR-3935, miR-4427, miR-652-5p, miR-205-5p) were detected by RT-PCR, and the results showed statistically significant differences between 2 groups in all 10 miRNAs. Third, the expression levels of miR-1304-3p, miR-494-5p, and miR-4427 were different between the two groups with different endometrial receptivity. But for the miR-544b, there was no statistically significant difference between two groups. The study provided a comprehensive understanding to the current knowledge in the field of miRNAs in endometriosis and the relationship between them and the endometrial receptivity. miRNAs could be used as diagnostic biomarkers and therapeutic agents for this disease. The combination of ultrasound and miRNAs detection could be a better choice for the diagnosis of infertility in the future.
USDA-ARS?s Scientific Manuscript database
The expression of microRNAs (miRs) in bovine cumulus-oocyte complexes (COCs) during late oogenesis was profiled to determine the potential for regulation of maternal mRNAs by this class of small RNAs. A cDNA cloning and sequencing strategy resulted in 1812 putative miR sequences, representing 72 di...
Kim, Julian O; Gazala, Sayf; Razzak, Rene; Guo, Linghong; Ghosh, Sunita; Roa, Wilson H; Bédard, Eric L R
2015-04-01
To assess if miRNA expression profiling of bronchoalveolar lavage (BAL) fluid and sputum could be used to detect early-stage non-small cell lung cancer (NSCLC). Hierarchical cluster analysis was performed on the expression levels of 5 miRNAs (miR-21, miR-143, miR-155, miR-210, and miR-372) which were quantified using RNA reverse transcription and quantitative real-time polymerase chain reaction in sputum and BAL samples from NSCLC cases and cancer-free controls. Cluster analysis of the miRNA expression levels in BAL samples from 21 NSCLC cases and sputum samples from 10 cancer-free controls yielded a diagnostic sensitivity of 85.7% and specificity of 100%. Cluster analysis of sputum samples from the same patients yielded a diagnostic sensitivity of 67.8% and specificity of 90%. miRNA expression profiling of sputum and BAL fluids represent a potential means to detect early-stage NSCLC. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Splenic marginal zone lymphoma: comprehensive analysis of gene expression and miRNA profiling.
Arribas, Alberto J; Gómez-Abad, Cristina; Sánchez-Beato, Margarita; Martinez, Nerea; Dilisio, Lorena; Casado, Felipe; Cruz, Miguel A; Algara, Patrocinio; Piris, Miguel A; Mollejo, Manuela
2013-07-01
Splenic marginal zone lymphoma is a small B-cell neoplasm whose molecular pathogenesis is still essentially unknown and whose differentiation from other small B-cell lymphomas is hampered by the lack of specific markers. We have analyzed the gene expression and miRNA profiles of 31 splenic marginal zone lymphoma cases. For comparison, 7 spleens with reactive lymphoid hyperplasia, 10 spleens infiltrated by chronic lymphocytic leukemia, 12 spleens with follicular lymphoma, 6 spleens infiltrated by mantle cell lymphoma and 15 lymph nodes infiltrated by nodal marginal zone lymphoma were included. The results were validated by qRT-PCR in an independent series including 77 paraffin-embedded splenic marginal zone lymphomas. The splenic marginal zone lymphoma miRNA signature had deregulated expression of 51 miRNAs. The most highly overexpressed miRNAs were miR-155, miR-21, miR-34a, miR-193b and miR-100, while the most repressed miRNAs were miR-377, miR-27b, miR-145, miR-376a and miR-424. MiRNAs located in 14q32-31 were underexpressed in splenic marginal zone lymphoma compared with reactive lymphoid tissues and other B-cell lymphomas. Finally, the gene expression data were integrated with the miRNA profile to identify functional relationships between genes and deregulated miRNAs. Our study reveals miRNAs that are deregulated in splenic marginal zone lymphoma and identifies new candidate diagnostic molecules for splenic marginal zone lymphoma.
Transcriptome profiling reveals miR-9-3p as a novel tumor suppressor in gastric cancer.
Meng, Qingshun; Xiang, Longquan; Fu, Jingwei; Chu, Xianqun; Wang, Chunlin; Yan, Bingzheng
2017-06-06
It has been well established that microRNAs (miRNAs) play important roles in biological processes. To comprehensively measure the altered miRNA expression, we presented the miRNA expression profile of gastric cancer using microarray. We identified 33 miRNAs that were significantly differentially regulated in gastric specimens compared to adjacent normal tissues, among which miR-9-3p expression are significantly down-regulated in gastric cancers. Next, a cohort of 100 gastric cancer tissues and matched normal tissues were enrolled. Kaplan-Meier and multivariate Cox survival analyses were applied to evaluate the prognostic value of miR-9-3p expression, and the result showed that patients with lower miR-9-3p expression level have significantly poorer overall survival. The expression level of miR-9-3p has been proved to be an independent prognostic factor for 5-year overall survival. Furthermore, the result indicated that over-expression of miR-9-3p can inhibit gastric cancer cell invasion. Taken together, our results suggested that miR-9-3p plays important role in tumor invasion, and these findings implicated the potential effects of miR-9-3p on prognosis of gastric cancer.
Identification of Mouse Serum miRNA Endogenous References by Global Gene Expression Profiles
Mi, Qing-Sheng; Weiland, Matthew; Qi, Rui-Qun; Gao, Xing-Hua; Poisson, Laila M.; Zhou, Li
2012-01-01
MicroRNAs (miRNAs) are recently discovered small non-coding RNAs and can serve as serum biomarkers for disease diagnosis and prognoses. Lack of reliable serum miRNA endogenous references for normalization in miRNA gene expression makes single miRNA assays inaccurate. Using TaqMan® real-time PCR miRNA arrays with a global gene expression normalization strategy, we have analyzed serum miRNA expression profiles of 20 female mice of NOD/ShiLtJ (n = 8), NOR/LtJ (n = 6), and C57BL/6J (n = 6) at different ages and disease conditions. We identified five miRNAs, miR-146a, miR-16, miR-195, miR-30e and miR-744, to be stably expressed in all strains, which could serve as mouse serum miRNA endogenous references for single assay experiments. PMID:22348064
Grimes, Janet A; Prasad, Nripesh; Levy, Shawn; Cattley, Russell; Lindley, Stephanie; Boothe, Harry W; Henderson, Ralph A; Smith, Bruce F
2016-12-03
Splenic masses are common in older dogs; yet diagnosis preceding splenectomy and histopathology remains elusive. MicroRNAs (miRNAs) are short, non-coding RNAs that play a role in post-transcriptional regulation, and differential expression of miRNAs between normal and tumor tissue has been used to diagnose neoplastic diseases. The objective of this study was to determine differential expression of miRNAs by use of RNA-sequencing in canine spleens that were histologically confirmed as hemangiosarcoma, nodular hyperplasia, or normal. Twenty-two miRNAs were found to be differentially expressed in hemangiosarcoma samples (4 between hemangiosarcoma and both nodular hyperplasia and normal spleen and 18 between hemangiosarcoma and normal spleen only). In particular, mir-26a, mir-126, mir-139, mir-140, mir-150, mir-203, mir-424, mir-503, mir-505, mir-542, mir-30e, mir-33b, mir-365, mir-758, mir-22, and mir-452 are of interest in the pathogenesis of hemangiosarcoma. Findings of this study confirm the hypothesis that miRNA expression profiles are different between canine splenic hemangiosarcoma, nodular hyperplasia, and normal spleens. A large portion of the differentially expressed miRNAs have roles in angiogenesis, with an additional group of miRNAs being dysregulated in vascular disease processes. Two other miRNAs have been implicated in cancer pathways such as PTEN and cell cycle checkpoints. The finding of multiple miRNAs with roles in angiogenesis and vascular disease is important, as hemangiosarcoma is a tumor of endothelial cells, which are driven by angiogenic stimuli. This study shows that miRNA dysregulation is a potential player in the pathogenesis of canine splenic hemangiosarcoma.
Ahn, Suzie E.; Lim, Chul-Hong; Lee, Jin-Young; Bae, Seung-Min; Kim, Jinyoung; Bazer, Fuller W.; Song, Gwonhwa
2013-01-01
The reproductive system of chickens undergoes dynamic morphological and functional tissue remodeling during the molting period. The present study identified global gene expression profiles following oviductal tissue regression and regeneration in laying hens in which molting was induced by feeding high levels of zinc in the diet. During the molting and recrudescence processes, progressive morphological and physiological changes included regression and re-growth of reproductive organs and fluctuations in concentrations of testosterone, progesterone, estradiol and corticosterone in blood. The cDNA microarray analysis of oviductal tissues revealed the biological significance of gene expression-based modulation in oviductal tissue during its remodeling. Based on the gene expression profiles, expression patterns of selected genes such as, TF, ANGPTL3, p20K, PTN, AvBD11 and SERPINB3 exhibited similar patterns in expression with gradual decreases during regression of the oviduct and sequential increases during resurrection of the functional oviduct. Also, miR-1689* inhibited expression of Sp1, while miR-17-3p, miR-22* and miR-1764 inhibited expression of STAT1. Similarly, chicken miR-1562 and miR-138 reduced the expression of ANGPTL3 and p20K, respectively. These results suggest that these differentially regulated genes are closely correlated with the molecular mechanism(s) for development and tissue remodeling of the avian female reproductive tract, and that miRNA-mediated regulation of key genes likely contributes to remodeling of the avian reproductive tract by controlling expression of those genes post-transcriptionally. The discovered global gene profiles provide new molecular candidates responsible for regulating morphological and functional recrudescence of the avian reproductive tract, and provide novel insights into understanding the remodeling process at the genomic and epigenomic levels. PMID:24098561
Singh, Narendra P; Abbas, Ikbal K; Menard, Martine; Singh, Udai P; Zhang, Jiajia; Nagarkatti, Prakash; Nagarkatti, Mitzi
2015-05-01
Prenatal exposure to diethylstilbestrol (DES) is known to cause an increased susceptibility to a wide array of clinical disorders in humans. Previous studies from our laboratory demonstrated that prenatal exposure to DES induces thymic atrophy and apoptosis in the thymus. In the current study, we investigated if such effects on the thymus result from alterations in the expression of microRNA (miR). To that end, pregnant C57BL/6 mice who were exposed to DES and miR profiles in thymocytes of both the mother and fetuses on postnatal day 3 (gestation day 17) were studied. Of the 609 mouse miRs examined, we noted 59 altered miRs that were common for both mothers and fetuses, whereas 107 altered miRs were specific to mothers only and 101 altered miRs were specific to fetuses only. Upon further analyses in the fetuses, we observed that DES-mediated changes in miR expression may regulate genes involved in important functions, such as apoptosis, autophagy, toxicity, and cancer. Of the miRs that showed decreased expression following DES treatment, miR-18b and miR-23a were found to possess complementary sequences and binding affinity for 3' untranslated regions of the Fas ligand (FasL) and Fas, respectively. Transfection studies confirmed that DES-mediated downregulation of miR-18b and miR-23a led to increased FasL and Fas expression. These data demonstrated that prenatal DES exposure can cause alterations in miRs, leading to changes in the gene expression, specifically, miR-mediated increased expression in FasL and Fas causing apoptosis and thymic atrophy. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Wang, Fang; Jia, Yongfang; Wang, Po; Yang, Qianwen; Du, QiYan; Chang, ZhongJie
2017-04-28
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that regulate gene expression by targeting specific mRNAs. However, the possible role of miRNAs in the ovary differentiation and development of fish is not well understood. In this study, we examined the expression profiles and differential expression of miRNAs during three key stages of ovarian development and different developmental stages in common carp Cyprinus carpio. A total of 8765 miRNAs were identified, including 2155 conserved miRNAs highly conserved among various species, 145 miRNAs registered in miRBase for common carp, and 6505 novel miRNAs identified in common carp for the first time. Comparison of miRNA expression profiles among the five libraries identified 714 co-expressed and 2382 specific expressed miRNAs. Overall, 150, 628, and 431 specifically expressed miRNAs were identified in primordial gonad, juvenile ovary, and adult ovary, respectively. MiR-6758-3p, miR-3050-5p, and miR-2985-3p were highly expressed in primordial gonad, miR-3544-5p, miR-6877-3p, and miR-9086-5p were highly expressed in juvenile ovary, and miR-154-3p, miR-5307-5p, and miR-3958-3p were highly expressed in adult ovary. Predicted target genes of specific miRNAs in primordial gonad were involved in many reproductive biology signaling pathways, including transforming growth factor-β, Wnt, oocyte meiosis, mitogen-activated protein kinase, Notch, p53, and gonadotropin-releasing hormone pathways. Target-gene prediction revealed upward trends in miRNAs targeting male-bias genes, including dmrt1, atm, gsdf, and sox9, and downward trends in miRNAs targeting female-bias genes including foxl2, smad3, and smad4. Other sex-related genes such as sf1 were also predicted to be miRNA target genes. This comprehensive miRNA transcriptome analysis demonstrated differential expression profiles of miRNAs during ovary development in common carp. These results could facilitate future exploitation of the sex-regulatory roles and mechanisms of miRNAs, especially in primordial gonads, while the specifically expressed miRNAs represent candidates for studying the mechanisms of ovary determination in Yellow River carp.
Up-Regulation of miR-21, miR-25, miR-93, and miR-106b in Gastric Cancer
LArki, Pegah; Ahadi, Alireza; Zare, Ali; Tarighi, Shahriar; Zaheri, Mahrokh; Souri, Mojgan; Zali, Mohammad Reza; Ghaedi, Hamid; Omrani, Mir Davood
2018-06-03
Differential expression profile of microRNAs (miRNAs) could be a diagnosis signature for the monitoring of gastric cancer (GC) progression. In this study, we focus on the comparison of expression levels of miR-21, miR-25, miR-93, miR-106b, and miR-375 during the sequential pattern of GC development, including normal gastric, gastric dysplasia, and GC sample. We used SYBR Green-based quantitative-PCR to quantify miRNAs expression. Our analysis revealed the increased expression levels of miR-21 (p = 0.034), miR-25 (p = 0.0003) miR-93 (p = 0.0406), and miR-106b (p = 0.023) in GC samples. In addition, GC patients with positive lymph node metastasis showed the up-regulation of miR-25, miR-93, and miR-106b (p < 0.05). Our findings suggested that miR-21, miR-25, miR-93, and miR-106b altered expression in GC, and some of them may be further investigated as biomarkers for GC early detection and prognosis prediction.
Theodore, Shaniece C.; Davis, Melissa; Zhao, Fu; Wang, Honghe; Chen, Dongquan; Rhim, Johng; Dean-Colomb, Windy; Turner, Timothy; Ji, Weidong; Zeng, Guohua; Grizzle, William; Yates, Clayton
2014-01-01
miRNA expression in African American compared to Caucasian PCa patients has not been widely explored. Herein, we probed the miRNA expression profile of novel AA and CA derived prostate cancer cell lines. We found a unique miRNA signature associated with AA cell lines, independent of tumor status. Evaluation of the most differentially expressed miRNAs showed that miR-132, miR-367b, miR-410, and miR-152 were decreased in more aggressive cells, and this was reversed after treatment of the cells with 5-aza-2′-deoxycytidine. Sequencing of the miR-152 promoter confirmed that it was highly methylated. Ectopic expression of miR-152 resulted in decreased growth, migration, and invasion. Informatics analysis of a large patient cohort showed that decreased miR-152 expression correlated with increased metastasis and a decrease in biochemical recurrence free survival. Analysis of 39 prostate cancer tissues with matched controls (20 AA and 19 CA), showed that 50% of AA patients had statistically significant lower miR-152 expression compared to only 35% of CA patients. Ectopic expression of miR-152 in LNCaP, PC-3, and MDA-PCa-2b cells down-regulated DNA (cytosine-5)-methyltransferase 1 (DNMT1) through direct binding in the DNMT1 3'UTR. There appeared to be a reciprocal regulatory relationship of miR-152/DNMT1 expression, as cells treated with siRNA DNMT1 caused miR-152 to be re-expressed in all cell lines. In summary, these results demonstrate that epigenetic regulation of miR-152/DNMT1 may play an important role in multiple events that contribute to the aggressiveness of PCa tumors, with an emphasis on AA PCa patients. PMID:25004396
Garcia-Diaz, D F; Camacho-Guillén, P; Codner, E; Pérez-Bravo, F
2018-01-31
Type 1 diabetes mellitus (T1D) is an autoimmune disease characterized by the progressive destruction of β cells, mediated by the interaction between T cells and several cytokines. The pathogenesis of T1D has established its possible relationship with miRNAs. In this study, we analyze the expression profile of miR-15a and miR-16 in peripheral blood mononuclear cells (PBMCs) and their possible association with apoptosis, inflammation, or autoimmunity markers. 38 T1D patients and 41 control subjects were recruited. mRNAs were analyzed by means of qPCR and TaqMan probes. PBMCs were treated with different concentrations of glucose (baseline, 11 and 25 mM) with or without an inflammatory stimulus as TNF-α (10 ng/ml). A decrease in the levels of the miR-15a expression in basal conditions is observed in T1D patients compared to healthy control subjects (relative units 0.5 vs. 1.8, p < 0.05). This change in miR-15a and miR-16 is not affected by the addition of TNF-α. No association is observed with inflammatory markers (IL-6, TNF-α, vCAM) or apoptosis (bcl2 expression). The relationship with immunological markers shows an interaction effect between miR16 and IA-2 (p < 0.03). TNF-α does not affect the expression profile of miR-15a and miR16 in PBMCs. A weak correlation is observed between miR-16 and with the autoimmunity profile (IA-2 autoantibody).
Garcia-Diaz, D F; Camacho-Guillén, P; Codner, E; Pérez-Bravo, F
2018-01-30
Type 1 diabetes mellitus (T1D) is an autoimmune disease characterized by the progressive destruction of β cells, mediated by the interaction between T cells and several cytokines. The pathogenesis of T1D has established its possible relationship with miRNAs. In this study, we analyze the expression profile of miR-15a and miR-16 in peripheral blood mononuclear cells (PBMCs) and their possible association with apoptosis, inflammation, or autoimmunity markers. 38 T1D patients and 41 control subjects were recruited. mRNAs were analyzed by means of qPCR and TaqMan probes. PBMCs were treated with different concentrations of glucose (baseline, 11 and 25 mM) with or without an inflammatory stimulus as TNF-α (10 ng/ml). A decrease in the levels of the miR-15a expression in basal conditions is observed in T1D patients compared to healthy control subjects (relative units 0.5 vs. 1.8, p < 0.05). This change in miR-15a and miR-16 is not affected by the addition of TNF-α. No association is observed with inflammatory markers (IL-6, TNF-α, vCAM) or apoptosis (bcl2 expression). The relationship with immunological markers shows an interaction effect between miR16 and IA-2 (p < 0.03). TNF-α does not affect the expression profile of miR-15a and miR16 in PBMCs. A weak correlation is observed between miR-16 and with the autoimmunity profile (IA-2 autoantibody).
Naji, Mohammad; Nekoonam, Saeid; Aleyasin, Ashraf; Arefian, Ehsan; Mahdian, Reza; Azizi, Elham; Shabani Nashtaei, Maryam; Amidi, Fardin
2018-01-01
Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies that affects women in reproductive age. MicroRNAs (miRNAs) play crucial roles in normal function of female reproductive system and folliculogenesis. Deregulated expression of miRNAs in PCOS condition may be significantly implicated in the pathogenesis of PCOS. We determined relative expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells (GLCs), follicular fluid (FF), and serum of PCOS patients. Human subjects were divided into PCOS (n = 20) and control (n = 21) groups. GLCs, FF, and serum were isolated and stored. RNA isolation was performed and cDNA was reversely transcribed using specific stem-loop RT primers. Relative expression of miRNAs was calculated after normalization against U6 expression. Correlation of miRNAs' expression level with basic clinical features and predictive value of miRNAs in FF and serum were appraised. Relative expression of miR-145 and miR-182 in GLCs was significantly decreased in PCOS, but miR-182 in FF of PCOS patients revealed up-regulated levels. Significant correlations between level of miRNAs in FF and serum and hormonal profile of subjects were observed. MiR-182 in FF showed a significant predictive value with AUC of 0.73, 76.4% sensitivity, and 70.5% specificity which was improved after combination of miR-182 and miR-145. A significant dysregulation of miR-145 and miR-182 in GLCs of PCOS may indicate their involvement in pathogenesis of PCOS. Differential up-regulation of miR-182 in FF of PCOS patients with its promising predictive values for discrimination of PCOS reinforced the importance of studying miRNAs' profile in FF.
NASA Astrophysics Data System (ADS)
Zhang, Ye; Wu, Honglu; Ramesh, Govindarajan; Rohde, Larry; Story, Michael; Mangala, Lingegowda
2012-07-01
EFFECTS OF SIMULATED MICROGRAVITY ON THE EXPRESSION PROFILE OF MICRORNA IN HUMAN LYMPHOBLASTOID CELLS Lingegowda S. Mangala1,2, Ye Zhang1,3, Zhenhua He2, Kamal Emami1, Govindarajan T. Ramesh4, Michael Story 5, Larry H. Rohde2, and Honglu Wu1 1 NASA Johnson Space Center, Houston, Texas, USA 2 University of Houston Clear Lake, Houston, Texas, USA 3 Wyle Integrated Science and Engineering Group, Houston, Texas, USA 4 Norfolk State University, Norfolk, VA, USA 5 University of Texas, Southwestern Medical Center, Dallas, Texas, USA This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison to static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a High Aspect Ratio Vessel (HARV; bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNA was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22 and miR-141, miR-618 and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using q-RT PCR. Network and pathway analysis of gene and miRNA expression profiles indicates that the regulation of cell communication and catalytic activities, as well as pathways involved in immune response_IL-15 signaling and NGF mediated NF-kB activation were significantly altered under the simulated microgravity condition.
Meier, Jan; Hovestadt, Volker; Zapatka, Marc; Pscherer, Armin; Lichter, Peter; Seiffert, Martina
2013-01-01
MicroRNAs (miRNAs) are single-stranded, small, non-coding RNAs, which fine-tune protein expression by degrading and/or translationally inhibiting mRNAs. Manipulation of miRNA expression in animal models frequently results in severe phenotypes indicating their relevance in controlling cellular functions, most likely by interacting with multiple targets. To better understand the effect of miRNA activities, genome-wide analysis of their targets are required. MicroRNA profiling as well as transcriptome analysis upon enforced miRNA expression were frequently used to investigate their relevance. However, these approaches often fail to identify relevant miRNAs targets. Therefore, we tested the precision of RNA-interacting protein immunoprecipitation (RIP) using AGO2-specific antibodies, a core component of the “RNA-induced silencing complex” (RISC), followed by RNA sequencing (Seq) in a defined cellular system, the HEK293T cells with stable, ectopic expression of miR-155. Thereby, we identified 100 AGO2-associated mRNAs in miR-155-expressing cells, of which 67 were in silico predicted miR-155 target genes. An integrated analysis of the corresponding expression profiles indicated that these targets were either regulated by mRNA decay or by translational repression. Of the identified miR-155 targets, 17 were related to cell cycle control, suggesting their involvement in the observed increase in cell proliferation of HEK293T cells upon miR-155 expression. Additional, secondary changes within the gene expression profile were detected and might contribute to this phenotype as well. Interestingly, by analyzing RIP-Seq data of HEK-293T cells and two B-cell lines we identified a recurrent disproportional enrichment of several miRNAs, including miR-155 and miRNAs of the miR-17-92 cluster, in the AGO2-associated precipitates, suggesting discrepancies in miRNA expression and activity. PMID:23673373
Khuu, Cuong; Jevnaker, Anne-Marthe; Bryne, Magne; Osmundsen, Harald
2014-01-01
Transfection of human oral squamous carcinoma cells (clone E10) with mimics for unexpressed miR-20b or miR-363-5p, encoded by the miR-106a-363 cluster (miR-20b, miR-106a, miR-363-3p, or miR-363-5p), caused 40–50% decrease in proliferation. Transfection with mimics for miR-18a or miR-92a, encoded by the miR-17-92 cluster (all members being expressed in E10 cells), had no effect on proliferation. In contrast, mimic for the sibling miRNA-19a yielded about 20% inhibition of proliferation. To investigate miRNA involvement profiling of miRNA transcriptomes were carried out using deoxyoligonucleotide microarrays. In transfectants for miR-19a, or miR-20b or miR-363-5p most differentially expressed miRNAs exhibited decreased expression, including some miRNAs encoded in paralogous miR-17-92—or miR-106b-25 cluster. Only in cells transfected with miR-19a mimic significantly increased expression of miR-20b observed—about 50-fold as judged by qRT-PCR. Further studies using qRT-PCR showed that transfection of E10 cells with mimic for miRNAs encoded by miR-17-92 - or miR-106a-363 - or the miR-106b-25 cluster confirmed selective effect on expression on sibling miRNAs. We conclude that high levels of miRNAs encoded by the miR-106a-363 cluster may contribute to inhibition of proliferation by decreasing expression of several sibling miRNAs encoded by miR-17-92 or by the miR-106b-25 cluster. The inhibition of proliferation observed in miR-19a-mimic transfectants is likely caused by the miR-19a-dependent increase in the levels of miR-20b and miR-106a. Bioinformatic analysis of differentially expressed miRNAs from miR-106a, miR-20b and miR-363-5p transfectants, but not miR-92a transfectants, yielded significant associations to “Cellular Growth and Proliferation” and “Cell Cycle.” Western blotting results showed that levels of affected proteins to differ between transfectants, suggesting that different anti-proliferative mechanisms may operate in these transfectants. PMID:25202322
Jung, SeungWoo; Bohan, Amy
2018-02-01
OBJECTIVE To characterize expression profiles of circulating microRNAs via genome-wide sequencing for dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve degeneration (MMVD). ANIMALS 9 healthy client-owned dogs and 8 age-matched client-owned dogs with CHF secondary to MMVD. PROCEDURES Blood samples were collected before administering cardiac medications for the management of CHF. Isolated microRNAs from plasma were classified into microRNA libraries and subjected to next-generation sequencing (NGS) for genome-wide sequencing analysis and quantification of circulating microRNAs. Quantitative reverse transcription PCR (qRT-PCR) assays were used to validate expression profiles of differentially expressed circulating microRNAs identified from NGS analysis of dogs with CHF. RESULTS 326 microRNAs were identified with NGS analysis. Hierarchical analysis revealed distinct expression patterns of circulating microRNAs between healthy dogs and dogs with CHF. Results of qRT-PCR assays confirmed upregulation of 4 microRNAs (miR-133, miR-1, miR-let-7e, and miR-125) and downregulation of 4 selected microRNAs (miR-30c, miR-128, miR-142, and miR-423). Results of qRT-PCR assays were highly correlated with NGS data and supported the specificity of circulating microRNA expression profiles in dogs with CHF secondary to MMVD. CONCLUSIONS AND CLINICAL RELEVANCE These results suggested that circulating microRNA expression patterns were unique and could serve as molecular biomarkers of CHF in dogs with MMVD.
MicroRNAs as serum biomarkers for periodontitis.
Tomofuji, Takaaki; Yoneda, Toshiki; Machida, Tatsuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Maruyama, Takayuki; Morita, Manabu
2016-05-01
Studies demonstrated that periodontitis modulates microRNA (miRNAs) expression rates in periodontal tissue. However, the relationship between periodontitis and miRNAs profile in circulation remains unclear. In this study, we investigated the effects of periodontitis on serum miRNAs profile in a rat model. Male Wistar rats (n = 32, 8 weeks old) were divided into four groups of eight rats each. The control groups received no treatment for 2 or 4 weeks. In the other two groups, periodontitis was ligature induced for 2 or 4 weeks. Serum miRNAs expression profiles of each group were compared. Ligation around teeth induced periodontal inflammation at 2 weeks and periodontal tissue destruction at 4 weeks. Microarray results showed that 25 miRNAs were expressed with a <0.5 or >2 difference between the control and periodontitis groups at 4 weeks. Results of real-time PCR revealed that the periodontitis group up-regulated expression rates of serum miR-207 and miR-495 at 2 weeks, and miR-376b-3p at 4 weeks (p < 0.05). Serum miRNAs (miR-207, miR-495, and miR-376b-3p) could be valuable biomarkers for periodontitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Micro-RNAs as diagnostic or prognostic markers in human epithelial malignancies
2011-01-01
Micro-RNAs (miRs) are important regulators of mRNA and protein expression; the ability of miR expression profilings to distinguish different cancer types and classify their sub-types has been well-described. They also represent a novel biological entity with potential value as tumour biomarkers, which can improve diagnosis, prognosis, and monitoring of treatment response for human cancers. This endeavour has been greatly facilitated by the stability of miRs in formalin-fixed paraffin-embedded (FFPE) tissues, and their detection in circulation. This review will summarize some of the key dysregulated miRs described to date in human epithelial malignancies, and their potential value as molecular bio-markers in FFPE tissues and blood samples. There remain many challenges in this domain, however, with the evolution of different platforms, the complexities of normalizing miR profiling data, and the importance of evaluating sufficiently-powered training and validation cohorts. Nonetheless, well-conducted miR profiling studies should contribute important insights into the molecular aberrations driving human cancer development and progression. PMID:22128797
Narasimhan, Ashok; Ghosh, Sunita; Stretch, Cynthia; Greiner, Russell; Bathe, Oliver F; Baracos, Vickie; Damaraju, Sambasivarao
2017-06-01
MicroRNAs (miRs) are small non-coding RNAs that regulate gene (mRNA) expression. Although the pathological role of miRs have been studied in muscle wasting conditions such as myotonic and muscular dystrophy, their roles in cancer cachexia (CC) are still emerging. The objectives are (i) to profile human skeletal muscle expressed miRs; (ii) to identify differentially expressed (DE) miRs between cachectic and non-cachectic cancer patients; (iii) to identify mRNA targets for the DE miRs to gain mechanistic insights; and (iv) to investigate if miRs show potential prognostic and predictive value. Study subjects were classified based on the international consensus diagnostic criteria for CC. Forty-two cancer patients were included, of which 22 were cachectic cases and 20 were non-cachectic cancer controls. Total RNA isolated from muscle biopsies were subjected to next-generation sequencing. A total of 777 miRs were profiled, and 82 miRs with read counts of ≥5 in 80% of samples were retained for analysis. We identified eight DE miRs (up-regulated, fold change of ≥1.4 at P < 0.05). A total of 191 potential mRNA targets were identified for the DE miRs using previously described human skeletal muscle mRNA expression data (n = 90), and a majority of them were also confirmed in an independent mRNA transcriptome dataset. Ingenuity pathway analysis identified pathways related to myogenesis and inflammation. qRT-PCR analysis of representative miRs showed similar direction of effect (P < 0.05), as observed in next-generation sequencing. The identified miRs also showed prognostic and predictive value. In all, we identified eight novel miRs associated with CC. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.
Yin, Kaifeng; Hacia, Joseph G; Zhong, Zhe; Paine, Michael L
2014-11-19
In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis. Total RNA samples from both secretory- and maturation-stage rat enamel organs were subjected to genome-wide miRNA and mRNA transcript profiling. We identified 59 miRNAs that were differentially expressed at the maturation stage relative to the secretory stage of enamel development (False Discovery Rate (FDR)<0.05, fold change (FC)≥1.8). In parallel, transcriptome profiling experiments identified 1,729 mRNA transcripts that were differentially expressed in the maturation stage compared to the secretory stage (FDR<0.05, FC≥1.8). Based on bioinformatics analyses, 5.8% (629 total) of these differentially expressed genes (DEGS) were highlighted as being the potential targets of 59 miRNAs that were differentially expressed in the opposite direction, in the same tissue samples. Although the number of predicted target DEGs was not higher than baseline expectations generated by examination of stably expressed miRNAs, Gene Ontology (GO) analysis showed that these 629 DEGS were enriched for ion transport, pH regulation, calcium handling, endocytotic, and apoptotic activities. Seven differentially expressed miRNAs (miR-21, miR-31, miR-488, miR-153, miR-135b, miR-135a and miR298) in secretory- and/or maturation-stage enamel organs were confirmed by in situ hybridization. Further, we used luciferase reporter assays to provide evidence that two of these differentially expressed miRNAs, miR-153 and miR-31, are potential regulators for their predicated target mRNAs, Lamp1 (miR-153) and Tfrc (miR-31). In conclusion, these data indicate that miRNAs exhibit a dynamic expression pattern during the transition from secretory-stage to maturation-stage tooth enamel formation. Although they represent only one of numerous mechanisms influencing gene activities, miRNAs specific to the maturation stage could be involved in regulating several key processes of enamel maturation by influencing mRNA stability and translation.
Faraji, Farhoud; Hu, Ying; Wu, Gang; Goldberger, Natalie E.; Walker, Renard C.; Zhang, Jinghui; Hunter, Kent W.
2014-01-01
Metastasis is the result of stochastic genomic and epigenetic events leading to gene expression profiles that drive tumor dissemination. Here we exploit the principle that metastatic propensity is modified by the genetic background to generate prognostic gene expression signatures that illuminate regulators of metastasis. We also identify multiple microRNAs whose germline variation is causally linked to tumor progression and metastasis. We employ network analysis of global gene expression profiles in tumors derived from a panel of recombinant inbred mice to identify a network of co-expressed genes centered on Cnot2 that predicts metastasis-free survival. Modulating Cnot2 expression changes tumor cell metastatic potential in vivo, supporting a functional role for Cnot2 in metastasis. Small RNA sequencing of the same tumor set revealed a negative correlation between expression of the Mir216/217 cluster and tumor progression. Expression quantitative trait locus analysis (eQTL) identified cis-eQTLs at the Mir216/217 locus, indicating that differences in expression may be inherited. Ectopic expression of Mir216/217 in tumor cells suppressed metastasis in vivo. Finally, small RNA sequencing and mRNA expression profiling data were integrated to reveal that miR-3470a/b target a high proportion of network transcripts. In vivo analysis of Mir3470a/b demonstrated that both promote metastasis. Moreover, Mir3470b is a likely regulator of the Cnot2 network as its overexpression down-regulated expression of network hub genes and enhanced metastasis in vivo, phenocopying Cnot2 knockdown. The resulting data from this strategy identify Cnot2 as a novel regulator of metastasis and demonstrate the power of our systems-level approach in identifying modifiers of metastasis. PMID:24322557
Liu, Weijun; Chen, Hanxiang; Wong, Nathan; Haynes, Wesley; Baker, Callie M; Wang, Xiaowei
2017-05-28
Pseudohypoxia plays a central role in the progression and therapeutic resistance of clear cell renal cell carcinoma (ccRCC); however, the underlying mechanisms are poorly understood. MicroRNA miR-126 has decreased expression in metastatic or relapsed ccRCC as compared to primary tumors, but the mechanisms by which miR-126 is implicated in RCC remain unknown. Through RNA-seq profiling to evaluate the impact of overexpression or CRISPR knockout of miR-126, we have identified SERPINE1 as a miR-126-5p target regulating cell motility, and SLC7A5 as a miR-126-3p target regulating the mTOR/HIF pathway. Specifically, miR-126 inhibits HIFα protein expression independent of von Hippel-Lindau tumor suppressor (VHL). On the other hand, deactivation of miR-126 induces a pseudohypoxia state due to increased HIFα expression, which further enhances therapeutic resistance and cell motility mediated by SLC7A5 and SERPINE1, respectively. Finally, the clinical relevance of miR-126 modulated gene regulation in ccRCC has been confirmed with profiling data from The Cancer Genome Atlas. Copyright © 2017 Elsevier B.V. All rights reserved.
A contrasting function for miR-137 in embryonic mammogenesis and adult breast carcinogenesis
Kim, Eun-Jung; Tang, Qinghuang; Kim, Kye-Seong; Tickle, Cheryll; Jung, Han-Sung
2015-01-01
MicroRNAs are differentially expressed in breast cancer cells and have been implicated in cancer formation, tumour invasion and metastasis. We investigated the miRNA expression profiles in the developing mammary gland. MiR-137 was expressed prominently in the developing mammary gland. When the miR-137 was over-expressed in the embryo, the mammary epithelium became thickened. Moreover, genes associated with mammary gland formation such as Tbx3 and Lef1 were not expressed. This suggests that miR-137 induces gland formation and invasion. When miR-137 was over-expressed in MDA-MB-231 cells, their ability to form tumours in adult mice was significantly reduced. These data support miR-137 decides epithelial cell behavior in the human breast cancer. It also suggests that miR-137 is a potential therapeutic target for amelioration of breast cancer progression. PMID:26215676
2014-01-01
Background While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. Methods We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Results Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix remodeling. Conclusions Our findings demonstrate that unique miRNA expression profiles correlate with the biological behavior of canine MCTs. Furthermore, dysregulation of miR-9 is associated with MCT metastasis potentially through the induction of an invasive phenotype, identifying a potentially novel pathway for therapeutic intervention. PMID:24517413
MicroRNAs as a potential prognostic factor in gastric cancer
Brenner, Baruch; Hoshen, Moshe B; Purim, Ofer; David, Miriam Ben; Ashkenazi, Karin; Marshak, Gideon; Kundel, Yulia; Brenner, Ronen; Morgenstern, Sara; Halpern, Marisa; Rosenfeld, Nitzan; Chajut, Ayelet; Niv, Yaron; Kushnir, Michal
2011-01-01
AIM: To compare the microRNA (miR) profiles in the primary tumor of patients with recurrent and non-recurrent gastric cancer. METHODS: The study group included 45 patients who underwent curative gastrectomies from 1995 to 2005 without adjuvant or neoadjuvant therapy and for whom adequate tumor content was available. Total RNA was extracted from formalin-fixed paraffin-embedded tumor samples, preserving the small RNA fraction. Initial profiling using miR microarrays was performed to identify potential biomarkers of recurrence after resection. The expression of the differential miRs was later verified by quantitative real-time polymerase chain reaction (qRT-PCR). Findings were compared between patients who had a recurrence within 36 mo of surgery (bad-prognosis group, n = 14, 31%) and those who did not (good-prognosis group, n = 31, 69%). RESULTS: Three miRs, miR-451, miR-199a-3p and miR-195 were found to be differentially expressed in tumors from patients with good prognosis vs patients with bad prognosis (P < 0.0002, 0.0027 and 0.0046 respectively). High expression of each miR was associated with poorer prognosis for both recurrence and survival. Using miR-451, the positive predictive value for non-recurrence was 100% (13/13). The expression of the differential miRs was verified by qRT-PCR, showing high correlation to the microarray data and similar separation into prognosis groups. CONCLUSION: This study identified three miRs, miR-451, miR-199a-3p and miR-195 to be predictive of recurrence of gastric cancer. Of these, miR-451 had the strongest prognostic impact. PMID:22046085
Andaur, Rodrigo; Tapia, Julio C; Moreno, José; Soto, Leopoldo; Armisen, Ricardo; Marcelain, Katherine
2018-05-29
Enhanced radiosensitivity at low doses of ionizing radiation (IR) (0.2 to 0.6 Gy) has been reported in several cell lines. This phenomenon, known as low doses hyper-radiosensitivity (LDHRS), appears as an opportunity to decrease toxicity of radiotherapy and to enhance the effects of chemotherapy. However, the effect of low single doses IR on cell death is subtle and the mechanism underlying LDHRS has not been clearly explained, limiting the utility of LDHRS for clinical applications. To understand the mechanisms responsible for cell death induced by low-dose IR, LDHRS was evaluated in DLD-1 human colorectal cancer cells and the expression of 80 microRNAs (miRNAs) was assessed by qPCR array. Our results show that DLD-1 cells display an early DNA damage response and apoptotic cell death when exposed to 0.6 Gy. miRNA expression profiling identified 3 over-expressed (miR-205-3p, miR-1 and miR-133b) and 2 down-regulated miRNAs (miR-122-5p, and miR-134-5p) upon exposure to 0.6 Gy. This miRNA profile differed from the one in cells exposed to high-dose IR (12 Gy), supporting a distinct low-dose radiation-induced cell death mechanism. Expression of a mimetic miR-205-3p, the most overexpressed miRNA in cells exposed to 0.6 Gy, induced apoptotic cell death and, more importantly, increased LDHRS in DLD-1 cells. Thus, we propose miR-205-3p as a potential radiosensitizer to low-dose IR.
Jiang, Linlin; Huang, Jia; Chen, Yaxiao; Yang, Yabo; Li, Ruiqi; Li, Yu; Chen, Xiaoli; Yang, Dongzi
2016-07-01
This study aimed to detect serum microRNAs (miRNAs) differentially expressed between polycystic ovary syndrome (PCOS) patients with impaired glucose metabolism (IGM), PCOS patients with normal glucose tolerance (NGT), and healthy controls. A TaqMan miRNA array explored serum miRNA profiles as a pilot study, then selected miRNAs were analyzed in a validation cohort consisting of 65 PCOS women with IGM, 65 PCOS women with NGT, and 45 healthy women The relative expression of miR-122, miR-193b, and miR-194 was up-regulated in PCOS patients compared with controls, whereas that of miR-199b-5p was down-regulated. Furthermore, miR-122, miR-193b, and miR-194 were increased in the PCOS-IGM group compared with the PCOS-NGT group. Multiple linear regression analyses revealed that miR-193b and body mass index contributed independently to explain 43.7 % (P < 0.0001) of homeostasis model assessment-insulin resistance after adjustment for age. Investigation of diagnostic values confirmed the optimal combination of BMI and miR-193b to explore the possibility of IGM in PCOS women with area under the curve of 0.752 (95 % CI 0.667-0.837, P < 0.001). Bioinformatics analysis indicated that the predicted target functions of these miRNAs mainly involved glycometabolism and ovarian follicle development pathways, including the insulin signaling pathway, the neurotrophin signaling pathway, the PI3K-AKT signaling pathway, and regulation of actin cytoskeleton. This study expands our knowledge of the serum miRNA expression profiles of PCOS patients with IGM and the predicted target signal pathways involved in disease pathophysiology.
Tahiri, Andliena; Leivonen, Suvi-Katri; Lüders, Torben; Steinfeld, Israel; Ragle Aure, Miriam; Geisler, Jürgen; Mäkelä, Rami; Nord, Silje; Riis, Margit L H; Yakhini, Zohar; Kleivi Sahlberg, Kristine; Børresen-Dale, Anne-Lise; Perälä, Merja; Bukholm, Ida R K; Kristensen, Vessela N
2014-01-01
MicroRNAs (miRNAs) are endogenous non-coding RNAs, which play an essential role in the regulation of gene expression during carcinogenesis. The role of miRNAs in breast cancer has been thoroughly investigated, and although many miRNAs are identified as cancer related, little is known about their involvement in benign tumors. In this study, we investigated miRNA expression profiles in the two most common types of human benign tumors (fibroadenoma/fibroadenomatosis) and in malignant breast tumors and explored their role as oncomirs and tumor suppressor miRNAs. Here, we identified 33 miRNAs with similar deregulated expression in both benign and malignant tumors compared with the expression levels of those in normal tissue, including breast cancer-related miRNAs such as let-7, miR-21 and miR-155. Additionally, messenger RNA (mRNA) expression profiles were obtained for some of the same samples. Using integrated mRNA/miRNA expression analysis, we observed that overexpression of certain miRNAs co-occurred with a significant downregulation of their candidate target mRNAs in both benign and malignant tumors. In support of these findings, in vitro functional screening of the downregulated miRNAs in non-malignant and breast cancer cell lines identified several possible tumor suppressor miRNAs, including miR-193b, miR-193a-3p, miR-126, miR-134, miR-132, miR-486-5p, miR-886-3p, miR-195 and miR-497, showing reduced growth when re-expressed in cancer cells. The finding of deregulated expression of oncomirs and tumor suppressor miRNAs in benign breast tumors is intriguing, indicating that they may play a role in proliferation. A role of cancer-related miRNAs in the early phases of carcinogenesis and malignant transformation can, therefore, not be ruled out.
Tadano, Toshihiro; Kakuta, Yoichi; Hamada, Shin; Shimodaira, Yosuke; Kuroha, Masatake; Kawakami, Yoko; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Masamune, Atsushi; Takahashi, Seiichi; Kinouchi, Yoshitaka; Shimosegawa, Tooru
2016-07-15
To investigate the microRNA (miRNA) expression during histological progression from colorectal normal mucosa through adenoma to carcinoma within a lesion. Using microarray, the sequential changes in miRNA expression profiles were compared in colonic lesions from matched samples; histologically, non-neoplastic mucosa, adenoma, and submucosal invasive carcinoma were microdissected from a tissue sample. Cell proliferation assay was performed to observe the effect of miRNA, and its target genes were predicted using bioinformatics approaches and the expression profile of SW480 transfected with the miRNA mimics. mRNA and protein levels of the target gene in colon cancer cell lines with a mimic control or miRNA mimics were measured using qRT-PCR and Western blotting. The expression levels of miRNA and target gene in colorectal tissue samples were also measured. Microarray analysis identified that the miR-320 family, including miR-320a, miR-320b, miR-320c, miR-320d and miR-320e, were differentially expressed in adenoma and submucosal invasive carcinoma. The miR-320 family, which inhibits cell proliferation, is frequently downregulated in colorectal adenoma and submucosal invasive carcinoma tissues. Seven genes including CDK6 were identified to be common in the results of gene expression array and bioinformatics analyses performed to find the target gene of the miR-320 family. We confirmed that mRNA and protein levels of CDK6 were significantly suppressed in colon cancer cell lines with miR-320 family mimics. CDK6 expression was found to increase from non-neoplastic mucosa through adenoma to submucosal invasive carcinoma tissues and showed an inverse correlation with miR-320 family expression. MiR-320 family affects colorectal tumor proliferation by targeting CDK6, plays important role in its growth, and is considered to be a biomarker for its early detection.
Tadano, Toshihiro; Kakuta, Yoichi; Hamada, Shin; Shimodaira, Yosuke; Kuroha, Masatake; Kawakami, Yoko; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Masamune, Atsushi; Takahashi, Seiichi; Kinouchi, Yoshitaka; Shimosegawa, Tooru
2016-01-01
AIM: To investigate the microRNA (miRNA) expression during histological progression from colorectal normal mucosa through adenoma to carcinoma within a lesion. METHODS: Using microarray, the sequential changes in miRNA expression profiles were compared in colonic lesions from matched samples; histologically, non-neoplastic mucosa, adenoma, and submucosal invasive carcinoma were microdissected from a tissue sample. Cell proliferation assay was performed to observe the effect of miRNA, and its target genes were predicted using bioinformatics approaches and the expression profile of SW480 transfected with the miRNA mimics. mRNA and protein levels of the target gene in colon cancer cell lines with a mimic control or miRNA mimics were measured using qRT-PCR and Western blotting. The expression levels of miRNA and target gene in colorectal tissue samples were also measured. RESULTS: Microarray analysis identified that the miR-320 family, including miR-320a, miR-320b, miR-320c, miR-320d and miR-320e, were differentially expressed in adenoma and submucosal invasive carcinoma. The miR-320 family, which inhibits cell proliferation, is frequently downregulated in colorectal adenoma and submucosal invasive carcinoma tissues. Seven genes including CDK6 were identified to be common in the results of gene expression array and bioinformatics analyses performed to find the target gene of the miR-320 family. We confirmed that mRNA and protein levels of CDK6 were significantly suppressed in colon cancer cell lines with miR-320 family mimics. CDK6 expression was found to increase from non-neoplastic mucosa through adenoma to submucosal invasive carcinoma tissues and showed an inverse correlation with miR-320 family expression. CONCLUSION: MiR-320 family affects colorectal tumor proliferation by targeting CDK6, plays important role in its growth, and is considered to be a biomarker for its early detection. PMID:27559432
microRNA profiling for early detection of nonmelanoma skin cancer.
Balci, S; Ayaz, L; Gorur, A; Yildirim Yaroglu, H; Akbayir, S; Dogruer Unal, N; Bulut, B; Tursen, U; Tamer, L
2016-06-01
microRNAs (miRNAs) are single-stranded, noncoding RNA molecules. Given the vast regulatory potential of miRNAs and their often tissue-specific and disease-specific expression patterns, miRNAs are being assessed as possible biomarkers to aid diagnosis and prediction of different types and stages of cancers, including skin cancer. Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common forms of nonmelanoma skin cancer (NMSC). BCC originates from the basal layer of the epidermis, while SCC arises from epidermal keratinocytes or from the dermal appendages. Although NMSCs are currently the most common types of malignancies, both BCC and SCC have a better than 95% cure rate if detected early. To identify plasma miRNAs suitable for early detection of NMSC. Expression profiles of 741 miRNAs were evaluated using high-throughput real-time quantitative PCR from plasma samples in 42 patients with NMSC and 282 healthy controls (HCs). Our results demonstrated that in patients with NMSC, compared with HCs, expression levels of miR-30e-3p, miR-145-5p, miR-186-5p and miR-875-5p were significantly (P < 0.05) upregulated, while those of miR-19a-3p, miR-25-3p, miR-30a-5p, miR-451 and miR-576-3p were significantly downregulated. Our study suggests that the miRNAs with significant changes in expression (miR-19a-3p, miR-25-3p, miR-30a-5p, miR-145-5p and miR-186-5p) could serve as novel noninvasive biomarkers for detection of NMSC. © 2015 British Association of Dermatologists.
Ramprasath, Tharmarajan; Kalpana, Krishnan
2015-01-01
Physiological cardiac hypertrophy is an adaptive mechanism, induced during chronic exercise. As it is reversible and not associated with cardiomyocyte death, it is considered as a natural tactic to prevent cardiac dysfunction and failure. Though, different studies revealed the importance of microRNAs (miRNAs) in pathological hypertrophy, their role during physiological hypertrophy is largely unexplored. Hence, this study is aimed at revealing the global expression profile of miRNAs during physiological cardiac hypertrophy. Chronic swimming protocol continuously for eight weeks resulted in induction of physiological hypertrophy in rats and histopathology revealed the absence of tissue damage, apoptosis or fibrosis. Subsequently, the total RNA was isolated and small RNA sequencing was executed. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during physiological hypertrophy. The expression profile of the significantly differentially expressed miRNAs was validated by qPCR. In silico prediction of target genes by miRanda, miRdB and TargetScan and subsequent qPCR analysis unraveled that miRNAs including miR-99b, miR-100, miR-19b, miR-10, miR-208a, miR-133, miR-191a, miR-22, miR-30e and miR-181a are targeting the genes that primarily regulate cell proliferation and cell death. Gene ontology and pathway mapping showed that the differentially expressed miRNAs and their target genes were mapped to apoptosis and cell death pathways principally via PI3K/Akt/mTOR and MAPK signaling. In summary, our data indicates that regulation of these miRNAs with apoptosis regulating potential can be one of the major key factors in determining pathological or physiological hypertrophy by controlling fibrosis, apoptosis and cell death mechanisms. PMID:25793527
MicroRNA-142-5p contributes to Hashimoto's thyroiditis by targeting CLDN1.
Zhu, Jin; Zhang, Yuehua; Zhang, Weichen; Zhang, Wei; Fan, Linni; Wang, Lu; Liu, Yixiong; Liu, Shasha; Guo, Ying; Wang, Yingmei; Yi, Jun; Yan, Qingguo; Wang, Zhe; Huang, Gaosheng
2016-06-08
MicroRNAs have the potential as diagnostic biomarkers and therapeutic targets in autoimmune diseases. However, very limited studies have evaluated the expression of microRNA profile in thyroid gland related to Hashimoto's thyroiditis (HT). MicroRNA microarray expression profiling was performed and validated by quantitative RT-PCR. The expression pattern of miR-142-5p was detected using locked nucleic acid-in situ hybridization. The target gene was predicted and validated using miRNA targets prediction database, gene expression analysis, quantitative RT-PCR, western blot, and luciferase assay. The potential mechanisms of miR-142-5p were studied using immunohistochemistry, immunofluorescence, and quantitative assay of thyrocyte permeability. Thirty-nine microRNAs were differentially expressed in HT (Fold change ≥2, P < 0.05) and miR-142-5p, miR-142-3p, and miR-146a were only high expression in HT thyroid gland (P < 0.001). miR-142-5p, which was expressed at high levels in injured follicular epithelial cells, was also detected in HT patient serum and positively correlated with thyroglobulin antibody (r ≥ 0.6, P < 0.05). Furthermore, luciferase assay demonstrated CLDN1 was the direct target gene of miR-142-5p (P < 0.05), and Immunohistochemical staining showed a reverse expression patterns with miR-142-5p and CLDN1. Overexpression of miR-142-5p in thyrocytes resulted in reducing of the expression of claudin-1 both in mRNA and protein level (P = 0.032 and P = 0.009 respectively) and increasing the permeability of thyrocytes monolayer (P < 0.01). Our findings indicate a previously unrecognized mechanism that miR-142-5p, targeting CLDN1, plays an important role in HT pathogenesis.
Unravelling site-specific breast cancer metastasis: a microRNA expression profiling study
Schrijver, Willemijne A.M.E.; van Diest, Paul J.; Moelans, Cathy B
2017-01-01
Distant metastasis is still the main cause of death from breast cancer. MicroRNAs (miRs) are important regulators of many physiological and pathological processes, including metastasis. Molecular breast cancer subtypes are known to show a site-specific pattern of metastases formation. In this study, we set out to determine the underlying molecular mechanisms of site-specific breast cancer metastasis by microRNA expression profiling. To identify a miR signature for metastatic breast carcinoma that could predict metastatic localization, we compared global miR expression in 23 primary breast cancer specimens with their corresponding multiple distant metastases to ovary (n=9), skin (n=12), lung (n=10), brain (n=4) and gastrointestinal tract (n=10) by miRCURY microRNA expression arrays. For validation, we performed quantitative real-time (qRT) PCR on the discovery cohort and on an independent validation cohort of 29 primary breast cancer specimens and their matched metastases. miR expression was highly patient specific and miR signatures in the primary tumor were largely retained in the metastases, with the exception of several differentially expressed, location specific miRs. Validation with qPCR demonstrated that hsa-miR-106b-5p was predictive for the development of lung metastases. In time, the second metastasis often showed a miR upregulation compared to the first metastasis. This study discovered a metastatic site-specific miR and found miR expression to be highly patient specific. This may lead to novel biomarkers predicting site of distant metastases, and to adjuvant, personalized targeted therapy strategies that could prevent such metastases from becoming clinically manifest. PMID:27902972
MicroRNA profiling and the role of microRNA-132 in neurodegeneration using a rat model.
Lungu, Gina; Stoica, George; Ambrus, Andy
2013-10-11
MicroRNAs (miRs) are endogenous small RNAs that regulate gene expression at the post-transcriptional level by mediating mRNA degradation or transcriptional inhibition. MiRs were implicated in the pathogenesis of numerous neurodegenerative diseases, including Parkinson's disease (PD). In this study we analyzed the possible role of miRs in the neurodegenerative process in a spontaneous autosomal recessive rat model for neurodegeneration developed in our laboratory. To investigate the role of miRs in the etiology of PD, we conducted miR expression profiling using microarrays. We found 20 miRs that are deregulated in affected rats and many of these are implicated in neurodegenerative disease, including PD. In this study we were particularly interested in the expression of miR-132, a miR that has been reported to be highly expressed in neurons, and to have a potential role in neurodegenerative diseases. We found a significant increase in miR-132 in affected rats by microarray and the result was confirmed by qPCR. Next we analyzed one of the known downstream targets of miR-132, nuclear receptor related 1 protein (Nurr1), which is essential in neurogenesis of midbrain dopaminergic neurons. Western blot analysis and immunohistochemistry revealed a significant decrease in Nurr1 protein expression in the mesencephalic neurons. Finally, we found a significant decrease in both serum and mesencephalon brain tissue of brain-derived neurotrophic factor (BDNF), which is known to be a direct target of Nurr1. Taken together, our findings suggest that miR-132 can regulate Nurr1 levels and might influence the development and function of midbrain dopaminergic neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
miRNA Profiles as a Predictor of Chemoresponsiveness in Wilms’ Tumor Blastema
Watson, Jenny A.; Bryan, Kenneth; Williams, Richard; Popov, Sergey; Vujanic, Gordan; Coulomb, Aurore; Boccon-Gibod, Liliane; Graf, Norbert; Pritchard-Jones, Kathy; O’Sullivan, Maureen
2013-01-01
The current SIOP treatment protocol for Wilms’ tumor involves pre-operative chemotherapy followed by nephrectomy. Not all patients benefit equally from such chemotherapy. The aim of this study was to generate a miRNA profile of chemo resistant blastemal cells in high risk Wilms’ tumors which might serve as predictive markers of therapeutic response at the pre-treatment biopsy stage. We have shown here that unsupervised hierarchical clustering of genome-wide miRNA expression profiles can clearly separate intermediate risk tumors from high risk tumors. A total of 29 miRNAs were significantly differentially expressed between post-treatment intermediate risk and high risk groups, including miRNAs that have been previously linked to chemo resistance in other cancer types. Furthermore, 7 of these 29 miRNAs were already at the pre-treatment biopsy stage differentially expressed between cases ultimately deemed intermediate risk compared to high risk. These miRNA alterations include down-regulation in high risk cases of miR-193a.5p, miR-27a and the up-regulation of miR-483.5p, miR-628.5p, miR-590.5p, miR-302a and miR-367. The demonstration of such miRNA markers at the pre-treatment biopsy stage could permit stratification of patients to more tailored treatment regimens. PMID:23308219
Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)
Gomes, Larissa Luz; Moreira, Fabiano Cordeiro; Hamoy, Igor Guerreiro; Santos, Sidney; Assumpção, Paulo; Santana, Ádamo L.; Ribeiro-dos-Santos, Ândrea
2014-01-01
In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained “in silico” must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development. PMID:24966529
Characteristic miR-24 Expression in Gastric Cancers among Atomic Bomb Survivors.
Naito, Yutaka; Oue, Naohide; Pham, Trang T B; Yamamoto, Manabu; Fujihara, Megumu; Ishida, Teruyoshi; Mukai, Shoichiro; Sentani, Kazuhiro; Sakamoto, Naoya; Hida, Eisuke; Sasaki, Hiroki; Yasui, Wataru
2015-01-01
To elucidate the mechanism of radiation-induced cancers, we analyzed the expression profiles of microRNAs extracted from formalin-fixed paraffin-embedded (FFPE) gastric cancer (GC) tissue samples from atomic bomb survivors. The expression levels of miR-21, miR-24, miR-34a, miR-106a, miR-143, and miR-145 were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The expression of microRNAs was measured by qRT-PCR in a Hiroshima University Hospital cohort comprising 32 patients in the high-dose-exposed group and 18 patients in the low-dose-exposed group who developed GC after the bombing. The GC cases showing high expression of miR-24, miR-143, and miR-145 were more frequently found in the high-dose-exposed group than in the low-dose-exposed group. We next performed qRT-PCR of miR-24, miR-143, and miR-145 in a cohort from the Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital comprising 122 patients in the high-dose-exposed group and 48 patients in the low-dose-exposed group who developed GC after the bombing. High expressions of miR-24 and miR-143 were more frequently found in the high-dose-exposed group than in the low-dose-exposed group. Multivariate analysis demonstrated that only high expression of miR-24 was an independent predictor for the exposure status. These results suggest that the measurement of miR-24 expression from FFPE samples is useful to identify radiation-associated GC.
Zhan, Jian-Wei; Jiao, De-Min; Wang, Yi; Song, Jia; Wu, Jin-Hong; Wu, Li-Jun; Chen, Qing-Yong; Ma, Sheng-Lin
2017-09-01
Curcumin (diferuloylmethane) has chemopreventive and therapeutic properties against many types of tumors, both in vitro and in vivo. Previous reports have shown that curcumin exhibits anti-invasive activities, but the mechanisms remain largely unclear. In this study, both microRNA (miRNA) and messenger RNA (mRNA) expression profiles were used to characterize the anti-metastasis mechanisms of curcumin in human non-small cell lung cancer A549 cell line. Microarray analysis revealed that 36 miRNAs were differentially expressed between the curcumin-treated and control groups. miR-330-5p exhibited maximum upregulation, while miR-25-5p exhibited maximum downregulation in the curcumin treatment group. mRNA expression profiles and functional analysis indicated that 226 differentially expressed mRNAs belonged to different functional categories. Significant pathway analysis showed that mitogen-activated protein kinase, transforming growth factor-β, and Wnt signaling pathways were significantly downregulated. At the same time, axon guidance, glioma, and ErbB tyrosine kinase receptor signaling pathways were significantly upregulated. We constructed a miRNA gene network that contributed to the curcumin inhibition of metastasis in lung cancer cells. let-7a-3p, miR-1262, miR-499a-5p, miR-1276, miR-331-5p, and miR-330-5p were identified as key microRNA regulators in the network. Finally, using miR-330-5p as an example, we confirmed the role of miR-330-5p in mediating the anti-migration effect of curcumin, suggesting the importance of miRNAs in the regulation of curcumin biological activity. Our findings provide new insights into the anti-metastasis mechanism of curcumin in lung cancer. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Luchuan; Lv, Bin; Chen, Bo
2015-07-10
Dedifferentiated thyroid carcinoma (DTC) with the loss of radioiodine uptake (RAIU) is often observed in clinical practice under radioiodine therapy, indicating the challenge for poor prognosis. MicroRNA (miRNA) has emerged as a promising therapeutic target in many diseases; yet, the role of miRNAs in RAIU has not been generally investigated. Based on recent studies about miRNA expression in papillary or follicular thyroid carcinomas, the expression profiles of several thyroid relative miRNAs were investigated in one DTC cell line, derived from normal DTC cells by radioiodine treatment. The top candidate miR-146b, with the most significant overexpression profiles in dedifferentiated cells, wasmore » picked up. Further research found that miR-146b could be negatively regulated by histone deacetylase 3 (HDAC3) in normal cells, indicating the correlation between miR-146b and Na{sup +}/I{sup −} symporter (NIS)-mediated RAIU. Fortunately, it was confirmed that miR-146b could regulate NIS expression/activity; what is more important, miR-146b interference would contribute to the recovery of radioiodine-sensitivity in dedifferentiated cells via positively regulating NIS. In the present study, it was concluded that NIS-mediated RAIU could be modulated by miR-146b; accordingly, miR-146b might serve as one of targets to enhance efficacy of radioactive therapy against poorly differential thyroid carcinoma (PDTC). - Highlights: • Significant upregulated miR-146b was picked up from thyroid relative miRNAs in DTC. • MiR-146b was negatively regulated by HDAC3 in normal thyroid carcinoma cells. • NIS activity and expression could be regulated by miR-146b in thyroid carcinoma. • MiR-146b inhibition could recover the decreased radioiodine-sensitivity of DTC cells.« less
Sjögren, Rasmus J. O.; Egan, Brendan; Katayama, Mutsumi; Zierath, Juleen R.
2014-01-01
microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts (day 0) into myotubes at 48 h intervals (day 2, 4, 6, 8, and 10). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) < 5%, fold change > ±1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4, and 10 identified 842 and 949 genes differentially expressed (FDR < 10%) at day 4 and 10, respectively. At day 10, 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states. PMID:25547110
MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma.
Chen, Jiamin; Feilotter, Harriet E; Paré, Geneviève C; Zhang, Xiao; Pemberton, Joshua G W; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A
2010-05-01
Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.
MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma
Chen, Jiamin; Feilotter, Harriet E.; Paré, Geneviève C.; Zhang, Xiao; Pemberton, Joshua G.W.; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A.
2010-01-01
Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by ≥50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3′untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development. PMID:20304954
Díaz-Beyá, M; Brunet, S; Nomdedéu, J; Cordeiro, A; Tormo, M; Escoda, L; Ribera, J M; Arnan, M; Heras, I; Gallardo, D; Bargay, J; Queipo de Llano, M P; Salamero, O; Martí, J M; Sampol, A; Pedro, C; Hoyos, M; Pratcorona, M; Castellano, J J; Nomdedeu, M; Risueño, R M; Sierra, J; Monzó, M; Navarro, A; Esteve, J
2015-01-01
Acute myeloid leukemia (AML) is a heterogeneous disease whose prognosis is mainly related to the biological risk conferred by cytogenetics and molecular profiling. In elderly patients (⩾60 years) with normal karyotype AML miR-3151 have been identified as a prognostic factor. However, miR-3151 prognostic value has not been examined in younger AML patients. In the present work, we have studied miR-3151 alone and in combination with BAALC, its host gene, in a cohort of 181 younger intermediate-risk AML (IR-AML) patients. Patients with higher expression of miR-3151 had shorter overall survival (P=0.0025), shorter leukemia-free survival (P=0.026) and higher cumulative incidence of relapse (P=0.082). Moreover, in the multivariate analysis miR-3151 emerged as independent prognostic marker in both the overall series and within the unfavorable molecular prognostic category. Interestingly, the combined determination of both miR-3151 and BAALC improved this prognostic stratification, with patients with low levels of both parameters showing a better outcome compared with those patients harboring increased levels of one or both markers (P=0.003). In addition, we studied the microRNA expression profile associated with miR-3151 identifying a six-microRNA signature. In conclusion, the analysis of miR-3151 and BAALC expression may well contribute to an improved prognostic stratification of younger patients with IR-AML. PMID:26430723
2013-01-01
Background Qualitative alterations or abnormal expression of microRNAs (miRNAs) in colon cancer have mainly been demonstrated in primary tumors. Poorly overlapping sets of oncomiRs, tumor suppressor miRNAs and metastamiRs have been linked with distinct stages in the progression of colorectal cancer. To identify changes in both miRNA and gene expression levels among normal colon mucosa, primary tumor and liver metastasis samples, and to classify miRNAs into functional networks, in this work miRNA and gene expression profiles in 158 samples from 46 patients were analysed. Results Most changes in miRNA and gene expression levels had already manifested in the primary tumors while these levels were almost stably maintained in the subsequent primary tumor-to-metastasis transition. In addition, comparing normal tissue, tumor and metastasis, we did not observe general impairment or any rise in miRNA biogenesis. While only few mRNAs were found to be differentially expressed between primary colorectal carcinoma and liver metastases, miRNA expression profiles can classify primary tumors and metastases well, including differential expression of miR-10b, miR-210 and miR-708. Of 82 miRNAs that were modulated during tumor progression, 22 were involved in EMT. qRT-PCR confirmed the down-regulation of miR-150 and miR-10b in both primary tumor and metastasis compared to normal mucosa and of miR-146a in metastases compared to primary tumor. The upregulation of miR-201 in metastasis compared both with normal and primary tumour was also confirmed. A preliminary survival analysis considering differentially expressed miRNAs suggested a possible link between miR-10b expression in metastasis and patient survival. By integrating miRNA and target gene expression data, we identified a combination of interconnected miRNAs, which are organized into sub-networks, including several regulatory relationships with differentially expressed genes. Key regulatory interactions were validated experimentally. Specific mixed circuits involving miRNAs and transcription factors were identified and deserve further investigation. The suppressor activity of miR-182 on ENTPD5 gene was identified for the first time and confirmed in an independent set of samples. Conclusions Using a large dataset of CRC miRNA and gene expression profiles, we describe the interplay of miRNA groups in regulating gene expression, which in turn affects modulated pathways that are important for tumor development. PMID:23987127
Unravelling site-specific breast cancer metastasis: a microRNA expression profiling study.
Schrijver, Willemijne A M E; van Diest, Paul J; Moelans, Cathy B
2017-01-10
Distant metastasis is still the main cause of death from breast cancer. MicroRNAs (miRs) are important regulators of many physiological and pathological processes, including metastasis. Molecular breast cancer subtypes are known to show a site-specific pattern of metastases formation. In this study, we set out to determine the underlying molecular mechanisms of site-specific breast cancer metastasis by microRNA expression profiling.To identify a miR signature for metastatic breast carcinoma that could predict metastatic localization, we compared global miR expression in 23 primary breast cancer specimens with their corresponding multiple distant metastases to ovary (n=9), skin (n=12), lung (n=10), brain (n=4) and gastrointestinal tract (n=10) by miRCURY microRNA expression arrays. For validation, we performed quantitative real-time (qRT) PCR on the discovery cohort and on an independent validation cohort of 29 primary breast cancer specimens and their matched metastases.miR expression was highly patient specific and miR signatures in the primary tumor were largely retained in the metastases, with the exception of several differentially expressed, location specific miRs. Validation with qPCR demonstrated that hsa-miR-106b-5p was predictive for the development of lung metastases. In time, the second metastasis often showed a miR upregulation compared to the first metastasis.This study discovered a metastatic site-specific miR and found miR expression to be highly patient specific. This may lead to novel biomarkers predicting site of distant metastases, and to adjuvant, personalized targeted therapy strategies that could prevent such metastases from becoming clinically manifest.
Ugras, Stacy; Brill, Elliott; Jacobsen, Anders; Hafner, Markus; Socci, Nicholas D.; DeCarolis, Penelope L.; Khanin, Raya; O'Connor, Rachael; Mihailovic, Aleksandra; Taylor, Barry S.; Sheridan, Robert; Gimble, Jeffrey M.; Viale, Agnes; Crago, Aimee; Antonescu, Cristina R.; Sander, Chris; Tuschl, Thomas; Singer, Samuel
2011-01-01
Liposarcoma remains the most common mesenchymal cancer, with a mortality rate of 60% among patients with this disease. To address the present lack of therapeutic options, we embarked upon a study of microRNA (miRNA) expression alterations associated with liposarcomagenesis with the goal of exploiting differentially expressed miRNAs and the gene products they regulate as potential therapeutic targets. MicroRNA expression was profiled in samples of normal adipose tissue, well-differentiated liposarcoma, and dedifferentiated liposarcoma by both deep sequencing of small RNA libraries and hybridization-based Agilent microarrays. The expression profiles discriminated liposarcoma from normal adipose tissue and well-differentiated from dedifferentiated disease. We defined over 40 miRNAs that were dysregulated in dedifferentiated liposarcomas in both the sequencing and the microarray analysis. The upregulated miRNAs included two cancer-associated species (miR-21, miR-26a), and the downregulated miRNAs included two species that were highly abundant in adipose tissue (miR-143, miR-145). Restoring miR-143 expression in dedifferentiated liposarcoma cells inhibited proliferation, induced apoptosis, and decreased expression of BCL2, TOP2A, PRC1, and PLK1. The downregulation of PRC1 and its docking partner PLK1 suggests that miR-143 inhibits cytokinesis in these cells. In support of this idea, treatment with a PLK1 inhibitor potently induced G2/M growth arrest and apoptosis in liposarcoma cells. Taken together, our findings suggest that miR-143 re-expression vectors or selective agents directed at miR-143 or its targets may have therapeutic value in dedifferentiated liposarcoma. PMID:21693658
Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome.
Hansen, Katelin F; Sakamoto, Kensuke; Aten, Sydney; Snider, Kaitlin H; Loeser, Jacob; Hesse, Andrea M; Page, Chloe E; Pelz, Carl; Arthur, J Simon C; Impey, Soren; Obrietan, Karl
2016-02-01
miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders. © 2016 Hansen et al.; Published by Cold Spring Harbor Laboratory Press.
Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome
Hansen, Katelin F.; Sakamoto, Kensuke; Aten, Sydney; Snider, Kaitlin H.; Loeser, Jacob; Hesse, Andrea M.; Page, Chloe E.; Pelz, Carl; Arthur, J. Simon C.; Impey, Soren
2016-01-01
miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders. PMID:26773099
The altered liver microRNA profile in hepatotoxicity induced by rhizome Dioscorea bulbifera in mice.
Yang, Rui; Bai, Qingyun; Zhang, Jiaqi; Sheng, Yuchen; Ji, Lili
2017-08-01
MicroRNA (miRNA) has been reported to play important roles in regulating drug-induced liver injury. Ethyl acetate extract isolated from rhizoma Dioscoreae bulbifera (EF) has been reported to induce hepatotoxicity in our previous studies. This study aims to observe the altered liver miRNA profile and its related signalling pathway involved in EF-induced hepatotoxicity. Serum alanine/aspartate aminotransferase assay showed that EF (450 mg/kg)-induced hepatotoxicity in mice. Results of miRNA chip analysis showed that the expression of eight miRNAs was up-regulated and of other nine miRNAs was down-regulated in livers from EF-treated mice. Further, the altered expression of miR-200a-3p, miR-5132-5p and miR-5130 was validated using real-time polymerase chain reaction (PCR) assay. There were total seven predicted target genes of miR-200a-3p, miR-5132-5p and miR-5130. Only one kyoto encyclopedia genes and genomes pathway was annotated using those target genes, which is protein processing in endoplasmic reticulum (ER). Furthermore, liver expression of DnaJ subfamily A member 1, a key gene involved in protein processing in ER based on the altered miRNAs, was increased in EF-treated mice. In conclusion, the results demonstrated that EF altered the expression of liver miRNA profile and its related signalling pathway, which may be involved in EF-induced hepatotoxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Mingjun; Wang, Xiaolei; Li, Wanhu
Although a series of oncogenes and tumor suppressors were identified in the pathological development of gastric adenocarcinoma (GAC), the underlying molecule mechanism were still not fully understood. The current study explored the expression profile of miR-107 and miR-25 in GAC patients and their downstream regulative network. qRT-PCR analysis was performed to quantify the expression of these two miRNAs in serum samples from both patients and healthy controls. Dual luciferase assay was conducted to verify their putative bindings with LATS2. MTT assay, cell cycle assay and transwell assay were performed to explore how miR-107 and miR-25 regulate proliferation and invasion ofmore » gastric cancer cells. Findings of this study demonstrated that total miR-107 or miR-25 expression might be overexpressed in gastric cancer patients and they can simultaneously and synchronically regulate LATS2 expression, thereby affecting gastric cancer cell growth and invasion. Therefore, the miR-25/miR-107-LATS2 axis might play an important role in proliferation and invasion of the gastric cancer cells. - Highlights: • Total miR-107 and miR-25 expression is significantly increased in GAC patients. • Both miR-107 and miR-25 can promote proliferation and invasion of GAC cells. • Both miR-107 and miR-25 can target LATS2 and regulate its expression. • miR-107 and miR-25 regulate proliferation and invasion of GAC cells though LATS2.« less
Eriksen, Anne Haahr Mellergaard; Andersen, Rikke Fredslund; Pallisgaard, Niels; Sørensen, Flemming Brandt; Jakobsen, Anders; Hansen, Torben Frøstrup
2016-01-01
MicroRNAs (miRNAs) play important roles in regulating biological processes at the post-transcriptional level. Deregulation of miRNAs has been observed in cancer, and miRNAs are being investigated as potential biomarkers regarding diagnosis, prognosis and prediction in cancer management. Real-time quantitative polymerase chain reaction (RT-qPCR) is commonly used, when measuring miRNA expression. Appropriate normalisation of RT-qPCR data is important to ensure reliable results. The aim of the present study was to identify stably expressed miRNAs applicable as normaliser candidates in future studies of miRNA expression in rectal cancer. We performed high-throughput miRNA profiling (OpenArray®) on ten pairs of laser micro-dissected rectal cancer tissue and adjacent stroma. A global mean expression normalisation strategy was applied to identify the most stably expressed miRNAs for subsequent validation. In the first validation experiment, a panel of miRNAs were analysed on 25 pairs of micro dissected rectal cancer tissue and adjacent stroma. Subsequently, the same miRNAs were analysed in 28 pairs of rectal cancer tissue and normal rectal mucosa. From the miRNA profiling experiment, miR-645, miR-193a-5p, miR-27a and let-7g were identified as stably expressed, both in malignant and stromal tissue. In addition, NormFinder confirmed high expression stability for the four miRNAs. In the RT-qPCR based validation experiments, no significant difference between tumour and stroma/normal rectal mucosa was detected for the mean of the normaliser candidates miR-27a, miR-193a-5p and let-7g (first validation P = 0.801, second validation P = 0.321). MiR-645 was excluded from the data analysis, because it was undetected in 35 of 50 samples (first validation) and in 24 of 56 samples (second validation), respectively. Significant difference in expression level of RNU6B was observed between tumour and adjacent stromal (first validation), and between tumour and normal rectal mucosa (second validation). We recommend the mean expression of miR-27a, miR-193a-5p and let-7g as normalisation factor, when performing miRNA expression analyses by RT-qPCR on rectal cancer tissue.
Mateu-Jimenez, Mercè; Curull, Víctor; Rodríguez-Fuster, Alberto; Aguiló, Rafael; Sánchez-Font, Albert; Pijuan, Lara; Gea, Joaquim; Barreiro, Esther
2018-01-01
Chronic lung diseases such as chronic obstructive pulmonary disease (COPD) and epigenetic events underlie lung cancer (LC) development. The study objective was that lung tumor expression levels of specific microRNAs and their downstream biomarkers may be differentially regulated in patients with and without COPD. In lung specimens (tumor and non-tumor), microRNAs known to be involved in lung tumorigenesis (miR-21, miR-200b, miR-126, miR-451, miR-210, miR-let7c, miR-30a-30p, miR-155 and miR-let7a, qRT-PCR), DNA methylation, and downstream biomarkers were determined (qRT-PCR and immunoblotting) in 40 patients with LC (prospective study, subdivided into LC-COPD and LC, N = 20/group). Expression of miR-21, miR-200b, miR-210, and miR-let7c and DNA methylation were greater in lung tumor specimens of LC-COPD than of LC patients. Expression of downstream markers PTEN , MARCKs , TPM-1 , PDCD4 , SPRY-2 , ETS-1 , ZEB-2 , FGFRL-1 , EFNA-3 , and k-RAS together with P53 were selectively downregulated in tumor samples of LC-COPD patients. In these patients, tumor expression of miR-126 and miR-451 and that of the biomarkers PTEN , MARCKs , FGFRL-1 , SNAIL-1 , P63 , and k-RAS were reduced. Biomarkers of mechanisms involved in tumor growth, angiogenesis, migration, and apoptosis were differentially expressed in tumors of patients with underlying respiratory disease. These findings shed light into the underlying biology of the reported greater risk to develop LC seen in patients with chronic respiratory conditions. The presence of an underlying respiratory disease should be identified in all patients with LC as the differential biological profile may help determine tumor progression and the therapeutic response. Additionally, epigenetic events offer a niche for pharmacological therapeutic targets.
Adi Harel, S; Bossel Ben-Moshe, N; Aylon, Y; Bublik, D R; Moskovits, N; Toperoff, G; Azaiza, D; Biagoni, F; Fuchs, G; Wilder, S; Hellman, A; Blandino, G; Domany, E; Oren, M
2015-01-01
MicroRNAs (miRs) regulate a variety of cellular processes, and their impaired expression is involved in cancer. Silencing of tumor-suppressive miRs in cancer can occur through epigenetic modifications, including DNA methylation and histone deacetylation. We performed comparative miR profiling on cultured lung cancer cells before and after treatment with 5′aza-deoxycytidine plus Trichostatin A to reverse DNA methylation and histone deacetylation, respectively. Several tens of miRs were strongly induced by such ‘epigenetic therapy'. Two representatives, miR-512-5p (miR-512) and miR-373, were selected for further analysis. Both miRs were secreted in exosomes. Re-expression of both miRs augmented cisplatin-induced apoptosis and inhibited cell migration; miR-512 also reduced cell proliferation. TEAD4 mRNA was confirmed as a direct target of miR-512; likewise, miR-373 was found to target RelA and PIK3CA mRNA directly. Our results imply that miR-512 and miR-373 exert cell-autonomous and non-autonomous tumor-suppressive effects in lung cancer cells, where their re-expression may benefit epigenetic cancer therapy. PMID:25591738
Tripathi, Anita; Goswami, Kavita; Sanan-Mishra, Neeti
2015-01-01
microRNAs (miRs) are a class of 21–24 nucleotide long non-coding RNAs responsible for regulating the expression of associated genes mainly by cleavage or translational inhibition of the target transcripts. With this characteristic of silencing, miRs act as an important component in regulation of plant responses in various stress conditions. In recent years, with drastic change in environmental and soil conditions different type of stresses have emerged as a major challenge for plants growth and productivity. The identification and profiling of miRs has itself been a challenge for research workers given their small size and large number of many probable sequences in the genome. Application of computational approaches has expedited the process of identification of miRs and their expression profiling in different conditions. The development of High-Throughput Sequencing (HTS) techniques has facilitated to gain access to the global profiles of the miRs for understanding their mode of action in plants. Introduction of various bioinformatics databases and tools have revolutionized the study of miRs and other small RNAs. This review focuses the role of bioinformatics approaches in the identification and study of the regulatory roles of plant miRs in the adaptive response to stresses. PMID:26578966
Sousa, Josane F.; Nam, Ki Taek; Petersen, Christine P.; Lee, Hyuk-Joon; Yang, Han-Kwang; Kim, Woo Ho; Goldenring, James R.
2016-01-01
Objective Intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM) are considered neoplastic precursors of gastric adenocarcinoma and are both marked by gene expression alterations in comparison to normal stomach. Since miRNAs are important regulators of gene expression, we sought to investigate the role of miRNAs on the development of stomach metaplasias. Design We performed miRNA profiling using a qRT-PCR approach on laser capture microdissected human intestinal metaplasia and SPEM. Data integration of the miRNA profile with a previous mRNA profile from the same samples was performed to detect potential miRNA-mRNA regulatory circuits. Transfection of gastric cancer cell lines with selected miRNA mimics and inhibitors was used to evaluate their effects on the expression of putative targets and additional metaplasia markers. Results We identified several genes as potential targets of miRNAs altered during metaplasia progression. We showed evidence that HNF4γ (upregulated in intestinal metaplasia) is targeted by miR-30 and that miR-194 targets a known co-regulator of HNF4 activity, NR2F2 (downregulated in intestinal metaplasia). Intestinal metaplasia markers such as VIL1, TFF2 and TFF3 were down-regulated after overexpression of miR-30a in a HNF4γ-dependent manner. In addition, overexpression of HNF4γ was sufficient to induce the expression of VIL1 and this effect was potentiated by down-regulation of NR2F2. Conclusion The interplay of the two transcription factors HNF4γ and NR2F2 and their coordinate regulation by miR-30 and miR-194, respectively, represent a miRNA to transcription factor network responsible for the expression of intestinal transcripts in stomach cell lineages during the development of intestinal metaplasia. PMID:25800782
Circulating MicroRNAs as Novel Biomarkers of Stenosis Progression in Asymptomatic Carotid Stenosis.
Dolz, Sandra; Górriz, David; Tembl, José Ignacio; Sánchez, Dolors; Fortea, Gerardo; Parkhutik, Vera; Lago, Aida
2017-01-01
Progression of asymptomatic carotid artery stenosis (ACAS) in patients with >50% luminal narrowing is considered a potential risk factor for ischemic stroke; however, subclinical molecular biomarkers of ACAS progression are lacking. Recent studies suggest a regulatory function for several microRNAs (miRNAs) on the evolution of carotid plaque, but its role in ACAS progression is mostly unknown. The aim of our study was to investigate a wide miRNA panel in peripheral blood exosomes from patients with ACAS to associate circulating miRNA expression profiles with stenosis progression. The study included 60 patients with ACAS carrying >50% luminal narrowing. First, miRNA expression profiles of circulating exosomes were determined by Affymetrix microarrays from plasma samples of 16 patients from the cohort. Second, those miRNAs among the most differentially expressed in patients with ACAS progression were quantified by real-time polymerase chain reaction in a separate replication cohort of 39 subjects within the patient sample. Our results showed that ACAS progression was associated with development of stroke. MiR-199b-3p, miR-27b-3p, miR-130a-3p, miR-221-3p, and miR-24-3p presented significant higher expression in those patients with ACAS progression. In conclusion, our study supports that specific circulating miRNA expression profiles could provide a new tool that complements the monitoring of ACAS progression, improving therapeutic approaches to prevent ischemic stroke. © 2016 American Heart Association, Inc.
Christensen, Lise Lotte; Tobiasen, Heidi; Holm, Anja; Schepeler, Troels; Ostenfeld, Marie S; Thorsen, Kasper; Rasmussen, Mads H; Birkenkamp-Demtroeder, Karin; Sieber, Oliver M; Gibbs, Peter; Lubinski, Jan; Lamy, Philippe; Laurberg, Søren; Oster, Bodil; Hansen, Kristian Q; Hagemann-Madsen, Rikke; Byskov, Kristina; Ørntoft, Torben F; Andersen, Claus L
2013-07-01
Colorectal cancer (CRC) is one of the leading causes of cancer deaths in Western countries. A significant number of CRC patients undergoing curatively intended surgery subsequently develop recurrence and die from the disease. MicroRNAs (miRNAs) are aberrantly expressed in cancers and appear to have both diagnostic and prognostic significance. In this study, we identified novel miRNAs associated with recurrence of CRC, and their possible mechanism of action. TaqMan(®) Human MicroRNA Array Set v2.0 was used to profile the expression of 667 miRNAs in 14 normal colon mucosas and 46 microsatellite stable CRC tumors. Four miRNAs (miR-362-3p, miR-570, miR-148 a* and miR-944) were expressed at a higher level in tumors from patients with no recurrence (p<0.015), compared with tumors from patients with recurrence. A significant association with increased disease free survival was confirmed for miR-362-3p in a second independent cohort of 43 CRC patients, using single TaqMan(®) microRNA assays. In vitro functional analysis showed that over-expression of miR-362-3p in colon cancer cell lines reduced cell viability, and proliferation mainly due to cell cycle arrest. E2F1, USF2 and PTPN1 were identified as potential miR-362-3p targets by mRNA profiling of HCT116 cells over-expressing miR-362-3p. Subsequently, these genes were confirmed as direct targets by Luciferase reporter assays and their knockdown in vitro phenocopied the effects of miR-362-3p over-expression. We conclude that miR-362-3p may be a novel prognostic marker in CRC, and hypothesize that the positive effects of augmented miR-362-3p expression may in part be mediated through the targets E2F1, USF2 and PTPN1. Copyright © 2012 UICC.
Dong, Peixin; Ihira, Kei; Xiong, Ying; Watari, Hidemichi; Hanley, Sharon J B; Yamada, Takahiro; Hosaka, Masayoshi; Kudo, Masataka; Yue, Junming; Sakuragi, Noriaki
2016-04-12
Overexpression of IQGAP1 and microRNA (miRNA) dysregulation are frequent in human tumors, but little is known about the role of IQGAP1 and its relationship to miRNA in endometrial carcinogenesis. We demonstrate that IQGAP1 activates the epithelial-mesenchymal transition (EMT) program and that miR-124 directly represses IQGAP1 expression in endometrial cancer (EC) cells. The overexpression of IQGAP1 stimulates EMT features and enhances migration, invasion and proliferation of EC cells, whereas knocking down IQGAP1 expression reverses EMT and inhibits these malignant properties. Using miRNA microarray profiling, we identified 29 miRNAs (let-7b, let-7f, miR-10b, miR-15b, miR-23a, miR-24, miR-25, miR-27a, miR-29b, miR-30a-5p, miR-34a, miR-124, miR-127, miR-130b, miR-148a, miR-155, miR-191*, miR-194, miR-224, miR-362, miR-409-3p, miR-422b, miR-424, miR-453, miR-497, miR-518d, miR-518f*, miR-526a and miR-656) that are significantly down-regulated in an in vitro-selected highly invasive derivative cell line (HEC-50-HI) relative to the parental HEC-50 cells. We further identified miR-124 as a direct regulator of IQGAP1 in EC cells. Enforced expression of miR-124 suppresses EC cell invasion and proliferation. The expression of IQGAP1 mRNA was significantly elevated in EC tissues, while the expression of miR-124 was decreased. The downregulation of miR-124 correlates with a poor survival outcome for patients with EC. Treating EC cells with the demethylating agent 5-aza-2'-deoxycytidine increased miR-124 expression and down-regulated IQGAP1 levels. Our data suggest that IQGAP1 promotes EMT, migration and invasion of EC cells. MiR-124, a novel tumor suppressor miRNA that is epigenetically silenced in EC, can reverse EMT and the invasive properties, by attenuating the expression of the IQGAP1 oncogene.
Watari, Hidemichi; Hanley, Sharon J.B.; Yamada, Takahiro; Hosaka, Masayoshi; Kudo, Masataka; Yue, Junming; Sakuragi, Noriaki
2016-01-01
Overexpression of IQGAP1 and microRNA (miRNA) dysregulation are frequent in human tumors, but little is known about the role of IQGAP1 and its relationship to miRNA in endometrial carcinogenesis. We demonstrate that IQGAP1 activates the epithelial–mesenchymal transition (EMT) program and that miR-124 directly represses IQGAP1 expression in endometrial cancer (EC) cells. The overexpression of IQGAP1 stimulates EMT features and enhances migration, invasion and proliferation of EC cells, whereas knocking down IQGAP1 expression reverses EMT and inhibits these malignant properties. Using miRNA microarray profiling, we identified 29 miRNAs (let-7b, let-7f, miR-10b, miR-15b, miR-23a, miR-24, miR-25, miR-27a, miR-29b, miR-30a-5p, miR-34a, miR-124, miR-127, miR-130b, miR-148a, miR-155, miR-191*, miR-194, miR-224, miR-362, miR-409-3p, miR-422b, miR-424, miR-453, miR-497, miR-518d, miR-518f*, miR-526a and miR-656) that are significantly down-regulated in an in vitro-selected highly invasive derivative cell line (HEC-50-HI) relative to the parental HEC-50 cells. We further identified miR-124 as a direct regulator of IQGAP1 in EC cells. Enforced expression of miR-124 suppresses EC cell invasion and proliferation. The expression of IQGAP1 mRNA was significantly elevated in EC tissues, while the expression of miR-124 was decreased. The downregulation of miR-124 correlates with a poor survival outcome for patients with EC. Treating EC cells with the demethylating agent 5-aza-2′-deoxycytidine increased miR-124 expression and down-regulated IQGAP1 levels. Our data suggest that IQGAP1 promotes EMT, migration and invasion of EC cells. MiR-124, a novel tumor suppressor miRNA that is epigenetically silenced in EC, can reverse EMT and the invasive properties, by attenuating the expression of the IQGAP1 oncogene. PMID:26934121
Kogo, Ryunosuke; How, Christine; Chaudary, Naz; Bruce, Jeff; Shi, Wei; Hill, Richard P.; Zahedi, Payam; Yip, Kenneth W.; Liu, Fei-Fei
2015-01-01
Cervical cancer is the third most common cancer in women worldwide. In the present study, global microRNA profiling for 79 cervical cancer patient samples led to the identification of miR-218 down-regulation in cervical cancer tissues compared to normal cervical tissues. Lower miR-218 expression was associated significantly with worse overall survival (OS), disease-free survival (DFS), and pelvic/aortic lymph node recurrence. In vitro, miR-218 over-expression decreased clonogenicity, migration, and invasion. Survivin (BIRC5) was subsequently identified as an important cervical cancer target of miR-218 using in silico prediction, mRNA profiling, and quantitative real-time PCR (qRT-PCR). Concordant with miR-218 over-expression, survivin knockdown by siRNA decreased clonogenicity, migration, and invasion. YM155, a small molecule survivin inhibitor, significantly suppressed tumor growth and lymph node metastasis in vivo. Our findings demonstrate that the miR-218~survivin axis inhibits cervical cancer progression by regulating clonogenicity, migration, and invasion, and suggest that the inhibition of survivin could be a potential therapeutic strategy to improve outcome in this disease. PMID:25473903
Chen, Muyan; Storey, Kenneth B
2014-02-01
The sea cucumber Apostichopus japonicus withstands high water temperatures in the summer by suppressing its metabolic rate and entering a state of aestivation. We hypothesized that changes in the expression of miRNAs could provide important post-transcriptional regulation of gene expression during hypometabolism via control over mRNA translation. The present study analyzed profiles of miRNA expression in the sea cucumber respiratory tree using Solexa deep sequencing technology. We identified 279 sea cucumber miRNAs, including 15 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA; after at least 15 days of continuous torpor) were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to an active state). We identified 30 differentially expressed miRNAs ([RPM (reads per million) >10, |FC| (|fold change|)≥1, FDR (false discovery rate)<0.01]) during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-124, miR-124-3p, miR-79, miR-9 and miR-2010 were significantly over-expressed during deep aestivation compared with non-aestivation animals, suggesting that these miRNAs may play important roles in metabolic rate suppression during aestivation. High-throughput sequencing data and microarray data have been submitted to the GEO database with accession number: 16902695. Copyright © 2014 Elsevier B.V. All rights reserved.
