miR-1298 inhibits mutant KRAS-driven tumor growth by repressing FAK and LAMB3
Zhou, Ying; Dang, Jason; Chang, Kung-Yen; Yau, Edwin; Aza-Blanc, Pedro; Moscat, Jorge; Rana, Tariq M.
2016-01-01
Global microRNA functional screens can offer a strategy to identify synthetic lethal interactions in cancer cells that might be exploited therapeutically. In this study, we applied this strategy to identify novel gene interactions in KRAS mutant cancer cells. In this manner, we discovered miR-1298, a novel miRNA that inhibited the growth of KRAS-driven cells both in vitro and in vivo. Using miR-TRAP affinity purification technology, we identified the tyrosine kinase FAK and the laminin subunit LAMB3 as functional targets of miR-1298. Silencing of FAK or LAMB3 recapitulated the synthetic lethal effects of miR-1298 expression in KRAS-driven cancer cells, whereas co-expression of both proteins was critical to rescue miR-1298-induced cell death. Expression of LAMB3 but not FAK was upregulated by mutant KRAS. In clinical specimens, elevated LAMB3 expression correlated with poorer survival in lung cancer patients with an oncogenic KRAS gene signature, suggesting a novel candidate biomarker in this disease setting. Our results define a novel regulatory pathway in KRAS-driven cancers which offers a potential therapeutic target for their eradication PMID:27698189
Technical assessment of Mir-1 life support hardware for the international space station
NASA Technical Reports Server (NTRS)
Mitchell, K. L.; Bagdigian, R. M.; Carrasquillo, R. L.; Carter, D. L.; Franks, G. D.; Holder, D. W., Jr.; Hutchens, C. F.; Ogle, K. Y.; Perry, J. L.; Ray, C. D.
1994-01-01
NASA has been progressively learning the design and performance of the Russian life support systems utilized in their Mir space station. In 1992, a plan was implemented to assess the benefits of the Mir-1 life support systems to the Freedom program. Three primary tasks focused on: evaluating the operational Mir-1 support technologies and understanding if specific Russian systems could be directly utilized on the American space station and if Russian technology design information could prove useful in improving the current design of the planned American life support equipment; evaluating the ongoing Russian life support technology development activities to determine areas of potential long-term application to the U.S. space station; and utilizing the expertise of their space station life support systems to evaluate the benefits to the current U.S. space station program which included the integration of the Russian Mir-1 designs with the U.S. designs to support a crew of six.
miR-25 modulates NSCLC cell radio-sensitivity through directly inhibiting BTG2 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhiwei, E-mail: carlhe@126.com; Liu, Yi, E-mail: cassieliu@126.com; Xiao, Bing, E-mail: rockg714@aliyun.com
2015-02-13
A large proportion of the NSCLC patients were insensitive to radiotherapy, but the exact mechanism is still unclear. This study explored the role of miR-25 in regulating sensitivity of NSCLC cells to ionizing radiation (IR) and its downstream targets. Based on measurement in tumor samples from NSCLC patients, this study found that miR-25 expression is upregulated in both NSCLC and radio-resistant NSCLC patients compared the healthy and radio-sensitive controls. In addition, BTG expression was found negatively correlated with miR-25a expression in the both tissues and cells. By applying luciferase reporter assay, we verified two putative binding sites between miR-25 andmore » BTG2. Therefore, BTG2 is a directly target of miR-25 in NSCLC cancer. By applying loss-and-gain function analysis in NSCLC cell lines, we demonstrated that miR-25-BTG2 axis could directly regulated BTG2 expression and affect radiotherapy sensitivity of NSCLC cells. - Highlights: • miR-25 is upregulated, while BTG2 is downregulated in radioresistant NSCLC patients. • miR-25 modulates sensitivity to radiation induced apoptosis. • miR-25 directly targets BTG2 and suppresses its expression. • miR-25 modulates sensitivity to radiotherapy through inhibiting BTG2 expression.« less
van der Wilden, Gwendolyn M; Van der Wilden, Gwen; Albers, Christoph E; Albers, Christof; Haefeli, Pascal C; Haefeli, Peter; Zimmermann, Heinz; Zimmerman, Heinz; Exadaktylos, Aristomenis; Exadaktylos, Aris; Levy, Phillip; Birkhan, Oscar; Birkham, Oscar; Michaildou, Maria; Michailidou, Maria; Sideris, Antonios; Velmahos, George C; Velmahos, George; Alam, Hasan B; Alam, Hasan; King, David R; King, David; Fagenholz, Peter J; Fagenholz, Peter; Yeh, D Dante; Yeh, Dante; de Moya, Marc A
2012-12-01
Pneumothoraces (PTXs) are a common entity in thoracic trauma. Micropower impulse radar (MIR) has been able to detect PTXs in surgical patients. However, this technology has not been tested previously on trauma patients. The purpose of this study was to determine the sensitivity and specificity of MIR to detect clinically significant PTXs. We hypothesized that MIR technology can effectively screen trauma patients for clinically significant PTXs. This was a prospective observational study in Level I trauma centers in Boston, Massachusetts, and Bern, Switzerland. All trauma patients undergoing a chest computed tomographic (CT) scan were eligible for the study. Consent was obtained, and readings were performed within 30 minutes before or after the CT scan. The patients had eight lung fields tested (four on each side). The qualitative and quantitative MIR results were blinded and stored on the device. We then compared the results of the MIR to the CT scan and the need for chest tube drainage. We defined PTXs as clinically significant if they required a chest tube. Seventy-five patients were enrolled, with a mean age of 46 ± 16 years. Eighty-four percent were male. The screening test took approximately 1 minute. All but two patients had blunt chest trauma. Six true-positives, 6 false-positives, 63 true-negatives, and 0 false-negatives resulted in an overall sensitivity of 100%. MIR is an easy to use handheld technology that effectively screened patients for clinically significant PTXs, with a sensitivity and negative predictive value of 100%. MIR may be used for rapid, repeatable, and ongoing surveillance of trauma patients. Diagnostic study, level III.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassouf, Amine, E-mail: amine.kassouf@agroparistech.fr; INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy; AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris
2014-11-15
Highlights: • An innovative technique, MIR-ICA, was applied to plastic packaging separation. • This study was carried out on PE, PP, PS, PET and PLA plastic packaging materials. • ICA was applied to discriminate plastics and 100% separation rates were obtained. • Analyses performed on two spectrometers proved the reproducibility of the method. • MIR-ICA is a simple and fast technique allowing plastic identification/classification. - Abstract: Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energymore » recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied at an industrial level given that all tests presented here were performed under laboratory conditions.« less
miR-335 negatively regulates osteosarcoma stem cell-like properties by targeting POU5F1.
Guo, Xiaodong; Yu, Ling; Zhang, Zhengpei; Dai, Guo; Gao, Tian; Guo, Weichun
2017-01-01
Evidence is accumulating to link cancer stem cells to the pathogenesis and progression of osteosarcoma. The aim of this study is to investigate the role of miR-335 in osteosarcoma stem cells. Tumor spheroid culture and flow cytometry were applied to screen out osteosarcoma stem cells. Real-time quantitative PCR was used to detect the expression level of miR-335 in MG63, U2OS and 143B osteosarcoma stem cells. The relationship of miR-335 expression with osteosarcoma stem cells was then analyzed. Transwell assay and transplantation assay were performed to elucidate biological effects of miR-335 on cell invasion and vivo tumor formation. Western Blot and luciferase assays were executed to investigate the regulation of POU5F1 by miR-335. The expression of miR-335 in osteosarcoma stem cells was lower than their differentiated counterparts. Cells expressing miR-335 possessed decreased stem cell-like properties. Gain or loss of function assays were applied to find that miR-335 antagonist promoted stem cell-like properties as well as invasion. Luciferase report and transfection assay showed that POU5F1 was downregulated by miR-335. Pre-miR-335 resulted in tumor enhanced sensitivity to traditional chemotherapy, whereas anti-miR-335 promoted chemoresistance. Finally, the inhibitory effect of miR-335 on in vivo tumor formation showed that combination of pre-miR-335 with cisplatin further reduced the tumor size, and miR-335 brought down the sphere formation capacity induced by cisplatin. The current study demonstrates that miR-335 negatively regulates osteosarcoma stem cell-like properties by targeting POU5F1, and miR-335 could target CSCs to synergize with traditional chemotherapeutic agents to overcome osteosarcoma.
NASA Technical Reports Server (NTRS)
Skor, Mike; Hoffman, Dave J.
1997-01-01
The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.
Pallasch, Christian Philipp; Patz, Michaela; Park, Yoon Jung; Hagist, Susanne; Eggle, Daniela; Claus, Rainer; Debey-Pascher, Svenja; Schulz, Alexandra; Frenzel, Lukas P; Claasen, Julia; Kutsch, Nadine; Krause, Günter; Mayr, Christine; Rosenwald, Andreas; Plass, Christoph; Schultze, Joachim L; Hallek, Michael; Wendtner, Clemens-Martin
2009-10-08
MicroRNAs (miRNA) play a key role in cellular regulation and, if deregulated, in the development of neoplastic disorders including chronic lymphocytic leukemia (CLL). RNAs from primary cells of 50 treatment-naive CLL patients and peripheral B cells of 14 healthy donors were applied to miRNA expression profiling using bead chip technology. In CLL cells, a set of 7 up- and 19 down-regulated miRNAs was identified. Among the miRNAs down-regulated in CLL cells, 6 of 10 miRNA promoters examined showed gain of methylation compared with normal B-cell controls. Subsequent target prediction of deregulated miRNAs revealed a highly significant binding prediction at the 3' untranslated region of the pleomorphic adenoma gene 1 (PLAG1) oncogene. Luciferase reporter assays including site-directed mutagenesis of binding sites revealed a significant regulation of PLAG1 by miR-181a, miR-181b, miR-107, and miR-424. Although expression of PLAG1 mRNA was not affected, PLAG1 protein expression was shown to be significantly elevated in CLL cells compared with the levels in healthy donor B cells. In summary, we could demonstrate disruption of miRNA-mediated translational control, partly due to epigenetic transcriptional silencing of miRNAs, with subsequent overexpression of the oncogenic transcription factor PLAG1 as a putative novel mechanism of CLL pathogenesis.
Pallasch, Christian Philipp; Patz, Michaela; Park, Yoon Jung; Hagist, Susanne; Eggle, Daniela; Claus, Rainer; Debey-Pascher, Svenja; Schulz, Alexandra; Frenzel, Lukas P.; Claasen, Julia; Kutsch, Nadine; Krause, Günter; Mayr, Christine; Rosenwald, Andreas; Plass, Christoph; Schultze, Joachim L.; Hallek, Michael
2009-01-01
MicroRNAs (miRNA) play a key role in cellular regulation and, if deregulated, in the development of neoplastic disorders including chronic lymphocytic leukemia (CLL). RNAs from primary cells of 50 treatment-naive CLL patients and peripheral B cells of 14 healthy donors were applied to miRNA expression profiling using bead chip technology. In CLL cells, a set of 7 up- and 19 down-regulated miRNAs was identified. Among the miRNAs down-regulated in CLL cells, 6 of 10 miRNA promoters examined showed gain of methylation compared with normal B-cell controls. Subsequent target prediction of deregulated miRNAs revealed a highly significant binding prediction at the 3′ untranslated region of the pleomorphic adenoma gene 1 (PLAG1) oncogene. Luciferase reporter assays including site-directed mutagenesis of binding sites revealed a significant regulation of PLAG1 by miR-181a, miR-181b, miR-107, and miR-424. Although expression of PLAG1 mRNA was not affected, PLAG1 protein expression was shown to be significantly elevated in CLL cells compared with the levels in healthy donor B cells. In summary, we could demonstrate disruption of miRNA-mediated translational control, partly due to epigenetic transcriptional silencing of miRNAs, with subsequent overexpression of the oncogenic transcription factor PLAG1 as a putative novel mechanism of CLL pathogenesis. PMID:19692702
MicroRNA-17-5p contributes to osteoarthritis progression by binding p62/SQSTM1.
Li, Huihui; Miao, Daoyi; Zhu, Qi; Huang, Jianghua; Lu, Guangxian; Xu, Weiguo
2018-02-01
Autophagy has been reported to be widely involved in the pathogenesis of osteoarthritis (OA). Increasing evidence suggested the important role of microRNAs (miRs) in the progression of OA. However, the functional role of miR-17-5p in OA development has remained to be fully elucidated. First, a mouse model of OA was established and the relative level of miR-17-5p was determined using PCR. Safranin O-fast green staining was applied to determine cartilage degeneration. TargetScan software and a dual luciferase reporter assay were applied to determine potential target genes of miR-17-5P. Autophagy measurement was performed using green fluorescent protein-microtubule-associated protein 1 light chain 3 (LC3) dot analysis. The results demonstrated that the relative expression of miR-17-5p was significantly decreased in OA model mice. In addition, the level of miR-17-5p was decreased in SW1353 human chondrosarcoma cells treated with interleukin-1β. Furthermore, autophagy was found to be suppressed in the knee joints of experimental OA model mice. The dual luciferase reporter assay confirmed that p62/sequestosome 1 was a target gene of miR-17-5p. Of note, miR-17-5p inhibitor-induced reduction of LC3 dots was markedly reversed by knockdown of p62 in SW1353 cells. In conclusion, decreased miR-17-5p expression in chondrocytes induced autophagy mainly through suppressing the expression of p62, thereby contributing to OA progression.
1995-11-01
This is a view of the Russian Mir Space Station photographed by a crewmember of the second Shuttle/Mir docking mission, STS-74. The image shows: top - Progress supply vehicle, Kvant-1 module, and the Core module; middle left - Spektr module; middle center - Kristall module and Docking module; middle right - Kvant-2 module; and bottom - Soyuz. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.
A Multi-Wavelength IR Laser for Space Applications
NASA Technical Reports Server (NTRS)
Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.
2017-01-01
We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to mid-infrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 microns, 2.7 microns and 3.4 microns. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated.
A multi-wavelength IR laser for space applications
NASA Astrophysics Data System (ADS)
Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.
2017-05-01
We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to midinfrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 µm, 2.7 μm and 3.4 μm. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated
1997-01-01
This is a view of the Russian Mir Space Station photographed by a crewmember of the fifth Shuttle/Mir docking mission, STS-81. The image shows: upper center - Progress supply vehicle, Kvant-1 module, and Core module; center left - Priroda module; center right - Spektr module; bottom left - Kvant-2 module; bottom center - Soyuz; and bottom right - Kristall module and Docking module. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars, by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. Priroda's main purpose was Earth remote sensing. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.
Geisler, Anja; Schön, Christian; Größl, Tobias; Pinkert, Sandra; Stein, Elisabeth A; Kurreck, Jens; Vetter, Roland; Fechner, Henry
2013-01-01
Insertion of completely complementary microRNA (miR) target sites (miRTS) into a transgene has been shown to be a valuable approach to specifically repress transgene expression in non-targeted tissues. miR-122TS have been successfully used to silence transgene expression in the liver following systemic application of cardiotropic adeno-associated virus (AAV) 9 vectors. For miR-206–mediated skeletal muscle-specific silencing of miR-206TS–bearing AAV9 vectors, however, we found this approach failed due to the expression of another member (miR-1) of the same miR family in heart tissue, the intended target. We introduced single-nucleotide substitutions into the miR-206TS and searched for those which prevented miR-1–mediated cardiac repression. Several mutated miR-206TS (m206TS), in particular m206TS-3G, were resistant to miR-1, but remained fully sensitive to miR-206. All these variants had mismatches in the seed region of the miR/m206TS duplex in common. Furthermore, we found that some m206TS, containing mismatches within the seed region or within the 3′ portion of the miR-206, even enhanced the miR-206– mediated transgene repression. In vivo expression of m206TS-3G– and miR-122TS–containing transgene of systemically applied AAV9 vectors was strongly repressed in both skeletal muscle and the liver but remained high in the heart. Thus, site-directed mutagenesis of miRTS provides a new strategy to differentiate transgene de-targeting of related miRs. PMID:23439498
Milagro, Fermín I.; Miranda, Jonatan; Portillo, María P.; Fernandez-Quintela, Alfredo; Campión, Javier; Martínez, J. Alfredo
2013-01-01
Introduction MicroRNAs (miRNAs) are being increasingly studied in relation to energy metabolism and body composition homeostasis. Indeed, the quantitative analysis of miRNAs expression in different adiposity conditions may contribute to understand the intimate mechanisms participating in body weight control and to find new biomarkers with diagnostic or prognostic value in obesity management. Objective The aim of this study was the search for miRNAs in blood cells whose expression could be used as prognostic biomarkers of weight loss. Methods Ten Caucasian obese women were selected among the participants in a weight-loss trial that consisted in following an energy-restricted treatment. Weight loss was considered unsuccessful when <5% of initial body weight (non-responders) and successful when >5% (responders). At baseline, total miRNA isolated from peripheral blood mononuclear cells (PBMC) was sequenced with SOLiD v4. The miRNA sequencing data were validated by RT-PCR. Results Differential baseline expression of several miRNAs was found between responders and non-responders. Two miRNAs were up-regulated in the non-responder group (mir-935 and mir-4772) and three others were down-regulated (mir-223, mir-224 and mir-376b). Both mir-935 and mir-4772 showed relevant associations with the magnitude of weight loss, although the expression of other transcripts (mir-874, mir-199b, mir-766, mir-589 and mir-148b) also correlated with weight loss. Conclusions This research addresses the use of high-throughput sequencing technologies in the search for miRNA expression biomarkers in obesity, by determining the miRNA transcriptome of PBMC. Basal expression of different miRNAs, particularly mir-935 and mir-4772, could be prognostic biomarkers and may forecast the response to a hypocaloric diet. PMID:23335998
Dai, Bingyan; Pan, Qunwen; Li, Zhanghua; Zhao, Mingyan; Liao, Xiaorong; Wu, Keng; Ma, Xiaotang
2016-01-01
Multilayer composite membrane of biomaterials can increase the function of adipose stem cells or osteoprogenitor cells. Recent evidence indicates endothelial progenitor cells (EPCs) and EPCs released microvesicles (MVs) play important roles in angiogenesis and vascular repair. Here, we investigated the effects of biomaterial multilayer membranes of hyaluronic acid (HA) or chondroitin sulfate (CS) and Collagen I (Col I) on the functions and MVs release of EPCs. Layer-by-layer (LBL) technology was applied to construct the multilayer composite membranes. Four types of the membranes constructed by adsorbing either HA or CS and Col I alternatively with different top layers were studied. The results showed that all four types of multilayer composite membranes could promote EPCs proliferation and migration and inhibit cell senility, apoptosis, and the expression of activated caspase-3. Interestingly, these biomaterials increased the release and the miR-126 level of EPCs-MVs. Moreover, the CS-Col I membrane with CS on the top layer showed the most effects on promoting EPCs proliferation, EPCs-MV release, and miR-126 level in EPCs-MVs. In conclusion, HA/CS and Collagen I composed multilayer composite membranes can promote EPCs functions and release of miR-126 riched EPCs-MVs, which provides a novel strategy for tissue repair treatment.
Huang, Suli; Deng, Qifei; Feng, Jing; Zhang, Xiaomin; Dai, Xiayun; Li, Lu; Yang, Binyao; Wu, Tangchun; Cheng, Jinquan
2016-01-01
We aimed to evaluate the association between polycyclic aromatic hydrocarbons (PAHs)-related microRNAs (miRNAs) and heart rate variability indices in coke oven workers. We recruited 365 male coke oven workers and measured urinary PAH metabolites by gas chromatography-mass spectrometry. Five heart rate variability indices were measured using three-channel Holter monitor. Six miRNAs were detected by TaqMan miRNA assays (Life Technologies, Foster City, CA). miR-24-3p, miR-27a-3p, miR-142-5p, and miR-320b were negatively associated with the root mean of square of successive differences between adjacent normal NN intervals (RMSSD) (P(trend) = 0.006, 0.047, 0.019, 0.011, respectively). miR-142-5p and miR-320b were also negatively associated with standard deviation of all normal to normal NN intervals (SDNN) (P(trend) = 0.01 and 0.035). miR-24-3p, miR-27a-3p, and miR-320b were significantly interacted with multiple PAH metabolites and influenced heart rate variability indices, whereas miR-24-3p also significantly interacted with smoking to influence low frequency (P(interaction) < 0.05 for all). Plasma miRNAs might act as potential biomarkers for the adverse effect of PAH exposure on the cardiovascular system.
Quantitative Differential Expression Analysis Reveals Mir-7 As Major Islet MicroRNA
Bravo-Egana, Valia; Rosero, Samuel; Molano, R. Damaris; Pileggi, Antonello; Ricordi, Camillo; Domínguez-Bendala, Juan; Pastori, Ricardo L.
2008-01-01
MicroRNAs (miRNAs) are non-coding gene products that regulate gene expression through specific binding to target mRNAs. Cell-specific patterns of miRNAs are associated with the acquisition and maintenance of a given phenotype, such as endocrine pancreas (islets). We hypothesized that a subset of miRNAs could be differentially expressed in the islets. Using miRNA microarray technology and quantitative RT-PCR we identified a subset of miRNAs that are the most differentially expressed islet miRNAs (ratio islet/acinar >150-fold), mir-7 being the most abundant. A similarly high ratio for mir-7 was observed in human islets. The ratio islet/acinar for mir-375, a previously described islet miRNA, was <10, and is 2.5X more abundant in the islets than mir-7. Therefore, we conclude that mir-7 is the most abundant endocrine miRNA in islets while mir-375 is the most abundant intra-islet miRNA. Our results may offer new insights into regulatory pathways of islet gene expression. PMID:18086561
Ablation of the MiR-17-92 MicroRNA Cluster in Germ Cells Causes Subfertility in Female Mice.
Wang, Jian; Xu, Bo; Tian, Geng G; Sun, Tao; Wu, Ji
2018-01-01
Oogenesis is a highly complex process that is intricately regulated by interactions of multiple genes and signaling molecules. However, the underlying molecular mechanisms are poorly understood. There is emerging evidence that microRNAs contribute to oogenesis. Here, we aimed to investigate the role of miR-17-92 cluster in regulating oogenesis. The miR-17-92 cluster was genetically ablated in germ cells of female mice by applying the Cre-loxp system for conditional gene knockout. Mating experiment, superovulation and histological analysis were used to assess the fertility of the model female mice. TUNEL assay was used to identify apoptotic cells in ovaries. The expression level of apoptosis- and follicular atresia- related genes was evaluated by qRT-PCR. Western blotting was performed to detect protein expression. Bioinformatics software and dual luciferase reporter assay were applied to predict and verify the target of miR-17-92 cluster. Deletion of miR-17-92 cluster in germ cells of female mice caused increased oocyte degradation and follicular atresia, perturbed oogenesis, and ultimately led to subfertility. Genes involved in follicular atresia and the mitochondrial apoptotic pathway were obviously up-regulated. Furthermore, we verified that miR-19a regulated oogenesis at the post-transcriptional level by targeting Bmf in the ovaries of miR-17-92 cluster conditional knockout female mice. The miR-17-92 cluster is an important regulator of oogenesis. These findings will assist in better understanding the etiology of disorders in oogenesis and in developing new therapeutic targets for female infertility. © 2018 The Author(s). Published by S. Karger AG, Basel.
Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Yingfeng; Liu, Li; Zhao, Dongliang
Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less
RISC RNA sequencing for context-specific identification of in vivo microRNA targets.
Matkovich, Scot J; Van Booven, Derek J; Eschenbacher, William H; Dorn, Gerald W
2011-01-07
MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1645 mRNAs consistently targeted to mouse cardiac RISCs. We used this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing "seed" sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context and is applicable to any tissue and any disease state.
Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2
Tu, Yingfeng; Liu, Li; Zhao, Dongliang; ...
2015-09-08
Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less
NASA and Russian Space Agency sign agreement for additional Space Shuttle/Mir missions
Huff, W
1994-01-01
On December 16, 1993 NASA Administrator Daniel S. Goldin [correction of Golden] and the Russian Space Agency (RSA) director Yuri Koptev signed a protocol agreeing to up to 10 Shuttle flights to Mir with a total of 24 months time aboard Mir for U.S. astronants, a program of scientific and technological research, and the upgrade and extension of the Mir lifetime during the period 1995-1997. This is the first of a three-phase program in human spaceflight cooperation which may culminate in the construction of an international Space Station. This agreement starts joint development of spacecraft environmental control and life support systems and potential common space suit.
Valsartan ameliorates KIR2.1 in rats with myocardial infarction via the NF-κB-miR-16 pathway.
Li, Xinran; Hu, Hesheng; Wang, Ye; Xue, Mei; Li, Xiaolu; Cheng, Wenjuan; Xuan, Yongli; Yin, Jie; Yang, Na; Yan, Suhua
2016-09-30
MicroRNAs have an important role in regulating arrhythmogenesis. MicroRNA-16 (miR-16) is predicted to target KCNJ2. The regulation of miR-16 is primarily due to NF-κB. Whether valsartan could downregulate miR-16 via the inhibition of NF-κB after MI and whether miR-16 targets KCNJ2 remain unclear. MI rats received valsartan or saline for 7days. The protein levels of NF-κB p65, inhibitor κBα (IκBα), and Kir2.1 were detected by Western blot analysis. The mRNA levels of Kir2.1 and miR-16 were examined by quantitative real-time PCR. Whole cell patch-clamp techniques were applied to record IK1. MiR-16 expression was higher in the infarct border, and was accompanied by a depressed IK1/KIR2.1 level. Additionally, miR-16 overexpression suppressed KCNJ2/KIR2.1 expression. In contrast, miR-16 inhibition or binding-site mutation enhanced KCNJ2/KIR2.1 expression, establishing KCNJ2 as a miR-16 target. In the MI rats, compared to saline treatment, valsartan reduced NF-κB p65 and miR-16 expression and increased IκBα and Kir2.1 expression. In vitro, angiotensin II increased miR-16 expression and valsartan inhibited it. Overexpressing miR-16 in cells treated with valsartan abrogated its beneficial effect on KCNJ2/Kir2.1. NF-κB activation directly upregulates miR-16 expression. miR-16 controls KCNJ2 expression, and valsartan ameliorates Kir2.1 after MI partly depending on the NF-κB-miR-16 pathway. Copyright © 2015 Elsevier B.V. All rights reserved.
Dysregulation of miR-31 and miR-21 induced by zinc deficiency promotes esophageal cancer
Croce, Carlo M; Fong, Louise Y.Y
2012-01-01
Zinc deficiency (ZD) increases the risk of esophageal squamous cell carcinoma (ESCC). In a rat model, chronic ZD induces an inflammatory gene signature that fuels ESCC development. microRNAs regulate gene expression and are aberrantly expressed in cancers. Here we investigated whether chronic ZD (23 weeks) also induces a protumorigenic microRNA signature. Using the nanoString technology, we evaluated microRNA profiles in ZD esophagus and six additional tissues (skin, lung, pancreas, liver, prostate and peripheral blood mononuclear cells [PBMC]). ZD caused overexpression of inflammation genes and altered microRNA expression across all tissues analyzed, predictive of disease development. Importantly, the inflammatory ZD esophagus had a distinct microRNA signature resembling human ESCC or tongue SCC miRNAomes with miR-31 and miR-21 as the top-up-regulated species. Circulating miR-31 was also the top-up-regulated species in PBMCs. In ZD esophagus and tongue, oncogenic miR-31 and miR-21 overexpression was accompanied by down-regulation of their respective tumor-suppressor targets PPP2R2A and PDCD4. Importantly, esophageal miR-31 and miR-21 levels were directly associated with the appearance of ESCC in ZD rats, as compared with their cancer-free Zn-sufficient or Zn-replenished counterparts. In situ hybridization analysis in rat and human tongue SCCs localized miR-31 to tumor cells and miR-21 to stromal cells. In regressing tongue SCCs from Zn-supplemented rats, miR-31 and miR-21 expression was concomitantly reduced, establishing their responsiveness to Zn therapy. A search for putative microRNA targets revealed a bias toward genes in inflammatory pathways. Our finding that ZD causes miR-31 and miR-21 dysregulation associated with inflammation provides insight into mechanisms whereby ZD promotes ESCC. PMID:22689922
Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi
2014-01-01
A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.
2009-12-23
BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in bothmore » normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the miR-200c/141 CpG island is closely linked to their inappropriate silencing in cancer cells. Since the miR-200c cluster plays a significant role in EMT, our results suggest an important role for DNA methylation in the control of phenotypic conversions in normal cells.« less
NASA Technical Reports Server (NTRS)
1986-01-01
Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.
Regulation of podocyte lesions in diabetic nephropathy via miR-34a in the Notch signaling pathway.
Zhang, Xiangying; Song, Shuping; Luo, Huixin
2016-11-01
The activation of the Notch signaling pathway has been shown to play an important role in diabetic nephropathy (DN) development. Besides, Notch-1 is a target gene in miR-34a. However, the regulation of the podocyte lesions involved in DN by miR-34a has not been identified. This study utilized miR-34a mimics and small interfering RNA transfection to construct miR-34a overexpression and lower-expression model to investigate the effect of miR-34a on the regulation of the Notch signaling pathway and podocyte lesions in DN. Western blotting and real-time quantitative polymerase chain reaction were applied for the quantitative testing of mRNA and protein expression. Apoptosis of podocyte was detected by TUNEL staining. In high-glucose (HG) conditions, miR-34a overexpression inhibited the expression of Notch 1, Jagged 1, NICD, Hes 1, and Hey 1 proteins. Further, cleaved caspase-3, Bax, and phosphorylation of p53 (p-p53) were reduced significantly. Therefore, miR-34a overexpression inhibited the Notch signaling pathway and podocyte lesions induced by HG. β-arrestin was slightly reduced in HG conditions. Meanwhile, miR-34a overexpression could remit the inhibition. Results from this study provide evidence that miR-34a may offer a new approach for the treatment of diabetes.
miR-96 promotes invasion and metastasis by targeting GPC3 in non-small cell lung cancer cells
Fei, Xiubin; Zhang, Jingang; Zhao, Yunwei; Sun, Meijia; Zhao, Haifeng; Li, Shuang
2018-01-01
Lung cancer is a major cause of death worldwide, and non-small cell lung cancer (NSCLC) is the most common type of lung cancer. The aim of this study was to investigate whether miR-96 mediated the invasion and metastasis of NSCLC by targeting glypican-3 (GPC3). Reverse transcription-quantitative PCR (RT-qPCR) was employed to detect the level of miR-96 and GPC3 mRNA. We applied western blot analysis to measure the protein expression level of GPC3 gene. The luciferase reporter assay was employed to confirm that GPC3 was a target gene of miR-96. The Transwell assay was used to detect migration and invasion. The results revealed that miR-96 was upregulated in NSCLC tissues and lung cancer cells (A549 and H460) compared with corresponding paracancerous tissues and normal epidermic MRC-5 cells. Overexpression of miR-96 promoted invasion and migration in A549 cells. GPC3 was a direct target of miR-96 and regulated by miR-96. GPC3 could reverse partial fuction of miR-96 on proliferation. In conclusion, miR-96 was able to promote the migration and invasion of lung cancer cells by targeting GPC3 gene. The newly identified miR-96/GPC3 axis may provide a therapeutic method for the treatment of NSCLC. PMID:29805640
Liu, Hongwei; Liu, Zhixiong; Jiang, Bing; Huo, Lei; Liu, Jinfang; Lu, Jingchen
2015-06-01
Although aggressive therapeutic regimen has been applied in the treatment of Glioblastoma (GBM), the prognosis of patients with GBM remains poor. Preclinical studies have demonstrated the efficacy of Suntinib in GBM both in vitro and in vivo. In this study, we showed that the cytotoxicity was enhanced by transfection with miR-145 mimic. In addition, we suggested that the enhanced cytotoxicity of Sunitinib by miR-145 mimic was mediated by inhibition of both P-gp and Bcrp.
Gu, Qiaoyan; Zhang, Jun; Hu, Haifeng; Tan, Yu-e; Shi, Shengmei; Nian, Yuanyuan
2015-01-01
The dysregulation of miR-137 plays vital roles in the oncogenesis and progression of various types of cancer, but its role in prognosis of gastric cancer patients remains unknown. This study was designed to investigate the expression and prognostic significance of miR-137 in gastric cancer patients after radical gastrectomy. Quantitative real-time PCR (qRT-PCR) was performed to evaluate the expression of miR-137 in human gastric cancer cell lines and tissues in patients with gastric adenocarcinoma. Results were assessed for association with clinical factors and overall survival by using Kaplan-Meier analysis. Prognostic values of miR-137 expression and clinical outcomes were evaluated by Cox regression analysis. The results exhibited that the expression level of miR-137 was decreased in human gastric cancer cell lines and tissues, and down-regulated expression of miR-137 was associated with tumor cell differentiation, N stage, and TNM stage. Decreased miR-137 expression in gastric cancer tissues was positively correlated with poor overall survival of gastric cancer patients. Further multivariate Cox regression analysis suggested that miR-137 expression was an independent prognostic indicator for gastric cancer except for TNM stage. Applying the prognostic value of miR-137 expression to TNM stage III group showed a better risk stratification for overall survival. In conclusion, the results reinforced the critical role for the down-regulated miR-137 expression in gastric cancer and suggested that miR-137 expression could be a prognostic indicator for this disease. In addition, these patients with TNM stage III gastric cancer and low miR-137 expression might need more aggressive postoperative treatment and closer follow-up. PMID:26545111
Adams, Alex T.; Kennedy, Nicholas A.; Hansen, Richard; Ventham, Nicholas T.; O'Leary, Kate R.; Drummond, Hazel E.; Noble, Colin L.; El-Omar, Emad; Russell, Richard K.; Wilson, David C.; Nimmo, Elaine R.; Hold, Georgina L.
2014-01-01
Background: As a result of technological and analytical advances, genome-wide characterization of key epigenetic alterations is now feasible in complex diseases. We hypothesized that this may provide important insights into gene-environmental interactions in Crohn's disease (CD) and is especially pertinent to early onset disease. Methods: The Illumina 450K platform was applied to assess epigenome-wide methylation profiles in circulating leukocyte DNA in discovery and replication pediatric CD cohorts and controls. Data were corrected for differential leukocyte proportions. Targeted replication was performed in adults using pyrosequencing. Methylation changes were correlated with gene expression in blood and intestinal mucosa. Results: We identified 65 individual CpG sites with methylation alterations achieving epigenome-wide significance after Bonferroni correction (P < 1.1 × 10−7), and 19 differently methylated regions displaying unidirectional methylation change. There was a highly significant enrichment of methylation changes around GWAS single nucleotide polymorphisms (P = 3.7 × 10−7), notably the HLA region and MIR21. Two-locus discriminant analysis in the discovery cohort predicted disease in the pediatric replication cohort with high accuracy (area under the curve, 0.98). The findings strongly implicate the transcriptional start site of MIR21 as a region of extended epigenetic alteration, containing the most significant individual probes (P = 1.97 × 10−15) within a GWAS risk locus. In extension studies, we confirmed hypomethylation of MIR21 in adults (P = 6.6 × 10−5, n = 172) and show increased mRNA expression in leukocytes (P < 0.005, n = 66) and in the inflamed intestine (P = 1.4 × 10−6, n = 99). Conclusions: We demonstrate highly significant and replicable differences in DNA methylation in CD, defining the disease-associated epigenome. The data strongly implicate known GWAS loci, with compelling evidence implicating MIR21 and the HLA region. PMID:25144570
Role of miR-383 and miR-146b in different propensities to obesity in male mice.
Xia, Shu-Fang; Duan, Xiao-Mei; Cheng, Xiang-Rong; Chen, Li-Mei; Kang, Yan-Jun; Wang, Peng; Tang, Xue; Shi, Yong-Hui; Le, Guo-Wei
2017-08-01
The study was designed to investigate the possible mechanisms of hepatic microRNAs (miRs) in regulating local thyroid hormone (TH) action and ultimately different propensities to high-fat diet (HFD)-induced obesity. When obesity-prone (OP) and obesity-resistant (OR) mice were fed HFD for 7 weeks, OP mice showed apparent hepatic steatosis, with significantly higher body weight and lower hepatic TH receptor b (TRb) expression and type 1 deiodinase (DIO1) activity than OR mice. Next-generation sequencing technology revealed that 13 miRs in liver were dysregulated between the two phenotypes, of which 8 miRs were predicted to target on Dio1 or TRb When mice were fed for 17 weeks, OR mice had mild hepatic steatosis and increased Dio1 and TRb expression than OP mice, with downregulation of T3 target genes (including Srebp1c , Acc1 , Scd1 and Fasn ) and upregulation of Cpt1α , Atp5c1 , Cox7c and Cyp7a1 A stem-loop qRT-PCR analysis confirmed that the levels of miR-383, miR-34a and miR-146b were inversely correlated with those of DIO1 or TRb. Down-regulated expression of miR-383 or miR-146b by miR-383 inhibitor (anti-miR-383) or miR-146b inhibitor (anti-miR-146b) in free fatty acid-treated primary mouse hepatocytes led to increased DIO1 and TRb expressions, respectively, and subsequently decreased cellular lipid accumulation, while miR-34a inhibitor (anti-miR-34a) transfection had on effects on TRb expression. Luciferase reporter assay illustrated that miR-146b could directly target TRb 3'untranslated region (3'UTR). These findings suggested that miR-383 and miR-146b might play critical roles in different propensities to diet-induced obesity via targeting on Dio1 and TRb , respectively. © 2017 Society for Endocrinology.