Sand, Michael; Hessam, Schapoor; Amur, Susanne; Skrygan, Marina; Bromba, Michael; Stockfleth, Eggert; Gambichler, Thilo; Bechara, Falk G
2017-05-01
A variety of cancers are associated with the expression of the oncogenic miR-17-92 cluster (Oncomir-1) and tumor suppressor miR-143-5p/miR-145-5p. Epidermal skin cancer has not been investigated for the expression of miR-17-92 and miR-143-145 clusters, despite being extensively studied regarding global microRNA profiles. The goal of this study was to investigate the expression and possible correlation of expression of miR17-92 and miR-143-145 cluster members in epidermal skin cancer. We evaluated punch biopsies from patients with cutaneous squamous cell carcinoma (cSCC, n=15) and basal cell carcinoma (BCC, n=16), along with control specimens from non-lesional epidermal skin (n=16). Expression levels of the miR17-92 cluster (including miR-17-5p, miR-17-3p, miR-18a-3p, miR-18a-5p, miR-19a-3p, miR-19a-5p, miR-19b-3p, miR-19b-1-5p, miR-20a-3p, miR-20a-5p, miR-92a-3p, and miR-92a-5p) and the tumor-suppressive cluster miR-143-145 (including miR-143-5p and miR-145-5p) were detected by quantitative real-time reverse transcriptase polymerase chain reaction. We noted a highly significant increased expression of the miR-17-92 members miR-17-5p, miR-18a-5p, miR19a-3p, and miR-19b-3p and tumor suppressor miR-143-5p (p<0.01) in cSCC. miR-145-5p had a significantly decreased expression (p<0.05) for in BCC. A correlation analysis revealed multiple correlating miRNA-pairs within and between the investigated clusters. This study marks the first evidence for the participation of members of the miR-17-92 cluster in cSCC and miR-143-145 cluster in BCC. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Rotunno, M; Zhao, Y; Bergen, A W; Koshiol, J; Burdette, L; Rubagotti, M; Linnoila, R I; Marincola, F M; Bertazzi, P A; Pesatori, A C; Caporaso, N E; McShane, L M; Wang, E; Landi, M T
2010-12-07
MicroRNAs (miRs) have an important role in lung carcinogenesis and progression. Single-nucleotide polymorphisms (SNPs) in genes involved in miR biogenesis may affect miR expression in lung tissue and be associated with lung carcinogenesis and progression. we analysed 12 SNPs in POLR2A, RNASEN and DICER1 genes in 1984 cases and 2073 controls from the Environment And Genetics in Lung cancer Etiology (EAGLE) study. We investigated miR expression profiles in 165 lung adenocarcinoma (AD) and 125 squamous cell carcinoma tissue samples from the same population. We used logistic and Cox regression models to examine the association of individual genotypes and haplotypes with lung cancer risk and with lung cancer-specific survival, respectively. SNPs-miR expression associations in cases were assessed using two-sample t-tests and global permutation tests. a haplotype in RNASEN (Drosha) was significantly associated with shorter lung cancer survival (hazard ratio=1.86, 95% CI=1.19-2.92, P=0.007). In AD cases, a SNP within the same haplotype was associated with reduced RNASEN mRNA expression (P=0.013) and with miR expression changes (global P=0.007) of miRs known to be associated with cancer (e.g., let-7 family, miR-21, miR-25, miR-126 and miR15a). inherited variation in the miR-processing machinery can affect miR expression levels and lung cancer-specific survival. 2010 Cancer Resaerch UK.
Dai, Guangyao; Yao, Xiaoguang; Zhang, Yubin; Gu, Jianbin; Geng, Yunfeng; Xue, Fei; Zhang, Jingcheng
2018-04-01
Cancer-associated fibroblasts (CAFs) contribute to the proliferation of colorectal cancer(CRC) cells. However, the mechanism by which CAFs develop in the tumor microenvironment remains unknown. Exosomes may be involved in activating CAFs. Using a miRNA expression profiling array, we determined the miRNA expression profile of secretory exosomes in CRC cells and then identified potential miRNAs with significant differential expression compared to normal cells via enrichment analysis. Predicted targets of candidate miRNAs were then assessed via bioinformatics analysis. Realtime qPCR, western blot, and cell cycle analyses were performed to evaluate the role of candidate exosomal miRNAs. Luciferase reporter assays were applied to confirm whether candidate exosomal miRNAs control target pathway expression. A CRC xenograft mouse model was constructed to evaluate tumor growth in vivo. Exosomes from CRC cells contained significantly higher levels of miR-10b than did exosomes from normal colorectal epithelial cells. Moreover, exosomes containing miR-10b were transferred to fibroblasts. Bioinformatics analysis identified PIK3CA, as a potential target of miR-10b. Luciferase reporter assays confirmed that miR-10b directly inhibited PIK3CA expression. Co-culturing fibroblasts with exosomes containing miR-10b significantly suppressed PIK3CA expression and decreased PI3K/Akt/mTOR pathway activity. Finally, exosomes containing miR-10b reduced fibroblast proliferation but promoted expression of TGF-β and SM α-actin, suggesting that exosomal miR-10b may activate fibroblasts to become CAFs that express myofibroblast markers. These activated fibroblasts were able to promote CRC growth in vitro and in vivo. CRC-derived exosomes actively promote disease progression by modulating surrounding stromal cells, which subsequently acquire features of CAFs. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
RISC RNA sequencing for context-specific identification of in vivo miR targets
Matkovich, Scot J; Van Booven, Derek J; Eschenbacher, William H; Dorn, Gerald W
2010-01-01
Rationale MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. Objective To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). Methods and Results We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias, and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1,645 mRNAs consistently targeted to mouse cardiac RISCs. We employed this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing ‘seed’ sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. Conclusions RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context, and is applicable to any tissue and any disease state. Summary MicroRNAs (miRs) are key regulators of mRNA translation in health and disease. While bioinformatic predictions suggest that a single miR may target hundreds of mRNAs, the number of experimentally verified targets of miRs is low. To enable comprehensive, unbiased examination of miR targets, we have performed deep RNA sequencing of cardiac transcriptomes in parallel with cardiac RNA-induced silencing complex (RISC)-associated RNAs (the RISCome), called RISC sequencing. We developed methods that did not require cross-linking of RNAs to RISCs or amplification of mRNA prior to sequencing, making it possible to rapidly perform RISC sequencing from intact tissue while avoiding amplification bias. Comparison of RISCome with transcriptome expression defined the degree of RISC enrichment for each mRNA. The majority of the mRNAs enriched in wild-type cardiac RISComes compared to transcriptomes were bioinformatically predicted to be targets of at least 1 of 139 cardiac-expressed miRs. Programming cardiomyocyte RISCs via transgenic overexpression in adult hearts of miR-133a or miR-499, two miRs that contain entirely different ‘seed’ sequences, elicited differing profiles of RISC-targeted mRNAs. Thus, RISC sequencing represents a highly sensitive method for general RISC profiling and individual miR target identification in biological context. PMID:21030712
Sud, Neetu; Zhang, Hanyuan; Pan, Kaichao; Cheng, Xiao; Cui, Juan; Su, Qiaozhu
2017-05-01
Fructose is a highly lipogenic sugar that can alter energy metabolism and trigger metabolic disorders. In the current study, microRNAs (miRNAs) altered by a high-fructose diet were comprehensively explored to elucidate their significance in the pathogenesis of chronic metabolic disorders. miRNA expression profiling using small noncoding RNA sequencing revealed that 19 miRNAs were significantly upregulated and 26 were downregulated in the livers of high-fructose-fed mice compared to chow-fed mice. Computational prediction and functional analysis identified 10 miRNAs, miR-19b-3p, miR-101a-3p, miR-30a-5p, miR-223-3p, miR-378a-3p, miR-33-5p, miR-145a-3p, miR-128-3p, miR-125b-5p and miR-582-3p, assembled as a regulatory network to potentially target key genes in lipid and lipoprotein metabolism and insulin signaling at multiple levels. qRT-PCR analysis of their potential target genes [IRS-1, FOXO1, SREBP-1c/2, ChREBP, insulin-induced gene-2 (Insig-2), microsomal triglyceride transfer protein (MTTP) and apolipoprotein B (apoB)] demonstrated that fructose-induced alterations of miRNAs were also reflected in mRNA expression profiles of their target genes. Moreover, the miRNA profile induced by high-fructose diet differed from that induced by high-fat diet, indicating that miRNAs mediate distinct pathogenic mechanisms in dietary-induced metabolic disorders. This study presents a comprehensive analysis of a new set of hepatic miRNAs, which were altered by high-fructose diet and provides novel insights into the interaction between miRNAs and their target genes in the development of metabolic syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.
A systems immunology approach identifies the collective impact of 5 miRs in Th2 inflammation.
Kılıç, Ayşe; Santolini, Marc; Nakano, Taiji; Schiller, Matthias; Teranishi, Mizue; Gellert, Pascal; Ponomareva, Yuliya; Braun, Thomas; Uchida, Shizuka; Weiss, Scott T; Sharma, Amitabh; Renz, Harald
2018-06-07
Allergic asthma is a chronic inflammatory disease dominated by a CD4+ T helper 2 (Th2) cell signature. The immune response amplifies in self-enforcing loops, promoting Th2-driven cellular immunity and leaving the host unable to terminate inflammation. Posttranscriptional mechanisms, including microRNAs (miRs), are pivotal in maintaining immune homeostasis. Since an altered expression of various miRs has been associated with T cell-driven diseases, including asthma, we hypothesized that miRs control mechanisms ensuring Th2 stability and maintenance in the lung. We isolated murine CD4+ Th2 cells from allergic inflamed lungs and profiled gene and miR expression. Instead of focusing on the magnitude of miR differential expression, here we addressed the secondary consequences for the set of molecular interactions in the cell, the interactome. We developed the Impact of Differential Expression Across Layers, a network-based algorithm to prioritize disease-relevant miRs based on the central role of their targets in the molecular interactome. This method identified 5 Th2-related miRs (mir27b, mir206, mir106b, mir203, and mir23b) whose antagonization led to a sharp reduction of the Th2 phenotype. Overall, a systems biology tool was developed and validated, highlighting the role of miRs in Th2-driven immune response. This result offers potentially novel approaches for therapeutic interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalan, Vinod; Islam, Farhadul; Pillai, Suja
Purpose: This study aims to examine the expression profiles miR-1288 in oesophageal squamous cell carcinoma (ESCC). The cellular implications and target interactions of ESCC cells following miR-1288 overexpression was also examined. Methods: In total, 120 oesophageal tissues (90 primary ESCCs and 30 non-neoplastic tissues) were recruited for miR-1288 expression analysis using qRT-PCR. An exogenous miR-1288 mimic and its inhibitor were used to explore the in-vitro effects of miR-1288 on ESCC cells by performing cell proliferation, colony formation, cell invasion and migration assays. Localisation and modulatory changes of various miR-1288 regulated proteins such as FOXO1, p53, TAB3, BCL2 and kRAS wasmore » examined using immunofluorescence and western blot. Results: Overexpression of miR-1288 was more often noted in ESCC tissues when compared to non-neoplastic oesophageal tissues. High expression was often noted in high grade carcinomas and with metastases. Patients with high levels of miR-1288 expression showed a slightly better survival compared to patients with low miR-1288 levels. Furthermore, overexpression of miR-1288 showed increased cell proliferation and colony formation, improved cell migration and enhanced cell invasion properties in ESCC cells. In addition, miR-1288 overexpression in ESCC cells showed repression of cytoplasmic tumour suppressor FOXO1 protein expression. Inversely, inhibition of miR-1288 expression exhibited remarkable upregulation of FOXO1 protein, while expressions of other tested proteins remain unchanged. Conclusions: Up regulation of miR-1288 expression in ESCC tissues and miR-1288 induced oncogenic features of ESCC cells in-vitro indicates the oncogenic roles of miR-1288 in ESCCs. Overexpression of miR-1288 play a key role in the pathogenesis of ESCCs and its modulation may have potential therapeutic value in patients with ESCC. - Highlights: • miR-1288 was more often noted in neoplastic than non-neoplastic tissue. • miR-1288 overexpression increased proliferative/invasive activities of ESCC. • miR-1288 overexpression showed repression of FOXO1 protein expression. • miR-1288 functions as an oncogenic miRNA in ESCCs.« less
miRNA expression in control and FSHD fetal human muscle biopsies.
Portilho, Débora Morueco; Alves, Marcelo Ribeiro; Kratassiouk, Gueorgui; Roche, Stéphane; Magdinier, Frédérique; de Santana, Eliane Corrêa; Polesskaya, Anna; Harel-Bellan, Annick; Mouly, Vincent; Savino, Wilson; Butler-Browne, Gillian; Dumonceaux, Julie
2015-01-01
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disorder and is one of the most common forms of muscular dystrophy. We have recently shown that some hallmarks of FSHD are already expressed in fetal FSHD biopsies, thus opening a new field of investigation for mechanisms leading to FSHD. As microRNAs (miRNAs) play an important role in myogenesis and muscle disorders, in this study we compared miRNAs expression levels during normal and FSHD muscle development. Muscle biopsies were obtained from quadriceps of both healthy control and FSHD1 fetuses with ages ranging from 14 to 33 weeks of development. miRNA expression profiles were analyzed using TaqMan Human MicroRNA Arrays. During human skeletal muscle development, in control muscle biopsies we observed changes for 4 miRNAs potentially involved in secondary muscle fiber formation and 5 miRNAs potentially involved in fiber maturation. When we compared the miRNA profiles obtained from control and FSHD biopsies, we did not observe any differences in the muscle specific miRNAs. However, we identified 8 miRNAs exclusively expressed in FSHD1 samples (miR-330, miR-331-5p, miR-34a, miR-380-3p, miR-516b, miR-582-5p, miR-517* and miR-625) which could represent new biomarkers for this disease. Their putative targets are mainly involved in muscle development and morphogenesis. Interestingly, these FSHD1 specific miRNAs do not target the genes previously described to be involved in FSHD. This work provides new candidate mechanisms potentially involved in the onset of FSHD pathology. Whether these FSHD specific miRNAs cause deregulations during fetal development, or protect against the appearance of the FSHD phenotype until the second decade of life still needs to be investigated.
MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simion, Alexandru; Laudadio, Ilaria; Prevot, Pierre-Paul
2010-01-01
MicroRNAs are small, non-coding RNAs that posttranscriptionally regulate gene expression mainly by binding to the 3'UTR of their target mRNAs. Recent data revealed that microRNAs have an important role in pancreas and liver development and physiology. Using cloning and microarray profiling approaches, we show that a unique repertoire of microRNAs is expressed at the onset of liver and pancreas organogenesis, and in pancreas and liver at key stages of cell fate determination. Among the microRNAs that are expressed at these stages, miR-495 and miR-218 were predicted to, respectively, target the Onecut (OC) transcription factors Hepatocyte Nuclear Factor-6 (HNF-6/OC-1) and OC-2,more » two important regulators of liver and pancreas development. MiR-495 and miR-218 are dynamically expressed in developing liver and pancreas, and by transient transfection, we show that they target HNF-6 and OC-2 3'UTRs. Moreover, when overexpressed in cultured cells, miR-495 and miR-218 decrease the endogenous levels of HNF-6 and OC-2 mRNA. These results indicate that the expression of regulators of liver and pancreas development is modulated by microRNAs. They also suggest a developmental role for miR-495 and miR-218.« less
Ghodousi, Elaheh S; Rahgozar, Soheila
2018-04-06
Multidrug resistance (MDR) is considered as the major obstacle for treating pediatric acute lymphoblastic leukemia (ALL). MicroRNAs (miRNAs) are small non coding RNAs which may potentially regulate response to chemotherapy. In this study, total RNA was isolated from bone marrow samples of 46 children with de novo ALL and 16 controls. Quantitative reverse transcriptase polymerase chain reaction was used to investigate the expression profile of the predicted miRNAs; miR-326 and miR-200c, and their predicted targets ABCA2, and ABCA3 transporters. The presence of minimal residual disease was studied using PCR-SSCP (single-strand conformation polymorphism) 1 year after treatment. The association between the miRNA expression and drug resistance was analyzed statistically. Results showed a significant down-regulation of both miR-326 and miR-200c expressions in ALL patients compared with non-cancer controls (P = 0.0002, AUC = 0.813 and P = 0.035, AUC = 0.79, respectively). A considerable negative association between miR-326 expression and MDR was identified which could raise the risk of chemoresistance by 4.8- fold. The expression profiles of miR-326 and ABCA2 transporter were inversely correlated. Data revealed, a novel diagnostic role for miR-326 and miR-200c as potential biomarkers of pediatric ALL. Down-regulation of miR-326 was introduced, for the first time, as a prognostic factor for drug resistance in childhood ALL. To the best of our knowledge, this is the first time that ABCA2 transporter is proposed as a target gene for miR-326, through which it can exert its impact on drug resistance. These data may provide novel approaches to new therapeutics and diagnostics. © 2018 Wiley Periodicals, Inc.
Parafioriti, Antonina; Bason, Caterina; Armiraglio, Elisabetta; Calciano, Lucia; Daolio, Primo Andrea; Berardocco, Martina; Di Bernardo, Andrea; Colosimo, Alessia; Luksch, Roberto; Berardi, Anna C
2016-04-30
The molecular mechanism responsible for Ewing's Sarcoma (ES) remains largely unknown. MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs) by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis.
Pei, Haixia; Ma, Nan; Chen, Jiwei; Zheng, Yi; Tian, Ji; Li, Jing; Zhang, Shuai; Fei, Zhangjun; Gao, Junping
2013-01-01
MicroRNAs play an important role in plant development and plant responses to various biotic and abiotic stimuli. As one of the most important ornamental crops, rose (Rosa hybrida) possesses several specific morphological and physiological features, including recurrent flowering, highly divergent flower shapes, colors and volatiles. Ethylene plays an important role in regulating petal cell expansion during rose flower opening. Here, we report the population and expression profiles of miRNAs in rose petals during flower opening and in response to ethylene based on high throughput sequencing. We identified a total of 33 conserved miRNAs, as well as 47 putative novel miRNAs were identified from rose petals. The conserved and novel targets to those miRNAs were predicted using the rose floral transcriptome database. Expression profiling revealed that expression of 28 known (84.8% of known miRNAs) and 39 novel (83.0% of novel miRNAs) miRNAs was substantially changed in rose petals during the earlier opening period. We also found that 28 known and 22 novel miRNAs showed expression changes in response to ethylene treatment. Furthermore, we performed integrative analysis of expression profiles of miRNAs and their targets. We found that ethylene-caused expression changes of five miRNAs (miR156, miR164, miR166, miR5139 and rhy-miRC1) were inversely correlated to those of their seven target genes. These results indicate that these miRNA/target modules might be regulated by ethylene and were involved in ethylene-regulated petal growth. PMID:23696879
MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells
2013-01-01
Background A subset of breast cancer cells displays increased ability to self-renew and reproduce breast cancer heterogeneity. The characterization of these so-called putative breast tumor-initiating cells (BT-ICs) may open the road for novel therapeutic strategies. As microRNAs (miRNAs) control developmental programs in stem cells, BT-ICs may also rely on specific miRNA profiles for their sustained activity. To explore the notion that miRNAs may have a role in sustaining BT-ICs, we performed a comprehensive profiling of miRNA expression in a model of putative BT-ICs enriched by non-attachment growth conditions. Results We found breast cancer cells grown under non-attachment conditions display a unique pattern of miRNA expression, highlighted by a marked low expression of miR-30 family members relative to parental cells. We further show that miR-30a regulates non-attachment growth. A target screening revealed that miR-30 family redundantly modulates the expression of apoptosis and proliferation-related genes. At least one of these targets, the anti-apoptotic protein AVEN, was able to partially revert the effect of miR-30a overexpression. Finally, overexpression of miR-30a in vivo was associated with reduced breast tumor progression. Conclusions miR30-family regulates the growth of breast cancer cells in non-attachment conditions. This is the first analysis of target prediction in a whole family of microRNAs potentially involved in survival of putative BT-ICs. PMID:23445407
Loohuis, Nikkie FM Olde; Kasri, Nael Nadif; Glennon, Jeffrey C; van Bokhoven, Hans; Hébert, Sébastien S; Kaplan, Barry B.; Martens, Gerard JM; Aschrafi, Armaz
2016-01-01
MicroRNAs (miRs) are small regulatory molecules, which orchestrate neuronal development and plasticity through modulation of complex gene networks. microRNA-137 (miR-137) is a brain-enriched RNA with a critical role in regulating brain development and in mediating synaptic plasticity. Importantly, mutations in this miR are associated with the pathoetiology of schizophrenia (SZ), and there is a widespread assumption that disruptions in miR-137 expression lead to aberrant expression of gene regulatory networks associated with SZ. To systematically identify the mRNA targets for this miR, we performed miR-137 gain- and loss-of-function experiments in primary rat hippocampal neurons and profiled differentially expressed mRNAs through next-generation sequencing. We identified 500 genes that were bidirectionally activated or repressed in their expression by the modulation of miR-137 levels. Gene ontology analysis using two independent software resources suggested functions for these miR-137-regulated genes in neurodevelopmental processes, neuronal maturation processes and cell maintenance, all of which known to be critical for proper brain circuitry formation. Since many of the putative miR-137 targets identified here also have been previously shown to be associated with SZ, we propose that this miR acts as a critical gene network hub contributing to the pathophysiology of this neurodevelopmental disorder. PMID:26925706
Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma.
Gopalan, Vinod; Islam, Farhadul; Pillai, Suja; Tang, Johnny Cheuk-On; Tong, Daniel King-Hung; Law, Simon; Chan, Kwok-Wah; Lam, Alfred King-Yin
2016-11-01
This study aims to examine the expression profiles miR-1288 in oesophageal squamous cell carcinoma (ESCC). The cellular implications and target interactions of ESCC cells following miR-1288 overexpression was also examined. In total, 120 oesophageal tissues (90 primary ESCCs and 30 non-neoplastic tissues) were recruited for miR-1288 expression analysis using qRT-PCR. An exogenous miR-1288 mimic and its inhibitor were used to explore the in-vitro effects of miR-1288 on ESCC cells by performing cell proliferation, colony formation, cell invasion and migration assays. Localisation and modulatory changes of various miR-1288 regulated proteins such as FOXO1, p53, TAB3, BCL2 and kRAS was examined using immunofluorescence and western blot. Overexpression of miR-1288 was more often noted in ESCC tissues when compared to non-neoplastic oesophageal tissues. High expression was often noted in high grade carcinomas and with metastases. Patients with high levels of miR-1288 expression showed a slightly better survival compared to patients with low miR-1288 levels. Furthermore, overexpression of miR-1288 showed increased cell proliferation and colony formation, improved cell migration and enhanced cell invasion properties in ESCC cells. In addition, miR-1288 overexpression in ESCC cells showed repression of cytoplasmic tumour suppressor FOXO1 protein expression. Inversely, inhibition of miR-1288 expression exhibited remarkable upregulation of FOXO1 protein, while expressions of other tested proteins remain unchanged. Up regulation of miR-1288 expression in ESCC tissues and miR-1288 induced oncogenic features of ESCC cells in-vitro indicates the oncogenic roles of miR-1288 in ESCCs. Overexpression of miR-1288 play a key role in the pathogenesis of ESCCs and its modulation may have potential therapeutic value in patients with ESCC. Copyright © 2016 Elsevier Inc. All rights reserved.
Pizzimenti, Stefania; Ferracin, Manuela; Sabbioni, Silvia; Toaldo, Cristina; Pettazzoni, Piergiorgio; Dianzani, Mario Umberto; Negrini, Massimo; Barrera, Giuseppina
2009-01-15
4-Hydroxynonenal (HNE) is one of several lipid oxidation products that may have an impact on human pathophysiology. It is an important second messenger involved in the regulation of various cellular processes and exhibits antiproliferative and differentiative properties in various tumor cell lines. The mechanisms by which HNE affects cell growth and differentiation are only partially clarified. Because microRNAs (miRNAs) have the ability to regulate several cellular processes, we hypothesized that HNE, in addition to other mechanisms, could affect miRNA expression. Here, we present the results of a genome-wide miRNA expression profiling of HNE-treated HL-60 leukemic cells. Among 470 human miRNAs, 10 were found to be differentially expressed between control and HNE-treated cells (at p<0.05). Six miRNAs were down-regulated (miR-181a*, miR-199b, miR-202, miR-378, miR-454-3p, miR-575) and 4 were up-regulated (miR-125a, miR-339, miR-663, miR-660). Three of these regulated miRNAs (miR-202, miR-339, miR-378) were further assayed and validated by quantitative real-time RT-PCR. Moreover, consistent with the down-regulation of miR-378, HNE also induced the expression of the SUFU protein, a tumor suppressor recently identified as a target of miR-378. The finding that HNE could regulate the expression of miRNAs and their targets opens new perspectives on the understanding of HNE-controlled pathways. A functional analysis of 191 putative gene targets of miRNAs modulated by HNE is discussed.
Steinhilber, Julia; Bonin, Michael; Walter, Michael; Fend, Falko; Bonzheim, Irina; Quintanilla-Martinez, Leticia
2015-01-01
Anaplastic large cell lymphoma (ALCL) is divided into two systemic diseases according to the expression of the anaplastic lymphoma kinase (ALK). We investigated the differential expression of miRNAs between ALK+ ALCL, ALK- ALCL cells and normal T-cells using next generation sequencing (NGS). In addition, a C/EBPβ-dependent miRNA profile was generated. The data were validated in primary ALCL cases. NGS identified 106 miRNAs significantly differentially expressed between ALK+ and ALK- ALCL and 228 between ALK+ ALCL and normal T-cells. We identified a signature of 56 miRNAs distinguishing ALK+ ALCL, ALK- ALCL and T-cells. The top candidates significant differentially expressed between ALK+ and ALK- ALCL included 5 upregulated miRNAs: miR-340, miR-203, miR-135b, miR-182, miR-183; and 7 downregulated: miR-196b, miR-155, miR-146a, miR-424, miR-503, miR-424*, miR-542-3p. The miR-17-92 cluster was also upregulated in ALK+ cells. Additionally, we identified a signature of 3 miRNAs significantly regulated by the transcription factor C/EBPβ, which is specifically overexpressed in ALK+ ALCL, including the miR-181 family. Of interest, miR-181a, which regulates T-cell differentiation and modulates TCR signalling strength, was significantly downregulated in ALK+ ALCL cases. In summary, our data reveal a miRNA signature linking ALK+ ALCL to a deregulated immune response and may reflect the abnormal TCR antigen expression known in ALK+ ALCL.
MicroRNAs in the development and neoplasia of the mammary gland.
Jena, Manoj Kumar
2017-01-01
Study on the role of microRNAs (miRs) as regulators of gene expression through posttranscriptional gene silencing is currently gaining much interest,due to their wide involvement in different physiological processes. Understanding mammary gland development, lactation, and neoplasia in relation to miRs is essential. miR expression profiling of the mammary gland from different species in various developmental stages shows their role as critical regulators of development. miRs such as miR-126, miR-150, and miR-145 have been shown to be involved in lipid metabolism during lactation. In addition, lactogenic hormones influence miR expression as evidenced by overexpression of miR-148a in cow mammary epithelial cells, leading to enhanced lactation. Similarly, the miR-29 family modulates lactation-related gene expression by regulating DNA methylation of their promoters. Besides their role in development, lactation and involution, miRs are responsible for breast cancer development. Perturbed estrogen (E2) signaling is one of the major causes of breast cancer. Increased E2 levels cause altered expression of ERα, and ERα-miR cross-talk promotes tumour progression. miRs, such as miR-206, miR-34a, miR-17-5p, and miR-125 a/b are found to be tumour suppressors; whereas miR-21, miR-10B, and miR-155 are oncogenes. Oncogenic miRs like miR-21, miR-221, and miR-210 are overexpressed in triple negative breast cancer cases which can be diagnostic biomarker for this subtype of cancer. This review focuses on the recent findings concerning the role of miRs in developmental stages of the mammary gland (mainly lactation and involution stages) and their involvement in breast cancer progression. Further studies in this area will help us to understand the molecular details of mammary gland biology, as well as miRs that could be therapeutic targets of breast cancer.
Ionizing Radiation Deregulates the MicroRNA Expression Profile in Differentiated Thyroid Cells.
Penha, Ricardo Cortez Cardoso; Pellecchia, Simona; Pacelli, Roberto; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo
2018-03-01
Ionizing radiation (IR) is a well-known risk factor for papillary thyroid cancer, and it has been reported to deregulate microRNA expression, which is important to thyroid carcinogenesis. Therefore, this study investigated the impact of IR on microRNA expression profile of the normal thyroid cell line (FRTL-5 CL2), as well as its effect on radiosensitivity of thyroid cancer cell lines, especially the human anaplastic thyroid carcinoma cell line (8505c). The global microRNA expression profile of irradiated FRTL-5 CL2 cells (5 Gy X-ray) was characterized, and data were confirmed by quantitative real-time polymerase chain reaction evaluating the expression of rno-miR-10b-5p, rno-miR-33-5p, rno-miR-128-1-5p, rno-miR-199a-3p, rno-miR-296-5p, rno-miR-328a-3p, and rno-miR-541-5p in irradiated cells. The miR-199a-3p and miR-10b-5p targets were validated by quantitative real-time polymerase chain reaction, Western blot, and luciferase target assays. The effects of miR-199a-3p and miR-10b-5p on DNA repair were determined by evaluating the activation of the protein kinases ataxia-telangiectasia mutated, ataxia telangiectasia, and Rad3-related and the serine 39 phosphorylation of variant histone H2AX as an indirect measure of double-strand DNA breaks in irradiated FRTL-5 CL2 cells. The impact of miR-10b-5p on radiosensitivity was analyzed by cell counting and MTT assays in FRTL-5 CL2, Kras-transformed FRTL-5 CL2 (FRTL KiKi), and 8505c cell lines. The results reveal that miR-10b-5p and miR-199a-3p display the most pronounced alterations in expression in irradiated FRTL-5 CL2 cells. Dicer1 and Lin28b were validated as targets of miR-10b-5p and miR-199a-3p, respectively. Functional studies demonstrate that miR-10b-5p increases the growth rate of FRTL-5 CL2 cells, while miR-199a-3p inhibits their proliferation. Moreover, both of these microRNAs negatively affect homologous recombination repair, reducing activated ataxia-telangiectasia mutated and Rad3-related protein levels, consequently leading to an accumulation of the serine 39 phosphorylation of variant histone H2AX. Interestingly, the overexpression of miR-10b-5p decreases the viability of the irradiated FRTL5-CL2 and 8505c cell lines. Consistent with this observation, its inhibition in FRTL KiKi cells, which display high basal expression levels of miR-10b-5p, leads to the opposite effect. These results demonstrate that IR deregulates microRNA expression, affecting the double-strand DNA breaks repair efficiency of irradiated thyroid cells, and suggest that miR-10b-5p overexpression may be an innovative approach for anaplastic thyroid cancer therapy by increasing cancer cell radiosensitivity.
Involvement of miR528 in the Regulation of Arsenite Tolerance in Rice (Oryza sativa L.).
Liu, Qingpo; Hu, Haichao; Zhu, Leyi; Li, Ruochen; Feng, Ying; Zhang, Liqing; Yang, Yuyan; Liu, Xingquan; Zhang, Hengmu
2015-10-14
Tens of miRNAs were previously established as being arsenic (As) stress responsive in rice. However, their functional role in As tolerance remains unclear. This study demonstrates that transgenic plants overexpressing miR528 (Ubi::MIR528) were more sensitive to arsenite [As(III)] compared with wild-type (WT) rice. Under normal and stress conditions, miR528-5p and -3p were highly up-regulated in both the roots and leaves of transgenic plants, which exhibited a negative correlation with the expression of seven target genes. Compared with WT plants, Ubi::MIR528 plants showed excessive oxidative stress generation and remarkable amino acid content changes in the roots and leaves upon As(III) exposure. Notably, the expression profiles of diverse functional genes were clearly different between WT and transgenic plants. Thus, the observed As(III) sensitivity of Ubi::MIR528 plants was likely due to the strong alteration of antioxidant enzyme activity and amino acid profiles and the impairment of the As(III) uptake, translocation, and tolerance systems of rice.
2011-01-01
Background Proton pump inhibitor (PPI) medication and surgical fundoplication are used for the control of gastro-oesophageal reflux in patients with Barrett's oesophagus, but differ in their effectiveness for both acid and bile reflux. This might impact on the inflammatory processes that are associated with progression of Barrett's oesophagus to cancer, and this may be evident in the gene expression profile and microRNA expression pattern in Barrett's oesophagus mucosa. We hypothesised that two miRNAs with inflammatory and oncogenic roles, miR-101 and miR-196a, are differentially expressed in Barrett's oesophagus epithelium in patients with reflux treated medically vs. surgically. Findings Mucosal tissue was obtained at endoscopy from patients with Barrett's oesophagus whose reflux was controlled by proton pump inhibitor (PPI) therapy (n = 20) or by fundoplication (n = 19). RNA was extracted and the expression of miR-101 and miR-196a was measured using real-time reverse transcription - polymerase chain reaction. There were no significant differences in miR-101 and miR-196a expression in Barrett's oesophagus epithelium in patients treated by PPI vs. fundoplication (p = 0.768 and 0.211 respectively). Secondary analysis showed a correlation between miR-196a expression and Barrett's oesophagus segment length (p = 0.014). Conclusion The method of reflux treatment did not influence the expression of miR-101 and miR-196a in Barrett's oesophagus. This data does not provide support to the hypothesis that surgical treatment of reflux better prevents cancer development in Barrett's oesophagus. The association between miR-196a expression and Barrett's oesophagus length is consistent with a tumour promoting role for miR-196a in Barrett's oesophagus. PMID:21352563
Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds.
Nieto, Margarita; Hevia, Pedro; Garcia, Enrique; Klein, Dagmar; Alvarez-Cubela, Silvia; Bravo-Egana, Valia; Rosero, Samuel; Damaris Molano, R; Vargas, Nancy; Ricordi, Camillo; Pileggi, Antonello; Diez, Juan; Domínguez-Bendala, Juan; Pastori, Ricardo L
2012-01-01
MicroRNAs regulate gene expression by inhibiting translation or inducing target mRNA degradation. MicroRNAs regulate organ differentiation and embryonic development, including pancreatic specification and islet function. We showed previously that miR-7 is highly expressed in human pancreatic fetal and adult endocrine cells. Here we determined the expression profile of miR-7 in the mouse-developing pancreas by RT-PCR and in situ hybridization. MiR-7 expression was low between embryonic days e10.5 and e11.5, then began to increase at e13.5 through e14.5, and eventually decreased by e18. In situ hybridization and immunostaining analysis showed that miR-7 colocalizes with endocrine marker Isl1, suggesting that miR-7 is expressed preferentially in endocrine cells. Whole-mount in situ hybridization shows miR-7 highly expressed in the embryonic neural tube. To investigate the role of miR-7 in development of the mouse endocrine pancreas, antisense miR-7 morpholinos (MO) were delivered to the embryo at an early developmental stage (e10.5 days) via intrauterine fetal heart injection. Inhibition of miR-7 during early embryonic life results in an overall downregulation of insulin production, decreased β-cell numbers, and glucose intolerance in the postnatal period. This phenomenon is specific for miR-7 and possibly due to a systemic effect on pancreatic development. On the other hand, the in vitro inhibition of miR-7 in explanted pancreatic buds leads to β-cell death and generation of β-cells expressing less insulin than those in MO control. Therefore, in addition to the potential indirect effects on pancreatic differentiation derived from its systemic downregulation, the knockdown of miR-7 appears to have a β-cell-specific effect as well. These findings suggest that modulation of miR-7 expression could be utilized in the development of stem cell therapies to cure diabetes.
Circulating microRNA-1a is a biomarker of Graves' disease patients with atrial fibrillation.
Wang, Fang; Zhang, Sheng-Jie; Yao, Xuan; Tian, Dong-Mei; Zhang, Ke-Qin; She, Dun-Min; Guo, Fei-Fan; Zhai, Qi-Wei; Ying, Hao; Xue, Ying
2017-07-01
It has been increasingly suggested that specific microRNAs expression profiles in the circulation and atrial tissue are associated with the susceptibility to atrial fibrillation. Nonetheless, the role of circulating microRNAs in Graves' disease patients with atrial fibrillation has not yet been well described. The objective of the study was to identify the role of circulating microRNAs as specific biomarkers for the diagnosis of Graves' disease with atrial fibrillation. The expression profiles of eight serum microRNAs, which are found to be critical in the pathogenesis of atrial fibrillation, were determined in patients with Graves' disease with or without atrial fibrillation. MicroRNA expression analysis was performed by real-time PCR in normal control subjects (NC; n = 17), patients with Graves' disease without atrial fibrillation (GD; n = 29), patients with Graves' disease with atrial fibrillation (GD + AF; n = 14), and euthyroid patients with atrial fibrillation (AF; n = 22). Three of the eight serum microRNAs,i.e., miR-1a, miR-26a, and miR-133, had significantly different expression profiles among the four groups. Spearman's correlation analysis showed that the relative expression level of miR-1a was positively correlated with free triiodothyronine (FT3) and free thyroxine (FT4), and negatively related to thyroid stimulating hormone. Spearman's correlations analysis also revealed that the level of miR-1a was negatively correlated with a critical echocardiographic parameter (left atrial diameter), which was dramatically increased in GD + AF group compared to GD group. Furthermore, the receiver-operating characteristic curve analysis indicated that, among the eight microRNAs, miR-1a had the largest area under the receiver-operating characteristic curves not only for discriminating between individuals with and without Graves' disease, but also for predicting the presence of atrial fibrillation in patients with Graves' disease. Our findings showed that the levels of serum miR-1a were significantly decreased in GD + AF group compared with GD group, suggesting that serum miR-1a might serve as a novel biomarker for diagnosis of atrial fibrillation in patients with Graves' disease.
Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellegrini, Kathryn L.
Establishing a microRNA (miRNA) expression profile in affected tissues provides an important foundation for the discovery of miRNAs involved in the development or progression of pathologic conditions. We conducted small RNA sequencing to generate a temporal profile of miRNA expression in the kidneys using a mouse model of folic acid-induced (250 mg/kg i.p.) kidney injury and fibrosis. From the 103 miRNAs that were differentially expressed over the time course (> 2-fold, p < 0.05), we chose to further investigate miR-18a-5p, which is expressed during the acute stage of the injury; miR-132-3p, which is upregulated during transition between acute and fibroticmore » injury; and miR-146b-5p, which is highly expressed at the peak of fibrosis. Using qRT-PCR, we confirmed the increased expression of these candidate miRNAs in the folic acid model as well as in other established mouse models of acute injury (ischemia/reperfusion injury) and fibrosis (unilateral ureteral obstruction). In situ hybridization confirmed high expression of miR-18a-5p, miR-132-3p and miR-146b-5p throughout the kidney cortex in mice and humans with severe kidney injury or fibrosis. When primary human proximal tubular epithelial cells were treated with model nephrotoxicants such as cadmium chloride (CdCl{sub 2}), arsenic trioxide, aristolochic acid (AA), potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) and cisplatin, miRNA-132-3p was upregulated 4.3-fold after AA treatment and 1.5-fold after K{sub 2}Cr{sub 2}O{sub 7} and CdCl{sub 2} treatment. These results demonstrate the application of temporal small RNA sequencing to identify miR-18a, miR-132 and miR-146b as differentially expressed miRNAs during distinct phases of kidney injury and fibrosis progression. - Highlights: • We used small RNA sequencing to identify differentially expressed miRNAs in kidney. • Distinct patterns were found for acute injury and fibrotic stages in the kidney. • Upregulation of miR-18a, -132 and -146b was confirmed in mice and human kidneys.« less
MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer.
Olson, Peter; Lu, Jun; Zhang, Hao; Shai, Anny; Chun, Matthew G; Wang, Yucheng; Libutti, Steven K; Nakakura, Eric K; Golub, Todd R; Hanahan, Douglas
2009-09-15
While altered expression of microRNAs (miRs) in tumors has been well documented, it remains unclear how the miR transcriptome intersects neoplastic progression. By profiling the miR transcriptome we identified miR expression signatures associated with steps in tumorigenesis and the acquisition of hallmark capabilities in a prototypical mouse model of cancer. Metastases and a rare subset of primary tumors shared a distinct miR signature, implicating a discrete lineage for metastatic tumors. The miR-200 family is strongly down-regulated in metastases and met-like primary tumors, thereby relieving repression of the mesenchymal transcription factor Zeb1, which in turn suppresses E-cadherin. Treatment with a clinically approved angiogenesis inhibitor normalized angiogenic signature miRs in primary tumors, while altering expression of metastatic signature miRs similarly to liver metastases, suggesting their involvement in adaptive resistance to anti-angiogenic therapy via enhanced metastasis. Many of the miR changes associated with specific stages and hallmark capabilities in the mouse model are similarly altered in human tumors, including cognate pancreatic neuroendocrine tumors, implying a generality.
Dysregulation of Placental miRNA in Maternal Obesity Is Associated With Pre- and Postnatal Growth.
Carreras-Badosa, Gemma; Bonmatí, Alexandra; Ortega, Francisco-Jose; Mercader, Josep-Maria; Guindo-Martínez, Marta; Torrents, David; Prats-Puig, Anna; Martinez-Calcerrada, Jose-Maria; de Zegher, Francis; Ibáñez, Lourdes; Fernandez-Real, Jose-Manuel; Lopez-Bermejo, Abel; Bassols, Judit
2017-07-01
Human placenta exhibits a specific microRNA (miRNA) expression pattern. Some of these miRNAs are dysregulated in pregnancy disorders such as preeclampsia and intrauterine growth restriction and are potential biomarkers for these pathologies. To study the placental miRNA profile in pregnant women with pregestational overweight/obesity (preOB) or gestational obesity (gestOB) and explore the associations between placental miRNAs dysregulated in maternal obesity and prenatal and postnatal growth. TaqMan Low Density Arrays and real-time polymerase chain reaction were used to profile the placental miRNAs in 70 pregnant women (20 preOB, 25 gestOB, and 25 control). Placentas and newborns were weighed at delivery, and infants were weighed at 1, 4, and 12 months of age. Eight miRNAs were decreased in placentas from preOB or gestOB (miR-100, miR-1269, miR-1285, miR-181, miR-185, miR-214, miR-296, and miR-487) (all P < 0.05). Among them, miR-100, miR-1285, miR-296, and miR-487 were associated with maternal metabolic parameters (all P < 0.05) and were predictors of lower birth weight (all P < 0.05; R2 > 30%) and increased postnatal weight gain (all P < 0.05; R2 > 20%). In silico analysis showed that these miRNAs were related to cell proliferation and insulin signaling pathways. miR-296 was also present in plasma samples and associated with placental expression and prenatal and postnatal growth parameters (all P < 0.05). We identified a specific placental miRNA profile in maternal obesity. Placental miRNAs dysregulated in maternal obesity may be involved in mediation of growth-promoting effects of maternal obesity on offspring and could be used as early markers of prenatal and postnatal growth. Copyright © 2017 Endocrine Society
Estrella, Santiago; Garcia-Diaz, Diego F; Codner, Ethel; Camacho-Guillén, Patricia; Pérez-Bravo, Francisco
2016-09-16
Type 1 diabetes (T1D) is an autoimmune disease of complex aetiology. Several microRNAs (miR) have been linked to the pathogenesis of autoimmune diseases. To analyze the possible association of miR-22 and miR-150 with autoimmunity and clinical severity of T1D. The study was performed in peripheral blood mononuclear cells of 20 patients with T1D and 20 control subjects. The expression of miR-22 and miR-150 was performed in peripheral blood mononuclear cells using TaqMan probes to different glucose concentrations (baseline, 11mm, 25mm). Our results suggest that the expression of miR-22 is increased in T1D patients compared to the controls. This effect was observed in baseline glucose conditions and decreased in 11 and 25mM of glucose. The expression of miR-150 was lower in T1D patients versus the controls. There was no correlation between the autoimmune profile and the two studied miRNAs. miR-22 (baseline condition) and miR-150 (11mM condition) or the ketoacidosis component. miR-22 and 150 were not associated with the autoimmune component present in T1D patients. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Sarrion, Irene; Milian, Lara; Juan, G.; Ramon, Mercedes; Furest, Idelfonso; Carda, Carmen; Cortijo Gimeno, Julio; Mata Roig, Manuel
2015-01-01
Idiopathic pulmonary hypertension (IPAH) is a rare disease characterized by a progressive increase in pulmonary vascular resistance leading to heart failure. MicroRNAs (miRNAs) are small noncoding RNAs that control the expression of genes, including some involved in the progression of IPAH, as studied in animals and lung tissue. These molecules circulate freely in the blood and their expression is associated with the progression of different vascular pathologies. Here, we studied the expression profile of circulating miRNAs in 12 well-characterized IPAH patients using microarrays. We found significant changes in 61 miRNAs, of which the expression of miR23a was correlated with the patients' pulmonary function. We also studied the expression profile of circulating messenger RNA (mRNAs) and found that miR23a controlled 17% of the significantly changed mRNA, including PGC1α, which was recently associated with the progression of IPAH. Finally we found that silencing of miR23a resulted in an increase of the expression of PGC1α, as well as in its well-known regulated genes CYC, SOD, NRF2, and HO1. The results point to the utility of circulating miRNA expression as a biomarker of disease progression. PMID:25815108
Casara, Silvia; Sales, Gabriele; Lanfranchi, Gerolamo; Celotti, Lucia; Mognato, Maddalena
2012-01-01
Background Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. Methodology/Principal Findings We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of “Response to DNA damage” is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. Conclusions/Significance On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL. PMID:22347458
Tao, Wenjing; Sun, Lina; Shi, Hongjuan; Cheng, Yunying; Jiang, Dongneng; Fu, Beide; Conte, Matthew A; Gammerdinger, William J; Kocher, Thomas D; Wang, Deshou
2016-05-04
MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.
Koshkin, Philip Alexandrovich; Chistiakov, Dimitry Alexandrovich; Nikitin, Alexey Georgievich; Konovalov, Alexander Nikolaevich; Potapov, Alexander Alexandrovich; Usachev, Dmitry Yrevich; Pitskhelauri, David Ilich; Kobyakov, Gregory Lvovich; Shishkina, Lyudmila Valentinovna; Chekhonin, Vladimir Pavlovich
2014-03-20
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of key biological processes. Different miRNAs with pro-oncogenic and anti-oncogenic properties have been identified in glioblastomas. We decided to analyze expression profiles of 10 mature miRNAs (miR-7-1, miR-10а, miR-17, miR-20а, miR-21, miR-23а, miR-26а, miR-137, and miR-222) in post-surgery glioma specimens of different grades in order to find whether the expression level correlates with tumor grades. We also measured expression of six key genes such as PTEN, p21/CDKN1A, MDR1, ABCG2, BAX, and BCL-2 involved in the regulation of critical glioma signaling pathways to establish the effect of miRNAs on these signaling mechanisms. Using RT-PCR, we performed expression analysis of 25 tumor fresh samples (grades II-IV). We found gradual increase in miR-21 and miR-23a levels in all tumor grades whereas miR-7 and miR-137 were significantly down-regulated depending on the glioma grade. MDR, ABCG2, and p21/CDKN1A levels were significantly up-regulated while expression of PTEN was down-regulated in tumor samples compared to the normal brain tissue. These observations provide new insights into molecular pathogenic mechanisms of glioma progression and suggest about a potential value of miRNAs as a putative diagnostic marker of brain tumors. Copyright © 2014 Elsevier B.V. All rights reserved.
Uva, Paolo; Cossu-Rocca, Paolo; Loi, Federica; Pira, Giovanna; Murgia, Luciano; Orrù, Sandra; Floris, Matteo; Muroni, Maria Rosaria; Sanges, Francesca; Carru, Ciriaco; Angius, Andrea; De Miglio, Maria Rosaria
2018-01-01
The clinical and genetic heterogeneity of Triple Negative Breast Cancer (TNBC) and the lack of unambiguous molecular targets contribute to the inadequacy of current therapeutic options for these variants. MicroRNAs (miRNA) are a class of small highly conserved regulatory endogenous non-coding RNA, which can alter the expression of genes encoding proteins and may play a role in the dysregulation of cellular pathways. Our goal was to improve the knowledge of the molecular pathogenesis of TNBC subgroups analyzing the miRNA expression profile, and to identify new prognostic and predictive biomarkers. We conducted a human miRNome analysis by TaqMan Low Density Array comparing different TNBC subtypes, defined by immunohistochemical basal markers EGFR and CK5/6. RT-qPCR confirmed differential expression of microRNAs. To inspect the function of the selected targets we perform Gene Ontology and KEGG enrichment analysis. We identified a single miRNA signature given by miR-135b expression level, which was strictly related to TNBC with basal-like phenotype. miR-135b target analysis revealed a role in the TGF-beta, WNT and ERBB pathways. A significant positive correlation was identified between neoplastic proliferative index and miR-135b expression. These findings confirm the oncogenic roles of miR-135b in the pathogenesis of TNBC expressing basal markers. A potential negative prognostic role of miR-135b overexpression might be related to the positive correlation with high proliferative index. Our study implies potential clinical applications: miR-135b could be a potential therapeutic target in basal-like TNBCs.
Uva, Paolo; Cossu-Rocca, Paolo; Loi, Federica; Pira, Giovanna; Murgia, Luciano; Orrù, Sandra; Floris, Matteo; Muroni, Maria Rosaria; Sanges, Francesca; Carru, Ciriaco; Angius, Andrea; De Miglio, Maria Rosaria
2018-01-01
The clinical and genetic heterogeneity of Triple Negative Breast Cancer (TNBC) and the lack of unambiguous molecular targets contribute to the inadequacy of current therapeutic options for these variants. MicroRNAs (miRNA) are a class of small highly conserved regulatory endogenous non-coding RNA, which can alter the expression of genes encoding proteins and may play a role in the dysregulation of cellular pathways. Our goal was to improve the knowledge of the molecular pathogenesis of TNBC subgroups analyzing the miRNA expression profile, and to identify new prognostic and predictive biomarkers. We conducted a human miRNome analysis by TaqMan Low Density Array comparing different TNBC subtypes, defined by immunohistochemical basal markers EGFR and CK5/6. RT-qPCR confirmed differential expression of microRNAs. To inspect the function of the selected targets we perform Gene Ontology and KEGG enrichment analysis. We identified a single miRNA signature given by miR-135b expression level, which was strictly related to TNBC with basal-like phenotype. miR-135b target analysis revealed a role in the TGF-beta, WNT and ERBB pathways. A significant positive correlation was identified between neoplastic proliferative index and miR-135b expression. These findings confirm the oncogenic roles of miR-135b in the pathogenesis of TNBC expressing basal markers. A potential negative prognostic role of miR-135b overexpression might be related to the positive correlation with high proliferative index. Our study implies potential clinical applications: miR-135b could be a potential therapeutic target in basal-like TNBCs. PMID:29725243
Li, Chun-Yao; Xiong, Dan-Dan; Huang, Chun-Qin; He, Rong-Quan; Liang, Hai-Wei; Pan, Deng-Hua; Wang, Han-Lin; Wang, Yi-Wen; Zhu, Hua-Wei; Chen, Gang
2017-04-18
BACKGROUND MiR-101-3p can promote apoptosis and inhibit proliferation, invasion, and metastasis in breast cancer (BC) cells. However, its mechanisms in BC are not fully understood. Therefore, a comprehensive analysis of the target genes, pathways, and networks of miR-101-3p in BC is necessary. MATERIAL AND METHODS The miR-101 profiles for 781 patients with BC from The Cancer Genome Atlas (TCGA) were analyzed. Gene expression profiling of GSE31397 with miR-101-3p transfected MCF-7 cells and scramble control cells was downloaded from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified. The potential genes targeted by miR-101-3p were also predicted. Gene Ontology (GO) and pathway and network analyses were constructed for the DEGs and predicted genes. RESULTS In the TCGA data, a low level of miR-101-2 expression might represent a diagnostic (AUC: 0.63) marker, and the miR-101-1 was a prognostic (HR=1.79) marker. MiR-101-1 was linked to the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), and miR-101-2 was associated with the tumor (T), lymph node (N), and metastasis (M) stages of BC. Moreover, 427 genes were selected from the 921 DEGs in GEO and the 7924 potential target genes from the prediction databases. These genes were related to transcription, metabolism, biosynthesis, and proliferation. The results were also significantly enriched in the VEGF, mTOR, focal adhesion, Wnt, and chemokine signaling pathways. CONCLUSIONS MiR-101-1 and miR-101-2 may be prospective biomarkers for the prognosis and diagnosis of BC, respectively, and are associated with diverse clinical parameters. The target genes of miR-101-3p regulate the development and progression of BC. These results provide insight into the pathogenic mechanism and potential therapies for BC.
Chen, Muyan; Zhang, Xiumei; Liu, Jianning; Storey, Kenneth B.
2013-01-01
The regulatory role of miRNA in gene expression is an emerging hot new topic in the control of hypometabolism. Sea cucumber aestivation is a complicated physiological process that includes obvious hypometabolism as evidenced by a decrease in the rates of oxygen consumption and ammonia nitrogen excretion, as well as a serious degeneration of the intestine into a very tiny filament. To determine whether miRNAs play regulatory roles in this process, the present study analyzed profiles of miRNA expression in the intestine of the sea cucumber (Apostichopus japonicus), using Solexa deep sequencing technology. We identified 308 sea cucumber miRNAs, including 18 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA) after at least 15 days of continuous torpor, were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to the active state). We identified 42 differentially expressed miRNAs [RPM (reads per million) >10, |FC| (|fold change|) ≥1, FDR (false discovery rate) <0.01] during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-200-3p, miR-2004, miR-2010, miR-22, miR-252a, miR-252a-3p and miR-92 were significantly over-expressed during deep aestivation compared with non-aestivation animals. Preliminary analyses of their putative target genes and GO analysis suggest that these miRNAs could play important roles in global transcriptional depression and cell differentiation during aestivation. High-throughput sequencing data and microarray data have been submitted to GEO database. PMID:24143179
Liu, Xiaodan; Peng, Hongxia; Liao, Wang; Luo, Ailing; Cai, Mansi; He, Jing; Zhang, Xiaohong; Luo, Ziyan; Jiang, Hua; Xu, Ling
2018-05-26
Neuroblastoma is a pediatric malignancy, and the clinical phenotypes range from localized tumors with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40%, despite intensive therapy. Emerging evidence suggests that aberrant miRNA regulation plays a role in neuroblastoma, but the miRNA functions and mechanisms remain unknown. miR-181 family members were detected in 32 neuroblastoma patients, and the effects of miR-181a/b on cell viability, invasion, and migration were evaluated in vitro and in vivo. A parallel global mRNA expression profile was obtained for neuroblastoma cells overexpressing miR-181a. The potential targets of miR-181a/b were validated. miR-181a/b expression levels were positively associated with MYCN amplification and neuroblastoma aggressiveness. Moreover, ectopic miR-181a/b expression significantly induced the growth and invasion of neuroblastoma cells in vitro and in vivo. Microarray analysis revealed that mRNAs were consistently downregulated after miR-181a overexpression, leading to cell migration. In addition, the expression of ABI1 was suppressed by miR-181a/b, and ABI1 was validated as a direct target of miR-181a/b. We concluded that miR-181a/b were significantly upregulated in aggressive neuroblastoma, which enhanced its tumorigenesis and progression by suppressing the expression of ABI1. © 2018 Wiley Periodicals, Inc.
Nguyen, Han Christine Ngoc; Xie, Wanling; Yang, Ming; Hsieh, Chen-Lin; Drouin, Sarah; Lee, Gwo-Shu Mary; Kantoff, Philip W
2013-03-01
Recent studies show that microRNAs (miRNAs), small non-coding RNAs that negatively regulate gene expression, may have potential for monitoring cancer status. We investigated circulating miRNAs in prostate cancer that may be associated with the progression of hormone-sensitive primary tumors to metastatic castration resistant prostate cancer (CRPC) after androgen deprivation therapy. Using genome-wide expression profiling by TaqMan Human MicroRNA Arrays (Applied Biosystems) and/or quantitative real-time polymerase chain reaction, we compared the expression levels of miRNAs in serum samples from 28 patients of low-risk localized disease, 30 of high-risk localized disease and 26 of metastatic CRPC. We demonstrated that serum samples from patients of low risk, localized prostate cancer and metastatic CRPC patients exhibit distinct circulating miRNA signatures. MiR-375, miR-378*, and miR-141 were significantly over-expressed in serum from CRPC patients compared with serum from low-risk localized patients, while miR-409-3p was significantly under-expressed. In prostate primary tumor samples, miR-375 and miR-141 also had significantly higher expression levels compared with those in normal prostate tissue. Circulating miRNAs, particularly miR-375, miR-141, miR-378*, and miR-409-3p, are differentially expressed in serum samples from prostate cancer patients. In the search for improved minimally invasive methods to follow cancer pathogenesis, the correlation of disease status with the expression patterns of circulating miRNAs may indicate the potential importance of circulating miRNAs as prognostic markers for prostate cancer progression. Copyright © 2012 Wiley Periodicals, Inc.
Quality Evaluation of Human Bone Marrow Mesenchymal Stem Cells for Cartilage Repair
Shiraishi, Katsunori; Takeuchi, Shunsuke; Yanada, Shinobu; Mera, Hisashi; Wakitani, Shigeyuki; Adachi, Nobuo
2017-01-01
Quality evaluation of mesenchymal stem cells (MSCs) based on efficacy would be helpful for their clinical application. In this study, we aimed to find the factors of human bone marrow MSCs relating to cartilage repair. The expression profiles of humoral factors, messenger RNAs (mRNAs), and microRNAs (miRNAs) were analyzed in human bone marrow MSCs from five different donors. We investigated the correlations of these expression profiles with the capacity of the MSCs for proliferation, chondrogenic differentiation, and cartilage repair in vivo. The mRNA expression of MYBL1 was positively correlated with proliferation and cartilage differentiation. By contrast, the mRNA expression of RCAN2 and the protein expression of TIMP-1 and VEGF were negatively correlated with proliferation and cartilage differentiation. However, MSCs from all five donors had the capacity to promote cartilage repair in vivo regardless of their capacity for proliferation and cartilage differentiation. The mRNA expression of HLA-DRB1 was positively correlated with cartilage repair in vivo. Meanwhile, the mRNA expression of TMEM155 and expression of miR-486-3p, miR-148b, miR-93, and miR-320B were negatively correlated with cartilage repair. The expression analysis of these factors might help to predict the ability of bone marrow MSCs to promote cartilage repair. PMID:28835756
Habibi, Parisa; Alihemmati, Alireza; NourAzar, Alireza; Yousefi, Hadi; Mortazavi, Safieh; Ahmadiasl, Nasser
2016-04-01
The beneficial and more potent role of exercise to prevent heart apoptosis in ovariectomized rats has been known. The aim of this study was to examine the effects of swimming training on cardiac expression of Bcl-2, and Mir-133 levels and glycogen changes in the myocyte. Forty animals were separated into four groups as control, sham, ovariectomy (OVX) and ovariectomized group with 8 weeks swimming training (OVX.E). Training effects were evaluated by measuring lipid profiles, Bcl-2 and Mir-133 expression levels in the cardiac tissue. Grafts were analyzed by reverse transcription-polymerase chain reaction for Bcl-2 mRNA and Mir-133 and by Western blot for Bcl-2 protein. Ovariectomy down-regulated Bcl-2 and Mir-133 expression levels in the cardiac tissue, and swimming training up-regulated their expression significantly (P<0.05). Our results showed that regular exercise as a physical replacement therapy could prevent and improve the effects of estrogen deficiency in the cardia.
miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yajuan; Wang, Haixia; Tao, Kun
MicroRNAs (miRNAs) are small RNAs that regulate gene expression posttranscriptionally and are critical for many cellular pathways. Recent evidence has shown that aberrant miRNA expression profiles and unique miRNA signaling pathways are present in many cancers. Here, we demonstrate that miR-29b is markedly lower expressed in CML patient samples. Bioinformatics analysis reveals a conserved target site for miR-29b in the 3′-untranslated region (UTR) of ABL1. miR-29b significantly suppresses the activity of a luciferase reporter containing ABL1-3′UTR and this activity is not observed in cells transfected with mutated ABL1-3′UTR. Enforced expression of miR-29b in K562 cells inhibits cell growth and colonymore » formation ability thereby inducing apoptosis through cleavage of procaspase 3 and PARP. Furthermore, K562 cells transfected with a siRNA targeting ABL1 show similar growth and apoptosis phenotypes as cells overexpression of miR-29b. Collectively, our results suggest that miR-29b may function as a tumor suppressor by targeting ABL1 and BCR/ABL1. - Highlights: ► miR-29b expression was downregulated in CML patients. ► ABL1 was identified as a direct target gene of miR-29b. ► Enforced expression of miR-29b inhibits cell proliferation and induces apoptosis. ► miR-29b might be a therapeutic target to CML.« less
[Detection and analysis of the characteristic expression of microRNAs of anal fistula patients].
Qiu, Jianming; Yu, Jiping; Yang, Guangen; Xu, Kan; Tao, Yong; Lin, Ali; Wang, Dong
2016-07-01
To detect and analyze the characteristic miRNAs profile of anal fistula and explore their possible target genes and potential clinical significance. The anal mucosa close to the hemorrhoids were collected from three patients undergoing fistulectomy and hemorrhoidectomy (fistula group) as well as three patients receiving only hemorroidectomy(hemorrhoids group), matching with fistula group in age, gender and body weight. miRNA microarray was used to compare the expression of 1 285 human miRNAs of the anal mucosa between two groups. Cluster analysis was adopted to analyze the accumulation of the differentially expressed miRNAs(P<0.05, fold≥2.0 or ≤0.5) and their target genes were predicted with 10 softwares such as DIANAmT, miRanda, miRDB, miRWalk etc. Comprehensive scoring was performed to identify genes with highest predictive score. Gene ontology (GO) concentration technique was used to analyze the target gene-associated biological process. Immunohistochemistry was used to examine protein expression of genes with the highest score. Among 1285 miRNAs in fistula group, 13 miRNAs were differentially expressed with those in hemorrhoid group, including 2 of up-regulation and 11 of down-regulation. Paired t test showed that in fistula group, miRNA-3609 up-regulation was 5.98 folds(P=0.0231) and miR-181a-2-3p down-regulation was 0.13 folds(P=0.0067) compared to those in hemorrhoid group, which had the greatest differential expression. Cluster analysis suggested that up-regulated miR-3609 and miR-6086 had similar change trend in both groups. Among 11 down-regulated miRNAs, miR-125bp-1-3p and miR-548q had similar expression and other 9 miRNAs had similar expression as well, including miR-1185-1-3p, miR-532-3p, miR-1233-5p, miR-769-5p, miR-149-5p, miR-99b-3p, miR-141-3p, miR-138-5p, and miR-181a-2-3p. Target gene prediction analysis of above 13 genes showed that 7 miRNAs(53.8%) were eligible to predict their potential target genes, yielding totally 104 possible target genes. The rest of 6 miRNAs(46.2%) failed to predict any target gene. The highest score in prediction of target gene was chitinase 1(ChIT1) and its corresponding differential miRNA was miR-769-5p(r=-0.94286, P=0.0167). Gene ontology analysis showed that the most associated biological process related with these 104 target genes was keratinization, immune response and signal transduction. Immunohistochemistry revealed ChiT1 expression of anal mucosa in fistula group was significantly higher compared to hemorrhoid group(P<0.01). There is a characteristic miRNAs profile in anal fistula patients, which may play a role in the occurrence and development of anal fistula.
MicroRNA-181 promotes synaptogenesis and attenuates axonal outgrowth in cortical neurons
Kos, Aron; Olde Loohuis, Nikkie; Meinhardt, Julia; van Bokhoven, Hans; Kaplan, Barry B; Martens, Gerard; Aschrafi, Armaz
2016-01-01
MicroRNAs (miRs) are non-coding gene transcripts abundantly expressed in both the developing and adult mammalian brain. They act as important modulators of complex gene regulatory networks during neuronal development and plasticity. miR-181c is highly abundant in cerebellar cortex and its expression is increased in autism patients as well as in an animal model of autism. To systematically identify putative targets of miR-181c, we repressed this miR in growing cortical neurons and found over 70 differentially expressed target genes using transcriptome profiling. Pathway analysis showed that the miR-181c-modulated genes converge on signaling cascades relevant to neurite and synapse developmental processes. To experimentally examine the significance of these data, we inhibited miR-181c during rat cortical neuronal maturation in vitro; this loss-of miR-181c function resulted in enhanced neurite sprouting and reduced synaptogenesis. Collectively, our findings suggest that miR-181c is a modulator of gene networks associated with cortical neuronal maturation. PMID:27017280
Nunes, Diana N; Dias-Neto, Emmanuel; Cardó-Vila, Marina; Edwards, Julianna K; Dobroff, Andrey S; Giordano, Ricardo J; Mandelin, Jami; Brentani, Helena P; Hasselgren, Catrin; Yao, Virginia J; Marchiò, Serena; Pereira, Carlos A B; Passetti, Fabio; Calin, George A; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata
2015-03-24
Six members of the microRNA-17 (miR-17) family were mapped to three different chromosomes, although they share the same seed sequence and are predicted to target common genes, among which are those encoding hypoxia-inducible factor-1α (HIF1A) and VEGFA. Here, we evaluated the in vivo expression profile of the miR-17 family in the murine retinopathy of prematurity (ROP) model, whereby Vegfa expression is highly enhanced at the early stage of retinal neovascularization, and we found simultaneous reduction of all miR-17 family members at this stage. Using gene reporter assays, we observed binding of these miRs to specific sites in the 3' UTRs of Hif1a and Vegfa. Furthermore, overexpression of these miRs decreased HIF1A and VEGFA expression in vitro. Our data indicate that this miR-17 family elicits a regulatory synergistic down-regulation of Hif1a and Vegfa expression in this biological model. We propose the existence of a coordinated regulatory network, in which diverse miRs are synchronously regulated to target the Hif1a transcription factor, which in turn, potentiates and reinforces the regulatory effects of the miRs on Vegfa to trigger and sustain a significant physiological response.
PLK1-associated microRNAs are correlated with pediatric medulloblastoma prognosis.
Pezuk, Julia Alejandra; Brassesco, María Sol; de Oliveira, Ricardo Santos; Machado, Hélio Rubens; Neder, Luciano; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga
2017-04-01
Medulloblastoma (MB) is the most common malignant tumor of the central nervous system (CNS) in children. Despite its relative good survival rates, treatment can cause long time sequels and may impair patients' lifespan and quality, making the search for new treatment options still necessary. Polo like kinases (PLKs) constitute a five-member serine/threonine kinases family (PLK 1-5) that regulates different stages during cell cycle. Abnormal PLKs expression has been observed in several cancer types, including MB. As gene regulators, miRNAs have also been described with variable expression in cancer. We evaluated gene expression profiles of all PLK family members and related miRNAs (miR-100, miR-126, miR-219, and miR-593*) in MB cell lines and tumor samples. RT-qPCR analysis revealed increased levels of PLK1-4 in all cell lines and in most MB samples, while PLK5 was found underexpressed. In parallel, miR-100 was also found upregulated while miR-129, miR-216, and miR-593* were decreased in MB cell lines. Variable miRNAs expression patterns were observed in MB samples. However, a correlation between miR-100 and PLK4 expression was observed, and associations between miR-100, miR-126, and miR-219 expression and overall and event free survival were also evinced in our cohort. Moreover, despite the lack of association with clinico-pathological features, when comparing primary tumors to those relapsed, we found a consistent decrease on PLK2, miR-219, and miR-598* and an increase on miR-100 and miR-126. Specific dysregulation on PLKs and associated miRNAs may be important in MB and can be used to predict prognosis. Although miRNAs sequences are fundamental to predict its target, the cell type may also be consider once that mRNA repertoire can define different roles for specific miRNA in a given cell.
miR-335 and miR-363 regulation of neuroblastoma tumorigenesis and metastasis.
Qiao, Jingbo; Lee, Sora; Paul, Pritha; Theiss, Lauren; Tiao, Joshua; Qiao, Lan; Kong, Andrew; Chung, Dai H
2013-08-01
microRNA (miRNA) functions broadly as post-transcriptional regulators of gene expression, and disproportionate miRNAs can result in dysregulation of oncogenes in cancer cells. We have previously shown that gastrin-releasing peptide receptor (GRP-R) signaling regulates tumorigenicity of neuroblastoma cells. Herein, we sought to characterize miRNA profile in GRP-R silenced neuroblastoma cells, and to determine the role of miRNAs on tumorigenicity and metastatic potential. Human neuroblastoma cell lines, BE(2)-C and SK-N-SH, were used for our study. Stably transfected GRP-R silenced cells were assessed for miRNA profiles. Cells were transfected with miR-335, miR-363, or miR-CON, a nontargeting control, and in vitro assays were performed. In vivo functions of miR-335 and miR-363 were also assessed in a spleen-liver metastasis murine model. GRP-R silencing significantly increased expression of miR-335 and miR-363 in BE(2)-C cells. Overexpression of miR-335 and miR-363 decreased tumorigenicity as measured by clonogenicity, anchorage-independent growth, and metastasis determined by cell invasion assay and liver metastasis in vivo. We report, for the first time, that GRP-R-mediated tumorigenicity and increased metastatic potential in neuroblastoma are regulated, in part, by miR-335 and miR-363. A better understanding of the anti-tumor functions of miRNAs could provide valuable insights to discerning molecular mechanisms responsible for neuroblastoma metastasis. Copyright © 2013 Mosby, Inc. All rights reserved.
Pan, Bing; Liu, Yamei
2015-01-01
Depression is a major mood disorder affecting people worldwide. The posttranscriptional gene regulation mediated by microRNAs (miRNAs) which may have critical roles in the pathogenesis of depression. However, to date, little is known about the effects of the antidepressant drug duloxetine on miRNA expression profile in chronic unpredictable mild stress (CUMS)-induced depression model in mice. Healthy adult male Kunming mice were randomly divided into three groups: control group, model group and duloxetine group. Sucrose preference test and open field test were used to represent the behavioral change. MiRNAs levels in frontal lobe and hippocampus of mice were analyzed using miRNA microarrays assay. We observed that long-term treatment with duloxetine significantly ameliorated the CUMS procedure-induced sucrose preference decreases and mice treated with duloxetine demonstrated a reversal of the number of crossings, and rearings reduced by CUMS. A significant upregulation of miR-132 and miR-18a in hippocampus in the duloxetine treatment group compared with model group, whereas the levels of miR-134 and miR-124a were significantly downregulated. Furthermore, miR-18a showed significant upregulation in frontal lobe in the duloxetine treatment group relative to model group. Our data showed that miRNA expression profile in frontal lobe and hippocampus was affected by duloxetine in mice model of depression. The effect was especially pronounced in the hippocampus, suggesting that hippocampus might be the action site of duloxetine, which presumably worked by regulating the expression of miRNA levels.
De Iudicibus, Sara; Lucafò, Marianna; Vitulo, Nicola; Martelossi, Stefano; Zimbello, Rosanna; De Pascale, Fabio; Forcato, Claudio; Naviglio, Samuele; Di Silvestre, Alessia; Gerdol, Marco; Stocco, Gabriele; Valle, Giorgio; Ventura, Alessandro; Bramuzzo, Matteo; Decorti, Giuliana
2018-05-08
The aim of this research was the identification of novel pharmacogenomic biomarkers for better understanding the complex gene regulation mechanisms underpinning glucocorticoid (GC) action in paediatric inflammatory bowel disease (IBD). This goal was achieved by evaluating high-throughput microRNA (miRNA) profiles during GC treatment, integrated with the assessment of expression changes in GC receptor (GR) heterocomplex genes. Furthermore, we tested the hypothesis that differentially expressed miRNAs could be directly regulated by GCs through investigating the presence of GC responsive elements (GREs) in their gene promoters. Ten IBD paediatric patients responding to GCs were enrolled. Peripheral blood was obtained at diagnosis (T0) and after four weeks of steroid treatment (T4). MicroRNA profiles were analyzed using next generation sequencing, and selected significantly differentially expressed miRNAs were validated by quantitative reverse transcription-polymerase chain reaction. In detail, 18 miRNAs were differentially expressed from T0 to T4, 16 of which were upregulated and 2 of which were downregulated. Out of these, three miRNAs (miR-144, miR-142, and miR-96) could putatively recognize the 3’UTR of the GR gene and three miRNAs (miR-363, miR-96, miR-142) contained GREs sequences, thereby potentially enabling direct regulation by the GR. In conclusion, we identified miRNAs differently expressed during GC treatment and miRNAs which could be directly regulated by GCs in blood cells of young IBD patients. These results could represent a first step towards their translation as pharmacogenomic biomarkers.
Simon, Liz; Song, Keijing; Vande Stouwe, Curtis; Hollenbach, Andrew; Amedee, Angela; Mohan, Mahesh; Winsauer, Peter; Molina, Patricia
2016-03-01
Cannabinoid administration before and after simian immunodeficiency virus (SIV)-inoculation ameliorated disease progression and decreased inflammation in male rhesus macaques. Δ9-tetrahydrocannabinol (Δ9-THC) did not increase viral load in brain tissue or produce additive neuropsychological impairment in SIV-infected macaques. To determine if the neuroimmunomodulation of Δ9-THC involved differential microRNA (miR) expression, miR expression in the striatum of uninfected macaques receiving vehicle (VEH) or Δ9-THC (THC) and SIV-infected macaques administered either vehicle (VEH/SIV) or Δ9-THC (THC/SIV) was profiled using next generation deep sequencing. Among the 24 miRs that were differentially expressed among the four groups, 16 miRs were modulated by THC in the presence of SIV. These 16 miRs were classified into four categories and the biological processes enriched by the target genes determined. Our results indicate that Δ9-THC modulates miRs that regulate mRNAs of proteins involved in 1) neurotrophin signaling, 2) MAPK signaling, and 3) cell cycle and immune response thus promoting an overall neuroprotective environment in the striatum of SIV-infected macaques. This is also reflected by increased Brain Derived Neurotrophic Factor (BDNF) and decreased proinflammatory cytokine expression compared to the VEH/SIV group. Whether Δ9-THC-mediated modulation of epigenetic mechanisms provides neuroprotection in other regions of the brain and during chronic SIV-infection remains to be determined.
Effects of Modeled Microgravity on Expression Profiles of Micro RNA in Human Lymphoblastoid Cells
NASA Technical Reports Server (NTRS)
Mangala, Lingegowda S.; Emami, Kamal; Story, Michael; Ramesh, Govindarajan; Rohde, Larry; Wu, Honglu
2010-01-01
Among space radiation and other environmental factors, microgravity or an altered gravity is undoubtedly the most significant stress experienced by living organisms during flight. In comparison to the static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. Micro RNA (miRNA) has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. miRNA represents a class of single-stranded noncoding regulatory RNA molecules ( 22 nt) that control gene expressions by inhibiting the translation of mRNA to proteins. However, very little is known on the effect of altered gravity on miRNA expression. We hypothesized that the miRNA expression profile will be altered in zero gravity resulting in regulation of the gene expression and functional changes of the cells. To test this hypothesis, we cultured TK6 human lymphoblastoid cells in Synthecon s Rotary cell culture system (bioreactors) for 72 h either in the rotating (10 rpm) to model the microgravity in space or in the static condition. The cell viability was determined before and after culturing the cells in the bioreactor using both trypan blue and guava via count. Expressions of a panel of 352 human miRNA were analyzed using the miRNA PCRarray. Out of 352 miRNAs, expressions of 75 were significantly altered by a change of greater than 1.5 folds and seven miRNAs were altered by a fold change greater than 2 under the rotating culture condition. Among these seven, miR-545 and miR-517a were down regulated by 2 folds, whereas miR-150, miR-302a, miR-139-3p, miR-515-3p and miR-564 were up regulated by 2 to 8 folds. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA Illumina Microarray Analysis and validated the related genes using q-RT PCR.
de Gonzalo-Calvo, David; Cenarro, Ana; Civeira, Fernando; Llorente-Cortes, Vicenta
2016-01-01
microRNA (miRNA) expression profile of extracellular vesicles is a potential tool for clinical practice. Despite the key role of vascular smooth muscle cells (VSMC) in cardiovascular pathology, there is limited information about the presence of miRNAs in microparticles secreted by this cell type, including human coronary artery smooth muscle cells (HCASMC). Here, we tested whether HCASMC-derived microparticles contain miRNAs and the value of these miRNAs as biomarkers. HCASMC and explants from atherosclerotic or non-atherosclerotic areas were obtained from coronary arteries of patients undergoing heart transplant. Plasma samples were collected from: normocholesterolemic controls (N=12) and familial hypercholesterolemia (FH) patients (N=12). Both groups were strictly matched for age, sex and cardiovascular risk factors. Microparticle (0.1-1μm) isolation and characterization was performed using standard techniques. VSMC-enriched miRNAs expression (miR-21-5p, -143-3p, -145-5p, -221-3p and -222-3p) was analyzed using RT-qPCR. Total RNA isolated from HCASMC-derived microparticles contained small RNAs, including VSMC-enriched miRNAs. Exposition of HCASMC to pathophysiological conditions, such as hypercholesterolemia, induced a decrease in the expression level of miR-143-3p and miR-222-3p in microparticles, not in cells. Expression levels of miR-222-3p were lower in circulating microparticles from FH patients compared to normocholesterolemic controls. Microparticles derived from atherosclerotic plaque areas showed a decreased level of miR-143-3p and miR-222-3p compared to non-atherosclerotic areas. We demonstrated for the first time that microparticles secreted by HCASMC contain microRNAs. Hypercholesterolemia alters the microRNA profile of HCASMC-derived microparticles. The miRNA signature of HCASMC-derived microparticles is a source of cardiovascular biomarkers. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
Luceri, Cristina; Bigagli, Elisabetta; Pitozzi, Vanessa; Giovannelli, Lisa
2017-03-01
Middle-aged C57Bl/6J mice fed for 6 months with extra-virgin olive oil rich in phenols (H-EVOO, phenol dose/day: 6 mg/kg) showed cognitive and motor improvement compared to controls fed the same olive oil deprived of phenolics (L-EVOO). The aim of the present study was to evaluate whether these behavioral modifications were associated with changes in gene and miRNA expression in the brain. Two brain areas involved in cognitive and motor processes were chosen: cortex and cerebellum. Gene and miRNA profiling were analyzed by microarray and correlated with performance in behavioral tests. After 6 months, most of the gene expression changes were restricted to the cerebral cortex. The genes modulated by aging were mainly down-regulated, and the treatment with H-EVOO was associated with a significant up-regulation of genes compared to L-EVOO. Among those, we found genes previously associated with synaptic plasticity and with motor and cognitive behavior, such as Notch1, BMPs, NGFR, GLP1R and CRTC3. The agrin pathway was also significantly modulated. miRNAs were mostly up-regulated in old L-EVOO animals compared to young. However, H-EVOO-fed mice cortex displayed miRNA expression profiles similar to those observed in young mice. Sixty-three miRNAs, out of 1203 analyzed, were significantly down-regulated compared to the L-EVOO group; among them, we found miRNAs whose predicted target genes were up-regulated by the treatment, such as mir-484, mir-27, mir-137, mir-30, mir-34 and mir-124. We are among the first to report that a dietary intervention starting from middle age with food rich in phenols can modulate at the central level the expression of genes and miRNAs involved in neuronal function and synaptic plasticity, along with cognitive, motor and emotional behavior.
Jauhari, Abhishek; Singh, Tanisha; Pandey, Ankita; Singh, Parul; Singh, Nishant; Srivastava, Ankur Kumar; Pant, Aditya Bhushan; Parmar, Devendra; Yadav, Sanjay
2017-09-01
MicroRNAs (miRNAs) are generated by endonuclease activity of Dicer, which also helps in loading of miRNAs to their target sequences. SH-SY5Y, a human neuroblastoma and a cellular model of neurodevelopment, consistently expresses genes related to neurodegenerative disorders at different biological levels (DNA, RNA, and proteins). Using SH-SY5Y cells, we have studied the role of Dicer and miRNAs in neuronal differentiation and explored involvement of P53, a master regulator of gene expression in differentiation-induced induction of miRNAs. Knocking down Dicer gene induced senescence in differentiating SH-SY5Y cells, which indicate the essential role of Dicer in brain development. Differentiation of SH-SY5Y cells by retinoic acid (RA) or RA + brain-derived neurotrophic factor (BDNF) induced dramatic changes in global miRNA expression. Fully differentiated SH-SY5Y cells (5-day RA followed by 3-day BDNF) significantly (p < 0.05 and atleast >3-fold change) upregulated and downregulated the expression of 77 and 17 miRNAs, respectively. Maximum increase was observed in the expression of miR-193-5p, miR-199a-5p, miR-192, miR-145, miR-28-5p, miR-29b, and miR-222 after RA exposure and miR-193-5p, miR-146a, miR-21, miR-199a-5p, miR-153, miR-29b, and miR-222 after RA + BDNF exposure in SH-SY5Y cells. Exploring the role of P53 in differentiating SH-SY5Y cells, we have observed that induction of miR-222, miR-192, and miR-145 is P53 dependent and expression of miR-193a-5p, miR-199a-5p, miR-146a, miR-21, miR-153, and miR-29b is P53 independent. In conclusion, decreased Dicer level enforces differentiating cells to senescence, and differentiating SH-SY5Y cells needs increased expression of P53 to cope up with changes in protein levels of mature neurons.
Therapeutic potential of microRNAs in heart failure.
Dorn, Gerald W
2010-05-01
There is an ongoing explosion of information about microRNAs (miRs) in cardiac disease. These small noncoding RNAs regulate protein expression by destabilization and translational inhibition of target mRNAs. Similar to mRNAs, miRs are regulated in cardiac hypertrophy and heart failure, but miR expression profiles appear to be more sensitive than mRNA signatures to changes in clinical status, suggesting that miR levels in myocardium or plasma could enhance clinical diagnostics. Single miRs can target dozens or hundreds of different mRNAs, complicating attempts to determine their individual physiologic effects. However, manipulating individual miRs by overexpression or gene ablation in experimental models has begun to unravel this conundrum: Single miRs tend to regulate numerous effectors within the same functional pathway, producing a coherent physiologic response via multiple parallel perturbations. miRs are attractive nodal therapeutic targets, and stable miR mimetics (agomiRs) and antagonists (antagomiRs) are being evaluated to prevent or reverse heart failure.
Li, Qing; Li, Hua; Zhao, Xueling; Wang, Bing; Zhang, Lin; Zhang, Caiguo; Zhang, Fan
2017-01-01
MicroRNAs (miRNAs) are critical regulators of gene expression, and they have broad roles in the pathogenesis of different diseases including cancer. Limited studies and expression profiles of miRNAs are available in human osteosarcoma cells. By applying a miRNA microarray analysis, we observed a number of miRNAs with abnormal expression in cancerous tissues from osteosarcoma patients. Of particular interest in this study was miR-449c, which was significantly downregulated in osteosarcoma cells and patients, and its expression was negatively correlated with tumor size and tumor MSTS stages. Ectopic expression of miR-449c significantly inhibited osteosarcoma cell proliferation and colony formation ability, and caused cell cycle arrest at the G1 phase. Further analysis identified that miR-449c was able to directly target the oncogene c-Myc and negatively regulated its expression. Overexpression of c-Myc partially reversed miR-449c-mimic-inhibited cell proliferation and colony formation. Moreover, DNA hypermethylation was observed in two CpG islands adjacent to the genomic locus of miR-449c in osteosarcoma cells. Conversely, treatment with the DNA methylation inhibitor AZA caused induction of miR-449c. In conclusion, our results support a model that DNA methylation mediates downregulation of miR-449c, diminishing miR-449c mediated inhibition of c-Myc and thus leading to the activation of downstream targets, eventually contributing to osteosarcoma tumorigenesis. PMID:28924385
Buggele, William A.; Krause, Katherine E.; Horvath, Curt M.
2013-01-01
The mammalian antiviral response relies on the alteration of cellular gene expression, to induce the production of antiviral effectors and regulate their activities. Recent research has indicated that virus infections can induce the accumulation of cellular microRNA (miRNA) species that influence the stability of host mRNAs and their protein products. To determine the potential for miRNA regulation of cellular responses to influenza A virus infection, small RNA profiling was carried out using next generation sequencing. Comparison of miRNA expression profiles in uninfected human A549 cells to cells infected with influenza A virus strains A/Udorn/72 and A/WSN/33, revealed virus-induced changes in miRNA abundance. Gene expression analysis identified mRNA targets for a cohort of highly inducible miRNAs linked to diverse cellular functions. Experiments demonstrate that the histone deacetylase, HDAC1, can be regulated by influenza-inducible miR-449b, resulting in altered mRNA and protein levels. Expression of miR-449b enhances virus and poly(I:C) activation of the IFNβ promoter, a process known to be negatively regulated by HDAC1. These findings demonstrate miRNA induction by influenza A virus infection and elucidate an example of miRNA control of antiviral gene expression in human cells, defining a role for miR-449b in regulation of HDAC1 and antiviral cytokine signaling. PMID:24086750
Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus
NASA Astrophysics Data System (ADS)
Xu, Hongjie; Wu, Feng; Cao, Hongqing; Kan, Guanghan; Zhang, Hongyu; Yeung, Ella W.; Shang, Peng; Dai, Zhongquan; Li, Yinghui
2015-02-01
Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus in response to microgravity. MiRNAs and mRNA microarray of soleus after tail suspension (TS) for 7 and 14 days were performed followed by target gene and function annotation analysis and qRT-PCR. Relative muscle mass lost by 37.0% in TS-7 but less than 10% in the following three weeks. TS altered 23 miRNAs and 1313 mRNAs with at least 2-fold. QRT-PCR confirmed some of these changes. MiR-214, miR-486-5p and miR-221 continuously decreased. MiR-674 and Let-7e decreased only in TS-7, while miR-320b and miR-187 decreased only in TS-14. But there was no alteration of miR-320 and miR-206 in both time point. For mRNA detection, actn3 (5.1-fold and 13.8-fold) and myh4 (38-fold and 51.6-fold) increased abundantly and a3galt2 decreased. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. GO terms and cellular pathway of these alteration showed enrichment in regulation of muscle metabolism. Integration analysis of the miRNA and mRNA expression profiles confirmed that eleven genes were differently regulated by four miRNAs. This is the first study that showed expression pattern and synergistical regulation of miRNA and mRNA in rat soleus of TS for up to 14 days.
Navarro, Alfons; Díaz, Tania; Tovar, Natalia; Pedrosa, Fabiola; Tejero, Rut; Cibeira, María Teresa; Magnano, Laura; Rosiñol, Laura; Monzó, Mariano; Bladé, Joan; de Larrea, Carlos Fernández
2015-01-01
We have examined serum microRNA expression in multiple myeloma (MM) patients at diagnosis and at complete response (CR) after autologous stem-cell transplantation (ASCT), in patients with stable monoclonal gammopathy of undetermined significance, and in healthy controls. MicroRNAs were first profiled using TaqMan Human MicroRNA Arrays. Differentially expressed microRNAs were then validated by individual TaqMan MicroRNA assays and correlated with CR and progression-free survival (PFS) after ASCT. Supervised analysis identified a differentially expressed 14-microRNA signature. The differential expression of miR-16 (P = 0.028), miR-17 (P = 0.016), miR-19b (P = 0.009), miR-20a (P = 0.017) and miR-660 (P = 0.048) at diagnosis and CR was then confirmed by individual assays. In addition, high levels of miR-25 were related to the presence of oligoclonal bands (P = 0.002). Longer PFS after ASCT was observed in patients with high levels of miR-19b (6 vs. 1.8 years; P < 0.001) or miR-331 (8.6 vs. 2.9 years; P = 0.001). Low expression of both miR-19b and miR-331 in combination was a marker of shorter PFS (HR 5.3; P = 0.033). We have identified a serum microRNA signature with potential as a diagnostic and prognostic tool in MM. PMID:25593199
Smirnova, Lena; Block, Katharina; Sittka, Alexandra; Oelgeschläger, Michael; Seiler, Andrea E. M.; Luch, Andreas
2014-01-01
Studying chemical disturbances during neural differentiation of murine embryonic stem cells (mESCs) has been established as an alternative in vitro testing approach for the identification of developmental neurotoxicants. miRNAs represent a class of small non-coding RNA molecules involved in the regulation of neural development and ESC differentiation and specification. Thus, neural differentiation of mESCs in vitro allows investigating the role of miRNAs in chemical-mediated developmental toxicity. We analyzed changes in miRNome and transcriptome during neural differentiation of mESCs exposed to the developmental neurotoxicant sodium valproate (VPA). A total of 110 miRNAs and 377 mRNAs were identified differently expressed in neurally differentiating mESCs upon VPA treatment. Based on miRNA profiling we observed that VPA shifts the lineage specification from neural to myogenic differentiation (upregulation of muscle-abundant miRNAs, mir-206, mir-133a and mir-10a, and downregulation of neural-specific mir-124a, mir-128 and mir-137). These findings were confirmed on the mRNA level and via immunochemistry. Particularly, the expression of myogenic regulatory factors (MRFs) as well as muscle-specific genes (Actc1, calponin, myosin light chain, asporin, decorin) were found elevated, while genes involved in neurogenesis (e.g. Otx1, 2, and Zic3, 4, 5) were repressed. These results were specific for valproate treatment and―based on the following two observations―most likely due to the inhibition of histone deacetylase (HDAC) activity: (i) we did not observe any induction of muscle-specific miRNAs in neurally differentiating mESCs exposed to the unrelated developmental neurotoxicant sodium arsenite; and (ii) the expression of muscle-abundant mir-206 and mir-10a was similarly increased in cells exposed to the structurally different HDAC inhibitor trichostatin A (TSA). Based on our results we conclude that miRNA expression profiling is a suitable molecular endpoint for developmental neurotoxicity. The observed lineage shift into myogenesis, where miRNAs may play an important role, could be one of the developmental neurotoxic mechanisms of VPA. PMID:24896083
2013-08-01
like ( NBL ) corresponding to tumors predicted to have a BRCAness phenotype (BL tumors) or not ( NBL tumors). In the previous years we performed a...TCGA EOC project that have been characterized as BL or NBL by our profile to identify 3 candidate miRNAs (let-7f-2*, miR-744*, miR-342-5p) that may be
Fenger, Joelle M; Roberts, Ryan D; Iwenofu, O Hans; Bear, Misty D; Zhang, Xiaoli; Couto, Jason I; Modiano, Jaime F; Kisseberth, William C; London, Cheryl A
2016-10-10
MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified alterations in numerous genes, including upregulation of GSN, an actin filament-severing protein involved in cytoskeletal remodeling. Lastly, stable downregulation of miR-9 in OS cell lines reduced GSN expression with a concomitant decrease in cell invasion and migration; concordantly, cells transduced with GSN shRNA demonstrated decreased invasive properties. Our findings demonstrate that miR-9 promotes a metastatic phenotype in normal canine osteoblasts and malignant OS cell lines, and that this is mediated in part by enhanced GSN expression. As such, miR-9 represents a novel target for therapeutic intervention in OS.
Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping
2014-01-01
The physiological role of microRNAs (miRNAs) in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs) culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84%) could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05) when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221) were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation. PMID:25503309
MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/-mice.
Sala, Federica; Aranda, Juan F; Rotllan, Noemi; Ramírez, Cristina M; Aryal, Binod; Elia, Leonardo; Condorelli, Gianluigi; Catapano, Alberico Luigi; Fernández-Hernando, Carlos; Norata, Giuseppe Danilo
2014-10-01
The miR-143/145 cluster regulates VSMC specific gene expression, thus controlling differentiation, plasticity and contractile function, and promoting the VSMC phenotypic switch from a contractile/non-proliferative to a migrating/proliferative state. More recently increased miR-145 expression was observed in human carotid atherosclerotic plaques from symptomatic patients. The goal of this study was to investigate the contribution of miR-143/145 during atherogenesis by generating mice lacking miR-143/145 on an Ldlr-deficient background. Ldlr-/- and Ldlr-/--miR-143/145-/- (DKO) were fed a Western diet (WD) for 16 weeks. At the end of the treatment, the lipid profile and the atherosclerotic lesions were assessed in both groups of mice. Absence of miR-143/145 significantly reduced atherosclerotic plaque size and macrophage infiltration. Plasma total cholesterol levels were lower in DKO and FLPC analysis showed decreased cholesterol content in VLDL and LDL fractions. Interestingly miR-143/145 deficiency per se resulted in increased hepatic and vascular ABCA1 expression. We further confirmed the direct regulation of miR-145 on ABCA1 expression by qRT-PCR, Western blotting and 3'UTR-luciferase reporter assays. In summary, miR-143/145 deficiency significantly reduces atherosclerosis in mice. Therapeutic inhibition of miR-145 might be useful for treating atherosclerotic vascular disease.
miRNA Expression Change in Dorsal Root Ganglia After Peripheral Nerve Injury.
Chang, Hsueh-Ling; Wang, Hung-Chen; Chunag, Yi-Ta; Chou, Chao-Wen; Lin, I-Ling; Lai, Chung-Sheng; Chang, Lin-Li; Cheng, Kuang-I
2017-02-01
The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague-Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7. A miRNA microarray analysis was used to detect the miRNA expression profiles in injured L5 DRG from SNL, DRT, and VRT on POD 7. Validation of miRNA expression was performed by qPCR and in situ hybridization. Rats receiving SNL displayed significantly higher mechanical hypersensitivity, but those receiving DRT developed higher thermal hypersensitivity. The number of miRNAs that were significantly upregulated in L5 DRG was 49 (7.2%), 25 (3.7%), and 146 (21.5%) following SNL, DRT, and VRT, respectively. On the other hand, 35 (5.1%) miRNAs were significantly downregulated in the SNL group, 21 (3.1%) miRNAs in the DRT group, and 41 (6.0%) miRNAs in the VRT group. Of the four miRNAs that were mutually aberrant in all three models, two were significantly upregulated (twofold), miR-21 and miR-31, and two were significantly downregulated, miR-668 and miR-672. Using in situ hybridization, miRNA-21, miRNA-31, miRNA-668, and miRNA-672 were found to localize to neurons in the DRG. Collectively, the mutual abnormal miRNA expression of miR-21, miR-31, miR-668, and miR-677 implied that these miRNAs may be therapeutic targets for alleviating multiple forms of neuropathic pain.
MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines
Lopez, Cecilia M.; Yu, Peter Y.; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A.
2018-01-01
Background Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. Methodology and principal findings RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. Conclusions These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA. PMID:29293555
MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines.
Lopez, Cecilia M; Yu, Peter Y; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A; Fenger, Joelle M
2018-01-01
Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.
Leung, Carmen O. N.; Ye, Tian-Min; Kwan, Peter C. K.; Lee, Kai-Fai; Yeung, William S. B.
2011-01-01
Background MicroRNAs (miRNAs) are small non-coding RNA molecules capable of regulating transcription and translation. Previously, a cluster of miRNAs that are specifically expressed in mouse zygotes but not in oocytes or other preimplantation stages embryos are identified by multiplex real-time polymerase chain reaction-based miRNA profiling. The functional role of one of these zygote-specific miRNAs, miR-135a, in preimplantation embryo development was investigated. Methodology/Principal Findings Microinjection of miR-135a inhibitor suppressed first cell cleavage in more than 30% of the zygotes. Bioinformatics analysis identified E3 Ubiquitin Ligase Seven In Absentia Homolog 1A (Siah1a) as a predicted target of miR-135a. Western blotting and 3′UTR luciferase functional assays demonstrated that miR-135a down-regulated the expression of Siah1 in HeLa cells and in mouse zygotes. Siah1a was expressed in preimplantation embryos and its expression pattern negatively correlated with that of miR-135a. Co-injection of Siah1a-specific antibody with miR-135a inhibitor partially nullified the effect of miR-135a inhibition. Proteasome inhibition by MG-132 revealed that miR-135a regulated proteasomal degradation and potentially controlled the expression of chemokinesin DNA binding protein (Kid). Conclusions/Significance The present study demonstrated for the first time that zygotic specific miRNA modulates the first cell cleavage through regulating expression of Siah1a. PMID:22132158
Tanaka, Kiyoko; Kondo, Keiichi; Kitajima, Kenji; Muraoka, Masatoshi; Nozawa, Akinori; Hara, Takahiko
2013-08-16
Protein-tyrosine phosphatase non-receptor type 23 (PTPN23) is a candidate tumor suppressor involved in the tumorigenesis of various organs. However, its physiological role(s) and detailed expression profile(s) have not yet been elucidated. We investigated the function and regulation of PTPN23 in the formation of testicular germ cell tumors (TGCTs). Expression of PTPN23 in human TGCT cell lines was significantly lower than that in spermatogonial stem cells in mice. Overexpression of PTPN23 in NEC8, a human TGCT cell line, suppressed soft agar colony formation in vitro and tumor formation in nude mice in vivo. These data indicate that PTPN23 functions as a tumor suppressor in TGCTs. Multiple computational algorithms predicted that the 3' UTR of human PTPN23 is a target for miR-142-3p. A luciferase reporter assay confirmed that miR-142-3p bound directly to the 3' UTR of PTPN23. Introduction of pre-miR-142 in the PTPN23 transfectant of NEC8 led to suppressed expression of PTPN23 and increased soft agar colony formation. Quantitative RT-PCR data revealed a significantly higher expression of miR-142-3p in human seminomas compared with normal testes. No difference in mRNA expression between seminoma and non-seminoma samples was detected by in situ hybridization. Both quantitative RT-PCR and immunohistochemical analyses revealed that PTPN23 expression was significantly lower in TGCTs than in normal testicular tissues. Finally, a lack of PTPN23 protein expression in human TGCTs correlated with a relatively higher miR-142-3p expression. These data suggest that PTPN23 is a tumor suppressor and that repression of PTPN23 expression by miR-142-3p plays an important role in the pathogenesis of TGCTs.
Riancho, Javier; Vázquez-Higuera, José Luis; Pozueta, Ana; Lage, Carmen; Kazimierczak, Martha; Bravo, María; Calero, Miguel; Gonalezález, Andrea; Rodríguez, Eloy; Lleó, Alberto; Sánchez-Juan, Pascual
2017-01-01
MicroRNAs have been postulated as potential biomarkers for Alzheimer's disease (AD). Exosomes are nanovesicles which transport microRNAs, proteins, and other cargos. It has been hypothesized that the exosome traffic might be increased in neurodegenerative disorders. i) To assess the cerebrospinal fluid (CSF) microRNA profile in a group of AD patients and control subjects and to validate a group of microRNAs previously reported by other authors. ii) To compare microRNA levels in whole CSF and in the exosome-enriched fraction in AD patients. A panel of 760 microRNAs was analyzed in the CSF of 10 AD patients and 10 healthy subjects. Among microRNAs differently expressed, we selected those that had been previously reported by other authors. Candidates were validated in a larger group by individual qPCR assays. MicroRNA expression was also evaluated in exosome-enriched CSF samples of patients with AD and controls. Fifteen microRNAs were differently expressed in AD. MiR-9-5p, miR-134, and miR-598 were selected as candidates for further analysis. MiR-9-5p and miR-598 were detected in 50 and 75% of control CSF samples, respectively, while they were not detected in any AD CSF samples. We observed an opposite pattern when we evaluated the microRNA expression in the exosome-enriched CSF AD samples. No pattern variations were noted among healthy subjects. These data propose miR-9-5p and miR-598 as potential biomarkers for AD. Further studies in plasma and other body fluids will confirm their potential role as easily accessible biomarkers. In addition, our data suggest that exosome trafficking is different between AD and control subjects raising the need to take this phenomenon into consideration in future studies of AD biomarkers.
Tamilzhalagan, Sembulingam; Rathinam, Dhanasekaran; Ganesan, Kumaresan
2017-06-01
Frequent amplification of 7q21-22 genomic region is known in gastric cancer. Multiple genes including SHFM1, MCM7, and COL1A2 were reported to be the potential cancer candidate genes of this 20 Mb amplicon. This amplicon has two polycistrionic miRNA clusters and in the present study, miR-106b-25 cluster located in intron-13 of MCM7 was identified to express in gastric tumors. Among the 7q21-22 candidate genes, SHFM1 and MCM7 are expressed in intestinal type gastric tumors, whereas COL1A2 is expressed in diffuse type gastric tumors. Across gastric tumors, miR-25 was identified to co-express with MCM7 and SHFM1. On the other hand, negative correlation was observed between miR-25 and COL1A2 expression. miR-25 originating from MCM7 was found capable of selectively targeting the adjacent gene COL1A2. Silencing of miR-25 was found capable of elevating the expression of COL1A2 and inhibiting E-cadherin expression, revealing the diffuse type gastric cancer suppressive role conferred by miR-25. miR-25 was also found to suppress p53, and activate c-Src revealing its intestinal type gastric cancer associated oncogenic functions. Genome-wide expression profiling upon miR-25 silencing reveals that miR-25 is capable of suppressing 40 genes which are co-expressed with COL1A2, involved in epithelial to mesenchymal transition and angiogenesis which are the typical diffuse type gastric cancer features. The results clearly demonstrate 7q21-22 amplification, MCM7, and its intronic miR-25 are the major molecular switches involved in the complex oncogenic circuits of gastric cancer. © 2017 Wiley Periodicals, Inc.
Sun, Juan; Feng, Miao; Wu, Fengqi; Ma, Xiaolin; Lu, Jie; Kang, Min; Liu, Zhewei
2016-08-01
We sought to identify specific microRNA (miRNA) for systemic juvenile idiopathic arthritis (sJIA) and to determine the involvement of these miRNA in regulating the expression of cytokines. Microarray profiling was performed to identify differentially expressed miRNA in sJIA plasma. Levels of candidate miRNA and mRNA were assessed by real-time PCR, and cytokines were measured by ELISA. Dual-luciferase reporter assay was used to validate the direct interaction between miR-26a and interleukin 6 (IL-6). Forty-eight miRNA were differentially expressed in the plasma of patients with sJIA compared with healthy controls (HC). Five miRNA were selected for further validation. The expression level of miR-26a was exclusively elevated in the plasma of patients with sJIA as compared with 4 rheumatic diseases and 2 subtypes of JIA (oligoarticular and polyarticular). The levels of IL-6, IL-1β, and tumor necrosis factor-α in the plasma of patients with sJIA were increased, and only IL-6 presented a positive correlation with miR-26a (r = 0.539, p < 0.0001). After stimulation with IL-6, miR-26a expression was upregulated in THP-1 cells, while the supernatant level of IL-6 was downregulated by transfection of miR-26a mimics. Consistently, direct target relationship between miR-26a and IL-6 was confirmed. This study demonstrates that miR-26a is expressed specifically and highly in sJIA plasma and suggests that miR-26a may regulate the levels of cytokines in sJIA. Our findings highlight miR-26a as a potential biomarker for the diagnosis as well as differential diagnosis of sJIA.
Xu, Qing-Fu; Pan, Ya-Wen; Li, Li-Chao; Zhou, Zheng; Huang, Qi-Lin; Pang, Jesse Chung-Sean; Zhu, Xiao-Peng; Ren, Yong; Yang, Hui; Ohgaki, Hiroko; Lv, Sheng-Qing
2014-11-01
Medulloblastoma is the most frequent malignant central nervous system tumor in children. MicroRNAs (miRs) are small, non-coding RNAs that target protein-coding and non-coding RNAs, and play roles in a variety of cellular processes through regulation of multiple targets. In the present study, we analyzed miR-22 expression and its effect in cell proliferation and apoptosis in medulloblastomas. Quantitative reverse transcription PCR (RT-PCR) revealed significantly lower expression of miR-22 in 19 out of 27 (70%) medulloblastomas, D341, DAOY, ONS-76 medulloblastoma cell lines, compared with normal cerebellum. Forced expression of miR-22 by lentiviral vector transfection reduced cell proliferation and induced apoptosis, while knockdown of miR-22 increased proliferative activity in DAOY and ONS-76 cells. DAOY cells with miR-22 overexpression in nude mice yielded tumors smaller than those originated from control DAOY cells. Microarray analysis in DAOY cells with forced miR-22 expression showed significant changes in expression profiles, PAPST1 being the most significantly (10 folds) downregulated gene. Quantitative RT-PCR revealed PAPST1 mRNA upregulation in 18 out of 27 (67%) medulloblastomas. In addition, a luciferase reporter assay in ONS-76 and DAOY cells suggested that miR-22 directly targets the PAPST1 gene, and lentivirus-mediated knockdown of PAPST1 suppressed proliferation of DAOY and ONS-76 medulloblastoma cells. These results suggest that frequently downregulated miR-22 expression is associated with cell proliferation in medulloblastomas, and this may be at least in part via PAPST1, which is a novel target of miR-22. © 2014 International Society of Neuropathology.
Molina-Pinelo, Sonia; Suárez, Rocío; Pastor, María Dolores; Nogal, Ana; Márquez-Martín, Eduardo; Martín-Juan, José; Carnero, Amancio; Paz-Ares, Luis
2012-01-01
The identification of new less invasive biomarkers is necessary to improve the detection and prognostic outcome of respiratory pathological processes. The measurement of miRNA expression through less invasive techniques such as plasma and serum have been suggested to analysis of several lung malignancies including lung cancer. These studies are assuming a common deregulated miRNA expression both in blood and lung tissue. The present study aimed to obtain miRNA representative signatures both in plasma and bronchoalveolar cell fraction that could serve as biomarker in respiratory diseases. Ten patients were evaluated to assess the expression levels of 381 miRNAs. We found that around 50% miRNAs were no detected in both plasma and bronchoalveolar cell fraction and only 20% of miRNAs showed similar expression in both samples. These results show a lack of association of miRNA signatures between plasma and bronchoalveolar cytology in the same patient. The profiles are not comparable; however, there is a similarity in the relative expression in a very small subset of miRNAs (miR-17, miR-19b, miR-195 and miR-20b) between both biological samples in all patients. This finding supports that the miRNAs profiles obtained from different biological samples have to be carefully validated to link with respiratory diseases.
Quintero, H; Gómez-Montalvo, A I; Lamas, M
2016-03-01
Cell-type determination is a complex process driven by the combinatorial effect of extrinsic signals and the expression of transcription factors and regulatory genes. MicroRNAs (miRNAs) are non-coding RNAs that, generally, inhibit the expression of target genes and have been involved, among other processes, in cell identity acquisition. To search for candidate miRNAs putatively involved in mice rod photoreceptor and Müller glia (MG) identity, we compared miRNA expression profiles between late-stage retinal progenitor cells (RPCs), CD73-immunopositive (CD73+) rods and postnatal MG. We found a close similarity between RPCs and CD73+ miRNA expression profiles but a divergence between CD73+ and MG miRNA signatures. We validated preferentially expressed miRNAs in the CD73+ subpopulation (miR-182, 183, 124a, 9(∗), 181c and 301b(∗)) or MG (miR-143, 145, 214, 199a-5p, 199b(∗), and 29a). Taking advantage of the unique capacity of MG to dedifferentiate into progenitor-like cells that can be differentiated to a rod phenotype in response to external cues, we evaluated changes of selected miRNAs in MG-derived progenitors (MGDP) during neuronal differentiation. We found decreased levels of miR-143 and 145, but increased levels of miR-29a in MGDP. In MGDPs committed to early neuronal lineages we found increased levels of miR-124a and upregulation of miR-124a, 9(∗) and 181c during MGDP acquisition of rod phenotypes. Furthermore, we demonstrated that ectopic miR-124 expression is sufficient to enhance early neuronal commitment of MGDP. Our data reveal a dynamic regulation of miRNAs in MGDP through early and late neuronal commitment and miRNAs that could be potential targets to exploit the silent neuronal differentiation capacity of MG in mammals. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
miR-638 regulates gene expression networks associated with emphysematous lung destruction
2013-01-01
Background Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by varying degrees of emphysematous lung destruction and small airway disease, each with distinct effects on clinical outcomes. There is little known about how microRNAs contribute specifically to the emphysema phenotype. We examined how genome-wide microRNA expression is altered with regional emphysema severity and how these microRNAs regulate disease-associated gene expression networks. Methods We profiled microRNAs in different regions of the lung with varying degrees of emphysema from 6 smokers with COPD and 2 controls (8 regions × 8 lungs = 64 samples). Regional emphysema severity was quantified by mean linear intercept. Whole genome microRNA and gene expression data were integrated in the same samples to build co-expression networks. Candidate microRNAs were perturbed in human lung fibroblasts in order to validate these networks. Results The expression levels of 63 microRNAs (P < 0.05) were altered with regional emphysema. A subset, including miR-638, miR-30c, and miR-181d, had expression levels that were associated with those of their predicted mRNA targets. Genes correlated with these microRNAs were enriched in pathways associated with emphysema pathophysiology (for example, oxidative stress and accelerated aging). Inhibition of miR-638 expression in lung fibroblasts led to modulation of these same emphysema-related pathways. Gene targets of miR-638 in these pathways were amongst those negatively correlated with miR-638 expression in emphysema. Conclusions Our findings demonstrate that microRNAs are altered with regional emphysema severity and modulate disease-associated gene expression networks. Furthermore, miR-638 may regulate gene expression pathways related to the oxidative stress response and aging in emphysematous lung tissue and lung fibroblasts. PMID:24380442
Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Karina J.; School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA 6008; Tsykin, Anna
2012-10-19
Highlights: Black-Right-Pointing-Pointer Matrigel alters cancer cell line miRNA expression relative to culture on plastic. Black-Right-Pointing-Pointer Many identified Matrigel-regulated miRNAs are implicated in cancer. Black-Right-Pointing-Pointer miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. Black-Right-Pointing-Pointer miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence ofmore » Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a valuable approach to the in vitro study of miRNAs.« less
Fernández, Concepción; Bellosillo, Beatriz; Ferraro, Mariana; Seoane, Agustín; Sánchez-González, Blanca; Pairet, Silvia; Pons, Aina; Barranco, Luis; Vela, María Carmen; Gimeno, Eva; Colomo, Lluís; Besses, Carles; Navarro, Alfons; Salar, Antonio
2017-01-02
Over the last years, our knowledge on pathogenesis of gastric MALT lymphoma has greatly improved, but its morphological diagnosis is still hampered by overlapping histological features with advanced chronic gastritis. MicroRNAs are deregulated in lymphomas, but their role and usefulness in gastric MALT lymphoma has not been extensively investigated. We analyzed the expression of 384 miRNAs using TaqMan microRNA assay in a training series of 10 gastric MALT lymphomas, 3 chronic gastritis and 2 reactive lymph nodes. Then, significantly deregulated miRNAs were individually assessed by real-time PCR in a validation series of 16 gastric MALT lymphomas and 12 chronic gastritis. Gastric MALT lymphoma is characterized by a specific miRNA expression profile. Among the differentially expressed miRNAs, a significant overexpression of miR-142-3p and miR-155 and down-regulation of miR-203 was observed in gastric MALT lymphoma when compared to chronic gastritis. miR-142-3p, miR-155 and miR-203 expression levels might be helpful biomarkers for the differential diagnosis between gastric MALT lymphomas and chronic gastritis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Global microRNA profiling of peripheral blood mononuclear cells in patients with Behçet's disease.
Erre, Gian Luca; Piga, Matteo; Carru, Ciriaco; Angius, Andrea; Carcangiu, Laura; Piras, Marco; Sotgia, Salvatore; Zinellu, Angelo; Mathieu, Alessandro; Passiu, Giuseppe; Pescatori, Mario
2015-01-01
To explore the post-transcriptional regulation of the peripheral blood mononuclear cells (PBMCs) transcriptome by microRNAs in Behçet's disease (BD). Using TaqMan Low Density Array-based microRNAs expression profiling, the expression of 750 mature human microRNAs in PBMCs from 5 BD patients and 3 healthy controls (HC) was compared. The expression of deregulated microRNAs was then validated by quantitative real time-polymerase chain reaction (qRT-PCR), in 42 BD patients and 8 HC. In the initial screening, 13 microRNAs appeared deregulated in BD vs HC. Among them, the differential expression of miR-720 and miR-139-3p was confirmed by qRT-PCR, (p<0.05 and FDR<5%). Areas under the receiver operating characteristic curve for miR-139-3p, miR-720 and miR-139-3p+miR-720 in the validation cohort were 0.84, 0.87 and 0.92 respectively, indicating good discrimination between BD patients and HC. Post-hoc analysis showed that 9 out of 13 microRNAs from the discovery phase were significantly upregulated in active vs. quiescent BD, suggesting inflammation as a key regulator of microRNAs machinery in BD. In silico analysis revealed that several BD candidate susceptibility genes are predicted target of significantly deregulated microRNAs in active BD. A significant enrichment in microRNAs targeting elements of the Toll-like receptor (TLR) and T-cell receptor signalling pathways was also assumed. miR199-3p and miR720 deserve further confirmation as biomarkers of BD in larger studies. PBMCs from active BD displayed a unique signature of microRNAs which may be implicated in regulation of innate immunity activation and T-cell function.
Zhang, J; Liu, Y; Zhu, Z; Yang, S; Ji, K; Hu, S; Liu, X; Yao, J; Fan, R; Dong, C
2017-02-01
It has been demonstrated that microRNAs (miRNAs) play important roles in the control of melanogenesis and hair color in mammals. By comparing miRNA expression profiles between brown and white alpaca skin, we previously identified miR508-3p as a differentially expressed miRNA suggesting its potential role in melanogenesis and hair color formation. The present study was conducted to determine the role of miR508-3p in melanogenesis in alpaca melanocytes. In situ hybridization showed that miR508-3p is abundantly present in the cytoplasma of alpaca melanocytes. miR508-3p was predicted to target the gene encoding microphthalmia transcription factor (MITF) and a luciferase reporter assay indicated that miR508-3p regulates MITF expression by directly targeting its 3'UTR. Overexpression of miR508-3p in alpaca melanocytes down-regulated MITF expression both at the messenger RNA and protein level and resulted in decreased expression of key melanogenic genes including tyrosinase and tyrosinase-related protein 2. Overexpression of miR508-3p in melanocytes also resulted in decreased melanin production including total alkali-soluble melanogenesis, eumelanogenesis and pheomelanogenesis. Results support a functional role of miR508-3p in regulating melanogenesis in alpaca melanocytes by directly targeting MITF.
Ishihara, Kaori; Sasaki, Daisuke; Tsuruda, Kazuto; Inokuchi, Naoko; Nagai, Kazuhiro; Hasegawa, Hiroo; Yanagihara, Katsunori; Kamihira, Shimeru
2012-12-01
Micro RNAs (miRNAs) provide new insight in the development of cancer, but little is known about their clinical relevance as biomarkers in the assessment of diagnosis, classification, progression and prognosis of various cancers. To explore a potential novel biomarker, we examined the cellular and plasma miRNA profiles in adult T-cell leukemia (ATL) characterized by diverse clinical features. Using CD4-positive cells isolated from 2 non-infected healthy individuals, 3 chronic ATL patients and 3 acute ATL patients, cellular miRNAs were profiled by microarray. The microarray screened 5 miRNAs namely miR-155, let-7g, miR-126, miR-130a and let-7b because of the large difference in their expression in diseased vs. that of healthy controls. The expression levels of before 5 miRNAs re-quantified by reverse transcription quantifiable polymerase chain reaction (RT-qPCR) were not always accordant in cells and plasma. The high and low plasma levels of miR-155 and miR-126 changed with ATL stage. The present study revealed that there is a quantitative discrepancy between cellular and plasma miRNAs. The elevation of plasma miR-155 and the reduction in miR-126 correlated with poor prognosis, indicating their usefulness as a novel biomarker for the assessment of disease stage. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yang, Seung Yeob; Choi, Seung Ah; Lee, Ji Yeoun; Park, Ae-Kyung; Wang, Kyu-Chang; Phi, Ji Hoon; Koh, Eun Jung; Park, Woong-Yang; Park, Sung-Hye; Hwang, Do Won; Jung, Hee Won; Kim, Seung-Ki
2015-12-22
The main cause of death in medulloblastoma is recurrence associated with leptomeningeal dissemination. During this process, the role of microRNAs (miRs) in the acquisition of metastatic phenotype remains poorly understood. This study aimed to identify the miR involved in leptomeningeal dissemination and to elucidate its biological functional mechanisms. We analyzed the miR expression profiles of 29 medulloblastomas according to the presence of cerebrospinal fluid (CSF) seeding. Differentially expressed miRs (DEmiRs) were validated in 29 medulloblastoma tissues and three medulloblastoma cell lines. The biological functions of the selected miRs were evaluated using in vitro and in vivo studies. A total of 12 DEmiRs were identified in medulloblastoma with seeding, including miR-192. The reduced expression of miR-192 was confirmed in the tumor seeding group and in the medulloblastoma cells. Overexpression of miR-192 inhibited cellular proliferation by binding DHFR. miR-192 decreased cellular anchoring via the repression of ITGAV, ITGB1, ITGB3, and CD47. Animals in the miR-192-treated group demonstrated a reduction of spinal seeding (P < 0.05) and a significant survival benefit (P < 0.05). Medulloblastoma with seeding showed specific DEmiRs compared with those without. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring ability.
ZHANG, XINCHEN; GUO, GORDON; WANG, GUANG; ZHAO, JINYAO; WANG, BO; YU, XIAOTANG; DING, YANFANG
2015-01-01
Improved insight into the molecular and genetic profile of different types of epithelial ovarian cancer (EOC) is required for understanding the carcinogenesis of EOC and may potentially be exploited by future targeted therapies. The aim of the present study was to identify a unique microRNA (miRNA) patterns and key miRNAs, which may assist in predicting progression and prognosis in high-grade serous carcinoma (HGSC) and clear cell carcinoma (CCC). To identify unique miRNA patterns associated with HGSC and CCC, a miRNA microarray was performed using Chinese tumor bank specimens of patients with HGSC or CCC in a retrospective analysis. The expression levels of four deregulated miRNAs were further validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in an external cohort of 42 cases of HGSC and 36 cases of CCC. Kaplan-Meier analysis was performed to analyze the correlation between the expression levels of the four miRNAs and patient prognosis. Among these validated miRNAs, miR-510 was further examined in another cohort of normal ovarian tissues, as well as the HGSC, low-grade serous carcinoma (LGSC) and CCC specimens using RT-qPCR and in situ hybridization. The results revealed that, of the 768 miRNAs analyzed in the microarray, 33 and 50 miRNAs were significantly upregulated and downregulated, respectively, with at least a 2-fold difference in HGSC, compared with CCC. The quantitative analysis demonstrated that miR-510 and miR-129-3p were significantly downregulated, and that miR-483-5p and miR-miR-449a were significantly upregulated in CCC, compared with HGSC (P<0.05), which was consistent with the microarray results. Kaplan-Meier analysis revealed low expression levels of miR-510 and low expression levels of miR-129-3p, advanced International Federation of Gynecology and Obstetrics (FIGO) stage, lymphatic metastasis and that HGSC was significantly associated with the poorer overall survival rates (P<0.05). The expression of miR-510 was significantly higher in the LGSC and CCC tissues, compared with the HGSC and normal ovarian tissues. The results of the present study suggested that different subtypes of EOC have specific miRNA signatures, and that miR-510 may be involved differently in HGSC and CCC. Thus, miR-510 and miR-129-3p may be considered as potential novel candidate clinical biomarkers for predicting the outcome of EOC. PMID:26497752
NASA Astrophysics Data System (ADS)
Bhajun, Ricky; Guyon, Laurent; Pitaval, Amandine; Sulpice, Eric; Combe, Stéphanie; Obeid, Patricia; Haguet, Vincent; Ghorbel, Itebeddine; Lajaunie, Christian; Gidrol, Xavier
2015-02-01
MiRNAs are key regulators of gene expression. By binding to many genes, they create a complex network of gene co-regulation. Here, using a network-based approach, we identified miRNA hub groups by their close connections and common targets. In one cluster containing three miRNAs, miR-612, miR-661 and miR-940, the annotated functions of the co-regulated genes suggested a role in small GTPase signalling. Although the three members of this cluster targeted the same subset of predicted genes, we showed that their overexpression impacted cell fates differently. miR-661 demonstrated enhanced phosphorylation of myosin II and an increase in cell invasion, indicating a possible oncogenic miRNA. On the contrary, miR-612 and miR-940 inhibit phosphorylation of myosin II and cell invasion. Finally, expression profiling in human breast tissues showed that miR-940 was consistently downregulated in breast cancer tissues
Pirola, Carlos J; Fernández Gianotti, Tomas; Castaño, Gustavo O; Mallardi, Pablo; San Martino, Julio; Mora Gonzalez Lopez Ledesma, María; Flichman, Diego; Mirshahi, Faridodin; Sanyal, Arun J; Sookoian, Silvia
2015-05-01
We used a screening strategy of global serum microRNA (miRNA) profiling, followed by a second stage of independent replication and exploration of liver expression of selected miRNAs to study: (1) the circulating miRNA signature associated with non-alcoholic fatty liver disease (NAFLD) progression and predictive power, (2) the role of miRNAs in disease biology and (3) the association between circulating miRNAs and features of the metabolic syndrome. The study used a case-control design and included patients with NAFLD proven through biopsy and healthy controls. Among 84 circulating miRNAs analysed, miR-122, miR-192, miR-19a and miR-19b, miR-125b, and miR-375 were upregulated >2-fold (p<0.05) either in simple steatosis (SS) or non-alcoholic steatohepatitis (NASH). The most dramatic and significant fold changes were observed in the serum levels of miR-122 (7.2-fold change in NASH vs controls and 3.1-fold change in NASH vs SS) and miR-192 (4.4-fold change in NASH vs controls); these results were replicated in the validation set. The majority of serum miR-122 circulate in argonaute2-free forms. Circulating miR-19a/b and miR-125b were correlated with biomarkers of atherosclerosis. Liver miR-122 expression was 10-fold (p<0.03) downregulated in NASH compared with SS and was preferentially expressed at the edge of lipid-laden hepatocytes. In vitro exploration showed that overexpression of miR-122 enhances alanine aminotransferase activity. miR-122 plays a role of physiological significance in the biology of NAFLD; circulating miRNAs mirror the histological and molecular events occurring in the liver. NAFLD has a distinguishing circulating miRNA profile associated with a global dysmetabolic disease state and cardiovascular risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Singh, Narendra P.; Singh, Udai P.; Rouse, Michael; Zhang, Jiajia; Chatterjee, Saurabh; Nagarkatti, Prakash S.; Nagarkatti, Mitzi
2015-01-01
Aryl hydrocarbon receptor (AhR) has been shown to have profound influence on T cell differentiation and use of distinct AhR ligands has shown that while some ligands induce Tregs, others induce Th17 cells. In the current study, we tested the ability of dietary AhR ligands (indole-3-carbinol; I3C and 3,3'-diindolylmethane; DIM), and an endogenous AhR ligand, 6-Formylindolo(3,2-b)carbazole (FICZ), on the differentiation and functions of Tregs and Th17 cells. Treatment of C57BL/6 mice with indoles (I3C or DIM), attenuated DTH response to mBSA and generation of Th17 cells while promoting Tregs. In contrast, FICZ exacerbated the DTH response and promoted Th17 cells. Indoles decreased the induction of IL-17 while promoted IL-10 and FoxP3 expression. Also, indoles caused reciprocal induction of Tregs and Th17 cells only in wild-type (AhR+/+) but not in AhR knockout (AhR−/−) mice. Upon analysis of microRNA (miR) profile in draining lymph nodes of mice with DTH, treatment with I3C and DIM decreased the expression of several miRs (miR-31, miR-219, and miR-490) that targeted FoxP3, while increasing the expression of miR-495 and miR-1192 that were specific to IL-17. Interestingly, treatment with FICZ had precisely the opposite effects on these miRs. Transfection studies using mature miR mimics of miR-490 and miR-1192 that target FoxP3 and IL-17 respectively or scrambled miR (mock) or inhibitors confirmed that these miRs specifically targeted FoxP3 and IL-17 genes. Our studies demonstrate for the first time that the ability of AhR ligands to regulate the differentiation of Tregs versus Th17 cells may depend on miR signature profile. PMID:26712945
Costantino, Vincenzo; Curci, Claudia; Cox, Sharon N.; De Palma, Giuseppe; Schena, Francesco P.
2013-01-01
Adult renal progenitor cells (ARPCs) were recently identified in the cortex of the renal parenchyma and it was demonstrated that they were positive for PAX2, CD133, CD24 and exhibited multipotent differentiation ability. Recent studies on stem cells indicated that microRNAs (miRNAs), a class of noncoding small RNAs that participate in the regulation of gene expression, may play a key role in stem cell self-renewal and differentiation. Distinct sets of miRNAs are specifically expressed in pluripotent stem cells but not in adult tissues, suggesting a role for miRNAs in stem cell self-renewal. We compared miRNA expression profiles of ARPCs with that of mesenchymal stem cells (MSCs) and renal proximal tubular cells (RPTECs) finding distinct sets of miRNAs that were specifically expressed in ARPCs. In particular, miR-1915 and miR-1225-5p regulated the expression of important markers of renal progenitors, such as CD133 and PAX2, and important genes involved in the repair mechanisms of ARPCs, such as TLR2. We demonstrated that the expression of both the renal stem cell markers CD133 and PAX2 depends on lower miR-1915 levels and that the increase of miR-1915 levels improved capacity of ARPCs to differentiate into adipocyte-like and epithelial-like cells. Finally, we found that the low levels of miR-1225-5p were responsible for high TLR2 expression in ARPCs. Therefore, together, miR-1915 and miR-1225-5p seem to regulate important traits of renal progenitors: the stemness and the repair capacity. PMID:23861881
MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting {beta}-catenin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jian-Yong; State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an; Huang, Yi
2012-04-20
Highlights: Black-Right-Pointing-Pointer miR-320a is downregulated in human colorectal carcinoma. Black-Right-Pointing-Pointer Overexpression of miR-320a inhibits colon cancer cell proliferation. Black-Right-Pointing-Pointer {beta}-Catenin is a direct target of miR-320a in colon cancer cells. Black-Right-Pointing-Pointer miR-320a expression inversely correlates with mRNA expression of {beta}-catenin's target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colonmore » cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and {beta}-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and {beta}-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting {beta}-catenin, suggesting its application in prognosis prediction and cancer treatment.« less
MicroRNA profiling in intraocular medulloepitheliomas.
Edward, Deepak P; Alkatan, Hind; Rafiq, Qundeel; Eberhart, Charles; Al Mesfer, Saleh; Ghazi, Nicola; Al Safieh, Leen; Kondkar, Altaf A; Abu Amero, Khaled K
2015-01-01
To study the differential expression of microRNA (miRNA) profiles between intraocular medulloepithelioma (ME) and normal control tissue (CT). Total RNA was extracted from formalin fixed paraffin embedded (FFPE) intraocular ME (n=7) and from age matched ciliary body controls (n=8). The clinical history and phenotype was recorded. MiRNA profiles were determined using the Affymetrix GeneChip miRNA Arrays analyzed using expression console 1.3 software. Validation of significantly dysregulated miRNA was confirmed by quantitative real-time PCR. The web-based DNA Intelligent Analysis (DIANA)-miRPath v2.0 was used to perform enrichment analysis of differentially expressed (DE) miRNA gene targets in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The pathologic evaluation revealed one benign (benign non-teratoid, n=1) and six malignant tumors (malignant teratoid, n=2; malignant non-teratoid, n = 4). A total of 88 miRNAs were upregulated and 43 miRNAs were downregulated significantly (P<0.05) in the tumor specimens. Many of these significantly dysregulated miRNAs were known to play various roles in carcinogenesis and tumor behavior. RT-PCR validated three significantly upregulated miRNAs and three significantly downregulated miRNAs namely miR-217, miR-216a, miR-216b, miR-146a, miR-509-3p and miR-211. Many DE miRNAs that were significant in ME tumors showed dysregulation in retinoblastoma, glioblastoma, and precursor, normal and reactive human cartilage. Enriched pathway analysis suggested a significant association of upregulated miRNAs with 15 pathways involved in prion disease and several types of cancer. The pathways involving significantly downregulated miRNAs included the toll-like receptor (TLR) (p<4.36E-16) and Nuclear Factor kappa B (NF-κB) signaling pathways (p<9.00E-06). We report significantly dysregulated miRNAs in intraocular ME tumors, which exhibited abnormal profiles in other cancers as well such as retinoblastoma and glioblastoma. Pathway analysis of all dysregulated miRNAs shared commonalities with other cancer pathways.
High-Throughput Profiling of Caenorhabditis elegans Starvation-Responsive microRNAs
Garcia-Segura, Laura; Abreu-Goodger, Cei; Hernandez-Mendoza, Armando; Dimitrova Dinkova, Tzvetanka D.; Padilla-Noriega, Luis; Perez-Andrade, Martha Elva; Miranda-Rios, Juan
2015-01-01
MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6–20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans. PMID:26554708
High-Throughput Profiling of Caenorhabditis elegans Starvation-Responsive microRNAs.
Garcia-Segura, Laura; Abreu-Goodger, Cei; Hernandez-Mendoza, Armando; Dimitrova Dinkova, Tzvetanka D; Padilla-Noriega, Luis; Perez-Andrade, Martha Elva; Miranda-Rios, Juan
2015-01-01
MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6-20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans.
Integrated Analysis of Dysregulated miRNA-gene Expression in HMGA2-silenced Retinoblastoma Cells
Venkatesan, Nalini; Deepa, PR; Vasudevan, Madavan; Khetan, Vikas; Reddy, Ashwin M; Krishnakumar, Subramanian
2014-01-01
Retinoblastoma (RB) is a primary childhood eye cancer. HMGA2 shows promise as a molecule for targeted therapy. The involvement of miRNAs in genome-level molecular dys-regulation in HMGA2-silenced RB cells is poorly understood. Through miRNA expression microarray profiling, and an integrated array analysis of the HMGA2-silenced RB cells, the dysregulated miRNAs and the miRNA-target relationships were modelled. Loop network analysis revealed a regulatory association between the transcription factor (SOX5) and the deregulated miRNAs (miR-29a, miR-9*, miR-9-3). Silencing of HMGA2 deregulated the vital oncomirs (miR-7, miR-331, miR-26a, miR-221, miR-17~92 and miR-106b∼25) in RB cells. From this list, the role of the miR-106b∼25 cluster was examined further for its expression in primary RB tumor tissues (n = 20). The regulatory targets of miR-106b∼25 cluster namely p21 (cyclin-dependent kinase inhibitor) and BIM (pro-apoptotic gene) were elevated, and apoptotic cell death was observed, in RB tumor cells treated with the specific antagomirs of the miR-106b∼25 cluster. Thus, suppression of miR-106b∼25 cluster controls RB tumor growth. Taken together, HMGA2 mediated anti-tumor effect present in RB is, in part, mediated through the miR-106b∼25 cluster. PMID:25232279
Saito, Yoshimasa; Suzuki, Hidekazu; Tsugawa, Hitoshi; Imaeda, Hiroyuki; Matsuzaki, Juntaro; Hirata, Kenro; Hosoe, Naoki; Nakamura, Masahiko; Mukai, Makio; Saito, Hidetsugu; Hibi, Toshifumi
2012-01-01
microRNAs (miRNAs) are small non-coding RNAs that can function as endogenous silencers of target genes and play critical roles in human malignancies. To investigate the molecular pathogenesis of gastric mucosa-associated lymphoid tissue (MALT) lymphoma, the miRNA expression profile was analyzed. miRNA microarray analysis with tissue specimens from gastric MALT lymphomas and surrounding non-tumor mucosae revealed that a hematopoietic-specific miRNA miR-142 and an oncogenic miRNA miR-155 were overexpressed in MALT lymphoma lesions. The expression levels of miR-142-5p and miR-155 were significantly increased in MALT lymphomas which do not respond to Helicobacter pylori (H. pylori) eradication. The expression levels of miR-142-5p and miR-155 were associated with the clinical courses of gastric MALT lymphoma cases. Overexpression of miR-142-5p and miR-155 was also observed in Helicobacter heilmannii-infected C57BL/6 mice, an animal model of gastric MALT lymphoma. In addition, miR-142-5p and miR-155 suppress the proapoptotic gene TP53INP1 as their target. The results of this study indicate that overexpression of miR-142-5p and miR-155 plays a critical role in the pathogenesis of gastric MALT lymphoma. These miRNAs might have potential application as therapeutic targets and novel biomarkers for gastric MALT lymphoma. PMID:23209550
Cho, Sung Hwan; An, Hui Jeong; Kim, Kyung Ah; Ko, Jung Jae; Kim, Ji Hyang; Kim, Young Ran; Ahn, Eun Hee; Rah, HyungChul; Lee, Woo Sik; Kim, Nam Keun
2017-01-01
MicroRNAs post-transcriptionally regulate gene expression in animals and plants. The aim of this study was to identify new target genes for microRNA polymorphisms (miR-146aC>G and miR-196a2T>C) in primary ovarian insufficiency (POI). We cloned and transfected miR-146aC>G and miR-196a2T>C into human granulosa cells and used microarrays and qPCR-arrays to examine the changes in the messenger RNA expression profile. We show miR-146aC>G and miR-196a2T>C change the mRNA expression patterns in granulosa cell. In each case, mRNAs were up or down-regulated after treatments with miR-146a C or G and miR-196a2 T or C. We found that miR-146a led to a significantly altered regulation of the mRNA levels of FOXO3, FOXL2 and CCND2 compared to controls. We also found that the polymorphisms of miR-146a led to a significantly altered regulation of CCND2 and FOXO3. Our results suggest that miR-146aC>G and miR-196a2T>C can regulate the levels of many of their target transcripts. In addition, specific target genes of miR-146aC>G polymorphisms may be involved in granulosa cell regulation.
Cho, Sung Hwan; An, Hui Jeong; Kim, Kyung Ah; Ko, Jung Jae; Kim, Ji Hyang; Kim, Young Ran; Ahn, Eun Hee; Rah, HyungChul; Lee, Woo Sik
2017-01-01
MicroRNAs post-transcriptionally regulate gene expression in animals and plants. The aim of this study was to identify new target genes for microRNA polymorphisms (miR-146aC>G and miR-196a2T>C) in primary ovarian insufficiency (POI). We cloned and transfected miR-146aC>G and miR-196a2T>C into human granulosa cells and used microarrays and qPCR-arrays to examine the changes in the messenger RNA expression profile. We show miR-146aC>G and miR-196a2T>C change the mRNA expression patterns in granulosa cell. In each case, mRNAs were up or down-regulated after treatments with miR-146a C or G and miR-196a2 T or C. We found that miR-146a led to a significantly altered regulation of the mRNA levels of FOXO3, FOXL2 and CCND2 compared to controls. We also found that the polymorphisms of miR-146a led to a significantly altered regulation of CCND2 and FOXO3. Our results suggest that miR-146aC>G and miR-196a2T>C can regulate the levels of many of their target transcripts. In addition, specific target genes of miR-146aC>G polymorphisms may be involved in granulosa cell regulation. PMID:28841705
Xiong, X R; Lan, D L; Li, J; Zi, X D; Li, M Y
2016-12-01
Small RNA represents several unique non-coding RNA classes that have important function in a wide range of biological processes including development of germ cells and early embryonic, cell differentiation, cell proliferation and apoptosis in diverse organisms. However, little is known about their expression profiles and effects in yak oocytes maturation and early development. To investigate the function of small RNAs in the maturation process of yak oocyte and early development, two small RNA libraries of oocytes were constructed from germinal vesicle stage (GV) and maturation in vitro to metaphase II-arrested stage (M II) and then sequenced using small RNA high-throughput sequencing technology. A total of 9,742,592 and 12,168,523 clean reads were obtained from GV and M II oocytes, respectively. In total, 801 and 1,018 known miRNAs were acquired from GV and M II oocytes, and 75 miRNAs were found to be significantly differentially expressed: 47 miRNAs were upregulated and 28 miRNAs were downregulated in the M II oocytes compared to the GV stage. Among the upregulated miRNAs, miR-342 has the largest fold change (9.25-fold). Six highly expressed miRNAs (let-7i, miR-10b, miR-10c, miR-143, miR-146b and miR-148) were validated by real-time quantitative PCR (RT-qPCR) and consistent with the sequencing results. Furthermore, the expression patterns of two miRNAs and their potential targets were analysed in different developmental stages of oocytes and early embryos. This study provides the first miRNA profile in the mature process of yak oocyte. Seventy-five miRNAs are expressed differentially in GV and M II oocytes as well as among different development stages of early embryos, suggesting miRNAs involved in regulating oocyte maturation and early development of yak. These results showed specific miRNAs in yak oocytes had dynamic changes during meiosis. Further functional and mechanistic studies on the miRNAs during meiosis may beneficial to understanding the role of miRNAs on meiotic division. © 2016 Blackwell Verlag GmbH.
Whole-genome expression analysis of mammalian-wide interspersed repeat elements in human cell lines.
Carnevali, Davide; Conti, Anastasia; Pellegrini, Matteo; Dieci, Giorgio
2017-02-01
With more than 500,000 copies, mammalian-wide interspersed repeats (MIRs), a sub-group of SINEs, represent ∼2.5% of the human genome and one of the most numerous family of potential targets for the RNA polymerase (Pol) III transcription machinery. Since MIR elements ceased to amplify ∼130 myr ago, previous studies primarily focused on their genomic impact, while the issue of their expression has not been extensively addressed. We applied a dedicated bioinformatic pipeline to ENCODE RNA-Seq datasets of seven human cell lines and, for the first time, we were able to define the Pol III-driven MIR transcriptome at single-locus resolution. While the majority of Pol III-transcribed MIR elements are cell-specific, we discovered a small set of ubiquitously transcribed MIRs mapping within Pol II-transcribed genes in antisense orientation that could influence the expression of the overlapping gene. We also identified novel Pol III-transcribed ncRNAs, deriving from transcription of annotated MIR fragments flanked by unique MIR-unrelated sequences, and confirmed the role of Pol III-specific internal promoter elements in MIR transcription. Besides demonstrating widespread transcription at these retrotranspositionally inactive elements in human cells, the ability to profile MIR expression at single-locus resolution will facilitate their study in different cell types and states including pathological alterations. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinozuka, Eriko; Miyashita, Masao; Mizuguchi, Yoshiaki, E-mail: yoshi1224@gmail.com
2013-01-04
Highlights: Black-Right-Pointing-Pointer SnoN modulated miR-720, miR-1274A, and miR-1274B expression levels in TE-1 cells. Black-Right-Pointing-Pointer miR-720 and miR-1274A suppressed the expression of target proteins p63 and ADAM9. Black-Right-Pointing-Pointer Silencing of SnoN significantly upregulated cell proliferation in TE-1 cells. Black-Right-Pointing-Pointer Esophageal cancer tissues have lower SnoN expression levels than normal tissues. Black-Right-Pointing-Pointer Esophageal cancer tissues have higher miR-720 expression levels than normal tissues. -- Abstract: It is now evident that changes in microRNA are involved in cancer progression, but the mechanisms of transcriptional regulation of miRNAs remain unknown. Ski-related novel gene (SnoN/SKIL), a transcription co-factor, acts as a potential key regulator withinmore » a complex network of p53 transcriptional repressors. SnoN has pro- and anti-oncogenic functions in the regulation of cell proliferation, senescence, apoptosis, and differentiation. We characterized the roles of SnoN in miRNA transcriptional regulation and its effects on cell proliferation using esophageal squamous cell carcinoma (ESCC) cells. Silencing of SnoN altered a set of miRNA expression profiles in TE-1cells, and the expression levels of miR-720, miR-1274A, and miR-1274B were modulated by SnoN. The expression of these miRNAs resulted in changes to the target protein p63 and a disintegrin and metalloproteinase domain 9 (ADAM9). Furthermore, silencing of SnoN significantly upregulated cell proliferation in TE-1 cells, indicating a potential anti-oncogenic function. These results support our observation that cancer tissues have lower expression levels of SnoN, miR-720, and miR-1274A compared to adjacent normal tissues from ESCC patients. These data demonstrate a novel mechanism of miRNA regulation, leading to changes in cell proliferation.« less
Nuclear Receptor SHP Activates miR-206 Expression via a Cascade Dual Inhibitory Mechanism
Song, Guisheng; Wang, Li
2009-01-01
MicroRNAs play a critical role in many essential cellular functions in the mammalian species. However, limited information is available regarding the regulation of miRNAs gene transcription. Microarray profiling and real-time PCR analysis revealed a marked down-regulation of miR-206 in nuclear receptor SHP−/− mice. To understand the regulatory function of SHP with regard to miR-206 gene expression, we determined the putative transcriptional initiation site of miR-206 and also its full length primary transcript using a database mining approach and RACE. We identified the transcription factor AP1 binding sites on the miR-206 promoter and further showed that AP1 (c-Jun and c-Fos) induced miR-206 promoter transactivity and expression which was repressed by YY1. ChIP analysis confirmed the physical association of AP1 (c-Jun) and YY1 with the endogenous miR-206 promoter. In addition, we also identified nuclear receptor ERRγ (NR3B3) binding site on the YY1 promoter and showed that YY1 promoter was transactivated by ERRγ, which was inhibited by SHP (NROB2). ChIP analysis confirmed the ERRγ binding to the YY1 promoter. Forced expression of SHP and AP1 induced miR-206 expression while overexpression of ERRγ and YY1 reduced its expression. The effects of AP1, ERRγ, and YY1 on miR-206 expression were reversed by siRNA knockdown of each gene, respectively. Thus, we propose a novel cascade “dual inhibitory” mechanism governing miR-206 gene transcription by SHP: SHP inhibition of ERRγ led to decreased YY1 expression and the de-repression of YY1 on AP1 activity, ultimately leading to the activation of miR-206. This is the first report to elucidate a cascade regulatory mechanism governing miRNAs gene transcription. PMID:19721712
2015-01-01
Background Intensive research based on the inverse expression relationship has been undertaken to discover the miRNA-mRNA regulatory modules involved in the infection of Hepatitis C virus (HCV), the leading cause of chronic liver diseases. However, biological studies in other fields have found that inverse expression relationship is not the only regulatory relationship between miRNAs and their targets, and some miRNAs can positively regulate a mRNA by binding at the 5' UTR of the mRNA. Results This work focuses on the detection of both inverse and positive regulatory relationships from a paired miRNA and mRNA expression data set of HCV patients through a 'change-to-change' method which can derive connected discriminatory rules. Our study uncovered many novel miRNA-mRNA regulatory modules. In particular, it was revealed that GFRA2 is positively regulated by miR-557, miR-765 and miR-17-3p that probably bind at different locations of the 5' UTR of this mRNA. The expression relationship between GFRA2 and any of these three miRNAs has not been studied before, although separate research for this gene and these miRNAs have all drawn conclusions linked to hepatocellular carcinoma. This suggests that the binding of mRNA GFRA2 with miR-557, miR-765, or miR-17-3p, or their combinations, is worthy of further investigation by experimentation. We also report another mRNA QKI which has a strong inverse expression relationship with miR-129 and miR-493-3p which may bind at the 3' UTR of QKI with a perfect sequence match. Furthermore, the interaction between hsa-miR-129-5p (previous ID: hsa-miR-129) and QKI is supported with CLIP-Seq data from starBase. Our method can be easily extended for the expression data analysis of other diseases. Conclusion Our rule discovery method is useful for integrating binding information and expression profile for identifying HCV miRNA-mRNA regulatory modules and can be applied to the study of the expression profiles of other complex human diseases. PMID:25707620
Ge, Yu-Zheng; Xu, Lu-Wei; Zhou, Chang-Cheng; Lu, Tian-Ze; Yao, Wen-Tao; Wu, Ran; Zhao, You-Cai; Xu, Xiao; Hu, Zhi-Kai; Wang, Min; Yang, Xiao-Bing; Zhou, Liu-Hua; Zhong, Bing; Xu, Zheng; Li, Wen-Cheng; Zhu, Jia-Geng; Jia, Rui-Peng
2017-01-01
Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent histologic subtype of kidney cancers in adults, which could be divided into two distinct subgroups according to the BRCA1 associated protein-1 (BAP1) mutation status. In the current study, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in ccRCC, with the aim to identify the differentially expressed miRNAs between BAP1 mutant and wild-type tumors, and generate a BAP1 mutation-specific miRNA signature for ccRCC patients with wild-type BAP1. Methods: The BAP1 mutation status and miRNA profiles in BAP1 mutant and wild-type tumors were analyzed. Subsequently, the association of the differentially expressed miRNAs with patient survival was examined, and a BAP1 mutation-specific miRNA signature was generated and examined with Kaplan-Meier survival, univariate and multivariate Cox regression analyses. Finally, the bioinformatics methods were adopted for the target prediction of selected miRNAs and functional annotation analyses. Results: A total of 350 treatment-naïve primary ccRCC patients were selected from The Cancer Genome Atlas project, among which 35 (10.0%) subjects carried mutant BAP1 and had a shorter overall survival (OS) time. Furthermore, 33 miRNAs were found to be differentially expressed between BAP1 mutant and wild-type tumors, among which 11 (miR-149, miR-29b-2, miR-182, miR-183, miR-21, miR-365-2, miR-671, miR-365-1, miR-10b, miR-139, and miR-181a-2) were significantly associated with OS in ccRCC patients with wild-type BAP1. Finally, a BAP1 mutation-specific miRNA signature consisting of 11 miRNAs was generated and validated as an independent prognostic parameter. Conclusions: In summary, our study identified a total of 33 miRNAs differentially expressed between BAP1 mutant and wild-type tumors, and generated a BAP1 mutation-specific miRNA signature including eleven miRNAs, which could serve as a novel prognostic biomarker for ccRCC patients with wild-type BAP1. PMID:28900502
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, Hisashi; Tatsumi, Tomohide; Hosui, Atsushi
2011-08-19
Highlights: {yields} HCV infection upregulated miR-192, -194, -215, downregulated miR-320, -491. {yields} Transfection of miR-192, -215, and -491 enhanced HCV replication. {yields} Transfection of miR-491 inhibited Akt phosphorylation. {yields} Akt inhibition could be responsible for augmentation of HCV replication by miR-491. -- Abstract: The aim of this study was to investigate the role of microRNA (miRNA) on hepatitis C virus (HCV) replication in hepatoma cells. Using miRNA array analysis, miR-192/miR-215, miR-194, miR-320, and miR-491 were identified as miRNAs whose expression levels were altered by HCV infection. Among them, miR-192/miR-215 and miR-491 were capable of enhancing replication of the HCV repliconmore » as well as HCV itself. HCV IRES activity or cell proliferation was not increased by forced expression of miR-192/miR-215 or miR-491. Investigation of signaling pathways revealed that miR-491 specifically suppressed the phosphoinositol-3 (PI3) kinase/Akt pathway. Under inhibition of PI3 kinase by LY294002, the suppressive effect of miR-491 on HCV replication was abolished, indicating that suppression of HCV replication by miR-491 was dependent on the PI3 kinase/Akt pathway. miRNAs altered by HCV infection would then affect HCV replication, which implies a complicated mechanism for regulating HCV replication. HCV-induced miRNA may be involved in changes in cellular properties including hepatocarcinogenesis.« less
Doumatey, Ayo P; Xu, Huichun; Huang, Hanxia; Trivedi, Niraj S; Lei, Lin; Elkahloun, Abdel; Adeyemo, Adebowale; Rotimi, Charles N
2015-06-01
Adipose tissues play important role in the pathophysiology of obesity-related diseases including type 2 diabetes (T2D). To describe gene expression patterns and functional pathways in obesity-related T2D, we performed global transcript profiling of omental adipose tissue (OAT) in morbidly obese individuals with or without T2D. Twenty morbidly obese (mean BMI: about 54 kg/m 2 ) subjects were studied, including 14 morbidly obese individuals with T2D (cases) and 6 morbidly obese individuals without T2D (reference group). Gene expression profiling was performed using the Affymetrix U133 Plus 2.0 human genome expression array. Analysis of covariance was performed to identify differentially expressed genes (DEGs). Bioinformatics tools including PANTHER and Ingenuity Pathway Analysis (IPA) were applied to the DEGs to determine biological functions, networks and canonical pathways that were overrepresented in these individuals. At an absolute fold-change threshold of 2 and false discovery rate (FDR) < 0.05, 68 DEGs were identified in cases compared to the reference group. Myosin X (MYO10) and transforming growth factor beta regulator 1 (TBRG1) were upregulated. MYO10 encodes for an actin-based motor protein that has been associated with T2D. Telomere extension by telomerase ( HNRNPA1, TNKS2 ), D-myo-inositol (1, 4, 5)-trisphosphate biosynthesis (PIP5K1A, PIP4K2A), and regulation of actin-based motility by Rho (ARPC3) were the most significant canonical pathways and overlay with T2D signaling pathway. Upstream regulator analysis predicted 5 miRNAs (miR-320b, miR-381-3p, miR-3679-3p, miR-494-3p, and miR-141-3p,) as regulators of the expression changes identified. This study identified a number of transcripts and miRNAs in OAT as candidate novel players in the pathophysiology of T2D in African Americans.
The MicroRNA-200 Family Is Upregulated in Endometrial Carcinoma
Snowdon, Jaime; Zhang, Xiao; Childs, Tim; Tron, Victor A.; Feilotter, Harriet
2011-01-01
Background MicroRNAs (miRNAs, miRs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. MicroRNAs are dysregulated in cancer and may play essential roles in tumorigenesis. Additionally, miRNAs have been shown to have prognostic and diagnostic value in certain types of cancer. The objective of this study was to identify dysregulated miRNAs in endometrioid endometrial adenocarcinoma (EEC) and the precursor lesion, complex atypical hyperplasia (CAH). Methodology We compared the expression profiles of 723 human miRNAs from 14 cases of EEC, 10 cases of CAH, and 10 normal proliferative endometria controls using Agilent Human miRNA arrays following RNA extraction from formalin-fixed paraffin-embedded (FFPE) tissues. The expression of 4 dysregulated miRNAs was validated using real time reverse transcription-PCR. Results Forty-three miRNAs were dysregulated in EEC and CAH compared to normal controls (p<0.05). The entire miR-200 family (miR-200a/b/c, miR-141, and miR-429) was up-regulated in cases of EEC. Conclusions This information contributes to the candidate miRNA expression profile that has been generated for EEC and shows that certain miRNAs are dysregulated in the precursor lesion, CAH. These miRNAs in particular may play important roles in tumorigenesis. Examination of miRNAs that are consistently dysregulated in various studies of EEC, like the miR-200 family, will aid in the understanding of the role that miRNAs play in tumorigenesis in this tumour type. PMID:21897839
Ye, Weikang; Li, Jieke; Fang, Guan; Cai, Xiupeng; Zhang, Yan; Zhou, Chaojun; Chen, Lei; Yang, Wenjun
2018-05-01
The aim of the present study was to determine the expression profile of microRNA 638 (miR-638) and sex-determining region Y-box 2 (SOX2) in hepatocellular carcinoma (HCC), and to investigate their association with clinicopathological features and survival. Reverse transcription-quantitative polymerase chain reaction analysis was used to investigate miR-638 and SOX2 expression in 78 patients with HCC. Western blot and immunohistochemical analyses were performed in order to determine SOX2 protein expression in HCC samples. Combined with the clinical postoperative follow-up data, the expression of miR-638 and SOX2 and the association between this and the prognostic values of patients with HCC were statistically analyzed. The results of the present study confirmed that miR-638 expression in tumor tissues was significantly downregulated (P<0.001), while SOX2 expression was significantly increased, compared with healthy control tissues (P<0.05). In addition, a significant inverse correlation between miR-638 and SOX2 expression was also observed in the HCC tissues (r=-0.675; P<0.05). Clinicopathological correlation analysis demonstrated that reduced miR-638 and elevated SOX2 expression was significantly associated with the Tumor-Node-Metastasis stage and portal vascular invasion (P<0.05). However, no significant differences were observed in other clinicopathological features, including age, sex, tumor size, tumor differentiation and hepatitis status (P>0.05). Notably, follow-up analysis revealed that patients with HCC with low miR-638 expression and high SOX2 expression tended to have a significantly shorter postoperative survival time (P<0.001). It was concluded that miR-638 may serve a vital role in the occurrence and progression of HCC by regulating SOX2 expression and thus, that miR-638 and SOX2 may be critical as novel diagnostic and prognostic biomarkers for HCC.
miR-193b Regulates Mcl-1 in Melanoma
Chen, Jiamin; Zhang, Xiao; Lentz, Cindy; Abi-Daoud, Marie; Paré, Geneviève C.; Yang, Xiaolong; Feilotter, Harriet E.; Tron, Victor A.
2011-01-01
MicroRNAs play important roles in gene regulation, and their expression is frequently dysregulated in cancer cells. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 in melanoma cells, suggesting that miR-193b could act as a tumor suppressor. Herein, we demonstrate that miR-193b also down-regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. MicroRNA microarray profiling revealed that miR-193b is expressed at a significantly lower level in malignant melanoma than in benign nevi. Consistent with this, Mcl-1 is detected at a higher level in malignant melanoma than in benign nevi. In a survey of melanoma samples, the level of Mcl-1 is inversely correlated with the level of miR-193b. Overexpression of miR-193b in melanoma cells represses Mcl-1 expression. Previous studies showed that Mcl-1 knockdown cells are hypersensitive to ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-XL, and Bcl-w. Similarly, overexpression of miR-193b restores ABT-737 sensitivity to ABT-737–resistant cells. Furthermore, the effect of miR-193b on the expression of Mcl-1 seems to be mediated by direct interaction between miR-193b and seed and seedless pairing sequences in the 3′ untranslated region of Mcl-1 mRNA. Thus, this study provides evidence that miR-193b directly regulates Mcl-1 and that down-regulation of miR-193b in vivo could be an early event in melanoma progression. PMID:21893020
Circulating miRNAs in acute new-onset atrial fibrillation and their target mRNA network.
da Silva, Ananília Medeiros Gomes; de Araújo, Jéssica Nayara Góes; de Oliveira, Katiene Macêdo; Novaes, Ana Eloísa Melo; Lopes, Mariana Borges; de Sousa, Júlio César Vieira; Filho, Antônio Amorim de Araújo; Luchessi, André Ducati; de Rezende, Adriana Augusto; Hirata, Mário Hiroyuki; Silbiger, Vivian Nogueira
2018-04-20
MicroRNAs (miRNAs) are involved in the pathogenesis of atrial fibrillation (AF), acting on development and progression. Our pilot study investigated the expression of six miRNAs and their miRNA-mRNA interactions in patients with acute new-onset AF, well-controlled AF, and normal sinus rhythm (controls). Plasma of acute new-onset AF patients (n = 5) was collected in the emergency room when patients presented with irregular and fast-atrial fibrillation rhythm. Samples from well-controlled AF (n = 16) and control (n = 15) patients were collected during medical appointments following an ECG. Expression of miR-21, miR-133a, miR-133b, miR-150, miR-328, and miR-499 was analyzed by real-time PCR. Ingenuity Pathway Analysis and the TargetScan database identified the top 30 mRNA targets of these miRNA, seeking the miRNA-mRNA interactions in cardiovascular process. Increased expression of miR-133b (1.4-fold), miR-328 (2.0-fold), and miR-499 (2.3-fold) was observed in patients with acute new-onset AF, compared with well-controlled AF and control patients. Decreased expression of miR-21 was seen in patients with well-controlled AF compared to those with acute new-onset AF and controls (0.6-fold). The miRNA-mRNA interaction demonstrated that SMAD7 and FASLG genes were the targets of miR-21, miR-133b, and miR-499 and were directly related to AF, being involved in apoptosis and fibrosis. The miRNAs had different expression profiles dependent on the AF condition, with higher expression in the acute new-onset AF than well-controlled AF. Clinically, this may contribute to an effective assessment for patients, leading to early detection of AF and monitoring to reduce the risk of other serious cardiovascular events. © 2018 Wiley Periodicals, Inc.
Dual targeting of ANGPT1 and TGFBR2 genes by miR-204 controls angiogenesis in breast cancer
Flores-Pérez, Ali; Marchat, Laurence A.; Rodríguez-Cuevas, Sergio; Bautista-Piña, Verónica; Hidalgo-Miranda, Alfredo; Ocampo, Elena Aréchaga; Martínez, Mónica Sierra; Palma-Flores, Carlos; Fonseca-Sánchez, Miguel A.; Astudillo-de la Vega, Horacio; Ruíz-García, Erika; González-Barrios, Juan Antonio; Pérez-Plasencia, Carlos; Streber, María L.; López-Camarillo, César
2016-01-01
Deregulated expression of microRNAs has been associated with angiogenesis. Studying the miRNome of locally advanced breast tumors we unsuspectedly found a dramatically repression of miR-204, a small non-coding RNA with no previous involvement in tumor angiogenesis. Downregulation of miR-204 was confirmed in an independent cohort of patients and breast cancer cell lines. Gain-of-function analysis indicates that ectopic expression of miR-204 impairs cell proliferation, anchorage-independent growth, migration, invasion, and the formation of 3D capillary networks in vitro. Likewise, in vivo vascularization and angiogenesis were suppressed by miR-204 in a nu/nu mice model. Genome-wide profiling of MDA-MB-231 cells expressing miR-204 revealed changes in the expression of hundred cancer-related genes. Of these, we focused on the study of pro-angiogenic ANGPT1 and TGFβR2. Functional analysis using luciferase reporter and rescue assays confirmed that ANGPT1 and TGFβR2 are novel effectors downstream of miR-204. Accordingly, an inverse correlation between miR-204 and ANGPT1/TGFβR2 expression was found in breast tumors. Knockdown of TGFβR2, but not ANGPT1, impairs cell proliferation and migration whereas inhibition of both genes inhibits angiogenesis. Taken altogether, our findings reveal a novel role for miR-204/ANGPT1/TGFβR2 axis in tumor angiogenesis. We propose that therapeutic manipulation of miR-204 levels may represent a promising approach in breast cancer. PMID:27703260
Global population-specific variation in miRNA associated with cancer risk and clinical biomarkers.
Rawlings-Goss, Renata A; Campbell, Michael C; Tishkoff, Sarah A
2014-08-28
MiRNA expression profiling is being actively investigated as a clinical biomarker and diagnostic tool to detect multiple cancer types and stages as well as other complex diseases. Initial investigations, however, have not comprehensively taken into account genetic variability affecting miRNA expression and/or function in populations of different ethnic backgrounds. Therefore, more complete surveys of miRNA genetic variability are needed to assess global patterns of miRNA variation within and between diverse human populations and their effect on clinically relevant miRNA genes. Genetic variation in 1524 miRNA genes was examined using whole genome sequencing (60x coverage) in a panel of 69 unrelated individuals from 14 global populations, including European, Asian and African populations. We identified 33 previously undescribed miRNA variants, and 31 miRNA containing variants that are globally population-differentiated in frequency between African and non-African populations (PD-miRNA). The top 1% of PD-miRNA were significantly enriched for regulation of genes involved in glucose/insulin metabolism and cell division (p < 10(-7)), most significantly the mitosis pathway, which is strongly linked to cancer onset. Overall, we identify 7 PD-miRNAs that are currently implicated as cancer biomarkers or diagnostics: hsa-mir-202, hsa-mir-423, hsa-mir-196a-2, hsa-mir-520h, hsa-mir-647, hsa-mir-943, and hsa-mir-1908. Notably, hsa-mir-202, a potential breast cancer biomarker, was found to show significantly high allele frequency differentiation at SNP rs12355840, which is known to affect miRNA expression levels in vivo and subsequently breast cancer mortality. MiRNA expression profiles represent a promising new category of disease biomarkers. However, population specific genetic variation can affect the prevalence and baseline expression of these miRNAs in diverse populations. Consequently, miRNA genetic and expression level variation among ethnic groups may be contributing in part to health disparities observed in multiple forms of cancer, specifically breast cancer, and will be an essential consideration when assessing the utility of miRNA biomarkers for the clinic.
Barzon, Luisa; Cappellesso, Rocco; Peta, Elektra; Militello, Valentina; Sinigaglia, Alessandro; Fassan, Matteo; Simonato, Francesca; Guzzardo, Vincenza; Ventura, Laura; Blandamura, Stella; Gardiman, Marina; Palù, Giorgio; Fassina, Ambrogio
2014-12-01
Penile squamous cell carcinoma (PSCC) is a rare tumor associated with high-risk human papillomavirus (HR-HPV) infection in 30% to 60% of cases. Altered expression of miRNAs has been reported in HPV-related cervical and head and neck cancers, but such data have not been available for PSCC. We analyzed a series of 59 PSCCs and 8 condylomata for presence of HPV infection, for p16(INK4a), Ki-67, and p53 immunohistochemical expression, and for expression of a panel of cellular miRNAs (let-7c, miR-23b, miR-34a, miR-145, miR-146a, miR-196a, and miR-218) involved in HPV-related cancer. HR-HPV DNA (HPV16 in most cases) was detected in 17/59 (29%) PSCCs; all penile condylomata (8/8) were positive for low-risk HPV6 or HPV11. HR-HPV(+) PSCCs overexpressed p16(INK4a) in 88% cases and p53 in 35% of cases, whereas HR-HPV(-) PSCCs were positive for p16(INK4a) and p53 immunostaining in 9% and 44% of cases, respectively. Among the miRNAs investigated, expression of miR-218 was lower in PSCCs with HR-HPV infection and in p53(-) cancers. Hypermethylation of the promoter of the SLIT2 gene, which contains miR-218-1 in its intronic region, was frequently observed in PSCCs, mainly in those with low miR-218 expression. Epigenetic silencing of miR-218 is a common feature in HR-HPV(+) PSCCs and in HR-HPV(-) PSCCs without immunohistochemical detection of p53. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Wu, Cheng-Wei; Biggar, Kyle K; Storey, Kenneth B
2014-12-01
MicroRNAs (miRNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT) and white adipose tissue (WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P<0.05), which was 16%-54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32-2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR-107, miR-125b, miR-21, miR-221 and miR-31 (48%-70% of control), while only expression of miR-138 was significantly upregulated (2.91±0.8-fold of the control, P<0.05). Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial β-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase (MAPK) signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor β (TGFβ) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may be linked to distinct biological roles in WAT and BAT during hibernation and may involve the regulation of signaling cascades. Copyright © 2014 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
Flux balance analysis predicts Warburg-like effects of mouse hepatocyte deficient in miR-122a
Wu, Hsuan-Hui; Chen, Meng-Chun; Liu, Wen-Huan; Wu, Wu-Hsiung; Chang, Peter Mu-Hsin; Huang, Chi-Ying F.; Tsou, Ann-Ping; Shiao, Ming-Shi
2017-01-01
The liver is a vital organ involving in various major metabolic functions in human body. MicroRNA-122 (miR-122) plays an important role in the regulation of liver metabolism, but its intrinsic physiological functions require further clarification. This study integrated the genome-scale metabolic model of hepatocytes and mouse experimental data with germline deletion of Mir122a (Mir122a–/–) to infer Warburg-like effects. Elevated expression of MiR-122a target genes in Mir122a–/–mice, especially those encoding for metabolic enzymes, was applied to analyze the flux distributions of the genome-scale metabolic model in normal and deficient states. By definition of the similarity ratio, we compared the flux fold change of the genome-scale metabolic model computational results and metabolomic profiling data measured through a liquid-chromatography with mass spectrometer, respectively, for hepatocytes of 2-month-old mice in normal and deficient states. The Ddc gene demonstrated the highest similarity ratio of 95% to the biological hypothesis of the Warburg effect, and similarity of 75% to the experimental observation. We also used 2, 6, and 11 months of mir-122 knockout mice liver cell to examined the expression pattern of DDC in the knockout mice livers to show upregulated profiles of DDC from the data. Furthermore, through a bioinformatics (LINCS program) prediction, BTK inhibitors and withaferin A could downregulate DDC expression, suggesting that such drugs could potentially alter the early events of metabolomics of liver cancer cells. PMID:28686599
Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts.
Ruedel, Anke; Dietrich, Peter; Schubert, Thomas; Hofmeister, Simone; Hellerbrand, Claus; Bosserhoff, Anja Katrin
2015-01-01
Activated synovial fibroblasts in rheumatoid arthritis (RASF) play a critical role in the pathology of rheumatoid arthritis (RA). Recent studies suggested that deregulation of microRNAs (miRs) affects the development and progression of RA. Therefore, we aimed to identify de-regulated miRs in RASF and to identify target genes that may contribute to the aggressive phenotype of RASF. Quantitative real-time PCR revealed a marked downregulation of miR-188-5p in synovial tissue samples of RA patients as well as in RASF. Exposure to the cytokine interleukine-1β lead to a further downregulation of miR-188-5p expression levels compared to control cells. Re-expression of miR-188-5p in RASF by transient transfection significantly inhibited cell migration. However, miR-188-5p re-expression had no effects on glycosaminoglycan degradation or expression of repellent factors, which have been previously shown to affect the invasive behavior of RASF. In search for target genes of miR-188-5p in RASF we performed gene expression profiling in RASF and found a strong regulatory effect of miR-188-5p on the hyaluronan binding protein KIAA1199 as well as collagens COL1A1 and COL12A1, which was confirmed by qRT-PCR. In silico analysis revealed that KIAA1199 carries a 3'UTR binding site for miR-188-5p. COL1A1 and COL12A1 showed no binding site in the mRNA region, suggesting an indirect regulation of these two genes by miR-188-5p. In summary, our study showed that miR-188-5p is down-regulated in RA in vitro and in vivo, most likely triggered by an inflammatory environment. MiR-188-5p expression is correlated to the activation state of RASF and inhibits migration of these cells. Furthermore, miR-188-5p is directly and indirectly regulating the expression of genes, which may play a role in extracellular matrix formation and destruction in RA. Herewith, this study identified potential novel therapeutic targets to inhibit the development and progression of RA.
Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts.
Ruedel, Anke; Dietrich, Peter; Schubert, Thomas; Hofmeister, Simone; Hellerbrand, Claus; Bosserhoff, Anja-Katrin
2015-01-01
Activated synovial fibroblasts in rheumatoid arthritis (RASF) play a critical role in the pathology of rheumatoid arthritis (RA). Recent studies suggested that deregulation of microRNAs (miRs) affects the development and progression of RA. Therefore, we aimed to identify de-regulated miRs in RASF and to identify target genes that may contribute to the aggressive phenotype of RASF. Quantitative real-time PCR revealed a marked downregulation of miR-188-5p in synovial tissue samples of RA patients as well as in RASF. Exposure to the cytokine interleukine-1β lead to a further downregulation of miR-188-5p expression levels compared to control cells. Re-expression of miR-188-5p in RASF by transient transfection significantly inhibited cell migration. However, miR-188-5p re-expression had no effects on glycosaminoglycan degradation or expression of repellent factors, which have been previously shown to affect the invasive behavior of RASF. In search for target genes of miR-188-5p in RASF we performed gene expression profiling in RASF and found a strong regulatory effect of miR-188-5p on the hyaluronan binding protein KIAA1199 as well as collagens COL1A1 and COL12A1, which was confirmed by qRT-PCR. In silico analysis revealed that KIAA1199 carries a 3'UTR binding site for miR-188-5p. COL1A1and COL12A1 showed no binding site in the mRNA region, suggesting an indirect regulation of these two genes by miR-188-5p. In summary, our study showed that miR-188-5p is down-regulated in RA in vitro and in vivo, most likely triggered by an inflammatory environment. MiR-188-5p expression is correlated to the activation state of RASF and inhibits migration of these cells. Furthermore, miR-188-5p is directly and indirectly regulating the expression of genes, which may play a role in extracellular matrix formation and destruction in RA. Herewith, this study identified potential novel therapeutic targets to inhibit the development and progression of RA.
TGF-β1 Downregulates the Expression of CX3CR1 by Inducing miR-27a-5p in Primary Human NK Cells.
Regis, Stefano; Caliendo, Fabio; Dondero, Alessandra; Casu, Beatrice; Romano, Filomena; Loiacono, Fabrizio; Moretta, Alessandro; Bottino, Cristina; Castriconi, Roberta
2017-01-01
Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-β1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-β1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX 3 CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-β1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX 3 CR1. We demonstrated the functional interaction of miR-27a-5p with the 3' untranslated region (3'UTR) of CX 3 CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX 3 CR1 3'UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-β1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX 3 CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX 3 CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-β1-induced regulator of CX 3 CR1 expression.
Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients
Delić, Denis; Eisele, Claudia; Schmid, Ramona; Baum, Patrick; Wiech, Franziska; Gerl, Martin; Zimdahl, Heike; Pullen, Steven S.; Urquhart, Richard
2016-01-01
MicroRNAs (miRNAs) are short non-coding RNA species which are important post-transcriptional regulators of gene expression and play an important role in the pathogenesis of diabetic nephropathy. miRNAs are present in urine in a remarkably stable form packaged in extracellular vesicles, predominantly exosomes. In the present study, urinary exosomal miRNA profiling was conducted in urinary exosomes obtained from 8 healthy controls (C), 8 patients with type II diabetes (T2D) and 8 patients with type II diabetic nephropathy (DN) using Agilent´s miRNA microarrays. In total, the expression of 16 miRNA species was deregulated (>2-fold) in DN patients compared to healthy donors and T2D patients: the expression of 14 miRNAs (miR-320c, miR-6068, miR-1234-5p, miR-6133, miR-4270, miR-4739, miR-371b-5p, miR-638, miR-572, miR-1227-5p, miR-6126, miR-1915-5p, miR-4778-5p and miR-2861) was up-regulated whereas the expression of 2 miRNAs (miR-30d-5p and miR-30e-5p) was down-regulated. Most of the deregulated miRNAs are involved in progression of renal diseases. Deregulation of urinary exosomal miRNAs occurred in micro-albuminuric DN patients but not in normo-albuminuric DN patients. We used qRT-PCR based analysis of the most strongly up-regulated miRNAs in urinary exosomes from DN patients, miRNAs miR-320c and miR-6068. The correlation of miRNA expression and micro-albuminuria levels could be replicated in a confirmation cohort. In conclusion, urinary exosomal miRNA content is altered in type II diabetic patients with DN. Deregulated miR-320c, which might have an impact on the TGF-β-signaling pathway via targeting thrombospondin 1 (TSP-1) shows promise as a novel candidate marker for disease progression in type II DN that should be evaluated in future studies. PMID:26930277
Profile of cerebrospinal microRNAs in fibromyalgia.
Bjersing, Jan L; Lundborg, Christopher; Bokarewa, Maria I; Mannerkorpi, Kaisa
2013-01-01
Fibromyalgia (FM) is characterized by chronic pain and reduced pain threshold. The pathophysiology involves disturbed neuroendocrine function, including impaired function of the growth hormone/insulin-like growth factor-1 axis. Recently, microRNAs have been shown to be important regulatory factors in a number of diseases. The aim of this study was to try to identify cerebrospinal microRNAs with expression specific for FM and to determine their correlation to pain and fatigue. The genome-wide profile of microRNAs in cerebrospinal fluid was assessed in ten women with FM and eight healthy controls using real-time quantitative PCR. Pain thresholds were examined by algometry. Levels of pain (FIQ pain) were rated on a 0-100 mm scale (fibromyalgia impact questionnaire, FIQ). Levels of fatigue (FIQ fatigue) were rated on a 0-100 mm scale using FIQ and by multidimensional fatigue inventory (MFI-20) general fatigue (MFIGF). Expression levels of nine microRNAs were significantly lower in patients with FM patients compared to healthy controls. The microRNAs identified were miR-21-5p, miR-145-5p, miR-29a-3p, miR-99b-5p, miR-125b-5p, miR-23a-3p, 23b-3p, miR-195-5p, miR-223-3p. The identified microRNAs with significantly lower expression in FM were assessed with regard to pain and fatigue. miR-145-5p correlated positively with FIQ pain (r=0.709, p=0.022, n=10) and with FIQ fatigue (r=0.687, p=0.028, n=10). To our knowledge, this is the first study to show a disease-specific pattern of cerebrospinal microRNAs in FM. We have identified nine microRNAs in cerebrospinal fluid that differed between FM patients and healthy controls. One of the identified microRNAs, miR-145 was associated with the cardinal symptoms of FM, pain and fatigue.
Lozano-Bartolomé, Javier; Llauradó, Gemma; Otin, Manel Portero; Altuna-Coy, Antonio; Rojo-Martínez, Gemma; Vendrell, Joan; Jorba, Rosa; Rodríguez-Gallego, Esther; Chacón, Matilde R
2018-02-01
The proinflammatory cytokine TNFα is a key player in insulin resistance (IR). While several miRNAs are believed to be involved in the development of adipose tissue (AT) IR, the role of miRNAs in the association between inflammation and IR is poorly understood. To investigate the expression profile of miR-181a-5p and miR-23a-3p in obesity and to study their role in TNFα-induced IR in adipocytes. Two separate cohorts were employed. Cohort 1 was used for AT expression studies and included 28 subjects with BMI<30 and 30 subjects with BMI≥30. Cohort 2 was used for circulating serum miRNA studies and included 101 subjects with 4-years follow-up (48 cases and 53 controls). miR-181a-5p and miR-23a-3p expression was assessed in subcutaneous (SAT) and visceral (VAT) AT. Functional analysis was performed in adipocytes utilizing miRNA mimics and inhibitors. Key molecules of the insulin pathway, AKT, PTEN, AS160 and S6K, were analyzed. Expression of miR-181a-5p and miR-23a-3p was reduced in AT from obese and diabetic subjects and was inversely correlated to adiposity and HOMA-IR. Overexpression of miR-181a-5p and miR-23a-3p in adipocytes upregulated insulin-stimulated AKT activation and reduced TNFα-induced IR, regulating PTEN and S6K expression. Serum levels of miR-181a-5p were reduced in cases vs controls at baseline, pointing towards its prognostic value. Variable importance in projection scores revealed miR-181a-5p had more impact in the model than insulin or glucose at 120 minutes. miR-181a-5p and miR-23a-3p may prevent TNFα-induced IR in adipocytes through modulation of PTEN and S6K expression. Copyright © 2018 Endocrine Society
O’Neill, Sadhbh; Larsen, Mette Bohl; Gregersen, Søren; Hermansen, Kjeld; O’Driscoll, Lorraine
2018-01-01
Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p’s predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome. PMID:29507696
O'Neill, Sadhbh; Larsen, Mette Bohl; Gregersen, Søren; Hermansen, Kjeld; O'Driscoll, Lorraine
2018-02-06
Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p's predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome.
Sun, Ye-Ying; Qin, Shan-Shan; Cheng, Yun-Hui; Wang, Chao-Yun; Liu, Xiao-Jun; Liu, Ying; Zhang, Xiu-Li; Zhang, Wendy; Zhan, Jia-Xin; Shao, Shuai; Bian, Wei-Hua; Luo, Bi-Hui; Lu, Dong-Feng; Yang, Jian; Wang, Chun-Hua; Zhang, Chun-Xiang
2018-05-01
Contact inhibition and its disruption of vascular smooth muscle cells (VSMCs) are important cellular events in vascular diseases. But the underlying molecular mechanisms are unclear. In this study we investigated the roles of microRNAs (miRNAs) in the contact inhibition and its disruption of VSMCs and the molecular mechanisms involved. Rat VSMCs were seeded at 30% or 90% confluence. MiRNA expression profiles in contact-inhibited confluent VSMCs (90% confluence) and non-contact-inhibited low-density VSMCs (30% confluence) were determined. We found that multiple miRNAs were differentially expressed between the two groups. Among them, miR-145 was significantly increased in contact-inhibited VSMCs. Serum could disrupt the contact inhibition as shown by the elicited proliferation of confluent VSMCs. The contact inhibition disruption accompanied with a down-regulation of miR-145. Serum-induced contact inhibition disruption of VSMCs was blocked by overexpression of miR-145. Moreover, downregulation of miR-145 was sufficient to disrupt the contact inhibition of VSMCs. The downregulation of miR-145 in serum-induced contact inhibition disruption was related to the activation PI3-kinase/Akt pathway, which was blocked by the PI3-kinase inhibitor LY294002. KLF5, a target gene of miR-145, was identified to be involved in miR-145-mediated effect on VSMC contact inhibition disruption, as it could be inhibited by knockdown of KLF5. In summary, our results show that multiple miRNAs are differentially expressed in contact-inhibited VSMCs and in non-contact-inhibited VSMCs. Among them, miR-145 is a critical gene in contact inhibition and its disruption of VSMCs. PI3-kinase/Akt/miR-145/KLF5 is a critical signaling pathway in serum-induced contact inhibition disruption. Targeting of miRNAs related to the contact inhibition of VSMCs may represent a novel therapeutic approach for vascular diseases.
The Lin28/Let-7 System in Early Human Embryonic Tissue and Ectopic Pregnancy
Steffani, Liliana; Martínez, Sebastián; Monterde, Mercedes; Ferri, Blanca; Núñez, Maria Jose; AinhoaRomero-Espinós; Zamora, Omar; Gurrea, Marta; Sangiao-Alvarellos, Susana; Vega, Olivia; Simón, Carlos; Pellicer, Antonio; Tena-Sempere, Manuel
2014-01-01
Our objective was to determine the expression of the elements of the Lin28/Let-7 system, and related microRNAs (miRNAs), in early stages of human placentation and ectopic pregnancy, as a means to assess the potential role of this molecular hub in the pathogenesis of ectopic gestation. Seventeen patients suffering from tubal ectopic pregnancy (cases) and forty-three women with normal on-going gestation that desired voluntary termination of pregnancy (VTOP; controls) were recruited for the study. Embryonic tissues were subjected to RNA extraction and quantitative PCR analyses for LIN28B, Let-7a, miR-132, miR-145 and mir-323-3p were performed. Our results demonstrate that the expression of LIN28B mRNA was barely detectable in embryonic tissue from early stages of gestation and sharply increased thereafter to plateau between gestational weeks 7–9. In contrast, expression levels of Let-7, mir-132 and mir-145 were high in embryonic tissue from early gestations (≤6-weeks) and abruptly declined thereafter, especially for Let-7. Opposite trends were detected for mir-323-3p. Embryonic expression of LIN28B mRNA was higher in early stages (≤6-weeks) of ectopic pregnancy than in normal gestation. In contrast, Let-7a expression was significantly lower in early ectopic pregnancies, while miR-132 and miR-145 levels were not altered. Expression of mir-323-3p was also suppressed in ectopic embryonic tissue. We are the first to document reciprocal changes in the expression profiles of the gene encoding the RNA-binding protein, LIN28B, and the related miRNAs, Let-7a, mir-132 and mir-145, in early stages of human placentation. This finding suggests the potential involvement of LIN28B/Let-7 (de)regulated pathways in the pathophysiology of ectopic pregnancy in humans. PMID:24498170
NASA Astrophysics Data System (ADS)
Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong
2014-03-01
The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.
Shen, Hua; Yu, Xiaobo; Yang, Fengming; Zhang, Zhihua; Shen, Jianxin; Sun, Jin; Choksi, Swati; Jitkaew, Siriporn; Shu, Yongqian
2016-01-01
Cancer-associated fibroblasts (CAFs), the most common constituent of the tumor stoma, are known to promote tumor initiation, progression and metastasis. However, the mechanism of how cancer cells transform normal fibroblasts (NFs) into CAFs is largely unknown. In this study, we determined the contribution of miRNAs in the transformation of NFs into CAFs. We found that miR-1 and miR-206 were down-regulated, whereas miR-31 was up-regulated in lung CAFs when compared with matched NFs. Importantly, modifying the expression of these three deregulated miRNAs induced a functional conversion of NFs into CAFs and vice versa. When the miRNA-reprogrammed NFs and CAFs were co-cultured with lung cancer cells (LCCs), a similar pattern of cytokine expression profiling were observed between two groups. Using a combination of cytokine expression profiling and miRNAs algorithms, we identified VEGFA/CCL2 and FOXO3a as direct targets of miR-1, miR-206 and miR-31, respectively. Importantly, systemic delivery of anti-VEGFA/CCL2 or pre-miR-1, pre-miR-206 and anti-miR-31 significantly inhibited tumor angiogenesis, TAMs accumulation, tumor growth and lung metastasis. Our results show that miRNAs-mediated FOXO3a/VEGF/CCL2 signaling plays a prominent role in LCCs-mediated NFs into CAFs, which may have clinical implications for providing novel biomarker(s) and potential therapeutic target(s) of lung cancer in the future. PMID:27541266
Lajer, C B; Garnæs, E; Friis-Hansen, L; Norrild, B; Therkildsen, M H; Glud, M; Rossing, M; Lajer, H; Svane, D; Skotte, L; Specht, L; Buchwald, C; Nielsen, F C
2012-01-01
Background: Although the role of human papilloma virus (HPV) in cervical squamous cell carcinoma (CSCC) is well established, the role in head and neck SCC (HNSCC) is less clear. MicroRNAs (miRNAs) have a role in the cancer development, and HPV status may affect the miRNA expression pattern in HNSCC. To explore the influence of HPV in HNSCC, we made a comparative miRNA profile of HPV-positive (HPV+) and HPV-negative (HPV−) HNSCC against CSCC. Methods: Fresh frozen and laser microdissected-paraffin-embedded samples obtained from patients with HPV+/HPV− HNSCC, CSCC and controls were used for microarray analysis. Differentially expressed miRNAs in the HPV+ and HPV− HNSCC samples were compared with the differentially expressed miRNAs in the CSCC samples. Results: Human papilloma virus positive (+) HNSCC had a distinct miRNA profile compared with HPV− HNSCC. Significantly more similarity was seen between HPV+ HNSCC and CSCC than HPV− and CSCC. A set of HPV core miRNAs were identified. Of these especially the miR-15a/miR-16/miR195/miR-497 family, miR-143/miR-145 and the miR-106-363 cluster appear to be important within the known HPV pathogenesis. Conclusion: This study adds new knowledge to the known pathogenic pathways of HPV and substantiates the oncogenic role of HPV in subsets of HNSCCs. PMID:22472886
Pati, Soumya; Supeno, Nor Entan; Muthuraju, Sangu; Abdul Hadi, Raisah; Ghani, Abdul Rahman Izaini; Idris, Fauziah Mohamad; Maletic-Savatic, Mirjana; Abdullah, Jafri Malin; Jaafar, Hasnan
2014-01-01
The striatum is considered to be the central processing unit of the basal ganglia in locomotor activity and cognitive function of the brain. IGF-1 could act as a control switch for the long-term proliferation and survival of EGF+bFGF-responsive cultured embryonic striatal stem cell (ESSC), while LIF imposes a negative impact on cell proliferation. The IGF-1-treated ESSCs also showed elevated hTERT expression with demonstration of self-renewal and trilineage commitment (astrocytes, oligodendrocytes, and neurons). In order to decipher the underlying regulatory microRNA (miRNA)s in IGF-1/LIF-treated ESSC-derived neurogenesis, we performed in-depth miRNA profiling at 12 days in vitro and analyzed the candidates using the Partek Genome Suite software. The annotated miRNA fingerprints delineated the differential expressions of miR-143, miR-433, and miR-503 specific to IGF-1 treatment. Similarly, the LIF-treated ESSCs demonstrated specific expression of miR-326, miR-181, and miR-22, as they were nonsignificant in IGF-treated ESSCs. To elucidate the possible downstream pathways, we performed in silico mapping of the said miRNAs into ingenuity pathway analysis. Our findings revealed the important mRNA targets of the miRNAs and suggested specific interactomes. The above studies introduced a new genre of miRNAs for ESSC-based neuroregenerative therapeutic applications.
Czimmerer, Zsolt; Varga, Tamas; Kiss, Mate; Vázquez, Cesaré Ovando; Doan-Xuan, Quang Minh; Rückerl, Dominik; Tattikota, Sudhir Gopal; Yan, Xin; Nagy, Zsuzsanna S; Daniel, Bence; Poliska, Szilard; Horvath, Attila; Nagy, Gergely; Varallyay, Eva; Poy, Matthew N; Allen, Judith E; Bacso, Zsolt; Abreu-Goodger, Cei; Nagy, Laszlo
2016-05-31
IL-4-driven alternative macrophage activation and proliferation are characteristic features of both antihelminthic immune responses and wound healing in contrast to classical macrophage activation, which primarily occurs during inflammatory responses. The signaling pathways defining the genome-wide microRNA expression profile as well as the cellular functions controlled by microRNAs during alternative macrophage activation are largely unknown. Hence, in the current work we examined the regulation and function of IL-4-regulated microRNAs in human and mouse alternative macrophage activation. We utilized microarray-based microRNA profiling to detect the dynamic expression changes during human monocyte-macrophage differentiation and IL-4-mediated alternative macrophage activation. The expression changes and upstream regulatory pathways of selected microRNAs were further investigated in human and mouse in vitro and in vivo models of alternative macrophage activation by integrating small RNA-seq, ChIP-seq, ChIP-quantitative PCR, and gene expression data. MicroRNA-controlled gene networks and corresponding functions were identified using a combination of transcriptomic, bioinformatic, and functional approaches. The IL-4-controlled microRNA expression pattern was identified in models of human and mouse alternative macrophage activation. IL-4-dependent induction of miR-342-3p and repression of miR-99b along with miR-125a-5p occurred in both human and murine macrophages in vitro. In addition, a similar expression pattern was observed in peritoneal macrophages of Brugia malayi nematode-implanted mice in vivo. By using IL4Rα- and STAT6-deficient macrophages, we were able to show that IL-4-dependent regulation of miR-342-3p, miR-99b, and miR-125a-5p is mediated by the IL-4Rα-STAT6 signaling pathway. The combination of gene expression studies and chromatin immunoprecipitation experiments demonstrated that both miR-342-3p and its host gene, EVL, are coregulated directly by STAT6. Finally, we found that miR-342-3p is capable of controlling macrophage survival through targeting an anti-apoptotic gene network including Bcl2l1. Our findings identify a conserved IL-4/STAT6-regulated microRNA signature in alternatively activated human and mouse macrophages. Moreover, our study indicates that miR-342-3p likely plays a pro-apoptotic role in such cells, thereby providing a negative feedback arm to IL-4-dependent macrophage proliferation.
Differential expression of miRNAs in the seminal plasma and serum of testicular cancer patients.