Xin, Hongqi; Li, Yi; Liu, Zhongwu; Wang, Xinli; Shang, Xia; Cui, Yisheng; Zhang, Zheng Gang; Chopp, Michael
2013-01-01
To test, in vivo, the hypothesis that exosomes from multipotent mesenchymal stromal cells (MSCs) mediate microRNA 133b (miR-133b) transfer which promotes neurological recovery from stroke, we employed knock-in and knock-down technologies to up-regulate or down-regulate the miR-133b level in MSCs (miR-133b+MSCs or miR-133b−MSCs) and their corresponding exosomes, respectively. Rats were subjected to middle cerebral artery occlusion (MCAo) and were treated with naïve MSCs, miR-133b+MSCs, or miR-133b−MSC at one day after MCAo. Compared with controls, rats receiving naïve MSC treatment significantly improved functional recovery, and exhibited increased axonal plasticity and neurite remodeling in the ischemic boundary zone (IBZ) at day 14 after MCAo. The outcomes were significantly enhanced with miR-133b+MSC treatment, and were significantly decreased with miR-133b−MSC treatment, compared to naïve MSC treatment. The miR-133b level in exosomes collected from the cerebral spinal fluid was significantly increased after miR-133b+MSC treatment, and was significantly decreased after miR-133b−MSC treatment at day 14 after MCAo, compared to naïve MSC treatment. Tagging exosomes with green fluorescent protein demonstrated that exosomes-enriched extracellular particles were released from MSCs and transferred to adjacent astrocytes and neurons. The expression of selective targets for miR-133b, connective tissue growth factor and ras homolog gene family member A, were significantly decreased in the IBZ after miR-133b+MSC treatment, while their expression remained at similar elevated levels after miR-133b−MSC treatment, compared to naïve MSC treatment. Collectively, our data suggest that exosomes from MSCs mediate the miR-133b transfer to astrocytes and neurons, which regulate gene expression, subsequently benefit neurite remodeling and functional recovery after stroke. PMID:23630198
Inhibition of Dexamethasone-induced Fatty Liver Development by Reducing miR-17-5p Levels
Du, William W; Liu, Fengqiong; Shan, Sze Wan; Ma, Xindi Cindy; Gupta, Shaan; Jin, Tianru; Spaner, David; Krylov, Sergey N; Zhang, Yaou; Ling, Wenhua; Yang, Burton B
2015-01-01
Steatosis is a pivotal event in the initiation and progression of nonalcoholic fatty liver disease (NAFLD) which can be driven by peroxisome proliferator-activated receptor-α (PPAR-α) dysregulation. Through examining the effect of PPAR-α on fatty liver development, we found that PPAR-α is a target of miR-17-5p. Transgenic mice expressing miR-17 developed fatty liver and produced higher levels of triglyceride and cholesterol but lower levels of PPAR-α. Ectopic expression of miR-17 enhanced cellular steatosis. Gain-of-function and loss-of-function experiments confirmed PPAR-α as a target of miR-17-5p. On the other hand, PPAR-α bound to the promoter of miR-17 and promoted its expression. The feed-back loop between miR-17-5p and PPAR-α played a key role in the induction of steatosis and fatty liver development. Mice with high levels of miR-17-5p were sensitive to Dexamethasone-induced fatty liver formation. Inhibition of miR-17-5p suppressed this process and enhanced PPAR-α expression in mice treated with Dexamethasone. Clofibrate, Ciprofibrate, and WY-14643: three agents used for treatment of metabolic disorders, were found to promote PPAR-α expression while decreasing miR-17-5p levels and inhibiting steatosis. Our studies show that miR-17-5p inhibitor and agents used in metabolic disorders may be applied in combination with Dexamethasone in the treatment of anti-inflammation, immunosuppression, and cancer patients. PMID:25896250
MicroRNA-34a: A Versatile Regulator of Myriads of Targets in Different Cancers.
Farooqi, Ammad Ahmad; Tabassum, Sobia; Ahmad, Aamir
2017-10-02
MicroRNA-34a (miR-34a) is a tumor suppressor that has attracted considerable attention in recent years. It modulates cancer cell invasion, metastasis, and drug resistance, and has also been evaluated as a diagnostic and/or prognostic biomarker. A number of targets of miR-34a have been identified, including some other non-coding RNAs, and it is believed that the modulation of these myriads of targets underlines the versatile role of miR-34a in cancer progression and pathogenesis. Seemingly appealing results from preclinical studies have advocated the testing of miR-34a in clinical trials. However, the results obtained are not very encouraging and there is a need to re-interpret how miR-34a behaves in a context dependent manner in different cancers. In this review, we have attempted to summarize the most recent evidence related to the regulation of different genes and non-coding RNAs by miR-34a and the advances in the field of nanotechnology for the targeted delivery of miR-34a-based therapeutics and mimics. With the emergence of data that contradicts miR-34a's tumor suppressive function, it is important to understand miR-34a's precise functioning, with the aim to establish its role in personalized medicine and to apply this knowledge for the identification of individual patients that are likely to benefit from miR-34a-based therapy.
MicroRNA-34a: A Versatile Regulator of Myriads of Targets in Different Cancers
Farooqi, Ammad Ahmad; Tabassum, Sobia
2017-01-01
MicroRNA-34a (miR-34a) is a tumor suppressor that has attracted considerable attention in recent years. It modulates cancer cell invasion, metastasis, and drug resistance, and has also been evaluated as a diagnostic and/or prognostic biomarker. A number of targets of miR-34a have been identified, including some other non-coding RNAs, and it is believed that the modulation of these myriads of targets underlines the versatile role of miR-34a in cancer progression and pathogenesis. Seemingly appealing results from preclinical studies have advocated the testing of miR-34a in clinical trials. However, the results obtained are not very encouraging and there is a need to re-interpret how miR-34a behaves in a context dependent manner in different cancers. In this review, we have attempted to summarize the most recent evidence related to the regulation of different genes and non-coding RNAs by miR-34a and the advances in the field of nanotechnology for the targeted delivery of miR-34a-based therapeutics and mimics. With the emergence of data that contradicts miR-34a’s tumor suppressive function, it is important to understand miR-34a’s precise functioning, with the aim to establish its role in personalized medicine and to apply this knowledge for the identification of individual patients that are likely to benefit from miR-34a-based therapy. PMID:29036883
MicroRNA-214 Promotes Apoptosis in Canine Hemangiosarcoma by Targeting the COP1-p53 Axis.
Heishima, Kazuki; Mori, Takashi; Sakai, Hiroki; Sugito, Nobuhiko; Murakami, Mami; Yamada, Nami; Akao, Yukihiro; Maruo, Kohji
2015-01-01
MicroRNA-214 regulates both angiogenic function in endothelial cells and apoptosis in various cancers. However, the regulation and function of miR-214 is unclear in canine hemangiosarcoma, which is a spontaneous model of human angiosarcoma. The expression and functional roles of miR-214 in canine hemangiosarcoma were presently explored by performing miRNA TaqMan qRT-PCR and transfecting cells with synthetic microRNA. Here, we report that miR-214 was significantly down-regulated in the cell lines used and in clinical samples of canine hemangiosarcoma. Restoration of miR-214 expression reduced cell growth and induced apoptosis in canine hemangiosarcoma cell lines through transcriptional activation of p53-regulated genes although miR-214 had a slight effect of growth inhibition on normal endothelial cells. We identified COP1, which is a critical negative regulator of p53, as a novel direct target of miR-214. COP1 was overexpressed and the specific COP1 knockdown induced apoptosis through transcriptional activation of p53-regulated genes as well as did miR-214-transfection in HSA cell lines. Furthermore, p53 knockdown abolished the miR-214-COP1-mediated apoptosis; thus, miR-214 and COP1 regulated apoptosis through controlling p53 in HSA. In conclusion, miR-214 functioned as a tumor suppressor in canine hemangiosarcoma by inducing apoptosis through recovering the function of p53. miR-214 down-regulation and COP1 overexpression is likely to contribute to tumorigenesis of HSA. Therefore, targeting miR-214-COP1-p53 axis would possibly be a novel effective strategy for treatment of canine hemangiosarcoma and capable of being applied to the development of novel therapeutics for human angiosarcoma.
Peng, F; Jiang, J; Yu, Y; Tian, R; Guo, X; Li, X; Shen, M; Xu, M; Zhu, F; Shi, C; Hu, J; Wang, M; Qin, R
2013-01-01
Background: The multidrug resistance and distant metastasis of cholangiocarcinoma result in high postoperative recurrence and low long-term survival rates. It has been demonstrated that the ectopic expression of miR-200 suppresses the multidrug resistance and metastasis of cancer. However, the expression and function of miR-200 in cholangiocarcinoma has not yet been described. Methods: In this study, we identified dysregulated microRNAs (miRNAs, miR) in cholangiocarcinoma tissue by microarray analysis, and subsequent real-time PCR and northern blot analyses validated the expression of candidate miR. We performed functional analyses and investigated the relationship between miR-200b/c expression and the properties of cholangiocarcinoma cells. A dual luciferase assay was applied to examine the effect of miRNAs on the 3′-UTR of target genes, and we demonstrated the function of the target gene by siRNA transfection identifying the downstream pathway via western blotting. Results: We found significantly downregulated expression of four miR-200 family members (miR-200a/b/c/429) and then confirmed that ectopic miR-200b/200c inhibits the migration and invasion of cholangiocarcinoma cells both in vitro and in vivo. We found that miR-200b/c influenced the tumourigenesis of cholangiocarcinoma cells including their tumour-initiating capacity, sphere formation, and drug resistance. We further found that miR-200b/c regulated migration and invasion capacities by directly targeting rho-kinase 2 and regulated tumorigenic properties by directly targeting SUZ12 (a subunit of a polycomb repressor complex). Conclusion: Our study shows that miR-200b/c has a critical role in the regulation of the tumorigenic and metastatic capacity of cholangiocarcinoma and reveals the probable underlying mechanisms. PMID:24169343
Chen, Zhuo; Liu, Hui-Li
2017-04-01
Nicotine hinders the regenerative potentials of human periodontal ligament-derived stem cells (PDLSCs) and delays the healing process of periodontal diseases, but the underlying mechanism remains unclear. miR-1305 upregulation and its potential target RUNX2 downregulation exist in the PDLSCs exposed to nicotine. In this study, we aimed to investigate whether nicotine inhibits PDLSC proliferation, migration, and osteogenic differentiation by increasing miR-1305 level and decreasing RUNX2 level. Quantitative real-time PCR (qRT-PCR) and Western blot assays were performed to detect the expression levels of miR-1305 and RUNX2 in the PDLSCs exposed to nicotine, respectively. PDLSCs with miR-1305 overexpression, low expression, or RUNX2 overexpression were constructed by lipofectin transfection. MTT, migration, and Western blot assays were applied to assess the effect of miR-1305 on PDLSC proliferation, migration, and osteogenic differentiation, respectively. Target prediction and luciferase reporter assays were performed to investigate the targets of miR-1305. Nicotine promoted miR-1305 expression and inhibited RUNX2 expression in PDLSCs. Cell proliferation, migration, and differentiation detection showed that nicotine suppressed proliferation, migration, and osteogenic differentiation of PDLSCs, and restoration of miR-1305 relieved the inhibitory effect of nicotine on PDLSCs. Moreover, we identified and validated that RUNX2 was a direct target of miR-1305, and upregulation of RUNX2 had similar effects with the downregulation of miR-1305 on relieving the inhibitory effect of nicotine on PDLSCs. Nicotine suppresses proliferation, migration, and osteogenic differentiation of PDLSCs, and restoration of miR-1305 relieves the inhibitory effect of nicotine on PDLSCs depending on its target RUNX2. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Yang, Daniel S
2014-01-01
The objectives of this study are (1) to develop a novel "moderation" model of drug chemosensitivity and (2) to investigate if miRNA expression moderates the relationship between gene expression and drug chemosensitivity, specifically for HSP90 inhibitors applied to human cancer cell lines. A moderation model integrating the interaction between miRNA and gene expressions was developed to examine if miRNA expression affects the strength of the relationship between gene expression and chemosensitivity. Comprehensive datasets on miRNA expressions, gene expressions, and drug chemosensitivities were obtained from National Cancer Institute's NCI-60 cell lines including nine different cancer types. A workflow including steps of selecting genes, miRNAs, and compounds, correlating gene expression with chemosensitivity, and performing multivariate analysis was utilized to test the proposed model. The proposed moderation model identified 12 significantly-moderating miRNAs: miR-15b*, miR-16-2*, miR-9, miR-126*, miR-129*, miR-138, miR-519e*, miR-624*, miR-26b, miR-30e*, miR-32, and miR-196a, as well as two genes ERCC2 and SF3B1 which affect chemosensitivities of Tanespimycin and Alvespimycin - both HSP90 inhibitors. A bootstrap resampling of 2,500 times validates the significance of all 12 identified miRNAs. The results confirm that certain miRNA and gene expressions interact to produce an effect on drug response. The lack of correlation between miRNA and gene expression themselves suggests that miRNA transmits its effect through translation inhibition/control rather than mRNA degradation. The results suggest that miRNAs could serve not only as prognostic biomarkers for cancer treatment outcome but also as interventional agents to modulate desired chemosensitivity.
Association of plasma MiR-17-92 with dyslipidemia in patients with coronary artery disease.
Liu, Fengqiong; Li, Rui; Zhang, Yuan; Qiu, Jian; Ling, Wenhua
2014-11-01
Circulating microRNAs (miRNAs) have already been proposed as sensitive and informative biomarkers for the diagnosis of multiple diseases. We investigated the miRNA expression patterns in plasma samples of patients with coronary artery disease (CAD) and explored the potential functions of certain miRNAs.Deep sequencing analysis was performed to determine the miRNA expression profiles using RNA samples isolated from 20 healthy subjects and 20 patients with CAD. Quantitative reverse transcription polymerase chain reaction was applied to confirm the differential expression of the miR-17-92 cluster in 81 patients and 50 healthy volunteers. The association between the miR-17-92 cluster and clinical characteristics of patients with CAD were analyzed using SPSS16.0, SPSS Inc, Chicago, IL.Hundreds of miRNAs were detected and most members from the miR-17-92 cluster and its paralogs, including miR-18a, miR-92a, miR-106b, and miR-17, exhibited differential expression in the plasma of patients with CAD compared with controls. Moreover, these miRNAs were found widely related to the blood lipids in the patients with CAD, as miR-17 was positively correlated with total cholesterol, low-density lipoprotein cholesterol, and apolipoprotein B, while miR-92a was found positively related to high-density lipoprotein cholesterol (HDL-C) but negatively related to lipoprotein-a. Additionally, miR-106b was positively related to HDL-C and apolipoprotein A-I.Taken together with existing evidence from mechanistic studies, the current results of our study support a relationship between the miR-17-92 family and lipid metabolism, which merits further study.
Differential Expression of MicroRNAs in Breast Cancers from Four Different Ethnicities.
Pollard, Jennifer; Burns, Phil A; Hughes, Tom A; Ho-Yen, Colan; Jones, J Louise; Mukherjee, Geetashree; Omoniyi-Esan, Ganiat O; Titloye, Nicholas Akinwale; Speirs, Valerie; Shaaban, Abeer M
2018-05-23
Breast cancer outcomes vary across different ethnic groups. MicroRNAs (miRs) are small non-coding RNA molecules that regulate gene expression across a range of pathologies, including breast cancer. The aim of this study was to evaluate the presence and expression of miRs in breast cancer samples from different ethnic groups. Breast cancer tissue from 4 ethnic groups, i.e., British Caucasian, British Black, Nigerian, and Indian, were identified and matched for patients' age, tumour grade/type, and 10 × 10 µm sections taken. Tumour areas were macrodissected, total RNA was extracted, and cDNA was synthesised. cDNA was applied to human miScript PCR arrays allowing the quantification of 84 of the most abundantly expressed/best-characterised miRs. Differential expression of 9 miRs was seen across the 4 groups. Significantly higher levels of miR-140-5p, miR-194 and miR-423-5p (the last of which harbours the single-nucleotide polymorphism rs6505162) were seen in the breast tumours of Nigerian patients when compared with other ethnic groups (all p < 0.0001). miR-101 was overexpressed in breast cancers in the Indian patients. An in silico analysis of miR-423-5p showed that the AC genotype is mainly associated with Europeans (57%), while Asians display mostly CC (approx. 60%), and Africans mainly AA (approx. 60%). This study shows divergence in miR expression in breast cancers from different ethnic groups, and suggests that specific genetic variants in miR genes may affect breast cancer risk in these groups. Predicted targets of these miRs may uncover useful biomarkers that could have clinical value in breast cancers in different ethnic groups. © 2018 S. Karger AG, Basel.
MiR-21/PTEN Axis Promotes Skin Wound Healing by Dendritic Cells Enhancement.
Han, Zhaofeng; Chen, Ya; Zhang, Yile; Wei, Aizhou; Zhou, Jian; Li, Qian; Guo, Lili
2017-10-01
A number of miRNAs associated with wound repair have been identified and characterized, but the mechanism has not been fully clarified. MiR-21 is one of wound-related lncRNAs, and the study aimed to explore the functional involvement of miR-21 and its concrete mechanism in wound healing. In this study, the rat model of skin wounds was established. The expression of miR-21, PTEN and related molecules of wound tissues or cells was determined by quantitative real-time PCR and Western blot, respectively. The regulatory role of miR-21 on PTEN was examined by luciferase reporter gene assay. Flow cytometry assay was applied to measure cell number changes. MiR-21 was upregulated at 6, 24, 48, 72 h after model establishment, and the increase reached a maximum at 24 h in wound tissues. MMP-9 expression presented the same tread as miR-21 and was significantly enhanced within 6 h of wound formation, and then remained to be increased to the maximum at 24 h. The increase of miR-21 was accompanied by the increase of cell total number and DCs ratio in wound fluids. MiR-21 overexpression significantly improved the healing of skin wounds and increased the ratio of DCs in rats. The results of using FL confirmed that miR-21 overexpression obviously promoted DCs differentiation. Additionally, miR-21 could activate AKT/PI3K signaling pathway via inhibition of PTEN. MiR-21 contributes to wound healing via inhibition of PTEN that activated AKT/PI3K signaling pathway to increase DCs. J. Cell. Biochem. 118: 3511-3519, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Whole-genome expression analysis of mammalian-wide interspersed repeat elements in human cell lines.
Carnevali, Davide; Conti, Anastasia; Pellegrini, Matteo; Dieci, Giorgio
2017-02-01
With more than 500,000 copies, mammalian-wide interspersed repeats (MIRs), a sub-group of SINEs, represent ∼2.5% of the human genome and one of the most numerous family of potential targets for the RNA polymerase (Pol) III transcription machinery. Since MIR elements ceased to amplify ∼130 myr ago, previous studies primarily focused on their genomic impact, while the issue of their expression has not been extensively addressed. We applied a dedicated bioinformatic pipeline to ENCODE RNA-Seq datasets of seven human cell lines and, for the first time, we were able to define the Pol III-driven MIR transcriptome at single-locus resolution. While the majority of Pol III-transcribed MIR elements are cell-specific, we discovered a small set of ubiquitously transcribed MIRs mapping within Pol II-transcribed genes in antisense orientation that could influence the expression of the overlapping gene. We also identified novel Pol III-transcribed ncRNAs, deriving from transcription of annotated MIR fragments flanked by unique MIR-unrelated sequences, and confirmed the role of Pol III-specific internal promoter elements in MIR transcription. Besides demonstrating widespread transcription at these retrotranspositionally inactive elements in human cells, the ability to profile MIR expression at single-locus resolution will facilitate their study in different cell types and states including pathological alterations. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Inage, Terunaga; Nakajima, Takahiro; Itoga, Sakae; Ishige, Takayuki; Fujiwara, Taiki; Sakairi, Yuichi; Wada, Hironobu; Suzuki, Hidemi; Iwata, Takekazu; Chiyo, Masako; Yoshida, Shigetoshi; Matsushita, Kazuyuki; Yasufuku, Kazuhiro; Yoshino, Ichiro
2018-06-13
The limited negative predictive value of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has often been discussed. The aim of this study was to identify a highly sensitive molecular biomarker for lymph node staging by EBUS-TBNA. Five microRNAs (miRNAs) (miR-200a, miR-200b, miR-200c, miR-141, and let-7e) were selected as biomarker candidates for the detection of nodal metastasis in a miRNA expression analysis. After having established a cutoff level of expression for each marker to differentiate malignant from benign lymph nodes among surgically dissected lymph nodes, the cutoff level was applied to snap-frozen EBUS-TBNA samples. Archived formalin-fixed paraffin- embedded (FFPE) samples rebiopsied by EBUS-TBNA after induction chemoradiotherapy were also analyzed. The expression of all candidate miRNAs was significantly higher in metastatic lymph nodes than in benign ones (p < 0.05) among the surgical samples. miR-200c showed the highest diagnostic yield, with a sensitivity of 95.4% and a specificity of 100%. When the cutoff value for miR-200c was applied to the snap-frozen EBUS-TBNA samples, the sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 97.4, 81.8, 95.0, 90.0, and 94.0%, respectively. For restaging FFPE EBUS- TBNA samples, the sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 100, 60.0, 80.0, 100, and 84.6%, respectively. Among the restaged samples, 4 malignant lymph nodes were false negative by EBUS-TBNA, but they were accurately identified by miR-200c. miR-200c can be used as a highly sensitive molecular staging biomarker that will enhance nodal staging of lung cancer. © 2018 S. Karger AG, Basel.
miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2.
Ran, M; Li, Z; Cao, R; Weng, B; Peng, F; He, C; Chen, B
2018-05-14
A large number of microRNAs (miRNAs) have been detected from porcine testicular tissues thanks to the development of high-throughput sequencing technology. However, the regulatory roles of most identified miRNAs in swine testicular development or spermatogenesis are poorly understood. In our previous study, ULK2 (uncoordinated-51-like kinase 2) was predicted as a target gene of miR-26a. In this study, we aimed to investigate the role of miR-26a in swine Sertoli cell autophagy. The relative expression of miR-26a and ULK2 levels has a significant negative correlation (R 2 = .5964, p ≤ .01) in nine developmental stages of swine testicular tissue. Dual-luciferase reporter assay results show that miR-26a directly targets the 3'UTR of the ULK2 gene (position 618-624). In addition, both the mRNA and protein expression of ULK2 were downregulated by miR-26a in swine Sertoli cells. These results indicate that miR-26a targets the ULK2 gene and downregulates its expression in swine Sertoli cells. Based on the expression of marker genes (LC3, p62 and Beclin-1), overexpression of miR-26a or knock-down of ULK2 inhibits swine Sertoli cell autophagy. Taken together, these findings demonstrate that miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2. © 2018 Blackwell Verlag GmbH.
Gottmann, Pascal; Ouni, Meriem; Saussenthaler, Sophie; Roos, Julian; Stirm, Laura; Jähnert, Markus; Kamitz, Anne; Hallahan, Nicole; Jonas, Wenke; Fritsche, Andreas; Häring, Hans-Ulrich; Staiger, Harald; Blüher, Matthias; Fischer-Posovszky, Pamela; Vogel, Heike; Schürmann, Annette
2018-05-01
Obesity and type 2 diabetes (T2D) arise from the interplay between genetic, epigenetic, and environmental factors. The aim of this study was to combine bioinformatics and functional studies to identify miRNAs that contribute to obesity and T2D. A computational framework (miR-QTL-Scan) was applied by combining QTL, miRNA prediction, and transcriptomics in order to enhance the power for the discovery of miRNAs as regulative elements. Expression of several miRNAs was analyzed in human adipose tissue and blood cells and miR-31 was manipulated in a human fat cell line. In 17 partially overlapping QTL for obesity and T2D 170 miRNAs were identified. Four miRNAs (miR-15b, miR-30b, miR-31, miR-744) were recognized in gWAT (gonadal white adipose tissue) and six (miR-491, miR-455, miR-423-5p, miR-132-3p, miR-365-3p, miR-30b) in BAT (brown adipose tissue). To provide direct functional evidence for the achievement of the miR-QTL-Scan, miR-31 located in the obesity QTL Nob6 was experimentally analyzed. Its expression was higher in gWAT of obese and diabetic mice and humans than of lean controls. Accordingly, 10 potential target genes involved in insulin signaling and adipogenesis were suppressed. Manipulation of miR-31 in human SGBS adipocytes affected the expression of GLUT4, PPARγ, IRS1, and ACACA. In human peripheral blood mononuclear cells (PBMC) miR-15b levels were correlated to baseline blood glucose concentrations and might be an indicator for diabetes. Thus, miR-QTL-Scan allowed the identification of novel miRNAs relevant for obesity and T2D. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Strassburg, Sandra; Nabar, Nikita; Lampert, Florian; Goerke, Sebastian M; Pfeifer, Dietmar; Finkenzeller, Günter; Stark, Gerhard B; Simunovic, Filip
2017-07-01
Vascularization is essential for bone development, fracture healing, and bone tissue engineering. We have previously described that coculture of primary human osteoblasts (hOBs) and human umbilical vein endothelial cells (HUVECs) improves differentiation of both cell types. Investigating the role of microRNAs (miRNAs) in this system, we found that miR-126 is highly upregulated in hOBs following coculturing with HUVECs. In this study we performed miR-126 gain-of-function and loss-of-function experiments in hOBs followed by microarray analysis in order to identify targets of miR-126. The transcript cluster IDs were sieved by applying cut-off criteria and by selecting transcripts which were upregulated following miR-126 downregulation and vice versa. The calmodulin regulated spectrin associated protein 1 (CAMSAP1) mRNA was confirmed to be differentially regulated by miR-126. Using the luciferase reporter assay it was demonstrated that CAMSAP1 is directly targeted by miR-126. In this study, we show that miR-126 and CAMSAP1 directly interact in hOBs. This finding has potential implications for tissue engineering applications. J. Cell. Biochem. 118: 1756-1763, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Transcriptome profiling reveals miR-9-3p as a novel tumor suppressor in gastric cancer.
Meng, Qingshun; Xiang, Longquan; Fu, Jingwei; Chu, Xianqun; Wang, Chunlin; Yan, Bingzheng
2017-06-06
It has been well established that microRNAs (miRNAs) play important roles in biological processes. To comprehensively measure the altered miRNA expression, we presented the miRNA expression profile of gastric cancer using microarray. We identified 33 miRNAs that were significantly differentially regulated in gastric specimens compared to adjacent normal tissues, among which miR-9-3p expression are significantly down-regulated in gastric cancers. Next, a cohort of 100 gastric cancer tissues and matched normal tissues were enrolled. Kaplan-Meier and multivariate Cox survival analyses were applied to evaluate the prognostic value of miR-9-3p expression, and the result showed that patients with lower miR-9-3p expression level have significantly poorer overall survival. The expression level of miR-9-3p has been proved to be an independent prognostic factor for 5-year overall survival. Furthermore, the result indicated that over-expression of miR-9-3p can inhibit gastric cancer cell invasion. Taken together, our results suggested that miR-9-3p plays important role in tumor invasion, and these findings implicated the potential effects of miR-9-3p on prognosis of gastric cancer.
Utkin, V F; Lukjashchenko, V I; Borisov, V V; Suvorov, V V; Tsymbalyuk, M M
2003-07-01
This article presents main scientific and practical results obtained in course of scientific and applied research and experiments on Mir space station. Based on Mir experience, processes of research program formation for the Russian Segment of the ISS are briefly described. The major trends of activities planned in the frames of these programs as well as preliminary results of increment research programs implementation in the ISS' first missions are also presented. c2003 Elsevier Science Ltd. All rights reserved.
Deng, Shengqiong; Zhao, Qian; Zhen, Lixiao; Zhang, Chuyi; Liu, Cuicui; Wang, Guangxue; Zhang, Lin; Bao, Luer; Lu, Ying; Meng, Lingyu; Lü, Jinhui; Yu, Ping; Lin, Xin; Zhang, Yuzhen; Chen, Yi-Han; Fan, Huimin; Cho, William C.; Liu, Zhongmin; Yu, Zuoren
2017-01-01
Adult heart has limited potential for regeneration after pathological injury due to the limited cell proliferation of cardiomyocytes and the quiescent status of progenitor cells. As such, induction of cell-cycle reentry of cardiomyocytes is one of the key strategies for regeneration of damaged heart. In this study, a subset of miRNAs including miR-708 were identified to be much more abundant in the embryonic and neonatal cardiomyocytes than that in adult rodents. Overexpression of miR-708 promoted cellular proliferation of H9C2 cells or primary cardiomyocytes from neonatal rats or mice in vitro. Lipid nanoparticle delivery of miR-708 promoted myocardial regeneration and heart function recovery in vivo. In addition, miR-708 protected cardiomyocytes against stress-induced apoptosis under hypoxia or isoproterenol treatments. miR-708 inhibited the expression of MAPK14, which has been demonstrated arresting the cell cycle in cardiomyocytes. The cell proliferation-promoting function of miR-708 was dependent at least partly on the expression of MAPK14. These findings strengthen the potential of applying miRNAs to reconstitute lost cardiomyocytes in injured hearts, and may provide a novel miRNA candidate for promoting heart regeneration. PMID:28638481
miR-122 negatively correlates with liver fibrosis as detected by histology and FibroScan
Halász, Tünde; Horváth, Gábor; Pár, Gabriella; Werling, Klára; Kiss, András; Schaff, Zsuzsa; Lendvai, Gábor
2015-01-01
AIM: To investigate whether expression of selected miRNAs obtained from fibrotic liver biopsies correlate with fibrosis stage. METHODS: Altogether, 52 patients were enrolled in the study representing various etiologic backgrounds of fibrosis: 24 cases with chronic hepatitis infections (types B, C), 19 with autoimmune liver diseases (autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, overlapping syndrome cases), and 9 of mixed etiology (alcoholic and nonalcoholic steatosis, cryptogenic cases). Severity of fibrosis was determined by both histologic staging using the METAVIR scoring system and noninvasive transient elastography. Following RNA isolation, expression levels of miR-21, miR-122, miR-214, miR-221, miR-222, and miR-224 were determined using TaqMan MicroRNA Assays applying miR-140 as the reference. Selection of miRNAs was based on their characteristic up- or downregulation observed in hepatocellular carcinoma. Relative expression of miRNAs was correlated with fibrosis stage and liver stiffness (LS) value measured by transient elastography, as well as with serum alanine aminotransferase (ALT) level. RESULTS: The expression of individual miRNAs showed deregulated patterns in stages F1-F4 as compared with stage F0, but only the reduced level of miR-122 in stage F4 was statistically significant (P < 0.04). When analyzing miRNA expression in relation to fibrosis, levels of miR-122 and miR-221 showed negative correlations with fibrosis stage, and miR-122 was found to correlate negatively and miR-224 positively with LS values (all P < 0.05). ALT levels displayed a positive correlation with miR-21 (P < 0.04). Negative correlations were observed in the fibrosis samples of mixed etiology between miR-122 and fibrosis stage and LS values (P < 0.05), and in the samples of chronic viral hepatitis, between miR-221 and fibrosis stage (P < 0.01), whereas miR-21 showed positive correlation with ALT values in the samples of autoimmune liver diseases (P < 0.03). The results also revealed a strong correlation between fibrosis stage and LS values (P < 0.01) when etiology of fibrosis was not taken into account. CONCLUSION: Reduced expression of miR-122 in advanced fibrosis and its correlation with fibrosis stage and LS values seem to be characteristic of hepatic fibrosis of various etiologies. PMID:26167081
miR-122 negatively correlates with liver fibrosis as detected by histology and FibroScan.
Halász, Tünde; Horváth, Gábor; Pár, Gabriella; Werling, Klára; Kiss, András; Schaff, Zsuzsa; Lendvai, Gábor
2015-07-07
To investigate whether expression of selected miRNAs obtained from fibrotic liver biopsies correlate with fibrosis stage. Altogether, 52 patients were enrolled in the study representing various etiologic backgrounds of fibrosis: 24 cases with chronic hepatitis infections (types B, C), 19 with autoimmune liver diseases (autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, overlapping syndrome cases), and 9 of mixed etiology (alcoholic and nonalcoholic steatosis, cryptogenic cases). Severity of fibrosis was determined by both histologic staging using the METAVIR scoring system and noninvasive transient elastography. Following RNA isolation, expression levels of miR-21, miR-122, miR-214, miR-221, miR-222, and miR-224 were determined using TaqMan MicroRNA Assays applying miR-140 as the reference. Selection of miRNAs was based on their characteristic up- or downregulation observed in hepatocellular carcinoma. Relative expression of miRNAs was correlated with fibrosis stage and liver stiffness (LS) value measured by transient elastography, as well as with serum alanine aminotransferase (ALT) level. The expression of individual miRNAs showed deregulated patterns in stages F1-F4 as compared with stage F0, but only the reduced level of miR-122 in stage F4 was statistically significant (P < 0.04). When analyzing miRNA expression in relation to fibrosis, levels of miR-122 and miR-221 showed negative correlations with fibrosis stage, and miR-122 was found to correlate negatively and miR-224 positively with LS values (all P < 0.05). ALT levels displayed a positive correlation with miR-21 (P < 0.04). Negative correlations were observed in the fibrosis samples of mixed etiology between miR-122 and fibrosis stage and LS values (P < 0.05), and in the samples of chronic viral hepatitis, between miR-221 and fibrosis stage (P < 0.01), whereas miR-21 showed positive correlation with ALT values in the samples of autoimmune liver diseases (P < 0.03). The results also revealed a strong correlation between fibrosis stage and LS values (P < 0.01) when etiology of fibrosis was not taken into account. Reduced expression of miR-122 in advanced fibrosis and its correlation with fibrosis stage and LS values seem to be characteristic of hepatic fibrosis of various etiologies.
Götte, M; Mohr, C; Koo, C-Y; Stock, C; Vaske, A-K; Viola, M; Ibrahim, S A; Peddibhotla, S; Teng, Y H-F; Low, J-Y; Ebnet, K; Kiesel, L; Yip, G W
2010-12-16
Micro RNAs are small non-coding RNAs, which regulate fundamental cellular and developmental processes at the transcriptional and translational level. In breast cancer, miR-145 expression is downregulated compared with healthy control tissue. As several predicted targets of miR-145 potentially regulate cell motility, we aimed at investigating a potential role for miR-145 in breast cancer cell motility and invasiveness. Assisted by Affymetrix array technology, we demonstrate that overexpression of miR-145 in MDA-MB-231, MCF-7, MDA-MB-468 and SK-BR-3 breast cancer cells and in Ishikawa endometrial carcinoma cells leads to a downregulation of the cell-cell adhesion protein JAM-A and of the actin bundling protein fascin. Moreover, podocalyxin and Serpin E1 mRNA levels were downregulated, and gamma-actin, transgelin and MYL9 were upregulated upon miR-145 overexpression. These miR-145-dependent expression changes drastically decreased cancer cell motility, as revealed by time-lapse video microscopy, scratch wound closure assays and matrigel invasion assays. Immunofluorescence microscopy demonstrated restructuring of the actin cytoskeleton and a change in cell morphology by miR-145 overexpression, resulting in a more cortical actin distribution, and reduced actin stress fiber and filopodia formation. Nuclear rotation was observed in 10% of the pre-miR-145 transfected MDA-MB-231 cells, accompanied by a reduction of perinuclear actin. Luciferase activation assays confirmed direct miR-145-dependent regulation of the 3'UTR of JAM-A, whereas siRNA-mediated knockdown of JAM-A expression resulted in decreased motility and invasiveness of MDA-MB-231 and MCF-7 breast cancer cells. Our data identify JAM-A and fascin as novel targets of miR-145, firmly establishing a role for miR-145 in modulating breast cancer cell motility. Our data provide a rationale for future miR-145-targeted approaches of antimetastatic cancer therapy.