Pelloni, Marianna; Coltrinari, Giulia; Paoli, Donatella; Pallotti, Francesco; Lombardo, Francesco; Lenzi, Andrea; Gandini, Loredana
2017-09-01
Various microRNAs from the miR-371-3 and miR-302a-d clusters have recently been proposed as markers for testicular germ cell tumours. Upregulation of these miRNAs has been found in both the tissue and serum of testicular cancer patients, but they have never been studied in human seminal plasma. The aim of this study was, therefore, to assess the differences in the expression of miR-371-3 and miR-302a-d between the seminal plasma and serum of testicular cancer patients, and to identify new potential testicular cancer markers in seminal plasma. We investigated the serum and seminal plasma of 28 pre-orchiectomy patients subsequently diagnosed with testicular cancer, the seminal plasma of another 20 patients 30 days post-orchiectomy and a control group consisting of 28 cancer-free subjects attending our centre for an andrological check-up. Serum microRNA expression was analysed using RT-qPCR. TaqMan Array Card 3.0 platform was used for microRNA profiling in the seminal plasma of cancer patients. Results for both miR-371-3 and the miR-302 cluster in the serum of testicular cancer patients were in line with literature reports, while miR-371and miR-372 expression in seminal plasma showed the opposite trend to serum. On array analysis, 37 miRNAs were differentially expressed in the seminal plasma of cancer patients, and the upregulated miR-142 and the downregulated miR-34b were validated using RT-qPCR. Our study investigated the expression of miRNAs in the seminal plasma of patients with testicular cancer for the first time. Unlike in serum, miR-371-3 cannot be considered as markers in seminal plasma, whereas miR-142 levels in seminal plasma may be a potential marker for testicular cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilnytskyy, Yaroslav; Zemp, Franz J.; Koturbash, Igor
To investigate involvement of miRNAs in radiation responses we used microRNAome profiling to analyze the sex-specific response of radiation sensitive hematopoietic lymphoid tissues. We show that radiation exposure resulted in a significant and sex-specific deregulation of microRNA expression in murine spleen and thymus tissues. Among the regulated miRNAs, we found that changes in expression of miR-34a and miR-7 may be involved in important protective mechanisms counteracting radiation cytotoxicity. We observed a significant increase in the expression of tumor-suppressor miR-34a, paralleled by a decrease in the expression of its target oncogenes NOTCH1, MYC, E2F3 and cyclin D1. Additionally, we show thatmore » miR-7 targets the lymphoid-specific helicase LSH, a pivotal regulator of DNA methylation and genome stability. While miR-7 was significantly down-regulated LSH was significantly up-regulated. These cellular changes may constitute an attempt to counteract radiation-induced hypomethylation. Tissue specificity of miRNA responses and possible regulation of miRNA expression upon irradiation are discussed.« less
Li, Canfeng; Hu, Qinshen; Chen, Zhuo; Shen, Bin; Yang, Jing; Kang, Pengde; Zhou, Zongke; Pei, Fuxing
2018-05-01
This study aimed to investigate the expression levels and relationship of bone morphogenetic proteins (BMPs) signaling molecules and microRNA-140 (miR-140) in human osteoarthritis (OA) chondrocytes. Different stage chondrocytes (normal cartilage, mid-stage OA and advanced-stage OA) were isolated from cartilage samples according to Kellgren and Lawrence criteria. The effect of miR-140 on BMPs signaling was evaluated by transfecting miR-140 mimic or inhibitor into chondrocytes. The expression of responsive genes was measured using real-time polymerase chain reaction and Western blotting analysis. There was a significant reduction in miR-140 and SOX9 expression in OA groups compared to the normal group, and there was a further reduction in the severe OA group compared to the moderate OA group. Compared with the normal group, the expression of ALK1, SMAD1, COL10A1 and MMP3 was higher in the OA groups, whereas the expression of COL2A1 was lower in the OA groups. In the moderate OA group, transfection with miR-140 mimic increased SMAD1, SOX9 and COL2A1 expression, but decreased COL10A1 expression. However, there was an opposite effect after transfecting miR-140 inhibitor with decreased SMAD1, SOX9 and COL2A1 expression, and increased COL10A1 expression. Interestingly, the biological effect of transfecting miR-140 mimic or inhibitor was similar in the severe OA group. SMAD1 and COL2A1 protein production followed the same pattern as their expression profile. miR-140 suppresses chondrocytes hypertrophy by controlling the BMPs signaling pathway, which highlights the importance of miR-140 in the maintenance of chondrocyte homeostasis and opens up novel avenues in OA therapeutic strategies. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
MicroRNA-196a2 Biomarker and Targetome Network Analysis in Solid Tumors.
Toraih, Eman A; Fawzy, Manal S; Mohammed, Eman A; Hussein, Mohammad H; El-Labban, Mohamad M
2016-12-01
MicroRNAs (miRNAs) have been linked to cancer development and progression. The molecular mechanisms underlying the genetic associations of the miRNA single nucleotide polymorphism with cancer vary by cancer site. As there are no previous studies on the miR-196a2 variant or expression in any type of cancer among our population, we aimed to determine the expression profile of mature miR-196a2 in various types of solid tumors and to analyze the impact of its polymorphism (rs11614913; C/T) on the expression levels. The study included 230 cancer patients (including 17 types of cancer), 26 patients with pre-cancer lesions, and 100 unrelated controls. Archived formalin-fixed, paraffin-embedded specimens (n = 197) were available for both miRNA expression analysis and single nucleotide polymorphism identification. Venous blood was collected from 59 histologically confirmed sporadic cancer patients and the study controls for single nucleotide polymorphism identification. Real-time polymerase chain reaction analysis was performed for allelic discrimination and relative quantification of miR-196a2 in the study samples. In silico target gene prediction and network analysis was performed. We found that individuals with the T variant were associated with cancer risk under all genetic association models, especially in colorectal, esophageal, skin, lung, thyroid, and renal cancer. Overall and stratified analysis showed miR-196a2 over-expression in most of the current malignant tumor samples relative to their corresponding cancer-free tissues. Carriers of the C allele had significantly higher expression levels of miR-196a2. Correlation with the clinicopathological features of cancer showed organ-specific effects. Gene enrichment analysis of predicted and validated targets speculated the putative role of miR-196a2 in cancer-associated biology. We highlighted cancer-type specific expression profiles of miR-196a2, which was correlated with the clinicopathological features in various types of cancer. Taken together, our results suggest that the miRNA signature could have promising diagnostic and prognostic significance.
Lee, Ji Yeoun; Park, Ae-Kyung; Wang, Kyu-Chang; Phi, Ji Hoon; Koh, Eun Jung; Park, Woong-Yang; Park, Sung-Hye; Hwang, Do Won; Jung, Hee Won; Kim, Seung-Ki
2015-01-01
Background The main cause of death in medulloblastoma is recurrence associated with leptomeningeal dissemination. During this process, the role of microRNAs (miRs) in the acquisition of metastatic phenotype remains poorly understood. This study aimed to identify the miR involved in leptomeningeal dissemination and to elucidate its biological functional mechanisms. Materials and methods We analyzed the miR expression profiles of 29 medulloblastomas according to the presence of cerebrospinal fluid (CSF) seeding. Differentially expressed miRs (DEmiRs) were validated in 29 medulloblastoma tissues and three medulloblastoma cell lines. The biological functions of the selected miRs were evaluated using in vitro and in vivo studies. Results A total of 12 DEmiRs were identified in medulloblastoma with seeding, including miR-192. The reduced expression of miR-192 was confirmed in the tumor seeding group and in the medulloblastoma cells. Overexpression of miR-192 inhibited cellular proliferation by binding DHFR. miR-192 decreased cellular anchoring via the repression of ITGAV, ITGB1, ITGB3, and CD47. Animals in the miR-192-treated group demonstrated a reduction of spinal seeding (P < 0.05) and a significant survival benefit (P < 0.05). Conclusions Medulloblastoma with seeding showed specific DEmiRs compared with those without. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring ability. PMID:26506238
MicroRNA Transcriptome Profiles During Swine Skeletal Muscle Development
USDA-ARS?s Scientific Manuscript database
MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells,...
Analysis of microRNAs expressions in chondrosarcoma.
Yoshitaka, Teruhito; Kawai, Akira; Miyaki, Shigeru; Numoto, Kunihiko; Kikuta, Kazutaka; Ozaki, Toshifumi; Lotz, Martin; Asahara, Hiroshi
2013-12-01
MicroRNAs (miRNAs) are small non-coding RNAs capable of inhibiting gene expression post-transcriptionally and expression profiling can provide therapeutic targets and tools for cancer diagnosis. Chondrosarcoma is a mesenchymal tumor with unknown cause and differentiation status. Here, we profiled miRNA expression of chondrosarcoma, namely clinical samples from human conventional chondrosarcoma tissue, established chondrosarcoma cell lines, and primary non-tumorous adult articular chondrocytes, by miRNA array and quantitative real-time PCR. A wide variety of miRNAs were differently downregulated in chondrosarcoma compared to non-tumorous articular chondrocytes; 27 miRNAs: miR-10b, 23b, 24-1*, 27b, 100, 134, 136, 136*, 138, 181d, 186, 193b, 221*, 222, 335, 337-5p, 376a, 376a*, 376b, 376c, 377, 454, 495, 497, 505, 574-3p, and 660, were significantly downregulated in chondrosarcoma and only 2: miR-96 and 183, were upregulated. We further validated the expression levels of miRNAs by quantitative real-time PCR for miR-181a, let-7a, 100, 222, 136, 376a, and 335 in extended number of chondrosarcoma clinical samples. Among them, all except miR-181a were found to be significantly downregulated in chondrosarcoma derived samples. The findings provide potential diagnostic value and new molecular understanding of chondrosarcoma. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Molina-Pinelo, Sonia; Suárez, Rocío; Pastor, María Dolores; Nogal, Ana; Márquez-Martín, Eduardo; Martín-Juan, José; Carnero, Amancio; Paz-Ares, Luis
2012-01-01
The identification of new less invasive biomarkers is necessary to improve the detection and prognostic outcome of respiratory pathological processes. The measurement of miRNA expression through less invasive techniques such as plasma and serum have been suggested to analysis of several lung malignancies including lung cancer. These studies are assuming a common deregulated miRNA expression both in blood and lung tissue. The present study aimed to obtain miRNA representative signatures both in plasma and bronchoalveolar cell fraction that could serve as biomarker in respiratory diseases. Ten patients were evaluated to assess the expression levels of 381 miRNAs. We found that around 50% miRNAs were no detected in both plasma and bronchoalveolar cell fraction and only 20% of miRNAs showed similar expression in both samples. These results show a lack of association of miRNA signatures between plasma and bronchoalveolar cytology in the same patient. The profiles are not comparable; however, there is a similarity in the relative expression in a very small subset of miRNAs (miR-17, miR-19b, miR-195 and miR-20b) between both biological samples in all patients. This finding supports that the miRNAs profiles obtained from different biological samples have to be carefully validated to link with respiratory diseases. PMID:22430188
Hassan, Tidi; de Santi, Chiara; Mooney, Catherine; McElvaney, Noel G; Greene, Catherine M
2017-10-23
Alpha-1 antitrypsin (AAT) augmentation therapy involves infusion of plasma-purified AAT to AAT deficient individuals. Whether treatment affects microRNA expression has not been investigated. This study's objectives were to evaluate the effect of AAT augmentation therapy on altered miRNA expression in monocytes and investigate the mechanism. Monocytes were isolated from non-AAT deficient (MM) and AAT deficient (ZZ) individuals, and ZZs receiving AAT. mRNA (qRT-PCR, microarray), miRNA (miRNA profiling, qRT-PCR), and protein (western blotting) analyses were performed. Twenty one miRNAs were differentially expressed 3-fold between ZZs and MMs. miRNA validation studies demonstrated that in ZZ monocytes receiving AAT levels of miR-199a-5p, miR-598 and miR-320a, which are predicted to be regulated by NFκB, were restored to levels similar to MMs. Validated targets co-regulated by these miRNAs were reciprocally increased in ZZs receiving AAT in vivo and in vitro. Expression of these miRNAs could be increased in ZZ monocytes treated ex vivo with an NFκB agonist and decreased by NFκB inhibition. p50 and p65 mRNA and protein were significantly lower in ZZs receiving AAT than untreated ZZs. AAT augmentation therapy inhibits NFκB and decreases miR-199a-5p, miR-598 and miR-320a in ZZ monocytes. These NFκB-inhibitory properties may contribute to the anti-inflammatory effects of AAT augmentation therapy.
miRNA profiling of human naive CD4 T cells links miR-34c-5p to cell activation and HIV replication.
Amaral, Andreia J; Andrade, Jorge; Foxall, Russell B; Matoso, Paula; Matos, Ana M; Soares, Rui S; Rocha, Cheila; Ramos, Christian G; Tendeiro, Rita; Serra-Caetano, Ana; Guerra-Assunção, José A; Santa-Marta, Mariana; Gonçalves, João; Gama-Carvalho, Margarida; Sousa, Ana E
2017-02-01
Cell activation is a vital step for T-cell memory/effector differentiation as well as for productive HIV infection. To identify novel regulators of this process, we used next-generation sequencing to profile changes in microRNA expression occurring in purified human naive CD4 T cells in response to TCR stimulation and/or HIV infection. Our results demonstrate, for the first time, the transcriptional up-regulation of miR-34c-5p in response to TCR stimulation in naive CD4 T cells. The induction of this miR was further consistently found to be reduced by both HIV-1 and HIV-2 infections. Overexpression of miR-34c-5p led to changes in the expression of several genes involved in TCR signaling and cell activation, confirming its role as a novel regulator of naive CD4 T-cell activation. We additionally show that miR-34c-5p promotes HIV-1 replication, suggesting that its down-regulation during HIV infection may be part of an anti-viral host response. © 2016 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meng; Long, Chaoqin; Yang, Guilan
2016-03-11
Alterations in microRNA-26b (miR-26b) expression have been shown to participate in various malignant tumor developments. However, the possible function of miR-26b in human melanoma cells remains unclarified. In this study, quantitative polymerase chain reaction was used to explore the expression profiles of miR-26b in melanoma cells. The effect of miR-26b on cell viability was determined by using MTT assays and colony formation assay. The apoptosis levels were evaluated by using Annexin V/fluorescein isothiocyanate (FITC) apoptosis detection kit and the apoptosis cells were confirmed by Transmission Electron Microscopy (TEM). Luciferase reporter plasmids were constructed to confirm direct targeting. Our study foundmore » that the expression of miR-26b was downregulated in human melanoma specimens. Overexpression of miR-26b significantly increased the anti-proliferative effects and apoptosis in A375 and B16F10 melanoma cells. In addition, luciferase gene reporter assays confirmed that TRAF5 was a direct target gene of miR-26b and the anti-tumor effect of miR-26b in melanoma cells was significantly counteracted by treatment with TRAF5 overexpression. Furthermore, the molecular mechanisms underlying the tumor suppressor of miR-26b in malignant melanomas may be due to the dephosphorylation of MAPK pathway caused by the decrease in TRAF5 expression when miR-26b is up-regulated in melanoma cells. These findings indicate that miR-26b might influence TRAF5-MAPK signaling pathways to facilitate the malignant progression of melanoma cells. - Highlights: • miR-26b is downregulated in human melanomas. • miR-26b suppressed melanoma cell proliferation and enhanced cell apoptosis. • TRAF5 is a direct target of miR-26b and inversely correlates with miR-26b expression. • miR-26b modulated MAPK signaling pathway by targeting TRAF5.« less
Ghanbari Safari, Maryam; Baesi, Kazem; Hosseinkhani, Saman
2017-03-01
MicroRNAs are small noncoding RNAs that regulate gene expression by repressing translation of target cellular transcripts. Increasing evidences indicate that miRNAs have different expression profiles and play crucial roles in numerous cellular processes. Delivery and expression of transgenes for cancer therapy must be specific for tumors to avoid killing of healthy tissues. Many investigators have shown that transgene expression can be suppressed in normal cells using vectors that are responsive to microRNA regulation. To overcome this problem, miR-145 that exhibits downregulation in many types of cancer cells was chosen for posttranscriptional regulatory systems mediated by microRNAs. In this study, a psiCHECK-145T vector carrying four tandem copies of target sequences of miR-145 into 3'-UTR of the Renilla luciferase gene was constructed. Renilla luciferase activity from the psiCHECK-145T vector was 57% lower in MCF10A cells with high miR-145 expression as compared to a control condition. Additionally, overexpression of miR-145 in MCF-7 cells with low expression level of miR-145 showed more than 76% reduction in the Renilla luciferase activity from the psiCHECK-145T vector. Inclusion of miR-145 target sequences into the 3'-UTR of the Renilla luciferase gene is a feasible strategy for restricting transgene expression in a breast cancer cell line while sparing a breast normal cell line. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Lewis, Holly; Lance, Raymond; Troyer, Dean; Beydoun, Hind; Hadley, Melissa; Orians, Joseph; Benzine, Tiffany; Madric, Kenya; Semmes, O John; Drake, Richard; Esquela-Kerscher, Aurora
2014-01-01
microRNAs (miRNAs) are a growing class of small non-coding RNAs that exhibit widespread dysregulation in prostate cancer. We profiled miRNA expression in syngeneic human prostate cancer cell lines that differed in their metastatic potential in order to determine their role in aggressive prostate cancer. miR-888 was the most differentially expressed miRNA observed in human metastatic PC3-ML cells relative to non-invasive PC3-N cells, and its levels were higher in primary prostate tumors from cancer patients, particularly those with seminal vesicle invasion. We also examined a novel miRNA-based biomarker source called expressed prostatic secretions in urine (EPS urine) for miR-888 expression and found that its levels were preferentially elevated in prostate cancer patients with high-grade disease. These expression studies indicated a correlation for miR-888 in disease progression. We next tested how miR-888 regulated cancer-related pathways in vitro using human prostate cancer cell lines. Overexpression of miR-888 increased proliferation and migration, and conversely inhibition of miR-888 activity blocked these processes. miR-888 also increased colony formation in PC3-N and LNCaP cells, supporting an oncogenic role for this miRNA in the prostate. Our data indicates that miR-888 functions to promote prostate cancer progression and can suppress protein levels of the tumor suppressor genes RBL1 and SMAD4. This miRNA holds promise as a diagnostic tool using an innovative prostatic fluid source as well as a therapeutic target for aggressive prostate cancer. PMID:24200968
Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus
NASA Astrophysics Data System (ADS)
Dai, Zhongquan; Wu, Feng; Qu, Lina
Abstract Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus after 7, 14 and 28 days tail suspension (TS). Microarray data revealed that TS altered 23 miRNAs and 1313 mRNAs at least 2-fold change. QRT-PCR confirmed changes of miRNAs and mRNAs related to muscle atrophy. MiR-214, miR-486-5p and miR-320 family decreased, but Let-7e increased. Actn3 and myh4 displayed abundant upregulation and a3galt2 downregulated. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. Further analysis of gene functional annotation confirmed consistency of alteration profile between miRNAs and mRNA and enrichment of main clusters in regulation of muscle metabolism. Our results highlight the importance of miR-214, miR-486-5p, miR-320 and Let-7e in muscle atrophy process induced by microgravity.
MicroRNA-21 promotes proliferation of rat hepatocyte BRL-3A by targeting FASLG.
Li, J J; Chan, W H; Leung, W Y; Wang, Y; Xu, C S
2015-04-27
Rat liver regeneration (RLR) induced by partial hepatectomy involves cell proliferation regulated by numerous factors, including microRNAs (miRNAs). miRNA high-throughput sequencing has been established and used to analyze miRNA expression profiles. This study showed that 39 miRNAs were related to RLR through the analysis of miRNA high-throughput sequencing. Their role toward rat normal hepatocyte line BRL-3A was studied by gain- and loss-of-function analyses, and one of them, microRNA-21 (miR-21), obviously upregulated and promoted BRL-3A cell proliferation. Using bioinformatics to search for miR-21 targets revealed that Fas ligand (FASLG) is one of miR-21's target genes. A dual-luciferase report assay and Western blot assay showed that miR-21 directly targeted the 3'-untranslated region of FASLG and inhibited the expression of FASLG, which suggests that miR-21 promoted BRL-3A cell proliferation by reducing FASLG expression.
Sun, Chao; Tian, Jiwei; Liu, Xinhui; Guan, Guoping
2017-08-26
The molecular mechanism underlying the fibrosis of ligamentum flavum(LF) in patients with lumbar spinal canal stenosis(LSCS) remains unknown. MicroRNAs are reported to play important roles in regulating fibrosis in different organs. The present study aimed to identify fibrosis related miR-21 expression profile and investigate the pathological process of miR-21 in the fibrosis of LF hypertrophy and associated regulatory mechanisms. 15 patients with LSCS underwent surgical treatment were enrolled in this study. For the control group, 11 patients with lumbar disc herniation(LDH) was included. The LF thickness was measured on MRI. LF samples were obtained during the surgery. Fibrosis score was assessed by Masson's trichrome staining. The expression of miR-21 in LF tissues were determined by RT-PCR. Correlation among LF thickness, fibrosis score, and miR-21 expression was analyzed. In addition, Lentiviral vectors for miR-21 mimic were constructed and transfected into LF cells to examine the role of miR-21 in LF fibrosis. Types I and III collagen were used as indicators of fibrosis. IL-6 expression in LF cells after transfection was investigated by RT-PCR and ELISA. Patients in two groups showed similar outcomes regarding age, gender, level of LF tissue. The thickness and fibrosis score of LF in the LSCS group were significantly greater than those in LDH group (all P < 0.05). Similarly, the expression of miR-21 in LSCS group was substantially higher than that in LDH group(P < 0.05). Furthermore, the miR-21 expression exhibited positive correlations with the LF thickness (r = 0.595, P < 0.05) and fibrosis score (r = 0.608, P < 0.05). Of note, miR-21 over-expression increased the expression levels of collagen I and III (P < 0.05). Also, IL-6 expression and secretion in LF cells was elevated after transfection of miR-21 mimic. MiR-21 is a fibrosis-associated miRNA and promotes inflammation in LF tissue by activating IL-6 expression, leading to LF fibrosis and hypertrophy. Copyright © 2017 Elsevier Inc. All rights reserved.
miR-193b Regulates Mcl-1 in Melanoma.
Chen, Jiamin; Zhang, Xiao; Lentz, Cindy; Abi-Daoud, Marie; Paré, Geneviève C; Yang, Xiaolong; Feilotter, Harriet E; Tron, Victor A
2011-11-01
MicroRNAs play important roles in gene regulation, and their expression is frequently dysregulated in cancer cells. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 in melanoma cells, suggesting that miR-193b could act as a tumor suppressor. Herein, we demonstrate that miR-193b also down-regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. MicroRNA microarray profiling revealed that miR-193b is expressed at a significantly lower level in malignant melanoma than in benign nevi. Consistent with this, Mcl-1 is detected at a higher level in malignant melanoma than in benign nevi. In a survey of melanoma samples, the level of Mcl-1 is inversely correlated with the level of miR-193b. Overexpression of miR-193b in melanoma cells represses Mcl-1 expression. Previous studies showed that Mcl-1 knockdown cells are hypersensitive to ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-w. Similarly, overexpression of miR-193b restores ABT-737 sensitivity to ABT-737-resistant cells. Furthermore, the effect of miR-193b on the expression of Mcl-1 seems to be mediated by direct interaction between miR-193b and seed and seedless pairing sequences in the 3' untranslated region of Mcl-1 mRNA. Thus, this study provides evidence that miR-193b directly regulates Mcl-1 and that down-regulation of miR-193b in vivo could be an early event in melanoma progression. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Association of plasma MiR-17-92 with dyslipidemia in patients with coronary artery disease.
Liu, Fengqiong; Li, Rui; Zhang, Yuan; Qiu, Jian; Ling, Wenhua
2014-11-01
Circulating microRNAs (miRNAs) have already been proposed as sensitive and informative biomarkers for the diagnosis of multiple diseases. We investigated the miRNA expression patterns in plasma samples of patients with coronary artery disease (CAD) and explored the potential functions of certain miRNAs.Deep sequencing analysis was performed to determine the miRNA expression profiles using RNA samples isolated from 20 healthy subjects and 20 patients with CAD. Quantitative reverse transcription polymerase chain reaction was applied to confirm the differential expression of the miR-17-92 cluster in 81 patients and 50 healthy volunteers. The association between the miR-17-92 cluster and clinical characteristics of patients with CAD were analyzed using SPSS16.0, SPSS Inc, Chicago, IL.Hundreds of miRNAs were detected and most members from the miR-17-92 cluster and its paralogs, including miR-18a, miR-92a, miR-106b, and miR-17, exhibited differential expression in the plasma of patients with CAD compared with controls. Moreover, these miRNAs were found widely related to the blood lipids in the patients with CAD, as miR-17 was positively correlated with total cholesterol, low-density lipoprotein cholesterol, and apolipoprotein B, while miR-92a was found positively related to high-density lipoprotein cholesterol (HDL-C) but negatively related to lipoprotein-a. Additionally, miR-106b was positively related to HDL-C and apolipoprotein A-I.Taken together with existing evidence from mechanistic studies, the current results of our study support a relationship between the miR-17-92 family and lipid metabolism, which merits further study.
Zhang, Ying; Li, Tao; Guo, Pengbo; Kang, Jia; Wei, Qing; Jia, Xiaoqing; Zhao, Wei; Huai, Wanwan; Qiu, Yumin; Sun, Lei; Han, Lihui
2014-01-01
Resistance to anoikis and Epithelial-mesenchymal transition (EMT) are two processes critically involved in cancer metastasis. In this study, we demonstrated that after anchorage deprival, hepatocellular carcinoma (HCC) cells not only resisted anoikis, but also exhibited EMT process. Microarray expression profiling revealed that expression of miR-424-5p was significantly decreased in anoikis-resistant HCC cells. Ectopic overexpression of miR-424-5p was sufficient to reverse resistance to anoikis, block EMT process and inhibit malignant behaviors of HCC cells. Target analysis showed that a potent β-catenin inhibitor, ICAT/CTNNBIP1 was a direct target of miR-424-5p. Further study demonstrated that miR-424-5p reversed resistance to anoikis and EMT of HCCs by directly targeting ICAT and further maintaining the E-cadherin/β-catanin complex on the cellular membrance. In vivo study further demonstrated that miR-424-5p significantly inhibited the tumorigenicity of HCC cells in nude mice. Clinical investigation demonstrated that miR-424-5p was significantly downregulated in HCC tissues compared with that of the non-cancerous liver tissues, and this decreased expression of miR-424-5p was significantly correlated with higher pathological grades and more advanced TNM stages. Therefore, aberrant expression of miR-424-5p is critically involved in resistance to anoikis and EMT during the metastatic process of HCC, and its downregulation significantly contributes to liver cancer progression. PMID:25175916
Circulating levels of miR-150 are associated with poorer outcomes of A/H1N1 infection.
Morán, Juan; Ramírez-Martínez, Gustavo; Jiménez-Alvarez, Luis; Cruz, Alfredo; Pérez-Patrigeon, Santiago; Hidalgo, Alfredo; Orozco, Lorena; Martínez, Angélica; Padilla-Noriega, Luis; Avila-Moreno, Federico; Cabello, Carlos; Granados, Julio; Ortíz-Quintero, Blanca; Ramírez-Venegas, Alejandra; Ruíz-Palacios, Guillermo M; Zlotnik, Albert; Merino, Enrique; Zúñiga, Joaquín
2015-10-01
Overproduction of pro-inflammatory cytokines and chemokines is frequently associated with severe clinical manifestations in patients infected with influenza A/H1N1 virus. Micro-RNAs (miRNAs) are highly conserved small non-coding RNA molecules that post-transcriptionally regulate gene expression and are potential biomarkers and therapeutic targets in different inflammatory conditions. We studied the circulating and miRNA profiles in critically ill A/H1N1 patients, A/H1N1 patients with milder disease, asymptomatic housemates and healthy controls. Cytokine, chemokine and growth factors that were potential targets of differentially expressed miRNAs were assessed. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and interactome analysis of these miRNAs were also performed. Critically ill patients exhibited a significant over-expression of circulating miR-150 (p<0.005) when compared to patients with milder disease. miR-29c, miR-145 and miR-22 were differentially expressed in patients with severe A/H1N1 disease whereas miR-210, miR-126 and miR-222 were downregulated in individuals exposed to the A/H1N1 virus. Significant correlations (p<0.05) between circulating levels of miR-150 with IL-1ra, IL-2, IL-6, CXCL8, IFN-γ, CXCL10 and G-CSF were detected, particularly in critically ill patients. The up-regulation of miR-150 is associated with poorer outcomes of A/H1N1 infection. The differential expression of miRNAs related with immune processes in severe A/H1N1 disease supports the potential role of these miRNAs as biomarkers of disease progression. Copyright © 2015 Elsevier Inc. All rights reserved.
Myostatin signaling regulates Akt activity via the regulation of miR-486 expression.
Hitachi, Keisuke; Nakatani, Masashi; Tsuchida, Kunihiro
2014-02-01
Myostatin, also known as growth and differentiation factor-8, is a pivotal negative regulator of skeletal muscle mass and reduces muscle protein synthesis by inhibiting the insulin-like growth factor-1 (IGF-1)/Akt/mammalian target of rapamycin (mTOR) pathway. However, the precise mechanism by which myostatin inhibits the IGF-1/Akt/mTOR pathway remains unclear. In this study, we investigated the global microRNA expression profile in myostatin knockout mice and identified miR-486, a positive regulator of the IGF-1/Akt pathway, as a novel target of myostatin signaling. In myostatin knockout mice, the expression level of miR-486 in skeletal muscle was significantly increased. In addition, we observed increased expression of the primary transcript of miR-486 (pri-miR-486) and Ankyrin 1.5 (Ank1.5), the host gene of miR-486, in myostatin knockout mice. In C2C12 cells, myostatin negatively regulated the expression of Ank1.5. Moreover, canonical myostatin signaling repressed the skeletal muscle-specific promoter activity of miR-486/Ank1.5. This repression was partially mediated by the E-box elements in the proximal region of the promoter. We also show that overexpression of miR-486 induced myotube hypertrophy in vitro and that miR-486 was essential to maintain skeletal muscle size both in vitro and in vivo. In addition, inhibition of miR-486 led to a decrease in Akt activity in C2C12 myotubes. Our findings indicate that miR-486 is one of the intermediary molecules connecting myostatin signaling and the IGF-1/Akt/mTOR pathway in the regulation of skeletal muscle size. Copyright © 2013 Elsevier Ltd. All rights reserved.
Serum microRNA expression profile as a diagnostic panel for gastric cancer.
Huang, Shengkai; Wang, Jia; Li, Jia; Luo, Qing; Zhao, Mei; Zheng, Limin; Dong, Xianzhe; Chen, Chao; Che, Yiqun; Liu, Ping; Qi, Jun; Huang, Changzhi
2016-09-01
Previously, we identified six miRNAs that are differentially expressed in colorectal cancer compared with healthy controls. Here, we tested them in gastric cancer GC. We performed quantitative RT-PCR on serum samples from 92 patients with gastric cancer and 89 controls for the six miRNAs, and analyzed their risk scores to evaluate the diagnostic value of the serum miRNA profiling system. After a two-phase selection and validation process, five miRNAs were found to significantly differ in expression between gastric cancer samples and control samples, including miR-21, miR-31, miR-92a, miR-181b, and miR-203. Risk score analysis showed that this miRNA panel could distinguish gastric cancer cases from controls with high sensitivity and specificity. Under receiver operating characteristic curves, areas under the curve for tumor identification were 0.933 (95% confidence interval [CI]: 0.86-1.007) for the training set and 0.919 (95% CI: 0.863-0.975) for the validation set-markedly higher than those of carcinoembryonic antigen (0.624) and carbohydrate antigen 19-9 (0.603). The signature of these five miRNAs is a novel and noninvasive biomarker for gastric cancer, and could facilitate and simplify its diagnosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rinnerthaler, Gabriel; Hackl, Hubert; Gampenrieder, Simon Peter; Hamacher, Frank; Hufnagl, Clemens; Hauser-Kronberger, Cornelia; Zehentmayr, Franz; Fastner, Gerd; Sedlmayer, Felix; Mlineritsch, Brigitte; Greil, Richard
2016-01-01
For quantitative microRNA analyses in formalin-fixed paraffin-embedded (FFPE) tissue, expression levels have to be normalized to endogenous controls. To investigate the most stably-expressed microRNAs in breast cancer and its surrounding tissue, we used tumor samples from primary tumors and from metastatic sites. MiRNA profiling using TaqMan® Array Human MicroRNA Cards, enabling quantification of 754 unique human miRNAs, was performed in FFPE specimens from 58 patients with metastatic breast cancer. Forty-two (72%) samples were collected from primary tumors and 16 (28%) from metastases. In a cross-platform analysis of a validation cohort of 32 FFPE samples from patients with early breast cancer genome-wide microRNA expression analysis using SurePrintG3 miRNA (8 × 60 K)® microarrays from Agilent® was performed. Eleven microRNAs could be detected in all samples analyzed. Based on NormFinder and geNorm stability values and the high correlation (rho ≥ 0.8) with the median of all measured microRNAs, miR-16-5p, miR-29a-3p, miR-126-3p, and miR-222-3p are suitable single gene housekeeper candidates. In the cross-platform validation, 29 human microRNAs were strongly expressed (mean log2-intensity > 10) and 21 of these microRNAs including miR-16-5p and miR-29a-3p were also stably expressed (CV < 5%). Thus, miR-16-5p and miR-29a-3p are both strong housekeeper candidates. Their Normfinder stability values calculated across the primary tumor and metastases subgroup indicate that miR-29a-3p can be considered as the strongest housekeeper in a cohort with mainly samples from primary tumors, whereas miR-16-5p might perform better in a metastatic sample enriched cohort. PMID:26821018
Rinnerthaler, Gabriel; Hackl, Hubert; Gampenrieder, Simon Peter; Hamacher, Frank; Hufnagl, Clemens; Hauser-Kronberger, Cornelia; Zehentmayr, Franz; Fastner, Gerd; Sedlmayer, Felix; Mlineritsch, Brigitte; Greil, Richard
2016-01-26
For quantitative microRNA analyses in formalin-fixed paraffin-embedded (FFPE) tissue, expression levels have to be normalized to endogenous controls. To investigate the most stably-expressed microRNAs in breast cancer and its surrounding tissue, we used tumor samples from primary tumors and from metastatic sites. MiRNA profiling using TaqMan(®) Array Human MicroRNA Cards, enabling quantification of 754 unique human miRNAs, was performed in FFPE specimens from 58 patients with metastatic breast cancer. Forty-two (72%) samples were collected from primary tumors and 16 (28%) from metastases. In a cross-platform analysis of a validation cohort of 32 FFPE samples from patients with early breast cancer genome-wide microRNA expression analysis using SurePrintG3 miRNA (8 × 60 K)(®) microarrays from Agilent(®) was performed. Eleven microRNAs could be detected in all samples analyzed. Based on NormFinder and geNorm stability values and the high correlation (rho ≥ 0.8) with the median of all measured microRNAs, miR-16-5p, miR-29a-3p, miR-126-3p, and miR-222-3p are suitable single gene housekeeper candidates. In the cross-platform validation, 29 human microRNAs were strongly expressed (mean log2-intensity > 10) and 21 of these microRNAs including miR-16-5p and miR-29a-3p were also stably expressed (CV < 5%). Thus, miR-16-5p and miR-29a-3p are both strong housekeeper candidates. Their Normfinder stability values calculated across the primary tumor and metastases subgroup indicate that miR-29a-3p can be considered as the strongest housekeeper in a cohort with mainly samples from primary tumors, whereas miR-16-5p might perform better in a metastatic sample enriched cohort.
Carbonell, Alberto; Fahlgren, Noah; Mitchell, Skyler; ...
2015-05-20
Artificial microRNAs (amiRNAs) are used for selective gene silencing in plants. However, current methods to produce amiRNA constructs for silencing transcripts in monocot species are not suitable for simple, cost-effective and large-scale synthesis. Here, a series of expression vectors based on Oryza sativa MIR390 (OsMIR390) precursor was developed for high-throughput cloning and high expression of amiRNAs in monocots. Four different amiRNA sequences designed to target specifically endogenous genes and expressed from OsMIR390-based vectors were validated in transgenic Brachypodium distachyon plants. Surprisingly, amiRNAs accumulated to higher levels and were processed more accurately when expressed from chimeric OsMIR390-based precursors that include distalmore » stem-loop sequences from Arabidopsis thaliana MIR390a (AtMIR390a). In all cases, transgenic plants displayed the predicted phenotypes induced by target gene repression, and accumulated high levels of amiRNAs and low levels of the corresponding target transcripts. Genome-wide transcriptome profiling combined with 5-RLM-RACE analysis in transgenic plants confirmed that amiRNAs were highly specific. Finally, significance Statement A series of amiRNA vectors based on Oryza sativa MIR390 (OsMIR390) precursor were developed for simple, cost-effective and large-scale synthesis of amiRNA constructs to silence genes in monocots. Unexpectedly, amiRNAs produced from chimeric OsMIR390-based precursors including Arabidopsis thaliana MIR390a distal stem-loop sequences accumulated elevated levels of highly effective and specific amiRNAs in transgenic Brachypodium distachyon plants.« less
Hegde, Venkatesh L.; Tomar, Sunil; Jackson, Austin; Rao, Roshni; Yang, Xiaoming; Singh, Udai P.; Singh, Narendra P.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi
2013-01-01
Δ9-Tetrahydrocannabinol (THC), the major bioactive component of marijuana, has been shown to induce functional myeloid-derived suppressor cells (MDSCs) in vivo. Here, we studied the involvement of microRNA (miRNA) in this process. CD11b+Gr-1+ MDSCs were purified from peritoneal exudates of mice administered with THC and used for genome-wide miRNA profiling. Expression of CD31 and Ki-67 confirmed that the THC-MDSCs were immature and proliferating. THC-induced MDSCs exhibited distinct miRNA expression signature relative to various myeloid cells and BM precursors. We identified 13 differentially expressed (>2-fold) miRNA in THC-MDSCs relative to control BM precursors. In silico target prediction for these miRNA and pathway analysis using multiple bioinformatics tools revealed significant overrepresentation of Gene Ontology clusters within hematopoiesis, myeloid cell differentiation, and regulation categories. Insulin-like growth factor 1 signaling involved in cell growth and proliferation, and myeloid differentiation pathways were among the most significantly enriched canonical pathways. Among the differentially expressed, miRNA-690 was highly overexpressed in THC-MDSCs (∼16-fold). Transcription factor CCAAT/enhancer-binding protein α (C/EBPα) was identified as a potential functional target of miR-690. Supporting this, C/EBPα expression was attenuated in THC-MDSCs as compared with BM precursors and exhibited an inverse relation with miR-690. miR-690 knockdown using peptide nucleic acid-antagomiR was able to unblock and significantly increase C/EBPα expression establishing the functional link. Further, CD11b+Ly6G+Ly6C+ and CD11b+Ly6G−Ly6C+ purified subtypes showed high levels of miR-690 with attenuated C/EBPα expression. Moreover, EL-4 tumor-elicited MDSCs showed increased miR-690 expression. In conclusion, miRNA are significantly altered during the generation of functional MDSC from BM. Select miRNA such as miR-690 targeting genes involved in myeloid expansion and differentiation likely play crucial roles in this process and therefore in cannabinoid-induced immunosuppression. PMID:24202177
Ma, Jianping; Wang, Jufang; Liu, Yanfen; Wang, Changyi; Duan, Donghui; Lu, Nanjia; Wang, Kaiyue; Zhang, Lu; Gu, Kaibo; Chen, Sihan; Zhang, Tao; You, Dingyun; Han, Liyuan
2017-02-01
The aim of this study was to compare the expression levels of serum miRNAs in diabetic retinopathy and type 2 diabetes mellitus. Serum miRNA expression profiles from diabetic retinopathy cases (type 2 diabetes mellitus patients with diabetic retinopathy) and type 2 diabetes mellitus controls (type 2 diabetes mellitus patients without diabetic retinopathy) were examined by miRNA-specific microarray analysis. Quantitative real-time polymerase chain reaction was used to validate the significantly differentially expressed serum miRNAs from the microarray analysis of 45 diabetic retinopathy cases and 45 age-, sex-, body mass index- and duration-of-diabetes-matched type 2 diabetes mellitus controls. The relative changes in serum miRNA expression levels were analyzed using the 2-ΔΔCt method. A total of 5 diabetic retinopathy cases and 5 type 2 diabetes mellitus controls were included in the miRNA-specific microarray analysis. The serum levels of miR-3939 and miR-1910-3p differed significantly between the two groups in the screening stage; however, quantitative real-time polymerase chain reaction did not reveal significant differences in miRNA expression for 45 diabetic retinopathy cases and their matched type 2 diabetes mellitus controls. Our findings indicate that miR-3939 and miR-1910-3p may not play important roles in the development of diabetic retinopathy; however, studies with a larger sample size are needed to confirm our findings.
Bar, Jair; Gorn-Hondermann, Ivan; Moretto, Patricia; Perkins, Theodore J; Niknejad, Nima; Stewart, David J; Goss, Glenwood D; Dimitroulakos, Jim
2015-11-01
To identify the mechanisms of cisplatin resistance, global microRNA (miR) expression was tested. The expression of miR-145 was consistently higher in resistant cells. The expression of cyclin-dependent kinase 6 (CDK6), a potential target of miR-145, was lower in resistant cells, and inhibition of CDK4/6 protected cells from cisplatin. Cell cycle inhibition, currently being tested in clinical trials, might be antagonistic to cisplatin and other cytotoxic drugs. Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death. Platinum-based chemotherapeutic drugs are the most active agents in treating advanced disease. Resistance to these drugs is common and multifactorial; insight into the molecular mechanisms involved will likely enhance efficacy. A set of NSCLC platinum-resistant sublines was created from the Calu6 cell line. Cell viability was quantified using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Differentially expressed microRNAs (miRs) in these lines were identified using Affymetrix miR arrays. The potential genes targeted by these miRs were searched using the TargetScan algorithm. The expression levels of miRs and mRNA were tested using real-time polymerase chain reaction. miR-145 was reproducibly elevated in all the resistant sublines tested; however, modulation of miR-145 levels alone in these cells did not affect their response to cisplatin. A potential target of miR-145 is cyclin-dependent kinase 6 (CDK6), an important regulator of cell proliferation. The mRNA and protein levels of CDK6 were both downregulated in the resistant sublines. An inhibitor of CDK4/6 (PD0332991) protected parental NSCLC cells from cisplatin cytotoxicity. In the present study, we identified miRs differentially expressed in cisplatin-resistant cell lines, including miR-145. A predicted target of miR-145 is CDK6, and its expression was found to be downregulated in the resistant sublines, although not directly by miR-145. Inhibition of CDK6 antagonizes cisplatin-induced NSCLC cell cytotoxicity, suggesting that agents that inhibit CDK6 should be avoided during cisplatin therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Dysregulation of miR-31 and miR-21 induced by zinc deficiency promotes esophageal cancer
Croce, Carlo M; Fong, Louise Y.Y
2012-01-01
Zinc deficiency (ZD) increases the risk of esophageal squamous cell carcinoma (ESCC). In a rat model, chronic ZD induces an inflammatory gene signature that fuels ESCC development. microRNAs regulate gene expression and are aberrantly expressed in cancers. Here we investigated whether chronic ZD (23 weeks) also induces a protumorigenic microRNA signature. Using the nanoString technology, we evaluated microRNA profiles in ZD esophagus and six additional tissues (skin, lung, pancreas, liver, prostate and peripheral blood mononuclear cells [PBMC]). ZD caused overexpression of inflammation genes and altered microRNA expression across all tissues analyzed, predictive of disease development. Importantly, the inflammatory ZD esophagus had a distinct microRNA signature resembling human ESCC or tongue SCC miRNAomes with miR-31 and miR-21 as the top-up-regulated species. Circulating miR-31 was also the top-up-regulated species in PBMCs. In ZD esophagus and tongue, oncogenic miR-31 and miR-21 overexpression was accompanied by down-regulation of their respective tumor-suppressor targets PPP2R2A and PDCD4. Importantly, esophageal miR-31 and miR-21 levels were directly associated with the appearance of ESCC in ZD rats, as compared with their cancer-free Zn-sufficient or Zn-replenished counterparts. In situ hybridization analysis in rat and human tongue SCCs localized miR-31 to tumor cells and miR-21 to stromal cells. In regressing tongue SCCs from Zn-supplemented rats, miR-31 and miR-21 expression was concomitantly reduced, establishing their responsiveness to Zn therapy. A search for putative microRNA targets revealed a bias toward genes in inflammatory pathways. Our finding that ZD causes miR-31 and miR-21 dysregulation associated with inflammation provides insight into mechanisms whereby ZD promotes ESCC. PMID:22689922
Mishra, Nibha; Milikovsky, Dan Z.; Hanin, Geula; Zelig, Daniel; Sheintuch, Liron; Berson, Amit; Greenberg, David S.; Friedman, Alon
2017-01-01
Epilepsy is a common neurological disease, manifested in unprovoked recurrent seizures. Epileptogenesis may develop due to genetic or pharmacological origins or following injury, but it remains unclear how the unaffected brain escapes this susceptibility to seizures. Here, we report that dynamic changes in forebrain microRNA (miR)-211 in the mouse brain shift the threshold for spontaneous and pharmacologically induced seizures alongside changes in the cholinergic pathway genes, implicating this miR in the avoidance of seizures. We identified miR-211 as a putative attenuator of cholinergic-mediated seizures by intersecting forebrain miR profiles that were Argonaute precipitated, synaptic vesicle target enriched, or differentially expressed under pilocarpine-induced seizures, and validated TGFBR2 and the nicotinic antiinflammatory acetylcholine receptor nAChRa7 as murine and human miR-211 targets, respectively. To explore the link between miR-211 and epilepsy, we engineered dTg-211 mice with doxycycline-suppressible forebrain overexpression of miR-211. These mice reacted to doxycycline exposure by spontaneous electrocorticography-documented nonconvulsive seizures, accompanied by forebrain accumulation of the convulsive seizures mediating miR-134. RNA sequencing demonstrated in doxycycline-treated dTg-211 cortices overrepresentation of synaptic activity, Ca2+ transmembrane transport, TGFBR2 signaling, and cholinergic synapse pathways. Additionally, a cholinergic dysregulated mouse model overexpressing a miR refractory acetylcholinesterase-R splice variant showed a parallel propensity for convulsions, miR-211 decreases, and miR-134 elevation. Our findings demonstrate that in mice, dynamic miR-211 decreases induce hypersynchronization and nonconvulsive and convulsive seizures, accompanied by expression changes in cholinergic and TGFBR2 pathways as well as in miR-134. Realizing the importance of miR-211 dynamics opens new venues for translational diagnosis of and interference with epilepsy. PMID:28584127
Bekenstein, Uriya; Mishra, Nibha; Milikovsky, Dan Z; Hanin, Geula; Zelig, Daniel; Sheintuch, Liron; Berson, Amit; Greenberg, David S; Friedman, Alon; Soreq, Hermona
2017-06-20
Epilepsy is a common neurological disease, manifested in unprovoked recurrent seizures. Epileptogenesis may develop due to genetic or pharmacological origins or following injury, but it remains unclear how the unaffected brain escapes this susceptibility to seizures. Here, we report that dynamic changes in forebrain microRNA (miR)-211 in the mouse brain shift the threshold for spontaneous and pharmacologically induced seizures alongside changes in the cholinergic pathway genes, implicating this miR in the avoidance of seizures. We identified miR-211 as a putative attenuator of cholinergic-mediated seizures by intersecting forebrain miR profiles that were Argonaute precipitated, synaptic vesicle target enriched, or differentially expressed under pilocarpine-induced seizures, and validated TGFBR2 and the nicotinic antiinflammatory acetylcholine receptor nAChRa7 as murine and human miR-211 targets, respectively. To explore the link between miR-211 and epilepsy, we engineered dTg-211 mice with doxycycline-suppressible forebrain overexpression of miR-211. These mice reacted to doxycycline exposure by spontaneous electrocorticography-documented nonconvulsive seizures, accompanied by forebrain accumulation of the convulsive seizures mediating miR-134. RNA sequencing demonstrated in doxycycline-treated dTg-211 cortices overrepresentation of synaptic activity, Ca 2+ transmembrane transport, TGFBR2 signaling, and cholinergic synapse pathways. Additionally, a cholinergic dysregulated mouse model overexpressing a miR refractory acetylcholinesterase-R splice variant showed a parallel propensity for convulsions, miR-211 decreases, and miR-134 elevation. Our findings demonstrate that in mice, dynamic miR-211 decreases induce hypersynchronization and nonconvulsive and convulsive seizures, accompanied by expression changes in cholinergic and TGFBR2 pathways as well as in miR-134. Realizing the importance of miR-211 dynamics opens new venues for translational diagnosis of and interference with epilepsy.
Analyzing gene expression profiles in dilated cardiomyopathy via bioinformatics methods.
Wang, Liming; Zhu, L; Luan, R; Wang, L; Fu, J; Wang, X; Sui, L
2016-10-10
Dilated cardiomyopathy (DCM) is characterized by ventricular dilatation, and it is a common cause of heart failure and cardiac transplantation. This study aimed to explore potential DCM-related genes and their underlying regulatory mechanism using methods of bioinformatics. The gene expression profiles of GSE3586 were downloaded from Gene Expression Omnibus database, including 15 normal samples and 13 DCM samples. The differentially expressed genes (DEGs) were identified between normal and DCM samples using Limma package in R language. Pathway enrichment analysis of DEGs was then performed. Meanwhile, the potential transcription factors (TFs) and microRNAs (miRNAs) of these DEGs were predicted based on their binding sequences. In addition, DEGs were mapped to the cMap database to find the potential small molecule drugs. A total of 4777 genes were identified as DEGs by comparing gene expression profiles between DCM and control samples. DEGs were significantly enriched in 26 pathways, such as lymphocyte TarBase pathway and androgen receptor signaling pathway. Furthermore, potential TFs (SP1, LEF1, and NFAT) were identified, as well as potential miRNAs (miR-9, miR-200 family, and miR-30 family). Additionally, small molecules like isoflupredone and trihexyphenidyl were found to be potential therapeutic drugs for DCM. The identified DEGs (PRSS12 and FOXG1), potential TFs, as well as potential miRNAs, might be involved in DCM.
Analyzing gene expression profiles in dilated cardiomyopathy via bioinformatics methods
Wang, Liming; Zhu, L.; Luan, R.; Wang, L.; Fu, J.; Wang, X.; Sui, L.
2016-01-01
Dilated cardiomyopathy (DCM) is characterized by ventricular dilatation, and it is a common cause of heart failure and cardiac transplantation. This study aimed to explore potential DCM-related genes and their underlying regulatory mechanism using methods of bioinformatics. The gene expression profiles of GSE3586 were downloaded from Gene Expression Omnibus database, including 15 normal samples and 13 DCM samples. The differentially expressed genes (DEGs) were identified between normal and DCM samples using Limma package in R language. Pathway enrichment analysis of DEGs was then performed. Meanwhile, the potential transcription factors (TFs) and microRNAs (miRNAs) of these DEGs were predicted based on their binding sequences. In addition, DEGs were mapped to the cMap database to find the potential small molecule drugs. A total of 4777 genes were identified as DEGs by comparing gene expression profiles between DCM and control samples. DEGs were significantly enriched in 26 pathways, such as lymphocyte TarBase pathway and androgen receptor signaling pathway. Furthermore, potential TFs (SP1, LEF1, and NFAT) were identified, as well as potential miRNAs (miR-9, miR-200 family, and miR-30 family). Additionally, small molecules like isoflupredone and trihexyphenidyl were found to be potential therapeutic drugs for DCM. The identified DEGs (PRSS12 and FOXG1), potential TFs, as well as potential miRNAs, might be involved in DCM. PMID:27737314
Chen, Junjiang; Cui, Lianqun; Yuan, Jingliang; Zhang, Yuqing; Sang, Hongjun
2017-12-09
Increasing evidences have revealed the important role of circular RNAs (circRNAs) in cardiovascular system disease. Whereas, the expression profiles and in-depth regulation of circRNAs on vascular smooth muscle cells (VSMCs) is still undetermined. In present study, our research team performed circRNAs microarray analysis to present the circRNAs expression profiles in high glucose induced VSMCs in vitro. Results showed that total of 983 circRNAs were discovered to be differentially expressed, and of these, 458 were upregulated and 525 were downregulated. Moreover, 31 circRNAs were up-regulated and 22 circRNAs were down-regulated with 2 fold change (P < 0.05). One of an up-regulated circRNA, circWDR77, was identified. In vitro cell assay, circWDR77 silencing significantly inhibited the proliferation and migration. Bioinformatics methods discovered that miR-124 and fibroblast growth factor 2 (FGF-2) were downstream targets of circWDR77. The RNA sequence complementary binding was validated by RNA immunoprecipitation (RIP) and/or luciferase reporter assay. Further function validation experiments revealed that circWDR77 regulated VSMCs proliferation and migration via targeting miR-124/FGF2. Taken together, present study firstly reveals the circRNAs expression profiles in high glucose induced VSMCs and identifies the role of circWDR77-miR-124-FGF2 regulatory pathway in VSMCs proliferation and migration, which might provide a new theoretical basis for diabetes mellitus correlated vasculopathy. Copyright © 2017 Elsevier Inc. All rights reserved.
Lauvrak, S U; Munthe, E; Kresse, S H; Stratford, E W; Namløs, H M; Meza-Zepeda, L A; Myklebost, O
2013-01-01
Background: Osteosarcoma is the most common primary malignant bone tumour, predominantly affecting children and adolescents. Cancer cell line models are required to understand the underlying mechanisms of tumour progression and for preclinical investigations. Methods: To identify cell lines that are well suited for studies of critical cancer-related phenotypes, such as tumour initiation, growth and metastasis, we have evaluated 22 osteosarcoma cell lines for in vivo tumorigenicity, in vitro colony-forming ability, invasive/migratory potential and proliferation capacity. Importantly, we have also identified mRNA and microRNA (miRNA) gene expression patterns associated with these phenotypes by expression profiling. Results: The cell lines exhibited a wide range of cancer-related phenotypes, from rather indolent to very aggressive. Several mRNAs were differentially expressed in highly aggressive osteosarcoma cell lines compared with non-aggressive cell lines, including RUNX2, several S100 genes, collagen genes and genes encoding proteins involved in growth factor binding, cell adhesion and extracellular matrix remodelling. Most notably, four genes—COL1A2, KYNU, ACTG2 and NPPB—were differentially expressed in high and non-aggressive cell lines for all the cancer-related phenotypes investigated, suggesting that they might have important roles in the process of osteosarcoma tumorigenesis. At the miRNA level, miR-199b-5p and mir-100-3p were downregulated in the highly aggressive cell lines, whereas miR-155-5p, miR-135b-5p and miR-146a-5p were upregulated. miR-135b-5p and miR-146a-5p were further predicted to be linked to the metastatic capacity of the disease. Interpretation: The detailed characterisation of cell line phenotypes will support the selection of models to use for specific preclinical investigations. The differentially expressed mRNAs and miRNAs identified in this study may represent good candidates for future therapeutic targets. To our knowledge, this is the first time that expression profiles are associated with functional characteristics of osteosarcoma cell lines. PMID:24064976
Kabiri Rad, Hamid; Mazaheri, Mahta; Dehghani Firozabadi, Ali
Background: MicroRNAs (miRNAs) are implicated in various biological processes including anticoagulation. However, the modulation of miRNA by pharmacological intervention such as warfarin treatment in patients receiving warfarin has not been disclosed yet. The aim of this study work was to assess the effect of warfarin drug on expression level of mir-133a-3p in patients with mechanical heart valve replacement. Methods: In this research, the expression level of miRNA-133a-3p was analyzed in Peripheral Blood Mononuclear Cells (PBMCs) from mechanical valve replacement patients who had received warfarin for at least 3 months continuously. Quantitative RT-PCR method was used for this assay. Results: Our findings indicated a significant diffrence between the rate of miR-133a-3p expression in individuals receiving warfarin and the control group (p<0.01). There was also a statistically significant difference in miR-133a-3p expression in patients with different ages (p<0.05) suggesting that the rate of miR-133a-3p expression in persons receiving warfarin is related to age. However, other variables like warfarin dose, International Normalized Ratio (INR), gender, and Body Mass Index (BMI) were not significantly effective on the miR-133a-3p experssion rate in individuals receving warfarin. Conclusion: Based on our results, it can be concluded that miR-133a-3p is involved in the coagulation pathway. The recent result indicates that warfarin affects the expression of miR-133a. This expression may be potentially important for treatment by anticoagulants. Awareness of the time course of miRNA expression profile can improve efficiency of response to warfarin. PMID:29296264
Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts
Ruedel, Anke; Dietrich, Peter; Schubert, Thomas; Hofmeister, Simone; Hellerbrand, Claus; Bosserhoff, Anja-Katrin
2015-01-01
Activated synovial fibroblasts in rheumatoid arthritis (RASF) play a critical role in the pathology of rheumatoid arthritis (RA). Recent studies suggested that deregulation of microRNAs (miRs) affects the development and progression of RA. Therefore, we aimed to identify de-regulated miRs in RASF and to identify target genes that may contribute to the aggressive phenotype of RASF. Quantitative real-time PCR revealed a marked downregulation of miR-188-5p in synovial tissue samples of RA patients as well as in RASF. Exposure to the cytokine interleukine-1β lead to a further downregulation of miR-188-5p expression levels compared to control cells. Re-expression of miR-188-5p in RASF by transient transfection significantly inhibited cell migration. However, miR-188-5p re-expression had no effects on glycosaminoglycan degradation or expression of repellent factors, which have been previously shown to affect the invasive behavior of RASF. In search for target genes of miR-188-5p in RASF we performed gene expression profiling in RASF and found a strong regulatory effect of miR-188-5p on the hyaluronan binding protein KIAA1199 as well as collagens COL1A1 and COL12A1, which was confirmed by qRT-PCR. In silico analysis revealed that KIAA1199 carries a 3’UTR binding site for miR-188-5p. COL1A1and COL12A1 showed no binding site in the mRNA region, suggesting an indirect regulation of these two genes by miR-188-5p. In summary, our study showed that miR-188-5p is down-regulated in RA in vitro and in vivo, most likely triggered by an inflammatory environment. MiR-188-5p expression is correlated to the activation state of RASF and inhibits migration of these cells. Furthermore, miR-188-5p is directly and indirectly regulating the expression of genes, which may play a role in extracellular matrix formation and destruction in RA. Herewith, this study identified potential novel therapeutic targets to inhibit the development and progression of RA. PMID:26191188
Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts
Ruedel, Anke; Dietrich, Peter; Schubert, Thomas; Hofmeister, Simone; Hellerbrand, Claus; Bosserhoff, Anja Katrin
2015-01-01
Activated synovial fibroblasts in rheumatoid arthritis (RASF) play a critical role in the pathology of rheumatoid arthritis (RA). Recent studies suggested that deregulation of microRNAs (miRs) affects the development and progression of RA. Therefore, we aimed to identify de-regulated miRs in RASF and to identify target genes that may contribute to the aggressive phenotype of RASF. Quantitative real-time PCR revealed a marked downregulation of miR-188-5p in synovial tissue samples of RA patients as well as in RASF. Exposure to the cytokine interleukine-1β lead to a further downregulation of miR-188-5p expression levels compared to control cells. Re-expression of miR-188-5p in RASF by transient transfection significantly inhibited cell migration. However, miR-188-5p re-expression had no effects on glycosaminoglycan degradation or expression of repellent factors, which have been previously shown to affect the invasive behavior of RASF. In search for target genes of miR-188-5p in RASF we performed gene expression profiling in RASF and found a strong regulatory effect of miR-188-5p on the hyaluronan binding protein KIAA1199 as well as collagens COL1A1 and COL12A1, which was confirmed by qRT-PCR. In silico analysis revealed that KIAA1199 carries a 3’UTR binding site for miR-188-5p. COL1A1 and COL12A1 showed no binding site in the mRNA region, suggesting an indirect regulation of these two genes by miR-188-5p. In summary, our study showed that miR-188-5p is down-regulated in RA in vitro and in vivo, most likely triggered by an inflammatory environment. MiR-188-5p expression is correlated to the activation state of RASF and inhibits migration of these cells. Furthermore, miR-188-5p is directly and indirectly regulating the expression of genes, which may play a role in extracellular matrix formation and destruction in RA. Herewith, this study identified potential novel therapeutic targets to inhibit the development and progression of RA. PMID:26261542
Zhang, Jing; Liu, Hui; Hou, Lidan; Wang, Ge; Zhang, Rui; Huang, Yanxia; Chen, Xiaoyu; Zhu, Jinshui
2017-09-11
Non-coding RNAs (ncRNAs) have been shown to regulate gene expression involved in tumor progression of multiple malignancies. Our previous studies indicated that large tumor suppressor kinase 1 (LATS1), a core part of Hippo signaling pathway, functions as a tumor suppressor in gastric cancer (GC). But, the underlying molecular mechanisms by which ncRNAs modulate LATS1 expression in GC remain undetermined. The correlation of LATS1 and has-miR-424-5p (miR-424) expression with clinicopathological characteristics and prognosis of GC patients was analyzed by TCGA RNA-sequencing data. A novel circular RNA_LARP4 (circLARP4) was identified to sponge miR-424 by circRNA expression profile and bioinformatic analysis. The binding site between miR-424 and LATS1 or circLARP4 was verified using dual luciferase assay and RNA immunoprecipitation (RIP) assay. The expression and localization of circLARP4 in GC tissues were investigated by fluorescence in situ hybridization (FISH). MTT, colony formation, Transwell and EdU assays were performed to assess the effects of miR-424 or circLARP4 on cell proliferation and invasion. Increased miR-424 expression or decreased LATS1 expression was associated with pathological stage and unfavorable prognosis of GC patients. Ectopic expression of miR-424 promoted proliferation and invasion of GC cells by targeting LATS1 gene. Furthermore, circLARP4 was mainly localized in the cytoplasm and inhibited biological behaviors of GC cells by sponging miR-424. The expression of circLARP4 was downregulated in GC tissues and represented an independent prognostic factor for overall survival of GC patients. circLARP4 may act as a novel tumor suppressive factor and a potential biomarker in GC.
Yeh, Yuh-Ying; Ozer, Hatice Gulcin; Lehman, Amy M; Maddocks, Kami; Yu, Lianbo; Johnson, Amy J; Byrd, John C
2015-05-21
Multiple studies show that chronic lymphocytic leukemia (CLL) cells are heavily dependent on their microenvironment for survival. Communication between CLL cells and the microenvironment is mediated through direct cell contact, soluble factors, and extracellular vesicles. Exosomes are small particles enclosed with lipids, proteins, and small RNAs that can convey biological materials to surrounding cells. Our data herein demonstrate that CLL cells release significant amounts of exosomes in plasma that exhibit abundant CD37, CD9, and CD63 expression. Our work also pinpoints the regulation of B-cell receptor (BCR) signaling in the release of CLL exosomes: BCR activation by α-immunoglobulin (Ig)M induces exosome secretion, whereas BCR inactivation via ibrutinib impedes α-IgM-stimulated exosome release. Moreover, analysis of serial plasma samples collected from CLL patients on an ibrutinib clinical trial revealed that exosome plasma concentration was significantly decreased following ibrutinib therapy. Furthermore, microRNA (miR) profiling of plasma-derived exosomes identified a distinct exosome microRNA signature, including miR-29 family, miR-150, miR-155, and miR-223 that have been associated with CLL disease. Interestingly, expression of exosome miR-150 and miR-155 increases with BCR activation. In all, this study successfully characterized CLL exosomes, demonstrated the control of BCR signaling in the release of CLL exosomes, and uncovered a disease-relevant exosome microRNA profile. © 2015 by The American Society of Hematology.
Li, Pengfei; Sun, Nan; Zeng, Jianchun; Zeng, Yirong; Fan, Yueguang; Feng, Wenjun; Li, Jie
2016-10-10
Apoptosis of osteoblasts and osteocytes is one cause of steroid-induced osteonecrosis of the femoral head; however, the molecular mechanism of steroid affecting osteoblasts at the genetic level is unclear. The aim of the present work is to examine differential expression of osteoblasts in rats after steroid intervention and to verify expression by real-time polymerase chain reaction (RT-PCR). Primary culture, passaging and identification of osteoblasts of SD neonatal rats were conducted; osteoblasts were divided into two groups, the control group, and the steroid group. Total RNA was extracted separately, and quality control was performed; by means of RNA labeling and microarray hybridization, data were collected and then standardized to ascertain differences in miRNA expression between the two groups. The gene expression spectrum was analyzed. Obvious differential expression of miR-672-5p and miR-146a-5p was verified by RT-PCR. Miranda, microcosm and mirdb bioinformatics software were used to predict target genes. Compared with the control group, morphologically, the osteoblasts in the steroid group were more irregular and showed various shapes. The number of miRNAs (fold change >2) in the steroid group was six. Four miRNAs were upregulated and two miRNAs were downregulated. In particular, upregulated miR-672-5p expression and downregulated miR-146a-5p expression were significant. RT-PCR results showed that the 2(-△△) CT value of miR-672-5p in the steroid group was 3.743-fold of that in the control group, and the 2(-△△) CT value of miR-146a-5p in the steroid group was 0.322-fold of that in the control group. Angptl4, Ccdc51, Ssbp3 and RGD1306991 were predicted as the target gene of miR-672-5p, while Hrp12 was that of miR-146a-5p. Expression profiles of miR-672-5p and miR-146a-5p had the most significant changes in the osteoblasts of rats with steroid intervention, which may provide a new viewpoint to pathogenesis of osteonecrosis of the femoral head. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Li-Jing; Chuang, Li; Huang, Yi-Hsuan; Zhou, Jing; Lim, Seh Hong; Lee, Chih-I; Lin, Wei-Wen; Lin, Ting-Er; Wang, Wei-Li; Chen, Linyi; Chien, Shu; Chiu, Jeng-Jiann
2015-01-01
Rationale In atherosclerotic lesions, synthetic smooth muscle cells (sSMCs) induce aberrant microRNA (miR) profiles in endothelial cells (ECs) under flow stagnation. Increase in shear stress induces favorable miR modulation to mitigate sSMC-induced inflammation. Objective To address the role of miRs in sSMC-induced EC inflammation and its inhibition by shear stress. Methods and Results Co-culturing ECs with sSMCs under static condition causes initial increases of four anti-inflammatory miRs (146a/708/451/98) in ECs followed by decreases below basal levels at 7 days; the increases for miR-146a/708 peaked at 24 h and those for miR-451/98 lasted for only 6-12 h. Shear stress (12 dynes/cm2) to co-cultured ECs for 24 h augments these four miR expressions. In vivo, these four miRs are highly expressed in neointimal ECs in injured arteries under physiological levels of flow, but not expressed under flow stagnation. MiR-146a, -708, -451, and -98 target interleukin (IL)-1 receptor-associated kinase, inhibitor of nuclear factor-κB (NF-κB) kinase subunit-γ, IL-6 receptor, and conserved helix-loop-helix ubiquitous kinase, respectively, to inhibit NF-κB signaling, which exerts negative feedback control on the biogenesis of these miRs. NF-E2-related factor-2 (Nrf-2) is critical for shear-induction of miR-146a in co-cultured ECs. Silencing either Nrf-2 or miR-146a led to increased neointima formation of injured rat carotid artery under physiological levels of flow. Overexpressing miR-146a inhibits neointima formation of rat or mouse carotid artery induced by injury or flow cessation. Conclusions Nrf-2-mediated miR-146a expression is augmented by atheroprotective shear stress in ECs adjacent to sSMCs to inhibit neointima formation of injured arteries. PMID:25623956
Jindra, Peter T.; Bagley, Jessamyn; Godwin, Jonathan G.; Iacomini, John
2010-01-01
T cell activation requires signaling through the T cell receptor (TCR) and costimulatory molecules such as CD28. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post transcriptionally and are also known to be involved in lymphocyte development and function. Here we set out to examine potential roles of miRNAs in T cell activation by using genome-wide expression profiling to identify miRNAs differentially regulated following T cell activation. One of the miRNAs up-regulated after T cell activation, miR-214, was predicted to be capable of targeting Pten based on bioinformatics and reports suggesting that it targets Pten in ovarian tumor cells. Up-regulation of miR-214 in T cells inversely correlated with PTEN levels. In vivo, transcripts containing the 3' untranslated region (3' UTR) of Pten including the miR-214 target sequence were negatively regulated after T cell activation, and forced expression of miR-214 in T cells led to increased proliferation after stimulation. Blocking CD28 signaling in vivo prevented miR-214 up-regulation in alloreactive T cells. Stimulation of T cells through the TCR alone was not sufficient to result in upregulation of miR-214. Thus, costimulation dependent up-regulation of miR-214 promotes T cell activation by targeting the negative regulator Pten. Thus, the requirement for T cell costimulation is in part related to its ability to regulate expression of miRNAs that control T cell activation. PMID:20548023
MicroRNA-375/SEC23A as biomarkers of the in vitro efficacy of vandetanib.
Lassalle, Sandra; Zangari, Joséphine; Popa, Alexandra; Ilie, Marius; Hofman, Véronique; Long, Elodie; Patey, Martine; Tissier, Frédérique; Belléannée, Geneviève; Trouette, Hélène; Catargi, Bogdan; Peyrottes, Isabelle; Sadoul, Jean-Louis; Bordone, Olivier; Bonnetaud, Christelle; Butori, Catherine; Bozec, Alexandre; Guevara, Nicolas; Santini, José; Hénaoui, Imène Sarah; Lemaire, Géraldine; Blanck, Olivier; Vielh, Philippe; Barbry, Pascal; Mari, Bernard; Brest, Patrick; Hofman, Paul
2016-05-24
In this study, we performed microRNA (miRNA) expression profiling on a large series of sporadic and hereditary forms of medullary thyroid carcinomas (MTC). More than 60 miRNAs were significantly deregulated in tumor vs adjacent non-tumor tissues, partially overlapping with results of previous studies. We focused our attention on the strongest up-regulated miRNA in MTC samples, miR-375, the deregulation of which has been previously observed in a variety of human malignancies including MTC. We identified miR-375 targets by combining gene expression signatures from human MTC (TT) and normal follicular (Nthy-ori 3-1) cell lines transfected with an antagomiR-375 inhibitor or a miR-375 mimic, respectively, and from an in silico analysis of thyroid cell lines of Cancer Cell Line Encyclopedia datasets. This approach identified SEC23A as a bona fide miR-375 target, which we validated by immunoblotting and immunohistochemistry of non-tumor and pathological thyroid tissue. Furthermore, we observed that miR-375 overexpression was associated with decreased cell proliferation and synergistically increased sensitivity to vandetanib, the clinically relevant treatment of metastatic MTC. We found that miR-375 increased PARP cleavage and decreased AKT phosphorylation, affecting both cell proliferation and viability. We confirmed these results through SEC23A direct silencing in combination with vandetanib, highlighting the importance of SEC23A in the miR-375-associated increased sensitivity to vandetanib.Since the combination of increased expression of miR-375 and decreased expression of SEC23A point to sensitivity to vandetanib, we question if the expression levels of miR-375 and SEC23A should be evaluated as an indicator of eligibility for treatment of MTC patients with vandetanib.
MicroRNAs associated with the efficacy of photodynamic therapy in biliary tract cancer cell lines.
Wagner, Andrej; Mayr, Christian; Bach, Doris; Illig, Romana; Plaetzer, Kristjan; Berr, Frieder; Pichler, Martin; Neureiter, Daniel; Kiesslich, Tobias
2014-11-05
Photodynamic therapy (PDT) is a palliative treatment option for unresectable hilar biliary tract cancer (BTC) showing a considerable benefit for survival and quality of life with few side effects. Currently, factors determining the cellular response of BTC cells towards PDT are unknown. Due to their multifaceted nature, microRNAs (miRs) are a promising analyte to investigate the cellular mechanisms following PDT. For two photosensitizers, Photofrin® and Foscan®, the phototoxicity was investigated in eight BTC cell lines. Each cell line (untreated) was profiled for expression of n=754 miRs using TaqMan® Array Human MicroRNA Cards. Statistical analysis and bioinformatic tools were used to identify miRs associated with PDT efficiency and their putative targets, respectively. Twenty miRs correlated significantly with either high or low PDT efficiency. PDT was particularly effective in cells with high levels of clustered miRs 25-93*-106b and (in case of miR-106b) a phenotype characterized by high expression of the mesenchymal marker vimentin and high proliferation (cyclinD1 and Ki67 expression). Insensitivity towards PDT was associated with high miR-200 family expression and (for miR-cluster 200a/b-429) expression of differentiation markers Ck19 and Ck8/18. Predicted and validated downstream targets indicate plausible involvement of miRs 20a*, 25, 93*, 130a, 141, 200a, 200c and 203 in response mechanisms to PDT, suggesting that targeting these miRs could improve susceptibility to PDT in insensitive cell lines. Taken together, the miRNome pattern may provide a novel tool for predicting the efficiency of PDT and-following appropriate functional verification-may subsequently allow for optimization of the PDT protocol.
MicroRNAs Associated with the Efficacy of Photodynamic Therapy in Biliary Tract Cancer Cell Lines
Wagner, Andrej; Mayr, Christian; Bach, Doris; Illig, Romana; Plaetzer, Kristjan; Berr, Frieder; Pichler, Martin; Neureiter, Daniel; Kiesslich, Tobias
2014-01-01
Photodynamic therapy (PDT) is a palliative treatment option for unresectable hilar biliary tract cancer (BTC) showing a considerable benefit for survival and quality of life with few side effects. Currently, factors determining the cellular response of BTC cells towards PDT are unknown. Due to their multifaceted nature, microRNAs (miRs) are a promising analyte to investigate the cellular mechanisms following PDT. For two photosensitizers, Photofrin® and Foscan®, the phototoxicity was investigated in eight BTC cell lines. Each cell line (untreated) was profiled for expression of n = 754 miRs using TaqMan® Array Human MicroRNA Cards. Statistical analysis and bioinformatic tools were used to identify miRs associated with PDT efficiency and their putative targets, respectively. Twenty miRs correlated significantly with either high or low PDT efficiency. PDT was particularly effective in cells with high levels of clustered miRs 25-93*-106b and (in case of miR-106b) a phenotype characterized by high expression of the mesenchymal marker vimentin and high proliferation (cyclinD1 and Ki67 expression). Insensitivity towards PDT was associated with high miR-200 family expression and (for miR-cluster 200a/b-429) expression of differentiation markers Ck19 and Ck8/18. Predicted and validated downstream targets indicate plausible involvement of miRs 20a*, 25, 93*, 130a, 141, 200a, 200c and 203 in response mechanisms to PDT, suggesting that targeting these miRs could improve susceptibility to PDT in insensitive cell lines. Taken together, the miRNome pattern may provide a novel tool for predicting the efficiency of PDT and—following appropriate functional verification—may subsequently allow for optimization of the PDT protocol. PMID:25380521
Skaftnesmo, K O; Edvardsen, R B; Furmanek, T; Crespo, D; Andersson, E; Kleppe, L; Taranger, G L; Bogerd, J; Schulz, R W; Wargelius, A
2017-10-18
Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b, miR-222a/b, miR-190a) or have now been found connected (miR-2188, miR-144, miR-731, miR-8157 and the novel n2) to the initiation of puberty. This study has - for the first time - linked testis maturation to specific miRNAs and their inversely correlated expressed targets in Atlantic salmon. The study indicates a broad functional conservation of already known miRNAs and associated pathways involved in the transition into puberty in vertebrates. The analysis also reveals miRNAs not previously associated with testis tissue or its maturation, which calls for further functional studies in the testis.
Zhang, Hongtuan; Qi, Shiyong; Zhang, Tao; Wang, Andi; Liu, Ranlu; Guo, Jia; Wang, Yuzhuo; Xu, Yong
2015-03-20
Elucidation of the molecular targets and pathways regulated by the tumour-suppressive miRNAs can shed light on the oncogenic and metastatic processes in prostate cancer (PCa). Using miRNA profiling analysis, we find that miR-188-5p was significantly down-regulated in metastatic PCa. Down-regulation of miR-188-5p is an independent prognostic factor for poor overall and biochemical recurrence-free survival. Restoration of miR-188-5p in PCa cells (PC-3 and LNCaP) significantly suppresses proliferation, migration and invasion in vitro and inhibits tumour growth and metastasis in vivo. We also find overexpression of miR-188-5p in PC-3 cells can significantly enhance the cells' chemosensitivity to adriamycin. LAPTM4B is subsequently identified as a direct target of miR-188-5p in PCa, and is found to be significantly over-expressed in PCa. Knockdown of LAPTM4B phenotypically copies miR-188-5p-induced phenotypes, whereas ectopic expression of LAPTM4B reverses the effects of miR-188-5p. We also find that restoration of miR-188-5p can inhibit the PI3K/AKT signaling pathway via the suppression of LAPTM4B. Taken together, this is the first report unveils that miR-188-5p acts as a tumour suppressor in PCa and may therefore serve as a useful therapeutic target for the development of new anticancer therapy.
miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula.
Bazin, Jérémie; Khan, Ghazanfar Abbas; Combier, Jean-Philippe; Bustos-Sanmamed, Pilar; Debernardi, Juan Manuel; Rodriguez, Ramiro; Sorin, Céline; Palatnik, Javier; Hartmann, Caroline; Crespi, Martin; Lelandais-Brière, Christine
2013-06-01
The root system is crucial for acquisition of resources from the soil. In legumes, the efficiency of mineral and water uptake by the roots may be reinforced due to establishment of symbiotic relationships with mycorrhizal fungi and interactions with soil rhizobia. Here, we investigated the role of miR396 in regulating the architecture of the root system and in symbiotic interactions in the model legume Medicago truncatula. Analyses with promoter-GUS fusions suggested that the mtr-miR396a and miR396b genes are highly expressed in root tips, preferentially in the transition zone, and display distinct expression profiles during lateral root and nodule development. Transgenic roots of composite plants that over-express the miR396b precursor showed lower expression of six growth-regulating factor genes (MtGRF) and two bHLH79-like target genes, as well as reduced growth and mycorrhizal associations. miR396 inactivation by mimicry caused contrasting tendencies, with increased target expression, higher root biomass and more efficient colonization by arbuscular mycorrhizal fungi. In contrast to MtbHLH79, repression of three GRF targets by RNA interference severely impaired root growth. Early activation of mtr-miR396b, concomitant with post-transcriptional repression of MtGRF5 expression, was also observed in response to exogenous brassinosteroids. Growth limitation in miR396 over-expressing roots correlated with a reduction in cell-cycle gene expression and the number of dividing cells in the root apical meristem. These results link the miR396 network to the regulation of root growth and mycorrhizal associations in plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors.
Braza-Boïls, Aitana; Marí-Alexandre, Josep; Gilabert, Juan; Sánchez-Izquierdo, Dolors; España, Francisco; Estellés, Amparo; Gilabert-Estellés, Juan
2014-05-01
Could an aberrant microRNA (miRNA) expression profile be responsible for the changes in the angiogenic and fibrinolytic states observed in endometriotic lesions? This study revealed characteristic miRNA expression profiles associated with endometriosis in endometrial tissue and endometriotic lesions from the same patient and their correlation with the most important angiogenic and fibrinolytic factors. WHAT IS ALREADY KNOWN?: An important role for dysregulated miRNA expression in the pathogenesis of endometriosis is well documented. However, to the best of our knowledge, there are no reports of the relationship between angiogenic and fibrinolytic factors and miRNAs when endometrial tissue and different types of endometriotic lesions from the same patient are compared. Case-control study that involved 51 women with endometriosis and 32 women without the disease (controls). The miRNA expression profiles were determined using the GeneChip miRNA 2.0 Affymetrix array platform, and the results were analysed using Partek Genomic Suite software. To validate the obtained results, 12 miRNAs differentially expressed were quantified by using miRCURY LNA™ Universal RT microRNA PCR. Levels of vascular endothelial growth factor (VEGF-A), thrombospondin-1 (TSP-1), urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) proteins were quantified by ELISA. Patient endometrial tissue showed significantly lower levels of miR-202-3p, miR-424-5p, miR-449b-3p and miR-556-3p, and higher levels of VEGF-A and uPA than healthy (control) endometrium. However, tissue affected by ovarian endometrioma showed significantly lower expression of miR-449b-3p than endometrium from both controls and patients, and higher levels of PAI-1 and the angiogenic inhibitor TSP-1. A significant inverse correlation between miR-424-5p and VEGF-A protein levels was observed in patient endometrium, and an inverse correlation between miR-449b-3p and TSP-1 protein levels was observed in ovarian endometrioma. Peritoneal implants had significantly higher levels of VEGF-A than ovarian endometrioma samples. Functional studies are needed to confirm the specific targets of the miRNAs differently expressed. Differences in miRNA levels could modulate the expression of VEGF-A and TSP-1, which may play an important role in the pathogenesis of endometriosis. The higher angiogenic and proteolytic activities observed in eutopic endometrium from patients might facilitate the implantation of endometrial cells at ectopic sites. This work was supported by research grants from ISCIII-FEDER (PI11/0091, Red RIC RD12/0042/0029), Consellería de Educación-Generalitat Valenciana (PROMETEO/2011/027), Beca de Investigación Fundación Dexeus para la Salud de la Mujer (2011/0469), and by Fundación Investigación Hospital La Fe (2011/211). A.B-B. has a Contrato Posdoctoral de Perfeccionamiento Sara Borrell-ISCIII (CD13/00005). J.M-A. has a predoctoral grant PFIS-ISCIII (FI12/00012). The authors have no conflicts of interest to declare.
Genome-wide microRNA expression profiling in placentae from frozen-thawed blastocyst transfer.
Hiura, Hitoshi; Hattori, Hiromitsu; Kobayashi, Norio; Okae, Hiroaki; Chiba, Hatsune; Miyauchi, Naoko; Kitamura, Akane; Kikuchi, Hiroyuki; Yoshida, Hiroaki; Arima, Takahiro
2017-01-01
Frozen-thawed embryo transfer (FET) is increasingly available for the improvement of the success rate of assisted reproductive technologies other than fresh embryo transfer (ET). There have been numerous findings that FET provides better obstetric and perinatal outcomes. However, the birth weight of infants conceived using FET is heavier than that of those conceived via ET. In addition, some reports have suggested that FET is associated with perinatal diseases such as placenta accreta and pregnancy-induced hypertension (PIH). In this study, we compared the microRNA (miRNA) expression profiles in term placentae derived from FET, ET, and spontaneous pregnancy (SP). We identified four miRNAs, miR-130a-3p, miR-149-5p, miR-423-5p, and miR-487b-3p, that were significantly downregulated in FET placentae compared with those from SP and ET. We found that DNA methylation of MEG3 -DMR, not but IG-DMR, was associated with miRNA expression of the DLK1-DIO3 imprinted domain in the human placenta. In functional analyses, GO terms and signaling pathways related to positive regulation of gene expression, growth, development, cell migration, and type II diabetes mellitus (T2DM) were enriched. This study supports the hypothesis that the process of FET may increase exposure of epigenome to external influences.
Target research on tumor biology characteristics of mir-155-5p regulation on gastric cancer cell.
Feng, Jun-an
2016-03-01
After the mir-155-5p over expressed in gastric cancer cells, the expression profile chip was adopted to screen its target genes. Some of the intersection of target genes were selected based on the bioinformatics prediction, in order to study the mechanism of its function and role of research. Affymetrix eukaryotic gene expression spectrum was conducted to screen mir-155-5p regulated genetic experiment. Western blot technique was employed to detect and screen the protein expression of target genes. Mimics was transfected in BGC-823 of gastric cancer cells. Compared with mimics-nc group and mock group, the mRNA expression quantities of SMAD1, STAT1, CAB39, CXCR4 and CA9 were significantly lower. After the gastric cancer cells BGC-823 and MKN-45 had been transfected by mimics, compared with mimics-nc (MNC) group and mock (MOCK) group, it was decreased for the protein expression of SMAD1, STAT1 and CAB39 in mimics (MIMICS) group. The verification of qRT-PCR demonstrated that SMAD1, STAT1, CAB39, CXCR4 and CA9 were the predicted target genes and target proteins of mir-155-5p, the over expression of mir-155-5p could enable the decreasing of its expression level in gastric cancer cells MKN-45 and BGC-823.
Nakagawa, Yoshihito; Akao, Yukihiro; Taniguchi, Kohei; Kamatani, Akemi; Tahara, Tomomitsu; Kamano, Toshiaki; Nakano, Naoko; Komura, Naruomi; Ikuno, Hirokazu; Ohmori, Takafumi; Jodai, Yasutaka; Miyata, Masahiro; Nagasaka, Mistuo; Shibata, Tomoyuki; Ohmiya, Naoki; Hirata, Ichiro
2015-01-01
Accumulating data indicates that certain microRNAs (miRNAs or miRs) are differently expressed in samples of tumors and paired non-tumorous samples taken from the same patients with colorectal tumors. We examined the expression of onco-related miRNAs in 131 sporadic exophytic adenomas or early cancers and in 52 sporadic flat elevated adenomas or early cancers to clarify the relationship between the expression of the miRNAs and the endoscopic morphological appearance of the colorectal tumors. The expression levels of miR-143, -145, and -34a were significantly reduced in most of the exophytic tumors compared with those in the flat elevated ones. In type 2 cancers, the miRNA expression profile was very similar to that of the exophytic tumors. The expression levels of miR-7 and -21 were significantly up-regulated in some flat elevated adenomas compared with those in exophytic adenomas. In contrast, in most of the miR-143 and -145 down-regulated cases of the adenoma-carcinoma sequence and in some of the de novo types of carcinoma, the up-regulation of oncogenic miR-7 and/or -21 contributed to the triggering mechanism leading to the carcinogenetic process. These findings indicated that the expression of onco-related miRNA was associated with the morphological appearance of colorectal tumors. PMID:25584614
Sánchez-Cid, Lourdes; Pons, Mònica; Lozano, Juan José; Rubio, Nuria; Guerra-Rebollo, Marta; Soriano, Aroa; Paris-Coderch, Laia; Segura, Miquel F; Fueyo, Raquel; Arguimbau, Judit; Zodda, Erika; Bermudo, Raquel; Alonso, Immaculada; Caparrós, Xavier; Cascante, Marta; Rafii, Arash; Kang, Yibin; Martínez-Balbás, Marian; Weiss, Stephen J; Blanco, Jerónimo; Muñoz, Montserrat; Fernández, Pedro L; Thomson, Timothy M
2017-10-13
MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo . MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.
MicroRNAs in Muscle: Characterizing the Powerlifter Phenotype
D'Souza, Randall F.; Bjørnsen, Thomas; Zeng, Nina; Aasen, Kirsten M. M.; Raastad, Truls; Cameron-Smith, David; Mitchell, Cameron J.
2017-01-01
Powerlifters are the epitome of muscular adaptation and are able to generate extreme forces. The molecular mechanisms underpinning the significant capacity for force generation and hypertrophy are not fully elucidated. MicroRNAs (miRs) are short non-coding RNA sequences that control gene expression via promotion of transcript breakdown and/or translational inhibition. Differences in basal miR expression may partially account for phenotypic differences in muscle mass and function between powerlifters and untrained age-matched controls. Muscle biopsies were obtained from m. vastus lateralis of 15 national level powerlifters (25.1 ± 5.8 years) and 13 untrained controls (24.1 ± 2.0 years). The powerlifters were stronger than the controls (isokinetic knee extension at 60°/s: 307.8 ± 51.6 Nm vs. 211.9 ± 41.9 Nm, respectively P < 0.001), and also had larger muscle fibers (type I CSA 9,122 ± 1,238 vs. 4,511 ± 798 μm2 p < 0.001 and type II CSA 11,100 ± 1,656 vs. 5,468 ± 1,477 μm2 p < 0.001). Of the 17 miRs species analyzed, 12 were differently expressed (p < 0.05) between groups with 7 being more abundant in powerlifters and five having lower expression. Established transcriptionally regulated miR downstream gene targets involved in muscle mass regulation, including myostatin and MyoD, were also differentially expressed between groups. Correlation analysis demonstrates the abundance of eight miRs was correlated to phenotype including peak strength, fiber size, satellite cell abundance, and fiber type regardless of grouping. The unique miR expression profiles between groups allow for categorization of individuals as either powerlifter or healthy controls based on a five miR signature (miR-126, -23b, -16, -23a, -15a) with considerable accuracy (100%). Thus, this unique miR expression may be important to the characterization of the powerlifter phenotype. PMID:28638346
Implications of dynamic changes in miR-192 expression in ischemic acute kidney injury.
Zhang, Lulu; Xu, Yuan; Xue, Song; Wang, Xudong; Dai, Huili; Qian, Jiaqi; Ni, Zhaohui; Yan, Yucheng
2017-03-01
Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) with poor outcomes. While many important functions of microRNAs (miRNAs) have been identified in various diseases, few studies reported miRNAs in acute kidney IRI, especially the dynamic changes in their expression and their implications during disease progression. The expression of miR-192, a specific kidney-enriched miRNA, was assessed in both the plasma and kidney of IRI rats at different time points after kidney injury and compared to renal function and kidney histological changes. The results were validated in the plasma of the selected patients with AKI after cardiac surgery compared with those matched patients without AKI. The performance characteristics of miR-192 were summarized using area under the receiver operator characteristic (ROC) curves (AUC-ROC). MiRNA profiling in plasma led to the identification of 42 differentially expressed miRNAs in the IRI group compared to the sham group. MiR-192 was kidney-enriched and chosen for further validation. Real-time PCR showed that miR-192 levels increased by fourfold in the plasma and decreased by about 40% in the kidney of IRI rats. Plasma miR-192 expression started increasing at 3 h and peaked at 12 h, while kidney miR-192 expression started decreasing at 6 h and remained at a low level for 7 days after reperfusion. Plasma miR-192 level in patients with AKI increased at the time of ICU admission, was stable for 2 h and decreased after 24 h. AUC-ROC was 0.673 (95% CI: 0.540-0.806, p = 0.014). Plasma miR-192 expression was induced in a time-dependent manner after IRI in rats and patients with AKI after cardiac surgery, comparably to the kidney injury development and recovery process, and may be useful for the detection of AKI.
TGF-β1 Downregulates the Expression of CX3CR1 by Inducing miR-27a-5p in Primary Human NK Cells
Regis, Stefano; Caliendo, Fabio; Dondero, Alessandra; Casu, Beatrice; Romano, Filomena; Loiacono, Fabrizio; Moretta, Alessandro; Bottino, Cristina; Castriconi, Roberta
2017-01-01
Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-β1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-β1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX3CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-β1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX3CR1. We demonstrated the functional interaction of miR-27a-5p with the 3′ untranslated region (3′UTR) of CX3CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX3CR1 3′UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-β1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX3CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX3CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-β1-induced regulator of CX3CR1 expression. PMID:28791023
Hromadnikova, Ilona; Kotlabova, Katerina; Hympanova, Lucie; Krofta, Ladislav
2016-01-01
To demonstrate that pregnancy-related complications are associated with alterations in cardiovascular and cerebrovascular microRNA expression. Gene expression of 29 microRNAs (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-92a-3p, miR-100-5p, miR-103a-3p, miR-122-5p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p) was assessed in maternal whole peripheral blood, compared between groups (39 gestational hypertension, 68 preeclampsia, 33 intrauterine growth restriction and 20 normal pregnancies) and correlated with the severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound parameters. Initially, selection and validation of endogenous controls for microRNA expression studies in patients affected by pregnancy-related complications have been carried out. The expression profile of microRNAs was different between pregnancy-related complications and controls. The down-regulation of miR-100-5p, miR-125b-5p and miR-199a-5p was a common phenomenon shared between gestational hypertension, preeclampsia, and intrauterine growth restriction. Moreover, IUGR pregnancies induced down-regulation of miR-17-5p, miR-146a-5p, miR-221-3p and miR-574-3p in maternal circulation. Irrespective of the severity of the disease, preeclampsia was associated with the dysregulation of miR-100-5p and miR-125b-5p and IUGR with dysregulation of miR-199a-5p. Preeclampsia requiring termination of gestation before 34 weeks was associated with down-regulation of miR-146a-5p, miR-199a-5p and miR-221-3p. Weak negative correlation between miR-146a-5p and miR-221-3p expression and the pulsatility index in the umbilical artery was found. Additional microRNAs (miR-103a-3p, miR-126-3p, miR-195-5p and miR-499a-5p) showed a trend to down-regulation in appropriate pregnancy-related complications. Epigenetic changes are induced by pregnancy-related complications in maternal whole peripheral blood. Copyright © 2015 Elsevier Ltd. All rights reserved.
Marí-Alexandre, Josep; Barceló-Molina, Moises; Sanz-Sánchez, Jorge; Molina, Pilar; Sancho, Jennifer; Abellán, Yolanda; Santaolaria-Ayora, María Luisa; Giner, Juan; Martínez-Dolz, Luis; Estelles, Amparo; Braza-Boïls, Aitana; Zorio, Esther
2018-02-10
An increased epicardial adipose tissue (EAT) thickness has become a new risk factor for coronary heart disease (CHD). We aimed to study the role of EAT dysfunction as a CHD marker by focusing on its thickness and microRNA (miRNA) expression profile, and the potential factors possibly influencing them. One hundred and fifty-five CHD sudden cardiac death victims and 84 non-CHD-sudden death controls were prospectively enrolled at autopsy. A representative subset underwent EAT thickness measurements and EAT miRNA expression profiling. Epicardial adipose tissue thickness was increased and allowed an accurate diagnosis of patient status (among other measurements, EAT score area under the curve 0.718, P < .001). Epicardial adipose tissue from patients showed 14 up- and 14 down-regulated miRNAs and miR-34a-3p, -34a-5p, -124-3p, -125a-5p, 628-5p, -1303 and -4286 were validated by quantitative real-time polymerase chain reaction. Patients exhibited higher EAT levels of miR-34a-3p and -34a-5p than controls (with a positive trend considering EAT from coronaries without stenosis, with stable stenosis and complicated plaques) and correlated with age only in controls. The mild positive correlation between liver and EAT miR-34a-5p levels in patients (r = 0.295, P = .020) dramatically increased in EAT from complicated plaques (r = 0.799, P = .017). Similar correlations were observed for high-sensitivity-C-reactive protein levels and miR-34a-5p levels both in EAT and liver extracts. Increased age-independent levels of miR-34a-3p and -34a-5p characterize the EAT miRNA expression profile of CHD regardless of EAT thickness, anthropometric parameters, and the presence of underlying atherosclerotic plaques. Copyright © 2018 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
McAdams, Ryan M; McPherson, Ronald J; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Juul, Sandra E
2015-01-01
Morphine is used to sedate critically ill infants to treat painful or stressful conditions associated with intensive care. Whether neonatal morphine exposure affects microRNA (miR) expression and thereby alters mRNA regulation is unknown. We tested the hypothesis that repeated morphine treatment in stress-exposed neonatal mice alters hippocampal mRNA and miR expression. C57BL/6 male mice were treated from postnatal day (P) 5 to P9 with morphine sulfate at 2 or 5 mg/kg ip twice daily and then exposed to stress consisting of hypoxia (100% N2 1 min and 100% O2 5 min) followed by 2h maternal separation. Control mice were untreated and dam-reared. mRNA and miR expression profiling was performed on hippocampal tissues at P9. Overall, 2 and 5 mg/kg morphine treatment altered expression of a total of 150 transcripts (>1.5 fold change, P<0.05) from which 100 unique mRNAs were recognized (21 genes were up- and 79 genes were down-regulated), and 5 mg/kg morphine affected 63 mRNAs exclusively. The most upregulated mRNAs were fidgetin, arginine vasopressin, and resistin-like alpha, and the most down-regulated were defensin beta 11, aquaporin 1, calmodulin-like 4, chloride intracellular channel 6, and claudin 2. Gene Set Enrichment Analysis revealed that morphine treatment affected pathways related to cell cycle, membrane function, signaling, metabolism, cell death, transcriptional regulation, and immune response. Morphine decreased expression of miR-204-5p, miR-455-3p, miR-448-5p, and miR-574-3p. Nine morphine-responsive mRNAs that are involved in neurodevelopment, neurotransmission, and inflammation are predicted targets of the aforementioned differentially expressed miRs. These data establish that morphine produces dose-dependent changes in both hippocampal mRNA and miR expression in stressed neonatal mice. If permanent, morphine-mediated neuroepigenetic effects may affect long-term hippocampal function, and this provides a mechanism for the neonatal morphine-related impairment of adult learning.
McAdams, Ryan M.; McPherson, Ronald J.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Juul, Sandra E.
2015-01-01
Morphine is used to sedate critically ill infants to treat painful or stressful conditions associated with intensive care. Whether neonatal morphine exposure affects microRNA (miR) expression and thereby alters mRNA regulation is unknown. We tested the hypothesis that repeated morphine treatment in stress-exposed neonatal mice alters hippocampal mRNA and miR expression. C57BL/6 male mice were treated from postnatal day (P) 5 to P9 with morphine sulfate at 2 or 5 mg/kg ip twice daily and then exposed to stress consisting of hypoxia (100% N2 1 min and 100% O2 5 min) followed by 2h maternal separation. Control mice were untreated and dam-reared. mRNA and miR expression profiling was performed on hippocampal tissues at P9. Overall, 2 and 5 mg/kg morphine treatment altered expression of a total of 150 transcripts (>1.5 fold change, P<0.05) from which 100 unique mRNAs were recognized (21 genes were up- and 79 genes were down-regulated), and 5 mg/kg morphine affected 63 mRNAs exclusively. The most upregulated mRNAs were fidgetin, arginine vasopressin, and resistin-like alpha, and the most down-regulated were defensin beta 11, aquaporin 1, calmodulin-like 4, chloride intracellular channel 6, and claudin 2. Gene Set Enrichment Analysis revealed that morphine treatment affected pathways related to cell cycle, membrane function, signaling, metabolism, cell death, transcriptional regulation, and immune response. Morphine decreased expression of miR-204-5p, miR-455-3p, miR-448-5p, and miR-574-3p. Nine morphine-responsive mRNAs that are involved in neurodevelopment, neurotransmission, and inflammation are predicted targets of the aforementioned differentially expressed miRs. These data establish that morphine produces dose-dependent changes in both hippocampal mRNA and miR expression in stressed neonatal mice. If permanent, morphine–mediated neuroepigenetic effects may affect long-term hippocampal function, and this provides a mechanism for the neonatal morphine-related impairment of adult learning. PMID:25844808
D'Souza, Randall F; Markworth, James F; Aasen, Kirsten M M; Zeng, Nina; Cameron-Smith, David; Mitchell, Cameron J
2017-01-01
A subset of short non-coding RNAs, microRNAs (miRs), have been identified in the regulation of skeletal muscle hypertrophy and atrophy. Expressed within cells, miRs are also present in circulation (c-miR) and have a putative role in cross-tissue signalling. The aim of this study was to examine the impact of a single bout of high intensity resistance exercise (RE) on skeletal muscle and circulatory miRs harvested simultaneously. Resistance trained males (n = 9, 24.6 ± 4.9 years) undertook a single bout of high volume RE with venous blood and muscle biopsies collected before, 2 and 4hr post-exercise. Real time polymerase chain reaction (Rt-PCR) analyses was performed on 30 miRs that have previously been shown to be required for skeletal muscle function. Of these, 6 miRs were significantly altered within muscle following exercise; miR-23a, -133a, -146a, -206, -378b and 486. Analysis of these same miRs in circulation demonstrated minimal alterations with exercise, although c-miR-133a (~4 fold, p = 0.049) and c-miR-149 (~2.4 fold; p = 0.006) were increased 4hr post-exercise. Thus a single bout of RE results in the increased abundance of a subset of miRs within the skeletal muscle, which was not evident in plasma. The lack a qualitative agreement in the response pattern of intramuscular and circulating miR expression suggests the analysis of circulatory miRs is not reflective of the miR responses within skeletal muscle after exercise.
Mosakhani, N; Sarhadi, V; Panula, P; Partinen, M; Knuutila, S
2017-11-01
Narcolepsy is a neurological sleep disorder characterized by excessive daytime sleepiness and nighttime sleep disturbance. Among children and adolescents vaccinated with Pandemrix vaccine in Finland and Sweden, the number of narcolepsy cases increased. Our aim was to identify miRNAs involved in narcolepsy and their association with Pandemrix vaccination. We performed global miRNA proofing by miRNA microarrays followed by RT-PCR verification on 20 narcolepsy patients (Pandemrix-associated and Pandemrix-non-associated) and 17 controls (vaccinated and non-vaccinated). Between all narcolepsy patients and controls, 11 miRNAs were differentially expressed; 17 miRNAs showed significantly differential expression between Pandemrix-non-associated narcolepsy patients and non-vaccinated healthy controls. MiR-188-5p and miR-4499 were over-expressed in narcolepsy patients vs healthy controls. Two miRNAs, miR-1470 and miR-4455, were under-expressed in Pandemrix-associated narcolepsy patients vs Pandemrix-non-associated narcolepsy patients. We identified miRNA expression patterns in narcolepsy patients that linked them to mRNA targets known to be involved in brain-related pathways or brain disorders. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Muti, Paola; Donzelli, Sara; Sacconi, Andrea; Hossain, Ahmed; Ganci, Federica; Frixa, Tania; Sieri, Sabina; Krogh, Vittorio; Berrino, Franco; Biagioni, Francesca; Strano, Sabrina; Beyene, Joseph; Yarden, Yosef; Blandino, Giovanni
2018-02-09
MicroRNAs (miRNAs) might be considered both predictors and players of cancer development. The aim of the present report was to investigate whether many years before the diagnosis of breast cancer miRNA expression is already disregulated. In order to test this hypothesis, we compared miRNAs extracted from leukocytes in healthy women who later developed breast cancer and in women who remain healthy during the whole 15-year follow-up time. Accordantly, we used a case-control study design nested in the hOrmone and Diet in the ETiology of breast cancer (ORDET) prospective cohort study addressing the possibility that miRNAs can serve as both early biomarkers and components of the hormonal etiological pathways leading to breast cancer development in premenopausal women. We compared leukocyte miRNA profiles of 191 incident premenopausal breast cancer cases and profiles of 191 women who remained healthy over a follow-up period of 20 years. The analysis identified 20 differentially expressed miRNAs in women candidate to develop breast cancer versus control women. The upregulated miRNAs, miR-513-a-5p, miR-513b-5p and miR-513c-5p were among the most significantly deregulated miRNAs. In multivariate analysis, miR-513a-5p upregulation was directly and statistically significant associated with breast cancer risk (OR = 1.69; 95% CI 1.08-2.64; P = 0.0293). In addition, the upregulation of miR-513-a-5p displayed the strongest direct association with serum progesterone and testosterone levels. The experimental data corroborated the inhibitory function of miR-513a-5p on progesterone receptor expression confirming that progesterone receptor is a target of miR-513a-5p. The identification of upregulated miR-513a-5p with its oncogenic potential further validates the use of miRNAs as long-term biomarker of breast cancer risk. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mackiewicz, Mark; Huppi, Konrad; Pitt, Jason J.; Dorsey, Tiffany H.; Ambs, Stefan
2012-01-01
The identification of molecular features that contribute to the progression of breast cancer can provide valuable insight into the pathogenesis of this disease. Deregulated microRNA expression represents one type of molecular event that has been associated with many different human cancers. In order to identify a miRNA/mRNA regulatory interaction that is biologically relevant to the triple-negative breast cancer genotype/phenotype, we initially conducted a miRNA profiling experiment to detect differentially expressed miRNAs in cell line models representing triple-negative (MDA-MB-231), ER+ (MCF7), and HER-2 over expressed (SK-BR-3) histotypes. We identified human miR-34a expression as being >3-fold down (from its median expression value across all cell lines) in MDA-MB-231 cells, and identified AXL as a putative mRNA target using multiple miRNA/target prediction algorithms. The miR-34a/AXL interaction was functionally characterized through ectopic over expression experiments with a miR-34a mimic in two independent triple-negative breast cancer cell lines. In reporter assays, miR-34a binds to its putative target site within the AXL 3′UTR to inhibit luciferase expression. We also observed degradation of AXL mRNA and decreased AXL protein levels, as well as cell signaling effects on AKT phosphorylation and phenotypic effects on cell migration. Finally, we present an inverse correlative trend in miR-34a and AXL expression for both cell line and patient tumor samples. PMID:21814748
Lu, Leina; Zhou, Liang; Chen, Eric Z.; Sun, Kun; Jiang, Peiyong; Wang, Lijun; Su, Xiaoxi; Sun, Hao; Wang, Huating
2012-01-01
microRNAs (miRNAs) are non-coding RNAs that regulate gene expression post-transcriptionally, and mounting evidence supports the prevalence and functional significance of their interplay with transcription factors (TFs). Here we describe the identification of a regulatory circuit between muscle miRNAs (miR-1, miR-133 and miR-206) and Yin Yang 1 (YY1), an epigenetic repressor of skeletal myogenesis in mouse. Genome-wide identification of potential down-stream targets of YY1 by combining computational prediction with expression profiling data reveals a large number of putative miRNA targets of YY1 during skeletal myoblasts differentiation into myotubes with muscle miRs ranking on top of the list. The subsequent experimental results demonstrate that YY1 indeed represses muscle miRs expression in myoblasts and the repression is mediated through multiple enhancers and recruitment of Polycomb complex to several YY1 binding sites. YY1 regulating miR-1 is functionally important for both C2C12 myogenic differentiation and injury-induced muscle regeneration. Furthermore, we demonstrate that miR-1 in turn targets YY1, thus forming a negative feedback loop. Together, these results identify a novel regulatory circuit required for skeletal myogenesis and reinforce the idea that regulatory circuitries involving miRNAs and TFs are prevalent mechanisms. PMID:22319554
Clinical significance of miR-146a in gastric cancer cases.
Kogo, Ryunosuke; Mimori, Koshi; Tanaka, Fumiaki; Komune, Shizuo; Mori, Masaki
2011-07-01
The profiles of microRNAs change significantly in gastric cancer. MiR-146a is reported to be a tumor suppressor in pancreatic cancer, breast cancer, and prostate cancer. We investigated the clinical significance of miR-146a in gastric cancer, in particular focusing on hypothetical miR-146a target genes, such as epidermal growth factor receptor (EGFR) and interleukin-1 receptor-associated kinase (IRAK1). We examined miR-146a levels in 90 gastric cancer samples by q-real-time (qRT)-PCR and analyzed the association between miR-146a levels and clinicopathologic factors and prognosis. The regulation of EGFR and IRAK1 by miR-146a was examined with miR-146a-transfected gastric cancer cells. Moreover, we analyzed the association between miR-146a levels and the G/C single nucleotide polymorphism (SNP) within pre-miR-146a seed sequences in 76 gastric cancer samples, using direct sequencing of genomic DNA. In 90 clinical samples of gastric cancer, miR-146a levels in cancer tissues were significantly lower than those in the corresponding noncancerous tissue (P < 0.001). Lower levels of miR-146a were associated with lymph node metastasis and venous invasion (P < 0.05). Moreover, a lower level of miR-146a was an independent prognostic factor for overall survival (P = 0.003). Ectopic expression of miR-146a inhibited migration and invasion and downregulated EGFR and IRAK1 expression in gastric cancer cells. In addition, G/C SNP within the pre-miR-146a seed sequence significantly reduced miR-146a levels in the GG genotype compared with the CC genotype. MiR-146a contains an SNP, which is associated with mature miR-146a expression. MiR-146a targeting of EGFR and IRAK1 is an independent prognostic factor in gastric cancer cases.
Dysregulated miR-671-5p / CDR1-AS / CDR1 / VSNL1 axis is involved in glioblastoma multiforme.
Barbagallo, Davide; Condorelli, Angelo; Ragusa, Marco; Salito, Loredana; Sammito, Mariangela; Banelli, Barbara; Caltabiano, Rosario; Barbagallo, Giuseppe; Zappalà, Agata; Battaglia, Rosalia; Cirnigliaro, Matilde; Lanzafame, Salvatore; Vasquez, Enrico; Parenti, Rosalba; Cicirata, Federico; Di Pietro, Cinzia; Romani, Massimo; Purrello, Michele
2016-01-26
MiR-671-5p is encoded by a gene localized at 7q36.1, a region amplified in human glioblastoma multiforme (GBM), the most malignant brain cancer. To investigate whether expression of miR-671-5p were altered in GBM, we analyzed biopsies from a cohort of forty-five GBM patients and from five GBM cell lines. Our data show significant overexpression of miR-671-5p in both biopsies and cell lines. By exploiting specific miRNA mimics and inhibitors, we demonstrated that miR-671-5p overexpression significantly increases migration and to a less extent proliferation rates of GBM cells. Through a combined in silico and in vitro approach, we identified CDR1-AS, CDR1, VSNL1 as downstream miR-671-5p targets in GBM. Expression of these genes significantly decreased both in GBM biopsies and cell lines and negatively correlated with that of miR-671-5p. Based on our data, we propose that the axis miR-671-5p / CDR1-AS / CDR1 / VSNL1 is functionally altered in GBM cells and is involved in the modification of their biopathological profile.
Capri, Miriam; Olivieri, Fabiola; Lanzarini, Catia; Remondini, Daniel; Borelli, Vincenzo; Lazzarini, Raffaella; Graciotti, Laura; Albertini, Maria Cristina; Bellavista, Elena; Santoro, Aurelia; Biondi, Fiammetta; Tagliafico, Enrico; Tenedini, Elena; Morsiani, Cristina; Pizza, Grazia; Vasuri, Francesco; D'Errico, Antonietta; Dazzi, Alessandro; Pellegrini, Sara; Magenta, Alessandra; D'Agostino, Marco; Capogrossi, Maurizio C; Cescon, Matteo; Rippo, Maria Rita; Procopio, Antonio Domenico; Franceschi, Claudio; Grazi, Gian Luca
2017-04-01
To understand why livers from aged donors are successfully used for transplants, we looked for markers of liver aging in 71 biopsies from donors aged 12-92 years before transplants and in 11 biopsies after transplants with high donor-recipient age-mismatch. We also assessed liver function in 36 age-mismatched recipients. The major findings were the following: (i) miR-31-5p, miR-141-3p, and miR-200c-3p increased with age, as assessed by microRNAs (miRs) and mRNA transcript profiling in 12 biopsies and results were validated by RT-qPCR in a total of 58 biopsies; (ii) telomere length measured by qPCR in 45 samples showed a significant age-dependent shortage; (iii) a bioinformatic approach combining transcriptome and miRs data identified putative miRs targets, the most informative being GLT1, a glutamate transporter expressed in hepatocytes. GLT1 was demonstrated by luciferase assay to be a target of miR-31-5p and miR-200c-3p, and both its mRNA (RT-qPCR) and protein (immunohistochemistry) significantly decreased with age in liver biopsies and in hepatic centrilobular zone, respectively; (iv) miR-31-5p, miR-141-3p and miR-200c-3p expression was significantly affected by recipient age (older environment) as assessed in eleven cases of donor-recipient extreme age-mismatch; (v) the analysis of recipients plasma by N-glycans profiling, capable of assessing liver functions and biological age, showed that liver function recovered after transplants, independently of age-mismatch, and recipients apparently 'rejuvenated' according to their glycomic age. In conclusion, we identified new markers of aging in human liver, their relevance in donor-recipient age-mismatches in transplantation, and offered positive evidence for the use of organs from old donors. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Xu, Jin; Xu, Xiaoxia; Li, Shuzhong; Wang, Shuang; Xu, Xiaojing; Zhou, Xianqiang; Yu, Jialin; Yu, Xiaoqiang; Shakeel, Muhammad; Jin, Fengliang
2017-01-01
The development of resistance by Plutella xylostella to almost all insecticides is of significant concern all over the world. Entomopathogenic fungi such as Isaria fumosorosea have been used as an alternative to insecticides. However, the knowledge of miRNA-regulated reactions against entomopathogenic fungi is still in its infant stage. In the present study, P. xylostella was challenged with I. fumosorosea at four different time points (12, 18, 24, and 36 h) including a control, to build miRNA libraries by Illumina sequencing. The results of differential expression analysis exhibited that 23 miRNAs were differentially expressed, compared to control, in all treatments. It is worth mentioning, of these, some conserved miRNAs such as miR-2, miR-9a, miR-745, miR-7b, and miR-2767, known to play critical roles in host-pathogen interaction, were also identified. Furthermore, differentially expressed miRNAs were validated by RT-qPCR. Our results provide an essential information for further functional studies of the interaction between I. fumosorosea and P. xylostella at the post-transcriptional level.
Xu, Jin; Xu, Xiaoxia; Li, Shuzhong; Wang, Shuang; Xu, Xiaojing; Zhou, Xianqiang; Yu, Jialin; Yu, Xiaoqiang; Shakeel, Muhammad; Jin, Fengliang
2017-01-01
The development of resistance by Plutella xylostella to almost all insecticides is of significant concern all over the world. Entomopathogenic fungi such as Isaria fumosorosea have been used as an alternative to insecticides. However, the knowledge of miRNA-regulated reactions against entomopathogenic fungi is still in its infant stage. In the present study, P. xylostella was challenged with I. fumosorosea at four different time points (12, 18, 24, and 36 h) including a control, to build miRNA libraries by Illumina sequencing. The results of differential expression analysis exhibited that 23 miRNAs were differentially expressed, compared to control, in all treatments. It is worth mentioning, of these, some conserved miRNAs such as miR-2, miR-9a, miR-745, miR-7b, and miR-2767, known to play critical roles in host-pathogen interaction, were also identified. Furthermore, differentially expressed miRNAs were validated by RT-qPCR. Our results provide an essential information for further functional studies of the interaction between I. fumosorosea and P. xylostella at the post-transcriptional level. PMID:29311981
Distinct anti-oncogenic effect of various microRNAs in different mouse models of liver cancer
Wu, Heng; Liu, Yan; Wang, XinWei; Calvisi, Diego F.; Song, Guisheng; Chen, Xin
2015-01-01
Deregulation of microRNAs (miRNAs) is a typical feature of human hepatocellular carcinoma (HCC). However, the in vivo relevance of miRNAs along hepatocarcinogenesis remains largely unknown. Here, we show that liver tumors induced in mice by c-Myc overexpression or AKT/Ras co-expression exhibit distinct miRNA expression profiles. Among the downregulated miRNAs, eight (miR-101, miR-107, miR-122, miR-29, miR-365, miR-375, miR-378, and miR-802) were selected and their tumor suppressor activity was determined by overexpressing each of them together with c-Myc or AKT/Ras oncogenes in mouse livers via hydrodynamic transfection. The tumor suppressor activity of these microRNAs was extremely heterogeneous in c-Myc and AKT/Ras mice: while miR-378 had no tumor suppressor activity, miR-107, mir-122, miR-29, miR-365 and miR-802 exhibited weak to moderate tumor suppressor potential. Noticeably, miR-375 showed limited antineoplastic activity against c-Myc driven tumorigenesis, whereas it strongly inhibited AKT/Ras induced hepatocarcinogenesis. Furthermore, miR-101 significantly suppressed both c-Myc and AKT/Ras liver tumor development. Altogether, the present data demonstrate that different oncogenes induce distinct miRNA patterns, whose modulation differently affects hepatocarcinogenesis depending on the driving oncogenes. Finally, our findings support a strong tumor suppressor activity of miR-101 in liver cancer models regardless of the driver oncogenes involved, thus representing a promising therapeutic target in human HCC. PMID:25762642
RISC RNA sequencing for context-specific identification of in vivo microRNA targets.
Matkovich, Scot J; Van Booven, Derek J; Eschenbacher, William H; Dorn, Gerald W
2011-01-07
MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1645 mRNAs consistently targeted to mouse cardiac RISCs. We used this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing "seed" sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context and is applicable to any tissue and any disease state.
Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z
2015-09-01
miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
MARK1 is a Novel Target for miR-125a-5p: Implications for Cell Migration in Cervical Tumor Cells.
Natalia, Martinez-Acuna; Alejandro, Gonzalez-Torres; Virginia, Tapia-Vieyra Juana; Alvarez-Salas, Luis Marat
2018-01-01
Aberrant miRNA expression is associated with the development of several diseases including cervical cancer. Dysregulation of miR-125a-5p is present in a plethora of tumors, but its role in cervical cancer is not well understood. The aim was to analyze the expression profile of miR-125a-5p in tumor and immortal cell lines with further target prediction, validation and function analysis. MiR-125a-5p expression was determined by real-time RT-PCR from nine cervical cell lines. In silico tools were used to find target transcripts with an miR-125-5p complementary site within the 3'UTR region. Further target selection was based on gene ontology annotation and ΔG analysis. Target validation was performed by transfection of synthetic miR-125a-5p mimics and luciferase assays. Functional evaluation of miR-125a-5p on migration was performed by transwell migration assays. Differential miR-125a-5p expression was observed between immortal and tumor cells regardless of the human papillomavirus (HPV) content. Thermodynamic and ontological analyses showed Microtubule-Affinity-Regulating Kinase1 (MARK1) as a putative target for miR-125a-5p. An inverse correlation was observed among miR-125a-5p expression and MARK1 protein levels in tumor but not in immortal cells. Luciferase assays showed direct miR-125a-5p regulation over MARK1 through recognition of a predicted target site within the 3'-UTR. HeLa and C-33A cervical tumor cells enhanced migration after transfection with miR-125a-5p mimics and stimulation of cell migration was reproduced by siRNA-mediated inhibition of MARK1. The results showed MARK1 as a novel functional target for miR-125a-5p with implications on cell migration of tumor cervical cancer cells. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yang, Chuan He; Yue, Junming; Sims, Michelle; Pfeffer, Lawrence M
2013-01-01
EF24 is a curcumin analog that has improved anticancer activity over curcumin, but its therapeutic potential and mechanism of action is unknown, which is important to address as curcumin targets multiple signaling pathways. EF24 inhibits the NF-κB but not the JAK-STAT signaling pathway in DU145 human prostate cancer cells and B16 murine melanoma cells. EF24 induces apoptosis in these cells apparently by inhibiting miR-21 expression, and also enhances the expression of several miR-21 target genes, PTEN and PDCD4. EF24 treatment significantly suppressed the growth of DU145 prostate cancer xenografts in immunocompromised mice and resulted in tumor regression. EF24 enhanced the expression of the miR-21 target PTEN in DU145 tumor tissue, but suppressed the expression of markers of proliferating cells (cyclin D1 and Ki67). In syngeneic mice injected with B16 cells, EF24 treatment inhibited the formation of lung metastasis, prolonged animal survival, inhibited miR-21 expression and increased the expression of miR-21 target genes. Expression profiling of miRNAs regulated by EF24 in vitro and in vivo showed that the antitumor activity of EF24 reflected the enhanced expression of potential tumor suppressor miRNAs as well as the suppressed expression of oncogenic miRNAs, including miR-21. Taken together, our data suggest that EF24 is a potent anticancer agent and selectively targets NF-κB signaling and miRNA expression, indicating that EF24 has significant potential as a therapeutic agent in various cancers.
Yang, Chuan He; Yue, Junming; Sims, Michelle; Pfeffer, Lawrence M.
2013-01-01
EF24 is a curcumin analog that has improved anticancer activity over curcumin, but its therapeutic potential and mechanism of action is unknown, which is important to address as curcumin targets multiple signaling pathways. EF24 inhibits the NF-κB but not the JAK-STAT signaling pathway in DU145 human prostate cancer cells and B16 murine melanoma cells. EF24 induces apoptosis in these cells apparently by inhibiting miR-21 expression, and also enhances the expression of several miR-21 target genes, PTEN and PDCD4. EF24 treatment significantly suppressed the growth of DU145 prostate cancer xenografts in immunocompromised mice and resulted in tumor regression. EF24 enhanced the expression of the miR-21 target PTEN in DU145 tumor tissue, but suppressed the expression of markers of proliferating cells (cyclin D1 and Ki67). In syngeneic mice injected with B16 cells, EF24 treatment inhibited the formation of lung metastasis, prolonged animal survival, inhibited miR-21 expression and increased the expression of miR-21 target genes. Expression profiling of miRNAs regulated by EF24 in vitro and in vivo showed that the antitumor activity of EF24 reflected the enhanced expression of potential tumor suppressor miRNAs as well as the suppressed expression of oncogenic miRNAs, including miR-21. Taken together, our data suggest that EF24 is a potent anticancer agent and selectively targets NF-κB signaling and miRNA expression, indicating that EF24 has significant potential as a therapeutic agent in various cancers. PMID:23940701
Canu, Valeria; Sacconi, Andrea; Lorenzon, Laura; Biagioni, Francesca; Lo Sardo, Federica; Diodoro, Maria Grazia; Muti, Paola; Garofalo, Alfredo; Strano, Sabrina; D'Errico, Antonietta; Grazi, Gian Luca; Cioce, Mario; Blandino, Giovanni
2017-05-02
There is high need of novel diagnostic and prognostic tools for tumors of the digestive system, such as gastric cancer and cholangiocarcinoma. We recently found that miR-204 was deeply downregulated in gastric cancer tissues. Here we investigated whether this was common to other tumors of the digestive system and whether this elicited a miR-204-dependent gene target signature, diagnostically and therapeutically relevant. Finally, we assessed the contribution of the identified target genes to the cell cycle progression and clonogenicity of gastric cancer and cholangiocarcinoma cell lines. We employed quantitative PCR and Affymetrix profiling for gene expression studies. In silico analysis aided us to identifying a miR-204 target signature in publicly available databases (TGCA). We employed transient transfection experiments, clonogenic assays and cell cycle profiling to evaluate the biological consequences of miR-204 perturbation. We identified a novel miR-204 gene target signature perturbed in gastric cancer and in cholangiocarcinoma specimens. We validated its prognostic relevance and mechanistically addressed its biological relevance in GC and CC cell lines. We suggest that restoring the physiological levels of miR-204 in some gastrointestinal cancers might be exploited therapeutically.
Sakaguchi, Kouhei; Ohno, Ryoko; Yoshida, Kentaro
2017-01-01
Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids. PMID:28463975
Díaz-Beyá, M; Brunet, S; Nomdedéu, J; Tejero, R; Díaz, T; Pratcorona, M; Tormo, M; Ribera, J M; Escoda, L; Duarte, R; Gallardo, D; Heras, I; Queipo de Llano, M P; Bargay, J; Monzo, M; Sierra, J; Navarro, A; Esteve, J
2014-04-01
Acute myeloid leukemia (AML) is a heterogeneous disease, and optimal treatment varies according to cytogenetic risk factors and molecular markers. Several studies have demonstrated the prognostic importance of microRNAs (miRNAs) in AML. Here we report a potential association between miRNA expression and clinical outcome in 238 intermediate-risk cytogenetic AML (IR-AML) patients from 16 institutions in the CETLAM cooperative group. We first profiled 670 miRNAs in a subset of 85 IR-AML patients from a single institution and identified 10 outcome-related miRNAs. We then validated these 10 miRNAs by individual assays in the total cohort and confirmed the prognostic impact of 4 miRNAs. High levels of miR-196b and miR-644 were independently associated with shorter overall survival, and low levels of miR-135a and miR-409-3p with a higher risk of relapse. Interestingly, miR-135a and miR-409-3p maintained their independent prognostic value within the unfavorable molecular subcategory (wild-type NPM1 and CEBPA and/or FLT3-ITD), and miR-644 retained its value within the favorable molecular subcategory. miR-409-3p, miR-135a, miR-196b and mir-644 arose as prognostic markers for IR-AML, both overall and within specific molecular subgroups.
MiR-29a promotes intestinal epithelial apoptosis in ulcerative colitis by down-regulating Mcl-1.
Lv, Bo; Liu, Zhihui; Wang, Shuping; Liu, Fengbin; Yang, Xiaojun; Hou, Jiangtao; Hou, Zhengkun; Chen, Bin
2014-01-01
While it's widely accepted that the etiology of ulcerative colitis (UC) involves both genetic and environmental factors, the pathogenesis of ulcerative colitis is still poorly understood. Intestinal epithelial apoptosis is one of the most common histopathological changes of UC and the expression of a number of apoptosis genes may contribute to the progression of UC. MicroRNAs have recently emerged as powerful regulators of diverse cellular processes and have been shown to be involved in many immune-mediated disorders such as psoriasis, rheumatoid arthritis, lupus, and asthma. A unique microRNA expression profile has been identified in UC, suggesting that, microRNAs play an important role in the pathogenesis of UC. We investigated the role of miR-29a in intestinal epithelial apoptosis in UC. The expression of miR-29a and Mcl-1, an anti-apoptotic BCL-2 family member, was evaluated in both UC patients and UC mice model induced by dextran sodium sulfate (DSS). The apoptosis rate of intestinal epithelial cells was also evaluated. In UC patients and DSS-induced UC in mice, the expression of miR-29a and Mcl-1, were up-regulated and down-regulated, respectively. We identified a miR-29a binding site (7 nucleotides) on the 3'UTR of mcl-1 and mutation in this binding site on the 3'UTR of mcl-1 led to mis-match between miR-29a and mcl-1. Knockout of Mcl-1 caused apoptosis of the colonic epithelial HT29 cells. In addition, miR-29a regulated intestinal epithelial apoptosis by down-regulating the expression of Mcl-1. miR-29a is involved in the pathogenesis of UC by regulating intestinal epithelial apoptosis via Mcl-1.
MiR-200c regulates ROS-induced apoptosis in murine BV-2 cells by targeting FAP-1.
Yu, D S; Lv, G; Mei, X F; Cao, Y; Wang, Y F; Wang, Y S; Bi, Y L
2014-12-02
Objective:Reactive oxygen species (ROS) are significantly upregulated after spinal cord injury (SCI). MicroRNAs (miRNAs) are reported to be widely involved in regulating gene expression. This paper aims to explore the correlation between ROS-induced cell apoptosis and abnormal miRNA expression after SCI.Methods:To profile the expression of miRNAs after SCI, miRNA microarray was applied and the result was verified by reverse transcription quantitative PCR (RT-qPCR). ROS production following H 2 O 2 stimulation was examined using dihydroethidium staining and flow cytometry. The levels of miR-200c after H 2 O 2 treatment were determined using RT-qPCR. Cell viability and apoptosis were examined in murine BV-2 cells transfected with miR-200c mimics, inhibitor or negative control. Immunofluorescence and western blot were used to further explore the effects of miR-200c on Fas-associated phosphatase-1 (FAP-1) expression.Results:MiR-200c was showed to be significantly increased after SCI by miRNA microassay and RT-qPCR. ROS production enhanced miR-200c expression in a dose-dependent manner and induced significant apoptosis in BV-2 cells. The upregulation of miR-200c reduced cell viability and induced BV-2 cell apoptosis. MiR-200c negatively regulated the expression of FAP-1, thereby inducing FAS signaling-induced apoptosis. RT-qPCR analysis showed that the FAP-1-targeting small interfering RNA (siRNA) did not affect the level of miR-200c in murine BV-2 cells. In addition, suppression of FAP-1 by siRNA promoted apoptosis, even in cells that were co-transfected with the miR-200c inhibitor.Conclusions:The current data suggested that miR-200c contributes to apoptosis in murine BV-2 cells by regulating the expression of FAP-1. This proposes a therapeutic target for enhancing neural cell functional recovery after SCI.Spinal Cord advance online publication, 2 December 2014; doi:10.1038/sc.2014.185.
Kaalund, Sanne S; Venø, Morten T; Bak, Mads; Møller, Rikke S; Laursen, Henning; Madsen, Flemming; Broholm, Helle; Quistorff, Bjørn; Uldall, Peter; Tommerup, Niels; Kauppinen, Sakari; Sabers, Anne; Fluiter, Kees; Møller, Lisbeth B; Nossent, Anne Y; Silahtaroglu, Asli; Kjems, Jørgen; Aronica, Eleonora; Tümer, Zeynep
2014-12-01
Mesial temporal lobe epilepsy (MTLE) is one of the most common types of the intractable epilepsies and is most often associated with hippocampal sclerosis (HS), which is characterized by pronounced loss of hippocampal pyramidal neurons. microRNAs (miRNAs) have been shown to be dysregulated in epilepsy and neurodegenerative diseases, and we hypothesized that miRNAs could be involved in the pathogenesis of MTLE and HS. miRNA expression was quantified in hippocampal specimens from human patients using miRNA microarray and quantitative real-time polymerase chain reaction RT-PCR, and by RNA-seq on fetal brain specimens from domestic pigs. In situ hybridization was used to show the spatial distribution of miRNAs in the human hippocampus. The potential effect of miRNAs on targets genes was investigated using the dual luciferase reporter gene assay. miRNA expression profiling showed that 25 miRNAs were up-regulated and 5 were down-regulated in hippocampus biopsies of MTLE/HS patients compared to controls. We showed that miR-204 and miR-218 were significantly down-regulated in MTLE and HS, and both were expressed in neurons in all subfields of normal hippocampus. Moreover, miR-204 and miR-218 showed strong changes in expression during fetal development of the hippocampus in pigs, and we identified four target genes, involved in axonal guidance and synaptic plasticity, ROBO1, GRM1, SLC1A2, and GNAI2, as bona fide targets of miR-218. GRM1 was also shown to be a direct target of miR-204. miR-204 and miR-218 are developmentally regulated in the hippocampus and may contribute to the molecular mechanisms underlying the pathogenesis of MTLE and HS. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Ionizing Radiation–Inducible miR-27b Suppresses Leukemia Proliferation via Targeting Cyclin A2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bo; Li, Dongping; Kovalchuk, Anna
2014-09-01
Purpose: Ionizing radiation is a common carcinogen that is important for the development of leukemia. However, the underlying epigenetic mechanisms remain largely unknown. The goal of the study was to explore microRNAome alterations induced by ionizing radiation (IR) in murine thymus, and to determine the role of IR-inducible microRNA (miRNA/miR) in the development of leukemia. Methods and Materials: We used the well-established C57BL/6 mouse model and miRNA microarray profiling to identify miRNAs that are differentially expressed in murine thymus in response to irradiation. TIB152 human leukemia cell line was used to determine the role of estrogen receptor–α (ERα) in miR-27bmore » transcription. The biological effects of ectopic miR-27b on leukemogenesis were measured by western immunoblotting, cell viability, apoptosis, and cell cycle analyses. Results: Here, we have shown that IR triggers the differential expression of miR-27b in murine thymus tissue in a dose-, time- and sex-dependent manner. miR-27b was significantly down-regulated in leukemia cell lines CCL119 and TIB152. Interestingly, ERα was overexpressed in those 2 cell lines, and it was inversely correlated with miR-27b expression. Therefore, we used TIB152 as a model system to determine the role of ERα in miR-27b expression and the contribution of miR-27b to leukemogenesis. β-Estradiol caused a rapid and transient reduction in miR-27b expression reversed by either ERα-neutralizing antibody or ERK1/2 inhibitor. Ectopic expression of miR-27b remarkably suppressed TIB152 cell proliferation, at least in part, by inducing S-phase arrest. In addition, it attenuated the expression of cyclin A2, although it had no effect on the levels of PCNA, PPARγ, CDK2, p21, p27, p-p53, and cleaved caspase-3. Conclusion: Our data reveal that β-estradiol/ERα signaling may contribute to the down-regulation of miR-27b in acute leukemia cell lines through the ERK1/2 pathway, and that miR-27b may function as a tumor suppressor that inhibits cell proliferation by targeting cyclin A2.« less
MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaoyou; Dong, Changgui; Jiang, Zhengyao
Kidney transplantation is the major therapeutic option for end-stage kidney diseases. However, acute rejection could cause allograft loss in some of these patients. Emerging evidence supports that microRNA (miRNA) dysregulation is implicated in acute allograft rejection. In this study, we used next-generation sequencing to profile miRNA expression in normal and acutely rejected kidney allografts. Among 75 identified dysregulated miRNAs, miR-10b was the most significantly downregulated miRNAs in rejected allografts. Transfecting miR-10b inhibitor into human renal glomerular endothelial cells recapitulated key features of acute allograft rejection, including endothelial cell apoptosis, release of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor α, interferon-γ, andmore » chemokine (C–C motif) ligand 2) and chemotaxis of macrophages whereas transfection of miR-10b mimics had opposite effects. Downregulation of miR-10b directly derepressed the expression of BCL2L11 (an apoptosis inducer) as revealed by luciferase reporter assay. Taken together, miR-10b downregulation mediates many aspects of disease pathogenicity of acute kidney allograft rejection. Restoring miR-10b expression in glomerular endothelial cells could be a novel therapeutic approach to reduce acute renal allograft loss. - Highlights: • miR-10b was the most downregulated microRNAs in acutely rejected renal allografts. • miR-10b downregulation triggered glomerular endothelial cell apoptosis. • miR-10b downregulation induced release of pro-inflammatory cytokines. • miR-10b downregulation derepressed its pro-apoptotic target BCL2L11.« less
miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression
Zhang, Hongtuan; Qi, Shiyong; Zhang, Tao; Wang, Andi; Liu, Ranlu; Guo, Jia; Wang, Yuzhuo; Xu, Yong
2015-01-01
Elucidation of the molecular targets and pathways regulated by the tumour-suppressive miRNAs can shed light on the oncogenic and metastatic processes in prostate cancer (PCa). Using miRNA profiling analysis, we find that miR-188-5p was significantly down-regulated in metastatic PCa. Down-regulation of miR-188-5p is an independent prognostic factor for poor overall and biochemical recurrence-free survival. Restoration of miR-188-5p in PCa cells (PC-3 and LNCaP) significantly suppresses proliferation, migration and invasion in vitro and inhibits tumour growth and metastasis in vivo. We also find overexpression of miR-188-5p in PC-3 cells can significantly enhance the cells' chemosensitivity to adriamycin. LAPTM4B is subsequently identified as a direct target of miR-188-5p in PCa, and is found to be significantly over-expressed in PCa. Knockdown of LAPTM4B phenotypically copies miR-188-5p-induced phenotypes, whereas ectopic expression of LAPTM4B reverses the effects of miR-188-5p. We also find that restoration of miR-188-5p can inhibit the PI3K/AKT signaling pathway via the suppression of LAPTM4B. Taken together, this is the first report unveils that miR-188-5p acts as a tumour suppressor in PCa and may therefore serve as a useful therapeutic target for the development of new anticancer therapy. PMID:25714029
The Role of miR-182-5p in Hepatocarcinogenesis of Trichloroethylene in Mice.
Jiang, Yan; Chen, Jiahong; Yue, Cong; Zhang, Hang; Tong, Jian; Li, Jianxiang; Chen, Tao
2017-03-01
Trichloroethylene (TCE), commonly used as an industrial solvent, is ubiquitous in our living environment. TCE exposure can induce hepatocellular carcinoma (HCC) in mice, but the underlying mechanisms remain elusive. To understand the role of miRNA in the hepatocarcinogenesis of TCE, we examined the miRNA expression profiles by microarray in the liver of B6C3F1 male mice exposed to TCE at 0 or 1000 mg/kg b.w. Nine differentially expressed miRNAs were identified, out of which miR-182-5p exhibited the highest increase in expression. Moreover, the TCE-induced upregulation of miR182-5p in mouse liver was dose dependent and correlated with promoter DNA hypomethylation. Treatment of mouse liver cell lines (BNL CL.2 and Hepa1-6) with TCE at non-toxic doses (0.1 and/or 0.3 mM) significantly increased the expression level of miR-182-5p accompanied with elevated cell proliferation. The TCE-induced cell proliferation was further found to be mediated by miR-182-5p overexpression. Additionally, tumor suppressor gene Cited2, which was downregulated in TCE exposed mouse liver cells, was proved to be a direct target of miR-182-5p. In conclusion, TCE might up-regulate miR-182-5p expression by DNA hypomethylation, which could suppress Cited2 and improve cell proliferation rate, resulting in liver tumor. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Yang, Won-Mo; Min, Kyung-Ho
2016-01-01
Obesity is defined as the excessive accumulation of body fat that ultimately leads to chronic metabolic diseases. Diets rich in saturated fatty acids (SFA) exacerbate obesity and hepatic steatosis, which increase the risk of hepatic insulin resistance and type 2 diabetes (T2DM). Although microRNAs (miRNAs) play an important role in a range of biological processes, the implications of SFA-induced miRNAs in metabolic dysregulation, particularly in the pathogenesis of hepatic insulin resistance, are not well understood. This study investigated the implications of miR-96, which is induced strongly by SFA, in the development of hepatic insulin resistance. The liver of HFD mice and the palmitate-treated hepatocytes exhibited an impairment of insulin signaling due to the significant decrease in INSR and IRS-1 expression. According to expression profiling and qRT-PCR analysis of the miRNAs, the expression level of miR-96 was higher in hepatocytes treated with palmitate. Moreover, miR-96 was also upregulated in the liver of HFD mice. Interestingly, miR-96 targeted the 3’UTRs of INSR and IRS-1 directly, and repressed the expression of INSR and IRS-1 at the post-transcriptional level. Accordingly, the overexpression of miR-96 was found to cause a significant decrease in INSR and IRS-1 expression, thereby leading to an impairment of insulin signaling and glycogen synthesis in hepatocytes. These results reveal a novel mechanism whereby miR-96 promotes the pathogenesis of hepatic insulin resistance resulted from SFA or obesity. PMID:28036389
Up-regulation of Serum MiR-130b-3p Level is Associated with Renal Damage in Early Lupus Nephritis
NASA Astrophysics Data System (ADS)
Wang, Wanpeng; Mou, Shan; Wang, Ling; Zhang, Minfang; Shao, Xinghua; Fang, Wei; Lu, Renhua; Qi, Chaojun; Fan, Zhuping; Cao, Qin; Wang, Qin; Fang, Yan; Ni, Zhaohui
2015-08-01
Systemic lupus erythematosus (SLE) is a common but severe autoimmune systemic inflammatory disease. Lupus nephritis (LN) is a serious complication of SLE,affecting up to 70% of SLE patients. Circulating microRNAs (miRNA) are emerging as biomarkers for pathological conditions and play significant roles in intercellular communication. In present research, serum samples from healthy control, early and late stage LN patients were used to analyze the expression profile of miRNAs by microarray. Subsequent study demonstrated that miR-130b-3p in serum of patients with early stage LN were significantly up-regulated when compared with healthy controls. In addition,we have also observed that the expression of a large amount of circulating microRNAs significantly decreased in patients with late stage LN. The further analysis found that the expression of serum miR-130b-3p was positively correlated with 24-hour proteinuria and renal chronicity index in patients with early stage LN.Transfection of renal tubular cellline(HK-2)with miR-130b-3p mimics can promote epithelial-mesenchymal transition (EMT). The opposite effects were observed when transfected with miR-130b-3p inhibitors. MiR-130b-3p negatively regulated ERBB2IP expression by directly targeting the 3‧-UTR of ERBB2IP The circulating miR-130b-3p might serve as a biomarker and play an important role in renal damage in early stage LN patients.
Jung, Hyun Min; Phillips, Brittany L.; Patel, Rushi S.; Cohen, Donald M.; Jakymiw, Andrew; Kong, William W.; Cheng, Jin Q.; Chan, Edward K. L.
2012-01-01
MicroRNAs (miRNAs) are small non-coding RNAs that posttranscriptionally regulate gene expression during many biological processes. Recently, the aberrant expressions of miRNAs have become a major focus in cancer research. The purpose of this study was to identify deregulated miRNAs in oral cancer and further focus on specific miRNAs that were related to patient survival. Here, we report that miRNA expression profiling provided more precise information when oral squamous cell carcinomas were subcategorized on the basis of clinicopathological parameters (tumor primary site, histological subtype, tumor stage, and HPV16 status). An innovative radar chart analysis method was developed to depict subcategories of cancers taking into consideration the expression patterns of multiple miRNAs combined with the clinicopathological parameters. Keratinization of tumors and the high expression of miR-21 were the major factors related to the poor prognosis of patients. Interestingly, a majority of the keratinized tumors expressed high levels of miR-21. Further investigations demonstrated the regulation of the tumor suppressor gene reversion-inducing cysteine-rich protein with kazal motifs (RECK) by two keratinization-associated miRNAs, miR-7 and miR-21. Transfection of miR-7 and miR-21-mimics reduced the expression of RECK through direct miRNA-mediated regulation, and these miRNAs were inversely correlated with RECK in CAL 27 orthotopic xenograft tumors. Furthermore, a similar inverse correlation was demonstrated in CAL 27 cells treated in vitro by different external stimuli such as trypsinization, cell density, and serum concentration. Taken together, our data show that keratinization is associated with poor prognosis of oral cancer patients and keratinization-associated miRNAs mediate deregulation of RECK which may contribute to the aggressiveness of tumors. PMID:22761427
Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy
Zhang, Hongliang; Liu, Shenghua; Dong, Tianwei; Yang, Jun; Xie, Yuanyuan; Wu, Yike; Kang, Kang; Hu, Shengshou; Gou, Deming; Wei, Yingjie
2016-01-01
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a kind of primary cardiomyopathy characterized by the fibro-fatty replacement of right ventricular myocardium. Currently, myocardial microRNAs have been reported to play critical role in the pathophysiology of cardiovascular pathophysiology. So far, the profiling of microRNAs in ARVC has not been described. In this study, we applied S-Poly (T) Plus method to investigate the expression profile of microRNAs in 24 ARVC patients heart samples. The tissue levels of 1078 human microRNAs were assessed and were compared with levels in a group of 24 healthy controls. Analysis of the area under the receiver operating characteristic curve (ROC) supported the 21 validated microRNAs to be miRNA signatures of ARVC, eleven microRNAs were significantly increased in ARVC heart tissues and ten microRNAs were significantly decreased. After functional enrichment analysis, miR-21-5p and miR-135b were correlated with Wnt and Hippo pathway, which might involve in the molecular pathophysiology of ARVC. Overall, our data suggested that myocardial microRNAs were involved in the pathophysiology of ARVC, miR-21-5p and miR-135b were significantly associated with both the myocardium adipose and fibrosis, which was a potential disease pathway for ARVC and might to be useful as therapeutic targets for ARVC. PMID:27307080
Identification of heavy-ion radiation-induced microRNAs in rice
NASA Astrophysics Data System (ADS)
Zhang, Meng; Liang, Shujian; Hang, Xiaoming; Sun, Yeqing
As an excellent model organism for studying the effects of environmental stress, rice was used to assess biological effect of the space radiation environment. Rice abnormal development or growth was observed frequently after seeds space flight. MicroRNAs (miRNAs) are a family of small non-coding regulatory RNAs, which have significant roles in regulating development and stress responses in plant. To identify whether the miRNAs were involved in biological effects of heavy-ion radiation, the germinated seeds of rice were exposed to 20 Gy dose of 12 C heavy-ion radiation which could induce rice development retarded. The microarray was used to monitor rice (Oryza sativa) miRNAs expression profiles under radiation stress. Members of miR164 family and miR156a-j were found up-regulated significantly, and confirmed by relative quantifi-cation real-time PCR. We found that the expression of the miR156 and miR164 increased and targets genes expression decrease was closely bound up with the irradiation rice phenotypes changes.
Singh, Satishkumar Vishram; Dakhole, Aditi Nigam; Deogharkar, Akash; Kazi, Sadaf; Kshirsagar, Rohan; Goel, Atul; Moiyadi, Aliasgar; Jalali, Rakesh; Sridhar, Epari; Gupta, Tejpal; Shetty, Prakash; Gadewal, Nikhil; Shirsat, Neelam Vishwanath
2017-09-30
Medulloblastoma is a highly malignant pediatric brain tumor. About 30% patients have metastasis at diagnosis and respond poorly to treatment. Those that survive, suffer long term neurocognitive, endocrine and developmental defects due to the cytotoxic treatment to developing child brain. It is therefore necessary to develop targeted treatment strategies based on underlying biology for effective treatment of medulloblastoma with minimal side effects. Medulloblastomas are believed to be the result of deregulated nervous system development as evident from the role of WNT and SHH developmental signaling pathways in pathogenesis of medulloblastomas. MicroRNAs are known to play vital roles in nervous system development as well as in cancer. MicroRNA profiling of medulloblastomas identified miR-30 family members' expression to be downregulated in medulloblastomas belonging to the four known molecular subgroups viz. WNT, SHH, Group 3 and Group 4 as compared to that in normal brain tissues. Furthermore, established medulloblastoma cell lines Daoy, D283 and D425 were also found to underexpress miR-30a. Restoration of miR-30a expression using inducible lentiviral vector inhibited proliferation, clonogenic potential and tumorigenicity of medulloblastoma cells. MiR-30a is known to target Beclin1, a mediator of autophagy. MiR-30a expression was found to downregulate Beclin1 expression and inhibit autophagy in the medulloblastoma cell lines as judged by downregulation of LC3B expression and its turnover upon chloroquine treatment and starvation induced autophagy induction. MiR-30a therefore could serve as a novel therapeutic agent for the effective treatment of medulloblastoma by inhibiting autophagy that is known to play important role in cancer cell growth, survival and malignant behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.
2015-01-01
Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID:25552301
TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway.
Zheng, Jian; Liu, Xiaobai; Xue, Yixue; Gong, Wei; Ma, Jun; Xi, Zhuo; Que, Zhongyou; Liu, Yunhui
2017-02-20
Circular RNAs are a subgroup of non-coding RNAs and generated by a mammalian genome. Herein, the expression and function of circular RNA circ-TTBK2 were investigated in human glioma cells. Fluorescence in situ hybridization and quantitative real-time PCR were conducted to profile the cell distribution and expression of circ-TTBK2 and microRNA-217 (miR-217) in glioma tissues and cells. Immunohistochemical and western blot were used to determine the expression of HNF1β and Derlin-1 in glioma tissues and cells. Stable knockdown of circ-TTBK2 or overexpression of miR-217 glioma cell lines (U87 and U251) were established to explore the function of circ-TTBK2 and miR-217 in glioma cells. Further, luciferase reports and RNA immunoprecipitation were used to investigate the correlation between circ-TTBK2 and miR-217. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate circ-TTBK2 and miR-217 function including cell proliferation, migration and invasion, and apoptosis, respectively. ChIP assays were used to ascertain the correlations between HNF1β and Derlin-1. We found that circ-TTBK2 was upregulated in glioma tissues and cell lines, while linear TTBK2 was not dysregulated in glioma tissues and cells. Enhanced expression of circ-TTBK2 promoted cell proliferation, migration, and invasion, while inhibited apoptosis. MiR-217 was downregulated in glioma tissues and cell lines. We also found that circ-TTBK2, but not linear TTBK2, acted as miR-217 sponge in a sequence-specific manner. In addition, upregulated circ-TTBK2 decreased miR-217 expression and there was a reciprocal negative feedback between them in an Argonaute2-dependent manner. Moreover, reintroduction of miR-217 significantly reversed circ-TTBK2-mediated promotion of glioma progression. HNF1β was a direct target of miR-217, and played oncogenic role in glioma cells. Remarkably, circ-TTBK2 knockdown combined with miR-217 overexpression led to tumor regression in vivo. These results demonstrated a novel role circ-TTBK2 in the glioma progression.
Influenza A Virus Infection of Human Respiratory Cells Induces Primary MicroRNA Expression*
Buggele, William A.; Johnson, Karen E.; Horvath, Curt M.
2012-01-01
The cellular response to virus infection is initiated by recognition of the invading pathogen and subsequent changes in gene expression mediated by both transcriptional and translational mechanisms. In addition to well established means of regulating antiviral gene expression, it has been demonstrated that RNA interference (RNAi) can play an important role in antiviral responses. Virus-derived small interfering RNA (siRNA) is a primary antiviral response exploited by plants and invertebrate animals, and host-encoded microRNA (miRNA) species have been clearly implicated in the regulation of innate and adaptive immune responses in mammals and other vertebrates. Examination of miRNA abundance in human lung cell lines revealed endogenous miRNAs, including miR-7, miR-132, miR-146a, miR-187, miR-200c, and miR-1275, to specifically accumulate in response to infection with two influenza A virus strains, A/Udorn/72 and A/WSN/33. Known antiviral response pathways, including Toll-like receptor, RIG-I-like receptor, and direct interferon or cytokine stimulation did not alter the abundance of the tested miRNAs to the extent of influenza A virus infection, which initiates primary miRNA transcription via a secondary response pathway. Gene expression profiling identified 26 cellular mRNAs targeted by these miRNAs, including IRAK1, MAPK3, and other components of innate immune signaling systems. PMID:22822053
Pasqualini, Lorenza; Bu, Huajie; Puhr, Martin; Narisu, Narisu; Rainer, Johannes; Schlick, Bettina; Schäfer, Georg; Angelova, Mihaela; Trajanoski, Zlatko; Börno, Stefan T; Schweiger, Michal R; Fuchsberger, Christian; Klocker, Helmut
2015-07-01
The normal prostate as well as early stages and advanced prostate cancer (PCa) require a functional androgen receptor (AR) for growth and survival. The recent discovery of microRNAs (miRNAs) as novel effector molecules of AR disclosed the existence of an intricate network between AR, miRNAs and downstream target genes. In this study DUCaP cells, characterized by high content of wild-type AR and robust AR transcriptional activity, were chosen as the main experimental model. By integrative analysis of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray expression profiling data, miRNAs putatively bound and significantly regulated by AR were identified. A direct AR regulation of miR-22, miR-29a, and miR-17-92 cluster along with their host genes was confirmed. Interestingly, endogenous levels of miR-22 and miR-29a were found to be reduced in PCa cells expressing AR. In primary tumor samples, miR-22 and miR-29a were less abundant in the cancerous tissue compared with the benign counterpart. This specific expression pattern was associated with a differential DNA methylation of the genomic AR binding sites. The identification of laminin gamma 1 (LAMC1) and myeloid cell leukemia 1 (MCL1) as direct targets of miR-22 and miR-29a, respectively, suggested a tumor-suppressive role of these miRNAs. Indeed, transfection of miRNA mimics in PCa cells induced apoptosis and diminished cell migration and viability. Collectively, these data provide additional information regarding the complex regulatory machinery that guides miRNAs activity in PCa, highlighting an important contribution of miRNAs in the AR signaling.
McKinsey, EL; Parrish, JK; Irwin, AE; Niemeyer, BF; Kern, HB; Birks, DK; Jedlicka, P
2015-01-01
MicroRNAs (miRs) are a novel class of cellular bioactive molecules with critical functions in the regulation of gene expression in normal biology and disease. MiRs are frequently misexpressed in cancer, with potent biological consequences. However, relatively little is known about miRs in pediatric cancers, including sarcomas. Moreover, the mechanisms behind aberrant miR expression in cancer are poorly understood. Ewing sarcoma is an aggressive pediatric malignancy driven by EWS/Ets fusion oncoproteins, which are gain-of-function transcriptional regulators. We employed stable silencing of EWS/Fli1, the most common of the oncogenic fusions, and global miR profiling to identify EWS/Fli1-regulated miRs with oncogenesis-modifying roles in Ewing sarcoma. In this report, we characterize a group of miRs (100, 125b, 22, 221/222, 27a and 29a) strongly repressed by EWS/Fli1. Strikingly, all of these miRs have predicted targets in the insulin-like growth factor (IGF) signaling pathway, a pivotal driver of Ewing sarcoma oncogenesis. We demonstrate that miRs in this group negatively regulate the expression of multiple pro-oncogenic components of the IGF pathway, namely IGF-1, IGF-1 receptor, mammalian/mechanistic target of rapamycin and ribosomal protein S6 kinase A1. Consistent with tumor-suppressive functions, these miRs manifest growth inhibitory properties in Ewing sarcoma cells. Our studies thus uncover a novel oncogenic mechanism in Ewing sarcoma, involving post-transcriptional derepression of IGF signaling by the EWS/Fli1 fusion oncoprotein via miRs. This novel pathway may be amenable to innovative therapeutic targeting in Ewing sarcoma and other malignancies with activated IGF signaling. PMID:21643012
McKinsey, E L; Parrish, J K; Irwin, A E; Niemeyer, B F; Kern, H B; Birks, D K; Jedlicka, P
2011-12-08
MicroRNAs (miRs) are a novel class of cellular bioactive molecules with critical functions in the regulation of gene expression in normal biology and disease. MiRs are frequently misexpressed in cancer, with potent biological consequences. However, relatively little is known about miRs in pediatric cancers, including sarcomas. Moreover, the mechanisms behind aberrant miR expression in cancer are poorly understood. Ewing sarcoma is an aggressive pediatric malignancy driven by EWS/Ets fusion oncoproteins, which are gain-of-function transcriptional regulators. We employed stable silencing of EWS/Fli1, the most common of the oncogenic fusions, and global miR profiling to identify EWS/Fli1-regulated miRs with oncogenesis-modifying roles in Ewing sarcoma. In this report, we characterize a group of miRs (100, 125b, 22, 221/222, 27a and 29a) strongly repressed by EWS/Fli1. Strikingly, all of these miRs have predicted targets in the insulin-like growth factor (IGF) signaling pathway, a pivotal driver of Ewing sarcoma oncogenesis. We demonstrate that miRs in this group negatively regulate the expression of multiple pro-oncogenic components of the IGF pathway, namely IGF-1, IGF-1 receptor, mammalian/mechanistic target of rapamycin and ribosomal protein S6 kinase A1. Consistent with tumor-suppressive functions, these miRs manifest growth inhibitory properties in Ewing sarcoma cells. Our studies thus uncover a novel oncogenic mechanism in Ewing sarcoma, involving post-transcriptional derepression of IGF signaling by the EWS/Fli1 fusion oncoprotein via miRs. This novel pathway may be amenable to innovative therapeutic targeting in Ewing sarcoma and other malignancies with activated IGF signaling.
Qiu, Jing-Xin; Kim, Edward J.; Yu, Ai-Ming
2016-01-01
Pancreatic cancer is the fourth leading cause of cancer death in the United States. Better understanding of pancreatic cancer biology may help identify new oncotargets towards more effective therapies. This study investigated the mechanistic actions of microRNA-1291 (miR-1291) in the suppression of pancreatic tumorigenesis. Our data showed that miR-1291 was downregulated in a set of clinical pancreatic carcinoma specimens and human pancreatic cancer cell lines. Restoration of miR-1291 expression inhibited pancreatic cancer cell proliferation, which was associated with cell cycle arrest and enhanced apoptosis. Furthermore, miR-1291 sharply suppressed the tumorigenicity of PANC-1 cells in mouse models. A proteomic profiling study revealed 32 proteins altered over 2-fold in miR-1291-expressing PANC-1 cells that could be assembled into multiple critical pathways for cancer. Among them anterior gradient 2 (AGR2) was reduced to the greatest degree. Through computational and experimental studies we further identified that forkhead box protein A2 (FOXA2), a transcription factor governing AGR2 expression, was a direct target of miR-1291. These results connect miR-1291 to the FOXA2-AGR2 regulatory pathway in the suppression of pancreatic cancer cell proliferation and tumorigenesis, providing new insight into the development of miRNA-based therapy to combat pancreatic cancer. PMID:27322206
Helwig, J; Bertram, S; Sheu, S Y; Suttorp, A C; Seggewiß, J; Willscher, E; Walz, M K; Worm, K; Schmid, K W
2011-01-01
Background For the clinical management of adrenocortical neoplasms it is crucial to correctly distinguish between benign and malignant tumours. Even histomorphologically based scoring systems do not allow precise separation in single lesions, thus novel parameters are desired which offer a more accurate differentiation. The tremendous potential of microRNAs (miRNAs) as diagnostic biomarkers in surgical pathology has recently been shown in a broad variety of tumours. Methods In order to elucidate the diagnostic impact of miRNA expression in adrenocortical neoplasms, a cohort of 20 adrenocortical specimens including normal adrenal tissue (n=4), adrenocortical adenomas (ACAs) (n=9), adrenocortical carcinomas (ACCs) (n=4) and metastases (n=3) was analysed using TaqMan low density arrays to identify specific miRNA profiles in order to distinguish between benign and malignant adrenocortical lesions. Results were validated in a validation cohort (n=16). Results Concerning the differential diagnosis of ACAs and ACCs, 159 out of 667 miRNAs were up- and 89 were down-regulated in ACAs. Using real-time PCR analysis of three of the most significantly expressed single key miRNAs allowed separation of ACAs from ACCs. ACCs exhibited significantly lower levels of miR-139-3p (up to 8.49-fold, p<0.001), miR-675 (up to 23.25-fold, p<0.001) and miR-335 (up to 5.25-fold, p<0.001). A validation cohort of 16 specimen with known Weiss score showed up-regulation of miR-335 and miR-675 in the majority of cases with probable malignant course, although overlapping values exist. Conclusion miRNA profiling of miR-675 and miR-335 helps in discriminating ACCs from ACAs. miRNA analysis may indicate malignant behaviour in cases with indeterminate malignant potential. PMID:21471143
Toraih, Eman A.; Ibrahiem, Afaf; Abdeldayem, Hala; Mohamed, Amany O.; Abdel-Daim, Mohamed M.
2017-01-01
Previous reports have suggested the significant association of miRNAs aberrant expression with tumor initiation, progression and metastasis in cancer, including gastrointestinal (GI) cancers. The current preliminary study aimed to evaluate the relative expression levels of miR-196a2 and three of its selected apoptosis-related targets; ANXA1, DFFA and PDCD4 in a sample of GI cancer patients. Quantitative real-time PCR for miR-196a2 and its selected mRNA targets, as well as immunohistochemical assay for annexin A1 protein expression were detected in 58 tissues with different GI cancer samples. In addition, correlation with the clinicopathological features and in silico network analysis of the selected molecular markers were analyzed. Stratified analyses by cancer site revealed elevated levels of miR-196a2 and low expression of the selected target genes. Annexin protein expression was positively correlated with its gene expression profile. In colorectal cancer, miR-196a over-expression was negatively correlated with annexin A1 protein expression (r = -0.738, p < 0.001), and both were indicators of unfavorable prognosis in terms of poor differentiation, larger tumor size, and advanced clinical stage. Taken together, aberrant expression of miR-196a2 and the selected apoptosis-related biomarkers might be involved in GI cancer development and progression and could have potential diagnostic and prognostic roles in these types of cancer; particularly colorectal cancer, provided the results experimentally validated and confirmed in larger multi-center studies. PMID:29091952
Ling, Jing; Wu, Xiaoli; Fu, Ziyi; Tan, Jie; Xu, Qing
2015-10-01
Our previous study showed that the expression of miR-197 in leiomyoma was down-regulated compared with myometrium. Further, miR-197 has been identified to affect uterine leiomyoma cell proliferation, apoptosis, and metastasis ability, though the responsible molecular mechanism has not been well elucidated. In this study, we sought to determine the expression patterns of miR-197 targeted genes and to explore their potential functions, participating Pathways and the networks that are involved in the biological behavior of human uterine leiomyoma. After transfection of human uterine leiomyoma cells with miR-197, we confirmed the expression level of miR-197 using quantitative real-time PCR (qRT-PCR), and we detected the gene expression profiles after miR-197 over-expression through DNA microarray analysis. Further, we performed GO and Pathway analysis. The dominantly dys-regulated genes, which were up- or down-regulated by more than 10-fold, compared with parental cells, were confirmed using qRT-PCR technology. Compared with the control group, miR-197 was up-regulated by 30-fold after miR-197 lentiviral transfection. The microarray data showed that 872 genes were dys-regulated by more than 2-fold in human uterine leiomyoma cells after miR-197 overexpression, including 537 up-regulated and 335 down-regulated genes. The GO analysis indicated that the dys-regulated genes were primarily involved in response to stimuli, multicellular organ processes, and the signaling of biological progression. Further, Pathway analysis data showed that these genes participated in regulating several signaling Pathways, including the JAK/STAT signaling Pathway, the Toll-like receptor signaling Pathway, and cytokine-cytokine receptor interaction. The qRT-PCR results confirmed that 17 of the 66 selected genes, which were up- or down-regulated more than 10-fold by miR-197, were consistent with the microarray results, including tumorigenesis-related genes, such as DRT7, SLC549, SFMBT2, FLJ37956, FBLN2, C10orf35, HOXD12, CACNG7, and LOC100134279. Our study explored gene expression patterns after miR-197 overexpression and confirmed 17 dominantly dys-regulated genes, which could expand the insights into the function of miR-197 and the molecular mechanisms during the development and progression of uterine leiomyomas. This study might afford new clues for understanding the pathogenesis of uterine leiomyomas, and it could likely provide a unique method for diagnosing or predicting prognosis in the clinical treatment of leiomyoma. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
[Dectection and analysis of miRNA expression in breast cancer-associated fibroblasts].
Zeng, Zongyue; Hu, Ping; Tang, Xi; Zhang, Hailong; Du, Yane; Wen, Siyang; Liu, Manran
2014-10-01
To investigate the difference of miRNA expression levels of cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) in human breast cancer microenvironment and its effect on the biological features of CAFs. Collagenase-1 was used to digest the cancer and adjacent tissues to isolate CAFs and NFs. The isolated cells were cultured and characterized in purity and biological features. The expression of fibroblast secretory protein (FSP) in CAFs and NFs was detected by immunofluorescence staining and Western blotting. Transwell(TM) assay was adopted to compare the invasion ability of CAFs and NFs. The different expressions of miRNAs in CAFs versus NFs were detected by miRNA microarray and analyzed by Significance Analysis of Microarrays (SAM). The differences in miR-205 and miR-221 expressions were verified by real-time quantitative PCR (qRT-PCR). The common target genes of the miRNAs were predicted using multi-bioinformatics tools. The pathway analysis was conducted through the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7. The secreting products of TGF-β or IL-6 signaling pathway, matrix metalloproteinase (MMP)-1, MMP-2 and MMP-9 were analyzed by ELISA. The primary CAFs and NFs were isolated from breast cancer patients with a purity of over 95%. Compared with NFs, the expression of FSP was obviously elevated in CAFs, and the invasion ability of CAFs was enhanced. The miRNA microarray results showed that there were 10 miRNA genes dysregulated in CAFs, including 3 up-regulated (miR-221-5p, miR-31-3p, miR-221-3p) and 7 down-regulated genes (miR-205, miR-200b , miR-200c, miR-141, miR-101, miR-342-3p, let-7g). The common targets genes of the dysregulated miRNAs were mainly focused on HGF, chemokine signaling, insulin signaling, MAPK signaling, tight junction signaling, adherence junction signaling, EGF1 signaling, androgen-receptor signaling, Wnt and IL-7 signaling. In addition, dysregulated miR-200b/c and miR-141 et al. affect TGF-β and IL-6 signaling through inhibiting their target genes in CAFs, thus promoting invasion and migration of CAFs. The miRNA expression profile was markedly dysregulated in CAFs. Those dysregulated miRNAs may take part in the transformation from NFs to CAFs, and also have a close relationship with adhesion, migration, proliferation, secretion and cell-cell interaction of CAFs.
Wu, Hao; Wu, Runliu; Chen, Miao; Li, Daojiang; Dai, Jing; Zhang, Yi; Gao, Kai; Yu, Jun; Hu, Gui; Guo, Yihang; Lin, Changwei; Li, Xiaorong
2017-03-28
Growing evidence suggests that long non-coding RNAs (lncRNAs) play a key role in tumorigenesis. However, the mechanism remains largely unknown. Thousands of significantly dysregulated lncRNAs and mRNAs were identified by microarray. Furthermore, a miR-133b-meditated lncRNA-mRNA ceRNA network was revealed, a subset of which was validated in 14 paired CRC patient tumor/non-tumor samples. Gene set enrichment analysis (GSEA) results demonstrated that lncRNAs ENST00000520055 and ENST00000535511 shared KEGG pathways with miR-133b target genes. We used microarrays to survey the lncRNA and mRNA expression profiles of colorectal cancer and para-cancer tissues. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to explore the functions of the significantly dysregulated genes. An innovate method was employed that combined analyses of two microarray data sets to construct a miR-133b-mediated lncRNA-mRNA competing endogenous RNAs (ceRNA) network. Quantitative RT-PCR analysis was used to validate part of this network. GSEA was used to predict the potential functions of these lncRNAs. This study identifies and validates a new method to investigate the miR-133b-mediated lncRNA-mRNA ceRNA network and lays the foundation for future investigation into the role of lncRNAs in colorectal cancer.
HBeAg-induced miR-106b promotes cell growth by targeting the retinoblastoma gene.
Samal, Jasmine; Kandpal, Manish; Vivekanandan, Perumal
2017-10-30
Chronic HBV infection is a major cause of hepatocellular carcinoma (HCC). The association between hepatitis B "e" antigen (HBeAg) and HCC is well-established by epidemiological studies. Nonetheless, the biological role of HBeAg in HCC remains enigmatic. We investigate the role of HBeAg in HBV-related HCC. Our findings suggest that HBeAg enhances cell proliferation and accelerates progression from G0/G1 phase to the S phase of the cell cycle in Huh7 cells. Examination of host gene expression and miRNA expression profiles reveals a total of 21 host genes and 12 host miRNAs that were differentially regulated in cells expressing HBeAg. Importantly, HBeAg induced the expression of miR-106b, an oncogenic miRNA. Interestingly, HBeAg-expression results in a significant reduction in the expression of retinoblastoma (Rb) gene, an experimentally validated target of miR-106b. Inhibition of miR-106b significantly increased the expression of the Rb gene, resulting in reduced cell proliferation and slowing of cell cycle progression from the G0/G1 phase to S phase. These observations suggest that the up-regulation of miR-106b by HBeAg contributes to the pathogenesis of HBV-related HCC by down-regulating the Rb gene. Our results highlight a role for HBeAg in HCC and provide a novel perspective on the molecular mechanisms underlying HBV-related HCC.
Raaby, L; Langkilde, A; Kjellerup, R B; Vinter, H; Khatib, S H; Hjuler, K F; Johansen, C; Iversen, L
2015-08-01
Tumour necrosis factor (TNF)-α inhibition is an effective treatment for moderate to severe plaque-type psoriasis. A change in the cytokine expression profile occurs in the skin after 4 days of treatment, preceding any clinical or histological improvements. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression, but miRNA expression has never been studied in psoriatic skin during treatment. To investigate changes in miRNA expression in psoriatic skin during adalimumab treatment and to compare results with changes in miRNA expression in a mouse model of Aldara-induced psoriasis-like skin inflammation. Punch biopsies were obtained from nonlesional and lesional psoriatic skin during adalimumab treatment. In the mouse model of Aldara-induced skin inflammation, biopsies were obtained from TNF-α knockout (KO), IL-17A KO and wild-type mice. miRNA expression levels were analysed with microarray, reverse transcriptase quantitative polymerase chain reaction and in situ hybridization. In psoriatic skin, no changes in miRNA expression were seen 4 days after treatment initiation. After 14 days of treatment, the expression of several miRNAs was normalized towards the level seen in nonlesional skin before treatment. miR-23b expression increased after 14 days of treatment and remained high for 84 days, despite unaltered levels at baseline. In the mouse model of Aldara-induced skin inflammation, the level of miR-146a increased, whereas no regulation was seen for miR-203, miR-214-3p, miR-125a, miR-23b or let-7d-5p. This study demonstrates that the changes seen in the cytokine expression levels after 4 days of treatment with adalimumab are not facilitated by early changes in miRNA expression. © 2015 British Association of Dermatologists.
Shen, Zhan-Long; Wang, Bo; Jiang, Ke-Wei; Ye, Chun-Xiang; Cheng, Cheng; Yan, Yi-Chao; Zhang, Ji-Zhun; Yang, Yang; Gao, Zhi-Dong; Ye, Ying-Jiang; Wang, Shan
2016-06-07
The progression of distant metastasis cascade is a multistep and complicated process, frequently leading to a poor prognosis in cancer patients. Recently, growing evidence has indicated that deregulation of microRNAs (miRNAs) contributes to tumorigenesis and tumor progression in colorectal cancer (CRC). In the present study, by comparing the miRNA expression profiles of CRC tissues and corresponding hepatic metastasis tissues, we established the downregulation of miR-199b in CRC metastasis tissues. The decrease in miR-199b expression was significantly correlated to late TNM stage and distant metastasis. Moreover, Kaplan-Meier curves showed that CRC patients with high expression level of miR-199b had a longer median survival. Functional assays results indicated that the restoration of miR-199b considerably reduced cell invasion and migration in vitro and in vivo, and increased the sensitivity to 5-FU and oxaliplatin. Further dual-luciferase reporter gene assays revealed that SIRT1 was the direct target of miR-199b in CRC. The expression of miR-199b was inversely correlated with SIRT1 in CRC specimens. SIRT1 knockdown produced effects on biological behavior that were similar to those of miR-199b overexpression. Furthermore, through Human Tumor Metastasis PCR Array we discovered KISS1 was one of the downstream targets of SIRT1. Silencing of SIRT1 upregulated KISS1 expression by enhancing the acetylation of the transcription factor CREB. The latter was further activated via binding to the promoter of KISS1 to induce transcription. Thus, we concluded that miR-199b regulates SIRT1/CREB/KISS1 signaling pathway and might serve as a prognosis marker or a novel therapeutic target for patients with CRC.
de Lima, Aline Brito; Silva, Luciana Maria; Gonçales, Nikole Gontijo; Carvalho, Maria Raquel Santos; da Silva Filho, Agnaldo Lopes; da Conceição Braga, Letícia
2018-01-06
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, and the lack of chemoresistance biomarkers contributes to the poor prognosis. Cancer stem cells (CSC) have been investigated in EOC to understand its relationship with chemoresistance and recurrence. In this context, in vitro cultivation-models are important tools for CSC studies. MicroRNAs (miRNAs) play key roles in cancer, CSC regulation and apoptosis. Thus, this study aims to evaluate the tumorsphere model as CSC-enrichment method in EOC studies and investigate apoptosis-related miRNAs in tumorspheres-derived EOC cell lines. TOV-21G and SKOV-3 were cultured in monolayer and tumorspheres. Genetic profiles of cell lines were obtained using COSMIC database. CD24/CD44/CD146/CD177 and ALDH1 markers were evaluated in cell lines and tumorspheres-derived by flow cytometry. Eleven miRNAs were selected by in silico analysis for qPCR analysis. According to COSMIC, TOV-21G and SKOV-3 have eight and nine cancer-related mutations, respectively. TOV-21G showed a CD44 +/high /CD24 -/low /CD117 -/low /CD146 -/low /ALDH1 low profile in both culture models; thus, no significant difference between cultivation models was identified. SKOV-3 showed a CD44 +/high /CD24 +/high / CD117 -/low /CD146 -/low /ALDH1 low profile in both culture models, although the tumorsphere model showed a significant increase in CD24 +/high subpopulation (ovarian CSC-like). Among eleven miRNAs, we observed differences in miRNA expression between culture models. MiR-26a was overexpressed in TOV-21G tumorspheres, albeit downregulated in SKOV-3 tumorspheres. MiR-125b-5p, miR-17-5p and miR-221 was downregulated in tumorsphere model in both cell lines. Given that tumorsphere-derived SKOV-3 had a higher ratio of CD24 +/high cells, we suggest that miR-26a, miR-125b-5p, miR-17-5p and miR-221 downregulation could be related to poor EOC prognosis.
Echavarría-Consuegra, Liliana; Flipse, Jacky; Fernández, Geysson Javier; Kluiver, Joost; van den Berg, Anke; Urcuqui-Inchima, Silvio; Smit, Jolanda M.
2017-01-01
Background Due to the high burden of dengue disease worldwide, a better understanding of the interactions between dengue virus (DENV) and its human host cells is of the utmost importance. Although microRNAs modulate the outcome of several viral infections, their contribution to DENV replication is poorly understood. Methods and principal findings We investigated the microRNA expression profile of primary human macrophages challenged with DENV and deciphered the contribution of microRNAs to infection. To this end, human primary macrophages were challenged with GFP-expressing DENV and sorted to differentiate between truly infected cells (DENV-positive) and DENV-exposed but non-infected cells (DENV-negative cells). The miRNAome was determined by small RNA-Seq analysis and the effect of differentially expressed microRNAs on DENV yield was examined. Five microRNAs were differentially expressed in human macrophages challenged with DENV. Of these, miR-3614-5p was found upregulated in DENV-negative cells and its overexpression reduced DENV infectivity. The cellular targets of miR-3614-5p were identified by liquid chromatography/mass spectrometry and western blot. Adenosine deaminase acting on RNA 1 (ADAR1) was identified as one of the targets of miR-3614-5p and was shown to promote DENV infectivity at early time points post-infection. Conclusion/Significance Overall, miRNAs appear to play a limited role in DENV replication in primary human macrophages. The miRNAs that were found upregulated in DENV-infected cells did not control the production of infectious virus particles. On the other hand, miR-3614-5p, which was upregulated in DENV-negative macrophages, reduced DENV infectivity and regulated ADAR1 expression, a protein that facilitates viral replication. PMID:29045406
Liu, Fengqiong; Gong, Ruijie; Lv, Xiaofei; Li, Huangyuan
2018-04-15
Increasing amounts of evidence have indicated that non-coding RNAs (ncRNAs) have important regulatory potential in various biological processes. However, the contribution of ncRNAs, especially long non-coding RNAs (lncRNAs) to drug induced steatosis remain largely unknown. The aim of this study is to investigate miRNA, lncRNA and mRNA expression profiles and their potential roles in the process of drug induced steatosis. Microarray expression profiles of miRNAs, lncRNAs and mRNAs were determined in dexamethasone treated HepG2 cell as well as control cell. Differential expression, pathway and gene network analyses were developed to identify possible functional RNA molecules in dexamethasone induced steatosis. Compared with control HepG2 cell, 652 lncRNAs (528 up-regulated and 124 down-regulated), 655 mRNAs (527 upregulated and 128 down-regulated) and 114 miRNAs (55 miRNAs up-regulated and 59 down-regulated) were differentially expressed in dexamethasone treated HepG2 cell. Pathway analysis showed that the fatty acid biosynthesis, insulin resistance, PPAR signaling pathway, regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, steroid hormone biosynthesis signaling pathways had a close relationship with dexamethasone induced steatosis. 10 highly dysregulated mRNAs and 20 miRNAs, which are closely related to lipid metabolism, were identified and validated by PCR, which followed by ceRNA analysis. CeRNA network analysis identified 5 lipid metabolism related genes, including CYP7A1, CYP11A1, PDK4, ABHD5, ACSL1. It also identified 12 miRNAs (miR-23a-3p, miR-519d-3p, miR-4328, miR-15b-5p etc.) and 177 lncRNAs (ENST00000508884, ENST00000608794, ENST00000568457 etc.). Our results provide a foundation and an expansive view of the roles and mechanisms of ncRNAs in dexamethasone induced steatosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Hantaviruses induce cell type- and viral species-specific host microRNA expression signatures
Shin, Ok Sarah; Kumar, Mukesh; Yanagihara, Richard; Song, Jin-Won
2014-01-01
The mechanisms of hantavirus-induced modulation of host cellular immunity remain poorly understood. Recently, microRNAs (miRNAs) have emerged as a class of essential regulators of host immune response genes. To ascertain if differential host miRNA expression toward representative hantavirus species correlated with immune response genes, miRNA expression profiles were analyzed in human endothelial cells, macrophages and epithelial cells infected with pathogenic and nonpathogenic rodent- and shrew-borne hantaviruses. Distinct miRNA expression profiles were observed in a cell type- and viral species-specific pattern. A subset of miRNAs, including miR-151-5p and miR-1973, were differentially expressed between Hantaan virus and Prospect Hill virus. Pathway analyses confirmed that the targets of selected miRNAs were associated with inflammatory responses and innate immune receptor-mediated signaling pathways. Our data suggest that differential immune responses following hantavirus infection may be regulated in part by cellular miRNA through dysregulation of genes critical to the inflammatory process. PMID:24074584
Dysregulated miR-671-5p / CDR1-AS / CDR1 / VSNL1 axis is involved in glioblastoma multiforme
Salito, Loredana; Sammito, Mariangela; Banelli, Barbara; Caltabiano, Rosario; Barbagallo, Giuseppe; Zappalà, Agata; Battaglia, Rosalia; Cirnigliaro, Matilde; Lanzafame, Salvatore; Vasquez, Enrico; Parenti, Rosalba; Cicirata, Federico; Di Pietro, Cinzia; Romani, Massimo; Purrello, Michele
2016-01-01
MiR-671-5p is encoded by a gene localized at 7q36.1, a region amplified in human glioblastoma multiforme (GBM), the most malignant brain cancer. To investigate whether expression of miR-671-5p were altered in GBM, we analyzed biopsies from a cohort of forty-five GBM patients and from five GBM cell lines. Our data show significant overexpression of miR-671-5p in both biopsies and cell lines. By exploiting specific miRNA mimics and inhibitors, we demonstrated that miR-671-5p overexpression significantly increases migration and to a less extent proliferation rates of GBM cells. Through a combined in silico and in vitro approach, we identified CDR1-AS, CDR1, VSNL1 as downstream miR-671-5p targets in GBM. Expression of these genes significantly decreased both in GBM biopsies and cell lines and negatively correlated with that of miR-671-5p. Based on our data, we propose that the axis miR-671-5p / CDR1-AS / CDR1 / VSNL1 is functionally altered in GBM cells and is involved in the modification of their biopathological profile. PMID:26683098
MicroRNA Expression in Alpha and Beta Cells of Human Pancreatic Islets
Vargas, Nancy; Rosero, Samuel; Piroso, Julieta; Ichii, Hirohito; Umland, Oliver; Zhijie, Jiang; Tsinoremas, Nicholas; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan; Pastori, Ricardo L.
2013-01-01
microRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in β-cells (β-miRNAs). Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels. In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different aspects of islet biology and pathophysiology. PMID:23383059
MicroRNA expression in alpha and beta cells of human pancreatic islets.
Klein, Dagmar; Misawa, Ryosuke; Bravo-Egana, Valia; Vargas, Nancy; Rosero, Samuel; Piroso, Julieta; Ichii, Hirohito; Umland, Oliver; Zhijie, Jiang; Tsinoremas, Nicholas; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan; Pastori, Ricardo L
2013-01-01
microRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in β-cells (β-miRNAs). Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels.In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different aspects of islet biology and pathophysiology.
Vriens, Annette; Nawrot, Tim S; Saenen, Nelly D; Provost, Eline B; Kicinski, Michal; Lefebvre, Wouter; Vanpoucke, Charlotte; Van Deun, Jan; De Wever, Olivier; Vrijens, Karen; De Boever, Patrick; Plusquin, Michelle
2016-07-26
Ultrafine particles (<100 nm) are ubiquitous present in the air and may contribute to adverse cardiovascular effects. Exposure to air pollutants can alter miRNA expression, which can affect downstream signaling pathways. miRNAs are present both in the intracellular and extracellular environment. In adults, miR-222 and miR-146a were identified as associated with particulate matter exposure. However, there is little evidence of molecular effects of ambient air pollution in children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children. Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week. Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI:10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles. Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva.
Zheng, Xin; Zhao, Feng-Chao; Pang, Yong; Li, Dong-Ya; Yao, Sheng-Cheng; Sun, Shao-Song; Guo, Kai-Jin
2017-06-01
Osteoarthritis (OA) is characterized by degradation of chondrocyte extracellular matrix (ECM). Accumulating evidence suggests that microRNAs (miRNAs) are associated with OA, but little is known of their function in chondrocyte ECM degradation. The objective of this study was to investigate the expression and function of miRNAs in OA. miRNA expression profile was determined in OA cartilage tissues and controls, employing Solexa sequencing and reverse transcription quantitative PCR (RT-qPCR). According to a modified Mankin scale, cartilage degradation was evaluated. Functional analysis of the miRNAs on chondrocyte ECM degradation was performed after miRNA transfection and IL-1β treatment. Luciferase reporter assays and western blotting were employed to determine miRNA targets. Expression of miR-221-3p was downregulated in OA cartilage tissues, which was significantly correlated with a modified Mankin scale. Through gain-of-function and loss-of-function studies, miR-221-3p was shown to significantly affect matrix synthesis gene expression and chondrocyte proliferation and apoptosis. Using SW1353 and C28I2 cells, SDF1 was identified as a target of miR-221-3p. SDF1 overexpression resulted in increased expression of catabolic genes such as MMP-13 and ADAMTS-5 in response to IL-1β, but these effects were moderated by miR-221-3p. SDF1 treatment antagonized this effect, while knockdown of SDF1 by shSDF1 induced inhibitory effects on the expression of CXCR4 and its main target genes, similar to miR-221-3p. The results indicate that upregulation of miR-221-3p could prevent IL-1β-induced ECM degradation in chondrocytes. Targeting the SDF1/CXCR4 signaling pathway may be used as a therapeutic approach for OA. miR-221-3p is downregulated in human cartilage tissues. miR-221-3p levels are associated with cartilage degeneration grade. miR-221-3p upregulation prevents IL-1β-induced ECM degradation in chondrocytes. Protection of ECM degradation by miR-223-3p occurs via SDF1/CXCR4 signaling. miR-221-3p is identified as a novel potential therapeutic target for osteoarthritis. KEY MESSAGES: miR-221-3p is downregulated in human cartilage tissues. miR-221-3p levels are associated with cartilage degeneration grade. miR-221-3p upregulation prevents IL-1β-induced ECM degradation in chondrocytes. Protection of ECM degradation by miR-223-3p occurs via SDF1/CXCR4 signaling. miR-221-3p is identified as a novel potential therapeutic target for osteoarthritis.
Zhu, Liye; Gao, Jing; Huang, Kunlun; Luo, Yunbo; Zhang, Boyang; Xu, Wentao
2015-01-01
Aflatoxin-B1 (AFB1), a hepatocarcinogenic mycotoxin, was demonstrated to induce the high rate of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the regulation of several biological processes in HCC. However, the function of miRNAs in AFB1-induced HCC has received a little attention. Here, we applied Illumina deep sequencing technology for high-throughout profiling of microRNAs in HepG2 cells lines after treatment with AFB1. Analysis of the differential expression profile of miRNAs in two libraries, we identified 9 known miRNAs and 1 novel miRNA which exhibited abnormal expression. KEGG analysis indicated that predicted target genes of differentially expressed miRNAs are involved in cancer-related pathways. Down-regulated of Drosha, DGCR8 and Dicer 1 indicated an impairment of miRNA biogenesis in response to AFB1. miR-34a was up-regulated significantly, down-regulating the expression of Wnt/β-catenin signaling pathway by target gene β-catenin. Anti-miR-34a can significantly relieved the down-regulated β-catenin and its downstream genes, c-myc and Cyclin D1, and the S-phase arrest in cell cycle induced by AFB1 can also be relieved. These results suggested that AFB1 might down-regulate Wnt/β-catenin signaling pathway in HepG2 cells by up-regulating miR-34a, which may involve in the mechanism of liver tumorigenesis. PMID:26567713
You, Li; Pan, Ling; Chen, Lin; Gu, Wensha; Chen, Jinyu
2016-01-01
Osteoporosis is a progressive bone disease characterized by a decrease in bone mass and density, which results in an increased risk of fractures. Mesenchymal stem cells (MSCs) are progenitor cells that can differentiate into osteoblasts, osteocytes and adipocytes in bone and fat formation. A reduction in the differentiation of MSCs into osteoblasts contributes to the impaired bone formation observed in osteoporosis. MicroRNAs (miRNAs) play a regulatory role in osteogenesis and MSC differentiation. MiR-27a has been reported to be down-regulated in the development of osteoporosis and during adipogenic differentiation. In this study, a miRNA microarray analysis was used to investigate expression profiles of miRNA in the serum of osteoporotic patients and healthy controls and this data was validated by quantitative real-time PCR (qRT-PCR). MSCs isolated from human and mice with miR-27a inhibition or overexpression were induced to differentiate into osteoblasts or adipocytes. TargetScan and PicTar were used to predict the target gene of miR-27a. The mRNA or protein levels of several specific proteins in MSCs were detected using qRT-PCR or western blot analysis. Ovariectomized mice were used as in vivo model of human postmenopausal osteoporosis for bone mineral density measurement, micro-CT analysis and histomorphometric analysis. Here, we analyzed the role of miR-27a in bone metabolism. Microarray analysis indicated that miR-27a expression was significantly reduced in osteoporotic patients. Analysis on MSCs derived from patients with osteoporosis indicated that osteoblastogenesis was reduced, whereas adipogenesis was increased. MSCs that had undergone osteoblast induction showed a significant increase in miR-27a expression, whereas cells that had undergone adipocyte induction showed a significant decrease in miR-27a expression, indicating that miR-27a was essential for MSC differentiation. We demonstrated that myocyte enhancer factor 2 c (Mef2c), a transcription factor, was the direct target of miR-27a using a dual luciferase assay. An inverse relationship between miR-27a expression and Mef2c expression in osteoporotic patients was shown. Silencing of miR-27a decreased bone formation, confirming the role of miR-27a in bone formation in vivo. In summary, miR-27a was essential for the shift of MSCs from osteogenic differentiation to adipogenic differentiation in osteoporosis by targeting Mef2c. © 2016 S. Karger AG, Basel.
Yue, Erkui; Li, Chao; Li, Yu; Liu, Zhen; Xu, Jian-Hong
2017-07-01
MiR529a affects rice panicle architecture by targeting OsSPL2,OsSPL14 and OsSPL17 genes that could regulate their downstream panicle related genes. The panicle architecture determines the grain yield and quality of rice, which could be regulated by many transcriptional factors. The SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors are involved in the regulation of panicle development, which are targeted by miR156 and miR529. The expression profile demonstrated that miR529a is preferentially expressed in the early panicle of rice and it might regulate panicle development in rice. However, the regulation mechanism of miR529-SPL is still not clear. In this study, we predicted five miR529a putative target genes, OsSPL2, OsSPL14, OsSPL16, OsSPL17 and OsSPL18, while only the expression of OsSPL2, OsSPL14, and OsSPL17 was regulated by miR529a in the rice panicle. Overexpression of miR529a dramatically affected panicle architecture, which was regulated by OsSPL2, OsSPL14, and OsSPL17. Furthermore, the 117, 35, and 25 pathway genes associated with OsSPL2, OsSPL14 and OsSPL17, respectively, were predicted, and they shared 20 putative pathway genes. Our results revealed that miR529a could play a vital role in the regulation of panicle architecture through regulating OsSPL2, OsSPL14, OsSPL17 and the complex networks formed by their pathway and downstream genes. These findings will provide new genetic resources for reshaping ideal plant architecture and breeding high yield rice varieties.