2011-01-01
Introduction MicroRNAs (miRNAs) are a class of small non-coding RNAs (20 to 24 nucleotides) that post-transcriptionally modulate gene expression. A key oncomir in carcinogenesis is miR-21, which is consistently up-regulated in a wide range of cancers. However, few functional studies are available for miR-21, and few targets have been identified. In this study, we explored the role of miR-21 in human breast cancer cells and tissues, and searched for miR-21 targets. Methods We used in vitro and in vivo assays to explore the role of miR-21 in the malignant progression of human breast cancer, using miR-21 knockdown. Using LNA silencing combined to microarray technology and target prediction, we screened for potential targets of miR-21 and validated direct targets by using luciferase reporter assay and Western blot. Two candidate target genes (EIF4A2 and ANKRD46) were selected for analysis of correlation with clinicopathological characteristics and prognosis using immunohistochemistry on cancer tissue microrrays. Results Anti-miR-21 inhibited growth and migration of MCF-7 and MDA-MB-231 cells in vitro, and tumor growth in nude mice. Knockdown of miR-21 significantly increased the expression of ANKRD46 at both mRNA and protein levels. Luciferase assays using a reporter carrying a putative target site in the 3' untranslated region of ANKRD46 revealed that miR-21 directly targeted ANKRD46. miR-21 and EIF4A2 protein were inversely expressed in breast cancers (rs = -0.283, P = 0.005, Spearman's correlation analysis). Conclusions Knockdown of miR-21 in MCF-7 and MDA-MB-231 cells inhibits in vitro and in vivo growth as well as in vitro migration. ANKRD46 is newly identified as a direct target of miR-21 in BC. These results suggest that inhibitory strategies against miR-21 using peptide nucleic acids (PNAs)-antimiR-21 may provide potential therapeutic applications in breast cancer treatment. PMID:21219636
Yan, Li Xu; Wu, Qi Nian; Zhang, Yan; Li, Yang Yang; Liao, Ding Zhun; Hou, Jing Hui; Fu, Jia; Zeng, Mu Sheng; Yun, Jing Ping; Wu, Qiu Liang; Zeng, Yi Xin; Shao, Jian Yong
2011-01-10
MicroRNAs (miRNAs) are a class of small non-coding RNAs (20 to 24 nucleotides) that post-transcriptionally modulate gene expression. A key oncomir in carcinogenesis is miR-21, which is consistently up-regulated in a wide range of cancers. However, few functional studies are available for miR-21, and few targets have been identified. In this study, we explored the role of miR-21 in human breast cancer cells and tissues, and searched for miR-21 targets. We used in vitro and in vivo assays to explore the role of miR-21 in the malignant progression of human breast cancer, using miR-21 knockdown. Using LNA silencing combined to microarray technology and target prediction, we screened for potential targets of miR-21 and validated direct targets by using luciferase reporter assay and Western blot. Two candidate target genes (EIF4A2 and ANKRD46) were selected for analysis of correlation with clinicopathological characteristics and prognosis using immunohistochemistry on cancer tissue microrrays. Anti-miR-21 inhibited growth and migration of MCF-7 and MDA-MB-231 cells in vitro, and tumor growth in nude mice. Knockdown of miR-21 significantly increased the expression of ANKRD46 at both mRNA and protein levels. Luciferase assays using a reporter carrying a putative target site in the 3' untranslated region of ANKRD46 revealed that miR-21 directly targeted ANKRD46. miR-21 and EIF4A2 protein were inversely expressed in breast cancers (rs = -0.283, P = 0.005, Spearman's correlation analysis). Knockdown of miR-21 in MCF-7 and MDA-MB-231 cells inhibits in vitro and in vivo growth as well as in vitro migration. ANKRD46 is newly identified as a direct target of miR-21 in BC. These results suggest that inhibitory strategies against miR-21 using peptide nucleic acids (PNAs)-antimiR-21 may provide potential therapeutic applications in breast cancer treatment.
Mutant Runx2 regulates amelogenesis and osteogenesis through a miR-185-5p-Dlx2 axis.
Chang, Huaiguang; Wang, Yue; Liu, Haochen; Nan, Xu; Wong, Singwai; Peng, Saihui; Gu, Yajuan; Zhao, Hongshan; Feng, Hailan
2017-12-14
Regulation of microRNAs (miRNA) has been extensively investigated in diseases; however, little is known about the roles of miRNAs in cleidocranial dysplasia (CCD). The aim of the present study was to investigate the potential involvement of miRNAs in CCD. In vitro site-directed mutagenesis was performed to construct three mutant Runx2 expression vectors, which were then transfected into LS8 cells and MC3T3-E1 cells, to determine the impact on amelogenesis and osteogenesis, respectively. miRCURY LNA miRNA microarray identify miR-185-5p as a miRNA target commonly induced by all three Runx2 mutants. Real-time quantitative PCR was applied to determine the expression of miR-185-5p and Dlx2 in samples. Dual-luciferase reporter assays were conducted to confirm Dlx2 as a legitimate target of miR-185-5p. The suppressive effect of miR-185-5p on amelogenesis and osteogenesis of miR-185-5p was evaluated by RT-PCR and western blot examination of Amelx, Enam, Klk4, and Mmp20 gene and protein expression, and by Alizarin Red stain. We found that mutant Runx2 suppressed amelogenesis and osteogenesis. miR-185-5p, induced by Runx2, suppressed amelogenesis and osteogenesis. Furthermore, we identified Dlx2 as direct target of miR-185-5p. Consistently, Dlx2 expression was inversely correlated with miR-185-5p levels. This study highlights the molecular etiology and significance of miR-185-5p in CCD, and suggests that targeting miR-185-5p may represent a new therapeutic strategy in prevention or intervention of CCD.
MicroRNA-155 acts as a tumor suppressor in colorectal cancer by targeting CTHRC1 in vitro.
Liu, Jingtian; Chen, Zongyou; Xiang, Jianbin; Gu, Xiaodong
2018-04-01
Colorectal cancer is one of the most common malignancies. Aberrant expressed microRNAs (miRNAs) have been demonstrated to have strong associations with colorectal cancer by repressing their targets. Therefore, miRNAs are thought to have significant promise in the diagnosis and prognosis of colorectal cancer. Previous studies indicated that miR-155 and collagen triple helix repeat containing 1 (CTHRC1) were both involved in pathogenesis of colorectal cancer, but the underlying mechanisms of miR-155 and CTHRC1 are still unknown. The present study aimed to investigate the biological functions of miR-155 and CTHRC1 in colorectal cancer. Reverse transcription-quantitative polymerase chain reaction was used to examine miR-155 and CTHRC1 expression levels. A dual-luciferase reporter assay was applied to verify the target interaction between miR-155 and CTHRC1. Proliferation, cell cycle, apoptosis, cell migration and invasion were measured using the MTT assay, flow cytometry and Transwell assays, respectively. Results showed that miR-155 expression was decreased, but CTHRC1 expression was increased in colorectal cancer tissue and cell lines. Furthermore, it was demonstrated that miR-155 negatively regulated CTHRC1. Additionally, miR-155 overexpression suppressed cell proliferation, induced cell cycle arrest and promoted cell apoptosis, while an inhibitor of miR-155 facilitated cell proliferation and cell cycle and repressed apoptosis. Transwell experiments indicated that miR-155 inhibited the cell migratory and invasive abilities of HT-29 cells, but miR-155 inhibitor enhanced these abilities of HT-29 cells. These results suggested that miR-155 prevented colorectal cancer progression and metastasis via silencing CTHRC1 in vitro , which provides evidence for miR-155 and CTHRC1 as a novel anti-onco molecular target for the treatment of colorectal cancer in the future.
Limited-angle tomography for analyzer-based phase-contrast X-ray imaging
Majidi, Keivan; Wernick, Miles N; Li, Jun; Muehleman, Carol; Brankov, Jovan G
2014-01-01
Multiple-Image Radiography (MIR) is an analyzer-based phase-contrast X-ray imaging method (ABI), which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT-MIR only if one considers volumetric images near the central plane and not the whole volume. PMID:24898008
Limited-angle tomography for analyzer-based phase-contrast x-ray imaging
NASA Astrophysics Data System (ADS)
Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.
2014-07-01
Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT-MIR only if one considers volumetric images near the central plane and not the whole volume.
He, Shen; Liu, Xiaohua; Jiang, Kaida; Peng, Daihui; Hong, Wu; Fang, Yiru; Qian, Yiping; Yu, Shunying; Li, Huafang
2016-07-01
Recently, increasing evidence has indicated that dysfunction of microRNA-124 (miR-124) might be involved in the pathophysiology and treatment of major depressive disorder (MDD) in some animal models of depression. However, the role of miR-124 in MDD patients remains unclear. The objective of this study was to investigate whether the miR-124 expression levels in peripheral blood mononuclear cells (PBMCs) were associated with MDD and to evaluate the effects of antidepressant treatment on miR-124 levels. Quantitative real-time PCR was applied to detect miR-124 expression in 32 pre- and post-treatment MDD patients and 30 healthy controls. Our results showed that expression levels of miR-124 from PBMCs in MDD patients were significantly higher than those in healthy controls (p < 0.001), and that the area under the curve of miR-124 from ROC analysis was 0.762 with a sensitivity of 83.33% and specificity of 66.67% in distinguishing MDD patients from healthy controls. In addition, the expression levels of miR-124 were significantly down-regulated after eight weeks of treatment (p < 0.001). MiRNA target gene prediction and functional annotation analysis indicated that altered miR-124 was involved in affecting some important biological processes and pathways related to MDD. These results provide new information on miR-124 involvement in the biological alterations of MDD and in antidepressant effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrochemical detection of microRNAs via gap hybridization assay.
Pöhlmann, Christopher; Sprinzl, Mathias
2010-06-01
MicroRNAs have recently been associated with cancer development by acting as tumor suppressors or oncogenes and could therefore be applied as molecular markers for early diagnosis of cancer. In this work, we established a rapid, selective, and sensitive gap hybridization assay for detection of mature microRNAs based on four components DNA/RNA hybridization and electrochemical detection using esterase 2-oligodeoxynucleotide conjugates. Complementary binding of microRNA to a gap built of capture and detector oligodeoxynucleotide, the reporter enzyme is brought to the vicinity of the electrode and produces enzymatically an electrochemical signal. In the absence of microRNA, the gap between capture and detector oligodeoxynucleotide is not filled, and missing base stacking energy destabilizes the hybridization complex. The gap hybridization assay demonstrates selective detection of miR-16 within a mixture of other miRNAs, including the feasibility of single mismatch discrimination. Applying the biosensor assay, a detection limit of 2 pM or 2 amol of miR-16 was obtained. Using isolated total RNA from human breast adenocarcinoma MCF-7 cells, the assay detected specifically miR-21 and miR-16 in parallel, and higher expression of oncogene miR-21 compared to miR-16 was demonstrated. Including RNA isolation, the gap hybridization assay was developed with a total assay time of 60 min and without the need for reverse transcription PCR amplification of the sample. The characteristics of the assay developed in this work could satisfy the need for rapid and easy methods for early cancer marker detection in clinical diagnostics.
Qiu, Kaifeng; Huang, Zixian; Huang, Zhiquan; He, Zhichao; You, Siping
2016-06-01
Tongue squamous cell carcinoma (TSCC) is the most common type of head and neck squamous cell carcinoma (HNSCC) in China, and its survival rate remains unsatisfactory. miR-22 has been identified as a tumor suppressor in many human cancers, and high expression of CD147 occurs in many tumors. The aim of the present study was to investigate the expression and function of miR-22 in TSCC and its relationship with the expression of CD147. TCA8113 cells were transiently transfected with a miR-22 mimic/inhibitor. Subsequently, a validation with Real-time RT-PCR was performed to analyze the miR-22 expression level, and a CCK-8 proliferation assay and transwell migration and invasion assays were carried out. Cotransfections using As-miR-22/si-CD147 mRNA or a miR-22/CD147 overexpression vector were applied, and we investigated the biological effects on cotranscribed TCA8113 cells. qRT-PCR confirmed that miR-22 or As-miR-22 were successfully transfected into TCA8113 cells. Suppressing miR-22 resulted in a promotion of cell proliferation and motility and an up-regulation of CD147 in TCA8113 cells in vitro. In contrast, increasing miR-22 inhibited cell proliferation and motility and down-regulated CD147. Furthermore, the reduction or overexpression of CD147 can reverse the promoting or suppressive effects of miR-22, respectively. The down-expression of miR-22 can regulate cell growth and motility in TSCC cells, which indicates that miR-22 acts as a tumor suppressor in TSCC. Additionally, CD147 is subsequently up-regulated when miR-22 inhibited. Taken together, the findings of this research defined a novel relationship between the down-regulation of miR-22 and the up-regulation of CD147 and demonstrated that CD147 is a downstream factor of miR-22. Copyright © 2016 Elsevier Ltd. All rights reserved.
MicroRNA-105 inhibits human glioma cell malignancy by directly targeting SUZ12.
Zhang, Jie; Wu, Weining; Xu, Shuo; Zhang, Jian; Zhang, Jiale; Yu, Qun; Jiao, Yuanyuan; Wang, Yingyi; Lu, Ailin; You, Yongping; Zhang, Junxia; Lu, Xiaoming
2017-06-01
Glioma accounts for the majority of primary malignant brain tumors in adults and is highly aggressive. Although various therapeutic approaches have been applied, outcomes of glioma treatment remain poor. MicroRNAs are a class of small noncoding RNAs that function as regulators of gene expression. Accumulating evidence shows that microRNAs are associated with tumorigenesis and tumor progression. In this study, we found that miR-105 is significantly downregulated in glioma tissues and glioma cell lines. We identified suppressor of Zeste 12 homolog as a novel direct target of miR-105 and showed that suppressor of Zeste 12 homolog protein levels were inversely correlated with the levels of miR-105 expression in clinical specimens. Overexpression of miR-105 inhibited cell proliferation, tumorigenesis, migration, invasion, and drug sensitivity, whereas overexpression of suppressor of Zeste 12 homolog antagonized the tumor-suppressive functions of miR-105. Taken together, our results indicate that miR-105 plays a significant role in tumor behavior and malignant progression, which may provide a novel therapeutic strategy for the treatment of glioma and other cancers.
Li, Qing; Li, Hua; Zhao, Xueling; Wang, Bing; Zhang, Lin; Zhang, Caiguo; Zhang, Fan
2017-01-01
MicroRNAs (miRNAs) are critical regulators of gene expression, and they have broad roles in the pathogenesis of different diseases including cancer. Limited studies and expression profiles of miRNAs are available in human osteosarcoma cells. By applying a miRNA microarray analysis, we observed a number of miRNAs with abnormal expression in cancerous tissues from osteosarcoma patients. Of particular interest in this study was miR-449c, which was significantly downregulated in osteosarcoma cells and patients, and its expression was negatively correlated with tumor size and tumor MSTS stages. Ectopic expression of miR-449c significantly inhibited osteosarcoma cell proliferation and colony formation ability, and caused cell cycle arrest at the G1 phase. Further analysis identified that miR-449c was able to directly target the oncogene c-Myc and negatively regulated its expression. Overexpression of c-Myc partially reversed miR-449c-mimic-inhibited cell proliferation and colony formation. Moreover, DNA hypermethylation was observed in two CpG islands adjacent to the genomic locus of miR-449c in osteosarcoma cells. Conversely, treatment with the DNA methylation inhibitor AZA caused induction of miR-449c. In conclusion, our results support a model that DNA methylation mediates downregulation of miR-449c, diminishing miR-449c mediated inhibition of c-Myc and thus leading to the activation of downstream targets, eventually contributing to osteosarcoma tumorigenesis. PMID:28924385
The expression of miR-125b regulates angiogenesis during the recovery of heat-denatured HUVECs.
Zhou, Situo; Zhang, Pihong; Liang, Pengfei; Huang, Xiaoyuan
2015-06-01
In previous studies we found that miR-125b was down-regulated in denatured dermis of deep partial thickness burn patients. Moreover, miR-125b inhibited tumor-angiogenesis associated with the decrease of ERBB2 and VEGF expression in ovarian cancer cells and breast cancer cells, etc. In this study, we investigated the expression patterns and roles of miR-125b during the recovery of denatured dermis and heat-denatured human umbilical vein endothelial cells (HUVECs). Deep partial thickness burns in Sprague-Dawley rats and the heat-denatured cells (52°C, 35 s) were used for analysis. Western blot analysis and real-time PCR were applied to evaluate the expression of miR-125b and ERBB2 and VEGF. The ability of angiogenesis in heat-denatured HUVECs was analyzed by scratch wound healing and tube formation assay after pri-miR-125b or anti-miR-125b transfection. miR-125b expression was time-dependent during the recovery of heat-denatured dermis and HUVECs. Moreover, miR-125b regulated ERBB2 mRNA and Protein Expression and regulated angiogenesis association with regulating the expression of VEGF in heat-denatured HUVECs. Taken together our results show that the expression of miR-125b is time-dependent and miR-125b plays a regulatory role of angiogenesis during wound healing after burns. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Mid-IR hyperspectral imaging for label-free histopathology and cytology
NASA Astrophysics Data System (ADS)
Hermes, M.; Brandstrup Morrish, R.; Huot, L.; Meng, L.; Junaid, S.; Tomko, J.; Lloyd, G. R.; Masselink, W. T.; Tidemand-Lichtenberg, P.; Pedersen, C.; Palombo, F.; Stone, N.
2018-02-01
Mid-infrared (MIR) imaging has emerged as a valuable tool to investigate biological samples, such as tissue histological sections and cell cultures, by providing non-destructive chemical specificity without recourse to labels. While feasibility studies have shown the capabilities of MIR imaging approaches to address key biological and clinical questions, these techniques are still far from being deployable by non-expert users. In this review, we discuss the current state of the art of MIR technologies and give an overview on technical innovations and developments with the potential to make MIR imaging systems more readily available to a larger community. The most promising developments over the last few years are discussed here. They include improvements in MIR light sources with the availability of quantum cascade lasers and supercontinuum IR sources as well as the recently developed upconversion scheme to improve the detection of MIR radiation. These technical advances can substantially speed up data acquisition of multispectral or hyperspectral datasets thus providing the end user with vast amounts of data when imaging whole tissue areas of many mm2. Therefore, effective data analysis is of tremendous importance, and progress in method development is discussed with respect to the specific biomedical context.
Osaki, Mitsuhiko; Takeshita, Fumitaka; Sugimoto, Yui; Kosaka, Nobuyoshi; Yamamoto, Yusuke; Yoshioka, Yusuke; Kobayashi, Eisuke; Yamada, Tesshi; Kawai, Akira; Inoue, Toshiaki; Ito, Hisao; Oshimura, Mitsuo; Ochiya, Takahiro
2011-01-01
Pulmonary metastases are the main cause of death in patients with osteosarcoma, however, the molecular mechanisms of metastasis are not well understood. To detect lung metastasis-related microRNA (miRNA) in human osteosarcoma, we compared parental (HOS) and its subclone (143B) human osteosarcoma cell lines showing lung metastasis in a mouse model. miR-143 was the most downregulated miRNA (P < 0.01), and transfection of miR-143 into 143B significantly decreased its invasiveness, but not cell proliferation. Noninvasive optical imaging technologies revealed that intravenous injection of miR-143, but not negative control miRNA, significantly suppressed lung metastasis of 143B (P < 0.01). To search for miR-143 target mRNA in 143B, microarray analyses were performed using an independent RNA pool extracted by two different comprehensive miR-143-target mRNA collecting systems. Western blot analyses revealed that MMP-13 was mostly protein downregulated by miR-143. Immunohistochemistry using clinical samples clearly revealed MMP-13-positive cells in lung metastasis-positive cases, but not in at least three cases showing higher miR-143 expression in the no metastasis group. Taken together, these data indicated that the downregulation of miR-143 correlates with the lung metastasis of human osteosarcoma cells by promoting cellular invasion, probably via MMP-13 upregulation, suggesting that miRNA could be used to develop new molecular targets for osteosarcoma metastasis. PMID:21427707
Krenzelok, Edward P; Mrvos, Rita
2009-05-01
In 2007, medication identification requests (MIRs) accounted for 26.2% of all calls to U.S. poison centers. MIRs are documented with minimal information, but they still require an inordinate amount of work by specialists in poison information (SPI). An analysis was undertaken to identify options to reduce the impact of MIRs on both human and financial resources. All MIRs (2003-2007) to a certified regional poison information center were analyzed to determine call patterns and staffing. The data were used to justify an efficient and cost-effective solution. MIRs represented 42.3% of the 2007 call volume. Optimal staffing would require hiring an additional four full-time equivalent SPI. An interactive voice response (IVR) system was developed to respond to the MIRs. The IVR was used to develop the Medication Identification System that allowed the diversion of up to 50% of the MIRs, enhancing surge capacity and allowing specialists to address the more emergent poison exposure calls. This technology is an entirely voice-activated response call management system that collects zip code, age, gender and drug data and stores all responses as .csv files for reporting purposes. The query bank includes the 200 most common MIRs, and the system features text-to-voice synthesis that allows easy modification of the drug identification menu. Callers always have the option of engaging a SPI at any time during the IVR call flow. The IVR is an efficient and effective alternative that creates better staff utilization.
Dasdag, Suleyman; Akdag, Mehmet Zulkuf; Erdal, Mehmet Emin; Erdal, Nurten; Ay, Ozlem Izci; Ay, Mustafa Ertan; Yilmaz, Senay Gorucu; Tasdelen, Bahar; Yegin, Korkut
2015-07-01
MicroRNAs (miRNA) play a paramount role in growth, differentiation, proliferation and cell death by suppressing one or more target genes. However, their interaction with radiofrequencies is still unknown. The aim of this study was to investigate the long-term effects of radiofrequency radiation emitted from a Wireless Fidelity (Wi-Fi) system on some of the miRNA in brain tissue. The study was carried out on 16 Wistar Albino adult male rats by dividing them into two groups such as sham (n = 8) and exposure (n = 8). Rats in the exposure group were exposed to 2.4 GHz radiofrequency (RF) radiation for 24 hours a day for 12 months (one year). The same procedure was applied to the rats in the sham group except the Wi-Fi system was turned off. Immediately after the last exposure, rats were sacrificed and their brains were removed. miR-9-5p, miR-29a-3p, miR-106b-5p, miR-107, miR-125a-3p in brain were investigated in detail. The results revealed that long-term exposure of 2.4 GHz Wi-Fi radiation can alter expression of some of the miRNAs such as miR-106b-5p (adj p* = 0.010) and miR-107 (adj p* = 0.005). We observed that mir 107 expression is 3.3 times and miR- 106b-5p expression is 3.65 times lower in the exposure group than in the control group. However, miR-9-5p, miR-29a-3p and miR-125a-3p levels in brain were not altered. Long-term exposure of 2.4 GHz RF may lead to adverse effects such as neurodegenerative diseases originated from the alteration of some miRNA expression and more studies should be devoted to the effects of RF radiation on miRNA expression levels.
Yang, Feng; Chen, Qishan; He, Shiping; Yang, Mei; Maguire, Eithne Margaret; An, Weiwei; Afzal, Tayyab Adeel; Luong, Le Anh; Zhang, Li; Xiao, Qingzhong
2018-04-24
MicroRNA-22 (miR-22) has recently been reported to play a regulatory role during vascular smooth muscle cell (VSMC) differentiation from stem cells, but little is known about its target genes and related pathways in mature VSMC phenotypic modulation or its clinical implication in neointima formation following vascular injury. We applied a wire-injury mouse model, and local delivery of AgomiR-22 or miR-22 inhibitor, as well, to explore the therapeutic potential of miR-22 in vascular diseases. Furthermore, normal and diseased human femoral arteries were harvested, and various in vivo, ex vivo, and in vitro models of VSMC phenotype switching were conducted to examine miR-22 expression during VSMC phenotype switching. Expression of miR-22 was closely regulated during VSMC phenotypic modulation. miR-22 overexpression significantly increased expression of VSMC marker genes and inhibited VSMC proliferation and migration, whereas the opposite effect was observed when endogenous miR-22 was knocked down. As expected, 2 previously reported miR-22 target genes, MECP2 (methyl-CpG binding protein 2) and histone deacetylase 4, exhibited a regulatory role in VSMC phenotypic modulation. A transcriptional regulator and oncoprotein, EVI1 (ecotropic virus integration site 1 protein homolog), has been identified as a novel miR-22 target gene in VSMC phenotypic modulation. It is noteworthy that overexpression of miR-22 in the injured vessels significantly reduced the expression of its target genes, decreased VSMC proliferation, and inhibited neointima formation in wire-injured femoral arteries, whereas the opposite effect was observed with local application of a miR-22 inhibitor to injured arteries. We next examined the clinical relevance of miR-22 expression and its target genes in human femoral arteries. We found that miR-22 expression was significantly reduced, whereas MECP2 and EVI1 expression levels were dramatically increased, in diseased in comparison with healthy femoral human arteries. This inverse relationship between miR-22 and MECP2 and EVI1 was evident in both healthy and diseased human femoral arteries. Our data demonstrate that miR-22 and EVI1 are novel regulators of VSMC function, specifically during neointima hyperplasia, offering a novel therapeutic opportunity for treating vascular diseases. © 2017 The Authors.
MicroRNA-320a suppresses in GBM patients and modulates glioma cell functions by targeting IGF-1R.
Guo, Tianzhu; Feng, Ying; Liu, Qingyang; Yang, Xue; Jiang, Tao; Chen, Yan; Zhang, Quangeng
2014-11-01
Glioblastoma (GBM) is the most aggressive and malignant glioma. Currently, a few modern surgical and medical therapeutic strategies are applied for GBM, but the prognosis of GBM patients remains poor, and the average median survival time is only 14.6 months. In this study, we for the first time found that the levels of miR-320a were decreased in both GBM patients and glioma cells. In GBM patients, elevated miR-320a expression was associated with better prognosis. In addition, insulin-like growth factor-1 receptor (IGF-1R) was identified as a key direct target of miR-320a. Overexpression of miR-320a led to the inhibition of cell proliferation, migration, invasion, as well as tumorigenesis by targeting IGF-1R, and thus regulated the signaling pathways downstream, including PI3K/AKT and MAPK/ERK. In tumor orthotopic xenograft experiment, the tumor growth was depressed and survival time of mice model was prolonged when miR-320a was overexpressed. Therefore, our results suggested that miR-320a could suppress tumor development and growth by targeting IGF-1R, and miR-320a might serve as a new effective target for anti-cancer therapy strategies.
Nguyen, Han Christine Ngoc; Xie, Wanling; Yang, Ming; Hsieh, Chen-Lin; Drouin, Sarah; Lee, Gwo-Shu Mary; Kantoff, Philip W
2013-03-01
Recent studies show that microRNAs (miRNAs), small non-coding RNAs that negatively regulate gene expression, may have potential for monitoring cancer status. We investigated circulating miRNAs in prostate cancer that may be associated with the progression of hormone-sensitive primary tumors to metastatic castration resistant prostate cancer (CRPC) after androgen deprivation therapy. Using genome-wide expression profiling by TaqMan Human MicroRNA Arrays (Applied Biosystems) and/or quantitative real-time polymerase chain reaction, we compared the expression levels of miRNAs in serum samples from 28 patients of low-risk localized disease, 30 of high-risk localized disease and 26 of metastatic CRPC. We demonstrated that serum samples from patients of low risk, localized prostate cancer and metastatic CRPC patients exhibit distinct circulating miRNA signatures. MiR-375, miR-378*, and miR-141 were significantly over-expressed in serum from CRPC patients compared with serum from low-risk localized patients, while miR-409-3p was significantly under-expressed. In prostate primary tumor samples, miR-375 and miR-141 also had significantly higher expression levels compared with those in normal prostate tissue. Circulating miRNAs, particularly miR-375, miR-141, miR-378*, and miR-409-3p, are differentially expressed in serum samples from prostate cancer patients. In the search for improved minimally invasive methods to follow cancer pathogenesis, the correlation of disease status with the expression patterns of circulating miRNAs may indicate the potential importance of circulating miRNAs as prognostic markers for prostate cancer progression. Copyright © 2012 Wiley Periodicals, Inc.
Wang, Yijun; Liu, Wentao; Liu, Yadong; Cui, Jianli; Zhao, Zhiwei; Cao, Hui; Fu, Zhuo; Liu, Bin
2018-04-16
The research aimed to examine the expression of lncRNA H19, miR-188, and LCoR in mouse bone marrow stromal stem cells (mBMSCs), and to investigate the regulatory mechanism of lncRNA H19/miR-188/LCoR in osteogenic and adipogenic differentiation of mBMSCs. The expression of miR-188 in mBMSCs and osteogenesis induced mBMSCs was detected by stem-loop RT-PCR, while the expression of H19 and LCoR in mBMSCs and adipogenesis induced mBMSCs was examined by qRT-PCR. Luciferase reporter assay verified the targeted relationship between miR-188 and H19 or LCoR. Cell proliferation ability was determined by MTT assay, while cell surface markers of mBMSCs were analyzed via flow cytometry. Alkaline phosphatase staining and Alizarin red staining was utilized to detect the osteogenic differentiation capability of mBMSCs, whereas Oil red O staining was applied to examine the ability of adipogenic differentiation of mBMSCs. The expression of miR-188 was lower in osteogenesis induced mBMSCs compared with normal mBMSCs, while H19 and LCoR were downregulated in adipogenic induced mBMSCs. Si-H19 could significantly increase the mRNA level of miR-188. Meanwhile, miR-188 directly regulated LCoR in mBMSCs. Overexpression of miR-188 and knockdown of LCoR suppressed osteogenic differentiation and induced adipogenic differentiation in mBMSCs. Long noncoding RNA H19 mediates LCoR to regulate the balance between osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR-188. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong
2014-03-01
The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.
Halle, Bo; Marcusson, Eric G; Aaberg-Jessen, Charlotte; Jensen, Stine S; Meyer, Morten; Schulz, Mette K; Andersen, Claus; Kristensen, Bjarne W
2016-01-01
Over-expressed microRNAs (miRs) are promising new targets in glioblastoma (GBM) therapy. Inhibition of over-expressed miRs has been shown to diminish GBM proliferation, invasion and angiogenesis, indicating a significant therapeutic potential. However, the methods utilized for miR inhibition have had low translational potential. In clinical trials convection-enhanced delivery (CED) has been applied for local delivery of compounds in the brain. The aim of this study was to determine if safe and efficient miR inhibition was possible by CED of an anti-miR. We used a highly invasive GBM orthotopic xenograft model and targeted a well-validated miR, let-7a, with a 2'-O-methoxyethyl anti-miR with a combined phosphodiester/phosphorothioate backbone to establish an initial proof of concept. In vitro, anti-let-7a was delivered unassisted to the patient-derived T87 glioblastoma spheroid culture. In vivo, anti-let-7a or saline were administered by CED into orthotopic T87-derived tumors. After 1 month of infusion, tumors were removed and tumor mRNA levels of the target-gene High-mobility group AT-hook 2 (HMGA2) were determined. In vitro, 5 days inhibition was superior to 1 day at de-repressing the let-7a target HMGA2 and the inhibition was stable for 24 h. In vivo, anti-miR integrity was preserved in the pumps and no animals showed signs of severe adverse effects attributable to the anti-miR treatment. HMGA2 tumor level was significantly de-repressed in the anti-miR treated animals. The results showed-as an initial proof of concept-that miRs can be efficiently inhibited using CED delivery of anti-miR. The next step is to apply CED for anti-miR delivery focusing on key oncogenic miRs.
Zhu, Liye; Gao, Jing; Huang, Kunlun; Luo, Yunbo; Zhang, Boyang; Xu, Wentao
2015-01-01
Aflatoxin-B1 (AFB1), a hepatocarcinogenic mycotoxin, was demonstrated to induce the high rate of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the regulation of several biological processes in HCC. However, the function of miRNAs in AFB1-induced HCC has received a little attention. Here, we applied Illumina deep sequencing technology for high-throughout profiling of microRNAs in HepG2 cells lines after treatment with AFB1. Analysis of the differential expression profile of miRNAs in two libraries, we identified 9 known miRNAs and 1 novel miRNA which exhibited abnormal expression. KEGG analysis indicated that predicted target genes of differentially expressed miRNAs are involved in cancer-related pathways. Down-regulated of Drosha, DGCR8 and Dicer 1 indicated an impairment of miRNA biogenesis in response to AFB1. miR-34a was up-regulated significantly, down-regulating the expression of Wnt/β-catenin signaling pathway by target gene β-catenin. Anti-miR-34a can significantly relieved the down-regulated β-catenin and its downstream genes, c-myc and Cyclin D1, and the S-phase arrest in cell cycle induced by AFB1 can also be relieved. These results suggested that AFB1 might down-regulate Wnt/β-catenin signaling pathway in HepG2 cells by up-regulating miR-34a, which may involve in the mechanism of liver tumorigenesis. PMID:26567713
Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.
2016-11-15
Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven bymore » fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.« less
Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)
NASA Astrophysics Data System (ADS)
Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.
2016-11-01
Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.
NASA Astrophysics Data System (ADS)
Kowligy, Abijith S.; Lind, Alex; Hickstein, Daniel D.; Carlson, David R.; Timmers, Henry; Nader, Nima; Cruz, Flavio C.; Ycas, Gabriel; Papp, Scott B.; Diddams, Scott A.
2018-04-01
We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-$\\chi^{(2)}$ nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive-wave generation in the 2.5--3 $\\text{\\mu}$m region and intra-pulse difference-frequency generation in the 4--5 $\\text{\\mu}$m region. By engineering the quasi-phase-matched grating profiles, tunable, narrow-band MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment---and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology.
Kowligy, Abijith S; Lind, Alex; Hickstein, Daniel D; Carlson, David R; Timmers, Henry; Nader, Nima; Cruz, Flavio C; Ycas, Gabriel; Papp, Scott B; Diddams, Scott A
2018-04-15
We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-χ (2) nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive wave generation in the 2.5-3 μm region and intrapulse difference frequency generation in the 4-5 μm region. By engineering the quasi-phase-matched grating profiles, tunable, narrowband MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment-and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology.
Effects of XIST/miR-137 axis on neuropathic pain by targeting TNFAIP1 in a rat model.
Zhao, Ying; Li, Sen; Xia, Nin; Shi, Yan; Zhao, Chang-Ming
2018-05-01
Non-coding RNAs have been reported to participate in the pathophysiology of neuropathic pain. The objective of our study was to investigate the biological role of XIST in neuropathic pain development. In our study, we identify and validate that lncRNA XIST was markedly increased and miR-137 was significantly decreased in chronic constriction injury (CCI) rats. XIST silencing alleviated pain behaviors including both mechanical and thermal hyperalgesia in the CCI rats. XIST was predicted to interact with miR-137 by bioinformatics technology and dual-luciferase reporter assays confirmed the correlation between XIST and miR-137. miR-137 was negatively modulated by XIST and upregulation of miR-137 greatly reduced neuropathic pain development in CCI rats. Moreover, we observed that tumor necrosis factor alpha-induced protein 1 (TNFAIP1) was enhanced in CCI rats and 3'-untranslated region (UTR) of TNFAIP1 was exhibited to be a target of miR-137 by bioinformatics prediction. TNFAIP1 can act as a crucial inflammation regulator by activating NF-kB activity. Overexpression of miR-137 significantly suppressed TNFAIP1 both in vitro and in vivo. Furthermore, upregulation of XIST reversed the inhibitory role of miR-137 in neuropathic pain development by inhibiting TNFAIP1. In conclusion, our current study indicates that XIST can positively regulate neuropathic pain in rats through regulating the expression of miR-137 and TNFAIP1. Our results imply that XIST/miR-137/TNFAIP1 axis may serve as a novel therapeutic target in neuropathic pain. © 2017 Wiley Periodicals, Inc.
RISC RNA sequencing for context-specific identification of in vivo miR targets
Matkovich, Scot J; Van Booven, Derek J; Eschenbacher, William H; Dorn, Gerald W
2010-01-01
Rationale MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. Objective To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). Methods and Results We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias, and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1,645 mRNAs consistently targeted to mouse cardiac RISCs. We employed this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing ‘seed’ sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. Conclusions RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context, and is applicable to any tissue and any disease state. Summary MicroRNAs (miRs) are key regulators of mRNA translation in health and disease. While bioinformatic predictions suggest that a single miR may target hundreds of mRNAs, the number of experimentally verified targets of miRs is low. To enable comprehensive, unbiased examination of miR targets, we have performed deep RNA sequencing of cardiac transcriptomes in parallel with cardiac RNA-induced silencing complex (RISC)-associated RNAs (the RISCome), called RISC sequencing. We developed methods that did not require cross-linking of RNAs to RISCs or amplification of mRNA prior to sequencing, making it possible to rapidly perform RISC sequencing from intact tissue while avoiding amplification bias. Comparison of RISCome with transcriptome expression defined the degree of RISC enrichment for each mRNA. The majority of the mRNAs enriched in wild-type cardiac RISComes compared to transcriptomes were bioinformatically predicted to be targets of at least 1 of 139 cardiac-expressed miRs. Programming cardiomyocyte RISCs via transgenic overexpression in adult hearts of miR-133a or miR-499, two miRs that contain entirely different ‘seed’ sequences, elicited differing profiles of RISC-targeted mRNAs. Thus, RISC sequencing represents a highly sensitive method for general RISC profiling and individual miR target identification in biological context. PMID:21030712
Bao, Duran; Ganbaatar, Oyunchuluun; Cui, Xiuqi; Yu, Ruonan; Bao, Wenhua; Falk, Bryce W; Wuriyanghan, Hada
2018-04-01
Plants protect themselves from virus infections by several different defence mechanisms. RNA interference (RNAi) is one prominent antiviral mechanism, which requires the participation of AGO (Argonaute) and Dicer/DCL (Dicer-like) proteins. Effector-triggered immunity (ETI) is an antiviral mechanism mediated by resistance (R) genes, most of which encode nucleotide-binding site-leucine-rich repeat (NBS-LRR) family proteins. MicroRNAs (miRNAs) play important regulatory roles in plants, including the regulation of host defences. Soybean mosaic virus (SMV) is the most common virus in soybean and, in this work, we identified dozens of SMV-responsive miRNAs by microarray analysis in an SMV-susceptible soybean line. Amongst the up-regulated miRNAs, miR168a, miR403a, miR162b and miR1515a predictively regulate the expression of AGO1, AGO2, DCL1 and DCL2, respectively, and miR1507a, miR1507c and miR482a putatively regulate the expression of several NBS-LRR family disease resistance genes. The regulation of target gene expression by these seven miRNAs was validated by both transient expression assays and RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) experiments. Transcript levels for AGO1, DCL1, DCL2 and five NBS-LRR family genes were repressed at different time points after SMV infection, whereas the corresponding miRNA levels were up-regulated at these same time points. Furthermore, inhibition of miR1507a, miR1507c, miR482a, miR168a and miR1515a by short tandem target mimic (STTM) technology compromised SMV infection efficiency in soybean. Our results imply that SMV can counteract soybean defence responses by the down-regulation of several RNAi pathway genes and NBS-LRR family resistance genes via the induction of the accumulation of their corresponding miRNA levels. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Micolucci, Luigina; Akhtar, Most Mauluda; Olivieri, Fabiola; Rippo, Maria Rita; Procopio, Antonio Domenico
2016-09-06
Asbestos is a harmful and exceptionally persistent natural material. Malignant mesothelioma (MM), an asbestos-related disease, is an insidious, lethal cancer that is poorly responsive to current treatments. Minimally invasive, specific, and sensitive biomarkers providing early and effective diagnosis in high-risk patients are urgently needed. MicroRNAs (miRNAs, miRs) are endogenous, non-coding, small RNAs with established diagnostic value in cancer and pollution exposure. A systematic review and a qualitative meta-analysis were conducted to identify high-confidence miRNAs that can serve as biomarkers of asbestos exposure and MM. The major biomedical databases were systematically searched for miRNA expression signatures related to asbestos exposure and MM. The qualitative meta-analysis applied a novel vote-counting method that takes into account multiple parameters. The most significant miRNAs thus identified were then subjected to functional and bioinformatic analysis to assess their biomarker potential. A pool of deregulated circulating and tissue miRNAs with biomarker potential for MM was identified and designated as "mesomiRs" (MM-associated miRNAs). Comparison of data from asbestos-exposed and MM subjects found that the most promising candidates for a multimarker signature were circulating miR-126-3p, miR-103a-3p, and miR-625-3p in combination with mesothelin. The most consistently described tissue miRNAs, miR-16-5p, miR-126-3p, miR-143-3p, miR-145-5p, miR-192-5p, miR-193a-3p, miR-200b-3p, miR-203a-3p, and miR-652-3p, were also found to provide a diagnostic signature and should be further investigated as possible therapeutic targets. The qualitative meta-analysis and functional investigation confirmed the early diagnostic value of two miRNA signatures for MM. Large-scale, standardized validation studies are needed to assess their clinical relevance, so as to move from the workbench to the clinic.
Micolucci, Luigina; Akhtar, Most Mauluda; Olivieri, Fabiola; Rippo, Maria Rita; Procopio, Antonio Domenico
2016-01-01
Background Asbestos is a harmful and exceptionally persistent natural material. Malignant mesothelioma (MM), an asbestos-related disease, is an insidious, lethal cancer that is poorly responsive to current treatments. Minimally invasive, specific, and sensitive biomarkers providing early and effective diagnosis in high-risk patients are urgently needed. MicroRNAs (miRNAs, miRs) are endogenous, non-coding, small RNAs with established diagnostic value in cancer and pollution exposure. A systematic review and a qualitative meta-analysis were conducted to identify high-confidence miRNAs that can serve as biomarkers of asbestos exposure and MM. Methods The major biomedical databases were systematically searched for miRNA expression signatures related to asbestos exposure and MM. The qualitative meta-analysis applied a novel vote-counting method that takes into account multiple parameters. The most significant miRNAs thus identified were then subjected to functional and bioinformatic analysis to assess their biomarker potential. Results A pool of deregulated circulating and tissue miRNAs with biomarker potential for MM was identified and designated as “mesomiRs” (MM-associated miRNAs). Comparison of data from asbestos-exposed and MM subjects found that the most promising candidates for a multimarker signature were circulating miR-126-3p, miR-103a-3p, and miR-625-3p in combination with mesothelin. The most consistently described tissue miRNAs, miR-16-5p, miR-126-3p, miR-143-3p, miR-145-5p, miR-192-5p, miR-193a-3p, miR-200b-3p, miR-203a-3p, and miR-652-3p, were also found to provide a diagnostic signature and should be further investigated as possible therapeutic targets. Conclusion The qualitative meta-analysis and functional investigation confirmed the early diagnostic value of two miRNA signatures for MM. Large-scale, standardized validation studies are needed to assess their clinical relevance, so as to move from the workbench to the clinic. PMID:27259231
Wang, Zhi; Zhu, Fei
2017-01-01
In this study, we discovered that shrimp miR-100 was up-regulated at 24 h after WSSV or Vibrio alginolyticus infection, confirming its participation in the innate immune system of shrimp. The anti-miRNA oligonucleotide (AMO-miR-100) was applied to inhibit the expression of miR-100. After AMO-miR-100 treatment, the shrimp was challenged with WSSV or V. alginolyticus. The knockdown of miR-100 expression decreased the mortality of WSSV-infected shrimp from 24 h to 72 h post-infection and enhanced the mortality of V. alginolyticus-infected shrimp significantly. The knockdown of miR-100 affected phenoloxidase (PO) activity, superoxide dismutase (SOD) activity and total hemocyte count (THC) after the infection with WSSV or V. alginolyticus, indicating a regulative role of miR-100 in the immune potential of shrimp in the response to WSSV or V. alginolyticus infection. The knockdown of miR-100 induced the apoptosis of shrimp hemocytes, and V. alginolyticus + AMO-miR-100 treatment caused more hemocyte apoptosis than V. alginolyticus treatment. The miR-100 influenced also the morphology of shrimp hemocytes and regulated the phagocytosis of WSSV or V. alginolyticus. Thus, we concluded that miR-100 may promote the anti-Vibrio immune response of shrimp through regulating apoptosis, phagocytosis and PO activity and affects the progression of WSSV infection at a certain level. PMID:28181552
Wang, Zhi; Zhu, Fei
2017-02-09
In this study, we discovered that shrimp miR-100 was up-regulated at 24 h after WSSV or Vibrio alginolyticus infection, confirming its participation in the innate immune system of shrimp. The anti-miRNA oligonucleotide (AMO-miR-100) was applied to inhibit the expression of miR-100. After AMO-miR-100 treatment, the shrimp was challenged with WSSV or V. alginolyticus. The knockdown of miR-100 expression decreased the mortality of WSSV-infected shrimp from 24 h to 72 h post-infection and enhanced the mortality of V. alginolyticus-infected shrimp significantly. The knockdown of miR-100 affected phenoloxidase (PO) activity, superoxide dismutase (SOD) activity and total hemocyte count (THC) after the infection with WSSV or V. alginolyticus, indicating a regulative role of miR-100 in the immune potential of shrimp in the response to WSSV or V. alginolyticus infection. The knockdown of miR-100 induced the apoptosis of shrimp hemocytes, and V. alginolyticus + AMO-miR-100 treatment caused more hemocyte apoptosis than V. alginolyticus treatment. The miR-100 influenced also the morphology of shrimp hemocytes and regulated the phagocytosis of WSSV or V. alginolyticus. Thus, we concluded that miR-100 may promote the anti-Vibrio immune response of shrimp through regulating apoptosis, phagocytosis and PO activity and affects the progression of WSSV infection at a certain level.
Regulation of MIR Genes in Response to Abiotic Stress in Hevea brasiliensis
Gébelin, Virginie; Leclercq, Julie; Hu, Songnian; Tang, Chaorong; Montoro, Pascal
2013-01-01
Increasing demand for natural rubber (NR) calls for an increase in latex yield and also an extension of rubber plantations in marginal zones. Both harvesting and abiotic stresses lead to tapping panel dryness through the production of reactive oxygen species. Many microRNAs regulated during abiotic stress modulate growth and development. The objective of this paper was to study the regulation of microRNAs in response to different types of abiotic stress and hormone treatments in Hevea. Regulation of MIR genes differs depending on the tissue and abiotic stress applied. A negative co-regulation between HbMIR398b with its chloroplastic HbCuZnSOD target messenger is observed in response to salinity. The involvement of MIR gene regulation during latex harvesting and tapping panel dryness (TPD) occurrence is further discussed. PMID:24084713
Mid-infrared coincidence measurements based on intracavity frequency conversion
NASA Astrophysics Data System (ADS)
Piccione, S.; Mancinelli, M.; Trenti, A.; Fontana, G.; Dam, J.; Tidemand-Lichtenberg, P.; Pedersen, C.; Pavesi, L.
2018-02-01
In the last years, the Mid Infrared (MIR) spectral region has attracted the attention of many areas of science and technology, opening the way to important applications, such as molecular imaging, remote sensing, free- space communication and environmental monitoring. However, the development of new sources of light, such as quantum cascade laser, was not followed by an adequate improvement in the MIR detection system, able to exceed the current challenges. Here we demonstrate the single-photon counting capability of a new detection system, based on efficient up-converter modules, by proving the correlated nature of twin photons pairs at about 3.1μm, opening the way to the extension of quantum optics experiments in the MIR.
Advances in Mid-Infrared Spectroscopy for Chemical Analysis
NASA Astrophysics Data System (ADS)
Haas, Julian; Mizaikoff, Boris
2016-06-01
Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.
NASA Technical Reports Server (NTRS)
1996-01-01
In October 1992, the National Aeronautics and Space Administration (NASA) and the Russian Space Agency (RSA) formally agreed to conduct a fundamentally new program of human cooperation in space. The 'Shuttle-Mir Program' encompassed combined astronaut-cosmonaut activities on the Shuttle, Soyuz Test Module(TM), and Mir station spacecraft. At that time, NASA and RSA limited the project to: the STS-60 mission carrying the first Russian cosmonaut to fly on the U.S. Space Shuttle; the launch of the first U.S. astronaut on the Soyuz vehicle for a multi-month mission as a member of a Mir crew; and the change-out of the U.S.-Russian Mir crews with a Russian crew during a Shuttle rendezvous and docking mission with the Mir Station. The objectives of the Phase 1 Program are to provide the basis for the resolution of engineering and technical problems related to the implementation of the ISS and future U.S.-Russian cooperation in space. This, combined with test data generated during the course of the Shuttle flights to the Mir station and extended joint activities between U.S. astronauts and Russian cosmonauts aboard Mir, is expected to reduce the technical risks associated with the construction and operation of the ISS. Phase 1 will further enhance the ISS by combining space operations and joint space technology demonstrations. Phase 1 also provides early opportunities for extended U.S. scientific and research activities, prior to utilization of the ISS.
Tian, Yunhong; Cai, Longmei; Tian, Yunming; Tu, Yinuo; Qiu, Huizhi; Xie, Guofeng; Huang, Donglan; Zheng, Ronghui; Zhang, Weijun
2016-01-01
MicroRNAs (miRNAs) have been documented as having an important role in the development of cancer. Broccoli is very popular in large groups of the population and has anticancer properties. Junctional adhesion molecule A (JAMA) is preferentially concentrated at tight junctions and influences cell morphology and migration. Epithelial-mesenchymal transition (EMT) is a developmental program associated with cancer progression and metastasis. In this study we aimed to investigate the role of miRNAs from broccoli in human nasopharyngeal cancer (NPC). We demonstrated that a total of 84 conserved miRNAs and 184 putative novel miRNAs were found in broccoli by sequencing technology. Among these, miR156a was expressed the most. In addition, synthetic miR156a mimic inhibited the EMT of NPC cells in vitro. Furthermore, it was confirmed that JAMA was the target of miR156a mimic as validated by 3' UTR luciferase reporter assays and western blotting. Knockdown of JAMA was consistent with the effects of miR156a mimic on the EMT of NPC, and the up-regulation of JAMA could partially restore EMT repressed by miR156a mimic. In conclusion, these results indicate that the miR156a mimic inhibits the EMT of NPC cells by targeting the 3' UTR of JAMA. These miRNA profiles of broccoli provide a fundamental basis for further research. Moreover, the discovery of miR156a may have clinical implications for the treatment of patients with NPC.
Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell.
Xu, Cheng-Zhi; Shi, Run-Jie; Chen, Dong; Sun, Yi-Yuan; Wu, Qing-Wei; Wang, Tao; Wang, Pei-Hua
2013-01-01
Paclitaxel has been proved to be active in treatment and larynx preservation of HNSCC, however, the fact that about 20-40% patients do not respond to paclitaxel makes it urgent to figure out the biomarkers for paclitaxel-based treatment in Hypopharynx cancer (HPC) patients to improve the therapy effect. In this work, Fadu cells, treated or untreated with low dose of paclitaxel for 24 h, were applied to DNA microarray chips. The differential expression in mRNAs and miRs was analyzed and the network between expression-altered mRNAs and miRs was constructed. Differentially expressed genes were mainly enriched in superpathway of cholesterol biosynthesis (ACAT2, MSMO1, LSS, FDFT1 and FDPS etc.), complement system (C3, C1R, C1S, CFR and CFB etc.), interferon signaling (IFIT1, IFIT3, IFITM1 and MX1 etc.), mTOR signaling (MRAS, PRKAA2, PLD1, RND3 and EIF4A1 etc.) and IGF1 signaling (MRAS, IGFBP7, JUN and FOS etc.), most of these pathways are implicated in tumorigenesis or chemotherapy resistance. The first three pathways were predicted to be suppressed, while the last two pathways were predicted to be induced by paclitaxel, suggesting the combination therapy with mTOR inhibition and paclitaxel might be better than single one. The dramatically expression-altered miRs were miR-112, miR-7, miR-1304, miR-222*, miR-29b-1* (these five miRs were upregulated) and miR-210 (downregulated). The 26 putative target genes mediated by the 6 miRs were figured out and the miR-gene network was constructed. Furthermore, immunoblotting assay showed that ERK signaling in Fadu cells was active by low dose of paclitaxel but repressed by high dose of paclitaxel. Collectively, our data would provide potential biomarkers and therapeutic targets for paclitaxel-based therapy in HPC patients.
Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell
Xu, Cheng-Zhi; Shi, Run-Jie; Chen, Dong; Sun, Yi-Yuan; Wu, Qing-Wei; Wang, Tao; Wang, Pei-Hua
2013-01-01
Paclitaxel has been proved to be active in treatment and larynx preservation of HNSCC, however, the fact that about 20-40% patients do not respond to paclitaxel makes it urgent to figure out the biomarkers for paclitaxel-based treatment in Hypopharynx cancer (HPC) patients to improve the therapy effect. In this work, Fadu cells, treated or untreated with low dose of paclitaxel for 24 h, were applied to DNA microarray chips. The differential expression in mRNAs and miRs was analyzed and the network between expression-altered mRNAs and miRs was constructed. Differentially expressed genes were mainly enriched in superpathway of cholesterol biosynthesis (ACAT2, MSMO1, LSS, FDFT1 and FDPS etc.), complement system (C3, C1R, C1S, CFR and CFB etc.), interferon signaling (IFIT1, IFIT3, IFITM1 and MX1 etc.), mTOR signaling (MRAS, PRKAA2, PLD1, RND3 and EIF4A1 etc.) and IGF1 signaling (MRAS, IGFBP7, JUN and FOS etc.), most of these pathways are implicated in tumorigenesis or chemotherapy resistance. The first three pathways were predicted to be suppressed, while the last two pathways were predicted to be induced by paclitaxel, suggesting the combination therapy with mTOR inhibition and paclitaxel might be better than single one. The dramatically expression-altered miRs were miR-112, miR-7, miR-1304, miR-222*, miR-29b-1* (these five miRs were upregulated) and miR-210 (downregulated). The 26 putative target genes mediated by the 6 miRs were figured out and the miR-gene network was constructed. Furthermore, immunoblotting assay showed that ERK signaling in Fadu cells was active by low dose of paclitaxel but repressed by high dose of paclitaxel. Collectively, our data would provide potential biomarkers and therapeutic targets for paclitaxel-based therapy in HPC patients. PMID:24294361
Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma.
Felicetti, Federica; De Feo, Alessandra; Coscia, Carolina; Puglisi, Rossella; Pedini, Francesca; Pasquini, Luca; Bellenghi, Maria; Errico, Maria Cristina; Pagani, Elena; Carè, Alessandra
2016-02-24
Growing evidence is showing that metastatic cell populations are able to transfer their characteristics to less malignant cells. Exosomes (EXOs) are membrane vesicles of endocytic origin able to convey their cargo of mRNAs, microRNAs (miRs), proteins and lipids from donors to proximal as well as distant acceptor cells. Our previous results indicated that miR-221&222 are key factors for melanoma development and dissemination. The aim of this study was to verify whether the tumorigenic properties associated with miR-222 overexpression can be also propagated by miR-222-containing EXOs. EXOs were isolated by UltraCentrifugation or Exoquick-TC(®) methods. Preparations of melanoma-derived vesicles were characterized by using the Nanosight™ technology and the expression of exosome markers analyzed by western blot. The expression levels of endogenous and exosomal miRNAs were examined by real time PCR. Confocal microscopy was used to evaluate transfer and uptake of microvesicles from donor to recipient cells. The functional significance of exosomal miR-222 was estimated by analyzing the vessel-like process formation, as well as cell cycle rates, invasive and chemotactic capabilities. Besides microvesicle marker characterization, we evidenced that miR-222 exosomal expression mostly reflected its abundance in the cells of origin, correctly paralleled by repression of its target genes, such as p27Kip1, and induction of the PI3K/AKT pathway, thus confirming its functional implication in cancer. The possible differential significance of PI3K/AKT blockade was assessed by using the BKM120 inhibitor in miR-222-transduced cell lines. In addition, in vitro cultures showed that vesicles released by miR-222-overexpressing cells were able to transfer miR-222-dependent malignancy when taken-up by recipient primary melanomas. Results were confirmed by antagomiR-221&222 treatments and by functional observations after internalization of EXOs devoid of these miRs. All together these data, besides generally confirming the role of miR-222 in melanoma tumorigenesis, supported its responsibility in the exosome-associated melanoma properties, thus further indicating this miR as potential diagnostic and prognostic biomarker and its abrogation as a future therapeutic option.
NASA Astrophysics Data System (ADS)
Cao, Jianjun; Kong, Yan; Gao, Shumei; liu, Cheng
2018-01-01
Graphene has been demonstrated to have extraordinary large second order nonlinear susceptibility that can be applied in generating mid-infrared (MIR) and terahertz waves through the difference frequency process. In this study, we exploit the highly localized electric fields caused by plasmon resonances to increase the nonlinear response from graphene. The proposed structure contains a graphene sheet on a gold grating substrate that sustains both surface plasmons at the near-infrared on the gold surface and plasmons at the MIR on the graphene surface. Based on finite difference time domain (FDTD) numerical simulations, more than 3 orders of magnitude improvement of the MIR generation efficiency is obtained by placing graphene sheets on a gold grating substrate under resonance conditions instead of placing them on a flat substrate. With the same gold grating substrate, MIR waves tunable from 30 to 55 THz are generated by tuning the gate voltage of the graphene sheet.
Kassouf, Amine; Maalouly, Jacqueline; Rutledge, Douglas N; Chebib, Hanna; Ducruet, Violette
2014-11-01
Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied at an industrial level given that all tests presented here were performed under laboratory conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Young, C; Mizaikoff, B
Fundamental vibrational and rotational modes associated with most inorganic and organic molecules are spectroscopically accessible within the mid-infrared (MIR; 3-20 {micro}m) regime of the electromagnetic spectrum. The interaction between MIR photons and organic molecules provides particularly sharp transitions, which - despite the wide variety of organic molecules - provide unique MIR absorption spectra reflecting the molecularly characteristic arrangement of chemical bonds within the probed molecules via the frequency position of the associated vibrational and rotational transitions. Given the inherent molecular selectivity and achievable sensitivity, MIR spectroscopy provides an ideal platform for optical sensing applications. Despite this potential, early MIR sensingmore » applications were limited to localized applications due to the size of the involved instrumentation, and limited availability of appropriately compact MIR optical components including light sources, detectors, waveguides, and spectrometers. During the last decades, engineering advances in photonics and optical engineering have facilitated the translation of benchtop-style MIR spectroscopy into miniaturized optical sensing schemes providing a footprint compatible with portable instrumentation requirements for field deployable analytical tools. In this trend article, we will discuss recent advances and future strategies for miniaturizing MIR sensor technology. The Beer-Lambert law implies that achievable limit of detection (LOD) for any optical sensor system improves by increasing the interaction length between photons and target analyte species such as e.g., folding the optical path multiple times as in multi-pass gas phase sensing; however, this governing paradigm naturally leads to an increase in system dimensions. Hence, miniaturization of optical sensing system requires scaling down of each optical component, yet improving the performance of each optical element within a smaller form factor for overall at least maintaining, or ideally improving the achievable sensitivity.« less
TERA-MIR radiation: materials, generation, detection and applications III (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pereira, Mauro F.
2016-10-01
This talk summarizes the achievements of COST ACTION MP1204 during the last four years. [M.F. Pereira, Opt Quant Electron 47, 815-820 (2015).]. TERA-MIR main objectives are to advance novel materials, concepts and device designs for generating and detecting THz and Mid Infrared radiation using semiconductor, superconductor, metamaterials and lasers and to beneficially exploit their common aspects within a synergetic approach. We used the unique networking and capacity-building capabilities provided by the COST framework to unify these two spectral domains from their common aspects of sources, detectors, materials and applications. We created a platform to investigate interdisciplinary topics in Physics, Electrical Engineering and Technology, Applied Chemistry, Materials Sciences and Biology and Radio Astronomy. The main emphasis has been on new fundamental material properties, concepts and device designs that are likely to open the way to new products or to the exploitation of new technologies in the fields of sensing, healthcare, biology, and industrial applications. End users are: research centres, academic, well-established and start-up Companies and hospitals. Results are presented along our main lines of research: Intersubband materials and devices with applications to fingerprint spectroscopy; Metamaterials, photonic crystals and new functionalities; Nonlinearities and interaction of radiation with matter including biomaterials; Generation and Detection based on Nitrides and Bismides. The talk is closed by indicating the future direction of the network that will remain active beyond the funding period and our expectations for future joint research.
Wang, Xiao; Esquerre, Carlos; Downey, Gerard; Henihan, Lisa; O'Callaghan, Donal; O'Donnell, Colm
2018-06-01
In this study, visible and near-infrared (Vis-NIR), mid-infrared (MIR) and Raman process analytical technologies were investigated for assessment of infant formula quality and compositional parameters namely preheat temperature, storage temperature, storage time, fluorescence of advanced Maillard products and soluble tryptophan (FAST) index, soluble protein, fat and surface free fat (SFF) content. PLS-DA models developed using spectral data with appropriate data pre-treatment and significant variables selected using Martens' uncertainty test had good accuracy for the discrimination of preheat temperature (92.3-100%) and storage temperature (91.7-100%). The best PLS regression models developed yielded values for the ratio of prediction error to deviation (RPD) of 3.6-6.1, 2.1-2.7, 1.7-2.9, 1.6-2.6 and 2.5-3.0 for storage time, FAST index, soluble protein, fat and SFF content prediction respectively. Vis-NIR, MIR and Raman were demonstrated to be potential PAT tools for process control and quality assurance applications in infant formula and dairy ingredient manufacture. Copyright © 2018 Elsevier B.V. All rights reserved.
1997-05-25
KENNEDY SPACE CENTER, FLA. - Members of the STS-84 crew pause at Patrick Air force Base just prior to their departure for Johnson Space Center in Houston, Texas. They are (from left) Mission Specialist Jean-Francois Clervoy; returning astronaut and Mir 23 crew member Jerry M. Linenger; Mission Commander Charles J. Precourt; Mission Specialist Edward Tsang Lu; and Mission Specialist Elena V. Kondakova. The seven-member crew returned aboard the Space Shuttle Orbiter Atlantis May 24 on KSC's Runway 33 after the completion of a successful nine-day mission. STS-84 was the sixth docking of the Space Shuttle with the Russian Space Station MIr. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced Linenger, who had been on the Russian space station since Jan. 15. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale's stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences.
Casale, M; Oliveri, P; Casolino, C; Sinelli, N; Zunin, P; Armanino, C; Forina, M; Lanteri, S
2012-01-27
An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV-visible (UV-vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV-vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV-vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV-vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil Chianti Classico. Copyright © 2011 Elsevier B.V. All rights reserved.
Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus
Long, Mingsheng; Gao, Anyuan; Wang, Peng; Xia, Hui; Ott, Claudia; Pan, Chen; Fu, Yajun; Liu, Erfu; Chen, Xiaoshuang; Lu, Wei; Nilges, Tom; Xu, Jianbin; Wang, Xiaomu; Hu, Weida; Miao, Feng
2017-01-01
The mid-infrared (MIR) spectral range, pertaining to important applications, such as molecular “fingerprint” imaging, remote sensing, free space telecommunication, and optical radar, is of particular scientific interest and technological importance. However, state-of-the-art materials for MIR detection are limited by intrinsic noise and inconvenient fabrication processes, resulting in high-cost photodetectors requiring cryogenic operation. We report black arsenic phosphorus–based long-wavelength IR photodetectors, with room temperature operation up to 8.2 μm, entering the second MIR atmospheric transmission window. Combined with a van der Waals heterojunction, room temperature–specific detectivity higher than 4.9 × 109 Jones was obtained in the 3- to 5-μm range. The photodetector works in a zero-bias photovoltaic mode, enabling fast photoresponse and low dark noise. Our van der Waals heterojunction photodetectors not only exemplify black arsenic phosphorus as a promising candidate for MIR optoelectronic applications but also pave the way for a general strategy to suppress 1/f noise in photonic devices. PMID:28695200
Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus.
Long, Mingsheng; Gao, Anyuan; Wang, Peng; Xia, Hui; Ott, Claudia; Pan, Chen; Fu, Yajun; Liu, Erfu; Chen, Xiaoshuang; Lu, Wei; Nilges, Tom; Xu, Jianbin; Wang, Xiaomu; Hu, Weida; Miao, Feng
2017-06-01
The mid-infrared (MIR) spectral range, pertaining to important applications, such as molecular "fingerprint" imaging, remote sensing, free space telecommunication, and optical radar, is of particular scientific interest and technological importance. However, state-of-the-art materials for MIR detection are limited by intrinsic noise and inconvenient fabrication processes, resulting in high-cost photodetectors requiring cryogenic operation. We report black arsenic phosphorus-based long-wavelength IR photodetectors, with room temperature operation up to 8.2 μm, entering the second MIR atmospheric transmission window. Combined with a van der Waals heterojunction, room temperature-specific detectivity higher than 4.9 × 10 9 Jones was obtained in the 3- to 5-μm range. The photodetector works in a zero-bias photovoltaic mode, enabling fast photoresponse and low dark noise. Our van der Waals heterojunction photodetectors not only exemplify black arsenic phosphorus as a promising candidate for MIR optoelectronic applications but also pave the way for a general strategy to suppress 1/ f noise in photonic devices.
Viral MicroRNAs Identified in Human Dental Pulp.
Zhong, Sheng; Naqvi, Afsar; Bair, Eric; Nares, Salvador; Khan, Asma A
2017-01-01
MicroRNAs (miRs) are a family of noncoding RNAs that regulate gene expression. They are ubiquitous among multicellular eukaryotes and are also encoded by some viruses. Upon infection, viral miRs (vmiRs) can potentially target gene expression in the host and alter the immune response. Although prior studies have reported viral infections in human pulp, the role of vmiRs in pulpal disease is yet to be explored. The purpose of this study was to examine the expression of vmiRs in normal and diseased pulps and to identify potential target genes. Total RNA was extracted and quantified from normal and inflamed human pulps (N = 28). Expression profiles of vmiRs were then interrogated using miRNA microarrays (V3) and the miRNA Complete Labeling and Hyb Kit (Agilent Technologies, Santa Clara, CA). To identify vmiRs that were differentially expressed, we applied a permutation test. Of the 12 vmiRs detected in the pulp, 4 vmiRs (including those from herpesvirus and human cytomegalovirus) were differentially expressed in inflamed pulp compared with normal pulp (P < .05). Using bioinformatics, we identified potential target genes for the differentially expressed vmiRs. They included key mediators involved in the detection of microbial ligands, chemotaxis, proteolysis, cytokines, and signal transduction molecules. These data suggest that miRs may play a role in interspecies regulation of pulpal health and disease. Further research is needed to elucidate the mechanisms by which vmiRs can potentially modulate the host response in pulpal disease. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
1997-05-24
STS-84 crew members give a "thumbs up" to press representatives and other onlookers on KSC’s Runway 33 after landing of the successful nine-day mission. From left, are Mission Specialist Jean-Francois Clervoy of the European Space Agency, Pilot Eileen Marie Collins, Commander Charles J. Precourt, Mission Specialist Elene V. Kondakova of the Russian Space Agency, and Mission Specialist Carlos I. Noriega. Not shown are Mission Specialist Edward Tsang Lu and returning astronaut and Mir 23 crew member Jerry M. Linenger. STS-84 was the sixth docking of the Space Shuttle with the Russian Space Station Mir. The Space Shuttle orbiter Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced Linenger, who has been on the Russian space station since Jan. 15. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
Rezaei, Fatemeh; Daryani, Ahmad; Sharifi, Mohammadreza; Sarvi, Shahabeddin; Jafari, Narjes; Pagheh, Abdol Sattar; Hashemi, Nooshin; Hejazi, Seyed Hossein
2018-05-22
Toxoplasma gondii is a ubiquitous and infectious parasite that multiplies in any nucleated cell of warm-blooded animals and humans worldwide. This parasite has intricate mechanisms to reciprocate host-cell apoptosis to exist in the host cell. So far, the details of the parasite interactions with host cells are not well known. MicroRNAs (miRNAs) are one of the small noncoding RNAs that are now considered as a key mechanism of gene regulation. They are important in physiological and pathological processes such as apoptosis. In this study a Real Time quantitative PCR technique was used to evaluate the levels of miR-20a of miRNAs family in human macrophage during T. gondii infection to determine the role of miR-20a in apoptosis. Then, the inhibition of miR-20a function through interaction with transfection of Locked Nucleic Acid (LNA) antisense oligomer was studied. Furthermore, it was examined whether miR-20a is involved in apoptosis of human macrophages with T. gondii infected cells using flow cytometry. We found that miR-20a expression is up-regulated in human macrophages following T. gondii infection. After LNA anti miR-20a oligomer transfection, miR-20a inhibition was evaluated by quantitative reverse transcriptase polymerase chain reaction. Flow cytometry results showed that LNA anti-miR20a oligomer increased apoptosis. In agreement with this result, we found that specific LNA oligonucleotides prevent the functional activity of miR-20a and promotion of human macrophages apoptosis with T. gondii infection by inhibition of this miRNAs gene. Also, the results support the concept that LNA oligomer antisense may be used as a therapeutic implement for blocking detrimental miRNAs overexpressed in infections. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biotechnology System Facility: Risk Mitigation on Mir
NASA Technical Reports Server (NTRS)
Gonda, Steve R., III; Galloway, Steve R.
2003-01-01
NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.
NASA Astrophysics Data System (ADS)
Kuznik, Frank
1994-06-01
On 4 Feb. 1993 a solar sail that traveled piggyback on a Progress resupply rocket to the Mir Space Station was deployed after undocking from the Mir. It was the first sun-propelled spacecraft, and it attempted to reflect a patch of sunlight onto the night side of Earth, but wasn't very successful because of extensive cloud cover. Solar sail technology and its historical development are briefly discussed. NASA'a views and the World Space Foundation's involvement in solar sail development are presented.
Hao, Jiawei; Luo, Jin; Chen, Ze; Ren, Qiaoyun; Guo, Jinxia; Liu, Xiaocui; Chen, Qiuyu; Wu, Feng; Wang, Zhen; Luo, Jianxun; Yin, Hong; Wang, Hui; Liu, Guangyuan
2017-05-22
The hard tick Haemaphysalis longicornis is widely distributed in eastern Asia, New Zealand and Australia and is considered the major vector of Theileria and Babesia, harmful parasites to humans and animals. Female ticks need successful blood meals to complete the life-cycle. Therefore, elucidation of the underlying molecular mechanisms of H. longicornis development and reproduction is considered important for developing control strategies against the tick and tick-borne pathogens. Luciferase assays were used to identify the targets of micro RNA miR-275 in vitro. RNAi of Vitellogenin (Vg) was used in phenotype rescue experiments of ticks with miR-275 inhibition, and these analyses were used to identify the authentic target of miR-275 in vivo. The expression of miR-275 in different tissues and developmental stages of ticks was assessed by real-time PCR. To elucidate the functions of miR-275 in female ticks, we injected a miR-275 antagomir into female ticks and observed the phenotypic changes. Statistical analyses were performed with GraphPad5 using Student's t-test. In this study, we identified Vg-2 as an authentic target of miR-275 both in vitro and in vivo by luciferase assays and phenotype rescue experiments. miR-275 plays the regulatory role in a tissue-specific manner and differentially in developmental stages. Silencing of miR-275 resulted in blood digestion problems, substantially impaired ovary development and significantly reduced egg mass (P < 0.0001). Furthermore, RNAi silencing of Vg-2 not only impacted the blood meal uptake (P < 0.05) but also the egg mass (P < 0.05). Significant rescue was observed in miR-275 knockout ticks when RNAi was applied to Vg-2. To our knowledge, this study is the first demonstration that miR-275 targets Vg-2 in H. longicornis and regulates the functions of blood digestion and ovary development. These findings improve the molecular understanding of tick development and reproduction.
Sequence-specific inhibition of microRNA-130a gene by CRISPR/Cas9 system in breast cancer cell line
NASA Astrophysics Data System (ADS)
Ainina Abdollah, Nur; Das Kumitaa, Theva; Yusof Narazah, Mohd; Razak, Siti Razila Abdul
2017-05-01
MicroRNAs (miRNAs) are short stranded noncoding RNA that play important roles in apoptosis, cell survival, development and cell proliferation. However, gene expression control via small regulatory RNA, particularly miRNA in breast cancer is still less explored. Therefore, this project aims to develop an approach to target microRNA-130a using the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system in MCF7, breast cancer cell line. The 20 bp sequences target at stem loop, 3ʹ and 5ʹ end of miR130a were cloned into pSpCas9(BB)-2A-GFP (PX458) plasmid, and the positive clones were confirmed by sequencing. A total of 5 μg of PX458-miR130a was transfected to MCF7 using Lipofectamine® 3000 according to manufacturer’s protocol. The transfected cells were maintained in the incubator at 37 °C under humidified 5% CO2. After 48 hours, cells were harvested and total RNA was extracted using miRNeasy Mini Kit (Qiagen). cDNAs were synthesised specific to miR-130a using TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems). Then, qRT-PCR was carried out using TaqMan Universal Master Mix (Applied Biosystems) to quantify the knockdown level of mature miRNAs in the cells. Result showed that miR-130a-5p was significantly downregulated in MCF7 cell line. However, no significant changes were observed for sequences targeting miR-130a-3p and stem loop. Thus, this study showed that the expression of miR-130a-5p was successfully down-regulated using CRISPR silencing system. This technique may be useful to manipulate the level of miRNA in various cell types to answer clinical questions at the molecular level.
Maimon, Roy; Ionescu, Ariel; Bonnie, Avichai; Sweetat, Sahar; Wald-Altman, Shane; Inbar, Shani; Gradus, Tal; Trotti, Davide; Weil, Miguel; Behar, Oded; Perlson, Eran
2018-06-13
Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in amyotrophic lateral sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR126-5p in presymptomatic ALS male mice models, and an increase in its targets: axon destabilizing Type 3 Semaphorins and their coreceptor Neuropilins. Using compartmentalized in vitro cocultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS. SIGNIFICANCE STATEMENT Despite some progress, currently no effective treatment is available for amyotrophic lateral sclerosis (ALS). We suggest a novel regulatory role for miR126-5p in ALS and demonstrate, for the first time, a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo . Copyright © 2018 Maimon et al.