MicroRNA-205 targets tight junction-related proteins during urothelial cellular differentiation.
Chung, Pei-Jung Katy; Chi, Lang-Ming; Chen, Chien-Lun; Liang, Chih-Lung; Lin, Chung-Tzu; Chang, Yu-Xun; Chen, Chun-Hsien; Chang, Yu-Sun
2014-09-01
The mammalian bladder urothelium classified as basal, intermediate, and terminally differentiated umbrella cells offers one of the most effective permeability barrier functions known to exist in nature because of the formation of apical uroplakin plaques and tight junctions. To improve our understanding of urothelial differentiation, we analyzed the microRNA (miRNA) expression profiles of mouse urinary tissues and by TaqMan miRNA analysis of microdissected urothelial layers and in situ miRNA-specific hybridization to determine the dependence of these miRNAs on the differentiation stage. Our in situ hybridization studies revealed that miR-205 was enriched in the undifferentiated basal and intermediate cell layers. We then used a quantitative proteomics approach to identify miR-205 target genes in primary cultured urothelial cells subjected to antagomir-mediated knockdown of specific miRNAs. Twenty-four genes were reproducibly regulated by miR-205; eleven of them were annotated as cell junction- and tight junction-related molecules. Western blot analysis demonstrated that antagomir-induced silencing of miR-205 in primary cultured urothelial cells elevated the expression levels of Tjp1, Cgnl1, and Cdc42. Ectopic expression of miR-205 in MDCK cells inhibited the expression of tight junction proteins and the formation of tight junctions. miR-205- knockdown urothelial cells showed alterations in keratin synthesis and increases of uroplakin Ia and Ib, which are the urothelial differentiation products. These results suggest that miR-205 may contribute a role in regulation of urothelial differentiation by modulating the expression of tight junction-related molecules. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Dioni, Laura; Angelici, Laura; Vigna, Luisella; Farronato, Giampietro; Pesatori, Angela Cecilia; Bollati, Valentina
2016-01-01
Objectives In this study on 90 individuals we aimed at evaluating the microRNAs (miRNAs) expression profile associated with personal levels of Titanium (Ti) and Zirconium (Zr) traced in hair samples. Ti and Zr materials are broadly used for dental implants but the biological reactions triggered by a long term presence of these materials in the oral cavity still need to be assessed. MiRNAs are mechanisms that need to be investigated as they play a fundamental role in the control of gene expression following external stimuli and contribute to a wide range of pathophysiological processes. Methods Using the TaqMan® Low-Density Array, we assessed the expression levels of 377 human miRNAs in peripheral blood of 90 subjects. Hair samples were analyzed for Ti and Zr content using Inductively Coupled Plasma-Mass Spectrometry. We performed multivariable regression analysis to investigate the effects of Ti and Zr exposure on miRNA expression levels. We used the Ingenuity Pathway Analysis (IPA) software to explore the functional role of the investigated miRNAs and the related target genes. Results Seven miRNAs (miR-99b, miR-142-5p, miR-152, miR-193a-5p, miR-323-3p, miR-335, miR-494) resulted specifically associated with Zr levels. The functional target analysis showed that miRNAs are involved in mechanisms such as inflammation, skeletal and connective tissue disorders. Conclusions Our data suggest that Zr is more bioactive than Ti and show that miRNAs are relevant molecular mechanisms sensitive to Zr exposure. PMID:27611787
Duan, Liu Jian; Qi, Jun; Kong, Xiang Jie; Huang, Tao; Qian, Xiao Qiang; Xu, Ding; Liang, Jun Hao; Kang, Jian
2015-02-01
Bladder outlet obstruction (BOO) evokes urinary bladder wall remodeling significantly, including the phenotype shift of bladder smooth muscle cells (BSMCs) where transforming growth factor-beta1 (TGF-β1) plays a pivotal role given the emerging function of modulating cellular phenotype. miR-133 plays a role in cardiac and muscle remodeling, however, little is known about its roles in TGF-β1-induced BSMC hypertrophic and fibrotic response. Here, we verified BOO induced bladder wall remodeling and TGF-β1 expression mainly located in bladder endothelium. Furthermore, we uncovered miR-133a/b expression profile in BOO rats, and then explored its regulated effects on BSMCs' phenotypic shift. Our study found that miR-133 became down-regulated during rat bladder remodeling. Next, we sought to examine whether the expression of miR-133 was down-regulated in primary BSMCs in response to TGF-β1 stimulation and whether forced overexpression of miR-133 could regulate profibrotic TGF-β signaling. We found that stimulation of BSMCs with exogenous TGF-β1 of increasing concentrations resulted in a dose-dependent decrease of miR-133a/b levels and transfection with miR-133 mimics attenuated TGF-β1-induced α-smooth muscle actin, extracellular matrix subtypes and fibrotic growth factor expression, whereas it upregulated high molecular weight caldesmon expression compared with the negative control. Also, downregulation of p-Smad3, not p-Smad2 by miR-133 was detected. Additionally, miR-133 overexpression suppressed TGF-β1-induced BSMC hypertrophy and proliferation through influencing cell cycle distribution. Bioinformatics analyses predicted that connective tissue growth factor (CTGF) was the potential target of miR-133, and then binding to the 3'-untranslated region of CTGF was validated by luciferase reporter assay. These results reveal a novel regulator for miR-133 to modulate TGF-β1-induced BSMC phenotypic changes by targeting CTGF through the TGF-β-Smad3 signaling pathway. A novel antifibrotic functional role for miR-133 is presented which may represent a potential target for diagnostic and therapeutic strategies in bladder fibrosis. Copyright © 2014 Elsevier Inc. All rights reserved.
Tano, Nobuko; Kim, Ha Won; Ashraf, Muhammad
2011-01-01
The interaction between chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor (SDF)-1, plays an important role in stem cell mobilization and migration in ischemic tissues. MicroRNAs (miRs) are key regulators of stem cell function and are involved in regulation of stem cell survival and differentiation to adopt different cell lineages. In this study, we show that ischemia inhibits the expression of miR-150 in BM-derived mononuclear cells (MNC) and activates its target Cxcr4 gene. Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration. By using mouse acute myocardial infarction (MI) model, we found that MNCs in peripheral blood (PB) were increased significantly at day 5 after AMI as compared to control group and the number of CXCR4 positive MNCs both in bone marrow (BM) and PB was also markedly increased after MI. Analysis by microarray-based miRNA profiling and real-time PCR revealed that the expression of miR-150 which targets Cxcr4 gene as predicted was significantly downregulated in BM-MNCs after MI. Abrogation of miR-150 markedly increased CXCR4 protein expression suggesting its target gene. To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs. Furthermore, in vivo BM transplantation of MNCs lacking miR-150 expression by lentiviral vector into the irradiated wild type mice resulted in the increased number of MNCs in PB after AMI as compared to control. In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair. PMID:22039399
NASA Astrophysics Data System (ADS)
Xu, Dan; Sun, Yeqing; Gao, Ying; Xing, Yanfang
microRNAs (miRNAs) is reported to be sensitive to radiation exposure and altered gravity, involved in a variety of biological processes through negative regulation of gene expression. Dystrophin-like dys-1 gene is expressed and required in muscle tissue, which plays a vital role in mechanical transduction when gravity varies. In the present study, we investigated the effect of dys-1 mutation on miRNA expression profile in Caenorhabditis elegans (C. elegans) under space radiation associated with microgravity (R+M) and radiation alone (R) environment during Shenzhou-8 mission. We performed miRNA microarray analysis in dys-1 mutant and wide-type (WT) of dauer larvae and found that 27 miRNAs changed in abundance after spaceflight. Compared with WT, there was different miRNA expression pattern in different treatments in dys-1 mutant. Cel-miR-796 and miR-124 were reversely expressed under R+M and R environment in WT and dys-1 mutant, respectively, indicating they might be affected by microgravity. Mutation of dys-1 remarkably reduced the number of altered miRNAs under space environment, resulting in the decrease of genes in biological categories of “body morphogenesis”, “behavior”, “cell adhesion” and so on. Particularly, we found that those genes controlling regulation of locomotion in WT were lost in dys-1 mutant, while genes in positive regulation of developmental process only existed in dys-1 mutant. miR-796 was predicted to target genes ace-1 and dyc-1 that are functionally linked to dys-1. Integration analysis of miRNA and mRNA expression profile revealed that miR-56 and miR-124 were involved in behavior and locomotion by regulating different target genes under space environment, among which nep-11, deb-1, C07H4.1 and F11H8.2 might be associated with neuromuscular system. Our findings suggest that dys-1 could cause alteration of miRNAs and target genes, involved in regulating the response of C. elegans to space microgravity in neuromuscular system. This research will provide new insight for better understanding of the mechanism in microgravity-induced muscular dystrophy.
Preusse, Matthias; Schughart, Klaus; Pessler, Frank
2017-01-01
Expression of host microRNAs (miRNAs) changes markedly during influenza A virus (IAV) infection of natural and adaptive hosts, but their role in genetically determined host susceptibility to IAV infection has not been explored. We, therefore, compared pulmonary miRNA expression during IAV infection in two inbred mouse strains with differential susceptibility to IAV infection. miRNA expression profiles were determined in lungs of the more susceptible strain DBA/2J and the less susceptible strain C57BL/6J within 120 h post infection (hpi) with IAV (H1N1) PR8. Even the miRNomes of uninfected lungs differed substantially between the two strains. After a period of relative quiescence, major miRNome reprogramming was detected in both strains by 48 hpi and increased through 120 hpi. Distinct groups of miRNAs regulated by IAV infection could be defined: (1) miRNAs ( n = 39) whose expression correlated with hemagglutinin (HA) mRNA expression and represented the general response to IAV infection independent of host genetic background; (2) miRNAs ( n = 20) whose expression correlated with HA mRNA expression but differed between the two strains; and (3) remarkably, miR-147-3p, miR-208b-3p, miR-3096a-5p, miR-3069b-3p, and the miR-467 family, whose abundance even in uninfected lungs differentiated nearly perfectly (area under the ROC curve > 0.99) between the two strains throughout the time course, suggesting a particularly strong association with the differential susceptibility of the two mouse strains. Expression of subsets of miRNAs correlated significantly with peripheral blood granulocyte and monocyte numbers, particularly in DBA/2J mice; miR-223-3p, miR-142-3p, and miR-20b-5p correlated most positively with these cell types in both mouse strains. Higher abundance of antiapoptotic (e.g., miR-467 family) and lower abundance of proapoptotic miRNAs (e.g., miR-34 family) and those regulating the PI3K-Akt pathway (e.g., miR-31-5p) were associated with the more susceptible DBA/2J strain. Substantial differences in pulmonary miRNA expression between the two differentially susceptible mouse strains were evident even before infection, but evolved further throughout infection and could in part be attributed to differences in peripheral blood leukocyte populations. Thus, pulmonary miRNA expression both before and during IAV infection is in part determined genetically and contributes to susceptibility to IAV infection in this murine host, and likely in humans.
Clinical significance of miRNA host gene promoter methylation in prostate cancer.
Daniunaite, Kristina; Dubikaityte, Monika; Gibas, Povilas; Bakavicius, Arnas; Rimantas Lazutka, Juozas; Ulys, Albertas; Jankevicius, Feliksas; Jarmalaite, Sonata
2017-07-01
Only a part of prostate cancer (PCa) patients has aggressive malignancy requiring adjuvant treatment after radical prostatectomy (RP). Biomarkers capable to predict biochemical PCa recurrence (BCR) after RP would significantly improve preoperative risk stratification and treatment decisions. MicroRNA (miRNA) deregulation has recently emerged as an important phenomenon in tumor development and progression, however, the mechanisms remain largely unstudied. In the present study, based on microarray profiling of DNA methylation in 9 pairs of PCa and noncancerous prostate tissues (NPT), host genes of miR-155-5p, miR-152-3p, miR-137, miR-31-5p, and miR-642a, -b were analyzed for promoter methylation in 129 PCa, 35 NPT, and 17 benign prostatic hyperplasia samples (BPH) and compared to the expression of mature miRNAs and their selected targets (DNMT1, KDM1A, and KDM5B). The Cancer Genome Atlas dataset was utilized for validation. Methylation of mir-155, mir-152, and mir-137 host genes was PCa-specific, and downregulation of miR-155-5p significantly correlated with promoter methylation. Higher KDM5B expression was observed in samples with methylated mir-155 or mir-137 promoters, whereas upregulation of KDM1A and DNMT1 was associated with mir-155 and mir-152 methylation status, respectively. Promoter methylation of mir-155, mir-152, and mir-31 was predictive of BCR-free survival in various Cox models and increased the prognostic value of clinicopathologic factors. In conclusion, methylated mir-155, mir-152, mir-137, and mir-31 host genes are promising diagnostic and/or prognostic biomarkers of PCa. Methylation status of particular miRNA host genes as independent variables or in combinations might assist physicians in identifying poor prognosis PCa patients preoperatively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ciccacci, C; Perricone, C; Politi, C; Rufini, S; Ceccarelli, F; Cipriano, E; Alessandri, C; Latini, A; Valesini, G; Novelli, G; Conti, F; Borgiani, P
2017-07-01
Recently, a study has shown that a polymorphism in the region of MIR1279 modulates the expression of the TRAF3IP2 gene. Since polymorphisms in the TRAF3IP2 gene have been described in association with systemic lupus erithematosus (SLE) susceptibility and with the development of pericarditis, our aim is to verify if the MIR1279 gene variability could also be involved. The rs1463335 SNP, located upstream MIR1279 gene, was analyzed by allelic discrimination assay in 315 Italian SLE patients and 201 healthy controls. Moreover, the MIR1279 gene was full sequenced in 50 patients. A case/control association study and a genotype/phenotype correlation analysis were performed. We also constructed a pericarditis genetic risk profile for patients with SLE. The full sequencing of the MIR1279 gene in patients with SLE did not reveal any novel or known variation. The variant allele of the rs1463335 SNP was significantly associated with susceptibility to pericarditis ( P = 0.017 and OR = 1.67). A risk profile model for pericarditis considering the risk alleles of MIR1279 and three other genes (STAT4, PTPN2 and TRAF3IP2) showed that patients with 4 or 5 risk alleles have a higher risk of developing pericarditis ( OR = 4.09 with P = 0.001 and OR = 6.04 with P = 0.04 respectively). In conclusion, we describe for the first time the contribution of a MIR1279 SNP in pericarditis development in patients with SLE and a genetic risk profile model that could be useful to identify patients more susceptible to developing pericarditis in SLE. This approach could help to improve the prediction and the management of this complication.
Grazing Affects Exosomal Circulating MicroRNAs in Cattle
Muroya, Susumu; Ogasawara, Hideki; Hojito, Masayuki
2015-01-01
Circulating microRNAs (c-miRNAs) are associated with physiological adaptation to acute and chronic aerobic exercise in humans. To investigate the potential effect of grazing movement on miRNA circulation in cattle, here we profiled miRNA expression in centrifugally prepared exosomes from the plasma of both grazing and housed Japanese Shorthorn cattle. Microarray analysis of the c-miRNAs resulted in detection of a total of 231 bovine exosomal miRNAs in the plasma, with a constant expression level of let-7g across the duration and cattle groups. Expression of muscle-specific miRNAs such as miR-1, miR-133a, miR-206, miR-208a/b, and miR-499 were undetectable, suggesting the mildness of grazing movement as exercise. According to validation by quantitative RT-PCR, the circulating miR-150 level in the grazing cattle normalized by the endogenous let-7g level was down-regulated after 2 and 4 months of grazing (P < 0.05), and then its levels in housed and grazing cattle equalized when the grazing cattle were returned to a housed situation. Likewise, the levels of miR-19b, miR-148a, miR-221, miR-223, miR-320a, miR-361, and miR-486 were temporarily lowered in the cattle at 1 and/or 2 month of grazing compared to those of the housed cattle (P < 0.05). In contrast, the miR-451 level was up-regulated in the grazing cattle at 2 months of grazing (P = 0.044). The elevation of miR-451 level in the plasma was coincident with that in the biceps femoris muscle of the grazing cattle (P = 0.008), which suggests the secretion or intake of miR-451 between skeletal muscle cells and circulation during grazing. These results revealed that exosomal c-miRNAs in cattle were affected by grazing, suggesting their usefulness as molecular grazing markers and functions in physiological adaptation of grazing cattle associated with endocytosis, focal adhesion, axon guidance, and a variety of intracellular signaling, as predicted by bioinformatic analysis. PMID:26308447
Hung, Tzu-Min; Ho, Cheng-Maw; Liu, Yen-Chun; Lee, Jia-Ling; Liao, Yow-Rong; Wu, Yao-Ming; Ho, Ming-Chih; Chen, Chien-Hung; Lai, Hong-Shiee; Lee, Po-Huang
2014-01-01
Background & Aims Insulin-like growth factor, (IGF)-1, is produced mainly by the liver and plays important roles in promoting growth and regulating metabolism. Previous study reported that development of hepatocellular carcinoma (HCC) was accompanied by a significant reduction in serum IGF-1 levels. Here, we hypothesized that dysregulation of microRNAs (miRNA) in HCC can modulate IGF-1 expression post-transcriptionally. Methods The miRNAs expression profiles in a dataset of 29 HCC patients were examined using illumina BeadArray. Specific miRNA (miR)-190b, which was significantly up-regulated in HCC tumor tissues when compared with paired non-tumor tissues, was among those predicted to interact with 3′-untranslated region (UTR) of IGF-1. In order to explore the regulatory effects of miR-190b on IGF-1 expression, luciferase reporter assay, quantitative real-time PCR, western blotting and immunofluorecence analysis were performed in HCC cells. Results Overexpression of miR-190b in Huh7 cells attenuated the expression of IGF-1, whereas inhibition of miR-190b resulted in up-regulation of IGF-1. Restoration of IGF-1 expression reversed miR-190b-mediated impaired insulin signaling in Huh7 cells, supporting that IGF-1 was a direct and functional target of miR-190b. Additionally, low serum IGF-1 level was associated with insulin resistance and poor overall survival in HCC patients. Conclusions Increased expression of miR-190 may cause decreased IGF-1 in HCC development. Insulin resistance appears to be a part of the physiopathologic significance of decreased IGF-1 levels in HCC progression. This study provides a novel miRNA-mediated regulatory mechanism for controlling IGF-1 expression in HCC and elucidates the biological relevance of this interaction in HCC. PMID:24586785
Qin, Xiaobing; Yu, Shaorong; Zhou, Leilei; Shi, Meiqi; Hu, Yong; Xu, Xiaoyue; Shen, Bo; Liu, Siwen; Yan, Dali; Feng, Jifeng
2017-01-01
Exosomes derived from lung cancer cells confer cisplatin (DDP) resistance to other cancer cells. However, the underlying mechanism is still unknown. A549 resistance to DDP (A549/DDP) was established. Microarray was used to analyze microRNA (miRNA) expression profiles of A549 cells, A549/DDP cells, A549 exosomes, and A549/DDP exosomes. There was a strong correlation of miRNA profiles between exosomes and their maternal cells. A total of 11 miRNAs were significantly upregulated both in A549/DDP cells compared with A549 cells and in exosomes derived from A549/DDP cells in contrast to exosomes from A549 cells. A total of 31 downregulated miRNAs were also observed. miR-100-5p was the most prominent decreased miRNA in DDP-resistant exosomes compared with the corresponding sensitive ones. Downregulated miR-100-5p was proved to be involved in DDP resistance in A549 cells, and mammalian target of rapamycin (mTOR) expression was reverse regulated by miR-100-5p. Exosomes confer recipient cells' resistance to DDP in an exosomal miR-100-5p-dependent manner with mTOR as its potential target both in vitro and in vivo. Exosomes from DDP-resistant lung cancer cells A549 can alter other lung cancer cells' sensitivity to DDP in exosomal miR-100-5p-dependent manner. Our study provides new insights into the molecular mechanism of DDP resistance in lung cancer.
Munding, Johanna B; Adai, Alex T; Maghnouj, Abdelouahid; Urbanik, Aleksandra; Zöllner, Hannah; Liffers, Sven T; Chromik, Ansgar M; Uhl, Waldemar; Szafranska-Schwarzbach, Anna E; Tannapfel, Andrea; Hahn, Stephan A
2012-07-15
Pancreatic ductal adenocarcinoma (PDAC) is known for its poor prognosis resulting from being diagnosed at an advanced stage. Accurate early diagnosis and new therapeutic modalities are therefore urgently needed. MicroRNAs (miRNAs), considered a new class of biomarkers and therapeutic targets, may be able to fulfill those needs. Combining tissue microdissection with global miRNA array analyses, cell type-specific miRNA expression profiles were generated for normal pancreatic ductal cells, acinar cells, PDAC cells derived from xenografts and also from macrodissected chronic pancreatitis (CP) tissues. We identified 78 miRNAs differentially expressed between ND and PDAC cells providing new insights into the miRNA-driven pathophysiological mechanisms involved in PDAC development. Having filtered miRNAs which are upregulated in the three pairwise comparisons of PDAC vs. ND, PDAC vs. AZ and PDAC vs. CP, we identified 15 miRNA biomarker candidates including miR-135b. Using relative qRT-PCR to measure miR-135b normalized to miR-24 in 75 FFPE specimens (42 PDAC and 33 CP) covering a broad range of tumor content, we discriminated CP from PDAC with a sensitivity and specificity of 92.9% [95% CI=(80.5, 98.5)] and 93.4% [95% CI=(79.8, 99.3)], respectively. Furthermore, the area under the curve (AUC) value reached of 0.97 was accompanied by positive and negative predictive values of 95% and 91%, respectively. In conclusion, we report pancreatic cell-specific global miRNA profiles, which offer new candidate miRNAs to be exploited for functional studies in PDAC. Furthermore, we provide evidence that miRNAs are well-suited analytes for development of sensitive and specific aid-in-diagnosis tests for PDAC. Copyright © 2011 UICC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potkar, Rewati; Recla, Jill; Busov, Victor, E-mail: vbusov@mtu.edu
2013-02-15
Highlights: ► We show a novel microRNA-mediated mechanism for control of bud dormancy in trees. ► ptr-MIR169a and PtrHAP2–5 gene showed inverse expression during dormancy period. ► The PtrHAP2–5 decline in abundance correlated with high ptr-MIR169a levels. ► PtrHAP2–5 cleavage occurred at the miR169 site during PtrHAP2–5 transcript decline. ► Our results show that miR169 attenuates PtrHAP2–5 transcript during dormancy. -- Abstract: Dormancy is a mechanism evolved in woody perennial plants to survive the winter freezing and dehydration stress via temporary suspension of growth. We have identified two aspen microRNAs (ptr-MIR169a and ptr-MIR169h) which were highly and specifically expressed inmore » dormant floral and vegetative buds. ptr-MIR169a and its target gene PtrHAP2–5 showed inverse expression patterns during the dormancy period. ptr-MIR169a transcript steadily increased through the first half of the dormancy period and gradually declined with the approach of active growing season. PtrHAP2–5 abundance was higher in the beginning of the dormancy period but rapidly declined thereafter. The decline of PtrHAP2–5 correlated with the high levels of ptr-MIR169a accumulation, suggesting miR169-mediated attenuation of the target PtrHAP2–5 transcript. We experimentally verified the cleavage of PtrHAP2–5 at the predicted miR169a site at the time when PtrHAP2–5 transcript decline was observed. HAP2 is a subunit of a nuclear transcription factor Y (NF-Y) complex consisting of two other units, HAP3 and HAP5. Using digital expression profiling we show that poplar HAP2 and HAP5 are preferentially detected in dormant tissues. Our study shows that microRNAs play a significant and as of yet unknown and unstudied role in regulating the timing of bud dormancy in trees.« less
Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs
Chacolla-Huaringa, Rafael; Trevino, Victor; Scott, Sean-Patrick
2017-01-01
Circadian rhythms are essential for temporal (~24 h) regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs) have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h) expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection. PMID:28704935
Bo, Agula; Si, Lengge; Wang, Yuehong; Bao, Lidao; Yuan, Hongwei
2017-07-01
MicroRNAs (miRNAs or miRs) and the target genes before and after warm acupuncture at the genetic level were assessed, and the cytokines and neurotransmitters related to insomnia were studied. Male Sprague-Dawley rats were used to create PCPA insomnia rat models and randomly divided into the normal, model, warm acupuncture, and drug groups. The Dinghui Acupoint, Heyi Acupoint, and Xin Acupoint were inserted in the Mongolian medicine warm acupuncture group. The differential expression profile of microRNA in the brain tissue of the insomnia rats was determined before and after Mongolian medicine warm acupuncture for establishment of miR-101a mimics and inhibitor. qPCR was used to detect the expression level of miR-101a. Western blotting was used to detect the expression level of PAX8. The rats receiving Mongolian medicine warm acupuncture had 141 miRNAs with differential expression compared with the normal rats. The expression level of miR-101a in the cells of the hippocampus of the insomnia rats transfected with miR-101a mimics increased significantly at 72 h (P<0.05). The activity of the neuronal cells transfected with miR-101a inhibitor increased significantly at 72 h (P<0.05). The western blotting result indicated that the expression of the PAX8 protein in the neuronal cells of the insomnia model rats was inhibited and downregulated significantly at 72 h after addition of miR-101a mimics compared with that in the scramble added group (P<0.01). The levels of the interleukins IL-1, IL-2, and IL-6 and the tumor necrosis factor-α in the hypothalamus, hippocampus, and prefrontal cortex decreased significantly compared with those in the blank control group (P<0.05). The levels of noradrenaline, dopamine, and glutamic decreased significantly following warm acupuncture or western medicine treatment (P<0.05). In conclusion, this study demonstrates that the upregulation of miR-101a in the rats treated with warm acupuncture is directly associated with PAX8 regulation.
Bo, Agula; Si, Lengge; Wang, Yuehong; Bao, Lidao; Yuan, Hongwei
2017-01-01
MicroRNAs (miRNAs or miRs) and the target genes before and after warm acupuncture at the genetic level were assessed, and the cytokines and neurotransmitters related to insomnia were studied. Male Sprague-Dawley rats were used to create PCPA insomnia rat models and randomly divided into the normal, model, warm acupuncture, and drug groups. The Dinghui Acupoint, Heyi Acupoint, and Xin Acupoint were inserted in the Mongolian medicine warm acupuncture group. The differential expression profile of microRNA in the brain tissue of the insomnia rats was determined before and after Mongolian medicine warm acupuncture for establishment of miR-101a mimics and inhibitor. qPCR was used to detect the expression level of miR-101a. Western blotting was used to detect the expression level of PAX8. The rats receiving Mongolian medicine warm acupuncture had 141 miRNAs with differential expression compared with the normal rats. The expression level of miR-101a in the cells of the hippocampus of the insomnia rats transfected with miR-101a mimics increased significantly at 72 h (P<0.05). The activity of the neuronal cells transfected with miR-101a inhibitor increased significantly at 72 h (P<0.05). The western blotting result indicated that the expression of the PAX8 protein in the neuronal cells of the insomnia model rats was inhibited and downregulated significantly at 72 h after addition of miR-101a mimics compared with that in the scramble added group (P<0.01). The levels of the interleukins IL-1, IL-2, and IL-6 and the tumor necrosis factor-α in the hypothalamus, hippocampus, and prefrontal cortex decreased significantly compared with those in the blank control group (P<0.05). The levels of noradrenaline, dopamine, and glutamic decreased significantly following warm acupuncture or western medicine treatment (P<0.05). In conclusion, this study demonstrates that the upregulation of miR-101a in the rats treated with warm acupuncture is directly associated with PAX8 regulation. PMID:28672928
Ryu, Ji Kon; Matthaei, Hanno; dal Molin, Marco; Hong, Seung-Mo; Canto, Marcia I.; Schulick, Richard D.; Wolfgang, Christopher; Goggins, Michael G.; Hruban, Ralph H.; Cope, Leslie; Maitra, Anirban
2011-01-01
Background Biomarkers for the diagnostic classification of pancreatic cysts are urgently needed. Deregulated microRNA (miRNAs) expression is widespread in pancreatic cancer. We assessed whether aberrant miRNAs in pancreatic cyst fluid could be used as potential biomarkers for cystic precursor lesions of pancreatic cancer. Methods Cyst fluid specimens were prospectively collected from 40 surgically resected pancreatic cysts, and small RNAs were extracted. The ‘mucinous’ cohort included 14 intraductal papillary mucinous neoplasms (including 3 with an associated adenocarcinoma) and 10 mucinous cystic neoplasms; the ‘nonmucinous’ cohort included 11 serous cystadenomas and 5 other benign cysts. Quantitative reverse transcription PCR was performed for five miRNAs (miR-21, miR-155, miR-221, miR-17-3p, miR-191), which were previously reported as overexpressed in pancreatic adenocarcinomas. Results Significantly higher expression of miR-21, miR-221, and miR-17-3p was observed in the mucinous versus nonmucinous cysts (p < 0.01), with the mean relative fold differences being 7.0-, 7.9-, and 5.4-fold, respectively. Receiver operating characteristic curves demonstrated the highest median area under the curve for miR-21, with a median specificity of 76%, at a sensitivity of 80%. Conclusion This pilot study demonstrates that profiling miRNAs in pancreatic cyst fluid samples is feasible and can yield potential biomarkers for the classification of cystic lesions of the pancreas. PMID:21757972
Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L.
Gao, Lei; Wang, Lifang; Gao, Meijuan; Jiao, Zhujin; Qiao, Huili; Yang, Jianwei; Chen, Min; Yao, Lunguang; Liu, Renyi; Kan, Yunchao
2016-01-01
The development and maturation of maize kernel involves meticulous and fine gene regulation at transcriptional and post-transcriptional levels, and miRNAs play important roles during this process. Although a number of miRNAs have been identified in maize seed, the ones involved in the early development of grains and in different lines of maize have not been well studied. Here, we profiled four small RNA libraries, each constructed from groups of immature grains of Zea mays inbred line Chang 7–2 collected 4–6, 7–9, 12–14, and 18–23 days after pollination (DAP). A total of 40 known (containing 111 unique miRNAs) and 162 novel (containing 196 unique miRNA candidates) miRNA families were identified. For conserved and novel miRNAs with over 100 total reads, 44% had higher accumulation before the 9th DAP, especially miR166 family members. 42% of miRNAs had highest accumulation during 12–14 DAP (which is the transition stage from embryogenesis to nutrient storage). Only 14% of miRNAs had higher expression 18–23 DAP. Prediction of potential targets of all miRNAs showed that 165 miRNA families had 377 target genes. For miR164 and miR166, we showed that the transcriptional levels of their target genes were significantly decreased when co-expressed with their cognate miRNA precursors in vivo. Further analysis shows miR159, miR164, miR166, miR171, miR390, miR399, and miR529 families have putative roles in the embryogenesis of maize grain development by participating in transcriptional regulation and morphogenesis, while miR167 and miR528 families participate in metabolism process and stress response during nutrient storage. Our study is the first to present an integrated dynamic expression pattern of miRNAs during maize kernel formation and maturation. PMID:27082634
Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L.
Li, Dandan; Liu, Zongcai; Gao, Lei; Wang, Lifang; Gao, Meijuan; Jiao, Zhujin; Qiao, Huili; Yang, Jianwei; Chen, Min; Yao, Lunguang; Liu, Renyi; Kan, Yunchao
2016-01-01
The development and maturation of maize kernel involves meticulous and fine gene regulation at transcriptional and post-transcriptional levels, and miRNAs play important roles during this process. Although a number of miRNAs have been identified in maize seed, the ones involved in the early development of grains and in different lines of maize have not been well studied. Here, we profiled four small RNA libraries, each constructed from groups of immature grains of Zea mays inbred line Chang 7-2 collected 4-6, 7-9, 12-14, and 18-23 days after pollination (DAP). A total of 40 known (containing 111 unique miRNAs) and 162 novel (containing 196 unique miRNA candidates) miRNA families were identified. For conserved and novel miRNAs with over 100 total reads, 44% had higher accumulation before the 9th DAP, especially miR166 family members. 42% of miRNAs had highest accumulation during 12-14 DAP (which is the transition stage from embryogenesis to nutrient storage). Only 14% of miRNAs had higher expression 18-23 DAP. Prediction of potential targets of all miRNAs showed that 165 miRNA families had 377 target genes. For miR164 and miR166, we showed that the transcriptional levels of their target genes were significantly decreased when co-expressed with their cognate miRNA precursors in vivo. Further analysis shows miR159, miR164, miR166, miR171, miR390, miR399, and miR529 families have putative roles in the embryogenesis of maize grain development by participating in transcriptional regulation and morphogenesis, while miR167 and miR528 families participate in metabolism process and stress response during nutrient storage. Our study is the first to present an integrated dynamic expression pattern of miRNAs during maize kernel formation and maturation.
Godfrey, Jack D; Morton, Jennifer P; Wilczynska, Ania; Sansom, Owen J; Bushell, Martin D
2018-05-29
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease with poor prognostic implications. This is partly due to a large proportion of PDACs carrying mutations in TP53, which impart gain-of-function characteristics that promote metastasis. There is evidence that microRNAs (miRNAs) may play a role in both gain-of-function TP53 mutations and metastasis, but this has not been fully explored in PDAC. Here we set out to identify miRNAs which are specifically dysregulated in metastatic PDAC. To achieve this, we utilised established mouse models of PDAC to profile miRNA expression in primary tumours expressing the metastasis-inducing mutant p53 R172H and compared these to two control models carrying mutations, which promote tumour progression but do not induce metastasis. We show that a subset of miRNAs are dysregulated in mouse PDAC tumour tissues expressing mutant p53 R172H , primary cell lines derived from mice with the same mutations and in TP53 null cells with ectopic expression of the orthologous human mutation, p53 R175H . Specifically, miR-142-3p is downregulated in all of these experimental models. We found that DNA methyltransferase 1 (Dnmt1) is upregulated in tumour tissue and cell lines, which express p53 R172H . Inhibition or depletion of Dnmt1 restores miR-142-3p expression. Overexpression of miR-142-3p attenuates the invasive capacity of p53 R172H -expressing tumour cells. MiR-142-3p dysregulation is known to be associated with cancer progression, metastasis and the miRNA is downregulated in patients with PDAC. Here we link TP53 gain-of-function mutations to Dnmt1 expression and in turn miR-142-3p expression. Additionally, we show a correlation between expression of these genes and patient survival, suggesting that they may have potential to be therapeutic targets.
Thakur, Seema; Grover, Rajesh K.; Gupta, Sanjay; Yadav, Ajay K.; Das, Bhudev C.
2016-01-01
Of several subtypes of breast cancer, triple negative breast cancer (TNBC) is a highly aggressive tumor that lacks expression of hormone receptors for estrogen, progesterone and human epidermal growth factor receptor 2 and shows a worst prognosis. The small noncoding RNAs (miRNAs) considered as master regulator of gene expression play a key role in cancer initiation, progression and drug resistance and have emerged as attractive molecular biomarkers for diagnosis, prognosis and treatment targets in cancer. We have done expression profiling of selected miRNAs in paired serum and tissue samples of TNBC patients and corresponding cell lines and compared with that of other subtypes, in order to identify novel serum miRNA biomarkers for early detection and progression of TNBC. A total of 85 paired tumor tissues and sera with an equal number of adjacent normal tissue margins and normal sera from age matched healthy women including tissue and sera samples from 15 benign fibroadenomas were employed for the study. We report for the first time an extremely high prevalence (73.9%) of TNBC in premenopausal women below 35 years of age and a significant altered expression of a panel of three specific oncogenic miRNAs- miR-21, miR-221, miR-210, and three tumor suppressor miRNAs- miR-195, miR-145 and Let-7a in both tissues and corresponding sera of TNBC patients when compared with triple positive breast cancer (TPBC) patients. While miR-21, miR-221 and miR-210 showed significant over-expression, miR-195 and miR-145 were downregulated and well correlated with various clinicopathological and demographic risk factors, tumor grade, clinical stage and hormone receptor status. Interestingly, despite being a known tumor suppressor, Let-7a showed a significant overexpression in TNBCs. It is suggested that this panel of six miRNA signature may serve as a minimally invasive biomarker for an early detection of TNBC patients. PMID:27404381
MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P.
Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes inmore » EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm{sup 2}) identified 13 miRNAs whose expression was significantly upregulated (p < 0.05). The miRNA with the greatest change was miR-21; it was increased 5.2-fold (p = 0.002) in USS-treated versus control cells. Western analysis demonstrated that PTEN, a known target of miR-21, was downregulated in HUVECs exposed to USS or transfected with pre-miR-21. Importantly, HUVECs overexpressing miR-21 had decreased apoptosis and increased eNOS phosphorylation and nitric oxide (NO{sup {center_dot}}) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO{sup {center_dot}} pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.« less
Szemraj, Maciej; Oszajca, Katarzyna; Szemraj, Janusz; Jurowski, Piotr
2017-01-01
Background Congenital hemochromatosis is a disorder caused by mutations of genes involved in iron metabolism, leading to increased levels of iron concentration in tissues and serum. High concentrations of iron can lead to the development of AMD. The aim of this study was to analyze circulating miRNAs in the serum of congenital hemochromatosis patients with AMD and their correlation with the expression of genes involved in iron metabolism. Material/Methods Peripheral blood monolayer cells and serum were obtained from patients with congenital hemochromatosis, congenital hemochromatosis and AMD, AMD patients without congenital hemochromatosis, and healthy controls. Serum miRNAs expressions were analyzed by RT-PCR (qRT-PCR) using TaqMan MicroRNA probes, and proteins levels were measured by ELSA kits. Gene polymorphisms in TF and TFRC genes were determined using the TaqMan discrimination assay. Results Statistical analysis of the miRNAs expressions selected for further study the miR-31, miR-133a, miR-141, miR-145, miR-149, and miR-182, which are involved in the posttranscriptional expression of iron-related genes: TF, TFRI, DMT1, FTL, and FPN1. It was discovered that the observed changes in the expressions of the miRNAs was correlated with the level of protein in the serum of the analyzed genes. There were no statistically significant differences in the distribution of genotype and allele frequencies in TF and TFRC genes between analyzed groups of patients. Conclusions The differences studied in the miRNA serum profile, in conjunction with the changes in the analyzed protein levels, may be useful in the early detection of congenital hemochromatosis in patients who may develop AMD disease. PMID:28827515
Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer
Liu, Jin; Li, Defang; Dang, Lei; Liang, Chao; Guo, Baosheng; Lu, Cheng; He, Xiaojuan; Cheung, Hilda Y. S.; He, Bing; Liu, Biao; Li, Fangfei; Lu, Jun; Wang, Luyao; Shaikh, Atik Badshah; Jiang, Feng; Lu, Changwei; Peng, Songlin; Zhang, Zongkang; Zhang, Bao-Ting; Pan, Xiaohua; Xiao, Lianbo; Lu, Aiping; Zhang, Ge
2017-01-01
The role of osteoclastic miRNAs in regulating osteolytic bone metastasis (OBM) of breast cancer is still underexplored. Here, we examined the expression profiles of osteoclastogenic miRNAs in human bone specimens and identified that miR-214-3p was significantly upregulated in breast cancer patients with OBM. Consistently, we found increased miR-214-3p within osteoclasts, which was associated with the elevated bone resorption, during the development of OBM in human breast cancer xenografted nude mice (BCX). Furthermore, genetic ablation of osteoclastic miR-214-3p in nude mice prevent the development of OBM. Conditioned medium from MDA-MB-231 cells dramatically stimulated miR-214-3p expression to promote osteoclast differentiation. Mechanistically, a series of in vitro study showed that miR-214-3p directly targeted Traf3 to promote osteoclast activity and bone-resorbing activity. In addition, osteoclast-specific miR-214-3p knock-in mice showed remarkably increased bone resorption when compared to the littermate controls, which was attenuated after osteoclast-targeted treatment with Traf3 3′UTR-containing plasmid. In BCX nude mice, osteoclast-targeted antagomir-214-3p delivery could recover the TRAF3 protein expression and attenuate the development of OBM, respectively. Collectively, inhibition of osteoclastic miR-214-3p may be a potential therapeutic strategy for breast cancer patients with OBM. Meanwhile, the intraosseous TRAF3 could be a promising biomarker for evaluation of the treatment response of antagomir-214-3p. PMID:28071724
Ooi, Chi Yan; Carter, Daniel R; Liu, Bing; Mayoh, Chelsea; Beckers, Anneleen; Lalwani, Amit; Nagy, Zsuzsanna; De Brouwer, Sara; Decaesteker, Bieke; Hung, Tzong-Tyng; Norris, Murray D; Haber, Michelle; Liu, Tao; De Preter, Katleen; Speleman, Frank; Cheung, Belamy B; Marshall, Glenn M
2018-06-15
Neuroblastoma is a pediatric cancer of the sympathetic nervous system where MYCN amplification is a key indicator of poor prognosis. However, mechanisms by which MYCN promotes neuroblastoma tumorigenesis are not fully understood. In this study, we analyzed global miRNA and mRNA expression profiles of tissues at different stages of tumorigenesis from TH-MYCN transgenic mice, a model of MYCN-driven neuroblastoma. On the basis of a Bayesian learning network model in which we compared pretumor ganglia from TH-MYCN +/+ mice to age-matched wild-type controls, we devised a predicted miRNA-mRNA interaction network. Among the miRNA-mRNA interactions operating during human neuroblastoma tumorigenesis, we identified miR-204 as a tumor suppressor miRNA that inhibited a subnetwork of oncogenes strongly associated with MYCN -amplified neuroblastoma and poor patient outcome. MYCN bound to the miR-204 promoter and repressed miR-204 transcription. Conversely, miR-204 directly bound MYCN mRNA and repressed MYCN expression. miR-204 overexpression significantly inhibited neuroblastoma cell proliferation in vitro and tumorigenesis in vivo Together, these findings identify novel tumorigenic miRNA gene networks and miR-204 as a tumor suppressor that regulates MYCN expression in neuroblastoma tumorigenesis. Significance: Network modeling of miRNA-mRNA regulatory interactions in a mouse model of neuroblastoma identifies miR-204 as a tumor suppressor and negative regulator of MYCN. Cancer Res; 78(12); 3122-34. ©2018 AACR . ©2018 American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korvala, Johanna, E-mail: johanna.korvala@oulu.fi; Jee, Kowan; Department of Pathology, Haartman Institute, University of Helsinki, Helsinki
Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteinsmore » and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.« less
Hara, Toshifumi; Jones, Matthew F.; Subramanian, Murugan; Li, Xiao Ling; Ou, Oliver; Zhu, Yuelin; Yang, Yuan; Wakefield, Lalage M.; Hussain, S. Perwez; Gaedcke, Jochen; Ried, Thomas; Luo, Ji; Caplen, Natasha J.; Lal, Ashish
2014-01-01
MicroRNAs (miRNAs) regulate the expression of hundreds of genes. However, identifying the critical targets within a miRNA-regulated gene network is challenging. One approach is to identify miRNAs that exert a context-dependent effect, followed by expression profiling to determine how specific targets contribute to this selective effect. In this study, we performed miRNA mimic screens in isogenic KRAS-Wild-type (WT) and KRAS-Mutant colorectal cancer (CRC) cell lines to identify miRNAs selectively targeting KRAS-Mutant cells. One of the miRNAs we identified as a selective inhibitor of the survival of multiple KRAS-Mutant CRC lines was miR-126. In KRAS-Mutant cells, miR-126 over-expression increased the G1 compartment, inhibited clonogenicity and tumorigenicity, while exerting no effect on KRAS-WT cells. Unexpectedly, the miR-126-regulated transcriptome of KRAS-WT and KRAS-Mutant cells showed no significant differences. However, by analyzing the overlap between miR-126 targets with the synthetic lethal genes identified by RNAi in KRAS-Mutant cells, we identified and validated a subset of miR-126-regulated genes selectively required for the survival and clonogenicity of KRAS-Mutant cells. Our strategy therefore identified critical target genes within the miR-126-regulated gene network. We propose that the selective effect of miR-126 on KRAS-Mutant cells could be utilized for the development of targeted therapy for KRAS mutant tumors. PMID:25245095
Wang, Diming; Liang, Guanxiang; Wang, Bing; Sun, Huizeng; Liu, Jianxin; Guan, Le Luo
2016-01-01
In this study, we investigated the molecular regulatory mechanisms of milk protein production in dairy cows by studying the miRNAomes of five key metabolic tissues involved in protein synthesis and metabolism from dairy cows fed high- and low-quality diets. In total, 340, 338, 337, 330, and 328 miRNAs were expressed in the rumen, duodenum, jejunum, liver, and mammary gland tissues, respectively. Some miRNAs were highly correlated with feed and nitrogen efficiency, with target genes involved in transportation and phosphorylation of amino acid (AA). Additionally, low-quality forage diets (corn stover and rice straw) influenced the expression of feed and nitrogen efficiency-associated miRNAs such as miR-99b in rumen, miR-2336 in duodenum, miR-652 in jejunum, miR-1 in liver, and miR-181a in mammary gland. Ruminal miR-21-3p and liver miR-2285f were predicted to regulate AA transportation by targeting ATP1A2 and SLC7A8, respectively. Furthermore, bovine-specific miRNAs regulated the proliferation and morphology of rumen epithelium, as well as the metabolism of liver lipids and branched-chain AAs, revealing bovine-specific mechanisms. Our results suggest that miRNAs expressed in these five tissues play roles in regulating transportation of AA for downstream milk production, which is an important mechanism that may be associated with low milk protein under low-quality forage feed. PMID:26884323
Zhao, Dejian; Lin, Mingyan; Chen, Jian; Pedrosa, Erika; Hrabovsky, Anastasia; Fourcade, H. Matthew; Zheng, Deyou; Lachman, Herbert M.
2015-01-01
We are using induced pluripotent stem cell (iPSC) technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del), the most common known schizophrenia (SZ)-associated genetic factor. Several genes in the region have been implicated; a promising candidate is DGCR8, which codes for a protein involved in microRNA (miRNA) biogenesis. We carried out miRNA expression profiling (miRNA-seq) on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del. Using thresholds of p<0.01 for nominal significance and 1.5-fold differences in expression, 45 differentially expressed miRNAs were detected (13 lower in SZ and 32 higher). Of these, 6 were significantly down-regulated in patients after correcting for genome wide significance (FDR<0.05), including 4 miRNAs that map to the 22q11.2 del region. In addition, a nominally significant increase in the expression of several miRNAs was found in the 22q11.2 neurons that were previously found to be differentially expressed in autopsy samples and peripheral blood in SZ and autism spectrum disorders (e.g., miR-34, miR-4449, miR-146b-3p, and miR-23a-5p). Pathway and function analysis of predicted mRNA targets of the differentially expressed miRNAs showed enrichment for genes involved in neurological disease and psychological disorders for both up and down regulated miRNAs. Our findings suggest that: i. neurons with 22q11.2 del recapitulate the miRNA expression patterns expected of 22q11.2 haploinsufficiency, ii. differentially expressed miRNAs previously identified using autopsy samples and peripheral cells, both of which have significant methodological problems, are indeed disrupted in neuropsychiatric disorders and likely have an underlying genetic basis. PMID:26173148
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Min; Li, Hui; Liu, Xiaoqiang
2016-07-15
The role of microRNA (miRNA) in proliferative vitreoretinopathy (PVR) progression has not been studied extensively, especially in retinal pigment epithelial–mesenchymal transition (EMT) which is the main reason for formation of PVR. In this study, we first investigated the miRNA expression profile in transforming growth factor beta 1 (TGF-β1) mediated EMT of ARPE-19 cells. Among the five changed miRNAs, miR-29b showed the most significant downregulation. Enhanced expression of miR-29b could reverse TGF-β1 induced EMT through targeting Akt2. Akt2 downregulation could inhibit TGF-β1-induced EMT. Furthermore, inhibition of miR-29b in ARPE-19 cells directly triggered EMT process, which characterized by the phenotypic transition andmore » the upregulation of α-smooth muscle actin (α-SMA) and downregulation of E-cadherin and zona occludin-1 (ZO-1) with increased cell migration. Akt2-shRNA also inhibited miR-29 inhibitor-induced EMT process. These data indicate that miR-29b plays an important role in TGF-β1-mediated EMT in ARPE-19 cells by targeting Akt2. - Highlights: • MiR-29b expression is decreased in TGF-β1-induced EMT of ARPE-19 cells. • MiR-29b inhibits TGF-β1-induced EMT in ARPE-19 cells. • MiR-29b inhibitor induces EMT in ARPE-19 cells. • Akt2 is the target for miR-29b. • Downregulation of Akt2 prevents TGF-β1-induced EMT of ARPE-19 cells.« less
Chandra, Lawrance C.; Kumar, Vinay; Torben, Workineh; Stouwe, Curtis Vande; Winsauer, Peter; Amedee, Angela; Molina, Patricia E.
2014-01-01
ABSTRACT Recreational and medical use of cannabis among human immunodeficiency virus (HIV)-infected individuals has increased in recent years. In simian immunodeficiency virus (SIV)-infected macaques, chronic administration of Δ9-tetrahydrocannabinol (Δ9-THC) inhibited viral replication and intestinal inflammation and slowed disease progression. Persistent gastrointestinal disease/inflammation has been proposed to facilitate microbial translocation and systemic immune activation and promote disease progression. Cannabinoids including Δ9-THC attenuated intestinal inflammation in mouse colitis models and SIV-infected rhesus macaques. To determine if the anti-inflammatory effects of Δ9-THC involved differential microRNA (miRNA) modulation, we profiled miRNA expression at 14, 30, and 60 days postinfection (days p.i.) in the intestine of uninfected macaques receiving Δ9-THC (n = 3) and SIV-infected macaques administered either vehicle (VEH/SIV; n = 4) or THC (THC/SIV; n = 4). Chronic Δ9-THC administration to uninfected macaques significantly and positively modulated intestinal miRNA expression by increasing the total number of differentially expressed miRNAs from 14 to 60 days p.i. At 60 days p.i., ∼28% of miRNAs showed decreased expression in the VEH/SIV group compared to none showing decrease in the THC/SIV group. Furthermore, compared to the VEH/SIV group, THC selectively upregulated the expression of miR-10a, miR-24, miR-99b, miR-145, miR-149, and miR-187, previously been shown to target proinflammatory molecules. NOX4, a potent reactive oxygen species generator, was confirmed as a direct miR-99b target. A significant increase in NOX4+ crypt epithelial cells was detected in VEH/SIV macaques compared to the THC/SIV group. We speculate that miR-99b-mediated NOX4 downregulation may protect the intestinal epithelium from oxidative stress-induced damage. These results support a role for differential miRNA induction in THC-mediated suppression of intestinal inflammation. Whether similar miRNA modulation occurs in other tissues requires further investigation. IMPORTANCE Gastrointestinal (GI) tract disease/inflammation is a hallmark of HIV/SIV infection. Previously, we showed that chronic treatment of SIV-infected macaques with Δ9-tetrahydrocannabinol (Δ9-THC) increased survival and decreased viral replication and infection-induced gastrointestinal inflammation. Here, we show that chronic THC administration to SIV-infected macaques induced an anti-inflammatory microRNA expression profile in the intestine at 60 days p.i. These included several miRNAs bioinformatically predicted to directly target CXCL12, a chemokine known to regulate lymphocyte and macrophage trafficking into the intestine. Specifically, miR-99b was significantly upregulated in THC-treated SIV-infected macaques and confirmed to directly target NADPH oxidase 4 (NOX4), a reactive oxygen species generator known to damage intestinal epithelial cells. Elevated miR-99b expression was associated with a significantly decreased number of NOX4+ epithelial cells in the intestines of THC-treated SIV-infected macaques. Overall, our results show that selective upregulation of anti-inflammatory miRNA expression contributes to THC-mediated suppression of gastrointestinal inflammation and maintenance of intestinal homeostasis. PMID:25378491
Rao, E; Jiang, C; Ji, M; Huang, X; Iqbal, J; Lenz, G; Wright, G; Staudt, L M; Zhao, Y; McKeithan, T W; Chan, W C; Fu, K
2012-05-01
The median survival of patients with mantle cell lymphoma (MCL) ranges from 3 to 5 years with current chemotherapeutic regimens. A common secondary genomic alteration detected in MCL is chromosome 13q31-q32 gain/amplification, which targets a microRNA (miRNA) cluster, miR-17∼92. On the basis of gene expression profiling, we found that high level expression of C13orf25, the primary transcript from which these miRNAs are processed, was associated with poorer survival in patients with MCL (P=0.021). We demonstrated that the protein phosphatase PHLPP2, an important negative regulator of the PI3K/AKT pathway, was a direct target of miR-17∼92 miRNAs, in addition to PTEN and BIM. These proteins were down-modulated in MCL cells with overexpression of the miR-17∼92 cluster. Overexpression of miR-17∼92 activated the PI3K/AKT pathway and inhibited chemotherapy-induced apoptosis in MCL cell lines. Conversely, inhibition of miR-17∼92 expression suppressed the PI3K/AKT pathway and inhibited tumor growth in a xenograft MCL mouse model. Targeting the miR-17∼92 cluster may therefore provide a novel therapeutic approach for patients with MCL.
Jia, Xinzheng; Lin, Huiran; Nie, Qinghua; Zhang, Xiquan; Lamont, Susan J
2016-11-03
Body weight is one of the most important quantitative traits with high heritability in chicken. We previously mapped a quantitative trait locus (QTL) for body weight by genome-wide association study (GWAS) in an F2 chicken resource population. To identify the causal mutations linked to this QTL, expression profiles were determined on livers of high-weight and low-weight chicken lines by microarray. Combining the expression pattern with SNP effects by GWAS, miR-16 was identified as the most likely potential candidate with a 3.8-fold decrease in high-weight lines. Re-sequencing revealed that a 54-bp insertion mutation in the upstream region of miR-15a-16 displayed high allele frequencies in high-weight commercial broiler line. This mutation resulted in lower miR-16 expression by introducing three novel splicing sites instead of the missing 5' terminal splicing of mature miR-16. Elevating miR-16 significantly inhibited DF-1 chicken embryo cell proliferation, consistent with a role in suppression of cellular growth. The 54-bp insertion was significantly associated with increased body weight, bone size and muscle mass. Also, the insertion mutation tended towards fixation in commercial broilers (Fst > 0.4). Our findings revealed a novel causative mutation for body weight regulation that aids our basic understanding of growth regulation in birds.
Jia, Xinzheng; Lin, Huiran; Nie, Qinghua; Zhang, Xiquan; Lamont, Susan J.
2016-01-01
Body weight is one of the most important quantitative traits with high heritability in chicken. We previously mapped a quantitative trait locus (QTL) for body weight by genome-wide association study (GWAS) in an F2 chicken resource population. To identify the causal mutations linked to this QTL, expression profiles were determined on livers of high-weight and low-weight chicken lines by microarray. Combining the expression pattern with SNP effects by GWAS, miR-16 was identified as the most likely potential candidate with a 3.8-fold decrease in high-weight lines. Re-sequencing revealed that a 54-bp insertion mutation in the upstream region of miR-15a-16 displayed high allele frequencies in high-weight commercial broiler line. This mutation resulted in lower miR-16 expression by introducing three novel splicing sites instead of the missing 5′ terminal splicing of mature miR-16. Elevating miR-16 significantly inhibited DF-1 chicken embryo cell proliferation, consistent with a role in suppression of cellular growth. The 54-bp insertion was significantly associated with increased body weight, bone size and muscle mass. Also, the insertion mutation tended towards fixation in commercial broilers (Fst > 0.4). Our findings revealed a novel causative mutation for body weight regulation that aids our basic understanding of growth regulation in birds. PMID:27808177
Li, Xiaoyan; Zhou, Huanfen; Tang, Weiqiang; Guo, Qing; Zhang, Yan
2015-01-01
Purpose: Chemical burn in cornea may cause permanent visual problem or complete blindness. In the present study, we investigated the role of microRNA 206 (miR-206) in relieving chemical burn in mouse cornea. Method: An alkali burn model was established in C57BL/6 mice to induce chemical corneal injury. Within 72 hours, the transient inflammatory responses in alkali-treated corneas were measured by opacity and corneal neovascularization (CNV) levels, and the gene expression profile of miR-206 was measured by quantitative real-time PCR (qPCR). Inhibitory oligonucleotides of miR-206, miR-206-I, were intrastromally injected into alkali-burned corneas. The possible protective effects of down-regulating miR-206 were assessed by both in vivo measurements of inflammatory responses and in vitro histochemical examinations of corneal epithelium sections. The possible binding of miR-206 on its molecular target, connexin43 (Cx43), was assessed by luciferase reporter (LR) and western blot (WB) assays. Cx43 was silenced by siRNA to examine its effect on regulating miR-206 modulation in alkali-burned cornea. Results: Opacity and CNV levels, along with gene expression of miR-206, were all transiently elevated within 72 hours of alkali-burned mouse cornea. Intrastromal injection of miR-206-I into alkali-burned cornea down-regulated miR-206 and ameliorated inflammatory responses both in vivo and in vitro. LR and WB assays confirmed that Cx43 was directly targeted by miR-206 in mouse cornea. Genetic silencing of Cx43 reversed the protective effect of miR-206 down-regulation in alkali-burned cornea. Conclusion: miR-206, associated with Cx43, is a novel molecular modulator in alkali burn in mouse cornea. PMID:26045777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Joshua D.; Chen, Qiang; Mason, Hugh S.
Abstract Key message nta-miR-398 is significantly up-regulated while nta-miR-428d is significantly down-regulated in tobacco after agroinfiltration AbstractMicroRNAs are a class of non-coding regulatory RNAs that can modulate development as well as alter innate antiviral defenses in plants. In this study we explored host changes at the microRNA level within tobacco (Nicotiana benthamiana) after expression of a recombinant anti-Ebola GP1 antibody through Agrobacterium tumefaciens agroinfiltration delivery. A multiplex nanoparticle-based cytometry assay tracked the host expression changes of 53 tobacco microRNAs. Our results revealed that the most abundant microRNAs in actively growing leaves corresponded to nanoparticle probes specific to nta-mir-6149 and nta-miR-168b.more » After agroinfiltration, probes targeting nta-mir-398 and nta-mir-482d were significantly altered in their respective expression levels and were further verified through RT-qPCR analysis. To our knowledge this study is the first to profile microRNA expression in tobacco after agroinfiltration using a multiplex nanoparticle approach.« less
Biology of childhood germ cell tumours, focussing on the significance of microRNAs.
Murray, M J; Nicholson, J C; Coleman, N
2015-01-01
Genomic and protein-coding transcriptomic data have suggested that germ cell tumours (GCTs) of childhood are biologically distinct from those of adulthood. Global messenger RNA profiles segregate malignant GCTs primarily by histology, but then also by age, with numerous transcripts showing age-related differential expression. Such differences are likely to account for the heterogeneous clinico-pathological behaviour of paediatric and adult malignant GCTs. In contrast, as global microRNA signatures of human tumours reflect their developmental lineage, we hypothesized that microRNA profiles would identify common biological abnormalities in all malignant GCTs owing to their presumed shared origin from primordial germ cells. MicroRNAs are short, non-protein-coding RNAs that regulate gene expression via translational repression and/or mRNA degradation. We showed that all malignant GCTs over-express the miR-371-373 and miR-302/367 clusters, regardless of patient age, histological subtype or anatomical tumour site. Furthermore, bioinformatic approaches and subsequent Gene Ontology analysis revealed that these two over-expressed microRNAs clusters co-ordinately down-regulated genes involved in biologically significant pathways in malignant GCTs. The translational potential of this finding has been demonstrated with the detection of elevated serum levels of miR-371-373 and miR-302/367 microRNAs at the time of malignant GCT diagnosis, with levels falling after treatment. The tumour-suppressor let-7 microRNA family has also been shown to be universally down-regulated in malignant GCTs, because of abundant expression of the regulatory gene LIN28. Low let-7 levels resulted in up-regulation of oncogenes including MYCN, AURKB and LIN28 itself, the latter through a direct feedback mechanism. Targeting LIN28, or restoring let-7 levels, both led to effective inhibition of this pathway. In summary, paediatric malignant GCTs show biological differences from their adult counterparts at a genomic and protein-coding transcriptome level, whereas they both display very similar microRNA expression profiles. These similarities and differences may be exploited for diagnostic and/or therapeutic purposes. © 2014 The Authors. Andrology published by John Wiley & Sons Ltd on behalf of American Society of Andrology.
Jorge, Karina T O S; Souza, Renan P; Assis, Marieta T A; Araújo, Marcelo G; Locati, Massimo; Jesus, Amélia M R; Dias Baptista, Ida M F; Lima, Cristiano X; Teixeira, Antônio L; Teixeira, Mauro M; Soriani, Frederico M
2017-05-01
Leprosy is an important cause of disability in the developing world. Early diagnosis is essential to allow for cure and to interrupt transmission of this infection. MicroRNAs (miRNAs) are important factors for host-pathogen interaction and they have been identified as biomarkers for various infectious diseases. The expression profile of 377 microRNAs were analyzed by TaqMan low-density array (TLDA) in skin lesions of tuberculoid and lepromatous leprosy patients as well as skin specimens from healthy controls. In a second step, 16 microRNAs were selected for validation experiments with reverse transcription-quantitative PCR (qRT-PCR) in skin samples from new individuals. Principal-component analysis followed by logistic regression model and receiver operating characteristic (ROC) curve analyses were performed to evaluate the diagnostic potential of selected miRNAs. Four patterns of differential expression were identified in the TLDA experiment, suggesting a diagnostic potential of miRNAs in leprosy. After validation experiments, a combination of four miRNAs (miR-101, miR-196b, miR-27b, and miR-29c) was revealed as able to discriminate between healthy control and leprosy patients with 80% sensitivity and 91% specificity. This set of miRNAs was also able to discriminate between lepromatous and tuberculoid patients with a sensitivity of 83% and 80% specificity. In this work, it was possible to identify a set of miRNAs with good diagnostic potential for leprosy. Copyright © 2017 American Society for Microbiology.
microRNA-451a regulates colorectal cancer proliferation in response to radiation.
Ruhl, Rebecca; Rana, Shushan; Kelley, Katherine; Espinosa-Diez, Cristina; Hudson, Clayton; Lanciault, Christian; Thomas, Charles R; Liana Tsikitis, V; Anand, Sudarshan
2018-05-03
Colorectal cancer (CRC) is a leading cause of cancer-related death. The biologic response of CRC to standard of care adjuvant therapies such as chemotherapy and radiation are poorly understood. MicroRNAs (miRs) have been shown to affect CRC progression and metastasis. Therefore, we hypothesized that specific miRs modulate CRC response to chemoradiation. In this study, we used miR expression profiling and discovered a set of microRNAs upregulated rapidly in response to either a single 2 Gy dose fraction or a 10 Gy dose of γ-radiation in mouse colorectal carcinoma models. We used gain and loss-of-function studies in 2D and 3Dcell proliferation assays and colony formation assays to understand the role of the top miR candidate from our profiling. We used Student's T-tests for simple comparisons and two-factor ANOVA for evaluating significance. The most upregulated candidate at early time points in our signature, miR-451a inhibited tumor cell proliferation and attenuated surviving fraction in longer-term cultures. Conversely, inhibition of miR-451a increased proliferation, tumorsphere formation, and surviving fraction of tumor cells. Using a bioinformatics approach, we identified four genes, CAB39, EMSY, MEX3C, and EREG, as targets of miR-451a. Transfection of miR-451a decreased both mRNA and protein levels of these targets. Importantly, we found miR-451a expression was high and CAB39, EMSY levels were low in a small subset of rectal cancer patients who had a partial response to chemoradiation when compared to patients that had no response. Finally, analysis of a TCGA colorectal cancer dataset revealed that CAB39 and EMSY are upregulated at the protein level in a significant number of CRC patients. Higher levels of CAB39 and EMSY correlated with poorer overall survival. Taken together, our data indicates miR-451a is induced by radiation and may influence colorectal carcinoma proliferation via CAB39 and EMSY pathways.
Differential plasma microvesicle and brain profiles of microRNA in experimental cerebral malaria.
Cohen, Amy; Zinger, Anna; Tiberti, Natalia; Grau, Georges E R; Combes, Valery
2018-05-11
Cerebral malaria (CM) is a fatal complication of Plasmodium infection, mostly affecting children under the age of five in the sub-Saharan African region. CM pathogenesis remains incompletely understood, although sequestered infected red blood cells, inflammatory cells aggregating in the cerebral blood vessels, and the microvesicles (MV) that they release in the circulation, have been implicated. Plasma MV numbers increase in CM patients and in the murine model, where blocking their release, genetically or pharmacologically, protects against brain pathology, suggesting a role of MV in CM neuropathogenesis. In this work, the microRNA (miRNA) cargo of MV is defined for the first time during experimental CM with the overarching hypothesis that this characterization could help understand CM pathogenesis. The change in abundance of miRNA was studied following infection of CBA mice with Plasmodium berghei ANKA strain (causing experimental CM), and Plasmodium yoelii, which causes severe malaria without cerebral complications, termed non-CM (NCM). miRNA expression was analyzed using microarrays to compare MV from healthy (NI) and CM mice, yielding several miRNA of interest. The differential expression profiles of these selected miRNA (miR-146a, miR-150, miR-193b, miR-205, miR-215, miR-467a, and miR-486) were analyzed in mouse MV, MV-free plasma, and brain tissue by quantitative reverse transcription PCR (RT-qPCR). Two miRNA-miR-146a and miR-193b-were confirmed as differentially abundant in MV from CM mice, compared with NCM and NI mice. These miRNA have been shown to play various roles in inflammation, and their dysregulation during CM may be critical for triggering the neurological syndrome via regulation of their potential downstream targets. These data suggest that, in the mouse model at least, miRNA may have a regulatory role in the pathogenesis of severe malaria.
Copper-induced deregulation of microRNA expression in the zebrafish olfactory system
Wang, Lu; Bammler, Theo K.; Beyer, Richard P.; Gallagher, Evan P.
2016-01-01
Although environmental trace metals, such as copper (Cu), can disrupt normal olfactory function in fish, the underlying molecular mechanisms of metal-induced olfactory injury have not been elucidated. Current research has suggested the involvement of epigenetic modifications. To address this hypothesis, we analyzed microRNA (miRNA) profiles in the olfactory system of Cu-exposed zebrafish. Our data revealed 2, 10, and 28 differentially expressed miRNAs in a dose-response manner corresponding to three increasing Cu concentrations. Numerous deregulated miRNAs were involved in neurogenesis (e.g. let-7, miR-7a, miR-128 and miR-138), indicating a role for Cu-mediated toxicity via interference with neurogenesis processes. Putative gene targets of deregulated miRNAs were identified when interrogating our previously published microarray database, including those involved in cell growth and proliferation, cell death, and cell morphology. Moreover, several miRNAs (e.g. miR-203a, miR-199*, miR-16a, miR-16c, and miR-25) may contribute to decreased mRNA levels of their host genes involved in olfactory signal transduction pathways and other critical neurological processes via a post-transcriptional mechanism. Our findings provide novel insight into the epigenetic regulatory mechanisms of metal-induced neurotoxicity of the fish olfactory system, and identify novel miRNA biomarkers of metal exposures. PMID:23745839
snoU6 and 5S RNAs are not reliable miRNA reference genes in neuronal differentiation.
Lim, Q E; Zhou, L; Ho, Y K; Wan, G; Too, H P
2011-12-29
Accurate profiling of microRNAs (miRNAs) is an essential step for understanding the functional significance of these small RNAs in both physiological and pathological processes. Quantitative real-time PCR (qPCR) has gained acceptance as a robust and reliable transcriptomic method to profile subtle changes in miRNA levels and requires reference genes for accurate normalization of gene expression. 5S and snoU6 RNAs are commonly used as reference genes in microRNA quantification. It is currently unknown if these small RNAs are stably expressed during neuronal differentiation. Panels of miRNAs have been suggested as alternative reference genes to 5S and snoU6 in various physiological contexts. To test the hypothesis that miRNAs may serve as stable references during neuronal differentiation, the expressions of eight miRNAs, 5S and snoU6 RNAs in five differentiating neuronal cell types were analyzed using qPCR. The stabilities of the expressions were evaluated using two complementary statistical approaches (geNorm and Normfinder). Expressions of 5S and snoU6 RNAs were stable under some but not all conditions of neuronal differentiation and thus are not suitable reference genes. In contrast, a combination of three miRNAs (miR-103, miR-106b and miR-26b) allowed accurate expression normalization across different models of neuronal differentiation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Araújo, Rita; Santos, Joana M O; Fernandes, Mara; Dias, Francisca; Sousa, Hugo; Ribeiro, Joana; Bastos, Margarida M S M; Oliveira, Paula A; Carmo, Diogo; Casaca, Fátima; Silva, Sandra; Medeiros, Rui; Gil da Costa, Rui M
2018-02-01
Persistent human papillomavirus (HPV) infection is associated with the development of certain types of cancer and the dysregulation of microRNAs has been implicated in HPV-associated carcinogenesis. This is the case of microRNA-146a (miR-146a), which is thought to regulate tumor-associated inflammation. We sought to investigate the expression levels of miR-146a during HPV16-mediated carcinogenesis using skin samples from K14-HPV16 transgenic mice which develop the consecutive phases of the carcinogenesis process. Female transgenic (HPV +/- ) and wild-type (HPV -/- ) mice were sacrificed at 24-26 weeks-old or 28-30 weeks-old. Chest and ear skin samples from HPV +/- and HPV -/- mice were histologically classified and used for microRNA extraction and quantification by qPCR. Chest skin samples from 24 to 26 weeks-old HPV +/- mice presented diffuse epidermal hyperplasia and only 22.5% showed multifocal dysplasia, while at 28-30 weeks-old all (100.0%) HPV +/- animals showed epidermal dysplasia. All HPV +/- ear skin samples showed carcinoma in situ (CIS). MiR-146a expression levels were higher in HPV +/- compared to HPV -/- mice (p = 0.006). There was also an increase in miR-146a expression in dysplastic skin lesions compared with hyperplasic lesions (p = 0.011). Samples showing CIS had a significant decrease in miR-146a expression when compared to samples showing epidermal hyperplasia (p = 0.018) and epidermal dysplasia (p = 0.009). These results suggest that HPV16 induces the overexpression of miR-146a in the initial stages of carcinogenesis (hyperplasia and dysplasia), whereas decreases its expression at later stages (CIS). Taken together, these data implicate and suggest different roles of miR-146a in HPV-mediated carcinogenesis.
Shi, Mengya; Hu, Xiao; Wei, Yu; Hou, Xu; Yuan, Xue; Liu, Jun; Liu, Yueping
2017-01-01
Auxin has long been known as a critical phytohormone that regulates fruit development in plants. However, due to the lack of an enlarged ovary wall in the model plants Arabidopsis and rice, the molecular regulatory mechanisms of fruit division and enlargement remain unclear. In this study, we performed small RNA sequencing and degradome sequencing analyses to systematically explore post-transcriptional regulation in the mesocarp at the hard core stage following treatment of the peach (Prunus persica L.) fruit with the synthetic auxin α-naphthylacetic acid (NAA). Our analyses identified 24 evolutionarily conserved miRNA genes as well as 16 predicted genes. Experimental verification showed that the expression levels of miR398 and miR408b were significantly upregulated after NAA treatment, whereas those of miR156, miR160, miR166, miR167, miR390, miR393, miR482, miR535 and miR2118 were significantly downregulated. Degradome sequencing coupled with miRNA target prediction analyses detected 119 significant cleavage sites on several mRNA targets, including SQUAMOSA promoter binding protein–like (SPL), ARF, (NAM, ATAF1/2 and CUC2) NAC, Arabidopsis thaliana homeobox protein (ATHB), the homeodomain-leucine zipper transcription factor revoluta(REV), (teosinte-like1, cycloidea and proliferating cell factor1) TCP and auxin signaling F-box protein (AFB) family genes. Our systematic profiling of miRNAs and the degradome in peach fruit suggests the existence of a post-transcriptional regulation network of miRNAs that target auxin pathway genes in fruit development. PMID:29236054
Altered expression of miRNAs and methylation of their promoters are correlated in neuroblastoma.
Maugeri, Marco; Barbagallo, Davide; Barbagallo, Cristina; Banelli, Barbara; Di Mauro, Stefania; Purrello, Francesco; Magro, Gaetano; Ragusa, Marco; Di Pietro, Cinzia; Romani, Massimo; Purrello, Michele
2016-12-13
Neuroblastoma is the most common human extracranial solid tumor during infancy. Involvement of several miRNAs in its pathogenesis has been ascertained. Interestingly, most of their encoding genes reside in hypermethylated genomic regions: thus, their tumor suppressor function is normally disallowed in these tumors. To date, the therapeutic role of the demethylating agent 5'-Aza-2 deoxycytidine (5'-AZA) and its effects on miRNAome modulation in neuroblastoma have not been satisfactorily explored. Starting from a high-throughput expression profiling of 754 miRNAs and based on a proper selection, we focused on miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p as candidate miRNAs for our analysis. They resulted downregulated in four neuroblastoma cell lines with respect to normal adrenal gland. MiRNAs 29a-3p and 34b-3p also resulted downregulated in vivo in a murine neuroblastoma progression model. Unlike the amount of methylation of their encoding gene promoters, all these miRNAs were significantly overexpressed following treatment with 5'-AZA. Transfection with candidate miRNAs mimics significantly decreased neuroblastoma cells proliferation rate. A lower expression of miR-181c was significantly associated to a worse overall survival in a public dataset of 498 neuroblastoma samples (http://r2.amc.nl). Our data strongly suggest that CDK6, DNMT3A, DNMT3B are targets of miR-29a-3p, while CCNE2 and E2F3 are targets of miR-34b-3p. Based on all these data, we propose that miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p are disallowed tumor suppressor genes in neuroblastoma and suggest them as new therapeutic targets in neuroblastoma.
Altered expression of miRNAs and methylation of their promoters are correlated in neuroblastoma
Di Mauro, Stefania; Purrello, Francesco; Magro, Gaetano; Ragusa, Marco; Di Pietro, Cinzia; Romani, Massimo; Purrello, Michele
2016-01-01
Neuroblastoma is the most common human extracranial solid tumor during infancy. Involvement of several miRNAs in its pathogenesis has been ascertained. Interestingly, most of their encoding genes reside in hypermethylated genomic regions: thus, their tumor suppressor function is normally disallowed in these tumors. To date, the therapeutic role of the demethylating agent 5′-Aza-2 deoxycytidine (5'-AZA) and its effects on miRNAome modulation in neuroblastoma have not been satisfactorily explored. Starting from a high-throughput expression profiling of 754 miRNAs and based on a proper selection, we focused on miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p as candidate miRNAs for our analysis. They resulted downregulated in four neuroblastoma cell lines with respect to normal adrenal gland. MiRNAs 29a-3p and 34b-3p also resulted downregulated in vivo in a murine neuroblastoma progression model. Unlike the amount of methylation of their encoding gene promoters, all these miRNAs were significantly overexpressed following treatment with 5′-AZA. Transfection with candidate miRNAs mimics significantly decreased neuroblastoma cells proliferation rate. A lower expression of miR-181c was significantly associated to a worse overall survival in a public dataset of 498 neuroblastoma samples (http://r2.amc.nl). Our data strongly suggest that CDK6, DNMT3A, DNMT3B are targets of miR-29a-3p, while CCNE2 and E2F3 are targets of miR-34b-3p. Based on all these data, we propose that miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p are disallowed tumor suppressor genes in neuroblastoma and suggest them as new therapeutic targets in neuroblastoma. PMID:27829219
Jimenez-Mateos, Eva M.; Bray, Isabella; Sanz-Rodriguez, Amaya; Engel, Tobias; McKiernan, Ross C.; Mouri, Genshin; Tanaka, Katsuhiro; Sano, Takanori; Saugstad, Julie A.; Simon, Roger P.; Stallings, Raymond L.; Henshall, David C.
2011-01-01
When an otherwise harmful insult to the brain is preceded by a brief, noninjurious stimulus, the brain becomes tolerant, and the resulting damage is reduced. Epileptic tolerance develops when brief seizures precede an episode of prolonged seizures (status epilepticus). MicroRNAs (miRNAs) are small, noncoding RNAs that function as post-transcriptional regulators of gene expression. We investigated how prior seizure preconditioning affects the miRNA response to status epilepticus evoked by intra-amygdalar kainic acid in mice. The miRNA was extracted from the ipsilateral CA3 subfield 24 hours after focal-onset status epilepticus in animals that had previously received either seizure preconditioning (tolerance) or no preconditioning (injury), and mature miRNA levels were measured using TaqMan low-density arrays. Expression of 21 miRNAs was increased, relative to control, after status epilepticus alone, and expression of 12 miRNAs was decreased. Increased miR-132 levels were matched with increased binding to Argonaute-2, a constituent of the RNA-induced silencing complex. In tolerant animals, expression responses of >40% of the injury-group-detected miRNAs differed, being either unchanged relative to control or down-regulated, and this included miR-132. In vivo microinjection of locked nucleic acid-modified oligonucleotides (antagomirs) against miR-132 depleted hippocampal miR-132 levels and reduced seizure-induced neuronal death. Thus, our data strongly suggest that miRNAs are important regulators of seizure-induced neuronal death. PMID:21945804
Targeting of CCBE1 by miR-330-3p in human breast cancer promotes metastasis.
Mesci, Aruz; Huang, Xiaoyong; Taeb, Samira; Jahangiri, Sahar; Kim, Yohan; Fokas, Emmanouil; Bruce, Jeff; Leong, Hon S; Liu, Stanley K
2017-05-09
MicroRNAs (miRs) are involved in the regulation of many processes that contribute to malignancy, including cell proliferation, radiation resistance, invasion and metastasis. The role of miR-330-3p, an miR upregulated in breast cancer, remains unclear. We examine the association of miR-330-3p with distant relapse-free survival in the Oxford cohort of breast cancer patients. We also study miR-330-3p function using in vitro invasion and ex ovo metastasis assays. Using in vitro luciferase assays, we validate a novel target gene for miR-330-3p, Collagen And Calcium Binding EGF Domains 1 (CCBE1). We assess functional consequences of CCBE1 loss by using siRNA-mediated knockdown followed by in vitro invasion assays. Lastly, we examine the expression profile of CCBE1 in breast carcinomas in the Curtis and TCGA Breast Cancer data sets using Oncomine Platform as well as distant relapse-free and overall survival of patients in the Helsinki University breast cancer data set according to CCBE1 expression status. miR-330-3p is enriched in breast cancer, and higher levels of miR-330-3p expression are associated with lower distant relapse-free survival in a cohort of breast cancer patients. Consistent with these observations, overexpression of miR-330-3p in breast cancer cell lines results in greater invasiveness in vitro, and miR-330-3p-overexpressing cells also metastasise more aggressively ex ovo. We identify CCBE1 as a direct target of miR-330-3p, and show that knockdown of CCBE1 results in a greater invasive capacity. Accordingly, in breast cancer patients CCBE1 is frequently downregulated, and its loss is associated with reduced distant relapse-free and overall survival. We show for the first time that miR-330-3p targets CCBE1 to promote invasion and metastasis. miR-330-3p and CCBE1 may represent promising biomarkers in breast cancer.
MicroRNA-375 Is Induced in Cisplatin Nephrotoxicity to Repress Hepatocyte Nuclear Factor 1-β*
Hao, Jielu; Lou, Qiang; Wei, Qingqing; Mei, Shuqin; Li, Lin; Wu, Guangyu; Mi, Qing-Sheng; Mei, Changlin; Dong, Zheng
2017-01-01
Nephrotoxicity is a major adverse effect of cisplatin-mediated chemotherapy in cancer patients. The pathogenesis of cisplatin-induced nephrotoxicity remains largely unclear, making it difficult to design effective renoprotective approaches. Here, we have examined the role of microRNAs (miRNAs) in cisplatin-induced nephrotoxicity. We show that cisplatin nephrotoxicity was not affected by overall depletion of both beneficial and detrimental miRNAs from kidney proximal tubular cells in mice in which the miRNA-generating enzyme Dicer had been conditionally knocked out. To identify miRNAs involved in cisplatin nephrotoxicity, we used microarray analysis to profile miRNA expression and identified 47 up-regulated microRNAs and 20 down-regulated microRNAs in kidney cortical tissues. One up-regulated miRNA was miR-375, whose expression was also induced in cisplatin-treated renal tubular cells. Interestingly, inhibition of miR-375 decreased cisplatin-induced apoptosis, suggesting that miR-375 is a cell-damaging or pro-apoptotic agent. Blockade of P53 or NF-κB attenuated cisplatin-induced miR-375 expression, supporting a role of P53 and NF-κB in miR-375 induction. We also identified hepatocyte nuclear factor 1 homeobox B (HNF-1β) as a key downstream target of miR-375. Of note, we further demonstrated that HNF-1β protected renal cells against cisplatin-induced apoptosis. Together, these results suggest that upon cisplatin exposure, P53 and NF-κB collaboratively induce miR-375 expression, which, in turn, represses HNF-1β activity, resulting in renal tubular cell apoptosis and nephrotoxicity. PMID:28119452
Dlouha, Dana; Blaha, Milan; Blaha, Vladimir; Fatorova, Ilona; Hubacek, Jaroslav A; Stavek, Petr; Lanska, Vera; Parikova, Alena; Pitha, Jan
2017-11-01
LDL/Lp(a) apheresis therapy is a well-established method of aggressively lowering LDL and Lp(a). Recently, miRNAs have been discussed as markers of vascular status including atherosclerosis. MiRNAs inhibit post-transcriptional processes through RNA duplex formation resulting in gene silencing or regulation of gene expression. We measured a profile of 175 plasma-circulating miRNAs using pre-defined Serum/Plasma Focus Human microRNA PCR Panels in pooled samples of 11 subjects with familial hypercholesterolaemia under long-term apheresis treatment. Subsequently we analysed expressions of ten pre-selected miRNAs potentially involved in lipid homeostasis in the same group of subjects. We compared plasma-circulating miRNA levels isolated from peripheral blood collected immediately before and after apheresis. The greatest differences in plasma levels were found in miR-451a, miR-16, miR-19a/b, miR-223 and miR-185. In subsequent individual miRNA assay we detected a significant increase in miR-33b levels after apheresis (P < 0.05). Additionally, correlations between plasma lipids and miR-33a (P < 0.04) and miR-122 (P < 0.01) have been determined. Moreover, miR-122 levels in LDLR homozygotes were higher compared to heterozygotes after, but not before, apheresis treatment (P < 0.04). LDL/Lp(a) apheresis has an impact on miRNAs associated with lipid homeostasis and vascular status. Copyright © 2017 Elsevier B.V. All rights reserved.
miR-126 contributes to Parkinson disease by dysregulating IGF-1/PI3K signaling
Kim, Woori; Lee, Yenarae; McKenna, Noah D.; Yi, Ming; Simunovic, Filip; Wang, Yulei; Kong, Benjamin; Rooney, Robert J.; Seo, Hyemyung; Stephens, Robert; Sonntag, Kai C.
2014-01-01
Dopamine (DA) neurons in sporadic Parkinson disease (PD) display dysregulated gene expression networks and signaling pathways that are implicated in PD pathogenesis. Micro (mi)RNAs are regulators of gene expression, which could be involved in neurodegenerative diseases. We determined the miRNA profiles in laser microdissected DA neurons from postmortem sporadic PD patients’ brains and age-matched controls. DA neurons had a distinctive miRNA signature and a set of miRNAs was dysregulated in PD. Bioinformatics analysis provided evidence for correlations of miRNAs with signaling pathways relevant to PD, including an association of miR-126 with insulin/IGF-1/PI3K signaling. In DA neuronal cell systems, enhanced expression of miR-126 impaired IGF-1 signaling and increased vulnerability to the neurotoxin 6-OHDA by downregulating factors in IGF-1/PI3K signaling, including its targets p85β, IRS-1, and SPRED1. Blocking of miR-126 function increased IGF-1 trophism and neuroprotection to 6-OHDA. Our data imply that elevated levels of miR-126 may play a functional role in DA neurons and in PD pathogenesis by downregulating IGF-1/PI3K/AKT signaling and that its inhibition could be a mechanism of neuroprotection. PMID:24559646
Wang, Bo; Majumder, Sarmila; Nuovo, Gerard; Kutay, Huban; Volinia, Stefano; Patel, Tushar; Schmittgen, Thomas D; Croce, Carlo; Ghoshal, Kalpana; Jacob, Samson T
2009-10-01
MicroRNAs (miRs) are conserved, small (20-25 nucleotide) noncoding RNAs that negatively regulate expression of messenger RNAs (mRNAs) at the posttranscriptional level. Aberrant expression of certain microRNAs plays a causal role in tumorigenesis. Here, we report identification of hepatic microRNAs that are dysregulated at early stages of feeding C57BL/6 mice choline-deficient and amino acid-defined (CDAA) diet that is known to promote nonalcoholic steatohepatitis (NASH)-induced hepatocarcinogenesis after 84 weeks. Microarray analysis identified 30 hepatic microRNAs that are significantly (P < or = 0.01) altered in mice fed CDAA diet for 6, 18, 32, and 65 weeks compared with those fed choline-sufficient and amino acid-defined (CSAA) diet. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis demonstrated up-regulation of oncogenic miR-155, miR-221/222, and miR-21 and down-regulation of the most abundant liver-specific miR-122 at early stages of hepatocarcinogenesis. Western blot analysis showed reduced expression of hepatic phosphatase and tensin homolog (PTEN) and CCAAT/enhancer binding protein beta (C/EBPbeta), respective targets of miR-21 and miR-155, in these mice at early stages. DNA binding activity of nuclear factor kappa B (NF-kappaB) that transactivates miR-155 gene was significantly (P = 0.002) elevated in the liver nuclear extract of mice fed CDAA diet. Furthermore, the expression of miR-155, as measured by in situ hybridization and real-time RT-PCR, correlated with diet-induced histopathological changes in the liver. Ectopic expression of miR-155 promoted growth of hepatocellular carcinoma (HCC) cells, whereas its depletion inhibited cell growth. Notably, miR-155 was significantly (P = 0.0004) up-regulated in primary human HCCs with a concomitant decrease (P = 0.02) in C/EBPbeta level compared with matching liver tissues. Temporal changes in microRNA profile occur at early stages of CDAA diet-induced hepatocarcinogenesis. Reciprocal regulation of specific oncomirs and their tumor suppressor targets implicate their role in NASH-induced hepatocarcinogenesis and suggest their use in the diagnosis, prognosis, and therapy of liver cancer.
Sun, Min; Song, Haibin; Wang, Shuyi; Zhang, Chunxiao; Zheng, Liang; Chen, Fangfang; Shi, Dongdong; Chen, Yuanyuan; Yang, Chaogang; Xiang, Zhenxian; Liu, Qing; Wei, Chen; Xiong, Bin
2017-03-29
With persistent inconsistencies in colorectal cancer (CRC) miRNAs expression data, it is crucial to shift toward inclusion of a "pre-laboratory" integrated analysis to expedite effective precision medicine and translational research. Aberrant expression of hsa-miRNA-195 (miR-195) which is distinguished as a clinically noteworthy miRNA has previously been observed in multiple cancers, yet its role in CRC remains unclear. In this study, we performed an integrated analysis of seven CRC miRNAs expression datasets. The expression of miR-195 was validated in The Cancer Genome Atlas (TCGA) datasets, and an independent validation sample cohort. Colon cancer cells were transfected with miR-195 mimic and inhibitor, after which cell proliferation, colony formation, migration, invasion, and dual luciferase reporter were assayed. Xenograft mouse models were used to determine the role of miR-195 in CRC tumorigenicity in vivo. Four downregulated miRNAs (hsa-let-7a, hsa-miR-125b, hsa-miR-145, and hsa-miR-195) were demonstrated to be potentially useful diagnostic markers in the clinical setting. CRC patients with a decreased level of miR-195-5p in tumor tissues had significantly shortened survival as revealed by the TCGA colon adenocarcinoma (COAD) dataset and our CRC cohort. Overexpression of miR-195-5p in DLD1 and HCT116 cells repressed cell growth, colony formation, invasion, and migration. Inhibition of miR-195-5p function contributed to aberrant cell proliferation, migration, invasion, and epithelial mesenchymal transition (EMT). We identified miR-195-5p binding sites within the 3'-untranslated region (3'-UTR) of the human yes-associated protein (YAP) mRNA. YAP1 expression was downregulated after miR-195-5p treatment by qRT-PCR analysis and western blot. Four downregulated miRNAs were shown to be prime candidates for a panel of biomarkers with sufficient diagnostic accuracy for CRC in a clinical setting. Our integrated microRNA profiling approach identified miR-195-5p independently associated with prognosis in CRC. Our results demonstrated that miR-195-5p was a potent suppressor of YAP1, and miR-195-5p-mediated downregulation of YAP1 significantly reduced tumor development in a mouse CRC xenograft model. In the clinic, miR-195-5p can serve as a prognostic marker to predict the outcome of the CRC patients.
Hilmarsdóttir, Bylgja; Briem, Eirikur; Sigurdsson, Valgardur; Franzdóttir, Sigrídur Rut; Ringnér, Markus; Arason, Ari Jon; Bergthorsson, Jon Thor; Magnusson, Magnus Karl; Gudjonsson, Thorarinn
2015-07-15
The epithelial compartment of the breast contains two lineages, the luminal- and the myoepithelial cells. D492 is a breast epithelial cell line with stem cell properties that forms branching epithelial structures in 3D culture with both luminal- and myoepithelial differentiation. We have recently shown that D492 undergo epithelial to mesenchymal transition (EMT) when co-cultured with endothelial cells. This 3D co-culture model allows critical analysis of breast epithelial lineage development and EMT. In this study, we compared the microRNA (miR) expression profiles for D492 and its mesenchymal-derivative D492M. Suppression of the miR-200 family in D492M was among the most profound changes observed. Exogenous expression of miR-200c-141 in D492M reversed the EMT phenotype resulting in gain of luminal but not myoepithelial differentiation. In contrast, forced expression of ∆Np63 in D492M restored the myoepithelial phenotype only. Co-expression of miR-200c-141 and ∆Np63 in D492M restored the branching morphogenesis in 3D culture underlining the requirement for both luminal and myoepithelial elements for obtaining full branching morphogenesis in breast epithelium. Introduction of a miR-200c-141 construct in both D492 and D492M resulted in resistance to endothelial induced EMT. In conclusion, our data suggests that expression of miR-200c-141 and ∆Np63 in D492M can reverse EMT resulting in luminal- and myoepithelial differentiation, respectively, demonstrating the importance of these molecules in epithelial integrity in the human breast. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Han, Wei; Zhu, Yunfen; Su, Yijun; Li, Guohui; Qu, Liang; Zhang, Huiyong; Wang, Kehua; Zou, Jianmin; Liu, Honglin
2016-01-01
There are still no highly sensitive and unique biomarkers for measurement of puberty onset. Circulating miRNAs have been shown to be promising biomarkers for diagnosis of various diseases. To identify circulating miRNAs that could be served as biomarkers for measuring chicken (Gallus gallus) puberty onset, the Solexa deep sequencing was performed to analyze the miRNA expression profiles in serum and plasma of hens from two different pubertal stages, before puberty onset (BO) and after puberty onset (AO). 197 conserved and 19 novel miRNAs (reads > 10) were identified as serum/plasma-expressed miRNAs in the chicken. The common miRNA amounts and their expression changes from BO to AO between serum and plasma were very similar, indicating the different treatments to generate serum and plasma had quite small influence on the miRNAs. 130 conserved serum-miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) from BO to AO, with 68 up-regulated and 62 down-regulated. 4829 putative genes were predicted as the targets of the 40 most differentially expressed miRNAs (|log2(fold-change)|>1.0, P < 0.01). Functional analysis revealed several pathways that were associated with puberty onset. Further quantitative real-time PCR (RT-qPCR) test found that a seven-miRNA panel, including miR-29c, miR-375, miR-215, miR-217, miR-19b, miR-133a and let-7a, had great potentials to serve as novel biomarkers for measuring puberty onset in chicken. Due to highly conserved nature of miRNAs, the findings could provide cues for measurement of puberty onset in other animals as well as humans.