MIR-ATR sensor for process monitoring
NASA Astrophysics Data System (ADS)
Geörg, Daniel; Schalk, Robert; Methner, Frank-Jürgen; Beuermann, Thomas
2015-06-01
A mid-infrared attenuated total reflectance (MIR-ATR) sensor has been developed for chemical reaction monitoring. The optical setup of the compact and low-priced sensor consists of an IR emitter as light source, a zinc selenide (ZnSe) ATR prism as boundary to the process, and four thermopile detectors, each equipped with an optical bandpass filter. The practical applicability was tested during esterification of ethanol and formic acid to ethyl formate and water as a model reaction with subsequent distillation. For reference analysis, a Fourier transform mid-infrared (FT-MIR) spectrometer with diamond ATR module was applied. On-line measurements using the MIR-ATR sensor and the FT-MIR spectrometer were performed in a bypass loop. The sensor was calibrated by multiple linear regression in order to link the measured absorbance in the four optical channels to the analyte concentrations. The analytical potential of the MIR-ATR sensor was demonstrated by simultaneous real-time monitoring of all four chemical substances involved in the esterification and distillation process. The temporal courses of the sensor signals are in accordance with the concentration values achieved by the commercial FT-MIR spectrometer. The standard error of prediction for ethanol, formic acid, ethyl formate, and water were 0.38 mol L - 1, 0.48 mol L - 1, 0.38 mol L - 1, and 1.12 mol L - 1, respectively. A procedure based on MIR spectra is presented to simulate the response characteristics of the sensor if the transmission ranges of the filters are varied. Using this tool analyte specific bandpass filters for a particular chemical reaction can be identified. By exchanging the optical filters, the sensor can be adapted to a wide range of processes in the chemical, pharmaceutical, and beverage industries.
Hou, Sen; Lin, Qiuyu; Guan, Feng; Lin, Chenghe
2018-06-12
To investigate the biological functions and regulatory mechanism of lncRNA TNRC6C-AS1 in thyroid cancer (TC). TNRC6C-AS1, miR-129-5p, and UNC5B expression levels were investigated by qRT-PCR and Western blot. CCK-8 assay was conducted to determine cell proliferation, while transwell assay was for inspection of cell migration and invasion. Through bioinformatic analysis, the interactions among TNRC6C-AS1, miR-129-5p, and UNC5B were predicted. Dual luciferase reporter gene assay and RNA pull-down assay confirmed the predicted target relationships. Tumor xenograft assay was applied to inspect the effect of TNRC6C-AS1 downregulation on TC development in vivo. TNRC6C-AS1 and UNC5B were overexpressed, while miR-129-5p was underexpressed in TC tissues and cells. TNRC6C-AS1/UNC5B downregulation and miR-129-5p overexpression could suppress proliferation, migration, and invasion of TC cells as well as inhibit tumorigenesis in vivo. MiR-129-5p targeted TNRC6C-AS1 and UNC5B in TC cells; and UNC5B expression was downregulated by knocking down TNRC6C-AS1, which competitively bound with miR-129-5p. Downregulation of TNRC6C-AS1 restrained TC development by knocking down UNC5B through upregulating the expression of miR-129-5p. © 2018 Wiley Periodicals, Inc.
Xiang, Xue-Lian; Yang, Xia; Liang, Hai-Wei; Qiu, Xiao-Hui; Yang, Li-Hua; Peng, Zhi-Gang; Chen, Gang
2018-01-01
Mounting evidence has shown that miR-23b-3p, which is associated with cell proliferation, invasion, and apoptosis, acts as a biomarker for diagnosis and outcomes in numerous cancers. However, the clinicopathological implication of miR-23b-3p in hepatocellular carcinoma (HCC) remains unclear. Our study evaluated the role of miR-23b-3p in HCC and investigated its potential application as a marker for preliminary diagnosis and therapy in HCC. High-throughput data from the NCBI Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were collected and analyzed. One hundred and one tissue sections of HCC were paired with adjacent non-cancerous HCC as further supplements. miR-23b-3p expression was detected using quantitative real-time PCR. Additionally, the relationship between miR-23b-3p expression and HCC progression and Time-to-recurrence (months) was explored. Ten algorithms were applied to predict the prospective target genes of miR-23b-3p. Next, we conducted bioinformatics analysis for further study. miR-23b-3p expression was pronouncedly decreased in HCC tissues in contrast with their paired adjacent non-cancerous HCC (P<0.001) with RT-qPCR. In total, 405 targets, acquired with consistent prediction from at least five databases, were used for the bioinformatics analysis. According to the Gene Ontology (GO) analysis, all targets were classified into biological processes, cellular components and molecular functions. In the pathway analysis, targets of miR-23b-3p were primarily enriched in the signaling pathways of renal cell carcinoma, hepatitis B and pancreatic cancer (corrected P-value <0.05). In the protein-protein interaction (PPI) network for miR-23b-3p, a total of 8 targets, including SRC, AKT1, EGFR, CTNNB1, BCL2, SMAD3, PTEN and KDM6A, were located in the key nodes with high degree (>35). In conclusion, this study provides impressive illumination of the potential role of miR-23b-3p in HCC tumorigenesis and progression. Furthermore, miR-23b-3p may act as a predictor of HCC and could be a new treatment target. PMID:29484429
Development of optical FBG force measurement system for the medical application
NASA Astrophysics Data System (ADS)
Song, Hoseok; Kim, Kiyoung; Suh, Jungwook; Lee, Jungju
2010-03-01
Haptic feedback plays a very important role in medical surgery. In minimally invasive surgery (MIS), however, very long and stiff bar of instruments take haptic feeling away from the surgeon. In minimally invasive robotic surgery (MIRS), moreover, haptic feelings are totally eliminated. Previous researchers have reported that the absence of force feedback increased the average force magnitude applied to the tissue by at least 50%, and increased the peakforce magnitude by at least a factor of two. Therefore, it is very important to provide haptic information in MIRS. Recently, many sensors are being developed for MIS or MIRS, but they have some obstacles in their application to real situations of medical surgery. The most critical problems are size limit and sterilizability. Optical fiber sensors are one of the most suitable sensors for this environment. Especially, optical fiber Bragg grating (FBG) sensor has one additional advantage than the other optical fiber sensors. FBG sensor is not influenced by intensity of light source. In this paper, we would like to present the initial results of study on the application of the FBG sensor to measure reflected forces in MIRS environments and then suggest the possibility of successful application to the MIRS systems.
Development of optical FBG force measurement system for the medical application
NASA Astrophysics Data System (ADS)
Song, Hoseok; Kim, Kiyoung; Suh, Jungwook; Lee, Jungju
2009-12-01
Haptic feedback plays a very important role in medical surgery. In minimally invasive surgery (MIS), however, very long and stiff bar of instruments take haptic feeling away from the surgeon. In minimally invasive robotic surgery (MIRS), moreover, haptic feelings are totally eliminated. Previous researchers have reported that the absence of force feedback increased the average force magnitude applied to the tissue by at least 50%, and increased the peakforce magnitude by at least a factor of two. Therefore, it is very important to provide haptic information in MIRS. Recently, many sensors are being developed for MIS or MIRS, but they have some obstacles in their application to real situations of medical surgery. The most critical problems are size limit and sterilizability. Optical fiber sensors are one of the most suitable sensors for this environment. Especially, optical fiber Bragg grating (FBG) sensor has one additional advantage than the other optical fiber sensors. FBG sensor is not influenced by intensity of light source. In this paper, we would like to present the initial results of study on the application of the FBG sensor to measure reflected forces in MIRS environments and then suggest the possibility of successful application to the MIRS systems.
MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4.
Cheng, Dantong; Zhao, Senlin; Tang, Huamei; Zhang, Dongyuan; Sun, Hongcheng; Yu, Fudong; Jiang, Weiliang; Yue, Ben; Wang, Jingtao; Zhang, Meng; Yu, Yang; Liu, Xisheng; Sun, Xiaofeng; Zhou, Zongguang; Qin, Xuebin; Zhang, Xin; Yan, Dongwang; Wen, Yugang; Peng, Zhihai
2016-07-19
Tumor metastasis is one of the leading causes of poor prognosis for colorectal cancer (CRC) patients. Loss of Smad4 contributes to aggression process in many human cancers. However, the underlying precise mechanism of aberrant Smad4 expression in CRC development is still little known. miR-20a-5p negatively regulated Smad4 by directly targeting its 3'UTR in human colorectal cancer cells. miR-20a-5p not only promoted CRC cells aggression capacity in vitro and liver metastasis in vivo, but also promoted the epithelial-to-mesenchymal transition process by downregulating Smad4 expression. In addition, tissue microarray analysis obtained from 544 CRC patients' clinical characters showed that miR-20a-5p was upregulated in human CRC tissues, especially in the tissues with metastasis. High level of miR-20a-5p predicted poor prognosis in CRC patients. Five miRNA target prediction programs were applied to identify potential miRNA(s) that target(s) Smad4 in CRC. Luciferase reporter assay and transfection technique were used to validate the correlation between miR-20a-5p and Smad4 in CRC. Wound healing, transwell and tumorigenesis assays were used to explore the function of miR-20a-5p and Smad4 in CRC progression in vitro and in vivo. The association between miR-20a-5p expression and the prognosis of CRC patients was evaluated by Kaplan-Meier analysis and multivariate cox proportional hazard analyses based on tissue microarray data. miR-20a-5p, as an onco-miRNA, promoted the invasion and metastasis ability by suppressing Smad4 expression in CRC cells, and high miR-20a-5p predicted poor prognosis for CRC patients, providing a novel and promising therapeutic target in human colorectal cancer.
MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4
Zhang, Dongyuan; Sun, Hongcheng; Yu, Fudong; Yue, Ben; Wang, Jingtao; Zhang, Meng; Yu, Yang; Liu, Xisheng; Sun, Xiaofeng; Zhou, Zongguang; Qin, Xuebin; Zhang, Xin; Yan, Dongwang; Wen, Yugang; Peng, Zhihai
2016-01-01
Background Tumor metastasis is one of the leading causes of poor prognosis for colorectal cancer (CRC) patients. Loss of Smad4 contributes to aggression process in many human cancers. However, the underlying precise mechanism of aberrant Smad4 expression in CRC development is still little known. Results miR-20a-5p negatively regulated Smad4 by directly targeting its 3′UTR in human colorectal cancer cells. miR-20a-5p not only promoted CRC cells aggression capacity in vitro and liver metastasis in vivo, but also promoted the epithelial-to-mesenchymal transition process by downregulating Smad4 expression. In addition, tissue microarray analysis obtained from 544 CRC patients’ clinical characters showed that miR-20a-5p was upregulated in human CRC tissues, especially in the tissues with metastasis. High level of miR-20a-5p predicted poor prognosis in CRC patients. Methods Five miRNA target prediction programs were applied to identify potential miRNA(s) that target(s) Smad4 in CRC. Luciferase reporter assay and transfection technique were used to validate the correlation between miR-20a-5p and Smad4 in CRC. Wound healing, transwell and tumorigenesis assays were used to explore the function of miR-20a-5p and Smad4 in CRC progression in vitro and in vivo. The association between miR-20a-5p expression and the prognosis of CRC patients was evaluated by Kaplan–Meier analysis and multivariate cox proportional hazard analyses based on tissue microarray data. Conclusions miR-20a-5p, as an onco-miRNA, promoted the invasion and metastasis ability by suppressing Smad4 expression in CRC cells, and high miR-20a-5p predicted poor prognosis for CRC patients, providing a novel and promising therapeutic target in human colorectal cancer. PMID:27286257
Monaghan, Michael; Browne, Shane; Schenke-Layland, Katja; Pandit, Abhay
2014-04-01
Directing appropriate extracellular matrix remodeling is a key aim of regenerative medicine strategies. Thus, antifibrotic interfering RNA (RNAi) therapy with exogenous microRNA (miR)-29B was proposed as a method to modulate extracellular matrix remodeling following cutaneous injury. It was hypothesized that delivery of miR-29B from a collagen scaffold will efficiently modulate the extracellular matrix remodeling response and reduce maladaptive remodeling such as aggressive deposition of collagen type I after injury. The release of RNA from the scaffold was assessed and its ability to silence collagen type I and collagen type III expression was evaluated in vitro. When primary fibroblasts were cultured with scaffolds doped with miR-29B, reduced levels of collagen type I and collagen type III mRNA expression were observed for up to 2 weeks of culture. When the scaffolds were applied to full thickness wounds in vivo, reduced wound contraction, improved collagen type III/I ratios and a significantly higher matrix metalloproteinase (MMP)-8: tissue inhibitor of metalloproteinase (TIMP)-1 ratio were detected when the scaffolds were functionalized with miR-29B. Furthermore, these effects were significantly influenced by the dose of miR-29B in the collagen scaffold (0.5 versus 5 μg). This study shows a potential of combining exogenous miRs with collagen scaffolds to improve extracellular matrix remodeling following injury.
Flux balance analysis predicts Warburg-like effects of mouse hepatocyte deficient in miR-122a
Wu, Hsuan-Hui; Chen, Meng-Chun; Liu, Wen-Huan; Wu, Wu-Hsiung; Chang, Peter Mu-Hsin; Huang, Chi-Ying F.; Tsou, Ann-Ping; Shiao, Ming-Shi
2017-01-01
The liver is a vital organ involving in various major metabolic functions in human body. MicroRNA-122 (miR-122) plays an important role in the regulation of liver metabolism, but its intrinsic physiological functions require further clarification. This study integrated the genome-scale metabolic model of hepatocytes and mouse experimental data with germline deletion of Mir122a (Mir122a–/–) to infer Warburg-like effects. Elevated expression of MiR-122a target genes in Mir122a–/–mice, especially those encoding for metabolic enzymes, was applied to analyze the flux distributions of the genome-scale metabolic model in normal and deficient states. By definition of the similarity ratio, we compared the flux fold change of the genome-scale metabolic model computational results and metabolomic profiling data measured through a liquid-chromatography with mass spectrometer, respectively, for hepatocytes of 2-month-old mice in normal and deficient states. The Ddc gene demonstrated the highest similarity ratio of 95% to the biological hypothesis of the Warburg effect, and similarity of 75% to the experimental observation. We also used 2, 6, and 11 months of mir-122 knockout mice liver cell to examined the expression pattern of DDC in the knockout mice livers to show upregulated profiles of DDC from the data. Furthermore, through a bioinformatics (LINCS program) prediction, BTK inhibitors and withaferin A could downregulate DDC expression, suggesting that such drugs could potentially alter the early events of metabolomics of liver cancer cells. PMID:28686599
Cell-specific dysregulation of microRNA expression in obese white adipose tissue.
Oger, Frédérik; Gheeraert, Celine; Mogilenko, Denis; Benomar, Yacir; Molendi-Coste, Olivier; Bouchaert, Emmanuel; Caron, Sandrine; Dombrowicz, David; Pattou, François; Duez, Hélène; Eeckhoute, Jérome; Staels, Bart; Lefebvre, Philippe
2014-08-01
Obesity is characterized by the excessive accumulation of dysfunctional white adipose tissue (WAT), leading to a strong perturbation of metabolic regulations. However, the molecular events underlying this process are not fully understood. MicroRNAs (miRNAs) are small noncoding RNAs acting as posttranscriptional regulators of gene expression in multiple tissues and organs. However, their expression and roles in WAT cell subtypes, which include not only adipocytes but also immune, endothelial, and mesenchymal stem cells as well as preadipocytes, have not been characterized. Design/Results: By applying differential miRNome analysis, we demonstrate that the expression of several miRNAs is dysregulated in epididymal WAT from ob/ob and high-fat diet-fed mice. Adipose tissue-specific down-regulation of miR-200a and miR-200b and the up-regulation of miR-342-3p, miR-335-5p, and miR-335-3p were observed. Importantly, a similarly altered expression of miR-200a and miR-200b was observed in obese diabetic patients. Furthermore, cell fractionation of mouse adipose tissue revealed that miRNAs are differentially expressed in adipocytes and in subpopulations from the stromal vascular fraction. Finally, integration of transcriptomic data showed that bioinformatically predicted miRNA target genes rarely showed anticorrelated expression with that of targeting miRNA, in contrast to experimentally validated target genes. Taken together, our data indicate that the dysregulated expression of miRNAs occurs in distinct cell types and is likely to affect cell-specific function(s) of obese WAT.
1997-05-24
The Space Shuttle orbiter Atlantis glides in for a landing on Runway 33 at KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. It will be the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and Jean-Francois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
Ling, Jing; Wu, Xiaoli; Fu, Ziyi; Tan, Jie; Xu, Qing
2015-10-01
Our previous study showed that the expression of miR-197 in leiomyoma was down-regulated compared with myometrium. Further, miR-197 has been identified to affect uterine leiomyoma cell proliferation, apoptosis, and metastasis ability, though the responsible molecular mechanism has not been well elucidated. In this study, we sought to determine the expression patterns of miR-197 targeted genes and to explore their potential functions, participating Pathways and the networks that are involved in the biological behavior of human uterine leiomyoma. After transfection of human uterine leiomyoma cells with miR-197, we confirmed the expression level of miR-197 using quantitative real-time PCR (qRT-PCR), and we detected the gene expression profiles after miR-197 over-expression through DNA microarray analysis. Further, we performed GO and Pathway analysis. The dominantly dys-regulated genes, which were up- or down-regulated by more than 10-fold, compared with parental cells, were confirmed using qRT-PCR technology. Compared with the control group, miR-197 was up-regulated by 30-fold after miR-197 lentiviral transfection. The microarray data showed that 872 genes were dys-regulated by more than 2-fold in human uterine leiomyoma cells after miR-197 overexpression, including 537 up-regulated and 335 down-regulated genes. The GO analysis indicated that the dys-regulated genes were primarily involved in response to stimuli, multicellular organ processes, and the signaling of biological progression. Further, Pathway analysis data showed that these genes participated in regulating several signaling Pathways, including the JAK/STAT signaling Pathway, the Toll-like receptor signaling Pathway, and cytokine-cytokine receptor interaction. The qRT-PCR results confirmed that 17 of the 66 selected genes, which were up- or down-regulated more than 10-fold by miR-197, were consistent with the microarray results, including tumorigenesis-related genes, such as DRT7, SLC549, SFMBT2, FLJ37956, FBLN2, C10orf35, HOXD12, CACNG7, and LOC100134279. Our study explored gene expression patterns after miR-197 overexpression and confirmed 17 dominantly dys-regulated genes, which could expand the insights into the function of miR-197 and the molecular mechanisms during the development and progression of uterine leiomyomas. This study might afford new clues for understanding the pathogenesis of uterine leiomyomas, and it could likely provide a unique method for diagnosing or predicting prognosis in the clinical treatment of leiomyoma. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Kijima, Taiki; Hazama, Shoichi; Tsunedomi, Ryouichi; Tanaka, Hironori; Takenouchi, Hiroko; Kanekiyo, Shinsuke; Inoue, Yuka; Nakashima, Masao; Iida, Michihisa; Sakamoto, Kazuhiko; Suzuki, Nobuaki; Takeda, Shigeru; Ueno, Tomio; Yamamoto, Shigeru; Yoshino, Shigefumi; Okuno, Kiyotaka; Nagano, Hiroaki
2017-01-01
Various vaccine treatments against metastatic colorectal cancer have been developed and applied. However, to improve the efficacy of immunotherapy, biomarkers that can predict the effects are needed. It has been reported that various microRNAs (miRNAs) in peripheral blood may be useful as non-invasive biomarkers. In this study, miRNAs influencing the efficacy of vaccine treatment were screened for in a microarray analysis of 13 plasma samples that were obtained from patients prior to vaccine treatment. To validate the screening results, real-time RT-PCR was performed using 93 plasma samples obtained from patients prior to vaccine treatment. Four candidate miRNAs were selected according to the results of the comprehensive analysis of miRNA expression, which were ranked using the Fisher criterion and the absolute value of the log2 ratio in the screening analysis. The validation analysis showed that in the HLA-A*2402‑matched patient group (vaccine-treated group), patients with a high expression of plasma miR-6826 had a poorer prognosis than those with a low expression (P=0.048). In contrast, in the HLA-A*2402-unmatched patient group (control group), there was no difference between the patients with high or low plasma miR-6826 expression (P=0.168). Similar results were obtained in the analysis of miR-6875 (P=0.029 and P=0.754, respectively). Moreover, multivariate analysis of the Cox regression model indicated that the expression of miR-6826 was the most significant predictor for overall survival (P=0.003, hazard ratio, 3.670). In conclusion, plasma miR-6826 and miR-6875 may be predictive biomarkers for a poor response to vaccine treatment. Although further clarification is needed regarding the functions of miR-6826 and miR-6875 and their relationship to immune‑related molecules, plasma miR-6826 and miR-6875 may be useful negative biomarkers for predicting the efficacy of vaccine treatment.
MiR-200c regulates ROS-induced apoptosis in murine BV-2 cells by targeting FAP-1.
Yu, D S; Lv, G; Mei, X F; Cao, Y; Wang, Y F; Wang, Y S; Bi, Y L
2014-12-02
Objective:Reactive oxygen species (ROS) are significantly upregulated after spinal cord injury (SCI). MicroRNAs (miRNAs) are reported to be widely involved in regulating gene expression. This paper aims to explore the correlation between ROS-induced cell apoptosis and abnormal miRNA expression after SCI.Methods:To profile the expression of miRNAs after SCI, miRNA microarray was applied and the result was verified by reverse transcription quantitative PCR (RT-qPCR). ROS production following H 2 O 2 stimulation was examined using dihydroethidium staining and flow cytometry. The levels of miR-200c after H 2 O 2 treatment were determined using RT-qPCR. Cell viability and apoptosis were examined in murine BV-2 cells transfected with miR-200c mimics, inhibitor or negative control. Immunofluorescence and western blot were used to further explore the effects of miR-200c on Fas-associated phosphatase-1 (FAP-1) expression.Results:MiR-200c was showed to be significantly increased after SCI by miRNA microassay and RT-qPCR. ROS production enhanced miR-200c expression in a dose-dependent manner and induced significant apoptosis in BV-2 cells. The upregulation of miR-200c reduced cell viability and induced BV-2 cell apoptosis. MiR-200c negatively regulated the expression of FAP-1, thereby inducing FAS signaling-induced apoptosis. RT-qPCR analysis showed that the FAP-1-targeting small interfering RNA (siRNA) did not affect the level of miR-200c in murine BV-2 cells. In addition, suppression of FAP-1 by siRNA promoted apoptosis, even in cells that were co-transfected with the miR-200c inhibitor.Conclusions:The current data suggested that miR-200c contributes to apoptosis in murine BV-2 cells by regulating the expression of FAP-1. This proposes a therapeutic target for enhancing neural cell functional recovery after SCI.Spinal Cord advance online publication, 2 December 2014; doi:10.1038/sc.2014.185.
Ning, Pengbo; Zhou, Yulu; Gao, Lifang; Sun, Yingying; Zhou, Wenfei; Liu, Furong; Yao, Zhenye; Xie, Lifang; Wang, Junhui; Gong, Chunmei
2017-01-01
Drought remains one of the main factors that negatively affect plant growth and development. Caragana korshinskii is widely distributed on the Loess Plateau, China, where it mediates soil and water loss and helps prevent desertification. However, little is known about the stress response mechanisms of C. korshinskii in water-starved environments. MicroRNAs (miRNAs) have been implicated in the regulation of plant responses to several types of biotic and abiotic stress. Here, we describe the miRNAs of wild C. korshinskii from Huangling, Yulin, and Dalad Banner, which occur along a precipitation gradient. Using next-generation sequencing technology, we obtained a total of 13 710 681, 15 048 945, and 15 198 442 reads for each location, respectively; after filtering and BLAST analysis, 490 conserved miRNAs and 96 novel miRNAs were characterized from the sRNAome data, with key functions determined using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. We also designed stem-loop qRT-PCR to validate the expression patterns of 5 conserved miRNAs (miR390, miR398, miR530, miR2119, and miR5559) that obviously responded to water stress in plants grown both under natural and experimental water stress conditions and found that the expression levels of miR2119 and miR5559 were negatively correlated with their predicted target genes. This study is the first to identify miRNAs from wild C. korshinskii and provides a basis for future studies of miRNA-mediated gene regulation of stress responses in C. korshinskii.
Prabu, Paramasivam; Rome, Sophie; Sathishkumar, Chandrakumar; Aravind, Sankaramoorthy; Mahalingam, Balakumar; Shanthirani, Coimbatore Subramanian; Gastebois, Caroline; Villard, Audrey; Mohan, Viswanathan; Balasubramanyam, Muthuswamy
2015-01-01
Several omics technologies are underway worldwide with an aim to unravel the pathophysiology of a complex phenotype such as type 2 diabetes mellitus (T2DM). While recent studies imply a clinically relevant and potential biomarker role of circulatory miRNAs in the etiology of T2DM, there is lack of data on this aspect in Indians—an ethnic population characterized to represent ‘Asian Indian phenotype’ known to be more prone to develop T2DM and cardiovascular disease than Europeans. We performed global serum miRNA profiling and the validation of candidate miRNAs by qRT-PCR in a cohort of subjects comprised of normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and patients with T2DM. Our study revealed 4 differentially expressed miRNAs (miR-128, miR-130b-3p, miR-374a-5p, miR-423-5p) in subjects with IGT and T2DM patients compared to control subjects. They were positively or negatively correlated to cholesterol levels, HbA1C, HOMA-IR and fasting insulin. Interestingly, circulating level of miR-128 and miR-130b-3p were also altered in serum of diet-induced diabetic mice compared to control animals. Among the altered circulating miRNAs, miR-128 had never been described in previous studies/populations and appeared to be a ‘New Lead’ in Indians. It was positively correlated with cholesterol both in prediabetic subjects and in diet-induced diabetic mice, suggesting that its increased level might be associated with the development of dyslipedemia associated with T2DM. Our findings imply directionality towards biomarker potential of miRNAs in the prevention/diagnosis/treatment outcomes of diabetes. PMID:26020947
Prabu, Paramasivam; Rome, Sophie; Sathishkumar, Chandrakumar; Aravind, Sankaramoorthy; Mahalingam, Balakumar; Shanthirani, Coimbatore Subramanian; Gastebois, Caroline; Villard, Audrey; Mohan, Viswanathan; Balasubramanyam, Muthuswamy
2015-01-01
Several omics technologies are underway worldwide with an aim to unravel the pathophysiology of a complex phenotype such as type 2 diabetes mellitus (T2DM). While recent studies imply a clinically relevant and potential biomarker role of circulatory miRNAs in the etiology of T2DM, there is lack of data on this aspect in Indians--an ethnic population characterized to represent 'Asian Indian phenotype' known to be more prone to develop T2DM and cardiovascular disease than Europeans. We performed global serum miRNA profiling and the validation of candidate miRNAs by qRT-PCR in a cohort of subjects comprised of normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and patients with T2DM. Our study revealed 4 differentially expressed miRNAs (miR-128, miR-130b-3p, miR-374a-5p, miR-423-5p) in subjects with IGT and T2DM patients compared to control subjects. They were positively or negatively correlated to cholesterol levels, HbA1C, HOMA-IR and fasting insulin. Interestingly, circulating level of miR-128 and miR-130b-3p were also altered in serum of diet-induced diabetic mice compared to control animals. Among the altered circulating miRNAs, miR-128 had never been described in previous studies/populations and appeared to be a 'New Lead' in Indians. It was positively correlated with cholesterol both in prediabetic subjects and in diet-induced diabetic mice, suggesting that its increased level might be associated with the development of dyslipedemia associated with T2DM. Our findings imply directionality towards biomarker potential of miRNAs in the prevention/diagnosis/treatment outcomes of diabetes.
Chen, Muyan; Zhang, Xiumei; Liu, Jianning; Storey, Kenneth B.
2013-01-01
The regulatory role of miRNA in gene expression is an emerging hot new topic in the control of hypometabolism. Sea cucumber aestivation is a complicated physiological process that includes obvious hypometabolism as evidenced by a decrease in the rates of oxygen consumption and ammonia nitrogen excretion, as well as a serious degeneration of the intestine into a very tiny filament. To determine whether miRNAs play regulatory roles in this process, the present study analyzed profiles of miRNA expression in the intestine of the sea cucumber (Apostichopus japonicus), using Solexa deep sequencing technology. We identified 308 sea cucumber miRNAs, including 18 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA) after at least 15 days of continuous torpor, were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to the active state). We identified 42 differentially expressed miRNAs [RPM (reads per million) >10, |FC| (|fold change|) ≥1, FDR (false discovery rate) <0.01] during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-200-3p, miR-2004, miR-2010, miR-22, miR-252a, miR-252a-3p and miR-92 were significantly over-expressed during deep aestivation compared with non-aestivation animals. Preliminary analyses of their putative target genes and GO analysis suggest that these miRNAs could play important roles in global transcriptional depression and cell differentiation during aestivation. High-throughput sequencing data and microarray data have been submitted to GEO database. PMID:24143179
Quantum cascade lasers (QCL) for active hyperspectral imaging
NASA Astrophysics Data System (ADS)
Yang, Quankui; Fuchs, Frank; Wagner, Joachim
2014-04-01
There is an increasing demand for wavelength agile laser sources covering the mid-infrared (MIR, 3.5-12 µm) wavelength range, among others in active imaging. The MIR range comprises a particularly interesting part of the electromagnetic spectrum for active hyperspectral imaging applications, due to the fact that the characteristic `fingerprint' absorption spectra of many chemical compounds lie in that range. Conventional semiconductor diode laser technology runs out of steam at such long wavelengths. For many applications, MIR coherent light sources based on solid state lasers in combination with optical parametric oscillators are too complex and thus bulky and expensive. In contrast, quantum cascade lasers (QCLs) constitute a class of very compact and robust semiconductor-based lasers, which are able to cover the mentioned wavelength range using the same semiconductor material system. In this tutorial, a brief review will be given on the state-of-the-art of QCL technology. Special emphasis will be addressed on QCL variants with well-defined spectral properties and spectral tunability. As an example for the use of wavelength agile QCL for active hyperspectral imaging, stand-off detection of explosives based on imaging backscattering laser spectroscopy will be discussed.
O’Neill, Sadhbh; Larsen, Mette Bohl; Gregersen, Søren; Hermansen, Kjeld; O’Driscoll, Lorraine
2018-01-01
Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p’s predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome. PMID:29507696
O'Neill, Sadhbh; Larsen, Mette Bohl; Gregersen, Søren; Hermansen, Kjeld; O'Driscoll, Lorraine
2018-02-06
Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p's predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome.
Multimedia Information Retrieval Literature Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Pak C.; Bohn, Shawn J.; Payne, Deborah A.
This survey paper highlights some of the recent, influential work in multimedia information retrieval (MIR). MIR is a branch area of multimedia (MM). The young and fast-growing area has received strong industrial and academic support in the United States and around the world (see Section 7 for a list of major conferences and journals of the community). The term "information retrieval" may be misleading to those with different computer science or information technology backgrounds. As shown in our discussion later, it indeed includes topics from user interaction, data analytics, machine learning, feature extraction, information visualization, and more.
NASA Technical Reports Server (NTRS)
1997-01-01
Session WA3 includes short reports concerning: (1) Physiolab A Cardio Vascular Laboratory; (2) MEDEX: A Flexible Modular Physiological Laboratory; (3) A Sensate Liner for Personnel Monitoring Applications; (4) Secure Remote Access to Physiological Data; (5) DARA Vestibular Equipment Onboard MIR; (6) The Kinelite Project: A New powerful Motion Analysis System for Spacelab Mission; (7) The Technical Evolution of the French Neurosciences Multipurpose Instruments Onboard the MIR Station; (8) Extended Ground-Based Research in Preparation for Life Sciences Experiments; and (9) MEDES Clinical Research Facility as a Tool to Prepare ISSA Space Flights.
Shuttle-Mir, CD-ROM Supplement
NASA Technical Reports Server (NTRS)
Morgan, Clay; Launius, Roger (Technical Monitor)
2001-01-01
This CD-ROM is a companion to an illustrated history book with the same title. This multi-media, searchable CD includes the full text and images in the book, as well as additional material. Interviews, photographs, and biographies of the U.S. Astronauts, cosmonauts, and team members for the Shuttle-Mir Program are available. STS Mission Summaries for each mission involved can be viewed, including launch and landing details, crew lists, and mission highlights. Photographs and videos from each mission are included, as well as diagrams of different spacecraft, and computer-generated animations of the Mir deorbit, collision, and flyaround. Additional documents include mission status reports, published documents, news releases, personal letters, and oral histories. The experiments carried out on Mir are described, highlighting combustion and fluid physics research, life in microgravity, and research of the development of the solar system. The focus on improving space technology and planning for the International Space Station is explained. The main features of the book itself include: (1) Training and Operations; (2) Long Duration Psychology; (3) Bilingual Blues; and (4) Earth Observations.
Xie, Xiao-Juan; Ma, Li-Gang; Xi, Kai; Fan, Dong-Mei; Li, Jian-Guo; Zhang, Quan; Zhang, Wei
2017-01-01
Objective To investigate the effects of microRNA-223 on morphine analgesic tolerance by targeting NLRP3 in a rat model of neuropathic pain. Methods Our study selected 100 clean grade healthy Sprague-Dawley adult male rats weighing 200 to 250 g. After establishment of a rat model of chronic constriction injury, these rats were divided into 10 groups (10 rats in each group): the normal control, sham operation, chronic constriction injury, normal saline, morphine, miR-223, NLRP3, miR-223 + morphine, NLRP3 + morphine, and miR-223 + NLRP3 + morphine groups. The real-time quantitative polymerase chain reaction assay, Western blotting, and enzyme-linked immunosorbent assay were used for detecting the mRNA and protein expressions of NLRP3, apoptosis-associated speck-like protein, Caspase-1, Interleukin (IL)-1β, and IL-18 in sections of lumbar spinal cord. Immunohistochemistry was applied for detecting the positive rates of NLRP3, apoptosis-associated speck-like protein, Caspase-1, IL-1β, and IL-18. Results The paw withdrawal threshold and percentage maximum possible effect (%MPE) were higher in chronic constriction injury group when compared with the normal control and sham operation groups. Behavioral tests showed that compared with the chronic constriction injury and normal saline groups, the morphine and miR-223 + morphine groups showed obvious analgesic effects. Expressions of miR-223 in the miR-223, miR-223 + morphine, and miR-223 + NLRP3 + morphine were significantly higher than those in the chronic constriction injury, normal saline, and morphine groups. Compared with chronic constriction injury, normal saline and morphine groups, the mRNA and protein expressions of NLRP3, apoptosis-associated speck-like protein, Caspase-1, IL-1β, and IL-18 were significantly decreased in the miR-223 and miR-223 + morphine groups, while mRNA and protein expressions of NLRP3, apoptosis-associated speck-like protein, Caspase-1, IL-1β, and IL-18 were significantly increased in the NLRP3 and NLRP3 + morphine group. Conclusion Our study provides strong evidence that miR-223 could suppress the activities of NLRP3 inflammasomes (NLRP3, apoptosis-associated speck-like protein, and Caspase-1) to relieve morphine analgesic tolerance in rats by down-regulating NLRP3. PMID:28580822
Determination of total phenolic compounds in compost by infrared spectroscopy.
Cascant, M M; Sisouane, M; Tahiri, S; Krati, M El; Cervera, M L; Garrigues, S; de la Guardia, M
2016-06-01
Middle and near infrared (MIR and NIR) were applied to determine the total phenolic compounds (TPC) content in compost samples based on models built by using partial least squares (PLS) regression. The multiplicative scatter correction, standard normal variate and first derivative were employed as spectra pretreatment, and the number of latent variable were optimized by leave-one-out cross-validation. The performance of PLS-ATR-MIR and PLS-DR-NIR models was evaluated according to root mean square error of cross validation and prediction (RMSECV and RMSEP), the coefficient of determination for prediction (Rpred(2)) and residual predictive deviation (RPD) being obtained for this latter values of 5.83 and 8.26 for MIR and NIR, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Evolution of risk assessment strategies for food and feed uses of stacked GM events.
Kramer, Catherine; Brune, Phil; McDonald, Justin; Nesbitt, Monique; Sauve, Alaina; Storck-Weyhermueller, Sabine
2016-09-01
Data requirements are not harmonized globally for the regulation of food and feed derived from stacked genetically modified (GM) events, produced by combining individual GM events through conventional breeding. The data required by some regulatory agencies have increased despite the absence of substantiated adverse effects to animals or humans from the consumption of GM crops. Data from studies conducted over a 15-year period for several stacked GM event maize (Zea mays L.) products (Bt11 × GA21, Bt11 × MIR604, MIR604 × GA21, Bt11 × MIR604 × GA21, Bt11 × MIR162 × GA21 and Bt11 × MIR604 × MIR162 × GA21), together with their component single events, are presented. These data provide evidence that no substantial changes in composition, protein expression or insert stability have occurred after combining the single events through conventional breeding. An alternative food and feed risk assessment strategy for stacked GM events is suggested based on a problem formulation approach that utilizes (i) the outcome of the single event risk assessments, and (ii) the potential for interactions in the stack, based on an understanding of the mode of action of the transgenes and their products. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Xu, Yan; Chen, Yan; Li, Daliang; Liu, Qing; Xuan, Zhenyu; Li, Wen-Hong
2017-02-01
MicroRNAs are small non-coding RNAs acting as posttranscriptional repressors of gene expression. Identifying mRNA targets of a given miRNA remains an outstanding challenge in the field. We have developed a new experimental approach, TargetLink, that applied locked nucleic acid (LNA) as the affinity probe to enrich target genes of a specific microRNA in intact cells. TargetLink also consists a rigorous and systematic data analysis pipeline to identify target genes by comparing LNA-enriched sequences between experimental and control samples. Using miR-21 as a test microRNA, we identified 12 target genes of miR-21 in a human colorectal cancer cell by this approach. The majority of the identified targets interacted with miR-21 via imperfect seed pairing. Target validation confirmed that miR-21 repressed the expression of the identified targets. The cellular abundance of the identified miR-21 target transcripts varied over a wide range, with some targets expressed at a rather low level, confirming that both abundant and rare transcripts are susceptible to regulation by microRNAs, and that TargetLink is an efficient approach for identifying the target set of a specific microRNA in intact cells. C20orf111, one of the novel targets identified by TargetLink, was found to reside in the nuclear speckle and to be reliably repressed by miR-21 through the interaction at its coding sequence.