Su, Yijun; Li, Guohui; Qu, Liang; Zhang, Huiyong; Wang, Kehua; Zou, Jianmin; Liu, Honglin
2016-01-01
There are still no highly sensitive and unique biomarkers for measurement of puberty onset. Circulating miRNAs have been shown to be promising biomarkers for diagnosis of various diseases. To identify circulating miRNAs that could be served as biomarkers for measuring chicken (Gallus gallus) puberty onset, the Solexa deep sequencing was performed to analyze the miRNA expression profiles in serum and plasma of hens from two different pubertal stages, before puberty onset (BO) and after puberty onset (AO). 197 conserved and 19 novel miRNAs (reads > 10) were identified as serum/plasma-expressed miRNAs in the chicken. The common miRNA amounts and their expression changes from BO to AO between serum and plasma were very similar, indicating the different treatments to generate serum and plasma had quite small influence on the miRNAs. 130 conserved serum-miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) from BO to AO, with 68 up-regulated and 62 down-regulated. 4829 putative genes were predicted as the targets of the 40 most differentially expressed miRNAs (|log2(fold-change)|>1.0, P < 0.01). Functional analysis revealed several pathways that were associated with puberty onset. Further quantitative real-time PCR (RT-qPCR) test found that a seven-miRNA panel, including miR-29c, miR-375, miR-215, miR-217, miR-19b, miR-133a and let-7a, had great potentials to serve as novel biomarkers for measuring puberty onset in chicken. Due to highly conserved nature of miRNAs, the findings could provide cues for measurement of puberty onset in other animals as well as humans. PMID:27149515
miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4
Okuda, Hiroshi; Xing, Fei; Pandey, Puspa R; Sharma, Sambad; Watabe, Misako; Pai, Sudha K.; Mo, Yin-Yuan; Iiizumi-Gairani, Megumi; Hirota, Shigeru; Liu, Yin; Wu, Kerui; Pochampally, Radhika; Watabe, Kounosuke
2012-01-01
Despite significant improvement in survival rates of breast cancer patients, prognosis of metastatic disease is still dismal. Cancer stem-like cells (CSCs) are considered to play a role in metastatic progression of breast cancer; however, the exact pathological role of CSCs is yet to be elucidated. In this report, we found that CSCs (CD24−/CD44+/ESA+) isolated from metastatic breast cell lines are significantly more metastatic than non-CSC populations in an organ specific manner. The results of our microRNA profile analysis for these cells revealed that CSCs that are highly metastatic to bone and brain expressed significantly lower level of miR-7 and that this microRNA was capable of modulating one of the essential genes for induced pluripotent stem cell, KLF4. Interestingly, high expression of KLF4 was significantly and inversely correlated to brain- but not bone-metastasis free survival of breast cancer patients, and we indeed found that the expression of miR-7 significantly suppressed the ability of CSCs to metastasize to brain but not to bone in our animal model. We also examined the expression of miR-7 and KLF4 in brain-metastatic lesions and found that these genes were significantly down- or up-regulated, respectively, in the tumor cells in brain. Furthermore, the results of our in vitro experiments indicate that miR-7 attenuates the abilities of invasion and self-renewal of CSCs by modulating KLF4 expression. These results suggest that miR-7 and KLF4 may serve as biomarkers or therapeutic targets for brain metastasis of breast cancer. PMID:23384942
Zaccaria, Vincenzo; Curti, Valeria; Di Lorenzo, Arianna; Baldi, Alessandra; Maccario, Cristina; Sommatis, Sabrina; Mocchi, Roberto; Daglia, Maria
2017-10-01
A large body of evidence highlights that propolis exerts many biological functions that can be ascribed to its antioxidant and anti-inflammatory components, including different polyphenol classes. Nevertheless, the molecular mechanisms are yet unknown. The aim of this study is to investigate the mechanisms at the basis of propolis anti-inflammatory and antioxidant activities. The effects of two brown and green propolis extracts-chemically characterized by RP-HPLC-PDA-ESI-MSn-on the expression levels of miRNAs associated with inflammatory responses (miR-19a-3p and miR-203a-3p) and oxidative stress (miR-27a-3p and miR-17-3p), were determined in human keratinocyte HaCat cell lines, treated with non-cytotoxic concentrations. The results showed that brown propolis, whose major polyphenolic components are flavonoids, induced changes in the expression levels of all miRNAs, and was more active than green propolis (whose main polyphenolic components are hydroxycinnamic acid derivatives) which caused changes only in the expression levels of miR-19a-3p and miR-27a-3p. In addition, only brown propolis was able to modify (1) the expression levels of mRNAs, the target of the reported miRNAs, which code for Tumor Necrosis Factor-α (TNF-α), Nuclear Factor, Erythroid 2 Like 2 (NFE2L2) and Glutathione Peroxidase 2 (GPX2), and (2) the protein levels of TNF-α and NFE2L2. In conclusion, brown and green propolis, which showed different metabolite profiles, exert their biological functions through different mechanisms of action.
Drug Targeting and Biomarkers in Head and Neck Cancers: Insights from Systems Biology Analyses.
Islam, Tania; Rahman, Rezanur; Gov, Esra; Turanli, Beste; Gulfidan, Gizem; Haque, Anwarul; Arga, Kazım Yalçın; Haque Mollah, Nurul
2018-06-01
The head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world, but robust biomarkers and diagnostics are still not available. This study provides in-depth insights from systems biology analyses to identify molecular biomarker signatures to inform systematic drug targeting in HNSCC. Gene expression profiles from tumors and normal tissues of 22 patients with histological confirmation of nonmetastatic HNSCC were subjected to integrative analyses with genome-scale biomolecular networks (i.e., protein-protein interaction and transcriptional and post-transcriptional regulatory networks). We aimed to discover molecular signatures at RNA and protein levels, which could serve as potential drug targets for therapeutic innovation in the future. Eleven proteins, 5 transcription factors, and 20 microRNAs (miRNAs) came into prominence as potential drug targets. The differential expression profiles of these reporter biomolecules were cross-validated by independent RNA-Seq and miRNA-Seq datasets, and risk discrimination performance of the reporter biomolecules, BLNK, CCL2, E4F1, FOSL1, ISG15, MMP9, MYCN, MYH11, miR-1252, miR-29b, miR-29c, miR-3610, miR-431, and miR-523, was also evaluated. Using the transcriptome guided drug repositioning tool, geneXpharma, several candidate drugs were repurposed, including antineoplastic agents (e.g., gemcitabine and irinotecan), antidiabetics (e.g., rosiglitazone), dermatological agents (e.g., clocortolone and acitretin), and antipsychotics (e.g., risperidone), and binding affinities of the drugs to their potential targets were assessed using molecular docking analyses. The molecular signatures and repurposed drugs presented in this study warrant further attention for experimental studies since they offer significant potential as biomarkers and candidate therapeutics for precision medicine approaches to clinical management of HNSCC.
Torres, Sofía; Garcia-Palmero, Irene; Bartolomé, Rubén A; Fernandez-Aceñero, María Jesús; Molina, Elena; Calviño, Eva; Segura, Miguel F; Casal, J Ignacio
2017-05-01
The process of liver colonization in colorectal cancer remains poorly characterized. Here, we addressed the role of microRNA (miRNA) dysregulation in metastasis. We first compared miRNA expression profiles between colorectal cancer cell lines with different metastatic properties and then identified target proteins of the dysregulated miRNAs to establish their functions and prognostic value. We found that 38 miRNAs were differentially expressed between highly metastatic (KM12SM/SW620) and poorly metastatic (KM12C/SW480) cancer cell lines. After initial validation, we determined that three miRNAs (miR-424-3p, -503, and -1292) were overexpressed in metastatic colorectal cancer cell lines and human samples. Stable transduction of non-metastatic cells with each of the three miRNAs promoted metastatic properties in culture and increased liver colonization in vivo. Moreover, miR-424-3p and miR-1292 were associated with poor prognosis in human patients. A quantitative proteomic analysis of colorectal cancer cells transfected with miR-424-3p, miR-503, or miR-1292 identified alterations in 149, 129, or 121 proteins, respectively, with an extensive overlap of the target proteins of the three miRNAs. Importantly, down-regulation of two of these shared target proteins, CKB and UBA2, increased cell adhesion and proliferation in colorectal cancer cells. The capacity of distinct miRNAs to regulate the same mRNAs boosts the capacity of miRNAs to regulate cancer metastasis and underscores the necessity of targeting multiple miRNAs for effective cancer therapy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Zhou, Yi; Yu, Fan; Gao, Yun; Luo, Yongju; Tang, Zhanyang; Guo, Zhongbao; Guo, Enyan; Gan, Xi; Zhang, Ming; Zhang, Yaping
2014-01-01
MicroRNAs (miRNAs) are endogenous non-coding small RNAs which play important roles in the regulation of gene expression by cleaving or inhibiting the translation of target gene transcripts. Thereinto, some specific miRNAs show regulatory activities in gonad development via translational control. In order to further understand the role of miRNA-mediated posttranscriptional regulation in Nile tilapia (Oreochromis niloticus) ovary and testis, two small RNA libraries of Nile tilapia were sequenced by Solexa small RNA deep sequencing methods. A total of 9,731,431 and 8,880,497 raw reads, representing 5,407,800 and 4,396,281 unique sequences were obtained from the sexually mature ovaries and testes, respectively. After comparing the small RNA sequences with the Rfam database, 1,432,210 reads in ovaries and 984,146 reads in testes were matched to the genome sequence of Nile tilapia. Bioinformatic analysis identified 764 mature miRNA, 209 miRNA-5p and 202 miRNA-3p were found in the two libraries, of which 525 known miRNAs are both expressed in the ovary and testis of Nile tilapia. Comparison of expression profiles of the testis, miR-727, miR-129 and miR-29 families were highly expressed in tilapia ovary. Additionally, miR-132, miR-212, miR-33a and miR-135b families, showed significant higher expression in testis compared with that in ovary. Furthermore, the expression patterns of the miRNAs were analyzed in different developmental stages of gonad. The result showed different expression patterns were observed during development of testis and ovary. In addition, the identification and characterization of differentially expressed miRNAs in the ovaries and testis of Nile tilapia provides important information on the role of miRNA in the regulation of the ovarian and testicular development and function. This data will be helpful to facilitate studies on the regulation of miRNAs during teleosts reproduction. PMID:24466258
Braicu, Ovidiu-Leonard; Budisan, Liviuta; Buiga, Rares; Jurj, Ancuta; Achimas-Cadariu, Patriciu; Pop, Laura Ancuta; Braicu, Cornelia; Irimie, Alexandru; Berindan-Neagoe, Ioana
2017-01-01
Endometriosis is an inflammatory pathology associated with a negative effect on life quality. Recently, this pathology was connected to ovarian cancer, in particular with endometrioid ovarian cancer. microRNAs (miRNAs) are a class of RNA transcripts ~19–22 nucleotides in length, the altered miRNA pattern being connected to pathological status. miRNAs are highly stable transcripts, and these can be assessed from formalin-fixed paraffin-embedded (FFPE) samples leading to the identification of miRNAs that could be developed as diagnostic and prognostic biomarkers, in particular those involved in malignant transformation. The aim of our study was to evaluate miRNA expression pattern in FFPE samples from endometriosis and ovarian cancer patients using PCR-array technology and also to compare the differential expression pattern in ovarian cancer versus endometriosis. For the PCR-array study, we have used nine macrodissected FFPE samples from endometriosis tissue, eight samples of ovarian cancers and five normal ovarian tissues. Quantitative real-time PCR (qRT-PCR) was used for data validation in a new patient cohort of 17 normal samples, 33 endometriosis samples and 28 ovarian cancer macrodissected FFPE samples. Considering 1.5-fold expression difference as a cut-off level and a P-value <0.05, we have identified four miRNAs being overexpressed in endometrial tissue, while in ovarian cancer 15 were differentially expressed (nine overexpressed and six downregulated). The expression level was confirmed by qRT-PCR for miR-93, miR-141, miR-155, miR-429, miR-200c, miR-205 and miR-492. Using the interpretative program Ingenuity Pathway Analysis revealed several deregulated pathways due to abnormal miRNA expression in endometriosis and ovarian cancer, which in turn is responsible for pathogenesis; this differential expression of miRNAs can be exploited as a therapeutic target. A higher number of altered miRNAs were detected in endometriosis versus ovarian cancer tissue, most of them being linked with epithelial-to-mesenchymal transition. PMID:28894379
Gao, Li; Zhang, Li-Jie; Li, Sheng-Hua; Wei, Li-Li; Luo, Bin; He, Rong-Quan; Xia, Shuang
2018-03-06
MiR-452-5p has been reported to be down-regulated in prostate cancer, affecting the development of this type of cancer. However, the molecular mechanism of miR-452-5p in prostate cancer remains unclear. Therefore, we investigated the network of target genes of miR-452-5p in prostate cancer using bioinformatics analyses. We first analyzed the expression profiles and prognostic value of miR-452-5p in prostate cancer tissues from a public database. Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), PANTHER pathway analyses, and a disease ontology (DG) analysis were performed to find the molecular functions of the target genes from GSE datasets and miRWalk. Finally, we validated hub genes from the protein-protein interaction (PPI) networks of the target genes in the Human Protein Atlas (HPA) database and Gene Expression Profiling Interactive Analysis (GEPIA). Narrowing down the optimal target genes was conducted by seeking the common parts of up-regulated genes from GEPIA, down-regulated genes from GSE datasets, and predicted genes in miRWalk. Based on mining of GEO and ArrayExpress microarray chips and miRNA-Seq data in the TCGA database, which includes 1007 prostate cancer samples and 387 non-cancer samples, miR-452-5p is shown to be down-regulated in prostate cancer. GO, KEGG, and PANTHER pathway analyses suggested that the target genes might participate in important biological processes, such as transforming growth factor beta signaling and the positive regulation of brown fat cell differentiation and mesenchymal cell differentiation, as well as the Ras signaling pathway and pathways regulating the pluripotency of stem cells and arrhythmogenic right ventricular cardiomyopathy (ARVC). Nine genes-GABBR, PNISR, NTSR1, DOCK1, EREG, SFRP1, PTGS2, LEF1, and BMP2-were defined as hub genes in the PPI network. Three genes-FAM174B, SLC30A4, and SLIT1-were jointly shared by GEPIA, the GSE datasets, and miRWalk. Down-regulated miR-452-5p might play an essential role in the tumorigenesis of prostate cancer. Copyright © 2018. Published by Elsevier GmbH.
Circular RNA hsa_circ_0001982 Promotes Breast Cancer Cell Carcinogenesis Through Decreasing miR-143.
Tang, Yi-Yin; Zhao, Ping; Zou, Tian-Ning; Duan, Jia-Jun; Zhi, Rong; Yang, Si-Yuan; Yang, De-Chun; Wang, Xiao-Li
2017-11-01
Circular RNAs (circRNAs) are a type of noncoding RNAs generated from back-splicing, which have been verified to mediate multiple tumorigenesis. With the development of high-throughput sequencing, massive circRNAs are discovered in tumorous tissue. However, the potential physiological effect of circRNAs in breast cancer is still unknown. The purpose of this study is to investigate the expression profile of circRNA in breast cancer tissue and explore the in-depth regulatory mechanism in breast cancer tumorigenesis. In the present study, we screened the circRNA expression profiles in breast cancer tissue using circRNA microarray analysis. Totally 1705 circRNAs were identified to be significantly aberrant. Among these dysregulated circRNAs, hsa_circ_0001982 was markedly overexpressed in breast cancer tissue and cell lines. Bioinformatics analysis predicted that miR-143 acted as target of hsa_circ_0001982, which was confirmed by Dual-luciferase reporter assay. Loss-of-function and rescue experiments revealed that hsa_circ_0001982 knockdown suppressed breast cancer cell proliferation and invasion and induced apoptosis by targeting miR-143. In summary, our study preliminarily investigates the circRNA expression in breast cancer tissue and explores the role of competing endogenous RNA (ceRNA) mechanism in the progression, providing a novel insight for breast cancer tumorigenesis.
Lodge, Robert; Gilmore, Julian C; Ferreira Barbosa, Jérémy A; Lombard-Vadnais, Félix; Cohen, Éric A
2017-12-30
Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4 R ) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4 R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary.
Gilmore, Julian C.; Ferreira Barbosa, Jérémy A.; Lombard-Vadnais, Félix
2017-01-01
Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4R) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary. PMID:29301198
Kaneto, C.M.; Nascimento, J.S.; Moreira, M.C.R.; Ludovico, N.D.; Santana, A.P.; Silva, R.A.A.; Silva-Jardim, I.; Santos, J.L.; Sousa, S.M.B.; Lima, P.S.P.
2017-01-01
Recent evidence suggests that cell-derived circulating miRNAs may serve as biomarkers of cardiovascular diseases. However, a few studies have investigated the potential of circulating miRNAs as biomarkers for left ventricular hypertrophy (LVH). In this study, we aimed to characterize the miRNA profiles that could distinguish hypertensive patients with LHV, hypertensive patients without LVH and control subjects, and identify potential miRNAs as biomarkers of LVH. LVH was defined by left ventricular mass indexed to body surface area >125 g/m2 in men and >110 g/m2 in women and patients were classified as hypertensive when presenting a systolic blood pressure of 140 mmHg or more, or a diastolic blood pressure of 90 mmHg or more. We employed miRNA PCR array to screen serum miRNAs profiles of patients with LVH, essential hypertension and healthy subjects. We identified 75 differentially expressed miRNAs, including 49 upregulated miRNAs and 26 downregulated miRNAs between LVH and control patients. We chose 2 miRNAs with significant differences for further testing in 59 patients. RT-PCR analysis of serum samples confirmed that miR-7-5p and miR-26b-5p were upregulated in the serum of LVH hypertensive patients compared with healthy subjects. Our findings suggest that these miRNAs may play a role in the pathogenesis of hypertensive LVH and may represent novel biomarkers for this disease. PMID:29069223
Prasadam, Indira; Batra, Jyotsna; Perry, Samuel; Gu, Wenyi; Crawford, Ross; Xiao, Yin
2016-07-01
This study aimed to identify the microRNAs associated with sclerotic status of subchondral bone in the pathogenesis of osteoarthritis (OA). Total RNA was extracted from non-sclerotic and sclerotic OA subchondral bone from patients undergoing knee replacement surgeries. miRCURY™ LNA miRNA chip and qRT-PCR were used to profile and validate differential microRNA expression. In addition, we further confirmed profiles of altered miRNAs in an OA rat meniscectomy animal model and their putative targets of the miRNAs were predicted using ingenuity (IPA) software. Finally, five short-listed miRNAs were reactivated by transient in vitro overexpression (miRNA mimics) in subchondral bone osteoblasts and their phenotypes were assessed. Functional screening identified 30 differentiated miRNAs in sclerotic subchondral bone compared to non-sclerotic bone of OA patients. Data integration resulted in confirmation of the eight miRNAs, with aberrant expression in independent human OA bone sample set. In silico analysis (IPA) identified 732 mRNA transcripts as putative targets of the eight altered miRNAs, of which twenty genes were validated to be differentially expressed in sclerotic compared to non-sclerotic bone samples. Out of eight dysregulated miRNA's, five of them showed consistent time-dependent downregulation in a rat OA model. Furthermore, synthetic miR-199a-3p, miR-199a-5p, miR-590-5p, and miR-211-5p mimics rescued the abnormal osteoarthritic subchondral bone osteoblast gene expression and mineralization. We have identified four novel miRNAs that play important roles in subchondral bone pathogenesis in OA. Additional studies are required to develop these miRNAs into therapeutic modalities for OA.
Smith-Vikos, Thalyana; Liu, Zuyun; Parsons, Christine; Gorospe, Myriam; Ferrucci, Luigi; Gill, Thomas M; Slack, Frank J
2016-11-07
In C. elegans , miRNAs are genetic biomarkers of aging. Similarly, multiple miRNAs are differentially expressed between younger and older persons, suggesting that miRNA-regulated biological mechanisms affecting aging are evolutionarily conserved. Previous human studies have not considered participants' lifespans, a key factor in identifying biomarkers of aging. Using PCR arrays, we measured miRNA levels from serum samples obtained longitudinally at ages 50, 55, and 60 from 16 non-Hispanic males who had documented lifespans from 58 to 92. Numerous miRNAs showed significant changes in expression levels. At age 50, 24 miRNAs were significantly upregulated, and 73 were significantly downregulated in the long-lived subgroup (76-92 years) as compared with the short-lived subgroup (58-75 years). In long-lived participants, the most upregulated was miR-373-5p, while the most downregulated was miR-15b-5p. Longitudinally, significant Pearson correlations were observed between lifespan and expression of nine miRNAs (p value<0.05). Six of these nine miRNAs (miR-211-5p, 374a-5p, 340-3p, 376c-3p, 5095, 1225-3p) were also significantly up- or downregulated when comparing long-lived and short-lived participants. Twenty-four validated targets of these miRNAs encoded aging-associated proteins, including PARP1, IGF1R, and IGF2R. We propose that the expression profiles of the six miRNAs (miR-211-5p, 374a-5p, 340-3p, 376c-3p, 5095, and 1225-3p) may be useful biomarkers of aging.
Parsons, Christine; Gorospe, Myriam; Ferrucci, Luigi; Gill, Thomas M.; Slack, Frank J.
2016-01-01
In C. elegans, miRNAs are genetic biomarkers of aging. Similarly, multiple miRNAs are differentially expressed between younger and older persons, suggesting that miRNA-regulated biological mechanisms affecting aging are evolutionarily conserved. Previous human studies have not considered participants' lifespans, a key factor in identifying biomarkers of aging. Using PCR arrays, we measured miRNA levels from serum samples obtained longitudinally at ages 50, 55, and 60 from 16 non-Hispanic males who had documented lifespans from 58 to 92. Numerous miRNAs showed significant changes in expression levels. At age 50, 24 miRNAs were significantly upregulated, and 73 were significantly downregulated in the long-lived subgroup (76-92 years) as compared with the short-lived subgroup (58-75 years). In long-lived participants, the most upregulated was miR-373-5p, while the most downregulated was miR-15b-5p. Longitudinally, significant Pearson correlations were observed between lifespan and expression of nine miRNAs (p value<0.05). Six of these nine miRNAs (miR-211-5p, 374a-5p, 340-3p, 376c-3p, 5095, 1225-3p) were also significantly up- or downregulated when comparing long-lived and short-lived participants. Twenty-four validated targets of these miRNAs encoded aging-associated proteins, including PARP1, IGF1R, and IGF2R. We propose that the expression profiles of the six miRNAs (miR-211-5p, 374a-5p, 340-3p, 376c-3p, 5095, and 1225-3p) may be useful biomarkers of aging. PMID:27824314
Genome-wide miRNA response to anacardic acid in breast cancer cells
Schultz, David J.; Muluhngwi, Penn; Alizadeh-Rad, Negin; Green, Madelyn A.; Rouchka, Eric C.; Waigel, Sabine J.
2017-01-01
MicroRNAs are biomarkers and potential therapeutic targets for breast cancer. Anacardic acid (AnAc) is a dietary phenolic lipid that inhibits both MCF-7 estrogen receptor α (ERα) positive and MDA-MB-231 triple negative breast cancer (TNBC) cell proliferation with IC50s of 13.5 and 35 μM, respectively. To identify potential mediators of AnAc action in breast cancer, we profiled the genome-wide microRNA transcriptome (microRNAome) in these two cell lines altered by the AnAc 24:1n5 congener. Whole genome expression profiling (RNA-seq) and subsequent network analysis in MetaCore Gene Ontology (GO) algorithm was used to characterize the biological pathways altered by AnAc. In MCF-7 cells, 69 AnAc-responsive miRNAs were identified, e.g., increased let-7a and reduced miR-584. Fewer, i.e., 37 AnAc-responsive miRNAs were identified in MDA-MB-231 cells, e.g., decreased miR-23b and increased miR-1257. Only two miRNAs were increased by AnAc in both cell lines: miR-612 and miR-20b; however, opposite miRNA arm preference was noted: miR-20b-3p and miR-20b-5p were upregulated in MCF-7 and MDA-MB-231, respectively. miR-20b-5p target EFNB2 transcript levels were reduced by AnAc in MDA-MB-231 cells. AnAc reduced miR-378g that targets VIM (vimentin) and VIM mRNA transcript expression was increased in AnAc-treated MCF-7 cells, suggesting a reciprocal relationship. The top three enriched GO terms for AnAc-treated MCF-7 cells were B cell receptor signaling pathway and ribosomal large subunit biogenesis and S-adenosylmethionine metabolic process for AnAc-treated MDA-MB-231 cells. The pathways modulated by these AnAc-regulated miRNAs suggest that key nodal molecules, e.g., Cyclin D1, MYC, c-FOS, PPARγ, and SIN3, are targets of AnAc activity. PMID:28886127
Tryndyak, Volodymyr P; Marrone, April K; Latendresse, John R; Muskhelishvili, Levan; Beland, Frederick A; Pogribny, Igor P
2016-02-01
Dietary deficiency in methyl-group donors and cofactors induces liver injury that resembles many pathophysiological and histopathological features of human nonalcoholic fatty liver disease (NAFLD), including an altered expression of microRNAs (miRNAs). We evaluated the consequences of a choline- and folate-deficient (CFD) diet on the expression of miRNAs in the livers of male A/J and WSB/EiJ mice. The results demonstrate that NAFLD-like liver injury induced by the CFD diet in A/J and WSB/EiJ mice was associated with marked alterations in hepatic miRNAome profiles, with the magnitude of miRNA expression changes being greater in WSB/EiJ mice, the strain characterized by the greatest severity of liver injury. Specifically, WSB/EiJ mice exhibited more prominent changes in the expression of common miRNAs as compared to A/J mice and distinct miRNA alterations, including the overexpression of miR-134, miR-409-3p, miR-410 and miR-495 miRNAs that were accompanied by an activation of hepatic progenitor cells and fibrogenesis. This in vivo finding was further confirmed by in vitro experiments showing an overexpression of these miRNAs in undifferentiated progenitor hepatic HepaRG cells compared to in fully differentiated HepaRG cells. Additionally, a marked elevation of miR-134, miR-409-3p, miR-410 and miR-495 was found in plasma of WSB/EiJ mice fed the CFD diet, while none of the miRNAs was changed in plasma of A/J mice. These findings suggest that miRNAs may be crucial regulators responsible for the progression of NAFLD and may be useful as noninvasive diagnostic indicators of the severity and progression of NAFLD. Published by Elsevier Inc.
MicroRNA-99 family members suppress Homeobox A1 expression in epithelial cells.
Chen, Dan; Chen, Zujian; Jin, Yi; Dragas, Dragan; Zhang, Leitao; Adjei, Barima S; Wang, Anxun; Dai, Yang; Zhou, Xiaofeng
2013-01-01
The miR-99 family is one of the evolutionarily most ancient microRNA families, and it plays a critical role in developmental timing and the maintenance of tissue identity. Recent studies, including reports from our group, suggested that the miR-99 family regulates various physiological processes in adult tissues, such as dermal wound healing, and a number of disease processes, including cancer. By combining 5 independent genome-wide expression profiling experiments, we identified a panel of 266 unique transcripts that were down-regulated in epithelial cells transfected with miR-99 family members. A comprehensive bioinformatics analysis using 12 different sequence-based microRNA target prediction algorithms revealed that 81 out of these 266 down-regulated transcripts are potential direct targets for the miR-99 family. Confirmation experiments and functional analyses were performed to further assess 6 selected miR-99 target genes, including mammalian Target of rapamycin (mTOR), Homeobox A1 (HOXA1), CTD small phosphatase-like (CTDSPL), N-myristoyltransferase 1 (NMT1), Transmembrane protein 30A (TMEM30A), and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5). HOXA1 is a known proto-oncogene, and it also plays an important role in embryonic development. The direct targeting of the miR-99 family to two candidate binding sequences located in the HOXA1 mRNA was confirmed using a luciferase reporter gene assay and a ribonucleoprotein-immunoprecipitation (RIP-IP) assay. Ectopic transfection of miR-99 family reduced the expression of HOXA1, which, in consequence, down-regulated the expression of its downstream gene (i.e., Bcl-2) and led to reduced proliferation and cell migration, as well as enhanced apoptosis. In summary, we identified a number of high-confidence miR-99 family target genes, including proto-oncogene HOXA1, which may play an important role in regulating epithelial cell proliferation and migration during physiological disease processes, such as dermal wound healing and tumorigenesis.
Alterations in Bronchial Airway miRNA Expression for Lung Cancer Detection.
Pavel, Ana B; Campbell, Joshua D; Liu, Gang; Elashoff, David; Dubinett, Steven; Smith, Kate; Whitney, Duncan; Lenburg, Marc E; Spira, Avrum
2017-11-01
We have previously shown that gene expression alterations in normal-appearing bronchial epithelial cells can serve as a lung cancer detection biomarker in smokers. Given that miRNAs regulate airway gene expression responses to smoking, we evaluated whether miRNA expression is also altered in the bronchial epithelium of smokers with lung cancer. Using epithelial brushings from the mainstem bronchus of patients undergoing bronchoscopy for suspected lung cancer (as part of the AEGIS-1/2 clinical trials), we profiled miRNA expression via small-RNA sequencing from 347 current and former smokers for which gene expression data were also available. Patients were followed for one year postbronchoscopy until a final diagnosis of lung cancer ( n = 194) or benign disease ( n = 153) was made. Following removal of 6 low-quality samples, we used 138 patients (AEGIS-1) as a discovery set to identify four miRNAs (miR-146a-5p, miR-324-5p, miR-223-3p, and miR-223-5p) that were downregulated in the bronchial airway of lung cancer patients (ANOVA P < 0.002, FDR < 0.2). The expression of these miRNAs is significantly more negatively correlated with the expression of their mRNA targets than with the expression of other nontarget genes (K-S P < 0.05). Furthermore, these mRNA targets are enriched among genes whose expression is elevated in cancer patients (GSEA FDR < 0.001). Finally, we found that the addition of miR-146a-5p to an existing mRNA biomarker for lung cancer significantly improves its performance (AUC) in the 203 samples (AEGIS-1/2) serving an independent test set (DeLong P < 0.05). Our findings suggest that there are miRNAs whose expression is altered in the cytologically normal bronchial epithelium of smokers with lung cancer, and that they may regulate cancer-associated gene expression differences. Cancer Prev Res; 10(11); 651-9. ©2017 AACR . ©2017 American Association for Cancer Research.
Fujita, Yasunori; Kojima, Toshio; Kawakami, Kyojiro; Mizutani, Kosuke; Kato, Taku; Deguchi, Takashi; Ito, Masafumi
2015-10-01
The acquisition of drug resistance is one of the most malignant phenotypes of cancer and identification of its therapeutic target is a prerequisite for the development of novel therapy. MicroRNAs (miRNAs) have been implicated in various types of cancer and proposed as potential therapeutic targets for patients. In the present study, we aimed to identify miRNA that could serve as a therapeutic target for taxane-resistant prostate cancer. In order to identify miRNAs related to taxane-resistance, miRNA profiling was performed using prostate cancer PC-3 cells and paclitaxel-resistant PC-3 cell lines established from PC-3 cells. Microarray analysis of mRNA expression was also conducted to search for potential target genes of miRNA. Luciferase reporter assay was performed to examine miRNA binding to the 3'-UTR of target genes. The effects of ectopic expression of miRNA on cell growth, tubulin polymerization, drug sensitivity, and apoptotic signaling pathway were investigated in a paclitaxel-resistant PC-3 cell line. The expression of miR-130a was down-regulated in all paclitaxel-resistant cell lines compared with parental PC-3 cells. Based on mRNA microarray analysis and luciferase reporter assay, we identified SLAIN1 as a direct target gene for miR-130a. Transfection of a miR-130a precursor into a paclitaxel-resistant cell line suppressed cell growth and increased the sensitivity to paclitaxel. Lastly, ectopic expression of miR-130a did not affect the polymerized tubulin level, but activated apoptotic signaling through activation of caspase-8. Our results suggested that reduced expression of miR-130a may be involved in the paclitaxel-resistance and that miR-130a could be a therapeutic target for taxane-resistant prostate cancer patients. © 2015 Wiley Periodicals, Inc.
Singh, Alok Kumar; Pandey, Rajeev Kumar; Shaha, Chandrima; Madhubala, Rentala
2016-10-02
Leishmania is an obligate intracellular parasite that replicates inside phagolysosomes or parasitophorous vacuoles (PV) of the monocyte/macrophage lineage. It reprograms macrophages and produces a metabolic state conducive to successful infection and multiplication. MicroRNAs (miRNAs), a class of small 22 to 24 nucleotide noncoding regulatory RNAs alter the gene expression and consequently proteome output by targeting mRNAs, may play a regulatory role in modulating host cell functions. In the present study, we demonstrate the novel regulatory role of host microRNA, MIR30A-3p in modulation of host cell macroautophagy/autophagy after infection with L. donovani. Our in vitro studies showed that MIR30A-3p expression was significantly enhanced after L. donovani infection in a time-dependent manner. Transient transfection with a MIR30A-3p inhibitor followed by L. donovani infection promoted the autophagic response and decreased the intracellular parasite burden in both THP-1 cells and human monocyte-derived macrophages (HsMDM). BECN1/Beclin 1, the mammalian ortholog of yeast Vps30/Atg6, is a key autophagy-promoting protein that plays a key role in the regulation of cell death and survival. We report BECN1-dependent modulation of host cell autophagy in response to L. donovani infection. Pretreatment of L. donovani-infected macrophages with the MIR30A-3p mimic decreased and with antagomir increased the expression of BECN1 protein. We demonstrate that BECN1 is a potential target of MIR30A-3p and this miRNA negatively regulates BECN1 expression. Our present study reveals for the first time a novel role of MIR30A-3p in regulating autophagy-mediated L. donovani elimination by targeting BECN1. The present study has significant impact for the treatment of visceral leishmaniasis.
miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenna, Declan J., E-mail: dj.mckenna@ulster.ac.uk; Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL; Patel, Daksha, E-mail: d.patel@qub.ac.uk
2014-01-05
A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in themore » cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes.« less
Circulating miR-132-3p as a Candidate Diagnostic Biomarker for Malignant Mesothelioma
Gawrych, Katarzyna; Casjens, Swaantje; Brik, Alexander; Lehnert, Martin; Taeger, Dirk; Pesch, Beate; Kollmeier, Jens; Bauer, Torsten T.; Johnen, Georg; Brüning, Thomas
2017-01-01
The use of circulating microRNAs as biomarkers has opened new opportunities for diagnosis of cancer because microRNAs exhibit tumor-specific expression profiles. The aim of this study was the identification of circulating microRNAs in human plasma as potential biomarkers for the diagnosis of malignant mesothelioma. For discovery, TaqMan Low Density Array Human MicroRNA Cards were used to analyze 377 microRNAs in plasma samples from 21 mesothelioma patients and 21 asbestos-exposed controls. For verification, individual TaqMan microRNA assays were used for quantitative real-time PCR in plasma samples from 22 mesothelioma patients and 44 asbestos-exposed controls. The circulating miR-132-3p showed different expression levels between mesothelioma patients and asbestos-exposed controls. For discrimination, sensitivity of 86% and specificity of 61% were calculated. Circulating miR-132-3p in plasma was not affected by hemolysis and no impact of age or smoking status on miR-132-3p levels could be observed. For the combination of miR-132-3p with the previously described miR-126, sensitivity of 77% and specificity of 86% were calculated. The results of this study indicate that miR-132-3p might be a new promising diagnostic biomarker for malignant mesothelioma. It is indicated that the combination of miR-132-3p with other individual biomarkers improves the biomarker performance. PMID:28321148
Liu, Wei; Ling, Shukuan; Sun, Weijia; Liu, Tong; Li, Yuheng; Zhong, Guohui; Zhao, Dingsheng; Zhang, Pengfei; Song, Jinping; Jin, Xiaoyan; Xu, Zi; Song, Hailin; Li, Qi; Liu, Shujuan; Chai, Meng; Dai, Qinyi; He, Yi; Fan, Zhanming; Zhou, Yu Jie; Li, Yingxian
2015-01-01
The purpose of this study was to find the circulating microRNAs (miRNAs) co-related with the severity of coronary artery calcification (CAC), and testify whether the selected miRNAs could reflect the obstructive coronary artery disease in symptomatic patients. Patients with chest pain and moderated risk for coronary artery disease (CAD) were characterized with coronary artery calcium score (CACS) from cardiac computed tomography (CT). We analyzed plasma miRNA levels of clinical matched 11 CAC (CACS > 100) and 6 non-CAC (CACS = 0) subjects by microarray profile. Microarray analysis identified 34 differentially expressed miRNAs between CAC and non CAC groups. Eight miRNAs (miR-223, miR-3135b, miR-133a-3p, miR-2861, miR-134, miR-191-3p, miR-3679-5p, miR-1229 in CAC patients) were significantly increased in CAC plasma in an independent clinical matched cohort. Four miRNAs (miR-2861, 134, 1229 and 3135b) were correlated with the degree of CAC. Validation test in angiographic cohort showed that miR-134, miR-3135b and miR-2861 were significantly changed in patients with obstructive CAD . We identified three significantly upregulated circulating miRNAs (miR-134, miR-3135b and 2861) correlated with CAC while detected obstructive coronary disease in symptomatic patients. PMID:26537670
MicroRNA-138 is a potential regulator of memory performance in humans
Schröder, Julia; Ansaloni, Sara; Schilling, Marcel; Liu, Tian; Radke, Josefine; Jaedicke, Marian; Schjeide, Brit-Maren M.; Mashychev, Andriy; Tegeler, Christina; Radbruch, Helena; Papenberg, Goran; Düzel, Sandra; Demuth, Ilja; Bucholtz, Nina; Lindenberger, Ulman; Li, Shu-Chen; Steinhagen-Thiessen, Elisabeth; Lill, Christina M.; Bertram, Lars
2014-01-01
Genetic factors underlie a substantial proportion of individual differences in cognitive functions in humans, including processes related to episodic and working memory. While genetic association studies have proposed several candidate “memory genes,” these currently explain only a minor fraction of the phenotypic variance. Here, we performed genome-wide screening on 13 episodic and working memory phenotypes in 1318 participants of the Berlin Aging Study II aged 60 years or older. The analyses highlight a number of novel single nucleotide polymorphisms (SNPs) associated with memory performance, including one located in a putative regulatory region of microRNA (miRNA) hsa-mir-138-5p (rs9882688, P-value = 7.8 × 10−9). Expression quantitative trait locus analyses on next-generation RNA-sequencing data revealed that rs9882688 genotypes show a significant correlation with the expression levels of this miRNA in 309 human lymphoblastoid cell lines (P-value = 5 × 10−4). In silico modeling of other top-ranking GWAS signals identified an additional memory-associated SNP in the 3′ untranslated region (3′ UTR) of DCP1B, a gene encoding a core component of the mRNA decapping complex in humans, predicted to interfere with hsa-mir-138-5p binding. This prediction was confirmed in vitro by luciferase assays showing differential binding of hsa-mir-138-5p to 3′ UTR reporter constructs in two human cell lines (HEK293: P-value = 0.0470; SH-SY5Y: P-value = 0.0866). Finally, expression profiling of hsa-mir-138-5p and DCP1B mRNA in human post-mortem brain tissue revealed that both molecules are expressed simultaneously in frontal cortex and hippocampus, suggesting that the proposed interaction between hsa-mir-138-5p and DCP1B may also take place in vivo. In summary, by combining unbiased genome-wide screening with extensive in silico modeling, in vitro functional assays, and gene expression profiling, our study identified miRNA-138 as a potential molecular regulator of human memory function. PMID:25071529
Majd, Maryam; Hosseini, Aref; Ghaedi, Kamran; Kiani-Esfahani, Abbas; Tanhaei, Somayeh; Shiralian-Esfahani, Hanieh; Rahnamaee, Seyed Yahya; Mowla, Seyed Javad; Nasr-Esfahani, Mohammad Hossein
2018-01-01
Objective(s): Multiple sclerosis (MS) is considered as a chronic type of an inflammatory disease characterized by loss of myelin of CNS. Recent evidence indicates that Interleukin 17 (IL-17)-producing T helper cells (Th17 cells) population are increased and regulatory T cells (Treg cells) are decreased in MS. Despite extensive research in understanding the mechanism of Th17 and Treg differentiation, the role of microRNAs in MS is not completely understood. Thereby, as a step closer, we analyzed the expression profile of miR-9-5p and miR-106a-5p, and protein level of retinoic acid receptor (RAR)-related orphan receptor C (RORC; Th17 master transcription factor) as direct target of miR-106a-5p and forkhead box P3 (FOXP3; Treg master transcription factor) as indirect target of miR-9-5p in CD4+ T cells in two groups of relapsing and remitting in our relapsing-remitting MS (RR-MS) patients. Materials and Methods: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was utilized to assess the expression of miRNAs and mRNAs, in 40 RR-MS patients and 11 healthy individuals. Thus, FOXP3 and RAR-related orphan receptor γt (RORγt) was assessed in CD4+T-cells by flow cytometry. We also investigated the role of these miRNAs in Th17/Treg differentiation pathway through bioinformatics tools. Results: An up-regulation of miR-9-5p and down-regulation of miR-106a-5p in relapsing phase of MS patients were observed compared to healthy controls. RORC and FOXP3 were up-regulated in relapsing and remitting phases of MS, respectively. Conclusion: Expression pattern of miR-9-5p and miR-106a-5p and their targets suggest a possible inducing role of miR-9-5p and suppressing role of miR-106a-5p in differentiation pathway of Th17 cells during MS pathogenesis. PMID:29511494
Lu, Meng; Zhang, Peng-Juan; Li, Cheng-Hua; Lv, Zhi-Meng; Zhang, Wei-Wei; Jin, Chun-Hua
2015-01-01
In this study, we explored the potential roles of miRNA-133 in regulating TLR pathways in the sea cucumber Apostichopus japonicus. Target screening of RNA-Seq data successfully identified interleukin-1 receptor-associated kinase (AjIRAK−1) as a putative target of miR-133. This result was further validated by negative expression profiles in Vibrio splendidus-challenged coelomocytes and lipopolysaccharide (LPS)-exposed cell cultures. HEK-293T cells transfected with a dual-luciferase reporter fused to the 3′UTR of wild-type or mutant AjIRAK-1 exhibited a 52.9% reduction in luciferase activity (p < 0.01) compared to controls. Co-infection with a miR-133 mimics or a specific siRNA targeting AjIRAK-1 significantly repressed the mRNA and protein expression levels of AjIRAK-1 and its downstream molecules, such as AjTRAF6 and Ajp105, in primary coelomocytes. In contrast, a miR-133 inhibitor significantly increased the expression of these TLR pathway members. The injection of miR-133 agomir or AjIRAK-1 siRNA into sea cucumbers not only decreased the expression of AjIRAK-1 and its downstream molecules but also significantly increased V. splendidus coelomocyte phagocytosis. All of the present data provide direct evidence that miR-133 is involved in TLR cascade modulation through AjIRAK-1 targeting to promote V. splendidus coelomocyte phagocytosis in these non-model invertebrates. PMID:26223836
Lu, Meng; Zhang, Peng-Juan; Li, Cheng-Hua; Lv, Zhi-Meng; Zhang, Wei-Wei; Jin, Chun-Hua
2015-07-30
In this study, we explored the potential roles of miRNA-133 in regulating TLR pathways in the sea cucumber Apostichopus japonicus. Target screening of RNA-Seq data successfully identified interleukin-1 receptor-associated kinase (AjIRAK-1) as a putative target of miR-133. This result was further validated by negative expression profiles in Vibrio splendidus-challenged coelomocytes and lipopolysaccharide (LPS)-exposed cell cultures. HEK-293T cells transfected with a dual-luciferase reporter fused to the 3'UTR of wild-type or mutant AjIRAK-1 exhibited a 52.9% reduction in luciferase activity (p < 0.01) compared to controls. Co-infection with a miR-133 mimics or a specific siRNA targeting AjIRAK-1 significantly repressed the mRNA and protein expression levels of AjIRAK-1 and its downstream molecules, such as AjTRAF6 and Ajp105, in primary coelomocytes. In contrast, a miR-133 inhibitor significantly increased the expression of these TLR pathway members. The injection of miR-133 agomir or AjIRAK-1 siRNA into sea cucumbers not only decreased the expression of AjIRAK-1 and its downstream molecules but also significantly increased V. splendidus coelomocyte phagocytosis. All of the present data provide direct evidence that miR-133 is involved in TLR cascade modulation through AjIRAK-1 targeting to promote V. splendidus coelomocyte phagocytosis in these non-model invertebrates.
Ebeid, Michael; Sripal, Prashanth; Pecka, Jason; Beisel, Kirk W; Kwan, Kelvin; Soukup, Garrett A
2017-01-01
Over 5% of the global population suffers from disabling hearing loss caused by multiple factors including aging, noise exposure, genetic predisposition, or use of ototoxic drugs. Sensorineural hearing loss is often caused by the loss of sensory hair cells (HCs) of the inner ear. A barrier to hearing restoration after HC loss is the limited ability of mammalian auditory HCs to spontaneously regenerate. Understanding the molecular mechanisms orchestrating HC development is expected to facilitate cell replacement therapies. Multiple events are known to be essential for proper HC development including the expression of Atoh1 transcription factor and the miR-183 family. We have developed a series of vectors expressing the miR-183 family and/or Atoh1 that was used to transfect two different developmental cell models: pluripotent mouse embryonic stem cells (mESCs) and immortalized multipotent otic progenitor (iMOP) cells representing an advanced developmental stage. Transcriptome profiling of transfected cells show that the impact of Atoh1 is contextually dependent with more HC-specific effects on iMOP cells. miR-183 family expression in combination with Atoh1 not only appears to fine tune gene expression in favor of HC fate, but is also required for the expression of some HC-specific genes. Overall, the work provides novel insight into the combined role of Atoh1 and the miR-183 family during HC development that may ultimately inform strategies to promote HC regeneration or maintenance.
Jimenez-Mateos, Eva M; Bray, Isabella; Sanz-Rodriguez, Amaya; Engel, Tobias; McKiernan, Ross C; Mouri, Genshin; Tanaka, Katsuhiro; Sano, Takanori; Saugstad, Julie A; Simon, Roger P; Stallings, Raymond L; Henshall, David C
2011-11-01
When an otherwise harmful insult to the brain is preceded by a brief, noninjurious stimulus, the brain becomes tolerant, and the resulting damage is reduced. Epileptic tolerance develops when brief seizures precede an episode of prolonged seizures (status epilepticus). MicroRNAs (miRNAs) are small, noncoding RNAs that function as post-transcriptional regulators of gene expression. We investigated how prior seizure preconditioning affects the miRNA response to status epilepticus evoked by intra-amygdalar kainic acid in mice. The miRNA was extracted from the ipsilateral CA3 subfield 24 hours after focal-onset status epilepticus in animals that had previously received either seizure preconditioning (tolerance) or no preconditioning (injury), and mature miRNA levels were measured using TaqMan low-density arrays. Expression of 21 miRNAs was increased, relative to control, after status epilepticus alone, and expression of 12 miRNAs was decreased. Increased miR-132 levels were matched with increased binding to Argonaute-2, a constituent of the RNA-induced silencing complex. In tolerant animals, expression responses of >40% of the injury-group-detected miRNAs differed, being either unchanged relative to control or down-regulated, and this included miR-132. In vivo microinjection of locked nucleic acid-modified oligonucleotides (antagomirs) against miR-132 depleted hippocampal miR-132 levels and reduced seizure-induced neuronal death. Thus, our data strongly suggest that miRNAs are important regulators of seizure-induced neuronal death. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
MiR-146a negatively regulates dectin-1-induced inflammatory responses
Duan, Zhimin; Liu, Caixia; Zeng, Rong
2017-01-01
Dectin-1 is the critical sensor for β-glucan from Candida which is the most common human fungal pathogen and cause superficial and system infection. MicroRNAs (miRNAs) play crucial roles in regulating innate immunity. However, the functional role of miRNAs in inflammatory response dependent on the activation of dectin-1 pathway has not been defined. In the present study, we found insoluble β-glucan from the cell wall of Candida albicans (CaIG) was able to increase the production of of IL-6 and TNFα through Dectin-1-Syk-NF-κB and p38MAPK pathway. MiRNAs profiles combined with real-time PCR validation revealed that miR-146a, miR-30-5p, miR-210-3p expression level were increased in THP-1 cells treated with CaIG. The interaction between Dectin-1 and CaIG resulted in an long lasting increase of miR-146a expression dependent on Dectin-1-Syk-NF-κB, p38MAPK, contrasting with a rapid and transient increase of IL-6 and TNFα. Overexpression of miR-146a significantly suppressed the production of IL-6 and TNFα. MiR-146a mimics inhibited CaIG-induced activity of p-IκBα and translocation of NF-κB p65. Luciferase reporter assays showed miR-146a inhibited NF-κB promoter-binding activity. Together, our data suggest miR-146a may play the potent negative feedback regulator in inflammatory response following Dectin-1 stimulation. PMID:28454101
Romano, Giulia; Acunzo, Mario; Garofalo, Michela; Di Leva, Gianpiero; Cascione, Luciano; Zanca, Ciro; Bolon, Brad; Condorelli, Gerolama; Croce, Carlo M.
2012-01-01
MicroRNAs (miRNAs) have an important role in the development of chemosensitivity or chemoresistance in different types of cancer. Activation of the ERK1/2 pathway is a major determinant of diverse cellular processes and cancer development and is responsible for the transcription of several important miRNAs. Here we show a link between the ERK1/2 pathway and BIM expression through miR-494. We blocked ERK1/2 nuclear activity through the overexpression of an ERK1/2 natural interactor, the protein PED/PEA15, and we performed a microRNA expression profile. miR-494 was the most down-regulated microRNA after ERK1/2 inactivation. Moreover, we found that miR-494 induced Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance in non–small-cell lung cancer (NSCLC) through the down-modulation of BIM. Elucidation of this undiscovered ERK1/2 pathway that regulates apoptosis and cell proliferation through miR-494 in NSCLC will greatly enhance our understanding of the mechanisms responsible for TRAIL resistance and will provide an additional arm for the development of anticancer therapies. PMID:23012423
Metabolic and miRNA Profiling of TMV Infected Plants Reveals Biphasic Temporal Changes
Bazzini, Ariel A.; Manacorda, Carlos A.; Tohge, Takayuki; Conti, Gabriela; Rodriguez, Maria C.; Nunes-Nesi, Adriano; Villanueva, Sofía; Fernie, Alisdair R.; Carrari, Fernando; Asurmendi, Sebastian
2011-01-01
Plant viral infections induce changes including gene expression and metabolic components. Identification of metabolites and microRNAs (miRNAs) differing in abundance along infection may provide a broad view of the pathways involved in signaling and defense that orchestrate and execute the response in plant-pathogen interactions. We used a systemic approach by applying both liquid and gas chromatography coupled to mass spectrometry to determine the relative level of metabolites across the viral infection, together with a miRs profiling using a micro-array based procedure. Systemic changes in metabolites were characterized by a biphasic response after infection. The first phase, detected at one dpi, evidenced the action of a systemic signal since no virus was detected systemically. Several of the metabolites increased at this stage were hormone-related. miRs profiling after infection also revealed a biphasic alteration, showing miRs alteration at 5 dpi where no virus was detected systemically and a late phase correlating with virus accumulation. Correlation analyses revealed a massive increase in the density of correlation networks after infection indicating a complex reprogramming of the regulatory pathways, either in response to the plant defense mechanism or to the virus infection itself. Our data propose the involvement of a systemic signaling on early miRs alteration. PMID:22174812
Xu, Xin; Zhang, Yun; Jasper, Jeff; Lykken, Erik; Alexander, Peter B; Markowitz, Geoffrey J; McDonnell, Donald P; Li, Qi-Jing; Wang, Xiao-Fan
2016-04-12
Triple-negative breast cancer (TNBC) presents a major challenge in the clinic due to its lack of reliable prognostic markers and targeted therapies. Accumulating evidence strongly supports the notion that microRNAs (miRNAs) are involved in tumorigenesis and could serve as biomarkers for diagnostic purposes. To identify miRNAs that functionally suppress metastasis of TNBC, we employed a concerted approach with selecting miRNAs that display differential expression profiles from bioinformatic analyses of breast cancer patient databases and validating top candidates with functional assays using breast cancer cell lines and mouse models. We have found that miR-148a exhibits properties as a tumor suppressor as its expression is inversely correlated with the ability of both human and mouse breast cancer cells to colonize the lung in mouse xenograft tumor models. Mechanistically, miR-148a appears to suppress the extravasation process of cancer cells, likely by targeting two genes WNT1 and NRP1 in a cell non-autonomous manner. Importantly, lower expression of miR-148a is detected in higher-grade tumor samples and correlated with increased likelihood to develop metastases and poor prognosis in subsets of breast cancer patients, particularly those with TNBC. Thus, miR-148a is functionally defined as a suppressor of breast cancer metastasis and may serve as a prognostic biomarker for this disease.
Bofill-De Ros, Xavier; Gironella, Meritxell; Fillat, Cristina
2014-09-01
Oncolytic virotherapy shows promise for pancreatic ductal adenocarcinoma (PDAC) treatment, but there is the need to minimize associated-toxicities. In the current work, we engineered artificial target sites recognized by miR-216a and/or miR-148a to provide pancreatic tumor-selectivity to replication-competent adenoviruses (Ad-miRTs) and improve their safety profile. Expression analysis in PDAC patients identified miR-148a and miR-216a downregulated in resectable (FC(miR-148a) = 0.044, P < 0.05; FC(miR-216a) = 0.017, P < 0.05), locally advanced (FC(miR-148a) = 0.038, P < 0.001; FC(miR-216a) = 0.001, P < 0.001) and metastatic tumors (FC(miR-148a) = 0.041, P < 0.01; FC(miR-216a) = 0.002, P < 0.001). In mouse tissues, miR-216a was highly specific of the exocrine pancreas whereas miR-148a was abundant in the exocrine pancreas, Langerhans islets, and the liver. In line with the miRNA content and the miRNA target site design, we show E1A gene expression and viral propagation efficiently controlled in Ad-miRT-infected cells. Consequently, Ad-miRT-infected mice presented reduced pancreatic and liver damage without perturbation of the endogenous miRNAs and their targets. Interestingly, the 8-miR148aT design showed repressing activity by all miR-148/152 family members with significant detargeting effects in the pancreas and liver. Ad-miRTs preserved their oncolytic activity and triggered strong antitumoral responses. This study provides preclinical evidences of miR-148a and miR-216a target site insertions to confer adenoviral selectivity and proposes 8-miR148aT as an optimal detargeting strategy for genetically-engineered therapies against PDAC.
Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach.
Zhang, C H; Zhang, B B; Ma, R J; Yu, M L; Guo, S L; Guo, L
2015-10-30
MicroRNA166 (miR166) is known to have highly conserved targets that encode proteins of the class III homeodomain-leucine zipper (HD-ZIP III) family, in a broad range of plant species. To further understand the relationship between HD-ZIP III genes and miR166, four HD-ZIP III family genes (PpHB14, PpHB15, PpHB8, and PpREV) were isolated from peach (Prunus persica) tissue and characterized. Spatio-temporal expression profiles of the genes were analyzed. Genes of the peach HD-ZIP III family were predicted to encode five conserved domains. Deduced amino acid sequences and tertiary structures of the four peach HD-ZIP III genes were highly conserved, with corresponding genes in Arabidopsis thaliana. The expression level of four targets displayed the opposite trend to that of miR166 throughout fruit development, with the exception of PpHB14 from 35 to 55 days after full bloom (DAFB). This finding indicates that miR166 may negatively regulate its four targets throughout fruit development. As for leaf and phloem, the same trend in expression level was observed between four targets and miR166 from 75 to 105 DAFB. However, the opposite trend was observed for the transcript level between four targets and miR166 from 35 to 55 DAFB. miRNA166 may negatively regulate four targets in some but not all developmental stages for a given tissue. The four genes studied were observed to have, exactly or generally, the same change tendency as individual tissue development, a finding that suggests genes of the HD-ZIP III family in peach may have complementary or cooperative functions in various tissues.
Sánchez, Catherine A; Andahur, Eliana I; Valenzuela, Rodrigo; Castellón, Enrique A; Fullá, Juan A; Ramos, Christian G; Triviño, Juan C
2016-01-26
The different prostate cancer (PCa) cell populations (bulk and cancer stem cells, CSCs) release exosomes that contain miRNAs that could modify the local or premetastatic niche. The analysis of the differential expression of miRNAs in exosomes allows evaluating the differential biological effect of both populations on the niche, and the identification of potential biomarkers and therapeutic targets. Five PCa primary cell cultures were established to originate bulk and CSCs cultures. From them, exosomes were purified by precipitation for miRNAs extraction to perform a comparative profile of miRNAs by next generation sequencing in an Illumina platform. 1839 miRNAs were identified in the exosomes. Of these 990 were known miRNAs, from which only 19 were significantly differentially expressed: 6 were overexpressed in CSCs and 13 in bulk cells exosomes. miR-100-5p and miR-21-5p were the most abundant miRNAs. Bioinformatics analysis indicated that differentially expressed miRNAs are highly related with PCa carcinogenesis, fibroblast proliferation, differentiation and migration, and angiogenesis. Besides, miRNAs from bulk cells affects osteoblast differentiation. Later, their effect was evaluated in normal prostate fibroblasts (WPMY-1) where transfection with miR-100-5p, miR-21-5p and miR-139-5p increased the expression of metalloproteinases (MMPs) -2, -9 and -13 and RANKL and fibroblast migration. The higher effect was achieved with miR21 transfection. As conclusion, miRNAs have a differential pattern between PCa bulk and CSCs exosomes that act collaboratively in PCa progression and metastasis. The most abundant miRNAs in PCa exosomes are interesting potential biomarkers and therapeutic targets.
Gigante, Margherita; Pontrelli, Paola; Herr, Wolfgang; Gigante, Maddalena; D'Avenia, Morena; Zaza, Gianluigi; Cavalcanti, Elisabetta; Accetturo, Matteo; Lucarelli, Giuseppe; Carrieri, Giuseppe; Battaglia, Michele; Storkus, Walter J; Gesualdo, Loreto; Ranieri, Elena
2016-04-11
Mammalian microRNAs (miR) regulate the expression of genes relevant for the development of adaptive and innate immunity against cancer. Since T cell dysfunction has previously been reported in patients with renal cell carcinoma (RCC; clear cell type), we aimed to analyze these immune cells for genetic and protein differences when compared to normal donor T cells freshly after isolation and 35 days after in vitro stimulation (IVS) with HLA-matched RCC tumor cells. We investigated gene expression profiles of tumor-reactive CD8(+) T cells obtained from RCC patient and compared with their HLA-matched healthy sibling donors using a microarray approach. In addition, miRNAs analysis was performed in a validation cohort of peripheral blood CD8(+) T cells from 25 RCC patients compared to 15 healthy volunteers. We observed that CD8(+) T cells from RCC patients expressed reduced levels of anti-apoptotic and proliferation-associated gene products when compared with normal donor T cells both pre- and post-IVS. In particular, JAK3 and MCL-1 were down-regulated in patient CD8(+) T cells versus their normal counterparts, likely due to defective suppressor activity of miR-29b and miR-198 in RCC CD8(+) T cells. Indeed, specific inhibition of miR-29b or miR-198 in peripheral blood mononuclear cells (PBMCs) isolated from RCC patients, resulted in the up-regulation of JAK3 and MCL-1 proteins and significant improvement of cell survival in vitro. Our results suggest that miR-29b and miR-198 dysregulation in RCC patient CD8(+) T cells is associated with dysfunctional immunity and foreshadow the development of miR-targeted therapeutics to correct such T cell defects in vivo.
miR-148b-3p functions as a tumor suppressor in GISTs by directly targeting KIT.
Wang, Yu; Li, Jun; Kuang, Dong; Wang, Xiaoyan; Zhu, Yuanli; Xu, Sanpeng; Chen, Yaobing; Cheng, Henghui; Zhao, Qiu; Duan, Yaqi; Wang, Guoping
2018-04-16
Gain-of-function mutations and overexpression of KIT are characteristic features of gastrointestinal stromal tumor (GIST). Dysregulation in miRNA expression may lead to KIT overexpression and tumorigenesis. miRNA microarray analysis and real-time PCR were used to determine the miRNA expression profiles in a cohort of 69 clinical samples including 50 CD117 IHC+ /KIT mutation GISTs and 19 CD117 IHC- /wild-type GISTs. GO enrichment and KEGG pathway analyses were performed to reveal the predicted targets of the dysregulated miRNAs. Of the dysregulated miRNAs whose expression was inversely correlated with that of KIT miRNAs were predicted by bioinformatics analysis and confirmed by luciferase reporter assay. Cell counting kit-8 (CCK-8) and flow cytometry were used to measure the cell proliferation, cycle arrest and apoptosis. Wound healing and transwell assays were used to evaluate migration and invasion. A xenograft BALB/c nude mouse model was applied to investigate the tumorigenesis in vivo. Western blot and qRT-PCR were used to investigate the protein and mRNA levels of KIT and its downstream effectors including ERK, AKT and STAT3. Of the six miRNAs whose expression was inversely correlated with that of KIT, we found that miR-148b-3p was significantly downregulated in the CD117 IHC+ /KIT mutation GIST cohort. This miRNA was subsequently found to inhibit proliferation, migration and invasion of GIST882 cells. Mechanistically, miR-148b-3p was shown to regulate KIT expression through directly binding to the 3'-UTR of the KIT mRNA. Restoration of miR-148b-3p expression in GIST882 cells led to reduced expression of KIT and the downstream effectors proteins ERK, AKT and STAT3. However, overexpression of KIT reversed the inhibitory effect of miR-148b-3p on cell proliferation, migration and invasion. Furthermore, we found that reduced miR-148b-3p expression correlated with poor overall survival (OS) and disease-free survival (DFS) in GIST patients. miR-148b-3p functions as an important regulator of KIT expression and a potential prognostic biomarker for GISTs.
CircDOCK1 suppresses cell apoptosis via inhibition of miR-196a-5p by targeting BIRC3 in OSCC
Wang, Liping; Wei, Yongxiang; Yan, Yongyong; Wang, Haiyan; Yang, Jiantin; Zheng, Zhichao; Zha, Jun; Bo, Peng; Tang, Yinghua; Guo, Xueqi; Chen, Weihong; Zhu, Xinxin; Ge, Linhu
2018-01-01
Oral squamous cell carcinoma (OSCC) is the most frequent oral cancer in the world, accounting for more than 90% of all oral cancer diagnosis. Circular RNAs (circRNAs) are large types of non-coding RNAs, demonstrating a great capacity of regulating the expression of genes. However, most of the functions of circRNAs are still unknown. Recent research revealed that circRNAs could serve as a miRNA-sponge, consequently regulating the expression of target genes indirectly, including oncogenes. In this study, we built an apoptotic model with TNF-α, and then we confirmed a circRNA associated with the apoptosis of OSCC cells, circDOCK1 by comparing the expression profile of circRNAs in an apoptotic model with that in untreated OSCC cells. We ascertained the presence of circDOCK1 with qRT-PCR and circRNA sequencing. The knockdown of the expression of circDOCK1 led to the increase of apoptosis. Utilizing multiple bioinformatics methods, we predicted the interactions among circRNAs, miRNAs and genes, and built the circDOCK1/miR-196a-5p/BIRC3 axis. Both the silencing of circDOCK1 with small interfering RNA and the upregulation of the expression of miR-196a-5p with mimics led OSCC cells to increase apoptosis and decrease BIRC3 formation. We further confirmed this outcome by comparing the expression of circDOCK1, miR-196a-5p and BIRC3 in oral squamous carcinoma tissue with those in para-carcinoma tissue, and examining the expression profile of circRNAs in oral squamous carcinoma tissue and para-carcinoma tissue with microarray. Our results demonstrated that circDOCK1 regulated BIRC3 expression by functioning as a competing endogenous RNA (ceRNA) and participated in the process of OSCC apoptosis. Thus, we propose that circDOCK1 could represent a novel potential biomarker and therapeutic target of OSCC. PMID:29286141
Khorsandi, Shirin Elizabeth; Quaglia, Alberto; Salehi, Siamak; Jassem, Wayel; Vilca-Melendez, Hector; Prachalias, Andreas; Srinivasan, Parthi; Heaton, Nigel
2015-01-01
Donation after cardiac death (DCD) livers are marginal organs for transplant and their use is associated with a higher risk of primary non function (PNF) or early graft dysfunction (EGD). The aim was to determine if microRNA (miRNA) was able to discriminate between DCD livers of varying clinical outcome. DCD groups were categorized as PNF retransplanted within a week (n=7), good functional outcome (n=7) peak aspartate transaminase (AST) ≤ 1000 IU/L and EGD (n=9) peak AST ≥ 2500 IU/L. miRNA was extracted from archival formalin fixed post-perfusion tru-cut liver biopsies. High throughput expression analysis was performed using miRNA arrays. Bioinformatics for expression data analysis was performed and validated with real time quantitative PCR (RT-qPCR). The function of miRNA of interest was investigated using computational biology prediction algorithms. From the array analysis 16 miRNAs were identified as significantly different (p<0.05). On RT-qPCR miR-155 and miR-940 had the highest expression across all three DCD clinical groups. Only one miRNA, miR-22, was validated with marginal significance, to have differential expression between the three groups (p=0.049). From computational biology miR-22 was predicted to affect signalling pathways that impact protein turnover, metabolism and apoptosis/cell cycle. In conclusion, microRNA expression patterns have a low diagnostic potential clinically in discriminating DCD liver quality and outcome.
Plasma exosome microRNAs are indicative of breast cancer.
Hannafon, Bethany N; Trigoso, Yvonne D; Calloway, Cameron L; Zhao, Y Daniel; Lum, David H; Welm, Alana L; Zhao, Zhizhuang J; Blick, Kenneth E; Dooley, William C; Ding, W Q
2016-09-08
microRNAs are promising candidate breast cancer biomarkers due to their cancer-specific expression profiles. However, efforts to develop circulating breast cancer biomarkers are challenged by the heterogeneity of microRNAs in the blood. To overcome this challenge, we aimed to develop a molecular profile of microRNAs specifically secreted from breast cancer cells. Our first step towards this direction relates to capturing and analyzing the contents of exosomes, which are small secretory vesicles that selectively encapsulate microRNAs indicative of their cell of origin. To our knowledge, circulating exosome microRNAs have not been well-evaluated as biomarkers for breast cancer diagnosis or monitoring. Exosomes were collected from the conditioned media of human breast cancer cell lines, mouse plasma of patient-derived orthotopic xenograft models (PDX), and human plasma samples. Exosomes were verified by electron microscopy, nanoparticle tracking analysis, and western blot. Cellular and exosome microRNAs from breast cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome microRNA expression was analyzed by qRT-PCR analysis. Small RNA sequencing and qRT-PCR analysis showed that several microRNAs are selectively encapsulated or highly enriched in breast cancer exosomes. Importantly, the selectively enriched exosome microRNA, human miR-1246, was detected at significantly higher levels in exosomes isolated from PDX mouse plasma, indicating that tumor exosome microRNAs are released into the circulation and can serve as plasma biomarkers for breast cancer. This observation was extended to human plasma samples where miR-1246 and miR-21 were detected at significantly higher levels in the plasma exosomes of 16 patients with breast cancer as compared to the plasma exosomes of healthy control subjects. Receiver operating characteristic curve analysis indicated that the combination of plasma exosome miR-1246 and miR-21 is a better indicator of breast cancer than their individual levels. Our results demonstrate that certain microRNA species, such as miR-21 and miR-1246, are selectively enriched in human breast cancer exosomes and significantly elevated in the plasma of patients with breast cancer. These findings indicate a potential new strategy to selectively analyze plasma breast cancer microRNAs indicative of the presence of breast cancer.
Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach
Tsamou, Maria; Vrijens, Karen; Madhloum, Narjes; Lefebvre, Wouter; Vanpoucke, Charlotte; Nawrot, Tim S
2018-01-01
ABSTRACT Particulate matter (PM) exposure during in utero life may entail adverse health outcomes in later-life. Air pollution's adverse effects are known to alter gene expression profiles, which can be regulated by microRNAs (miRNAs). We investigate the potential influence of air pollution exposure in prenatal life on placental miRNA expression. Within the framework of the ENVIRONAGE birth cohort, we measured the expression of six candidate miRNAs in placental tissue from 210 mother-newborn pairs by qRT-PCR. Trimester-specific PM2.5 exposure levels were estimated for each mother's home address using a spatiotemporal model. Multiple regression models were used to study miRNA expression and in utero exposure to PM2.5 over various time windows during pregnancy. The placental expression of miR-21 (−33.7%, 95% CI: −53.2 to −6.2, P = 0.022), miR-146a (−30.9%, 95% CI: −48.0 to −8.1, P = 0.012) and miR-222 (−25.4%, 95% CI: −43.0 to −2.4, P = 0.034) was inversely associated with PM2.5 exposure during the 2nd trimester of pregnancy, while placental expression of miR-20a and miR-21 was positively associated with 1st trimester exposure. Tumor suppressor phosphatase and tensin homolog (PTEN) was identified as a common target of the miRNAs significantly associated with PM exposure. Placental PTEN expression was strongly and positively associated (+59.6% per 5 µg/m³ increment, 95% CI: 26.9 to 100.7, P < 0.0001) with 3rd trimester PM2.5 exposure. Further research is required to establish the role these early miRNA and mRNA expression changes might play in PM-induced health effects. We provide molecular evidence showing that in utero PM2.5 exposure affects miRNAs expression as well as its downstream target PTEN. PMID:27104955
Takikawa, Tetsuya; Masamune, Atsushi; Yoshida, Naoki; Hamada, Shin; Kogure, Takayuki; Shimosegawa, Tooru
2017-01-01
Pancreatic stellate cells (PSCs) interact with pancreatic cancer cells in the tumor microenvironment. Cell constituents including microRNAs may be exported from cells within membranous nanovesicles termed exosomes. Exosomes might play a pivotal role in intercellular communication. This study aimed to clarify the microRNA signature of PSC-derived exosomes and their effects on pancreatic cancer cells. Exosomes were prepared from the conditioned medium of immortalized human PSCs. MicroRNAs were prepared from the exosomes and their source PSCs, and the microRNA expression profiles were compared by microarray. The effects of PSC-derived exosomes on proliferation, migration, and the mRNA expression profiles were examined in pancreatic cancer cells. Pancreatic stellate cell-derived exosomes contained a variety of microRNAs including miR-21-5p. Several microRNAs such as miR-451a were enriched in exosomes compared to their source PSCs. Pancreatic stellate cell-derived exosomes stimulated the proliferation, migration and expression of mRNAs for chemokine (C - X - C motif) ligands 1 and 2 in pancreatic cancer cells. The stimulation of proliferation, migration, and chemokine gene expression by the conditioned medium of PSCs was suppressed by GW4869, an exosome inhibitor. We clarified the microRNA expression profile in PSC-derived exosomes. Pancreatic stellate cell-derived exosomes might play a role in the interactions between PSCs and pancreatic cancer cells.
Zhu, Shibo; He, Qiuming; Zhang, Ruizhong; Wang, Yong; Zhong, Wei; Xia, Huimin; Yu, Jiakang
2016-07-01
The pathogenesis of congenital diaphragmatic hernia (CDH) and the causes of pulmonary hypoplasia and hypertension remain unclear. miRNAs have been identified to play important regulatory roles in pulmonary pathological processes and lung development. We carried out the study to investigate the hypothesis that specific miRNAs are expressed differently in the lungs of nitrofen-induced rats, and to explore the possible targeting genes and roles of miR-33 in the pathological process of CDH. Pregnant rats were divided into nitrofen and control group, and were exposed to nitrofen or vehicle respectively on D9. Fetuses were harvested on D21 and left lungs were dissected. 4 samples from each group underwent miRNAs microarray analysis using Agilent miRNA Array. Quantitative real-time polymerase chain reaction (qRT-PCR) was further performed to validate the miR-33 expression. 11 miRNAs exhibited increased expression in nitrofen group compared with control (p<0.05): miR-3588, miR-382*, miR-363, miR-375, miR-487b, miR-483, miR-382, miR-495, miR-434, miR-181a, and miR-99a. 14 miRNAs showed decreased expression (p<0.05): miR-33, miR-193, miR-338, miR-30c-2*, miR-22, miR-18a, miR-532-5p, miR-28, miR-96, miR-551b, miR-141, miR-362*, miR-30a*, and miR-3559-5p. Among them, miR-33 expression was markedly decreased in CDH lungs compared to controls and the result was confirmed by qRT-PCR. Decreased expression of miR-33 was found in the nitrofen-induced hypoplastic lung on D21. This finding suggests that pathogenesis of lung hypoplasia and CDH in the nitrofen model involve epigenetic layer of regulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Novel MicroRNA signatures in HPV-mediated cervical carcinogenesis in Indian women.
Sharma, Shweta; Hussain, Showket; Soni, Kartik; Singhal, Pallavi; Tripathi, Richa; Ramachandran, V G; Sharma, Sonal; Das, Shukla; Pillai, Beena; Bharadwaj, Mausumi
2016-04-01
This study aimed to investigate the role of miRNAs in HPV-mediated cervical pre-cancer and cancer cases in Indian population. We analysed the HPV infection and its genotypes in uterine cervical pre-cancer (n = 80), cancer (n = 200) and normal cervical samples (n = 150) by consensus sequence PCR followed by type specific PCRs. Also, microRNA profiling was done in a subset of cervical pre-cancer (n = 20), cancer cases (n = 50) and normal samples (n = 30) by real-time quantitative PCR (qRT-PCR). The prevalence of HPV infection in pre-cancer was found to be 81 % (65/80) and 94 % (188/200) in cancer cases, with most predominant high-risk HPV type-16 (HR-HPV-16) in 83 % of cancer and 91 % of pre- cancer cases, respectively. Whereas in controls, the HPV infection was found to be very low (5 %). The miRNA profiling revealed that in cervical pre-cancer, 100 miRNAs were significantly (p < 0.001) differentially expressed with 70 miRNAs upregulated and 30 miRNAs downregulated. In cervical cancer cases, 383 miRNA were found to be differentially expressed (p < 0.001), of which 350 miRNAs were upregulated and 33 miRNAs were downregulated. We also observed that 182 miRNAs were differentially expressed (p < 0.001) in HPV-16/18-positive (SiHa/HeLa) cell lines compared with HPV-negative (C33A) cell line. In addition, we identified the novel microRNAs such as miR-892b, miR-500, miR-888, miR-505 and miR-711 in cervical precancerous lesions and cervical cancer cases in Indian population. Taken together, the study demonstrates a crucial role of microRNAs in cervical cancer, which may serve as potential early diagnostic markers for cervical carcinogenesis.
Colorectal tumor molecular phenotype and miRNA: expression profiles and prognosis.
Slattery, Martha L; Herrick, Jennifer S; Mullany, Lila E; Wolff, Erica; Hoffman, Michael D; Pellatt, Daniel F; Stevens, John R; Wolff, Roger K
2016-08-01
MiRNAs regulate gene expression by post-transcriptionally suppressing mRNA translation or by causing mRNA degradation. It has been proposed that unique miRNAs influence specific tumor molecular phenotype. In this paper, we test the hypotheses that miRNA expression differs by tumor molecular phenotype and that those differences may influence prognosis. Data come from population-based studies of colorectal cancer conducted in Utah and the Northern California Kaiser Permanente Medical Care Program. A total of 1893 carcinoma samples were run on the Agilent Human miRNA Microarray V19.0 containing 2006 miRNAs. We assessed differences in miRNA expression between TP53-mutated and non-mutated, KRAS-mutated and non-mutated, BRAF-mutated and non-mutated, CpG island methylator phenotype (CIMP) high and CIMP low, and microsatellite instability (MSI) and microsatellite stable (MSS) colon and rectal tumors. Using a Cox proportional hazard model we evaluated if those miRNAs differentially expressed by tumor phenotype influenced survival after adjusting for age, sex, and AJCC stage. There were 22 differentially expressed miRNAs for TP53-mutated colon tumors and 5 for TP53-mutated rectal tumors with a fold change of >1.49 (or <0.67). Additionally, 13 miRNAS were differentially expressed for KRAS-mutated rectal tumors, 8 differentially expressed miRNAs for colon CIMP high tumors, and 2 differentially expressed miRNAs for BRAF-mutated colon tumors. The majority of differentially expressed miRNAS were observed between MSI and MSS tumors (94 differentially expressed miRNAs for colon; 41 differentially expressed miRNAs for rectal tumors). Of these miRNAs differentially expressed between MSI and MSS tumors, the majority were downregulated. Ten of the differentially expressed miRNAs were associated with survival; after adjustment for MSI status, five miRNAS, miR-196b-5p, miR-31-5p, miR-99b-5p, miR-636, and miR-192-3p, were significantly associated with survival. In summary, it appears that the majority of miRNAs that are differentially expressed by tumor molecular phenotype are MSI tumors. However, these miRNAs appear to have minimal effect on prognosis.
Sato, Akira
2017-01-01
Two types of cell death, necrosis and apoptosis, are defined in terms of cell death morphological features. We have been studying the mechanisms by which cell death processes are switched during the treatment of mouse tumor FM3A with anticancer, 5-fluoro-2'-deoxyuridine (FUdR): it induces original clone F28-7 to necrosis, but its sub-clone F28-7-A to apoptosis. We identified several such switch regulators of cell death: heat shock protein 90 (HSP90), lamin-B1, cytokeratin-19, and activating transcription factor 3 (ATF3), by using transcriptomic, proteomic analyses and siRNA screening. For example, the inhibition of HSP90 by its inhibitor geldanamycin in F28-7 caused a shift from necrosis to apoptosis. We also observed that the knockdown of lamin-B1, cytokeratin-19, or ATF3 expression in F28-7 resulted in a shift from necrosis to apoptosis. Recently, we used microRNA (miRNA, miR) microarray analyses to investigate the miRNA expression profiles in these sister cells. The miR-351 and miR-743a were expressed at higher levels in F28-7-A than in F28-7. Higher expression of miR-351 or miR-743a in F28-7, induced by transfecting the miR mimics, resulted in a switch of cell death mode: necrosis to apoptosis. Furthermore, transfection of an miR-351 inhibitor into F28-7-A resulted in morphological changes, and mode of cell death from apoptosis to necrosis. These findings suggest that the identified cell death regulators may have key roles in switching cell death mode. Possible mechanisms involving cell death regulators in the switch of necrosis or apoptosis are discussed. We propose a novel anticancer strategy targeting the switch regulators of necrosis or apoptosis.
Zeng, Zhipeng; Wang, Ke; Li, Yuanyuan; Xia, Ni; Nie, Shaofang; Lv, Bingjie; Zhang, Min; Tu, Xin; Li, Qianqian; Tang, Tingting; Cheng, Xiang
2017-04-07
CD4 + T cells are abnormally activated in patients with dilated cardiomyopathy (DCM) and might be associated with the immunopathogenesis of the disease. However, the underlying mechanisms of CD4 + T cell activation remain largely undefined. Our aim was to investigate whether the dysregulation of microRNAs (miRNAs) was associated with CD4 + T cell activation in DCM. CD4 + T cells from DCM patients showed increased expression levels of CD25 and CD69 and enhanced proliferation in response to anti-CD3/28, indicating an activated state. miRNA profiling analysis of magnetically sorted CD4 + T cells revealed a distinct pattern of miRNA expression in CD4 + T cells from DCM patients compared with controls. The level of miRNA-451a (miR-451a) was significantly decreased in the CD4 + T cells of DCM patients compared with that of the controls. The transfection of T cells with an miR-451a mimic inhibited their activation and proliferation, whereas an miR-451a inhibitor produced the opposite effects. Myc was directly inhibited by miR-451a via interaction with its 3'-UTR, thus identifying it as an miR-451a target in T cells. The knockdown of Myc suppressed the activation and proliferation of T cells, and the expression of Myc was significantly up-regulated at the mRNA level in CD4 + T cells from patients with DCM. A strong inverse correlation was observed between the Myc mRNA expression and miR-451a transcription level. Our data suggest that the down-regulation of miR-451a contributes to the activation and proliferation of CD4 + T cells by targeting the transcription factor Myc in DCM patients and may contribute to the immunopathogenesis of DCM. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Mi-Kyung; School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul 136-701; Park, Yong-Keun
2013-11-15
Growing evidence indicates that changes in microRNA (miRNA) expression in cancer induced by chemical carcinogens play an important role in cancer development and progression by regulating related genes. However, the mechanisms underlying miRNA involvement in hepatocarcinogenesis induced by polycyclic aromatic hydrocarbons (PAHs) remain unclear. Thus, the identification of aberrant miRNA expression during PAH-induced cancer cell migration will lead to a better understanding of the substantial role of miRNAs in cancer progression. In the present study, miRNA expression profiling showed significant upregulation of miR-181a, -181b, and -181d in human hepatocellular carcinoma cells (HepG2 line) exposed to benzo[a]anthracene (BA) and benzo[k]fluoranthene (BF).more » MAPK phosphatase-5 (MKP-5), a validated miR-181 target that deactivates MAPKs, was markedly suppressed while phosphorylation of p38 MAPK was increased after BA and BF exposure. The migration of HepG2 cells, observed using the scratch wound-healing assay, also increased in a dose-dependent manner. Depletion of miR-181 family members by miRNA inhibitors enhanced the expression of MKP-5 and suppressed the phosphorylation of p38 MAPK. Furthermore, the depletion of the miR-181 family inhibited cancer cell migration. Based on these results, we conclude that the miR-181 family plays a critical role in PAH-induced hepatocarcinogenesis by targeting MKP-5, resulting in the regulation of p38 MAPK activation. - Highlights: • We found significant upregulation of miR-181 family in HCC exposed to BA and BF. • We identified the MKP-5 as a putative target of miR-181 family. • MKP-5 was suppressed while p-P38 was increased after BA and BF exposure. • The migration of HepG2 cells increased in a dose-dependent manner.« less
Kinoshita, Natsuko; Wang, Huan; Kasahara, Hiroyuki; Liu, Jun; MacPherson, Cameron; Machida, Yasunori; Kamiya, Yuji; Hannah, Matthew A.; Chua, Nam-Hai
2012-01-01
The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress–induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance. PMID:22960911
Circulating microRNAs in follicular fluid, powerful tools to explore in vitro fertilization process.
Scalici, E; Traver, S; Mullet, T; Molinari, N; Ferrières, A; Brunet, C; Belloc, S; Hamamah, S
2016-04-22
Circulating or "extracellular" microRNAs (miRNAs) detected in biological fluids, could be used as potential diagnostic and prognostic biomarkers of several disease, such as cancer, gynecological and pregnancy disorders. However, their contributions in female infertility and in vitro fertilization (IVF) remain unknown. This study investigated the expression profiles of five circulating miRNAs (let-7b, miR-29a, miR-30a, miR-140 and miR-320a) in human follicular fluid from 91 women with normal ovarian reserve and 30 with polycystic ovary syndrome (PCOS) and their ability to predict IVF outcomes. The combination of FF miR-30a, miR-140 and let-7b expression levels discriminated between PCOS and normal ovarian reserve with a specificity of 83.8% and a sensitivity of 70% (area under the ROC curve, AUC = 0.83 [0.73-0.92]; p < 0.0001). FF samples related to low number of mature oocytes (≤2) contained significant less miR-320a levels than those related to a number of mature oocytes >2 (p = 0.04). Moreover, FF let-7b predicted the development of expanded blastocysts with 70% sensitivity and 64.3% specificity (AUC = 0.67 [0.54-0.79]; p = 0.02) and FF miR-29a potential to predict clinical pregnancy outcome reached 0.68 [0.55-0.79] with a sensitivity of 83.3% and a specificity of 53.5% (p = 0.01). Therefore, these miRNAs could provide new helpful biomarkers to facilitate personalized medical care during IVF.
Change in circulating microRNA profile of obese children indicates future risk of adult diabetes.
Cui, Xianwei; You, Lianghui; Zhu, Lijun; Wang, Xing; Zhou, Yahui; Li, Yun; Wen, Juan; Xia, Yankai; Wang, Xinru; Ji, Chenbo; Guo, Xirong
2018-01-01
Childhood obesity increases susceptibility to type 2 diabetes (T2D) in adults. Circulating microRNAs (miRNAs) in serum have been proposed as potential diagnostic biomarkers, and they may contribute to the progression toward T2D. Here, we investigated the possibility of predicting the future risk of adult T2D in obese children by using circulating miRNAs. We performed miRNA high-throughput sequencing to screen relevant circulating miRNAs in obese children. The expression patterns of targeted miRNAs were further explored in obese children and adults with T2D. To investigate the underlying contributions of these miRNAs to the development of T2D, we detected the impacts of the candidate miRNAs on preadipocyte proliferation, insulin secretion by pancreatic β-cell, and glucose uptake by skeletal muscle cells. Three miRNAs (miR-486, miR-146b and miR-15b), whose expression in the circulation was most dramatically augmented in obese children and adult T2D patients, were selected for further investigation. Of these 3 miRNAs, miR-486 was implicated in accelerating preadipocyte proliferation and myotube glucose intolerance, miR-146b and miR-15b were engaged in the suppression of high concentration glucose-induced pancreatic insulin secretion, and they all contributed to the pathological processes of obesity and T2D. Our results provide a better understanding of the role of circulating miRNAs, particularly miR-486, miR-146b and miR-15b, in predicting the future risk of T2D in obese children. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Frequent downregulation of miR-34 family in human ovarian cancers.
Corney, David C; Hwang, Chang-Il; Matoso, Andres; Vogt, Markus; Flesken-Nikitin, Andrea; Godwin, Andrew K; Kamat, Aparna A; Sood, Anil K; Ellenson, Lora H; Hermeking, Heiko; Nikitin, Alexander Yu
2010-02-15
The miR-34 family is directly transactivated by tumor suppressor p53, which is frequently mutated in human epithelial ovarian cancer (EOC). We hypothesized that miR-34 expression would be decreased in EOC and that reconstituted miR-34 expression might reduce cell proliferation and invasion of EOC cells. miR-34 expression was determined by quantitative reverse transcription-PCR and in situ hybridization in a panel of 83 human EOC samples. Functional characterization of miR-34 was accomplished by reconstitution of miR-34 expression in EOC cells with synthetic pre-miR molecules followed by determining changes in proliferation, apoptosis, and invasion. miR-34a expression is decreased in 100%, and miR-34b*/c in 72%, of EOC with p53 mutation, whereas miR-34a is also downregulated in 93% of tumors with wild-type p53. Furthermore, expression of miR-34b*/c is significantly reduced in stage IV tumors compared with stage III (P = 0.0171 and P = 0.0029, respectively). Additionally, we observed promoter methylation and copy number variations at mir-34. In situ hybridization showed that miR-34a expression is inversely correlated with MET immunohistochemical staining, consistent with translational inhibition by miR-34a. Finally, miR-34 reconstitution experiments in p53 mutant EOC cells resulted in reduced proliferation, motility, and invasion, the latter of which was dependent on MET expression. Our work suggests that miR-34 family plays an important role in EOC pathogenesis and reduced expression of miR-34b*/c may be particularly important for progression to the most advanced stages. Part of miR-34 effects on motility and invasion may be explained by regulation of MET, which is frequently overexpressed in EOC.
Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens.
Lin, Shumao; Li, Hongmei; Mu, Heping; Luo, Wen; Li, Ying; Jia, Xinzheng; Wang, Sibing; Jia, Xiaolu; Nie, Qinghua; Li, Yugu; Zhang, Xiquan
2012-07-10
A deletion mutation in the growth hormone receptor (GHR) gene results in the inhibition of skeletal muscle growth and fat deposition in dwarf chickens. We used microarray techniques to determine microRNA (miRNA) and mRNA expression profiles of GHR in the skeletal muscles of 14-day-old embryos as well as 7-week-old deletion-type dwarf and normal-type chickens. Our aim was to elucidate the miRNA regulation of GHR expression with respect to growth inhibition and fat deposition. At the same developmental stages, different expression profiles in skeletal muscles of dwarf and normal chickens occurred for four miRNAs (miR-1623, miR-181b, let-7b, and miR-128). At different developmental stages, there was a significant difference in the expression profiles of a greater number of miRNAs. Eleven miRNAs were up-regulated and 18 down-regulated in the 7-week-old dwarf chickens when compared with profiles in 14-day-old embryos. In 7-week-old normal chickens, seven miRNAs were up-regulated and nine down-regulated compared with those in 14-day-old embryos. In skeletal muscles, 22 genes were up-regulated and 33 down-regulated in 14-day-old embryos compared with 7-week-old dwarf chickens. Sixty-five mRNAs were up-regulated and 108 down-regulated in 14-day-old embryos as compared with 7-week-old normal chickens. Thirty-four differentially expressed miRNAs were grouped into 18 categories based on overlapping seed and target sequences. Only let-7b was found to be complementary to its target in the 3' untranslated region of GHR, and was able to inhibit its expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis and quantitative polymerase chain reactions indicated there were three main signaling pathways regulating skeletal muscle growth and fat deposition of chickens. These were influenced by let-7b-regulated GHR. Suppression of the cytokine signaling 3 (SOCS3) gene was found to be involved in the signaling pathway of adipocytokines. There is a critical miRNA, let-7b, involved in the regulation of GHR. SOCS3 plays a critical role in regulating skeletal muscle growth and fat deposition via let-7b-mediated GHR expression.
Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens
2012-01-01
Background A deletion mutation in the growth hormone receptor (GHR) gene results in the inhibition of skeletal muscle growth and fat deposition in dwarf chickens. We used microarray techniques to determine microRNA (miRNA) and mRNA expression profiles of GHR in the skeletal muscles of 14-day-old embryos as well as 7-week-old deletion-type dwarf and normal-type chickens. Our aim was to elucidate the miRNA regulation of GHR expression with respect to growth inhibition and fat deposition. Results At the same developmental stages, different expression profiles in skeletal muscles of dwarf and normal chickens occurred for four miRNAs (miR-1623, miR-181b, let-7b, and miR-128). At different developmental stages, there was a significant difference in the expression profiles of a greater number of miRNAs. Eleven miRNAs were up-regulated and 18 down-regulated in the 7-week-old dwarf chickens when compared with profiles in 14-day-old embryos. In 7-week-old normal chickens, seven miRNAs were up-regulated and nine down-regulated compared with those in 14-day-old embryos. In skeletal muscles, 22 genes were up-regulated and 33 down-regulated in 14-day-old embryos compared with 7-week-old dwarf chickens. Sixty-five mRNAs were up-regulated and 108 down-regulated in 14-day-old embryos as compared with 7-week-old normal chickens. Thirty-four differentially expressed miRNAs were grouped into 18 categories based on overlapping seed and target sequences. Only let-7b was found to be complementary to its target in the 3′ untranslated region of GHR, and was able to inhibit its expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis and quantitative polymerase chain reactions indicated there were three main signaling pathways regulating skeletal muscle growth and fat deposition of chickens. These were influenced by let-7b-regulated GHR. Suppression of the cytokine signaling 3 (SOCS3) gene was found to be involved in the signaling pathway of adipocytokines. Conclusions There is a critical miRNA, let-7b, involved in the regulation of GHR. SOCS3 plays a critical role in regulating skeletal muscle growth and fat deposition via let-7b-mediated GHR expression. PMID:22781587
Prediction of miRNA-mRNA associations in Alzheimer's disease mice using network topology.
Noh, Haneul; Park, Charny; Park, Soojun; Lee, Young Seek; Cho, Soo Young; Seo, Hyemyung
2014-08-03
Little is known about the relationship between miRNA and mRNA expression in Alzheimer's disease (AD) at early- or late-symptomatic stages. Sequence-based target prediction algorithms and anti-correlation profiles have been applied to predict miRNA targets using omics data, but this approach often leads to false positive predictions. Here, we applied the joint profiling analysis of mRNA and miRNA expression levels to Tg6799 AD model mice at 4 and 8 months of age using a network topology-based method. We constructed gene regulatory networks and used the PageRank algorithm to predict significant interactions between miRNA and mRNA. In total, 8 cluster modules were predicted by the transcriptome data for co-expression networks of AD pathology. In total, 54 miRNAs were identified as being differentially expressed in AD. Among these, 50 significant miRNA-mRNA interactions were predicted by integrating sequence target prediction, expression analysis, and the PageRank algorithm. We identified a set of miRNA-mRNA interactions that were changed in the hippocampus of Tg6799 AD model mice. We determined the expression levels of several candidate genes and miRNA. For functional validation in primary cultured neurons from Tg6799 mice (MT) and littermate (LM) controls, the overexpression of ARRDC3 enhanced PPP1R3C expression. ARRDC3 overexpression showed the tendency to decrease the expression of miR139-5p and miR3470a in both LM and MT primary cells. Pathological environment created by Aβ treatment increased the gene expression of PPP1R3C and Sfpq but did not significantly alter the expression of miR139-5p or miR3470a. Aβ treatment increased the promoter activity of ARRDC3 gene in LM primary cells but not in MT primary cells. Our results demonstrate AD-specific changes in the miRNA regulatory system as well as the relationship between the expression levels of miRNAs and their targets in the hippocampus of Tg6799 mice. These data help further our understanding of the function and mechanism of various miRNAs and their target genes in the molecular pathology of AD.
miR-17-92 cluster microRNAs confers tumorigenicity in multiple myeloma.
Chen, Lijuan; Li, Chunming; Zhang, Run; Gao, Xiao; Qu, Xiaoyan; Zhao, Min; Qiao, Chun; Xu, Jiaren; Li, Jianyong
2011-10-01
miRNAs play important roles in the regulation of cell proliferation, differentiation and apoptosis. The deregulation of miRNAs expression contributes to tumorigenesis by modulating oncogenic and tumor suppressor signaling pathways. Oncogenic transcription factor Myc can control expression of a large set of microRNAs (miRNAs). Previous studies have shown that the expression of miR-17-92 cluster, a polycistron encoding six microRNAs (miRNA), has close relationship with the expression of Myc. In current study, silencing Myc in multiple myeloma (MM)cells induced cell death and growth inhibition, and downregulated expression of miR-17-92 cluster. Overexpression of miR-17 or miR-18 could partly abrogated Myc-knockdown-induced MM cell apoptosis. One of the mechanism of Myc inhibiting MM cell apoptosis is through Myc activates miR-17-92 cluster and subsequently down-modulates proapoptotic protein Bim. Although miR-17-92 cluster are located at 13q31.3, the expression of miR-18, miR-19 and miR-20 (especially miR-19) in patients with del(13q14) was higher than those without del(13q14). Patients with miR-17, miR-20 and miR-92 high-expression had shorter PFS compared to those with miR-17, miR-20 and miR-92 low-expression. These results suggest the Myc-inducible miR-17-92 cluster miRNAs contribute to tumorigenesis and poor prognosis in multiple myeloma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Li, Cheukfai; Zhao, Qiang; Zhang, Wei; Chen, Maogen; Ju, Weiqiang; Wu, Linwei; Han, Ming; Ma, Yi; Zhu, Xiaofeng; Wang, Dongping; Guo, Zhiyong; He, Xiaoshun
2017-01-01
Background Poor transplant outcome was observed in donation after brain death followed by circulatory death (DBCD), since the donor organs suffered both cytokine storm of brain death and warm ischemia injury. MicroRNAs (miRNAs) have emerged as promising disease biomarkers, so we sought to establish a miRNA signature of porcine DBCD and verify the findings in human liver transplantation. Material/Methods MiRNA expression was determined with miRNA sequencing in 3 types of the porcine model of organ donation, including donation after brain death (DBD) group, donation after circulatory death (DCD) group, and DBCD group. Bioinformatics analysis was performed to reveal the potential regulatory behavior of target miRNA. Human liver graft biopsy samples after reperfusion detected by fluorescence in situ hybridization were used to verify the expression of target miRNA. Results We compared miRNA expression profiles of the 3 donation types. The porcine liver graft miR-146b was significantly increased and selected in the DBCD group versus in the DBD and DCD groups. The donor liver expression of human miR-146b-5p, which is homologous to porcine miR-146b, was further examined in 42 cases of human liver transplantations. High expression of miR-146b-5p successfully predicted the post-transplant early allograft dysfunction (EAD) with the area under the ROC curve (AUC) 0.759 (P=0.004). Conclusions Our results revealed the miRNA signature of DBCD liver grafts for the first time. The miR-146b-5p may have important clinical implications for monitoring liver graft function and predicating transplant outcomes. PMID:29227984
Kim, Yoonhee; Zhang, Yinhua; Pang, Kaifang; Kang, Hyojin; Park, Heejoo; Lee, Yeunkum; Lee, Bokyoung; Lee, Heon-Jeong; Kim, Won-Ki; Geum, Dongho
2016-01-01
Bipolar disorder (BD), characterized by recurrent mood swings between depression and mania, is a highly heritable and devastating mental illness with poorly defined pathophysiology. Recent genome-wide molecular genetic studies have identified several protein-coding genes and microRNAs (miRNAs) significantly associated with BD. Notably, some of the proteins expressed from BD-associated genes function in neuronal synapses, suggesting that abnormalities in synaptic function could be one of the key pathogenic mechanisms of BD. In contrast, however, the role of BD-associated miRNAs in disease pathogenesis remains largely unknown, mainly because of a lack of understanding about their target mRNAs and pathways in neurons. To address this problem, in this study, we focused on a recently identified BD-associated but uncharacterized miRNA, miR-1908-5p. We identified and validated its novel target genes including DLGAP4, GRIN1, STX1A, CLSTN1 and GRM4, which all function in neuronal glutamatergic synapses. Moreover, bioinformatic analyses of human brain expression profiles revealed that the expression levels of miR-1908-5p and its synaptic target genes show an inverse-correlation in many brain regions. In our preliminary experiments, the expression of miR-1908-5p was increased after chronic treatment with valproate but not lithium in control human neural progenitor cells. In contrast, it was decreased by valproate in neural progenitor cells derived from dermal fibroblasts of a BD subject. Together, our results provide new insights into the potential role of miR-1908-5p in the pathogenesis of BD and also propose a hypothesis that neuronal synapses could be a key converging pathway of some BD-associated protein-coding genes and miRNAs. PMID:28035180
Liang, Wei-Wei; Huang, Jing-Hao; Li, Chun-Ping; Yang, Lin-Tong; Ye, Xin; Lin, Dan; Chen, Li-Song
2017-08-24
Magnesium (Mg)-deficiency occurs most frequently in strongly acidic, sandy soils. Citrus are grown mainly on acidic and strong acidic soils. Mg-deficiency causes poor fruit quality and low fruit yield in some Citrus orchards. For the first time, we investigated Mg-deficiency-responsive miRNAs in 'Xuegan' (Citrus sinensis) roots using Illumina sequencing in order to obtain some miRNAs presumably responsible for Citrus Mg-deficiency tolerance. We obtained 101 (69) miRNAs with increased (decreased) expression from Mg-starved roots. Our results suggested that the adaptation of Citrus roots to Mg-deficiency was related to the several aspects: (a) inhibiting root respiration and related gene expression via inducing miR158 and miR2919; (b) enhancing antioxidant system by down-regulating related miRNAs (miR780, miR6190, miR1044, miR5261 and miR1151) and the adaptation to low-phosphorus (miR6190); (c) activating transport-related genes by altering the expression of miR6190, miR6485, miR1044, miR5029 and miR3437; (d) elevating protein ubiquitination due to decreased expression levels of miR1044, miR5261, miR1151 and miR5029; (e) maintaining root growth by regulating miR5261, miR6485 and miR158 expression; and (f) triggering DNA repair (transcription regulation) by regulating miR5176 and miR6485 (miR6028, miR6190, miR6485, miR5621, miR160 and miR7708) expression. Mg-deficiency-responsive miRNAs involved in root signal transduction also had functions in Citrus Mg-deficiency tolerance. We obtained several novel Mg-deficiency-responsive miRNAs (i.e., miR5261, miR158, miR6190, miR6485, miR1151 and miR1044) possibly contributing to Mg-deficiency tolerance. These results revealed some novel clues on the miRNA-mediated adaptation to nutrient deficiencies in higher plants.
Wu, Yongyan; Liu, Fayang; Liu, Yingying; Liu, Xiaolei; Ai, Zhiying; Guo, Zekun; Zhang, Yong
2015-01-01
Wnt/β-catenin signalling plays a prominent role in maintaining self-renewal and pluripotency of mouse embryonic stem cells (mESCs). microRNAs (miRNAs) have critical roles in maintaining pluripotency and directing reprogramming. To investigate the effect of GSK3 inhibitors on miRNA expression, we analysed the miRNA expression profile of J1 mESCs in the absence or presence of CHIR99021 (CHIR) or 6-bromoindirubin-3′-oxime (BIO) by small RNA deep-sequencing. The results demonstrate that CHIR and BIO decrease mature miRNAs of most miRNA species, 90.4% and 98.1% of the differentially expressed miRNAs in BIO and CHIR treated cells were downregulated respectively. CHIR and BIO treatment leads to a slight upregulation of the primary transcripts of the miR-302–367 cluster and miR-181 family of miRNAs, these miRNAs are activated by Wnt/β-catenin signalling. However, the precursor and mature form of the miR-302–367 cluster and miR-181 family of miRNAs are downregulated by CHIR, suggesting CHIR inhibits maturation of primary miRNA. Western blot analysis shows that BIO and CHIR treatment leads to a reduction of the RNase III enzyme Drosha in the nucleus. These data suggest that BIO and CHIR inhibit miRNA maturation by disturbing nuclear localisation of Drosha. Results also show that BIO and CHIR induce miR-211 expression in J1 mESCs. PMID:25727520
Zhang, Penghui; He, Zhimei; Wang, Chen; Chen, Jiangning; Zhao, Jingjing; Zhu, Xuena; Li, Chen-Zhong; Min, Qianhao; Zhu, Jun-Jie
2015-01-27
MicroRNAs (miRNAs), as key regulators in gene expression networks, have participated in many biological processes, including cancer initiation, progression, and metastasis, indicative of potential diagnostic biomarkers and therapeutic targets. To tackle the low abundance of miRNAs in a single cell, we have developed programmable nanodevices with MNAzymes to realize stringent recognition and in situ amplification of intracellular miRNAs for multiplexed detection and controlled drug release. As a proof of concept, miR-21 and miR-145, respectively up- and down-expressed in most tumor tissues, were selected as endogenous cancer indicators and therapy triggers to test the efficacy of the photothermal nanodevices. The sequence programmability and specificity of MNAzyme motifs enabled the fluorescent turn-on probes not only to sensitively profile the distributions of miR-21/miR-145 in cell lysates of HeLa, HL-60, and NIH 3T3 (9632/0, 14147/0, 2047/421 copies per cell, respectively) but also to visualize trace amounts of miRNAs in a single cell, allowing logic operation for graded cancer risk assessment and dynamic monitoring of therapy response by confocal microscopy and flow cytometry. Furthermore, through general molecular design, the MNAzyme motifs could serve as three-dimensional gatekeepers to lock the doxorubicin inside the nanocarriers. The drug nanocarriers were exclusively internalized into the target tumor cells via aptamer-guided recognition and reopened by the endogenous miRNAs, where the drug release rates could be spatial-temporally controlled by the modulation of miRNA expression. Integrated with miRNA profiling techniques, the designed nanodevices can provide general strategy for disease diagnosis, prognosis, and combination treatment with chemotherapy and gene therapy.
Allogeneic T cell responses are regulated by a specific miRNA-mRNA network
Sun, Yaping; Tawara, Isao; Zhao, Meng; Qin, Zhaohui S.; Toubai, Tomomi; Mathewson, Nathan; Tamaki, Hiroya; Nieves, Evelyn; Chinnaiyan, Arul M.; Reddy, Pavan
2013-01-01
Donor T cells that respond to host alloantigens following allogeneic bone marrow transplantation (BMT) induce graft-versus-host (GVH) responses, but their molecular landscape is not well understood. MicroRNAs (miRNAs) regulate gene (mRNA) expression and fine-tune the molecular responses of T cells. We stimulated naive T cells with either allogeneic or nonspecific stimuli and used argonaute cross-linked immunoprecipitation (CLIP) with subsequent ChIP microarray analyses to profile miR responses and their direct mRNA targets. We identified a unique expression pattern of miRs and mRNAs following the allostimulation of T cells and a high correlation between the expression of the identified miRs and a reduction of their mRNA targets. miRs and mRNAs that were predicted to be differentially regulated in allogeneic T cells compared with nonspecifically stimulated T cells were validated in vitro. These analyses identified wings apart-like homolog (Wapal) and synaptojanin 1 (Synj1) as potential regulators of allogeneic T cell responses. The expression of these molecular targets in vivo was confirmed in MHC-mismatched experimental BMT. Targeted silencing of either Wapal or Synj1 prevented the development of GVH response, confirming a role for these regulators in allogeneic T cell responses. Thus, this genome-wide analysis of miRNA-mRNA interactions identifies previously unrecognized molecular regulators of T cell responses. PMID:24216511
Zhong, Jia; Baccarelli, Andrea A; Mansur, Abdallah; Adir, Michal; Nahum, Ravit; Hauser, Russ; Bollati, Valentina; Racowsky, Catherine; Machtinger, Ronit
2018-01-01
Prenatal exposure to endocrine-disrupting chemicals (EDCs) exerts both short- and long-term adverse effects on the developing fetus. However, the mechanisms underlying these effects have yet to be uncovered. Maternal-fetal signaling is mediated in part by signaling molecules (eg, microRNAs [miRNAs]) contained in extracellular vesicles (EVs) that are released by the placenta into the maternal circulation. We investigated whether maternal exposure to the EDCs phthalates and personal care products alters the miRNA profile of placental-derived EVs circulating in maternal blood. Blood and urine samples from pregnant women with uncomplicated term dichorionic, diamniotic twin pregnancies were analyzed as part of a larger study investigating correlations between exposure of phthalate and personal care products and epigenetic alterations in twin pregnancies. We explored correlations between maternal urinary levels of 13 phthalate and 12 personal care products metabolites and the miRNA profile of placental EVs (EV-miRNAs) circulating in maternal blood. The expression of miR-518e was highest among women with high urinary levels of monobenzyl phthalate and methyl paraben. miR-373-3p was the least expressed in women exposed to high levels of methyl paraben, and miR-543 was significantly downregulated in women exposed to high levels of paraben metabolites, dichlorophenol metabolites, and triclosan. In conclusion, this pilot study reveals that prenatal exposure to EDCs is associated with altered profile of circulating placenta-derived EV-miRNAs. Further studies are needed to generalize these results to singleton pregnancies and to assess whether these alterations are associated with pregnancy complications.
Izzotti, Alberto; Larghero, Patrizia; Longobardi, Mariagrazia; Cartiglia, Cristina; Camoirano, Anna; Steele, Vernon E; De Flora, Silvio
2011-12-01
Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631mg/m(3) of total particulate matter. Exposure started within 12h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) were measured by (32)P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used. Copyright © 2011 Elsevier B.V. All rights reserved.
Gene Profiling in Patients with Systemic Sclerosis Reveals the Presence of Oncogenic Gene Signatures
Dolcino, Marzia; Pelosi, Andrea; Fiore, Piera Filomena; Patuzzo, Giuseppe; Tinazzi, Elisa; Lunardi, Claudio; Puccetti, Antonio
2018-01-01
Systemic sclerosis (SSc) is a rare connective tissue disease characterized by three pathogenetic hallmarks: vasculopathy, dysregulation of the immune system, and fibrosis. A particular feature of SSc is the increased frequency of some types of malignancies, namely breast, lung, and hematological malignancies. Moreover, SSc may also be a paraneoplastic disease, again indicating a strong link between cancer and scleroderma. The reason of this association is still unknown; therefore, we aimed at investigating whether particular genetic or epigenetic factors may play a role in promoting cancer development in patients with SSc and whether some features are shared by the two conditions. We therefore performed a gene expression profiling of peripheral blood mononuclear cells (PBMCs) derived from patients with limited and diffuse SSc, showing that the various classes of genes potentially linked to the pathogenesis of SSc (such as apoptosis, endothelial cell activation, extracellular matrix remodeling, immune response, and inflammation) include genes that directly participate in the development of malignancies or that are involved in pathways known to be associated with carcinogenesis. The transcriptional analysis was then complemented by a complex network analysis of modulated genes which further confirmed the presence of signaling pathways associated with carcinogenesis. Since epigenetic mechanisms, such as microRNAs (miRNAs), are believed to play a central role in the pathogenesis of SSc, we also evaluated whether specific cancer-related miRNAs could be deregulated in the serum of SSc patients. We focused our attention on miRNAs already found upregulated in SSc such as miR-21-5p, miR-92a-3p, and on miR-155-5p, miR 126-3p and miR-16-5p known to be deregulated in malignancies associated to SSc, i.e., breast, lung, and hematological malignancies. miR-21-5p, miR-92a-3p, miR-155-5p, and miR-16-5p expression was significantly higher in SSc sera compared to healthy controls. Our findings indicate the presence of modulated genes and miRNAs that can play a predisposing role in the development of malignancies in SSc and are important for a better risk stratification of patients and for the identification of a better individualized precision medicine strategy. PMID:29559981
Novel Cadmium Responsive MicroRNAs in Daphnia pulex.
Chen, Shuai; McKinney, Garrett J; Nichols, Krista M; Colbourne, John K; Sepúlveda, Maria S
2015-12-15
Daphnia pulex is a widely used toxicological model and is known for its sensitivity to cadmium (Cd). Recent research suggests that microRNAs (miRNAs) play a critical role in animal responses to heavy metals. To investigate the functions of D. pulex miRNAs under Cd exposure, we analyzed the miRNA profiles of D. pulex after 48 h using miRNA microarrays and validated our findings by q-PCR. miRNA dpu-let-7 was identified as a stably expressed gene and used as a reference. We identified 22 and 21 differentially expressed miRNAs under low (20 μg/L CdCl2) and high-exposure (40 μg/L CdCl2) concentrations compared to controls, respectively. Cellular functions of predicted miRNA target Cd-responsive genes included oxidative stress, ion transport, mitochondrial damage, and DNA repair. An insulin-related network was also identified in relation to several Cd-responsive miRNAs. The expression of three predicted target genes for miR-71 and miR-210 were evaluated, and expression of two of them (SCN2A and SLC31A1) was negatively correlated with the expression of their regulator miRNAs. We show miR-210 is hypoxia-responsive in D. pulex and propose Cd and hypoxia induce miR-210 via a same HIF1α modulated pathway. Collectively, this research advances our understanding on the role of miRNAs in response to heavy-metal exposure.
Guan, Zheng; Tan, Jing; Gao, Wei; Li, Xin; Yang, Yuandong; Li, Xiaogang; Li, Yingchao; Wang, Qiang
2018-06-19
Recent studies have revealed that circular RNAs (circRNAs) play important roles in the tumorigenesis of human cancer, including hepatocellular carcinoma (HCC). In present study, we screen the circular RNA expression profiles in HCC tissue and investigate the molecular roles on HCC tumorigenesis. Human circRNA microarray analysis showed there were total 1,245 differently expressed circular RNAs, including 756 up-regulated circRNAs and 489 down-regulated circRNAs, in three pairs of HCC tissue and adjacent normal tissue. Hsa_circ_0016788 was identified to be up-regulated in both HCC tissue and cell lines. Loss-of-functional experiments in vivo and vitro revealed that hsa_circ_0016788 silencing inhibited the proliferation, invasion and promoted the apoptosis in vitro, and inhibited the tumor growth in vivo. Bioinformatics tools and luciferase reporter assay validated that miR-486 targeted hsa_circ_0016788 and CDK4 accompanying with negatively correlated expression, suggesting the hsa_circ_0016788/miR-486/CDK4 pathway. Receiver operating characteristic (ROC) curve showed that hsa_circ_0016788 had high diagnostic value (AUC = 0.851). In summary, results reveal the role of hsa_circ_0016788/miR-486/CDK4 in HCC tumorigenesis, providing a novel therapeutic target for HCC. © 2018 Wiley Periodicals, Inc.
Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis[W
Gutierrez, Laurent; Mongelard, Gaëlle; Floková, Kristýna; Păcurar, Daniel I.; Novák, Ondřej; Staswick, Paul; Kowalczyk, Mariusz; Păcurar, Monica; Demailly, Hervé; Geiss, Gaia; Bellini, Catherine
2012-01-01
Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other’s expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways. PMID:22730403
Zheng, Yun; Fu, Xinliang; Wang, Lifang; Zhang, Wenyan; Zhou, Pei; Zhang, Xin; Zeng, Weijie; Chen, Jidang; Cao, Zongxi; Jia, Kun; Li, Shoujun
2018-05-14
MicroRNAs, a class of noncoding RNAs 18 to 23 nucleotides (nt) in length, play critical roles in a wide variety of biological processes. The objective of this study was to examine differences in microRNA expression profiles derived from the lungs of beagle dogs infected with the avian-origin H3N2 canine influenza virus (CIV) or the highly pathogenic avian influenza (HPAI) H5N1 virus (canine-origin isolation strain). After dogs were infected with H3N2 or H5N1, microRNA expression in the lungs was assessed using a deep-sequencing approach. To identify the roles of microRNAs in viral pathogenicity and the host immune response, microRNA target genes were predicted, and their functions were analyzed using bioinformatics software. A total of 229 microRNAs were upregulated in the H5N1 infection group compared with those in the H3N2 infection group, and 166 microRNAs were downregulated. MicroRNA target genes in the H5N1 group were more significantly involved in metabolic pathways, such as glycerolipid metabolism and glycerophospholipid metabolism, than those in the H3N2 group. The inhibition of metabolic pathways may lead to appetite loss, weight loss and weakened immunity. Moreover, miR-485, miR-144, miR-133b, miR-4859-5p, miR-6902-3p, miR-7638, miR-1307-3p and miR-1346 were significantly altered microRNAs that potentially led to the inhibition of innate immune pathways and the heightened pathogenicity of H5N1 compared with that of H3N2 in dogs. This study deepens our understanding of the complex relationships among microRNAs, the influenza virus-mediated immune response and immune injury in dogs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Analysis of physiological and miRNA responses to Pi deficiency in alfalfa (Medicago sativa L.).
Li, Zhenyi; Xu, Hongyu; Li, Yue; Wan, Xiufu; Ma, Zhao; Cao, Jing; Li, Zhensong; He, Feng; Wang, Yufei; Wan, Liqiang; Tong, Zongyong; Li, Xianglin
2018-03-01
The induction of miR399 and miR398 and the inhibition of miR156, miR159, miR160, miR171, miR2111, and miR2643 were observed under Pi deficiency in alfalfa. The miRNA-mediated genes involved in basic metabolic process, root and shoot development, stress response and Pi uptake. Inorganic phosphate (Pi) deficiency is known to be a limiting factor in plant development and growth. However, the underlying miRNAs associated with the Pi deficiency-responsive mechanism in alfalfa are unclear. To elucidate the molecular mechanism at the miRNA level, we constructed four small RNA (sRNA) libraries from the roots and shoots of alfalfa grown under normal or Pi-deficient conditions. In the present study, alfalfa plants showed reductions in biomass, photosynthesis, and Pi content and increases in their root-to-shoot ratio and citric, malic, and succinic acid contents under Pi limitation. Sequencing results identified 47 and 44 differentially expressed miRNAs in the roots and shoots, respectively. Furthermore, 909 potential target genes were predicted, and some targets were validated by RLM-RACE assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed prominent enrichment in signal transducer activity, binding and basic metabolic pathways for carbohydrates, fatty acids and amino acids; cellular response to hormone stimulus and response to auxin pathways were also enriched. qPCR results verified that the differentially expressed miRNA profile was consistent with sequencing results, and putative target genes exhibited opposite expression patterns. In this study, the miRNAs associated with the response to Pi limitation in alfalfa were identified. In addition, there was an enrichment of miRNA-targeted genes involved in biological regulatory processes such as basic metabolic pathways, root and shoot development, stress response, Pi transportation and citric acid secretion.
miR-130b-3p Modulates Epithelial-Mesenchymal Crosstalk in Lung Fibrosis by Targeting IGF-1.
Li, Shuhong; Geng, Jing; Xu, Xuefeng; Huang, Xiaoxi; Leng, Dong; Jiang, Dingyuan; Liang, Jiurong; Wang, Chen; Jiang, Dianhua; Dai, Huaping
2016-01-01
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and usually lethal fibrotic lung disease with largely unknown etiology and pathogenesis. Evidence suggests microRNAs (miRNA) contribute to pathogenesis of IPF. In this study, we sought to identify miRNA expression signatures and determine the role of miR-130b-3p in lung fibrosis. The miRNA expression profile of the lungs from patients with IPF and normal donors was determined by Affymetrix microarray, and transcriptome with Affymetrix array. The functions and signal pathways as well as miRNA-mRNA networks were established by bioinformatics analysis. Luciferase assays and ELISA were used to confirm the miRNA target gene. The effect of miRNA-transfected epithelium on fibroblast activities was assessed using a co-culture system. The fibroblast activities were determined by qRT-PCR, western blotting, Transwell and BrdU assays. Seven miRNAs were significantly decreased in IPF lungs, with miR-130b-3p being the highest in the miRNA-mRNA network. Insulin-like growth factor (IGF-1) was a target gene of miR-130b-3p in the epithelium. miR-130b-3p inhibition in the epithelium induced collagen I expression and enhanced the proliferation and migration ability of fibroblast in co-culture systems, which mimicked the functions of exogenous IGF-1 on fibroblasts. Neutralizing IGF-1 with an antibody significantly reduced the modulatory effects of miR-130b-3p inhibitor-transfected epithelium on the activation of fibroblasts. Our results show that miR-130b-3p was downregulated in IPF lungs. miR-130b-3p downregulation contributed to the activation of fibroblasts and the dysregulated epithelial-mesenchymal crosstalk by promoting IGF-1 secretion from lung epithelium, suggesting a key regulatory role for this miRNA in preventing lung fibrosis.
Bioengineered Noncoding RNAs Selectively Change Cellular miRNome Profiles for Cancer Therapy.
Ho, Pui Yan; Duan, Zhijian; Batra, Neelu; Jilek, Joseph L; Tu, Mei-Juan; Qiu, Jing-Xin; Hu, Zihua; Wun, Theodore; Lara, Primo N; DeVere White, Ralph W; Chen, Hong-Wu; Yu, Ai-Ming
2018-06-01
Noncoding RNAs (ncRNAs) produced in live cells may better reflect intracellular ncRNAs for research and therapy. Attempts were made to produce biologic ncRNAs, but at low yield or success rate. Here we first report a new ncRNA bioengineering technology using more stable ncRNA carrier (nCAR) containing a pre-miR-34a derivative identified by rational design and experimental validation. This approach offered a remarkable higher level expression (40%-80% of total RNAs) of recombinant ncRNAs in bacteria and gave an 80% success rate (33 of 42 ncRNAs). New FPLC and spin-column based methods were also developed for large- and small-scale purification of milligrams and micrograms of recombinant ncRNAs from half liter and milliliters of bacterial culture, respectively. We then used two bioengineered nCAR/miRNAs to demonstrate the selective release of target miRNAs into human cells, which were revealed to be Dicer dependent (miR-34a-5p) or independent (miR-124a-3p), and subsequent changes of miRNome and transcriptome profiles. miRNA enrichment analyses of altered transcriptome confirmed the specificity of nCAR/miRNAs in target gene regulation. Furthermore, nCAR assembled miR-34a-5p and miR-124-3p were active in suppressing human lung carcinoma cell proliferation through modulation of target gene expression (e.g., cMET and CDK6 for miR-34a-5p; STAT3 and ABCC4 for miR-124-3p). In addition, bioengineered miRNA molecules were effective in controlling metastatic lung xenograft progression, as demonstrated by live animal and ex vivo lung tissue bioluminescent imaging as well as histopathological examination. This novel ncRNA bioengineering platform can be easily adapted to produce various ncRNA molecules, and biologic ncRNAs hold the promise as new cancer therapeutics. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Lu, Xin; Dun, Hui; Lian, Conglong; Zhang, Xiaofei; Yin, Weilun; Xia, Xinli
2017-06-01
Plant miR164 family is highly conserved and miR164 members regulate conserved targets belonging to NAC transcription factors. Our previous studies have revealed that peu-miR164a-e and its target gene POPTR_0007s08420 participate in abiotic stress response in Populus euphratica according to deep sequencing and degradome sequencing. In this study, miR164 family comprises six members that generate two mature products (miR164a-e and miR164f) and target seven NAC genes in P. euphratica. Co-expression in Nicotiana benthamiana and 5' RACE confirmed that peu-miR164 directs PeNAC070, PeNAC012 and PeNAC028 mRNAs cleavage. Expression profiles of primary peu-miR164 a/b/c/d/e bear similarity to those of peu-miR164a-e, whereas PeNAC070 and PeNAC081 showed inverse expression patterns with peu-miR164a-e under abiotic stresses. Existence of cis-acting elements in PeNAC070 promoter (ABRE,MBs, Box-W1, GC-motif, and W-box) and in peu-MIR164b promoter (HSE) further confirmed different responses of peu-miR164 and PeNAC070 to abiotic stresses. Histochemical β-glucuronidase (GUS) staining revealed that GUS activities increased when Pro PeNAC070 ::GUS transgenic Arabidopsis plants were exposed to NaCl, mannitol and abscisic acid (ABA), whereas GUS activity of Pro peu-MIR164b ::GUS plants decreased under ABA treatment. Subcellular localization and transactivation assays showed that PeNAC070 protein was localized to the nucleus and exhibited transactivation activity at the C-terminal. Overexpression of PeNAC070 in Arabidopsis promoted lateral root development, delayed stem elongation, and increased sensitivity of transgenic plants to drought and salt stresses. This study aids in understanding the adaptability of P. euphratica to extreme drought and salt environment by analysing tissue-specific expression patterns of miR164-regulated and specific promoter-regulated PeNAC genes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Morata-Tarifa, Cynthia; Jiménez, Gema; García, María A; Entrena, José M; Griñán-Lisón, Carmen; Aguilera, Margarita; Picon-Ruiz, Manuel; Marchal, Juan A
2016-01-11
Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies.
Chen, Dahu; Sun, Yutong; Yuan, Yuan; Han, Zhenbo; Zhang, Peijing; Zhang, Jinsong; You, M. James; Teruya-Feldstein, Julie; Wang, Min; Gupta, Sumeet; Hung, Mien-Chie; Liang, Han; Ma, Li
2014-01-01
Whether epithelial-mesenchymal transition (EMT) is always linked to increased tumorigenicity is controversial. Through microRNA (miRNA) expression profiling of mammary epithelial cells overexpressing Twist, Snail or ZEB1, we identified miR-100 as a novel EMT inducer. Surprisingly, miR-100 inhibits the tumorigenicity, motility and invasiveness of mammary tumor cells, and is commonly downregulated in human breast cancer due to hypermethylation of its host gene MIR100HG. The EMT-inducing and tumor-suppressing effects of miR-100 are mediated by distinct targets. While miR-100 downregulates E-cadherin by targeting SMARCA5, a regulator of CDH1 promoter methylation, this miRNA suppresses tumorigenesis, cell movement and invasion in vitro and in vivo through direct targeting of HOXA1, a gene that is both oncogenic and pro-invasive, leading to repression of multiple HOXA1 downstream targets involved in oncogenesis and invasiveness. These findings provide a proof-of-principle that EMT and tumorigenicity are not always associated and that certain EMT inducers can inhibit tumorigenesis, migration and invasion. PMID:24586203
MicroRNA-30b-Mediated Regulation of Catalase Expression in Human ARPE-19 Cells
Haque, Rashidul; Chun, Eugene; Howell, Jennifer C.; Sengupta, Trisha; Chen, Dan; Kim, Hana
2012-01-01
Background Oxidative injury to retinal pigment epithelium (RPE) and retinal photoreceptors has been linked to a number of retinal diseases, including age-related macular degeneration (AMD). Reactive oxygen species (ROS)-mediated gene expression has been extensively studied at transcriptional levels. Also, the post-transcriptional control of gene expression at the level of translational regulation has been recently reported. However, the microRNA (miRNA/miR)-mediated post-transcriptional regulation in human RPE cells has not been thoroughly looked at. Increasing evidence points to a potential role of miRNAs in diverse physiological processes. Methodology/Principal Findings We demonstrated for the first time in a human retinal pigment epithelial cell line (ARPE-19) that the post-transcriptional control of gene expression via miRNA modulation regulates human catalase, an important and potent component of cell's antioxidant defensive network, which detoxifies hydrogen peroxide (H2O2) radicals. Exposure to several stress-inducing agents including H2O2 has been reported to alter miRNA expression profile. Here, we demonstrated that a sublethal dose of H2O2 (200 µM) up-regulated the expression of miR-30b, a member of the miR-30 family, which inhibited the expression of endogenous catalase both at the transcript and protein levels. However, antisense (antagomirs) of miR-30b was not only found to suppress the miR-30b mimics-mediated inhibitions, but also to dramatically increase the expression of catalase even under an oxidant environment. Conclusions/Significance We propose that a microRNA antisense approach could enhance cytoprotective mechanisms against oxidative stress by increasing the antioxidant defense system. PMID:22880027
Cheng, Feng; Pan, Ying; Lu, Yi-Min; Zhu, Lei; Chen, Shuzheng
2017-01-01
RNA-binding proteins (RBPs) and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1), is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas) mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated ( p = 0.04). Patients with higher Dnd1 expression level had longer overall survival ( p = 0.0014) by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3'UTR, the stability of Bim-5'UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3'UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3'UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development.
Singh, Jagmohan; Boopathi, Ettickan; Addya, Sankar; Phillips, Benjamin; Rigoutsos, Isidore; Penn, Raymond B.
2016-01-01
A comprehensive genomic and proteomic, computational, and physiological approach was employed to examine the (previously unexplored) role of microRNAs (miRNAs) as regulators of internal anal sphincter (IAS) smooth muscle contractile phenotype and basal tone. miRNA profiling, genome-wide expression, validation, and network analyses were employed to assess changes in mRNA and miRNA expression in IAS smooth muscles from young vs. aging rats. Multiple miRNAs, including rno-miR-1, rno-miR-340-5p, rno-miR-185, rno-miR-199a-3p, rno-miR-200c, rno-miR-200b, rno-miR-31, rno-miR-133a, and rno-miR-206, were found to be upregulated in aging IAS. qPCR confirmed the upregulated expression of these miRNAs and downregulation of multiple, predicted targets (Eln, Col3a1, Col1a1, Zeb2, Myocd, Srf, Smad1, Smad2, Rhoa/Rock2, Fn1, Tagln v2, Klf4, and Acta2) involved in regulation of smooth muscle contractility. Subsequent studies demonstrated an aging-associated increase in the expression of miR-133a, corresponding decreases in RhoA, ROCK2, MYOCD, SRF, and SM22α protein expression, RhoA-signaling, and a decrease in basal and agonist [U-46619 (thromboxane A2 analog)]-induced increase in the IAS tone. Moreover, in vitro transfection of miR-133a caused a dose-dependent increase of IAS tone in strips, which was reversed by anti-miR-133a. Last, in vivo perianal injection of anti-miR-133a reversed the loss of IAS tone associated with age. This work establishes the important regulatory effect of miRNA-133a on basal and agonist-stimulated IAS tone. Moreover, reversal of age-associated loss of tone via anti-miR delivery strongly implicates miR dysregulation as a causal factor in the aging-associated decrease in IAS tone and suggests that miR-133a is a feasible therapeutic target in aging-associated rectoanal incontinence. PMID:27634012
miR-200a controls hepatic stellate cell activation and fibrosis via SIRT1/Notch1 signal pathway.
Yang, Jing-Jing; Tao, Hui; Liu, Li-Ping; Hu, Wei; Deng, Zi-Yu; Li, Jun
2017-04-01
miR-200a has been established as a key regulator of HSC activation processes in liver fibrosis. Epigenetic silencing of miR-200a contributing to SIRT1 over-expression has been discussed in breast cancer; however, whether miR-200a controls SIRT1 gene expression in hepatic fibrosis is still unknown. We analyzed miR-200a regulation of SIRT1 expression in CCl 4 -induced liver fibrosis and TGF-β1-mediated activation of HSC. miR-200a, SIRT1, α-SMA, Col1A1, Notch1 and NICD expression were estimated by Western blotting, qRT-PCR and Immunohistochemistry. HSCs were transfected with miR-200a mimic, miR-200a inhibitor and SIRT1-RNAi. Luciferase reporter assays further confirmed the interaction between miR-200a and the SIRT1 mRNA 3'-UTR. Cell proliferation ability was assessed by MTT and cell cycle. We found that treatment activated HSC with miR-200a mimics, restored miR-200a expression and reduced SIRT1 levels. Conversely, treatment activated HSC with miR-200a inhibitors, decreased miR-200a expression and up-regulated SIRT1 levels. Restoration of miR-200a or the knockdown of SIRT1 prevented HSC activation and proliferation. We have established the SIRT1 transcript as subject to regulation by miR-200a, through miR-200a targeting of SIRT1 3'-UTR. Finally, HSC transfected with SIRT1-siRNA increased the levels of Notch1 protein and mRNA expression. Our study demonstrated that miR-200a regulates SIRT1/Notch1 expression during HSC activation and fibrosis.
Kriebel, Stephanie; Schmidt, Doris; Holdenrieder, Stefan; Goltz, Diane; Kristiansen, Glen; Moritz, Rudolf; Fisang, Christian; Müller, Stefan C.; Ellinger, Jörg
2015-01-01
Introduction MicroRNAs play an important role in many human malignancies; so far, their expression remains to be studied in upper urinary tract urothelial cancer (UUTUC). Materials and Methods The expression of eleven microRNAs (miR-10a, miR-21, miR-96, miR-135, miR-141, miR-182, miR-200b, miR-205, miR-429, miR-520b, miR-1244) formerly shown to be upregulated in urothelial bladder cancer were studied in corresponding normal and cancerous tissue samples of patients undergoing nephroureterectomy for UUTUC. Upregulated microRNAs were then measured in serum samples of patients with UUTUC and patients with non-malignant urological diseases to evaluate their potential as non-invasive biomarkers for UUTUC. Results MicroRNA expression allowed differentiation of normal and cancerous tissue: miR-21, miR-96, miR-135, miR-141, miR-182, miR-205, miR-429 and miR-520b were significantly overexpressed. Furthermore, miR-205 was upregulated in poorly differentiated UUTUC. The analysis of circulating RNA in serum demonstrated an increase of miR-141 in patients with UUTUC; receiver operator characteristic analysis demonstrated an area under the curve of 0.726 for miR-141 as a diagnostic biomarker. Furthermore, we observed lower levels of miR-10a and miR-135 in UUTUC patients. Conclusions MicroRNA expression is altered in UUTUC. The analysis of circulating miR-141 may be useful to identify patients with UUTUC. PMID:25629698
Kriebel, Stephanie; Schmidt, Doris; Holdenrieder, Stefan; Goltz, Diane; Kristiansen, Glen; Moritz, Rudolf; Fisang, Christian; Müller, Stefan C; Ellinger, Jörg
2015-01-01
MicroRNAs play an important role in many human malignancies; so far, their expression remains to be studied in upper urinary tract urothelial cancer (UUTUC). The expression of eleven microRNAs (miR-10a, miR-21, miR-96, miR-135, miR-141, miR-182, miR-200b, miR-205, miR-429, miR-520b, miR-1244) formerly shown to be upregulated in urothelial bladder cancer were studied in corresponding normal and cancerous tissue samples of patients undergoing nephroureterectomy for UUTUC. Upregulated microRNAs were then measured in serum samples of patients with UUTUC and patients with non-malignant urological diseases to evaluate their potential as non-invasive biomarkers for UUTUC. MicroRNA expression allowed differentiation of normal and cancerous tissue: miR-21, miR-96, miR-135, miR-141, miR-182, miR-205, miR-429 and miR-520b were significantly overexpressed. Furthermore, miR-205 was upregulated in poorly differentiated UUTUC. The analysis of circulating RNA in serum demonstrated an increase of miR-141 in patients with UUTUC; receiver operator characteristic analysis demonstrated an area under the curve of 0.726 for miR-141 as a diagnostic biomarker. Furthermore, we observed lower levels of miR-10a and miR-135 in UUTUC patients. MicroRNA expression is altered in UUTUC. The analysis of circulating miR-141 may be useful to identify patients with UUTUC.
Gu, Qiaoyan; Zhang, Jun; Hu, Haifeng; Tan, Yu-e; Shi, Shengmei; Nian, Yuanyuan
2015-01-01
The dysregulation of miR-137 plays vital roles in the oncogenesis and progression of various types of cancer, but its role in prognosis of gastric cancer patients remains unknown. This study was designed to investigate the expression and prognostic significance of miR-137 in gastric cancer patients after radical gastrectomy. Quantitative real-time PCR (qRT-PCR) was performed to evaluate the expression of miR-137 in human gastric cancer cell lines and tissues in patients with gastric adenocarcinoma. Results were assessed for association with clinical factors and overall survival by using Kaplan-Meier analysis. Prognostic values of miR-137 expression and clinical outcomes were evaluated by Cox regression analysis. The results exhibited that the expression level of miR-137 was decreased in human gastric cancer cell lines and tissues, and down-regulated expression of miR-137 was associated with tumor cell differentiation, N stage, and TNM stage. Decreased miR-137 expression in gastric cancer tissues was positively correlated with poor overall survival of gastric cancer patients. Further multivariate Cox regression analysis suggested that miR-137 expression was an independent prognostic indicator for gastric cancer except for TNM stage. Applying the prognostic value of miR-137 expression to TNM stage III group showed a better risk stratification for overall survival. In conclusion, the results reinforced the critical role for the down-regulated miR-137 expression in gastric cancer and suggested that miR-137 expression could be a prognostic indicator for this disease. In addition, these patients with TNM stage III gastric cancer and low miR-137 expression might need more aggressive postoperative treatment and closer follow-up. PMID:26545111
Wang, Shijun; Wu, Jian; You, Jieyun; Shi, Hongyu; Xue, Xiaoyu; Huang, Jiayuan; Xu, Lei; Jiang, Guoliang; Yuan, Lingyan; Gong, Xue; Luo, Haiyan; Ge, Junbo; Cui, Zhaoqiang; Zou, Yunzeng
2018-05-01
Heat shock transcription factor 1 (HSF1) deficiency aggravates cardiac remodeling under pressure overload. However, the mechanism is still unknown. Here we employed microRNA array analysis of the heart tissue of HSF1-knockout (KO) mice to investigate the potential roles of microRNAs in pressure overload-induced cardiac remodeling under HSF-1 deficiency, and the profiles of 478 microRNAs expressed in the heart tissues of adult HSF1-KO mice were determined. We found that the expression of 5 microRNAs was over 2-fold higher expressed in heart tissues of HSF1-KO mice than in those of wild-type (WT) control mice. Of the overexpressed microRNAs, miR-195a-3p had the highest expression level in HSF1-null endothelial cells (ECs). Induction with miR-195a-3p in ECs significantly suppressed CD31 and VEGF, promoted AngII-induced EC apoptosis, and impaired capillary-like tube formation. In vivo, the upregulation of miR-195a-3p accentuated cardiac hypertrophy, increased the expression of β-MHC and ANP, and compromised systolic function in mice under pressure overload induced by transverse aortic constriction (TAC). By contrast, antagonism of miR-195a-3p had the opposite effect on HSF1-KO mice. Further experiments confirmed that AMPKα2 was the direct target of miR-195a-3p. AMPKα2 overexpression rescued the reduction of eNOS and VEGF, and the impairment of angiogenesis that was induced by miR-195a-3p. In addition, upregulation of AMPKα2 in the myocardium of HSF1-null mice by adenovirus-mediated gene delivery enhanced CD31, eNOS and VEGF, reduced β-MHC and ANP, alleviated pressure overload-mediated cardiac hypertrophy and restored cardiac function. Our findings revealed that the upregulation of miR-195a-3p due to HSF1 deficiency impaired cardiac angiogenesis by regulating AMPKα2/VEGF signaling, which disrupted the coordination between the myocardial blood supply and the adaptive hypertrophic response and accelerated the transition from cardiac hypertrophy to heart failure in response to pressure overload. Copyright © 2018 Elsevier Ltd. All rights reserved.
Narayan, N; Morenos, L; Phipson, B; Willis, S N; Brumatti, G; Eggers, S; Lalaoui, N; Brown, L M; Kosasih, H J; Bartolo, R C; Zhou, L; Catchpoole, D; Saffery, R; Oshlack, A; Goodall, G J; Ekert, P G
2017-04-01
Enforced expression of microRNA-155 (miR-155) in myeloid cells has been shown to have both oncogenic or tumour-suppressor functions in acute myeloid leukaemia (AML). We sought to resolve these contrasting effects of miR-155 overexpression using murine models of AML and human paediatric AML data sets. We show that the highest miR-155 expression levels inhibited proliferation in murine AML models. Over time, enforced miR-155 expression in AML in vitro and in vivo, however, favours selection of intermediate miR-155 expression levels that results in increased tumour burden in mice, without accelerating the onset of disease. Strikingly, we show that intermediate and high miR-155 expression also regulate very different subsets of miR-155 targets and have contrasting downstream effects on the transcriptional environments of AML cells, including genes involved in haematopoiesis and leukaemia. Furthermore, we show that elevated miR-155 expression detected in paediatric AML correlates with intermediate and not high miR-155 expression identified in our experimental models. These findings collectively describe a novel dose-dependent role for miR-155 in the regulation of AML, which may have important therapeutic implications.
Zhou, Siying; Li, Jian; Xu, Hanzi; Zhang, Sijie; Chen, Xiu; Chen, Wei; Yang, Sujin; Zhong, Shanliang; Zhao, Jianhua; Tang, Jinhai
2017-07-30
Emerging evidence suggests that curcumin can overcome drug resistance to classical chemotherapies, but poor bioavailability and low absorption have limited its clinical use and the mechanisms remain unclear. Also, Adriamycin (Adr) is one of the most active cytotoxic agents in breast cancer; however, the high resistant rate of Adr leads to a poor prognosis. We utilized encapsulation in liposomes as a strategy to improve the bioavailability of curcumin and demonstrated that liposomal curcumin altered chemosensitivity of Adr-resistant MCF-7 human breast cancer (MCF-7/Adr) by MTT assay. The miRNA and mRNA expression profiles of MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr cells were analyzed by microarray and further confirmed by real-time PCR. We focused on differentially expressed miR-29b-1-5p to explore the involvement of miR-29b-1-5p in the resistance of Adr. Candidate genes of dysregulated miRNAs were identified by prediction algorithms based on gene expression profiles. Networks of KEGG pathways were organized by the selected dysregulated miRNAs. Moreover, protein-protein interaction (PPI) was utilized to map protein interaction networks of curcumin regulated proteins. We first demonstrated liposomal curcumin could rescue part of Adriamycin resistance in breast cancer and further identified 67 differentially expressed microRNAs among MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr. The results showed that lower expressed miR-29b-1-5p decreased the IC50 of MCF-7/Adr cells and higher expressed miR-29b-1-5p, weaken the effects of liposomal curcumin to Adr-resistance. Besides, we found that 20 target genes (mRNAs) of each dysregulated miRNA were not only predicted by prediction algorithms, but also differentially expressed in the microarray. The results showed that MAPK, mTOR, PI3K-Akt, AMPK, TNF, Ras signaling pathways and several target genes such as PPARG, RRM2, SRSF1and EPAS1, may associate with drug resistance of breast cancer cells to Adr. We determined that an altered miRNA expression pattern is involved in acquiring resistance to Adr, and that liposomal curcumin could change the resistance to Adr through miRNA signaling pathways in breast cancer MCF-7 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
MicroRNA-34a regulation of endothelial senescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Takashi; Yagi, Shusuke; Yamakuchi, Munekazu, E-mail: munekazu_yamakuchi@urmc.rochester.edu
2010-08-06
Research highlights: {yields} MicroRNA-34a (miR-34a) regulates senescence and cell cycle progression in endothelial cells. {yields} MiR-34a expression increases during endothelial cell senescence and in older mice. {yields} SIRT1 is a miR-34a target gene in endothelial cells. {yields} SIRT1 mediates the effects of miR-34a upon cell senescence in endothelial cells. -- Abstract: Endothelial senescence is thought to play a role in cardiovascular diseases such as atherosclerosis. We hypothesized that endothelial microRNAs (miRNAs) regulate endothelial survival and senescence. We found that miR-34a is highly expressed in primary endothelial cells. We observed that miR-34a expression increases in senescent human umbilical cord vein endothelialmore » cells (HUVEC) and in heart and spleen of older mice. MiR-34a over-expression induces endothelial cell senescence and also suppresses cell proliferation by inhibiting cell cycle progression. Searching for how miR-34a affects senescence, we discovered that SIRT1 is a target of miR-34a. Over-expressing miR-34a inhibits SIRT1 protein expression, and knocking down miR-34a enhances SIRT1 expression. MiR-34a triggers endothelial senescence in part through SIRT1, since forced expression of SIRT1 blocks the ability of miR-34a to induce senescence. Our data suggest that miR-34a contributes to endothelial senescence through suppression of SIRT1.« less
YENUGANTI, Vengala Rao; BADDELA, Vijay Simha; BAUFELD, Anja; SINGH, Dheer; VANSELOW, Jens
2015-01-01
Precise regulation of cell type-specific gene expression profiles precedes the profound morphological reorganization of somatic cell layers during folliculogenesis, ovulation and luteinization. Cell culture models are essential to the study of corresponding molecular mechanisms of gene regulation. In a recent study, it was shown that an increased cell plating density can largely change gene expression profiles of cultured bovine granulosa cells. In our present study, we comparatively analyzed cell plating density effects on cultured bovine and buffalo granulosa cells. Cells were isolated from small- to medium-sized follicles (2–6 mm) and cultured under serum-free conditions at different plating densities. The abundance of selected marker transcripts and associated miRNA candidates was determined by quantitative real-time RT-PCR. We found in both species that the abundance of CYP19A1, CCNE1 and PCNA transcripts was remarkably lower at a high plating density, whereas VNN2 and RGS2 transcripts significantly increased. In contrast, putative regulators of CYP19A1, miR-378, miR-106a and let-7f were significantly higher in both species or only in buffalo, respectively. Also miR-15a, a regulator of CCNE1, was upregulated in both species. Thus, increased plating density induced similar changes of mRNA and miRNA expression in granulosa cells from buffalo and cattle. From these data, we conclude that specific miRNA species might be involved in the observed density-induced gene regulation. PMID:25740097
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Dongjing; Wu, Jilin, E-mail: 6296082@qq.com; Liu, Meizhou
Hepatitis C virus (HCV) Core protein has been demonstrated to induce epithelial–mesenchymal transition (EMT) and is associated with cancer progression of hepatocellular carcinoma (HCC). However, how the Core protein regulates EMT is still unclear. In this study, HCV Core protein was overexpressed by an adenovirus. The protein levels of EMT markers were measured by Western blot. The xenograft animal model was established by inoculation of HepG2 cells. Results showed that ectopic expression of HCV core protein induced EMT in L02 hepatocytes and HepG2 tumor cells by upregulating vimentin, Sanl1, and Snal2 expression and downregulating E-cadherin expression. Moreover, Core protein downregulatedmore » miR-30c and miR-203a levels in L02 and HepG2 cells, but artificial expression of miR-30c and miR-203a reversed Core protein-induced EMT. Further analysis showed that ectopic expression of HCV core protein stimulated cell proliferation, inhibited apoptosis, and increased cell migration, whereas artificial expression of miR-30c and miR-203a significantly reversed the role of Core protein in these cell functions in L02 and HepG2 cells. In the HepG2 xenograft tumor models, artificial expression of miR-30c and miR-203a inhibited EMT and tumor growth. Moreover, L02 cells overexpressing Core protein can form tumors in nude mice. In HCC patients, HCV infection significantly shortened patients' survival time, and loss of miR-30c and miR-203 expression correlated with poor survival. In conclusion, HCV core protein downregulates miR-30c and miR-203a expression, which results in activation of EMT in normal hepatocytes and HCC tumor cells. The Core protein-activated-EMT is involved in the carcinogenesis and progression of HCC. Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC. - Highlights: • HCV core protein downregulates miR-30c and miR-203a expression. • Downregulation of miR-30c and miR-203a activates EMT. • Activated-EMT is involved in the carcinogenesis and progression of HCC. • Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC.« less
miR-152 regulated glioma cell proliferation and apoptosis via Runx2 mediated by DNMT1.
Zhang, Peng; Sun, Hongwei; Yang, Bo; Luo, Wenzheng; Liu, Zengjin; Wang, Junkuan; Zuo, Yuchao
2017-08-01
Aberrant DNA methylation is associated with tumor onset and progression. Study has verified that the DNA methylation of miR-152 was mediated in many tumors, but whether it involved in glioblastomas was still unclear. This study enrolled 20 patients with glioma to analyze the expression pattern of miR-152. Real-time PCR and western blot were used to detect the mRNA or protein expression level, respectively. The relationship between miR-152 and runx2 was detected by Luciferase reporter assay. The methylation level of miR-152 was determined by methylation-specific PCR. Cell proliferation and apoptosis were detected by MTT and Annexin-FITC/PI assay. The expression of miR-152 was down-regulated while the expression of DNMT1 was up-regulated in both glioma tissue and cell lines. MiR-152 was hypermethylated and its expression was negatively correlated with DNMT in glioma cell lines. DNMT1 knockdown promoted the expression of miR-152, however, DNMT1 overexpression suppressed the expression of miR-152. MiR-152 overexpression promoted glioma cell apoptosis while miR-152 knockdown promoted cell proliferation. MiR-152 targets Runx2 to regulate its expression, Runx2 overexpression abolished the effects of miR-152 overexpression. MiR-152 regulated cell proliferation and apoptosis of glioma mediated by Runx2, while the mechanism of down regulated miR-152 in glioma tissues and cells was its hypermethylation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The low expression of miR-451 predicts a worse prognosis in non-small cell lung cancer cases.
Goto, Akiteru; Tanaka, Masamitsu; Yoshida, Makoto; Umakoshi, Michinobu; Nanjo, Hiroshi; Shiraishi, Kouya; Saito, Motonobu; Kohno, Takashi; Kuriyama, Sei; Konno, Hayato; Imai, Kazuhiro; Saito, Hajime; Minamiya, Yoshihiro; Maeda, Daichi
2017-01-01
miR-451 is a tumor suppressive microRNA with several target genes, including Macrophage migration inhibitory factor (MIF). As little is known about the expression and clinicopathological significance of mir-451 in NSCLC, we performed a clinicopathological study of 370 NSCLC cases to clarify them. Cell biological experiments were also performed on NSCLC cell lines to confirm the tumor-suppressive role of miR-451 and whether or not MIF is targeted by miR-451. We analyzed 370 NSCLC cases for the miR-451 expression by quantitative real-time polymerase chain reaction and the MIF expression by immunohistochemistry. Eighty-four background lung tissue samples were also evaluated for the miR-451 expression. The clinicopathological and genetic factors surveyed were the disease-free survival, smoking status, histological type, disease stage, EGFR gene mutations and ALK rearrangements. In 286 adenocarcinoma cases, the invasive status (adenocarcinoma in situ, minimally invasive adenocarcinoma and invasive adenocarcinoma) was also evaluated. Five NSCLC cell lines (H23, H441, H522, H1703, and H1975) were cultured and evaluated for their miR-451 and MIF expression. The cell lines with lower miR-451 and higher MIF expressions were then selected and transfected with miR-451-mimic to observe its effects on MIF expression, Akt and Erk status, cell proliferation, and cell migration. The miR-451 expression was down-regulated in cancer tissues compared with background lung tissues (P<0.0001). Factors such as advanced disease stage, positive pleural invasion and nodal status and being a smoker were significantly correlated with a lower expression of miR-451 (P<0.05 each), while EGFR gene mutations and ALK rearrangements were not. In adenocarcinoma, invasive and minimally invasive adenocarcinoma showed lower expression of miR-451 than adenocarcinoma in situ (P<0.0005, respectively). A survival analysis showed that a lower expression of miR-451 was an independent predictor of a poor prognosis for NSCLC (P<0.05). The MIF expression was inversely correlated with the miR-451 expression. Out of 5 NSCLC cell lines examined, H441 and H1975 showed higher MIF and lower miR-451 expressions. After the transfection of miR-451-mimic, the MIF expression and phosphorylated Akt expression of these cell lines was suppressed, as were cell proliferation and cell migration. This clinicopathological study of 370 NSCLC cases and the cell biological studies of NSCLC cell lines clarified the tumor-suppressive role of miR-451 and its prognostic value. We also validated MIF as a target of miR-451 in NSCLC.
MiR-224 expression increases radiation sensitivity of glioblastoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay
Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effectmore » of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy, therefore appear as promising options for the treatment of glioblastoma, which is refractory to the existing treatment strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.
2009-12-23
BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in bothmore » normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the miR-200c/141 CpG island is closely linked to their inappropriate silencing in cancer cells. Since the miR-200c cluster plays a significant role in EMT, our results suggest an important role for DNA methylation in the control of phenotypic conversions in normal cells.« less
YU, HONG-REN; LI, SUNG-CHOU; TSENG, WAN-NING; TAIN, YOU-LIN; CHEN, CHIH-CHENG; SHEEN, JIUNN-MING; TIAO, MAO-MENG; KUO, HO-CHANG; HUANG, CHAO-CHENG; HSIEH, KAI-SHENG; HUANG, LI-TUNG
2016-01-01
Glucocorticoids have been administered to mothers at risk of premature delivery to induce maturation of preterm fetal lungs and prevent the development of respiratory distress syndrome. Micro (mi)RNAs serve various crucial functions in cell proliferation, differentiation and organ development; however, few studies have demonstrated an association between miRNAs and lung development. The aim of the present study was to investigate alterations in the miRNA profiles of rat lung tissue following prenatal glucocorticoid therapy for fetal lung development. The differences in miRNA expression profiles were compared between postnatal days 7 (D7) and 120 (D120) rat lung tissues, followed by validation using reverse transcription-quantitative polymerase chain reaction. The miRNA profiles of rat lung tissues following prenatal dexamethasone (DEX) therapy were also investigated. miRNAs with 2-fold changes were selected for further analysis. At D120, 6 upregulated and 6 downregulated miRNAs were detected, compared with D7. Among these differentially expressed miRNAs, miR-101-3p and miR-99b-5p were associated with the lowest and highest expressions of miRNA at D7, respectively. A limited impact on the miRNA profiles of rat lung tissues was observed following prenatal DEX treatment, which may help to further clarify the mechanisms underlying normal lung development. However, the results of the present study cannot entirely elucidate the effects of prenatal DEX treatment on the lung development of premature infants, and further studies investigating the impact of prenatal corticosteroids on fetal lung miRNA profiles are required. PMID:26997989
Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V
2016-01-01
It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma. PMID:27468688
Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V
2016-07-28
It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma.
Li, Ellen; Ji, Ping; Ouyang, Nengtai; Zhang, Yuanhao; Wang, Xin Yu; Rubin, Deborah C; Davidson, Nicholas O; Bergamaschi, Roberto; Shroyer, Kenneth R; Burke, Stephanie; Zhu, Wei; Williams, Jennie L
2014-08-01
Colorectal cancer (CRC) incidence and mortality are higher in African Americans (AAs) than in Caucasian Americans (CAs) and microRNAs (miRNAs) have been found to be dysregulated in colonic and other neoplasias. The aim of this exploratory study was to identify candidate miRNAs that could contribute to potential biological differences between AA and CA colon cancers. Total RNA was isolated from tumor and paired adjacent normal colon tissue from 30 AA and 31 CA colon cancer patients archived at Stony Brook University (SBU) and Washington University (WU)‑St. Louis Medical Center. miRNA profiles were determined by probing human genome-wide miRNA arrays with RNA isolated from each sample. Using repeated measures analysis of variance (RANOVA), miRNAs were selected that exhibited significant (p<0.05) interactions between race and tumor or significant (fold change >1.5, p<0.05) main effects of race and/or tumor. Quantitative polymerase chain reaction (q-PCR) was used to confirm miRNAs identified by microarray analysis. Candidate miRNA targets were analyzed using immunohistochemistry. RANOVA results indicated that miR-182, miR152, miR-204, miR-222 and miR-202 exhibited significant race and tumor main effects. Of these miRNAs, q-PCR analysis confirmed that miR-182 was upregulated in AA vs. CA tumors and exhibited significant race:tumor interaction. Immunohistochemical analysis revealed that the levels of FOXO1 and FOXO3A, two potential miR-182 targets, are reduced in AA tumors. miRNAs may play a role in the differences between AA and CA colon cancer. Specifically, differences in miRNA expression levels of miR-182 may contribute to decreased survival in AA colon cancer patients.
MiR-578 and miR-573 as potential players in BRCA-related breast cancer angiogenesis
Danza, Katia; Summa, Simona De; Pinto, Rosamaria; Pilato, Brunella; Palumbo, Orazio; Merla, Giuseppe; Simone, Gianni; Tommasi, Stefania
2015-01-01
The involvement of microRNA (miRNAs), a new class of small RNA molecules, in governing angiogenesis has been well described. Our aim was to investigate miRNA-mediated regulation of angiogenesis in a series of familial breast cancers stratified by BRCA1/2 mutational status in BRCA carriers and BRCA non-carriers (BRCAX). Affymetrix GeneChip miRNA Arrays were used to perform miRNA expression analysis on 43 formalin-fixed paraffin-embedded (FFPE) tumour tissue familial breast cancers (22 BRCA 1/2-related and 21 BRCAX). Pathway enrichment analysis was carried out with the DIANA miRPath v2.0 web-based computational tool, and the miRWalk database was used to identify target genes of deregulated miRNAs. An independent set of 8 BRCA 1/2-related and 11 BRCAX breast tumors was used for validation by Real-Time PCR. In vitro analysis on HEK293, MCF-7 and SUM149PT cells were performed to best-clarify miR-573 and miR-578 role. A set of 16 miRNAs differentially expressed between BRCA 1/2-related and BRCAX breast tumors emerged from the profile analysis. Among these, miR-578 and miR-573 were found to be down-regulated in BRCA 1/2-related breast cancer and associated to the Focal adhesion, Vascular Endothelial Growth Factor (VEGF) and Hypoxia Inducible Factor-1 (HIF-1) signaling pathways. Our data highlight the role of miR-578 and miR-573 in controlling BRCA 1/2-related angiogenesis by targeting key regulators of Focal adhesion, VEGF and HIF-1 signaling pathways. PMID:25333258
MiR-145 mediates zebrafish hepatic outgrowth through progranulin A signaling
Li, Ya-Wen; Chiang, Keng-Yu; Li, Yen-Hsing; Wu, Sung-Yu; Liu, Wangta; Lin, Chia-Ray
2017-01-01
MicroRNAs (miRs) are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA) as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. The low level of miR-145 seen in hepatocarinogenesis has been shown to promote pathological liver growth. However, little is known about the regulatory mechanism of miR-145 in embryonic liver development. In this study, we demonstrate a significant decrease in miR-145 expression during hepatogenesis. We modulate miR-145 expression in zebrafish embryos by injection with a miR-145 mimic or a miR-145 hairpin inhibitor. Altered embryonic liver outgrowth is observed in response to miR-145 expression modulation. We also confirm a critical role of miR-145 in hepatic outgrowth by using whole-mount in situ hybridization. Loss of miR-145 expression in embryos results in hepatic cell proliferation, and vice versa. Furthermore, we demonstrate that GrnA is a target of miR-145 and GrnA-induced MET signaling is also regulated by miR-145 as determined by luciferase reporter assay and gene expression analysis, respectively. In addition, co-injection of GrnA mRNA with miR-145 mimic or MO-GrnA with miR-145 inhibitor restores the liver defects caused by dysregulation of miR-145 expression. In conclusion, our findings suggest an important role of miR-145 in regulating GrnA-dependent hepatic outgrowth in zebrafish embryonic development. PMID:28531199
Wang, Hao; Nie, Lei; Wu, Lei; Liu, Qiufang; Guo, Xueyan
2017-03-25
Metastasis is one of the most decisive factors influencing CRC patient prognosis and current studies suggest that a molecular mechanism known as EMT broadly regulates cancer metastasis. NR2F2 is a key molecule in the development of CRC, but the roles and underlying mechanisms of NR2F2 in TGF-β induced EMT in CRC remain largely unknown. In the current study, we were interested to examine the role of NR2F2 in the TGF-β-induced EMT in CRC. Here, we found NR2F2 was upregulated in CRC cells and promotes TGF-β-induced EMT in CRC. Using comparative miRNA profiling TGF-β pre-treated CRC cells in which NR2F2 had been knocked down with that of control cells, we identified miR-21 as a commonly downregulated miRNA in HT29 cells treated with TGF-β and NR2F2 siRNA, and its downregulation inhibiting migration and invasion of CRC cells. Moreover, we found NR2F2 could transcriptional activated miR-21 expression by binding to miR-21 promoter in HT29 by ChIP and luciferase assay. In the last, our data demonstrated that Smad7 was the direct target of miR-21 in CRC cells. Thus, NR2F2 could promote TGF-β-induced EMT and inhibit Smad7 expression via transactivation of miR-21, and NR2F2 may be a new common therapeutic target for CRC. Copyright © 2017 Elsevier Inc. All rights reserved.
miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF α
Xing, Fei; Sharma, Sambad; Liu, Yin; Mo, Yin-Yuan; Wu, Kerui; Zhang, Ying-Yu; Pochampally, Radhika; Martinez, Luis A; Lo, Hui-wen; Watabe, Kounosuke
2014-01-01
The median survival time of breast cancer patients with brain metastasis is less than 6 months, and even a small metastatic lesion often causes severe neurological disabilities. Because of the location of metastatic lesions, a surgical approach is limited and most chemotherapeutic drugs are ineffective due to the blood brain barrier (BBB). Despite this clinical importance, the molecular basis of the brain metastasis is poorly understood. In this study, we have isolated RNA from samples obtained from primary breast tumors and also from brain metastatic lesions followed by microRNA profiling analysis. Our results revealed that the miR-509 is highly expressed in the primary tumors, while the expression of this microRNA is significantly decreased in the brain metastatic lesions. MicroRNA target prediction and the analysis of cytokine array for the cells ectopically expressed with miR-509 demonstrated that this microRNA was capable of modulating two genes essential for brain invasion, RhoC and TNFα that affect the invasion of cancer cells and permeability of BBB, respectively. Importantly, high levels of TNFα and RhoC-induced MMP9 were significantly correlated with brain metastasis-free survival of breast cancer patients. Furthermore, the results of our in vivo experiments indicate that miR-509 significantly suppressed the ability of cancer cells to metastasize to the brain. These findings suggest that miR-509 plays a critical role in brain metastasis of breast cancer by modulating the RhoC-TNFα network and that this miR-509 axis may represent a potential therapeutic target or serve as a prognostic tool for brain metastasis. PMID:25659578
MicroRNA-dependent regulation of transcription in non-small cell lung cancer.
Molina-Pinelo, Sonia; Gutiérrez, Gabriel; Pastor, Maria Dolores; Hergueta, Marta; Moreno-Bueno, Gema; García-Carbonero, Rocío; Nogal, Ana; Suárez, Rocío; Salinas, Ana; Pozo-Rodríguez, Francisco; Lopez-Rios, Fernando; Agulló-Ortuño, Maria Teresa; Ferrer, Irene; Perpiñá, Asunción; Palacios, José; Carnero, Amancio; Paz-Ares, Luis
2014-01-01
Squamous cell lung cancer (SCC) and adenocarcinoma are the most common histological subtypes of non-small cell lung cancer (NSCLC), and have been traditionally managed in the clinic as a single entity. Increasing evidence, however, illustrates the biological diversity of these two histological subgroups of lung cancer, and supports the need to improve our understanding of the molecular basis beyond the different phenotypes if we aim to develop more specific and individualized targeted therapy. The purpose of this study was to identify microRNA (miRNA)-dependent transcriptional regulation differences between SCC and adenocarcinoma histological lung cancer subtypes. In this work, paired miRNA (667 miRNAs by TaqMan Low Density Arrays (TLDA)) and mRNA profiling (Whole Genome 44 K array G112A, Agilent) was performed in tumor samples of 44 NSCLC patients. Nine miRNAs and 56 mRNAs were found to be differentially expressed in SCC versus adenocarcinoma samples. Eleven of these 56 mRNA were predicted as targets of the miRNAs identified to be differently expressed in these two histological conditions. Of them, 6 miRNAs (miR-149, miR-205, miR-375, miR-378, miR-422a and miR-708) and 9 target genes (CEACAM6, CGN, CLDN3, ABCC3, MLPH, ACSL5, TMEM45B, MUC1) were validated by quantitative PCR in an independent cohort of 41 lung cancer patients. Furthermore, the inverse correlation between mRNAs and microRNAs expression was also validated. These results suggest miRNA-dependent transcriptional regulation differences play an important role in determining key hallmarks of NSCLC, and may provide new biomarkers for personalized treatment strategies.
MicroRNA-Dependent Regulation of Transcription in Non-Small Cell Lung Cancer
Molina-Pinelo, Sonia; Gutiérrez, Gabriel; Pastor, Maria Dolores; Hergueta, Marta; Moreno-Bueno, Gema; García-Carbonero, Rocío; Nogal, Ana; Suárez, Rocío; Salinas, Ana; Pozo-Rodríguez, Francisco; Lopez-Rios, Fernando; Agulló-Ortuño, Maria Teresa; Ferrer, Irene; Perpiñá, Asunción; Palacios, José; Carnero, Amancio; Paz-Ares, Luis
2014-01-01
Squamous cell lung cancer (SCC) and adenocarcinoma are the most common histological subtypes of non-small cell lung cancer (NSCLC), and have been traditionally managed in the clinic as a single entity. Increasing evidence, however, illustrates the biological diversity of these two histological subgroups of lung cancer, and supports the need to improve our understanding of the molecular basis beyond the different phenotypes if we aim to develop more specific and individualized targeted therapy. The purpose of this study was to identify microRNA (miRNA)-dependent transcriptional regulation differences between SCC and adenocarcinoma histological lung cancer subtypes. In this work, paired miRNA (667 miRNAs by TaqMan Low Density Arrays (TLDA)) and mRNA profiling (Whole Genome 44 K array G112A, Agilent) was performed in tumor samples of 44 NSCLC patients. Nine miRNAs and 56 mRNAs were found to be differentially expressed in SCC versus adenocarcinoma samples. Eleven of these 56 mRNA were predicted as targets of the miRNAs identified to be differently expressed in these two histological conditions. Of them, 6 miRNAs (miR-149, miR-205, miR-375, miR-378, miR-422a and miR-708) and 9 target genes (CEACAM6, CGN, CLDN3, ABCC3, MLPH, ACSL5, TMEM45B, MUC1) were validated by quantitative PCR in an independent cohort of 41 lung cancer patients. Furthermore, the inverse correlation between mRNAs and microRNAs expression was also validated. These results suggest miRNA-dependent transcriptional regulation differences play an important role in determining key hallmarks of NSCLC, and may provide new biomarkers for personalized treatment strategies. PMID:24625834
Patrick, Ellis; Rajagopal, Sathyapriya; Wong, Hon-Kit Andus; McCabe, Cristin; Xu, Jishu; Tang, Anna; Imboywa, Selina H; Schneider, Julie A; Pochet, Nathalie; Krichevsky, Anna M; Chibnik, Lori B; Bennett, David A; De Jager, Philip L
2017-07-01
Given multiple studies of brain microRNA (miRNA) in relation to Alzheimer's disease (AD) with few consistent results and the heterogeneity of this disease, the objective of this study was to explore their mechanism by evaluating their relation to different elements of Alzheimer's disease pathology, confounding factors and mRNA expression data from the same subjects in the same brain region. We report analyses of expression profiling of miRNA (n = 700 subjects) and lincRNA (n = 540 subjects) from the dorsolateral prefrontal cortex of individuals participating in two longitudinal cohort studies of aging. We confirm the association of two well-established miRNA (miR-132, miR-129) with pathologic AD in our dataset and then further characterize this association in terms of its component neuritic β-amyloid plaques and neurofibrillary tangle pathologies. Additionally, we identify one new miRNA (miR-99) and four lincRNA that are associated with these traits. Many other previously reported associations of microRNA with AD are associated with the confounders quantified in our longitudinal cohort. Finally, by performing analyses integrating both miRNA and RNA sequence data from the same individuals (525 samples), we characterize the impact of AD associated miRNA on human brain expression: we show that the effects of miR-132 and miR-129-5b converge on certain genes such as EP300 and find a role for miR200 and its target genes in AD using an integrated miRNA/mRNA analysis. Overall, miRNAs play a modest role in human AD, but we observe robust evidence that a small number of miRNAs are responsible for specific alterations in the cortical transcriptome that are associated with AD.
Hiwasa-Tanase, Kyoko; Nyarubona, Mpanja; Hirai, Tadayoshi; Kato, Kazuhisa; Ichikawa, Takanari; Ezura, Hiroshi
2011-01-01
In our previous study, a transgenic tomato line that expressed the MIR gene under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (tNOS) produced the taste-modifying protein miraculin (MIR). However, the concentration of MIR in the tomatoes was lower than that in the MIR gene's native miracle fruit. To increase MIR production, the native MIR terminator (tMIR) was used and a synthetic gene encoding MIR protein (sMIR) was designed to optimize its codon usage for tomato. Four different combinations of these genes and terminators (MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR) were constructed and used for transformation. The average MIR concentrations in MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR fruits were 131, 197, 128 and 287 μg/g fresh weight, respectively. The MIR concentrations using tMIR were higher than those using tNOS. The highest MIR accumulation was detected in sMIR-tMIR fruits. On the other hand, the MIR concentration was largely unaffected by sMIR-tNOS. The expression levels of both MIR and sMIR mRNAs terminated by tMIR tended to be higher than those terminated by tNOS. Read-through mRNA transcripts terminated by tNOS were much longer than those terminated by tMIR. These results suggest that tMIR enhances mRNA expression and permits the multiplier effect of optimized codon usage.
Cañueto, J; Cardeñoso-Álvarez, E; García-Hernández, J L; Galindo-Villardón, P; Vicente-Galindo, P; Vicente-Villardón, J L; Alonso-López, D; De Las Rivas, J; Valero, J; Moyano-Sanz, E; Fernández-López, E; Mao, J H; Castellanos-Martín, A; Román-Curto, C; Pérez-Losada, J
2017-07-01
Cutaneous squamous cell carcinoma (CSCC) is the second most widespread cancer in humans and its incidence is rising. These tumours can evolve as diseases of poor prognosis, and therefore it is important to identify new markers to better predict its clinical evolution. We aimed to identify the expression pattern of microRNAs (miRNAs or miRs) at different stages of skin cancer progression in a panel of murine skin cancer cell lines. Owing to the increasing importance of miRNAs in the pathogenesis of cancer, we considered the possibility that miRNAs could help to define the prognosis of CSCC and aimed to evaluate the potential use of miR-203 and miR-205 as biomarkers of prognosis in human tumours. Seventy-nine human primary CSCCs were collected at the University Hospital of Salamanca in Spain. We identified differential miRNA expression patterns at different stages of CSCC progression in a well-established panel of murine skin cancer cell lines, and then selected miR-205 and miR-203 to evaluate their association with the clinical prognosis and evolution of human CSCC. miR-205 was expressed in tumours with pathological features recognized as indicators of poor prognosis such as desmoplasia, perineural invasion and infiltrative growth pattern. miR-205 was mainly expressed in undifferentiated areas and in the invasion front, and was associated with both local recurrence and the development of general clinical events of poor evolution. miR-205 expression was an independent variable selected to predict events of poor clinical evolution using the multinomial logistic regression model described in this study. In contrast, miR-203 was mainly expressed in tumours exhibiting the characteristics associated with a good prognosis, was mainly present in well-differentiated zones, and rarely expressed in the invasion front. Therefore, the expression and associations of miR-205 and miR-203 were mostly mutually exclusive. Finally, using a logistic biplot we identified three clusters of patients with differential prognosis based on miR-203 and miR-205 expression, and pathological tumour features. miR-205 and miR-203 tended to exhibit mutually exclusive expression patterns in human CSCC. This work highlights the utility of miR-205 and miR-203 as prognostic markers in CSCC. © 2016 British Association of Dermatologists.
MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uematsu, Yasuaki, E-mail: yasuaki-uematsu@ds-pharm
MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantlymore » increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.« less
Ahn, Suzie E.; Lee, Sang In; Bazer, Fuller W.; Han, Jae Yong; Song, Gwonhwa
2012-01-01
S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1), also known as IP3 receptor-binding protein released with IP3 (IRBIT), regulates IP3-induced Ca2+ release into the cytoplasm of cells. AHCYL1 is a critical regulator of early developmental stages in zebrafish, but little is known about the function of AHCYL1 or hormonal regulation of expression of the AHCYL1 gene in avian species. Therefore, we investigated differential expression profiles of the AHCYL1 gene in various adult organs and in oviducts from estrogen-treated chickens. Chicken AHCYL1 encodes for a protein of 540 amino acids that is highly conserved and has considerable homology to mammalian AHCYL1 proteins (>94% identity). AHCYL1 mRNA was expressed abundantly in various organs of chickens. Further, the synthetic estrogen agonist induced AHCYL1 mRNA and protein predominantly in luminal and glandular epithelial cells of the chick oviduct. In addition, estrogen activated AHCYL1 through the ERK1/2 signal transduction cascade and that activated expression of AHCYL1 regulated genes affecting oviduct development in chicks as well as calcium release in epithelial cells of the oviduct. Also, microRNAs, miR-124a, miR-1669, miR-1710 and miR-1782 influenced AHCYL1 expression in vitro via its 3′-UTR which suggests that post-transcriptional events are involved in the regulation of AHCYL1 expression in the chick oviduct. In conclusion, these results indicate that AHCYL1 is a novel estrogen-stimulated gene expressed in epithelial cells of the chicken oviduct that likely affects growth, development and calcium metabolism of the mature oviduct of hens via an estrogen-mediated ERK1/2 MAPK cell signaling pathway. PMID:23145124
Mechanisms underlying aberrant expression of miR-29c in uterine leiomyoma.
Chuang, Tsai-Der; Khorram, Omid
2016-01-01
To determine the expression of miR-29c and its target genes in leiomyoma and the role of NF-κB, specific protein 1 (SP1), and DNA methylation in its regulation. Experimental study. Academic research laboratory. Women undergoing hysterectomy for leiomyoma. Over- and underexpression of miR-29c; blockade of transcription factors. MiR-29c and its target gene levels in leiomyoma and the effects of blockade of transcription factors on miR-29c expression. Leiomyoma as compared with myometrium expressed significantly lower levels of miR-29c, with an inverse relationship with expression of its targets, COL3A1 and DNMT3A. Gain of function of miR-29c inhibited the expression of COL3A1 and DNMT3A at protein and mRNA levels, secreted COL3A1, and rate of cell proliferation. Loss of function of miR-29c had the opposite effect. E2, P, and their combination inhibited miR-29c in leiomyoma smooth muscle cells (LSMC). Phosphorylated NF-κB (p65) and SP1 protein expression were significantly increased in leiomyoma. SiRNA knockdown of SP1 and DNMT3A or their specific inhibitors significantly increased the expression of miR-29c, accompanied by the inhibition of cellular and secreted COL3A1 in siRNA-treated cells. Knockdown of p65 also induced miR-29c expression but had no effect on COL3A1 expression. MiR-29c expression is suppressed in leiomyoma, resulting in an increase in expression of its targets COL3A1 and DNMT3A. The suppression of miR-29c in LSMC is primarily mediated by SP1, NF-κB signaling, and epigenetic modification. Collectively, these results indicate a significant role for miR-29c in leiomyoma pathogenesis. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Chen, Xinping; Talati, Megha; Fessel, Joshua P.; Hemnes, Anna R.; Gladson, Santhi; French, Jaketa; Shay, Sheila; Trammel, Aaron; Phillips, John A.; Hamid, Rizwan; Cogan, Joy D.; Dawson, Elliott P.; Womble, Kristie E.; Hedges, Lora K.; Martinez, Elizabeth G.; Wheeler, Lisa A.; Loyd, James E.; Majka, Susan J.; West, James; Austin, Eric D.
2015-01-01
Background Pulmonary arterial hypertension (PAH) is a proliferative disease of the pulmonary vasculature which preferentially affects females. Estrogens, such as the metabolite 16α-hydroxyestrone (16αOHE), may contribute to PAH pathogenesis; and, alterations in cellular energy metabolism associate with PAH. We hypothesized that 16αOHE promotes heritable PAH (HPAH) via miR-29 family upregulation, and that antagonism of miR-29 would attenuate pulmonary hypertension in transgenic mouse models of Bmpr2 mutation. Methods and Results MicroRNA (miR) array profiling of human lung tissue found elevation of miRs associated with energy metabolism, including the miR-29 family, among HPAH patients. miR-29 expression was 2-fold higher in Bmpr2 mutant mice lungs at baseline compared to controls, and 4 to 8-fold higher in Bmpr2 mice exposed to 16αOHE 1.25 μg/hr for 4 weeks. Blot analyses of Bmpr2 mouse lung protein showed significant reductions in PPARγ and CD36 in those mice exposed to 16αOHE, as well as from protein derived from HPAH lungs compared to controls. Bmpr2 mice treated with anti-miR-29 (α-miR29) (20mg/kg injections for 6 weeks) had improvements in hemodynamic profile, histology, and markers of dysregulated energy metabolism compared to controls. PASMCs derived from Bmpr2 murine lungs demonstrated mitochondrial abnormalities, which improved with α-miR29 transfection in vitro; endothelial-like cells derived from HPAH patient iPS cell lines were similar, and improved with α-miR29 treatment. Conclusions 16αOHE promotes the development of HPAH via upregulation of miR-29, which alters molecular and functional indices of energy metabolism. Antagonism of miR-29 improves in vivo and in vitro features of HPAH, and reveals a possible novel therapeutic target. PMID:26487756
miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth.
Han, Yuyan; Meng, Fanyin; Venter, Julie; Wu, Nan; Wan, Ying; Standeford, Holly; Francis, Heather; Meininger, Cynthia; Greene, John; Trzeciakowski, Jerome P; Ehrlich, Laurent; Glaser, Shannon; Alpini, Gianfranco
2016-06-01
Disruption of circadian rhythm is associated with cancer development and progression. MicroRNAs (miRNAs) are a class of small non-coding RNAs that trigger mRNA translation inhibition. We aimed to evaluate the role of Per1 and related miRNAs in cholangiocarcinoma growth. The expression of clock genes was evaluated in human cholangiocarcinoma tissue arrays and cholangiocarcinoma lines. The rhythmic expression of clock genes was evaluated in cholangiocarcinoma cells and H69 (non-malignant cholangiocytes) by qPCR. We measured cell proliferation, cell cycle and apoptosis in Mz-ChA-1 cells after Per1 overexpression. We examined tumor growth in vivo after injection of Per1 overexpressing cells. We verified miRNAs that targets Per1. The circadian rhythm of miR-34a was evaluated in cholangiocarcinoma and H69 cells. We evaluated cell proliferation, apoptosis and invasion after inhibition of miR-34a in vitro, and the potential molecular mechanisms by mRNA profiling after overexpression of Per1. Expression of Per1 was decreased in cholangiocarcinoma. The circadian rhythm of Per1 expression was lost in cholangiocarcinoma cells. Decreased cell proliferation, lower G2/M arrest, and enhanced apoptosis were shown in Per1 overexpressing cells. An in vivo study revealed decreased tumor growth, decreased proliferation, angiogenesis and metastasis after overexpressing Per1. Per1 was verified as a target of miR-34a. miR-34a was rhythmically expressed in cholangiocarcinoma cells and H69. The inhibition of miR-34a decreased proliferation, migration and invasion in cholangiocarcinoma cells. mRNA profiling has shown that overexpression of Per1 inhibits cell growth through regulation of multiple cancer-related pathways, such as cell cycle, cell growth and apoptosis pathways. Disruption of circadian rhythms of clock genes contribute to the malignant phenotypes of human cholangiocarcinoma. The current study is about how biological clock and its regulators affect the bile duct tumor growth. The disruption of biological clock has a negative impact in different cancers. Per1 is a gene that is involved in maintaining the biological clock and show 24h oscillation. Reduced levels of Per1 and disruption of 24h circadian rhythm was found in bile duct cancer cells. Therefore, a genetic modified bile duct cancer cells was created. It has a higher level of Per1 expression and partially recovered circadian rhythm. Those genetic modified cells also displayed slower cell growth or higher rate of cell death. We also used mice model that lack of immune system to show that our genetic modified bile duct cells form smaller tumor. In addition, we tried to see how Per1 is communicating with other genes in regarding of controlling the tumor growth. We found Per1 is regulated by microRNA-34a, a small non-coding RNA that directly binds to genes and inhibit gene expression. Decreased level of miR-34a has also significantly reduced tumor growth through controlling the cell growth and cell death balance. Therefore bile duct cancer patients may be treated with miR-34a inhibitor or Per1 stimulator in the future. Published by Elsevier B.V.
Circular RNA Profiling and Bioinformatic Modeling Identify Its Regulatory Role in Hepatic Steatosis.
Guo, Xing-Ya; He, Chong-Xin; Wang, Yu-Qin; Sun, Chao; Li, Guang-Ming; Su, Qing; Pan, Qin; Fan, Jian-Gao
2017-01-01
Circular RNAs (circRNAs) exhibit a wide range of physiological and pathological activities. To uncover their role in hepatic steatosis, we investigated the expression profile of circRNAs in HepG2-based hepatic steatosis induced by high-fat stimulation. Differentially expressed circRNAs were subjected to validation using QPCR and functional analyses using principal component analysis, hierarchical clustering, target prediction, gene ontology (GO), and pathway annotation, respectively. Bioinformatic integration established the circRNA-miRNA-mRNA regulatory network so as to identify the mechanisms underlying circRNAs' metabolic effect. Here we reported that hepatic steatosis was associated with a total of 357 circRNAs. Enrichment of transcription-related GOs, especially GO: 0006355, GO: 004589, GO: 0045944, GO: 0045892, and GO: 0000122, demonstrated their specific actions in transcriptional regulation. Lipin 1 (LPIN1) was recognized to mediate the transcriptional regulatory effect of circRNAs on metabolic pathways. circRNA-miRNA-mRNA network further identified the signaling cascade of circRNA_021412/miR-1972/LPIN1, which was characterized by decreased level of circRNA_021412 and miR-1972-based inhibition of LPIN1. LPIN1-induced downregulation of long chain acyl-CoA synthetases (ACSLs) expression finally resulted in the hepatosteatosis. These findings identify circRNAs to be important regulators of hepatic steatosis. Transcription-dependent modulation of metabolic pathways may underlie their effects, partially by the circRNA_021412/miR-1972/LPIN1 signaling.
Myostatin signals through miR-34a to regulate Fndc5 expression and browning of white adipocytes.
Ge, X; Sathiakumar, D; Lua, B J G; Kukreti, H; Lee, M; McFarlane, C
2017-01-01
Myostatin (Mstn) has a pivotal role in glucose and lipid metabolism. Mstn deficiency leads to the increased browning of white adipose tissue (WAT), which results in the increased energy expenditure and protection against diet-induced obesity and insulin resistance. In this study, we investigated the molecular mechanism(s) through which Mstn regulates browning of white adipocytes. Quantitative molecular analyses were performed to assess Mstn regulation of miR-34a and Fndc5 expression. miR-34a was overexpressed and repressed to investigate miR-34a regulation of Fndc5. Luciferase reporter analysis verified direct binding between miR-34a and the Fndc5 3'-untranslated region (UTR). The browning phenotype of Mstn -/- adipocytes was assessed through the analysis of brown fat marker gene expression, mitochondrial function and infrared thermography. The role of miR-34a and Fndc5 in this browning phenotype was verified through antibody-mediated neutralization of FNDC5, knockdown of Fndc5 by small interfering RNA and through miR-34a gain-of-function and loss-of-function experiments. Mstn treatment of myoblasts inhibited Fndc5 expression, whereas the loss of Mstn increased Fndc5 levels in muscles and in circulation. Mstn inhibition of Fndc5 is miR-34a dependent. Mstn treatment of C2C12 myoblasts upregulated miR-34a expression, whereas reduced miR-34a expression was noted in Mstn -/- muscle and WAT. Subsequent overexpression of miR-34a inhibited Fndc5 expression, whereas blockade of miR-34a increased Fndc5 expression in myoblasts. Reporter analysis revealed that miR-34a directly suppresses Fndc5 expression through a miR-34a-specific binding site within the Fndc5 3'UTR. Importantly, Mstn-mediated inhibition of Fndc5 was blocked upon miR-34a inhibition. Mstn -/- adipocytes showed reduced miR-34a, enhanced Fndc5 expression and increased thermogenic gene expression, which was reversed upon either neutralization of Fndc5 or Fndc5 knockdown. In agreement, Mstn -/- adipocytes have increased mitochondria, improved mitochondrial function and increased heat production. Mstn regulates Fndc5/Irisin expression and secretion through a novel miR-34a-dependent post-transcriptional mechanism. Loss of Mstn in mice leads to the increased Fndc5/Irisin expression, which contributes to the browning of white adipocytes.
MicroRNA profiling of human kidney cancer subtypes.
Petillo, David; Kort, Eric J; Anema, John; Furge, Kyle A; Yang, Ximing J; Teh, Bin Tean
2009-07-01
Although the functions of most of the identified microRNAs (miRNAs) have yet to be determined, their use as potential biomarkers has been considered in several human diseases and cancers. In order to understand their role in renal tumorigenesis, we screened the expression levels of miRNAs in four subtypes of human renal neoplasms: clear cell, papillary, and chromophobe renal cell carcinomas (RCC) as well as benign renal oncocytomas. We found a unique miRNA signature for each subtype of renal tumor. Furthermore, we identified unique patterns of miRNA expression distinguishing clear cell RCC cases with favorable vs. unfavorable outcome. Specifically, we documented the overexpression of miRs 424 and 203 in clear cell RCC relative to papillary RCC, as well as the inversion of expression of miR-203 in the benign oncocytomas (where it is underexpressed relative to normal kidney) as compared to the malignant chromophobe RCC (where it is overexpressed relative to normal kidney). Our results further suggest that overexpression of S-has-miR-32 is associated with poor outcome. While previous studies have identified unique miRNA expression pattern distinguishing tumors from different anatomical locations, here we extend this principle to demonstrate the utility of miRNA expression profiling to identify a signature unique to various tumor subtypes at a single anatomic locus.
Long, Wei; Zhao, Chun; Ji, Chenbo; Ding, Hongjuan; Cui, Yugui; Guo, Xirong; Shen, Rong; Liu, Jiayin
2014-01-01
Polycystic ovary syndrome (PCOS), the most common endocrinopathy in women of reproductive age, is characterized by polycystic ovaries, chronic anovulation, hyperandrogenism and insulin resistance. Despite the high prevalence of hyperandrogenemia, a definitive endocrine marker for PCOS has so far not been identified. Circulating miRNAs have recently been shown to serve as diagnostic/prognostic biomarkers in patients with cancers. Our current study focused on the altered expression of serum miRNAs and their correlation with PCOS. We systematically used the TaqMan Low Density Array followed by individual quantitative reverse transcription polymerase chain reaction assays to identify and validate the expression of serum miRNAs of PCOS patients. The expression levels of three miRNAs (miR-222, miR-146a and miR-30c) were significantly increased in PCOS patients with respect to the controls in our discovery evaluation and followed validation. The area under the receiver operating characteristic (ROC) curve (AUC) is 0.799, 0.706, and 0.688, respectively. The combination of the three miRNAs using multiple logistic regression analysis showed a larger AUC (0.852) that was more efficient for the diagnosis of PCOS. In addition, logistic binary regression analyses show miR-222 is positively associated with serum insulin, while miR-146a is negatively associated with serum testosterone. Furthermore, bioinformatics analysis indicated that the predicted targets function of the three miRNAs mainly involved in the metastasis, cell cycle, apoptosis and endocrine. Serum miRNAs are differentially expressed between PCOS patients and controls. We identified and validated a class of three serum miRNAs that could act as novel non-invasive biomarkers for diagnosis of PCOS. These miRNAs may be involved in the pathogenesis of PCOS. © 2014 S. Karger AG, Basel.
Santin, Franco; Bhogale, Sneha; Fantino, Elisa; Grandellis, Carolina; Banerjee, Anjan K; Ulloa, Rita M
2017-02-01
Among many factors that regulate potato tuberization, calcium and calcium-dependent protein kinases (CDPKs) play an important role. CDPK activity increases at the onset of tuber formation with StCDPK1 expression being strongly induced in swollen stolons. However, not much is known about the transcriptional and posttranscriptional regulation of StCDPK1 or its downstream targets in potato development. To elucidate further, we analyzed its expression in different tissues and stages of the life cycle. Histochemical analysis of StCDPK1::GUS (β-glucuronidase) plants demonstrated that StCDPK1 is strongly associated with the vascular system in stems, roots, during stolon to tuber transition, and in tuber sprouts. In agreement with the observed GUS profile, we found specific cis-acting elements in StCDPK1 promoter. In silico analysis predicted miR390 to be a putative posttranscriptional regulator of StCDPK1. Quantitative real time-polymerase chain reaction (qRT-PCR) analysis showed ubiquitous expression of StCDPK1 in different tissues which correlated well with Western blot data except in leaves. On the contrary, miR390 expression exhibited an inverse pattern in leaves and tuber eyes suggesting a possible regulation of StCDPK1 by miR390. This was further confirmed by Agrobacterium co-infiltration assays. In addition, in vitro assays showed that recombinant StCDPK1-6xHis was able to phosphorylate the hydrophilic loop of the auxin efflux carrier StPIN4. Altogether, these results indicate that StCDPK1 expression is varied in a tissue-specific manner having significant expression in vasculature and in tuber eyes; is regulated by miR390 at posttranscriptional level and suggest that StPIN4 could be one of its downstream targets revealing the overall role of this kinase in potato development. © 2016 Scandinavian Plant Physiology Society.