Peyret, Hadrien; Gehin, Annick; Thuenemann, Eva C.; Blond, Donatienne; El Turabi, Aadil; Beales, Lucy; Clarke, Dean; Gilbert, Robert J. C.; Fry, Elizabeth E.; Stuart, David I.; Holmes, Kris; Stonehouse, Nicola J.; Whelan, Mike; Rosenberg, William; Lomonossoff, George P.; Rowlands, David J.
2015-01-01
The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic virus-like particles (HBc VLPs) when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR) on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody) retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody. PMID:25830365
Alternate approaches to repress endogenous microRNA activity in Arabidopsis thaliana
Wang, Ming-Bo
2011-01-01
MicroRnAs (miRnAs) are an endogenous class of regulatory small RnA (sRnA). in plants, miRnAs are processed from short non-protein-coding messenger RnAs (mRnAs) transcribed from small miRnA genes (MIR genes). Traditionally in the model plant Arabidopsis thaliana (Arabidopsis), the functional analysis of a gene product has relied on the identification of a corresponding T-DnA insertion knockout mutant from a large, randomly-mutagenized population. However, because of the small size of MIR genes and presence of multiple, highly conserved members in most plant miRnA families, it has been extremely laborious and time consuming to obtain a corresponding single or multiple, null mutant plant line. Our recent study published in Molecular Plant1 outlines an alternate method for the functional characterization of miRnA action in Arabidopsis, termed anti-miRnA technology. Using this approach we demonstrated that the expression of individual miRnAs or entire miRnA families, can be readily and efficiently knocked-down. Our approach is in addition to two previously reported methodologies that also allow for the targeted suppression of either individual miRnAs, or all members of a MIR gene family; these include miRnA target mimicry2,3 and transcriptional gene silencing (TGS) of MIR gene promoters.4 All three methodologies rely on endogenous gene regulatory machinery and in this article we provide an overview of these technologies and discuss their strengths and weaknesses in inhibiting the activity of their targeted miRnA(s). PMID:21358288
Chen, Xuan; Wu, Ren-Zhao; Zhu, Yong-Qiang; Ren, Ze-Ming; Tong, Ye-Ling; Yang, Feng; Dai, Guan-Hai
2018-01-30
Recent studies have found that plant derived microRNA can cross-kingdom regulate the expression of genes in humans and other mammals, thereby resisting diseases. Can exogenous miRNAs cross the blood-prostate barrier and entry prostate then participate in prostate disease treatment? Using HiSeq sequencing and RT-qPCR technology, we detected plant miRNAs that enriched in the prostates of rats among the normal group, BPH model group and rape bee pollen group. To forecast the functions of these miRNAs, the psRobot software and TargetFinder software were used to predict their candidate target genes in rat genome. The qRT-PCR technology was used to validate the expression of candidate target genes. Plant miR5338 was enriched in the posterior lobes of prostate gland of rats fed with rape bee pollen, which was accompanied by the improvement of BPH. Among the predicted target genes of miR5338, Mfn1 was significantly lower in posterior lobes of prostates of rats in the rape bee pollen group than control groups. Further experiments suggested that Mfn1 was highly related to BPH. These results suggesting that plant-derived miR5338 may involve in treatment of rat BPH through inhibiting Mfn1 in prostate. These results will provide more evidence for plant miRNAs cross-kingdom regulation of animal gene, and will provide preliminary theoretical and experimental basis for development of rape bee pollen into innovative health care product or medicine for the treatment of BPH.
Identification and validation of Asteraceae miRNAs by the expressed sequence tag analysis.
Monavar Feshani, Aboozar; Mohammadi, Saeed; Frazier, Taylor P; Abbasi, Abbas; Abedini, Raha; Karimi Farsad, Laleh; Ehya, Farveh; Salekdeh, Ghasem Hosseini; Mardi, Mohsen
2012-02-10
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a vital role in the regulation of gene expression. Despite their identification in hundreds of plant species, few miRNAs have been identified in the Asteraceae, a large family that comprises approximately one tenth of all flowering plants. In this study, we used the expressed sequence tag (EST) analysis to identify potential conserved miRNAs and their putative target genes in the Asteraceae. We applied quantitative Real-Time PCR (qRT-PCR) to confirm the expression of eight potential miRNAs in Carthamus tinctorius and Helianthus annuus. We also performed qRT-PCR analysis to investigate the differential expression pattern of five newly identified miRNAs during five different cotyledon growth stages in safflower. Using these methods, we successfully identified and characterized 151 potentially conserved miRNAs, belonging to 26 miRNA families, in 11 genus of Asteraceae. EST analysis predicted that the newly identified conserved Asteraceae miRNAs target 130 total protein-coding ESTs in sunflower and safflower, as well as 433 additional target genes in other plant species. We experimentally confirmed the existence of seven predicted miRNAs, (miR156, miR159, miR160, miR162, miR166, miR396, and miR398) in safflower and sunflower seedlings. We also observed that five out of eight miRNAs are differentially expressed during cotyledon development. Our results indicate that miRNAs may be involved in the regulation of gene expression during seed germination and the formation of the cotyledons in the Asteraceae. The findings of this study might ultimately help in the understanding of miRNA-mediated gene regulation in important crop species. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Hoseok; Kim, Kiyoung; Lee, Jungju
2011-07-01
Force feedback plays a very important role in medical surgery. In minimally invasive surgery (MIS), however, the very long and stiff bars of surgical instruments greatly diminish force feedback for the surgeon. In the case of minimally invasive robotic surgery (MIRS), force feedback is totally eliminated. Previous researchers have reported that the absence of force feedback increased the average force magnitude applied to the tissue by at least 50%, and increased the peak force magnitude by at least a factor of two. Therefore, it is very important to provide force information in MIRS. Recently, many sensors are being developed for MIS and MIRS, but some obstacles to their application in actual medical surgery must be surmounted. The most critical problems are size limit and sterilizability. Optical fiber sensors are among the most suitable sensors for the surgical environment. The optical fiber Bragg grating (FBG) sensor, in particular, offers an important additional advantage over other optical fiber sensors in that it is not influenced by the intensity of the light source. In this paper, we present the initial results of a study on the application of a FBG sensor to measure reflected forces in MIRS environments and suggest the possibility of successful application to MIRS systems.
Ciculating miRNA-21 as a Biomarker Predicts Polycystic Ovary Syndrome (PCOS) in Patients.
Jiang, Liyan; Li, Wei; Wu, Minmin; Cao, Sifan
2015-01-01
Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, hyperinsulinemia, and infertility. In PCOS, abnormal regulation of relevant genes is required for follicular development. By binding to the 3' untranslated region (3'URT), microRNAs (miRNAs) are widely involved in posttranscriptional gene regulation. However, few studies have been conducted on circulating miRNA expression in PCOS. This study aims to describe altered expression of circulating miR-21 in PCOS. The expression of serum miRNAs of PCOS patients were explored using the TaqMan Low Density Array followed by individual quantitative reverse transcription polymerase chain reaction assays. The protein level of LATS1 was determined using Western blot. To validate whether miR-21 targeted LATS1, the luciferase assay was applied. In comparison with normal subjects, the circulating level of miRNA-21 was significantly enhanced in PCOS patients. In PCOS patients, the expression levels of MST1/2, LATS1/2, TAZ were much lower than the control subjects. Luciferase reporter assay revealed that LATS1 was a downstream target of miR-21. In comparison with normal subjects, serum miR-21 is obviously increased in PCOS patients. Through targeting LATS1, miR-21 could prompt PCOS progression and could act as a novel non-invasive biomarker for diagnosis of PCOS.
Assessment of Thermal Control and Protective Coatings
NASA Technical Reports Server (NTRS)
Mell, Richard J.
2000-01-01
This final report is concerned with the tasks performed during the contract period which included spacecraft coating development, testing, and applications. Five marker coatings consisting of a bright yellow handrail coating, protective overcoat for ceramic coatings, and specialized primers for composites (or polymer) surfaces were developed and commercialized by AZ Technology during this program. Most of the coatings have passed space environmental stability requirements via ground tests and/or flight verification. Marker coatings and protective overcoats were successfully flown on the Passive Optical Sample Assembly (POSA) and the Optical Properties Monitor (OPM) experiments flown on the Russian space station MIR. To date, most of the coatings developed and/or modified during this program have been utilized on the International Space Station and other spacecraft. For ISS, AZ Technology manufactured the 'UNITY' emblem now being flown on the NASA UNITY node (Node 1) that is docked to the Russian Zarya (FGB) utilizing the colored marker coatings (white, blue, red) developed by AZ Technology. The UNITY emblem included the US American flag, the Unity logo, and NASA logo on a white background, applied to a Beta cloth substrate.
1997-05-24
This unusual view of the underside of the Space Shuttle orbiter Atlantis shortly before landing was taken by a fish-eye camera lens from KSC’s Shuttle Landing Facility. The Vehicle Assembly Building is in the background at left. The Shuttle Training Aircraft can be seen in the distance, at center. Atlantis is wrapping up its nine-day STS-84 mission, which was the sixth docking of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger is returning to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and Jean-Francois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
Tao, Yi-Fan; Qiang, Jun; Yin, Guo-Jun; Xu, Pao; Shi, Qiong; Bao, Jing-Wen
2017-10-01
MicroRNAs (miRNAs) play vital roles in modulating diverse metabolic processes in the liver, including lipid metabolism. Genetically improved farmed tilapia (GIFT, Oreochromis niloticus), an important aquaculture species in China, is susceptible to hepatic steatosis when reared in intensive culture systems. To investigate the miRNAs involved in GIFT lipid metabolism, two hepatic small RNA libraries from high-fat diet-fed and normal-fat diet-fed GIFT were constructed and sequenced using high-throughput sequencing technology. A total of 204 known and 56 novel miRNAs were identified by aligning the sequencing data with known Danio rerio miRNAs listed in miRBase 21.0. Six known miRNAs (miR-30a-5p, miR-34a, miR-145-5p, miR-29a, miR-205-5p, and miR-23a-3p) that were differentially expressed between the high-fat diet and normal-fat diet groups were validated by quantitative real-time PCR. Bioinformatics tools were used to predict the potential target genes of these differentially expressed miRNAs, and Gene Ontology enrichment analysis indicated that these miRNAs may play important roles in diet-induced hepatic steatosis in GIFT. Our results provide a foundation for further studies of the role of miRNAs in tilapia lipid homeostasis regulation, and may help to identify novel targets for therapeutic interventions to reduce the occurrence of fatty liver disease in farmed tilapia. Copyright © 2017. Published by Elsevier Ltd.
1997-05-24
The Space Shuttle orbiter Atlantis touches down on Runway 33 of the KSC Shuttle Landing Facility, bringing to an end the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
1997-05-24
The Space Shuttle orbiter Atlantis touches down on Runway 33 of the KSC Shuttle Landing Facility, bringing to an end the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
1997-05-24
The Space Shuttle orbiter Atlantis touches down on Runway 33 of the KSC Shuttle Landing Facility, bringing to an end the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
1997-05-24
The Space Shuttle orbiter Atlantis touches down on Runway 33 of the KSC Shuttle Landing Facility, bringing to an end the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma.
Rani, Sweta; Gately, Kathy; Crown, John; O'Byrne, Ken; O'Driscoll, Lorraine
2013-12-01
Early diagnosis and the ability to predict the most relevant treatment option for individuals is essential to improve clinical outcomes for non-small cell lung cancer (NSCLC) patients. Adenocarcinoma (ADC), a subtype of NSCLC, is the single biggest cancer killer and therefore an urgent need to identify minimally invasive biomarkers to enable early diagnosis. Recent studies, by ourselves and others, indicate that circulating miRNAs have potential as biomarkers. Here we applied global profiling approaches in serum from patients with ADC of the lung to explore if miRNAs have potential as diagnostic biomarkers. This study involved RNA isolation from 80 sera specimens including those from ADC patients (equal numbers of stages 1, 2, 3, and 4) and age- and gender-matched controls (n = 40 each). Six hundred and sixty-seven miRNAs were co-analyzed in these specimens using TaqMan low density arrays and qPCR validation using individual miRNAs. Overall, approximately 390 and 370 miRNAs were detected in ADC and control sera, respectively. A group of 6 miRNAs, miR-30c-1* (AUC = 0.74; P<0.002), miR-616* (AUC = 0.71; P = 0.001), miR-146b-3p (AUC = 0.82; P<0.0001), miR-566 (AUC = 0.80; P<0.0001), miR-550 (AUC = 0.72; P = 0.0006), and miR-939 (AUC = 0.82; P<0.0001) was found to be present at substantially higher levels in ADC compared with control sera. Conversely, miR-339-5p and miR-656 were detected at substantially lower levels in ADC sera (co-analysis resulting in AUC = 0.6; P = 0.02). Differences in miRNA profile identified support circulating miRNAs having potential as diagnostic biomarkers for ADC. More extensive studies of ADC and control serum specimens are warranted to independently validate the potential clinical relevance of these miRNAs as minimally invasive biomarkers for ADC.
Li, Ce; Dong, Qian; Che, Xiaofang; Xu, Ling; Li, Zhi; Fan, Yibo; Hou, Kezuo; Wang, Shuo; Qu, Jinglei; Xu, Lu; Wen, Ti; Yang, Xianghong; Qu, Xiujuan; Liu, Yunpeng
2018-06-25
MicroRNAs can be used in the prognosis of malignancies; however, their regulatory mechanisms are unknown, especially in pancreatic ductal adenocarcinoma (PDAC). In 120 PDAC specimens, miRNA levels were assessed by quantitative real time polymerase chain reaction (qRT-PCR). Then, the role of miR-29b-2-5p in cell proliferation was evaluated both in vitro (Trypan blue staining and cell cycle analysis in the two PDAC cell lines SW1990 and Capan-2) and in vivo using a xenograft mouse model. Next, bioinformatics methods, a luciferase reporter assay, Western blot, and immunohistochemistry (IHC) were applied to assess the biological effects of Cbl-b inhibition by miR-29b-2-5p. Moreover, the relationship between Cbl-b and p53 was evaluated by immunoprecipitation (IP), Western blot, and immunofluorescence. From the 120 PDAC patients who underwent surgical resection, ten patients with longest survival and ten with shortest survival were selected. We found that high miR-29b-2-5p expression was associated with good prognosis (p = 0.02). The validation cohort confirmed miR-29b-2-5p as an independent prognostic factor in PDAC (n = 100, 95% CI = 0.305-0.756, p = 0.002). Furthermore, miR-29b-2-5p inhibited cell proliferation, induced cell cycle arrest, and promoted apoptosis both in vivo and in vitro. Interestingly, miR-29b-2-5p directly bound the Cbl-b gene, down-regulating its expression and reducing Cbl-b-mediated degradation of p53. Meanwhile, miR-29b-2-5p expression was negatively correlated with Cbl-b in PDAC tissues (r = - 0.33, p = 0.001). Taken together, these findings indicated that miR-29b-2-5p improves prognosis in PDAC by targeting Cbl-b to promote p53 expression, and would constitute an important prognostic factor in PDAC.
Dai, Guangyao; Yao, Xiaoguang; Zhang, Yubin; Gu, Jianbin; Geng, Yunfeng; Xue, Fei; Zhang, Jingcheng
2018-04-01
Cancer-associated fibroblasts (CAFs) contribute to the proliferation of colorectal cancer(CRC) cells. However, the mechanism by which CAFs develop in the tumor microenvironment remains unknown. Exosomes may be involved in activating CAFs. Using a miRNA expression profiling array, we determined the miRNA expression profile of secretory exosomes in CRC cells and then identified potential miRNAs with significant differential expression compared to normal cells via enrichment analysis. Predicted targets of candidate miRNAs were then assessed via bioinformatics analysis. Realtime qPCR, western blot, and cell cycle analyses were performed to evaluate the role of candidate exosomal miRNAs. Luciferase reporter assays were applied to confirm whether candidate exosomal miRNAs control target pathway expression. A CRC xenograft mouse model was constructed to evaluate tumor growth in vivo. Exosomes from CRC cells contained significantly higher levels of miR-10b than did exosomes from normal colorectal epithelial cells. Moreover, exosomes containing miR-10b were transferred to fibroblasts. Bioinformatics analysis identified PIK3CA, as a potential target of miR-10b. Luciferase reporter assays confirmed that miR-10b directly inhibited PIK3CA expression. Co-culturing fibroblasts with exosomes containing miR-10b significantly suppressed PIK3CA expression and decreased PI3K/Akt/mTOR pathway activity. Finally, exosomes containing miR-10b reduced fibroblast proliferation but promoted expression of TGF-β and SM α-actin, suggesting that exosomal miR-10b may activate fibroblasts to become CAFs that express myofibroblast markers. These activated fibroblasts were able to promote CRC growth in vitro and in vivo. CRC-derived exosomes actively promote disease progression by modulating surrounding stromal cells, which subsequently acquire features of CAFs. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
State-of-the-art on viral microRNAs in HPV infection and cancer development.
Poltronieri, Palmiro; Sun, Binlian; Huang, Kai-Yao; Chang, Tzu-Hao; Lee, Tzong-Yi
2018-03-27
high-risk HPV subtypes are driving forces for human cancer development: HPV-16 and HPV-18 are responsible for most HPV-caused cancers. This review describes the present knowledge on HR-HPV genomes coding potential for viral miRNAs. HPV subtypes miRNA database, VIRmiRtar, has been constructed applying bioinformatics and a computational method, ViralMir, exploiting structural features, presence of hairpins, and validation by comparison with RNA sequencing datasets. Several miRNA candidates have been localised in the genomes of high-risk HPV subtypes. Among these, HPV-16 miR-1, miR-2 and miR-3. The database contains a list of host candidate gene targets that may be responsible for the oncogenesis in the various cellular environments. miRNA silencing therapies, based on specific cellular uptake of miRNA mimics and antagomiRs, directed towards HPV encoded miRNAs and/or microRNAs deregulated in the host cells, could be a valuable approach to support pharmaceutical interventions in the treatment of HPV dependent cancers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wang, Yong; Zeng, Xiandong; Wang, Ningning; Zhao, Wei; Zhang, Xi; Teng, Songling; Zhang, Yueyan; Lu, Zhi
2018-05-12
Accumulating evidences indicate that non-coding RNAs (ncRNAs) including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) acting as crucial regulators in osteosarcoma (OS). Previously, we reported that Rho associated coiled-coil containing protein kinase 1 (ROCK1), a metastatic-related gene was negatively regulated by microRNA-335-5p (miR-335-5p) and work as an oncogene in osteosarcoma. Whether any long non-coding RNAs participate in the upstream of miR-335-5p/ROCK1 axial remains unclear. Expression of differentiation antagonizing non-protein coding RNA (DANCR) and miR-335-5p/miR-1972 in osteosarcoma tissues were determined by a qRT-PCR assay and an ISH assay. Osteosarcoma cells' proliferation and migration/invasion ability changes were measured by a CCK-8/EDU assay and a transwell assay respectively. ROCK1 expression changes were checked by a qRT-PCR assay and a western blot assay. Targeted binding effects between miR-335-5p/miR-1972 and ROCK1 or DANCR were verified by a dual luciferase reporter assay and a RIP assay. In vivo experiments including a nude formation assay as well as a CT scan were applied to detect tumor growth and metastasis changes in animal level. In the present study, an elevated DNACR was found in osteosarcoma tissue specimens and in osteosarcoma cell lines, and the elevated DNACR was closely correlated with poor prognosis in clinical patients. Functional experiments illustrated that a depression of DANCR suppressed ROCK1-mediated proliferation and metastasis in osteosarcoma cells. The results of western blot assays and qRT-PCR assays revealed that DANCR regulated ROCK1 via crosstalk with miR-335-5p and miR-1972. Further cellular behavioral experiments demonstrated that DNACR promoted ROCK1-meidated proliferation and metastasis through decoying both miR-335-5p and miR-1972. Finally, the outcomes of in vivo animal models showed that DANCR promoted tumor growth and lung metastasis of osteosarcoma. LncRNA DANCR work as an oncogene and promoted ROCK1-mediated proliferation and metastasis through acting as a competing endogenous RNA (ceRNA) in osteosarcoma.
JPRS report: Science and technology. Central Eurasia: Space
NASA Astrophysics Data System (ADS)
1994-12-01
Translated articles cover the following topics: plasma instabilities and space vehicles, need discussed for protection against space catastrophes, Russians offer new energy concept for space stations, Russian space projects: Martian research, multi-impulse rendezvous trajectory for two spacecraft in circular orbit, placement of spacecraft into orbit around Mars with aerobraking, model of the shielding for the inhabited compartments of the base module of the Mir station, and measurement of the background electrostatic and variable electric fields on the outer surface of the Kvant module of the Mir orbital station. There are 25 translated articles in this 28 December 1994 edition.
Further Investigations of the Passive Optical Sample Assembly (POSA) - I Flight Experiment
NASA Technical Reports Server (NTRS)
Finckenor, Miria M.; Kamenetzky, Rachel R.; Vaughn, Jason A.; Mell, Richard; Deshpande, M. S.
2001-01-01
The Passive Optical Sample Assembly-I (POSA-I), part of the Mir Environmental Effects Payload (MEEP), was designed to study the combined effects of contamination, atomic oxygen, ultraviolet radiation, vacuum, then-nal cycling, and other constituents of the space environment on spacecraft materials. The MEEP program is a Phase I International Space Station Risk Mitigation Experiment. Candidate materials for the International Space Station (ISS) were exposed in a specially designed "suitcase" carrier, with identical specimens facing either Mir or space. The payload was attached by EVA to the exterior of the Mir docking module during the STS-76 mission (f'ig. 1). It was removed during the STS-86 mission after an 18-month exposure. During the mission, it received approximately 7 x 1019 atoMS/CM2 atomic oxygen, as calculated by polymer mass loss, and 413 ESH of solar ultraviolet radiation on the Mir-facing side. The side facing away from Mir received significant contaminant deposition, so atomic oxygen fluence has not been reliably determined. The side facing away from Mir received 571 ESH of solar UV. Contamination was observed on both the Mir-facing and space-facing sides of the POSA-I experiment , with a greater amount of deposition on the space facing side than the Mir side. The contamination has been determined to be outgassed silicone photofixed by ultraviolet radiation and converted to silicate by atomic oxygen interaction. Electron spectroscopy for chemical analysis (ESCA) with depth profiling indicated the presence of 26 - 31 nm silicate on the Mir-facing side and 500 - 1000 nm silicate on the space-facing side. The depth profiling also showed that the contaminant layer was uniform, with a small amount of carbon present on the surface and trace amounts of nitrogen, phosphorus, sulfur, and tin. The surface carbon layer is likely due to post-flight exposure in the laboratory and is similar to carbonaceous deposits on control samples. EDAX and FTIR analysis concurred with ESCA for the presence of silicon, oxygen, and carbon. Nearly 400 samples were exposed on POSA-I, which included materials such as thermal control coatings polymeric films, optical materials, and multi-layer insulation blankets. A previous paper discussed the effects of the space environment exposure and contaminant deposition on candidate materials for ISS, including Z93P inorganic thermal control coating, various anodizes, and multi-layer insulation blankets. This paper details the investigation of environmental effects on the remainder of POSA-I samples, particularly the innovative conductive thermal control coatings developed by AZ Technology of Huntsville, AL and HT Research Institute of Chicago, IL. The silicone/silicate contamination had a significant impact on the solar absorptance of white inorganic thermal control coatings on the space-facing side of POSA-I. The effect of contamination on electrical conductivity is discussed. Samples of conductive anodized aluminum developed by Boundary Technologies of Buffalo Grove, IL were also exposed on POSA-I. The effects of the space environment and contaminant deposition on the optical and electrical properties of the conductive anodized aluminum are discussed.
Liu, Yanhua; Lu, Cuntao; Zhou, Yizhou; Zhang, Zhihong; Sun, Li
2018-07-20
As the development of sequencing technology, more and more circular RNAs (circRNAs) are identified in human cancer tissues. Increasing evidences imply circRNAs are important regulators in tumor progression. Nevertheless, how circRNAs participate in breast cancer development and progression is not well understood. In the present study, we identified a novel circRNA hsa_circ_0008039 with upregulated expression level in breast cancer tissues. By functional experiments, we found that hsa_circ_0008039 depletion significantly suppressed the proliferation, arrested cell-cycle progression and reduced migration in breast cancer. Mechanistic investigations suggested that hsa_circ_0008039 served as a competing endogenous RNA (ceRNA) of miR-432-5p. Subsequently, E2F3 was identified as the functional target of miR-432-5p and overexpression of hsa_circ_0008039 elevated E2F3 expression in breast cancer. On the whole, our study indicated that hsa_circ_0008039 exerted oncogenic roles in breast cancer and suggested the hsa_circ_0008039/miR-432-5p/E2F3 axis might be a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.
Cirnigliaro, Matilde; Barbagallo, Cristina; Gulisano, Mariangela; Domini, Carla N.; Barone, Rita; Barbagallo, Davide; Ragusa, Marco; Di Pietro, Cinzia; Rizzo, Renata; Purrello, Michele
2017-01-01
Given its prevalence and social impact, Autism Spectrum Disorder (ASD) is drawing much interest. Molecular basis of ASD is heterogeneous and only partially known. Many factors, including disorders comorbid with ASD, like TS (Tourette Syndrome), complicate ASD behavior-based diagnosis and make it vulnerable to bias. To further investigate ASD etiology and to identify potential biomarkers to support its precise diagnosis, we used TaqMan Low Density Array technology to profile serum miRNAs from ASD, TS, and TS+ASD patients, and unaffected controls (NCs). Through validation assays in 30 ASD, 24 TS, and 25 TS+ASD patients and 25 NCs, we demonstrated that miR-140-3p is upregulated in ASD vs.: NC, TS, and TS+ASD (Tukey's test, p-values = 0.03, = 0.01, < 0.0001, respectively). ΔCt values for miR-140-3p and YGTSS (Yale Global Tic Severity Scale) scores are positively correlated (Spearman r = 0.33; Benjamini-Hochberg p = 0.008) and show a linear relationship (p = 0.002). Network functional analysis showed that nodes controlled by miR-140-3p, especially CD38 and NRIP1 which are its validated targets, are involved in processes convergingly dysregulated in ASD, such as synaptic plasticity, immune response, and chromatin binding. Biomarker analysis proved that serum miR-140-3p can discriminate among: (1) ASD and NC (Area under the ROC curve, AUC: 0.70; sensitivity: 63.33%; specificity: 68%); (2) ASD and TS (AUC: 0.72; sensitivity: 66.66%; specificity: 70.83%); (3) ASD and TS+ASD (AUC: 0.78; sensitivity: 73.33%; specificity: 76%). Characterization of miR-140-3p network would contribute to further clarify ASD etiology. Serum miR-140-3p could represent a potential non-invasive biomarker for ASD, easy to test through liquid biopsy. PMID:28848387
Carter, Jane V.; Roberts, Henry L.; Pan, Jianmin; Rice, Jonathan D.; Burton, James F.; Galbraith, Norman J.; Eichenberger, M. Robert; Jorden, Jeffery; Deveaux, Peter; Farmer, Russell; Williford, Anna; Kanaan, Ziad; Rai, Shesh N.; Galandiuk, Susan
2016-01-01
OBJECTIVE(S) Develop a plasma-based microRNA (miRNA) diagnostic assay specific for colorectal neoplasms, building upon our prior work. BACKGROUND Colorectal neoplasms (colorectal cancer [CRC] and colorectal advanced adenoma [CAA]) frequently develop in individuals at ages when other common cancers also occur. Current screening methods lack sensitivity, specificity, and have poor patient compliance. METHODS Plasma was screened for 380 miRNAs using microfluidic array technology from a “Training” cohort of 60 patients, (10 each) control, CRC, CAA, breast (BC), pancreatic (PC) and lung (LC) cancer. We identified uniquely dysregulated miRNAs specific for colorectal neoplasia (p<0.05, false discovery rate: 5%, adjusted α=0.0038). These miRNAs were evaluated using single assays in a “Test” cohort of 120 patients. A mathematical model was developed to predict blinded sample identity in a 150 patient “Validation” cohort using repeat-sub-sampling validation of the testing dataset with 1000 iterations each to assess model detection accuracy. RESULTS Seven miRNAs (miR-21, miR-29c, miR-122, miR-192, miR-346, miR-372, miR-374a) were selected based upon p-value, area-under-the-curve (AUC), fold-change, and biological plausibility. AUC (±95% CI) for “Test” cohort comparisons were 0.91 (0.85-0.96), 0.79 (0.70-0.88) and 0.98 (0.96-1.0), respectively. Our mathematical model predicted blinded sample identity with 69-77% accuracy between all neoplasia and controls, 67-76% accuracy between colorectal neoplasia and other cancers, and 86-90% accuracy between colorectal cancer and colorectal adenoma. CONCLUSIONS Our plasma miRNA assay and prediction model differentiates colorectal neoplasia from patients with other neoplasms and from controls with higher sensitivity and specificity compared to current clinical standards. PMID:27471839
Hiwasa-Tanase, Kyoko; Nyarubona, Mpanja; Hirai, Tadayoshi; Kato, Kazuhisa; Ichikawa, Takanari; Ezura, Hiroshi
2011-01-01
In our previous study, a transgenic tomato line that expressed the MIR gene under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (tNOS) produced the taste-modifying protein miraculin (MIR). However, the concentration of MIR in the tomatoes was lower than that in the MIR gene's native miracle fruit. To increase MIR production, the native MIR terminator (tMIR) was used and a synthetic gene encoding MIR protein (sMIR) was designed to optimize its codon usage for tomato. Four different combinations of these genes and terminators (MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR) were constructed and used for transformation. The average MIR concentrations in MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR fruits were 131, 197, 128 and 287 μg/g fresh weight, respectively. The MIR concentrations using tMIR were higher than those using tNOS. The highest MIR accumulation was detected in sMIR-tMIR fruits. On the other hand, the MIR concentration was largely unaffected by sMIR-tNOS. The expression levels of both MIR and sMIR mRNAs terminated by tMIR tended to be higher than those terminated by tNOS. Read-through mRNA transcripts terminated by tNOS were much longer than those terminated by tMIR. These results suggest that tMIR enhances mRNA expression and permits the multiplier effect of optimized codon usage.
1997-05-24
The orbiter drag chute deploys after Atlantis touches down on Runway 33 of KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
1997-05-24
The orbiter drag chute deploys after Atlantis touches down on Runway 33 of KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
1997-05-24
The Space Shuttle orbiter Atlantis rolls out on Runway 33 of KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. The Shuttle Training Aircraft piloted by astronaut Kenneth D. Cockrell, acting deputy chief of the Astronaut Office, is flying above Atlantis. The Vehicle Assembly Building is at left. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
1997-05-24
The Space Shuttle orbiter Atlantis, with its drag chute deployed, rolls out on Runway 33 of KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. The Shuttle Training Aircraft piloted by astronaut Kenneth D. Cockrell, acting deputy chief of the Astronaut Office, is flying above Atlantis. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
1997-05-24
The orbiter drag chute deploys after Atlantis touches down on Runway 33 of KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
Rogóż, Zofia
2010-01-01
The aim of the present study was to examine the effect of mirtazapine (MIR) and risperidone (an atypical antipsychotic drug), given separately or jointly, on immobility time in the forced swimming test in male C57BL/6J mice. Fluoxetine (FLU) was used as a reference drug. MIR (2.5, 5 and 10 mg/kg) and FLU (5 and 10 mg/kg), or risperidone in low doses (0.05 and 0.1 mg/kg) given alone did not change the immobility time of mice in the forced swimming test. Joint administration of MIR (5 and 10 mg/kg) or FLU (10 mg/kg) and risperidone (0.1 mg/kg) produced antidepressant-like activity in the forced swimming test. WAY100636 (a 5-HT(1A) receptor antagonist) inhibited, while yohimbine (an α(2)-adrenergic receptor antagonist) potentiated the antidepressant-like effect induced by co-administration of MIR and risperidone. Active behavior in that test did not reflect an increase in general activity, since combined administration of antidepressants and risperidone failed to enhance the locomotor activity of mice. The obtained results indicate that risperidone applied in a low dose enhances the antidepressant-like activity of MIR and that, among other mechanisms, 5-HT(1A)-, and α(2)-adrenergic receptors may play a role in this effect.
Expression Profile of C19MC microRNAs in Placental Tissue in Pregnancy-Related Complications
Kotlabova, Katerina; Ondrackova, Marketa; Pirkova, Petra; Kestlerova, Andrea; Novotna, Veronika; Hympanova, Lucie; Krofta, Ladislav
2015-01-01
To demonstrate that pregnancy-related complications are associated with alterations in placental microRNA expression. Gene expression of 15 C19MC microRNAs (miR-512-5p, miR-515-5p, miR-516-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-524-5p, miR-525, miR-526a, and miR-526b) was assessed in placental tissues, compared between groups (21 gestational hypertension [GH], 63 preeclampsia, 36 fetal growth restriction [FGR], and 42 normal pregnancies), and correlated with the severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound parameters. The expression profile of microRNAs was different between pregnancy-related complications and controls. The downregulation of 4 of 15 (miR-517-5p, miR-519d, miR-520a-5p, and miR-525), 6 of 15 (miR-517-5p, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, and miR-525), and 11 of 15 (miR-515-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, miR-520h, miR-524-5p, miR-525, and miR-526a) microRNAs was associated with GH, FGR, and preeclampsia, respectively. Sudden onset of severe preeclampsia requiring immediate termination of gestation and mild forms of preeclampsia (persisting for several weeks) were associated with similar microRNA expression profile (downregulation of miR-517-5p, miR-520a-5p, miR-524-5p, and miR-525). In addition, miR-519a was found to be associated with severe preeclampsia. The longer the pregnancy-related disorder lasted, the more extensive was the downregulation of microRNAs (miR-515-5p, miR-518b, miR-518f-5p, miR-519d, and miR-520h). The downregulation of some C19MC microRNAs is a common phenomenon shared between GH, preeclampsia, and FGR. On the other hand, some of the C19MC microRNAs are only downregulated just in preeclampsia. PMID:25825993
Risk management in international manned space program operations.
Seastrom, J W; Peercy, R L; Johnson, G W; Sotnikov, B J; Brukhanov, N
2004-02-01
New, innovative joint safety policies and requirements were developed in support of the Shuttle/Mir program, which is the first phase of the International Space Station program. This work has resulted in a joint multinational analysis culminating in joint certification for mission readiness. For these planning and development efforts, each nation's risk programs and individual safety practices had to be integrated into a comprehensive and compatible system that reflects the joint nature of the endeavor. This paper highlights the major incremental steps involved in planning and program integration during development of the Shuttle/Mir program. It traces the transition from early development to operational status and highlights the valuable lessons learned that apply to the International Space Station program (Phase 2). Also examined are external and extraneous factors that affected mission operations and the corresponding solutions to ensure safe and effective Shuttle/Mir missions. c2003 Published by Elsevier Ltd.
Ono, Motoharu; Yamada, Kayo; Avolio, Fabio; Afzal, Vackar; Bensaddek, Dalila; Lamond, Angus I
2015-01-01
We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2.
Dávalos, Alberto; Fernández-Hernando, Carlos
2013-01-01
There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093
Liang, Wei-Wei; Huang, Jing-Hao; Li, Chun-Ping; Yang, Lin-Tong; Ye, Xin; Lin, Dan; Chen, Li-Song
2017-08-24
Magnesium (Mg)-deficiency occurs most frequently in strongly acidic, sandy soils. Citrus are grown mainly on acidic and strong acidic soils. Mg-deficiency causes poor fruit quality and low fruit yield in some Citrus orchards. For the first time, we investigated Mg-deficiency-responsive miRNAs in 'Xuegan' (Citrus sinensis) roots using Illumina sequencing in order to obtain some miRNAs presumably responsible for Citrus Mg-deficiency tolerance. We obtained 101 (69) miRNAs with increased (decreased) expression from Mg-starved roots. Our results suggested that the adaptation of Citrus roots to Mg-deficiency was related to the several aspects: (a) inhibiting root respiration and related gene expression via inducing miR158 and miR2919; (b) enhancing antioxidant system by down-regulating related miRNAs (miR780, miR6190, miR1044, miR5261 and miR1151) and the adaptation to low-phosphorus (miR6190); (c) activating transport-related genes by altering the expression of miR6190, miR6485, miR1044, miR5029 and miR3437; (d) elevating protein ubiquitination due to decreased expression levels of miR1044, miR5261, miR1151 and miR5029; (e) maintaining root growth by regulating miR5261, miR6485 and miR158 expression; and (f) triggering DNA repair (transcription regulation) by regulating miR5176 and miR6485 (miR6028, miR6190, miR6485, miR5621, miR160 and miR7708) expression. Mg-deficiency-responsive miRNAs involved in root signal transduction also had functions in Citrus Mg-deficiency tolerance. We obtained several novel Mg-deficiency-responsive miRNAs (i.e., miR5261, miR158, miR6190, miR6485, miR1151 and miR1044) possibly contributing to Mg-deficiency tolerance. These results revealed some novel clues on the miRNA-mediated adaptation to nutrient deficiencies in higher plants.
Yilmaz, Ismail; Narli, Gizem; Haholu, Aptullah; Kucukodaci, Zafer; Demirel, Dilaver
2014-01-01
Purpose We examined expression profiles of 16 micro RNAs (miRNAs) in triple negative breast cancers to identify their potential as biomarkers for lymph node metastasis. Methods The expression profiles of miR-9, miR-21, miR-30a, miR-30d, miR-31, miR-34a, miR-34c, miR-100, miR-122, miR-125b, miR-146a, miR-146b, miR-155, miR-181a, miR-200c, and miR-205 were examined by using real-time quantitative reverse transcription polymerase chain reaction in tumor samples and corresponding benign breast tissues. Their associations with histopathological features and prognostic parameters were assessed. Results When compared with the expression in benign breast tissues, seven of the miRNAs (miR-31, miR-205, miR-34a, miR-146a, miR-125b, miR-34c, and miR-181a) were downregulated more than 1.5-fold in tumor tissues, whereas, only miR-21 was found to be upregulated more than 1.5-fold in tumor tissues. Although miR-200c levels were decreased only 1.12-fold in tumor tissues, the reduced expressions of miR-200c and miR-205 were significantly associated with lymph node metastasis (p=0.021 and p=0.016, respectively). Conclusion Our results demonstrate that miR-205 and miR-200c expression levels may be useful in predicting lymph node metastasis in triple negative breast cancer patients. PMID:25013435
Wei, Xiaotong; Duan, Xiaolei; Zhou, Xiaoyan; Wu, Jiangling; Xu, Hongbing; Min, Xun; Ding, Shijia
2018-06-07
Herein, a dual channel surface plasmon resonance imaging (SPRi) biosensor has been developed for the simultaneous and highly sensitive detection of multiplex miRNAs based on strand displacement amplification (SDA) and DNA-functionalized AuNP signal enhancement. In the presence of target miRNAs (miR-21 or miR-192), the miRNAs could specifically hybridize with the corresponding hairpin probes (H) and initiate the SDA, resulting in massive triggers. Subsequently, the two parts of the released triggers could hybridize with capture probes (CP) and DNA-functionalized AuNPs, assembling DNA sandwiches with great mass on the chip surface. A significantly amplified SPR signal readout was achieved. This established biosensing method was capable of simultaneously detecting multiplex miRNAs with a limit of detection down to 0.15 pM for miR-21 and 0.22 pM for miR-192. This method exhibited good specificity and acceptable reproducibility. Moreover, the developed method was applied to the determination of target miRNAs in a complex matrix. Thus, this developed SPRi biosensing method may present a potential alternative tool for miRNA detection in biomedical research and clinical diagnosis.
Long noncoding RNA LINC00313 modulates papillary thyroid cancer tumorigenesis via sponging miR-4429.
Wu, W J; Yin, H; Hu, J J; Wei, X Z
2018-06-26
Mounting evidence indicates that long noncoding RNAs (lncRNAs) play a critical role in tumorigenesis. LncRNA LINC00313 has been found to be upregulated and associated with the poor prognosis of lung cancer. However, the potential role and clinical value of LINC00313 in human papillary thyroid cancer (PTC) remain elusive and need to be examined. The aim of the present study was to investigate the role of LINC00313 in PTC. We found that the expression of LINC00313 was significantly upregulated in PTC tissues and cell lines and that this upregulation was correlated with a poor prognosis. In vitro experiments indicated that downregulation of LINC00313 inhibited the proliferative, migratory and colony-forming abilities of PTC cells. Moreover, silencing LINC00313 induced cell cycle arrest and apoptosis in PTC cells. Mechanism studies showed that LINC00313 downregulates miR-4429 expression. Overexpression of miR-4429 could abrogate the oncogenic role of LINC00313 in PTC cells. In summary, our data revealed that LINC00313 acts as an oncogene in PTC via sponging miR-4429. Our data suggested that LINC00313 might be applied as a therapeutic target for PTC.
Hromadnikova, Ilona; Kotlabova, Katerina; Hympanova, Lucie; Krofta, Ladislav
2016-01-01
To demonstrate that pregnancy-related complications are associated with alterations in cardiovascular and cerebrovascular microRNA expression. Gene expression of 29 microRNAs (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-92a-3p, miR-100-5p, miR-103a-3p, miR-122-5p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p) was assessed in maternal whole peripheral blood, compared between groups (39 gestational hypertension, 68 preeclampsia, 33 intrauterine growth restriction and 20 normal pregnancies) and correlated with the severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound parameters. Initially, selection and validation of endogenous controls for microRNA expression studies in patients affected by pregnancy-related complications have been carried out. The expression profile of microRNAs was different between pregnancy-related complications and controls. The down-regulation of miR-100-5p, miR-125b-5p and miR-199a-5p was a common phenomenon shared between gestational hypertension, preeclampsia, and intrauterine growth restriction. Moreover, IUGR pregnancies induced down-regulation of miR-17-5p, miR-146a-5p, miR-221-3p and miR-574-3p in maternal circulation. Irrespective of the severity of the disease, preeclampsia was associated with the dysregulation of miR-100-5p and miR-125b-5p and IUGR with dysregulation of miR-199a-5p. Preeclampsia requiring termination of gestation before 34 weeks was associated with down-regulation of miR-146a-5p, miR-199a-5p and miR-221-3p. Weak negative correlation between miR-146a-5p and miR-221-3p expression and the pulsatility index in the umbilical artery was found. Additional microRNAs (miR-103a-3p, miR-126-3p, miR-195-5p and miR-499a-5p) showed a trend to down-regulation in appropriate pregnancy-related complications. Epigenetic changes are induced by pregnancy-related complications in maternal whole peripheral blood. Copyright © 2015 Elsevier Ltd. All rights reserved.
Systems analysis identifies miR-29b regulation of invasiveness in melanoma.
Andrews, Miles C; Cursons, Joseph; Hurley, Daniel G; Anaka, Matthew; Cebon, Jonathan S; Behren, Andreas; Crampin, Edmund J
2016-11-16
In many cancers, microRNAs (miRs) contribute to metastatic progression by modulating phenotypic reprogramming processes such as epithelial-mesenchymal plasticity. This can be driven by miRs targeting multiple mRNA transcripts, inducing regulated changes across large sets of genes. The miR-target databases TargetScan and DIANA-microT predict putative relationships by examining sequence complementarity between miRs and mRNAs. However, it remains a challenge to identify which miR-mRNA interactions are active at endogenous expression levels, and of biological consequence. We developed a workflow to integrate TargetScan and DIANA-microT predictions into the analysis of data-driven associations calculated from transcript abundance (RNASeq) data, specifically the mutual information and Pearson's correlation metrics. We use this workflow to identify putative relationships of miR-mediated mRNA repression with strong support from both lines of evidence. Applying this approach systematically to a large, published collection of unique melanoma cell lines - the Ludwig Melbourne melanoma (LM-MEL) cell line panel - we identified putative miR-mRNA interactions that may contribute to invasiveness. This guided the selection of interactions of interest for further in vitro validation studies. Several miR-mRNA regulatory relationships supported by TargetScan and DIANA-microT demonstrated differential activity across cell lines of varying matrigel invasiveness. Strong negative statistical associations for these putative regulatory relationships were consistent with target mRNA inhibition by the miR, and suggest that differential activity of such miR-mRNA relationships contribute to differences in melanoma invasiveness. Many of these relationships were reflected across the skin cutaneous melanoma TCGA dataset, indicating that these observations also show graded activity across clinical samples. Several of these miRs are implicated in cancer progression (miR-211, -340, -125b, -221, and -29b). The specific role for miR-29b-3p in melanoma has not been well studied. We experimentally validated the predicted miR-29b-3p regulation of LAMC1 and PPIC and LASP1, and show that dysregulation of miR-29b-3p or these mRNA targets can influence cellular invasiveness in vitro. This analytic strategy provides a comprehensive, systems-level approach to identify miR-mRNA regulation in high-throughput cancer data, identifies novel putative interactions with functional phenotypic relevance, and can be used to direct experimental resources for subsequent experimental validation. Computational scripts are available: http://github.com/uomsystemsbiology/LMMEL-miR-miner.
Xue, Dong; Lu, Hao; Xu, Han-Yan; Zhou, Cui-Xing; He, Xiao-Zhou
2018-06-01
Our present work was aimed to study on the regulatory role of MALAT1/miR-145-5p/AKAP12 axis on docetaxel (DTX) sensitivity of prostate cancer (PCa) cells. The microarray data (GSE33455) to identify differentially expressed lncRNAs and mRNAs in DTX-resistant PCa cell lines (DU-145-DTX and PC-3-DTX) was retrieved from the Gene Expression Omnibus (GEO) database. QRT-PCR analysis was performed to measure MALAT1 expression in DTX-sensitive and DTX-resistant tissues/cells. The human DTX-resistant cell lines DU145-PTX and PC3-DTX were established as in vitro cell models, and the expression of MALAT1, miR-145-5p and AKAP12 was manipulated in DTX-sensitive and DTX-resistant cells. Cell viability was examined using MTT assay and colony formation methods. Cell apoptosis was assessed by TUNEL staining. Cell migration and invasion was determined by scratch test (wound healing) and Transwell assay, respectively. Dual-luciferase assay was applied to analyse the target relationship between lncRNA MALAT1 and miR-145-5p, as well as between miR-145-5p and AKAP12. Tumour xenograft study was undertaken to confirm the correlation of MALAT1/miR-145-5p/AKAP12 axis and DTX sensitivity of PCa cells in vivo. In this study, we firstly notified that the MALAT1 expression levels were up-regulated in clinical DTX-resistant PCa samples. Overexpressed MALAT1 promoted cell proliferation, migration and invasion but decreased cell apoptosis rate of PCa cells in spite of DTX treatment. We identified miR-145-5p as a target of MALAT1. MiR-145-5p overexpression in PC3-DTX led to inhibited cell proliferation, migration and invasion as well as reduced chemoresistance to DTX, which was attenuated by MALAT1. Moreover, we determined that AKAP12 was a target of miR-145-5p, which significantly induced chemoresistance of PCa cells to DTX. Besides, it was proved that MALAT1 promoted tumour cell proliferation and enhanced DTX-chemoresistance in vivo. There was an lncRNA MALAT1/miR-145-5p/AKAP12 axis involved in DTX resistance of PCa cells and provided a new thought for PCa therapy. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
The silencing effect of miR-30a on ITGA4 gene expression in vitro: an approach for gene therapy.
Darzi, Leila; Boshtam, Maryam; Shariati, Laleh; Kouhpayeh, Shirin; Gheibi, Azam; Mirian, Mina; Rahimmanesh, Ilnaz; Khanahmad, Hossein; Tabatabaiefar, Mohammad Amin
2017-12-01
Integrins are adhesion molecules which play crucial roles in cell-cell and cell-extracellular matrix interactions. Very late antigen-4 or α4β1 and lymphocyte Peyer's patch adhesion molecule-1 or α4β7, are key factors in the invasion of tumor cells and metastasis. Based on the previous reports, integrin α4 ( ITGA4 ) is overexpressed in some immune disorders and cancers. Thus, inhibition of ITGA4 could be a therapeutic strategy. In the present study, miR-30a was selected in order to suppress ITGA4 expression. The ITGA4 3' UTR was amplified, cloned in the Z2827-M67-( ITGA4 ) plasmid and named as Z2827-M67/3'UTR. HeLa cells were divided into five groups; (1) untreated without any transfection, (2) mock with Z2827-M67/3'UTR transfection and X-tremeGENE reagent, (3) negative control with Z2827-M67/3'UTR transfection alone, (4) test with miR-30a mimic and Z2827-M67/3'UTR transfection and (5) scramble with miR-30a scramble and Z2827-M67/3'UTR transfection. The MTT assay was performed to evaluate cell survival and cytotoxicity in each group. Real-time RT-PCR was applied for the ITGA4 expression analysis. The findings of this study showed that miR-30a downregulated ITGA4 expression and had no effect on the cell survival. Due to the silencing effect of miR-30a on the ITGA4 gene expression, this agent could be considered as a potential tool for cancer and immune disorders therapy.
The silencing effect of miR-30a on ITGA4 gene expression in vitro: an approach for gene therapy
Darzi, Leila; Boshtam, Maryam; Shariati, Laleh; Kouhpayeh, Shirin; Gheibi, Azam; Mirian, Mina; Rahimmanesh, Ilnaz; Khanahmad, Hossein; Tabatabaiefar, Mohammad Amin
2017-01-01
Integrins are adhesion molecules which play crucial roles in cell-cell and cell-extracellular matrix interactions. Very late antigen-4 or α4β1 and lymphocyte Peyer’s patch adhesion molecule-1 or α4β7, are key factors in the invasion of tumor cells and metastasis. Based on the previous reports, integrin α4 (ITGA4) is overexpressed in some immune disorders and cancers. Thus, inhibition of ITGA4 could be a therapeutic strategy. In the present study, miR-30a was selected in order to suppress ITGA4 expression. The ITGA4 3' UTR was amplified, cloned in the Z2827-M67-(ITGA4) plasmid and named as Z2827-M67/3'UTR. HeLa cells were divided into five groups; (1) untreated without any transfection, (2) mock with Z2827-M67/3'UTR transfection and X-tremeGENE reagent, (3) negative control with Z2827-M67/3'UTR transfection alone, (4) test with miR-30a mimic and Z2827-M67/3'UTR transfection and (5) scramble with miR-30a scramble and Z2827-M67/3'UTR transfection. The MTT assay was performed to evaluate cell survival and cytotoxicity in each group. Real-time RT-PCR was applied for the ITGA4 expression analysis. The findings of this study showed that miR-30a downregulated ITGA4 expression and had no effect on the cell survival. Due to the silencing effect of miR-30a on the ITGA4 gene expression, this agent could be considered as a potential tool for cancer and immune disorders therapy. PMID:29204174
Jasinski-Bergner, Simon; Stoehr, Christine; Bukur, Juergen; Massa, Chiara; Braun, Juliane; Hüttelmaier, Stefan; Spath, Verena; Wartenberg, Roland; Legal, Wolfgang; Taubert, Helge; Wach, Sven; Wullich, Bernd; Hartmann, Arndt; Seliger, Barbara
2015-06-01
In human tumors of distinct origin including renal cell carcinoma (RCC), the non-classical human leukocyte antigen G (HLA-G) is frequently expressed, thereby inhibiting the cytotoxic activity of T and natural killer (NK) cells. Recent studies demonstrated a strong post-transcriptional gene regulation of the HLA-G by miR-152, -148A, -148B and -133A. Standard methods were applied to characterize the expression and function of HLA-G, HLA-G-regulatory microRNAs (miRs) and the immune cell infiltration in 453 RCC lesions using a tissue microarray and five RCC cell lines linking these results to clinical parameters. Direct interactions with HLA-G regulatory miRs and the HLA-G 3' untranslated region (UTR) were detected and the affinities of these different miRs to the HLA-G 3'-UTR compared. qPCR analyses and immunohistochemical staining revealed an inverse expression of miR-148A and -133A with the HLA-G protein in situ and in vitro . Stable miR overexpression caused a downregulation of HLA-G protein enhancing the NK and LAK cell-mediated cytotoxicity in in vitro CD107a activation assays revealing a HLA-G-dependent cytotoxic activity of immune effector cells. A significant higher frequency of CD3 + /CD8 + T cell lymphocytes, but no differences in the activation markers CD69, CD25 or in the presence of CD56 + , FoxP3 + and CD4 + immune cells were detected in HLA-G + compared to HLA-G - RCC lesions. This could be associated with higher WHO grade, but not with a disease-specific survival. These data suggest a miR-mediated control of HLA-G expression in RCC, which is associated with a distinct pattern of immune cell infiltration.
Zhu, Shibo; He, Qiuming; Zhang, Ruizhong; Wang, Yong; Zhong, Wei; Xia, Huimin; Yu, Jiakang
2016-07-01
The pathogenesis of congenital diaphragmatic hernia (CDH) and the causes of pulmonary hypoplasia and hypertension remain unclear. miRNAs have been identified to play important regulatory roles in pulmonary pathological processes and lung development. We carried out the study to investigate the hypothesis that specific miRNAs are expressed differently in the lungs of nitrofen-induced rats, and to explore the possible targeting genes and roles of miR-33 in the pathological process of CDH. Pregnant rats were divided into nitrofen and control group, and were exposed to nitrofen or vehicle respectively on D9. Fetuses were harvested on D21 and left lungs were dissected. 4 samples from each group underwent miRNAs microarray analysis using Agilent miRNA Array. Quantitative real-time polymerase chain reaction (qRT-PCR) was further performed to validate the miR-33 expression. 11 miRNAs exhibited increased expression in nitrofen group compared with control (p<0.05): miR-3588, miR-382*, miR-363, miR-375, miR-487b, miR-483, miR-382, miR-495, miR-434, miR-181a, and miR-99a. 14 miRNAs showed decreased expression (p<0.05): miR-33, miR-193, miR-338, miR-30c-2*, miR-22, miR-18a, miR-532-5p, miR-28, miR-96, miR-551b, miR-141, miR-362*, miR-30a*, and miR-3559-5p. Among them, miR-33 expression was markedly decreased in CDH lungs compared to controls and the result was confirmed by qRT-PCR. Decreased expression of miR-33 was found in the nitrofen-induced hypoplastic lung on D21. This finding suggests that pathogenesis of lung hypoplasia and CDH in the nitrofen model involve epigenetic layer of regulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Dong, Peixin; Ihira, Kei; Xiong, Ying; Watari, Hidemichi; Hanley, Sharon J B; Yamada, Takahiro; Hosaka, Masayoshi; Kudo, Masataka; Yue, Junming; Sakuragi, Noriaki
2016-04-12
Overexpression of IQGAP1 and microRNA (miRNA) dysregulation are frequent in human tumors, but little is known about the role of IQGAP1 and its relationship to miRNA in endometrial carcinogenesis. We demonstrate that IQGAP1 activates the epithelial-mesenchymal transition (EMT) program and that miR-124 directly represses IQGAP1 expression in endometrial cancer (EC) cells. The overexpression of IQGAP1 stimulates EMT features and enhances migration, invasion and proliferation of EC cells, whereas knocking down IQGAP1 expression reverses EMT and inhibits these malignant properties. Using miRNA microarray profiling, we identified 29 miRNAs (let-7b, let-7f, miR-10b, miR-15b, miR-23a, miR-24, miR-25, miR-27a, miR-29b, miR-30a-5p, miR-34a, miR-124, miR-127, miR-130b, miR-148a, miR-155, miR-191*, miR-194, miR-224, miR-362, miR-409-3p, miR-422b, miR-424, miR-453, miR-497, miR-518d, miR-518f*, miR-526a and miR-656) that are significantly down-regulated in an in vitro-selected highly invasive derivative cell line (HEC-50-HI) relative to the parental HEC-50 cells. We further identified miR-124 as a direct regulator of IQGAP1 in EC cells. Enforced expression of miR-124 suppresses EC cell invasion and proliferation. The expression of IQGAP1 mRNA was significantly elevated in EC tissues, while the expression of miR-124 was decreased. The downregulation of miR-124 correlates with a poor survival outcome for patients with EC. Treating EC cells with the demethylating agent 5-aza-2'-deoxycytidine increased miR-124 expression and down-regulated IQGAP1 levels. Our data suggest that IQGAP1 promotes EMT, migration and invasion of EC cells. MiR-124, a novel tumor suppressor miRNA that is epigenetically silenced in EC, can reverse EMT and the invasive properties, by attenuating the expression of the IQGAP1 oncogene.
Watari, Hidemichi; Hanley, Sharon J.B.; Yamada, Takahiro; Hosaka, Masayoshi; Kudo, Masataka; Yue, Junming; Sakuragi, Noriaki
2016-01-01
Overexpression of IQGAP1 and microRNA (miRNA) dysregulation are frequent in human tumors, but little is known about the role of IQGAP1 and its relationship to miRNA in endometrial carcinogenesis. We demonstrate that IQGAP1 activates the epithelial–mesenchymal transition (EMT) program and that miR-124 directly represses IQGAP1 expression in endometrial cancer (EC) cells. The overexpression of IQGAP1 stimulates EMT features and enhances migration, invasion and proliferation of EC cells, whereas knocking down IQGAP1 expression reverses EMT and inhibits these malignant properties. Using miRNA microarray profiling, we identified 29 miRNAs (let-7b, let-7f, miR-10b, miR-15b, miR-23a, miR-24, miR-25, miR-27a, miR-29b, miR-30a-5p, miR-34a, miR-124, miR-127, miR-130b, miR-148a, miR-155, miR-191*, miR-194, miR-224, miR-362, miR-409-3p, miR-422b, miR-424, miR-453, miR-497, miR-518d, miR-518f*, miR-526a and miR-656) that are significantly down-regulated in an in vitro-selected highly invasive derivative cell line (HEC-50-HI) relative to the parental HEC-50 cells. We further identified miR-124 as a direct regulator of IQGAP1 in EC cells. Enforced expression of miR-124 suppresses EC cell invasion and proliferation. The expression of IQGAP1 mRNA was significantly elevated in EC tissues, while the expression of miR-124 was decreased. The downregulation of miR-124 correlates with a poor survival outcome for patients with EC. Treating EC cells with the demethylating agent 5-aza-2′-deoxycytidine increased miR-124 expression and down-regulated IQGAP1 levels. Our data suggest that IQGAP1 promotes EMT, migration and invasion of EC cells. MiR-124, a novel tumor suppressor miRNA that is epigenetically silenced in EC, can reverse EMT and the invasive properties, by attenuating the expression of the IQGAP1 oncogene. PMID:26934121
[Ways to improve measurement accuracy of blood glucose sensing by mid-infrared spectroscopy].
Wang, Yan; Li, Ning; Xu, Kexin
2006-06-01
Mid-infrared (MIR) spectroscopy is applicable to blood glucose sensing without using any reagent, however, due to a result of inadequate accuracy, till now this method has not been used in clinical detection. The principle and key technologies of blood glucose sensing by MIR spectroscopy are presented in this paper. Along with our experimental results, the paper analyzes ways to enhance measurement accuracy and prediction accuracy by the following four methods: selection of optimized spectral region; application of spectra data processing method; elimination of the interference with other components in the blood, and promotion in system hardware. According to these four improving methods, we designed four experiments, i.e., strict determination of the region where glucose concentration changes most sensitively in MIR, application of genetic algorithm for wavelength selection, normalization of spectra for the purpose of enhancing measuring reproduction, and utilization of CO2 laser as light source. The results show that the measurement accuracy of blood glucose concentration is enhanced almost to a clinical detection level.
NASA Astrophysics Data System (ADS)
Otto, Thomas; Saupe, Ray; Bruch, Reinhard F.; Fritzsch, Uwe; Stock, Volker; Gessner, Thomas; Afanasyeva, Natalia I.
2001-11-01
The field of microtechnology is an important industrial and scientific resource for the 21st century. There is a great interest in spectroscopic sensors in the near and middle infrared (NIR-MIR) wavelength regions (1 - 2.5 micrometers ; 2.5 - 4.5 micrometers ; 4 - 6 micrometers ). The potential for cheap and small devices for nondestructive, remote sensing techniques at a molecular level has stimulated the design and development of more compact analyzer systems. Therefore we will try to build analyzers using micro optical components such as micromirrors and embossed micro gratings optimized for the above mentioned spectral ranges. Potentially, infrared sensors can be used for rapid nondestructive diagnostics of surfaces, liquids, gases, polymers and complex biological systems including proteins, blood, cells and cellular debris as well as body tissue. Furthermore, NIR-MIR microsensing spectroscopy will be utilized to monitor the chemical composition of petrochemical products like gasoline and diesel. In addition, miniature analyzers will be used for rapid measuring of food, in particular oil, starch and meat. In this paper we will present an overview of several new approaches for subsurface and surface sensing technologies based on the integration of optical micro devices, the most promising sensors for biomedical, environmental and industrial applications, data processing and evaluation algorithms for classification of the results. Both scientific and industrial applications will be discussed.
Application of miRNAs as Biomarkers of Exposure and Effects ...
Of the known epigenetic mechanisms, non-coding RNA and more specifically, microRNA (miRNA), offer the most immediate promise for risk assessment applications because these molecules can serve as excellent biomarkers of toxicity. The advantages of miRNA versus more classical protein toxicity biomarkers include: greater stability and earlier appearance in biofluids that can be obtained by relatively non-invasive approaches; tissue- and/or cell-specific expression patterns; evolutionary conservation in both sequence and function across species; and novel technologies for sensitive and accurate quantification. Further, information on individual miRNA is readily available through databases such as miRBase and others. Thus miRNA biomarkers offer substantial benefits in terms of cost, time, convenience, sensitivity, and specificity when assessing environmental-induced toxicity in model systems or human cohorts. Although this field is rapidly expanding, documented examples include associations of miR-155 with lymphocytic leukemia, miR-122 with liver toxicity; miR-206 with skeletal muscle disease; and miR-208a-3p with cardiac toxicity. Despite their promise, some challenges in using miRNAs as toxicity biomarkers remain, including the need for improved methods for normalizing miRNA measurements, translating findings of biofluid-based miRNA biomarker alterations in experimental models to human health and specific cell/tissue injury, and finally, the need to better defi
Kriebel, Stephanie; Schmidt, Doris; Holdenrieder, Stefan; Goltz, Diane; Kristiansen, Glen; Moritz, Rudolf; Fisang, Christian; Müller, Stefan C.; Ellinger, Jörg
2015-01-01
Introduction MicroRNAs play an important role in many human malignancies; so far, their expression remains to be studied in upper urinary tract urothelial cancer (UUTUC). Materials and Methods The expression of eleven microRNAs (miR-10a, miR-21, miR-96, miR-135, miR-141, miR-182, miR-200b, miR-205, miR-429, miR-520b, miR-1244) formerly shown to be upregulated in urothelial bladder cancer were studied in corresponding normal and cancerous tissue samples of patients undergoing nephroureterectomy for UUTUC. Upregulated microRNAs were then measured in serum samples of patients with UUTUC and patients with non-malignant urological diseases to evaluate their potential as non-invasive biomarkers for UUTUC. Results MicroRNA expression allowed differentiation of normal and cancerous tissue: miR-21, miR-96, miR-135, miR-141, miR-182, miR-205, miR-429 and miR-520b were significantly overexpressed. Furthermore, miR-205 was upregulated in poorly differentiated UUTUC. The analysis of circulating RNA in serum demonstrated an increase of miR-141 in patients with UUTUC; receiver operator characteristic analysis demonstrated an area under the curve of 0.726 for miR-141 as a diagnostic biomarker. Furthermore, we observed lower levels of miR-10a and miR-135 in UUTUC patients. Conclusions MicroRNA expression is altered in UUTUC. The analysis of circulating miR-141 may be useful to identify patients with UUTUC. PMID:25629698
Kriebel, Stephanie; Schmidt, Doris; Holdenrieder, Stefan; Goltz, Diane; Kristiansen, Glen; Moritz, Rudolf; Fisang, Christian; Müller, Stefan C; Ellinger, Jörg
2015-01-01
MicroRNAs play an important role in many human malignancies; so far, their expression remains to be studied in upper urinary tract urothelial cancer (UUTUC). The expression of eleven microRNAs (miR-10a, miR-21, miR-96, miR-135, miR-141, miR-182, miR-200b, miR-205, miR-429, miR-520b, miR-1244) formerly shown to be upregulated in urothelial bladder cancer were studied in corresponding normal and cancerous tissue samples of patients undergoing nephroureterectomy for UUTUC. Upregulated microRNAs were then measured in serum samples of patients with UUTUC and patients with non-malignant urological diseases to evaluate their potential as non-invasive biomarkers for UUTUC. MicroRNA expression allowed differentiation of normal and cancerous tissue: miR-21, miR-96, miR-135, miR-141, miR-182, miR-205, miR-429 and miR-520b were significantly overexpressed. Furthermore, miR-205 was upregulated in poorly differentiated UUTUC. The analysis of circulating RNA in serum demonstrated an increase of miR-141 in patients with UUTUC; receiver operator characteristic analysis demonstrated an area under the curve of 0.726 for miR-141 as a diagnostic biomarker. Furthermore, we observed lower levels of miR-10a and miR-135 in UUTUC patients. MicroRNA expression is altered in UUTUC. The analysis of circulating miR-141 may be useful to identify patients with UUTUC.
Up-Regulation of miR-21, miR-25, miR-93, and miR-106b in Gastric Cancer
LArki, Pegah; Ahadi, Alireza; Zare, Ali; Tarighi, Shahriar; Zaheri, Mahrokh; Souri, Mojgan; Zali, Mohammad Reza; Ghaedi, Hamid; Omrani, Mir Davood
2018-06-03
Differential expression profile of microRNAs (miRNAs) could be a diagnosis signature for the monitoring of gastric cancer (GC) progression. In this study, we focus on the comparison of expression levels of miR-21, miR-25, miR-93, miR-106b, and miR-375 during the sequential pattern of GC development, including normal gastric, gastric dysplasia, and GC sample. We used SYBR Green-based quantitative-PCR to quantify miRNAs expression. Our analysis revealed the increased expression levels of miR-21 (p = 0.034), miR-25 (p = 0.0003) miR-93 (p = 0.0406), and miR-106b (p = 0.023) in GC samples. In addition, GC patients with positive lymph node metastasis showed the up-regulation of miR-25, miR-93, and miR-106b (p < 0.05). Our findings suggested that miR-21, miR-25, miR-93, and miR-106b altered expression in GC, and some of them may be further investigated as biomarkers for GC early detection and prognosis prediction.
Sand, Michael; Hessam, Schapoor; Amur, Susanne; Skrygan, Marina; Bromba, Michael; Stockfleth, Eggert; Gambichler, Thilo; Bechara, Falk G
2017-05-01
A variety of cancers are associated with the expression of the oncogenic miR-17-92 cluster (Oncomir-1) and tumor suppressor miR-143-5p/miR-145-5p. Epidermal skin cancer has not been investigated for the expression of miR-17-92 and miR-143-145 clusters, despite being extensively studied regarding global microRNA profiles. The goal of this study was to investigate the expression and possible correlation of expression of miR17-92 and miR-143-145 cluster members in epidermal skin cancer. We evaluated punch biopsies from patients with cutaneous squamous cell carcinoma (cSCC, n=15) and basal cell carcinoma (BCC, n=16), along with control specimens from non-lesional epidermal skin (n=16). Expression levels of the miR17-92 cluster (including miR-17-5p, miR-17-3p, miR-18a-3p, miR-18a-5p, miR-19a-3p, miR-19a-5p, miR-19b-3p, miR-19b-1-5p, miR-20a-3p, miR-20a-5p, miR-92a-3p, and miR-92a-5p) and the tumor-suppressive cluster miR-143-145 (including miR-143-5p and miR-145-5p) were detected by quantitative real-time reverse transcriptase polymerase chain reaction. We noted a highly significant increased expression of the miR-17-92 members miR-17-5p, miR-18a-5p, miR19a-3p, and miR-19b-3p and tumor suppressor miR-143-5p (p<0.01) in cSCC. miR-145-5p had a significantly decreased expression (p<0.05) for in BCC. A correlation analysis revealed multiple correlating miRNA-pairs within and between the investigated clusters. This study marks the first evidence for the participation of members of the miR-17-92 cluster in cSCC and miR-143-145 cluster in BCC. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Evaluation of a newly developed mid-infrared sensor for real-time monitoring of yeast fermentations.
Schalk, Robert; Geoerg, Daniel; Staubach, Jens; Raedle, Matthias; Methner, Frank-Juergen; Beuermann, Thomas
2017-05-01
A mid-infrared (MIR) sensor using the attenuated total reflection (ATR) technique has been developed for real-time monitoring in biotechnology. The MIR-ATR sensor consists of an IR emitter as light source, a zinc selenide ATR prism as boundary to the process, and four thermopile detectors, each equipped with an optical bandpass filter. The suitability of the sensor for practical application was tested during aerobic batch-fermentations of Saccharomyces cerevisiae by simultaneous monitoring of glucose and ethanol. The performance of the sensor was compared to a commercial Fourier transform mid-infrared (FT-MIR) spectrometer by on-line measurements in a bypass loop. Sensor and spectrometer were calibrated by multiple linear regression (MLR) in order to link the measured absorbance in the transmission ranges of the four optical sensor channels to the analyte concentrations. For reference analysis, high-performance liquid chromatography (HPLC) was applied. Process monitoring using the sensor yielded in standard errors of prediction (SEP) of 6.15 g/L and 1.36 g/L for glucose and ethanol. In the case of the FT-MIR spectrometer the corresponding SEP values were 4.34 g/L and 0.61 g/L, respectively. The advantages of optical multi-channel mid-infrared sensors in comparison to FT-MIR spectrometer setups are the compactness, easy process implementation and lower price. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Liu, Xiangwei; Tan, Naiwen; Zhou, Yuchao; Wei, Hongbo; Ren, Shuai; Yu, Fan; Chen, Hui; Jia, Chengming; Yang, Guodong; Song, Yingliang
2017-01-01
Impaired osseointegration of the implant remains the big hurdle for dental implant therapy in diabetic patients. In this study, the authors first identified that miR204 was strikingly highly expressed in the bone mesenchymal stem cells (BMSCs) of diabetic rats. Forced expression of miR204 repressed the osteogenic potential of BMSCs, while inhibition of miR204 significantly increased the osteogenic capacity. Moreover, the miR204 inhibitor was conjugated with gold nanoparticles (AuNP-antagomiR204) and dispersed them in the poly(lactic-co-glycolic acid) (PLGA) solution. The AuNP-antagomiR204 containing PLGA solution was applied for coating the surface of titanium implant. Electron microscope revealed that an ultrathin sheet was formed on the surface of the implant, and the AuNPs were evenly dispersed in the coated PLGA sheet. Cellular experiments revealed that these encapsulated AuNP-antagomiR204 were able to be released from the PLGA sheet and uptaken by adherent BMSCs. In vivo animal study further confirmed that the AuNP-antagomiR204 released from PLGA sheet promoted osseointegration, as revealed by microcomputerized tomography (microCT) reconstruction and histological assay. Taken together, this study established that miR204 misexpression accounted for the deficient osseointegation in diabetes mellitus, while PLGA sheets aided the release of AuNP-antagomiR204, which would be a promising strategy for titanium implant surface functionalization toward better osseointegration.
Rancan, Lisa; Simón, Carlos; Marchal-Duval, Emmeline; Casanova, Javier; Paredes, Sergio Damian; Calvo, Alberto; García, Cruz; Rincón, David; Turrero, Agustín; Garutti, Ignacio; Vara, Elena
2016-12-01
Ischemia-reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs has not been investigated. This work aims to investigate the involvement of miRNAs in lung IRI in a lung auto-transplantation model and to investigate the effect of lidocaine. Three groups (sham, control, and Lidocaine), each comprising 6 pigs, underwent a lung autotransplantation. All groups received the same anesthesia. In addition, animals of lidocaine group received a continuous intravenous administration of lidocaine (1.5 mg/kg/h) during surgery. Lung biopsies were taken before pulmonary artery clamp, before reperfusion, 30 minutes postreperfusion (Rp-30), and 60 minutes postreperfusion (Rp-60). Samples were analyzed for different miRNAs (miR-122, miR-145, miR-146a, miR-182, miR-107, miR-192, miR-16, miR-21, miR-126, miR-127, miR142-5p, miR152, miR155, miR-223, and let7) via the use of reverse-transcription quantitative polymerase chain reaction. Results were normalized with miR-103. The expression of miR-127 and miR-16 did not increase after IRI. Let-7d, miR-21, miR-107, miR-126, miR-145, miR-146a, miR-182, and miR-192 significantly increased at the Rp-60 (control versus sham P < .001). miR-142-5p, miR-152, miR-155, and miR 223 significantly increased at the Rp-30 (control versus sham P < .001) and at the Rp-60 (control versus. sham P < .001). The administration of lidocaine was able to attenuate these alterations in a significant way (control versus Lidocaine P < .001). Lung IRI caused dysregulation miRNA. The administration of lidocaine reduced significantly miRNAs alterations.
Li, Cheng-Wei; Chen, Bor-Sen
2016-10-01
Recent studies have demonstrated that cell cycle plays a central role in development and carcinogenesis. Thus, the use of big databases and genome-wide high-throughput data to unravel the genetic and epigenetic mechanisms underlying cell cycle progression in stem cells and cancer cells is a matter of considerable interest. Real genetic-and-epigenetic cell cycle networks (GECNs) of embryonic stem cells (ESCs) and HeLa cancer cells were constructed by applying system modeling, system identification, and big database mining to genome-wide next-generation sequencing data. Real GECNs were then reduced to core GECNs of HeLa cells and ESCs by applying principal genome-wide network projection. In this study, we investigated potential carcinogenic and stemness mechanisms for systems cancer drug design by identifying common core and specific GECNs between HeLa cells and ESCs. Integrating drug database information with the specific GECNs of HeLa cells could lead to identification of multiple drugs for cervical cancer treatment with minimal side-effects on the genes in the common core. We found that dysregulation of miR-29C, miR-34A, miR-98, and miR-215; and methylation of ANKRD1, ARID5B, CDCA2, PIF1, STAMBPL1, TROAP, ZNF165, and HIST1H2AJ in HeLa cells could result in cell proliferation and anti-apoptosis through NFκB, TGF-β, and PI3K pathways. We also identified 3 drugs, methotrexate, quercetin, and mimosine, which repressed the activated cell cycle genes, ARID5B, STK17B, and CCL2, in HeLa cells with minimal side-effects.
A preliminary analysis of microRNA as potential clinical biomarker for schizophrenia.
Sun, Xin-yang; Zhang, Jin; Niu, Wei; Guo, Wei; Song, Hong-tao; Li, Heng-yu; Fan, Hui-min; Zhao, Lin; Zhong, Ai-fang; Dai, Yun-hua; Guo, Zhong-min; Zhang, Li-yi; Lu, Jim; Zhang, Qiao-li
2015-04-01
MicroRNAs (miRNA, miR) have been implicated as promising blood-based biomarkers for schizophrenia patients. This study aimed to clinically validate miRNA as potential schizophrenia biomarkers. Plasma levels of 10 miRNAs were analyzed using qPCR in a cohort of 61 schizophrenia patients and 62 normal controls, as well as 25 patients particularly selected for a six-week antipsychotic treatment course. Positive And Negative Syndrome Scale (PANSS), Global Assessment Scale (GAS) and Clinical Global Impression (CGI) were administered to assess the clinical symptoms. The results demonstrated that a panel of miRNAs consisting of miR-30e, miR-181b, miR-34a, miR-346 and miR-7 had significantly increased expression levels with significant combined diagnostic value (AUC:0.713; sensitivity:35.5%; specificity:90.2%). In response to pharmacological treatment, expression levels of miR-132, miR-181b, miR-432 and miR-30e were significantly decreased. In addition, the improvement of clinical symptomatology was significantly correlated with the changes of miR-132, miR-181b, miR-212 and miR-30e expression levels. Furthermore, the decreases of plasma levels of miR-132 and miR-432 were significantly greater in high-effect subgroup than those in low-effect subgroup after six-week treatment course. We conclude that miR-30e, miR-181b, miR-34a, miR-346 and miR-7 combined as a panel are potentially useful non-invasive biomarkers for schizophrenia diagnosis. Markers miR-132, miR-181b, miR-30e and miR-432 are potential indicators for symptomatology improvements, treatment responses and prognosis for schizophrenia patients. © 2015 Wiley Periodicals, Inc.
The transcardiac gradient of cardio-microRNAs in the failing heart.
Marques, Francine Z; Vizi, Donna; Khammy, Ouda; Mariani, Justin A; Kaye, David M
2016-08-01
Differential microRNA expression in peripheral blood has been observed in patients with heart failure, suggesting their value as potential biomarkers and likely contributors to disease mechanisms. In the present study, we aimed to evaluate the transcardiac gradient of 84 cardio-microRNAs in healthy and failing hearts to determine which microRNAs are released or absorbed by the myocardium in heart failure. Eight healthy volunteers and nine patients with congestive heart failure were included. Arterial and coronary sinus blood samples were collected, and microRNAs were extracted. The expression of microRNAs was analysed using real-time PCR by the miScript miRNA PCR Array Human Cardiovascular Disease. In coronary sinus samples, the microRNAs miR-16-5p, miR-27a-3p, miR-27b-3p, miR-29b-3p, miR-29c-3p, miR-30e-5p, miR-92a-3p, miR-125b-5p, miR-140-5p, miR-195-5p, miR-424-5p, and miR-451a were significantly down-regulated, and let-7a-5p, let-7c-5p, let-7e-5p, miR-23b-3p, miR-107, miR-155-5p, miR-181a-5p, miR-181b-5p and miR-320a were up-regulated in heart failure. Left ventricular filling pressure was negatively correlated with miR-195, miR-16, miR-29b-3p, miR-29c-3p, miR-451a, and miR-92a-3p. The failing heart released let-7b-5p, let-7c-5p, let-7e-5p, miR-122-5p, and miR-21-5p, and absorbed miR-16-5p, miR-17-5p, miR-27a-3p, miR-30a-5p, miR-30d-5p, miR-30e-5p, miR-130a-3p, miR-140-5p, miR-199a-5p, and miR-451a. In silico analyses suggest that the transcardiac gradient of microRNAs in heart failure may target pathways related to heart disease. We determined the transcardiac gradient of cardio-microRNAs in failing hearts, which supports the use of these microRNAs as potential biomarkers. The microRNAs described here may have a role in the pathophysiology of heart failure as they might be involved in pathways related to disease progression, including fibrosis. © 2016 The Authors European Journal of Heart Failure © 2016 European Society of Cardiology.
Capitalizing on fine milk composition for breeding and management of dairy cows.
Gengler, N; Soyeurt, H; Dehareng, F; Bastin, C; Colinet, F; Hammami, H; Vanrobays, M-L; Lainé, A; Vanderick, S; Grelet, C; Vanlierde, A; Froidmont, E; Dardenne, P
2016-05-01
The challenge of managing and breeding dairy cows is permanently adapting to changing production circumstances under socio-economic constraints. If managing and breeding address different timeframes of action, both need relevant phenotypes that allow for precise monitoring of the status of the cows, and their health, behavior, and well-being as well as their environmental impact and the quality of their products (i.e., milk and subsequently dairy products). Milk composition has been identified as an important source of information because it could reflect, at least partially, all these elements. Major conventional milk components such as fat, protein, urea, and lactose contents are routinely predicted by mid-infrared (MIR) spectrometry and have been widely used for these purposes. But, milk composition is much more complex and other nonconventional milk components, potentially predicted by MIR, might be informative. Such new milk-based phenotypes should be considered given that they are cheap, rapidly obtained, usable on a large scale, robust, and reliable. In a first approach, new phenotypes can be predicted from MIR spectra using techniques based on classical prediction equations. This method was used successfully for many novel traits (e.g., fatty acids, lactoferrin, minerals, milk technological properties, citrate) that can be then useful for management and breeding purposes. An innovation was to consider the longitudinal nature of the relationship between the trait of interest and the MIR spectra (e.g., to predict methane from MIR). By avoiding intermediate steps, prediction errors can be minimized when traits of interest (e.g., methane, energy balance, ketosis) are predicted directly from MIR spectra. In a second approach, research is ongoing to detect and exploit patterns in an innovative manner, by comparing observed with expected MIR spectra directly (e.g., pregnancy). All of these traits can then be used to define best practices, adjust feeding and health management, improve animal welfare, improve milk quality, and mitigate environmental impact. Under the condition that MIR data are available on a large scale, phenotypes for these traits will allow genetic and genomic evaluations. Introduction of novel traits into the breeding objectives will need additional research to clarify socio-economic weights and genetic correlations with other traits of interest. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TEST OF DIOXIN EMISSION MONITORS
The performance of four dioxin emission monitors including two long-term sampling devices, the DMS (DioxinMonitoringSystem) and AMESA (Adsorption Method for Sampling Dioxins and Furans), and two semi-real-time continuous monitors, RIMMPA-TOFMS (Resonance Ionization with Multi-Mir...
Mir Cooperative Solar Array Flight Performance Data and Computational Analysis
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Hoffman, David J.
1997-01-01
The Mir Cooperative Solar Array (MCSA) was developed jointly by the United States (US) and Russia to provide approximately 6 kW of photovoltaic power to the Russian space station Mir. The MCSA was launched to Mir in November 1995 and installed on the Kvant-1 module in May 1996. Since the MCSA photovoltaic panel modules (PPMs) are nearly identical to those of the International Space Station (ISS) photovoltaic arrays, MCSA operation offered an opportunity to gather multi-year performance data on this technology prior to its implementation on ISS. Two specially designed test sequences were executed in June and December 1996 to measure MCSA performance. Each test period encompassed 3 orbital revolutions whereby the current produced by the MCSA channels was measured. The temperature of MCSA PPMs was also measured. To better interpret the MCSA flight data, a dedicated FORTRAN computer code was developed to predict the detailed thermal-electrical performance of the MCSA. Flight data compared very favorably with computational performance predictions. This indicated that the MCSA electrical performance was fully meeting pre-flight expectations. There were no measurable indications of unexpected or precipitous MCSA performance degradation due to contamination or other causes after 7 months of operation on orbit. Power delivered to the Mir bus was lower than desired as a consequence of the retrofitted power distribution cabling. The strong correlation of experimental and computational results further bolsters the confidence level of performance codes used in critical ISS electric power forecasting. In this paper, MCSA flight performance tests are described as well as the computational modeling behind the performance predictions.
Chen, Muyan; Storey, Kenneth B
2014-02-01
The sea cucumber Apostichopus japonicus withstands high water temperatures in the summer by suppressing its metabolic rate and entering a state of aestivation. We hypothesized that changes in the expression of miRNAs could provide important post-transcriptional regulation of gene expression during hypometabolism via control over mRNA translation. The present study analyzed profiles of miRNA expression in the sea cucumber respiratory tree using Solexa deep sequencing technology. We identified 279 sea cucumber miRNAs, including 15 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA; after at least 15 days of continuous torpor) were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to an active state). We identified 30 differentially expressed miRNAs ([RPM (reads per million) >10, |FC| (|fold change|)≥1, FDR (false discovery rate)<0.01]) during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-124, miR-124-3p, miR-79, miR-9 and miR-2010 were significantly over-expressed during deep aestivation compared with non-aestivation animals, suggesting that these miRNAs may play important roles in metabolic rate suppression during aestivation. High-throughput sequencing data and microarray data have been submitted to the GEO database with accession number: 16902695. Copyright © 2014 Elsevier B.V. All rights reserved.
Cinegaglia, Naiara C.; Andrade, Sonia Cristina S.; Tokar, Tomas; Pinheiro, Maísa; Severino, Fábio E.; Oliveira, Rogério A.; Hasimoto, Erica N.; Cataneo, Daniele C.; Cataneo, Antônio J.M.; Defaveri, Júlio; Souza, Cristiano P.; Marques, Márcia M.C.; Carvalho, Robson F.; Coutinho, Luiz L.; Gross, Jefferson L.; Rogatto, Silvia R.; Lam, Wan L.; Jurisica, Igor; Reis, Patricia P.
2016-01-01
Herein, we aimed at identifying global transcriptome microRNA (miRNA) changes and miRNA target genes in lung adenocarcinoma. Samples were selected as training (N = 24) and independent validation (N = 34) sets. Tissues were microdissected to obtain >90% tumor or normal lung cells, subjected to miRNA transcriptome sequencing and TaqMan quantitative PCR validation. We further integrated our data with published miRNA and mRNA expression datasets across 1,491 lung adenocarcinoma and 455 normal lung samples. We identified known and novel, significantly over- and under-expressed (p ≤ 0.01 and FDR≤0.1) miRNAs in lung adenocarcinoma compared to normal lung tissue: let-7a, miR-10a, miR-15b, miR-23b, miR-26a, miR-26b, miR-29a, miR-30e, miR-99a, miR-146b, miR-181b, miR-181c, miR-421, miR-181a, miR-574 and miR-1247. Validated miRNAs included let-7a-2, let-7a-3, miR-15b, miR-21, miR-155 and miR-200b; higher levels of miR-21 expression were associated with lower patient survival (p = 0.042). We identified a regulatory network including miR-15b and miR-155, and transcription factors with prognostic value in lung cancer. Our findings may contribute to the development of treatment strategies in lung adenocarcinoma. PMID:27081085
Meng, Xiaodan; Joosse, Simon A; Müller, Volkmar; Trillsch, Fabian; Milde-Langosch, Karin; Mahner, Sven; Geffken, Maria; Pantel, Klaus; Schwarzenbach, Heidi
2015-11-03
Owing to late diagnosis in advanced disease stages, prognosis of patients with epithelial ovarian cancer (EOC) is poor. The quantification of deregulated levels of microRNAs could facilitate earlier diagnosis and improve prognosis of EOC. Seven microRNAs (miR-7, miR-16, miR-25, miR-93, miR-182, miR-376a and miR-429) were quantified in the serum of 180 EOC patients and 66 healthy women by TaqMan PCR microRNA assays. Median follow-up time was 21 months. The effects of miR-7 and miR-429 on apoptosis, cell proliferation, migration and invasion were investigated in two (EOC) cell lines. Serum levels of miR-25 (P=0.0001) and miR-93 (P=0.0001) were downregulated, whereas those of miR-7 (P=0.001) and miR-429 (P=0.0001) were upregulated in EOC patients compared with healthy women. The four microRNAs discriminated EOC patients from healthy women with a sensitivity of 93% and a specificity of 92%. The levels of miR-429 positively correlated with CA125 values (P=0.0001) and differed between FIGO I-II and III-IV stages (P=0.001). MiR-429 was an independent predictor of overall survival (P=0.011). Overexpressed miR-429 in SKOV3 cells led to suppression of cell migration (P=0.037) and invasion (P=0.011). Increased levels of miR-7 were associated with lymph node metastases (P=0.0001) and FIGO stages III-IV (P=0.0001). Overexpressed miR-7 in SKOV3 cells resulted in increased cell migration (P=0.001) and invasion (P=0.011). Additionally, the increased levels of miR-376a correlated with FIGO stages III-IV (P=0.02). Our data indicate the diagnostic potential of miR-7, miR-25, miR-93 and miR-429 in EOC and the prognostic potential of miR-429. This microRNA panel may be promising molecules to be targeted in the treatment of EOC.
Evaluation of miR-182/miR-100 Ratio for Diagnosis and Survival Prediction in Bladder Cancer.
Chen, Zhanguo; Wu, Lili; Lin, Qi; Shi, Jing; Lin, Xiangyang; Shi, Liang
2016-09-01
Abnormal expression of microRNAs (miRNAs) plays an important role in development of several cancer types, including bladder cancer (BCa). However, the relationship between the ratio of miR-181/miR-100 and the prognosis of BCa has not been studied yet. The aim of this study was to evaluate the expression of miR-182, miR-100 and their clinical significance in BCa. Upregulation of miR-182 and down-regulation of miR-100 were validated in tissue specimens of 134 BCa cases compared with 148 normal bladder epithelia (NBE) specimens using TaqMan-based real-time reverse transcription quantitative PCR (RT-qPCR). The diagnostic and prognostic evaluation of miR-182, miR-100, and miR-182/miR-100 ratio was also performed. miR-182 was upregulated in BCa and miR-100 was down-regulated in BCa compared with NBE (P < 0.001). The areas under receiver operating characteristic curves (AUCs-ROC) for miR-182 and miR-100 were 0.913 and 0.810, respectively. However, miR-182/miR-100 ratio increased the diagnostic performance, yielding an AUC of 0.981 (97.01% sensitivity and 90.54% specificity). Moreover, miR-182/miR-100 ratio was associated with pT-stage, histological grade, BCa recurrence and carcinoma in situ (P < 0.05 for all). Multivariate Cox regression analysis indicated that miR-182/miR-100 ratio was an independent prognostic factor for overall survival (Hazard ratio: 7.142; 95% CI: 2.106 - 9.891; P < 0.01). Furthermore, Kaplan-Meier curve analysis revealed that high-level of miR-182/miR-100 ratio was significantly correlated with shortened survival time for BCa patients (P < 0.01). The miR-182/miR-100 ratio may serve as a novel promising biomarker for diagnosis and survival prediction in BCa. Further studies are needed to elucidate the role of miR-182/miR-100 ratio as a non‑invasive diagnostic tool for BCa.
Zhou, Yi; Yu, Fan; Gao, Yun; Luo, Yongju; Tang, Zhanyang; Guo, Zhongbao; Guo, Enyan; Gan, Xi; Zhang, Ming; Zhang, Yaping
2014-01-01
MicroRNAs (miRNAs) are endogenous non-coding small RNAs which play important roles in the regulation of gene expression by cleaving or inhibiting the translation of target gene transcripts. Thereinto, some specific miRNAs show regulatory activities in gonad development via translational control. In order to further understand the role of miRNA-mediated posttranscriptional regulation in Nile tilapia (Oreochromis niloticus) ovary and testis, two small RNA libraries of Nile tilapia were sequenced by Solexa small RNA deep sequencing methods. A total of 9,731,431 and 8,880,497 raw reads, representing 5,407,800 and 4,396,281 unique sequences were obtained from the sexually mature ovaries and testes, respectively. After comparing the small RNA sequences with the Rfam database, 1,432,210 reads in ovaries and 984,146 reads in testes were matched to the genome sequence of Nile tilapia. Bioinformatic analysis identified 764 mature miRNA, 209 miRNA-5p and 202 miRNA-3p were found in the two libraries, of which 525 known miRNAs are both expressed in the ovary and testis of Nile tilapia. Comparison of expression profiles of the testis, miR-727, miR-129 and miR-29 families were highly expressed in tilapia ovary. Additionally, miR-132, miR-212, miR-33a and miR-135b families, showed significant higher expression in testis compared with that in ovary. Furthermore, the expression patterns of the miRNAs were analyzed in different developmental stages of gonad. The result showed different expression patterns were observed during development of testis and ovary. In addition, the identification and characterization of differentially expressed miRNAs in the ovaries and testis of Nile tilapia provides important information on the role of miRNA in the regulation of the ovarian and testicular development and function. This data will be helpful to facilitate studies on the regulation of miRNAs during teleosts reproduction. PMID:24466258
Braicu, Ovidiu-Leonard; Budisan, Liviuta; Buiga, Rares; Jurj, Ancuta; Achimas-Cadariu, Patriciu; Pop, Laura Ancuta; Braicu, Cornelia; Irimie, Alexandru; Berindan-Neagoe, Ioana
2017-01-01
Endometriosis is an inflammatory pathology associated with a negative effect on life quality. Recently, this pathology was connected to ovarian cancer, in particular with endometrioid ovarian cancer. microRNAs (miRNAs) are a class of RNA transcripts ~19–22 nucleotides in length, the altered miRNA pattern being connected to pathological status. miRNAs are highly stable transcripts, and these can be assessed from formalin-fixed paraffin-embedded (FFPE) samples leading to the identification of miRNAs that could be developed as diagnostic and prognostic biomarkers, in particular those involved in malignant transformation. The aim of our study was to evaluate miRNA expression pattern in FFPE samples from endometriosis and ovarian cancer patients using PCR-array technology and also to compare the differential expression pattern in ovarian cancer versus endometriosis. For the PCR-array study, we have used nine macrodissected FFPE samples from endometriosis tissue, eight samples of ovarian cancers and five normal ovarian tissues. Quantitative real-time PCR (qRT-PCR) was used for data validation in a new patient cohort of 17 normal samples, 33 endometriosis samples and 28 ovarian cancer macrodissected FFPE samples. Considering 1.5-fold expression difference as a cut-off level and a P-value <0.05, we have identified four miRNAs being overexpressed in endometrial tissue, while in ovarian cancer 15 were differentially expressed (nine overexpressed and six downregulated). The expression level was confirmed by qRT-PCR for miR-93, miR-141, miR-155, miR-429, miR-200c, miR-205 and miR-492. Using the interpretative program Ingenuity Pathway Analysis revealed several deregulated pathways due to abnormal miRNA expression in endometriosis and ovarian cancer, which in turn is responsible for pathogenesis; this differential expression of miRNAs can be exploited as a therapeutic target. A higher number of altered miRNAs were detected in endometriosis versus ovarian cancer tissue, most of them being linked with epithelial-to-mesenchymal transition. PMID:28894379
Khuu, Cuong; Jevnaker, Anne-Marthe; Bryne, Magne; Osmundsen, Harald
2014-01-01
Transfection of human oral squamous carcinoma cells (clone E10) with mimics for unexpressed miR-20b or miR-363-5p, encoded by the miR-106a-363 cluster (miR-20b, miR-106a, miR-363-3p, or miR-363-5p), caused 40–50% decrease in proliferation. Transfection with mimics for miR-18a or miR-92a, encoded by the miR-17-92 cluster (all members being expressed in E10 cells), had no effect on proliferation. In contrast, mimic for the sibling miRNA-19a yielded about 20% inhibition of proliferation. To investigate miRNA involvement profiling of miRNA transcriptomes were carried out using deoxyoligonucleotide microarrays. In transfectants for miR-19a, or miR-20b or miR-363-5p most differentially expressed miRNAs exhibited decreased expression, including some miRNAs encoded in paralogous miR-17-92—or miR-106b-25 cluster. Only in cells transfected with miR-19a mimic significantly increased expression of miR-20b observed—about 50-fold as judged by qRT-PCR. Further studies using qRT-PCR showed that transfection of E10 cells with mimic for miRNAs encoded by miR-17-92 - or miR-106a-363 - or the miR-106b-25 cluster confirmed selective effect on expression on sibling miRNAs. We conclude that high levels of miRNAs encoded by the miR-106a-363 cluster may contribute to inhibition of proliferation by decreasing expression of several sibling miRNAs encoded by miR-17-92 or by the miR-106b-25 cluster. The inhibition of proliferation observed in miR-19a-mimic transfectants is likely caused by the miR-19a-dependent increase in the levels of miR-20b and miR-106a. Bioinformatic analysis of differentially expressed miRNAs from miR-106a, miR-20b and miR-363-5p transfectants, but not miR-92a transfectants, yielded significant associations to “Cellular Growth and Proliferation” and “Cell Cycle.” Western blotting results showed that levels of affected proteins to differ between transfectants, suggesting that different anti-proliferative mechanisms may operate in these transfectants. PMID:25202322
MicroRNAs in the development and neoplasia of the mammary gland.
Jena, Manoj Kumar
2017-01-01
Study on the role of microRNAs (miRs) as regulators of gene expression through posttranscriptional gene silencing is currently gaining much interest,due to their wide involvement in different physiological processes. Understanding mammary gland development, lactation, and neoplasia in relation to miRs is essential. miR expression profiling of the mammary gland from different species in various developmental stages shows their role as critical regulators of development. miRs such as miR-126, miR-150, and miR-145 have been shown to be involved in lipid metabolism during lactation. In addition, lactogenic hormones influence miR expression as evidenced by overexpression of miR-148a in cow mammary epithelial cells, leading to enhanced lactation. Similarly, the miR-29 family modulates lactation-related gene expression by regulating DNA methylation of their promoters. Besides their role in development, lactation and involution, miRs are responsible for breast cancer development. Perturbed estrogen (E2) signaling is one of the major causes of breast cancer. Increased E2 levels cause altered expression of ERα, and ERα-miR cross-talk promotes tumour progression. miRs, such as miR-206, miR-34a, miR-17-5p, and miR-125 a/b are found to be tumour suppressors; whereas miR-21, miR-10B, and miR-155 are oncogenes. Oncogenic miRs like miR-21, miR-221, and miR-210 are overexpressed in triple negative breast cancer cases which can be diagnostic biomarker for this subtype of cancer. This review focuses on the recent findings concerning the role of miRs in developmental stages of the mammary gland (mainly lactation and involution stages) and their involvement in breast cancer progression. Further studies in this area will help us to understand the molecular details of mammary gland biology, as well as miRs that could be therapeutic targets of breast cancer.
Rachagani, Satyanarayana; Macha, Muzafar A; Menning, Melanie S; Dey, Parama; Pai, Priya; Smith, Lynette M; Mo, Yin-Yuan; Batra, Surinder K
2015-11-24
Differential expression of microRNAs (miRNAs) has been demonstrated in various cancers, including pancreatic cancer (PC). Due to the lack of tissue samples from early-stages of PC, the stage-specific alteration of miRNAs during PC initiation and progression is largely unknown. In this study, we investigated the global miRNA expression profile and their processing machinery during PC progression using the KrasG12D;Pdx1-Cre (KC) mouse model. At 25 weeks, the miRNA microarray analysis revealed significant downregulation of miR-150, miR-494, miR-138, miR-148a, miR-216a, and miR-217 and upregulation of miR-146b, miR-205, miR-31, miR-192, and miR-21 in KC mice compared to controls. Further, expression of miRNA biosynthetic machinery including Dicer, Exportin-5, TRKRA, and TARBP2 were downregulated, while DGCR8 and Ago2 were upregulated in KC mice. In addition, from 10 to 50 weeks of age, stage-specific expression profiling of miRNA in KC mice revealed downregulation of miR-216, miR-217, miR-100, miR-345, miR-141, miR-483-3p, miR-26b, miR-150, miR-195, Let-7b and Let-96 and upregulation of miR-21, miR-205, miR-146b, miR-34c, miR-1273, miR-223 and miR-195 compared to control mice. Interestingly, the differential expression of miRNA in mice also corroborated with the miRNA expression in human PC cell lines and tissue samples; ectopic expression of Let-7b in CD18/HPAF and Capan1 cells resulted in the downregulation of KRAS and MSST1 expression. Overall, the present study aids an understanding of miRNA expression patterns during PC pathogenesis and helps to facilitate the identification of promising and novel early diagnostic/prognostic markers and therapeutic targets.
Rachagani, Satyanarayana; Dey, Parama; Pai, Priya; Smith, Lynette M.; Mo, Yin-Yuan; Batra, Surinder K.
2015-01-01
Differential expression of microRNAs (miRNAs) has been demonstrated in various cancers, including pancreatic cancer (PC). Due to the lack of tissue samples from early-stages of PC, the stage-specific alteration of miRNAs during PC initiation and progression is largely unknown. In this study, we investigated the global miRNA expression profile and their processing machinery during PC progression using the KrasG12D;Pdx1-Cre (KC) mouse model. At 25 weeks, the miRNA microarray analysis revealed significant downregulation of miR-150, miR-494, miR-138, miR-148a, miR-216a, and miR-217 and upregulation of miR-146b, miR-205, miR-31, miR-192, and miR-21 in KC mice compared to controls. Further, expression of miRNA biosynthetic machinery including Dicer, Exportin-5, TRKRA, and TARBP2 were downregulated, while DGCR8 and Ago2 were upregulated in KC mice. In addition, from 10 to 50 weeks of age, stage-specific expression profiling of miRNA in KC mice revealed downregulation of miR-216, miR-217, miR-100, miR-345, miR-141, miR-483-3p, miR-26b, miR-150, miR-195, Let-7b and Let-96 and upregulation of miR-21, miR-205, miR-146b, miR-34c, miR-1273, miR-223 and miR-195 compared to control mice. Interestingly, the differential expression of miRNA in mice also corroborated with the miRNA expression in human PC cell lines and tissue samples; ectopic expression of Let-7b in CD18/HPAF and Capan1 cells resulted in downregulation of KRAS and MSST1 expression. Overall, the present study aids an understanding of miRNA expression patterns during PC pathogenesis and helps to facilitate the identification of promising and novel early diagnostic/prognostic markers and therapeutic targets. PMID:26516699
miR-181a and miR-630 regulate cisplatin-induced cancer cell death.
Galluzzi, Lorenzo; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Senovilla, Laura; Criollo, Alfredo; Servant, Nicolas; Paccard, Caroline; Hupé, Philippe; Robert, Thomas; Ripoche, Hugues; Lazar, Vladimir; Harel-Bellan, Annick; Dessen, Philippe; Barillot, Emmanuel; Kroemer, Guido
2010-03-01
MicroRNAs (miRNA) are noncoding RNAs that regulate multiple cellular processes, including proliferation and apoptosis. We used microarray technology to identify miRNAs that were upregulated by non-small cell lung cancer (NSCLC) A549 cells in response to cisplatin (CDDP). The corresponding synthetic miRNA precursors (pre-miRNAs) per se were not lethal when transfected into A549 cells yet affected cell death induction by CDDP, C2-ceramide, cadmium, etoposide, and mitoxantrone in an inducer-specific fashion. Whereas synthetic miRNA inhibitors (anti-miRNAs) targeting miR-181a and miR-630 failed to modulate the response of A549 to CDDP, pre-miR-181a and pre-miR-630 enhanced and reduced CDDP-triggered cell death, respectively. Pre-miR-181a and pre-miR-630 consistently modulated mitochondrial/postmitochondrial steps of the intrinsic pathway of apoptosis, including Bax oligomerization, mitochondrial transmembrane potential dissipation, and the proteolytic maturation of caspase-9 and caspase-3. In addition, pre-miR-630 blocked early manifestations of the DNA damage response, including the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and of two ATM substrates, histone H2AX and p53. Pharmacologic and genetic inhibition of p53 corroborated the hypothesis that pre-miR-630 (but not pre-miR-181a) blocks the upstream signaling pathways that are ignited by DNA damage and converge on p53 activation. Pre-miR-630 arrested A549 cells in the G0-G1 phase of the cell cycle, correlating with increased levels of the cell cycle inhibitor p27(Kip1) as well as with reduced proliferation rates and resulting in greatly diminished sensitivity of A549 cells to the late S-G2-M cell cycle arrest mediated by CDDP. Altogether, these results identify miR-181a and miR-630 as novel modulators of the CDDP response in NSCLC.
Lin, Lizhou; Fan, Yu; Gao, Feng; Jin, Lifang; Li, Dan; Sun, Wenjie; Li, Fan; Qin, Peng; Shi, Qiusheng; Shi, Xiangyang; Du, Lianfang
2018-01-01
Conventional chemotherapy of pancreatic cancer (PaCa) suffers the problems of low drug permeability and inherent or acquired drug resistance. Development of new strategies for enhanced therapy still remains a great challenge. Herein, we report a new ultrasound-targeted microbubble destruction (UTMD)-promoted delivery system based on dendrimer-entrapped gold nanoparticles (Au DENPs) for co-delivery of gemcitabine (Gem) and miR-21 inhibitor (miR-21i). Methods: In this study, Gem-Au DENPs/miR-21i was designed and synthesized. The designed polyplexes were characterized via transmission electron microscopy (TEM), Gel retardation assay and dynamic light scattering (DLS). Then, the optimum exposure parameters were examined by an ultrasound exposure platform. The cellular uptake, cytotoxicity and anticancer effects in vitro were analyzed by confocal laser microscopy, spectra microplate reader, flow cytometry and a chemiluminescence imaging system. Lastly, the anticancer effects in vivo were evaluated by contrast-enhanced ultrasound (CEUS), hematoxylin and eosin (H&E) staining, TUNEL staining and comparison of tumor volume. Results: The results showed that the Gem-Au DENPs/miR-21i can be uptake by cancer cells and the cellular uptake was further facilitated by UTMD with an ultrasound power of 0.4 W/cm2 to enhance the cell permeability. Further, the co-delivery of Gem and miR-21i with or without UTMD treatment displayed 82-fold and 13-fold lower IC50 values than the free Gem, respectively. The UTMD-promoted co-delivery of Gem and miR-21i was further validated by in vivo treatment and showed a significant tumor volume reduction and an increase in blood perfusion of xenografted pancreatic tumors. Conclusion: The co-delivery of Gem and miR-21i using Au DENPs can be significantly promoted by UTMD technology, hence providing a promising strategy for effective pancreatic cancer treatments. PMID:29556365
Identification of microRNAs regulating Escherichia coli F18 infection in Meishan weaned piglets.
Wu, Zhengchang; Qin, Weiyun; Wu, Seng; Zhu, Guoqiang; Bao, Wenbin; Wu, Shenglong
2016-11-03
Escherichia coli F18 is mainly responsible for post-weaning diarrhea (PWD) in piglets. The molecular regulation of E. coli F18 resistance in Chinese domestic weaned piglets is still obscure. We used Meishan piglets as model animals to test their susceptibility to E. coli F18. Small RNA duodenal libraries were constructed for E. coli F18-sensitive and -resistant weaned piglets challenged with E. coli F18 and sequenced using Illumina Solexa high-throughput sequencing technology. Sequencing results showed that 3,475,231 and 37,198,259 clean reads were obtained, with 311 known miRNAs differently expressed in resistant and sensitive groups, respectively. Twenty-four miRNAs, including 15 up-regulated and 9 down-regulated, demonstrated more than a 2-fold differential expression between the F18-resistant and -sensitive piglets. Stem-loop RT-qPCR showed that miR-136, miR-196b, miR-499-5p and miR-218-3p significantly expressed in intestinal tissue (p < 0.05). KEGG pathway analysis for target genes revealed that differently expressed miRNAs were involved in infectious diseases, signal transduction and immune system pathways. Interestingly, the expression of miR-218-3p in intestinal tissue had a very significant negative correlation with target DLG5 (P < 0.01). Based on the expression correlation between miRNA and target genes analysis, we speculate that miR-218-3p targeting to DLG5, appears to be very promising candidate for miRNAs involved in response to E. coli F18 infection. The present study provides improved database information on pig miRNAs, better understanding of the genetic basis of E. coli F18 resistance in local Chinese pig breeds and lays a new foundation for identifying novel markers of E. coli F18 resistance. This article was reviewed by Neil R Smalheiser and Weixiong Zhang.
Bioengineered Noncoding RNAs Selectively Change Cellular miRNome Profiles for Cancer Therapy.
Ho, Pui Yan; Duan, Zhijian; Batra, Neelu; Jilek, Joseph L; Tu, Mei-Juan; Qiu, Jing-Xin; Hu, Zihua; Wun, Theodore; Lara, Primo N; DeVere White, Ralph W; Chen, Hong-Wu; Yu, Ai-Ming
2018-06-01
Noncoding RNAs (ncRNAs) produced in live cells may better reflect intracellular ncRNAs for research and therapy. Attempts were made to produce biologic ncRNAs, but at low yield or success rate. Here we first report a new ncRNA bioengineering technology using more stable ncRNA carrier (nCAR) containing a pre-miR-34a derivative identified by rational design and experimental validation. This approach offered a remarkable higher level expression (40%-80% of total RNAs) of recombinant ncRNAs in bacteria and gave an 80% success rate (33 of 42 ncRNAs). New FPLC and spin-column based methods were also developed for large- and small-scale purification of milligrams and micrograms of recombinant ncRNAs from half liter and milliliters of bacterial culture, respectively. We then used two bioengineered nCAR/miRNAs to demonstrate the selective release of target miRNAs into human cells, which were revealed to be Dicer dependent (miR-34a-5p) or independent (miR-124a-3p), and subsequent changes of miRNome and transcriptome profiles. miRNA enrichment analyses of altered transcriptome confirmed the specificity of nCAR/miRNAs in target gene regulation. Furthermore, nCAR assembled miR-34a-5p and miR-124-3p were active in suppressing human lung carcinoma cell proliferation through modulation of target gene expression (e.g., cMET and CDK6 for miR-34a-5p; STAT3 and ABCC4 for miR-124-3p). In addition, bioengineered miRNA molecules were effective in controlling metastatic lung xenograft progression, as demonstrated by live animal and ex vivo lung tissue bioluminescent imaging as well as histopathological examination. This novel ncRNA bioengineering platform can be easily adapted to produce various ncRNA molecules, and biologic ncRNAs hold the promise as new cancer therapeutics. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
1997-05-24
Framed by the Vehicle Assembly Building in the distance, at left, and the Mate-Demate Device, the Space Shuttle Atlantis with its drag chute deployed touches down on KSC’s Runway 33 at the conclusion of the STS-84 mission. The Shuttle Training Aircraft with astronaut Kenneth D. Cockrell at the controls is flying in front of Atlantis. Cockrell is acting deputy chief of the Astronaut Office. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and Jean-Francois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
Heart structure-specific transcriptomic atlas reveals conserved microRNA-mRNA interactions.
Vacchi-Suzzi, Caterina; Hahne, Florian; Scheubel, Philippe; Marcellin, Magali; Dubost, Valerie; Westphal, Magdalena; Boeglen, Catherine; Büchmann-Møller, Stine; Cheung, Ming Sin; Cordier, André; De Benedetto, Christopher; Deurinck, Mark; Frei, Moritz; Moulin, Pierre; Oakeley, Edward; Grenet, Olivier; Grevot, Armelle; Stull, Robert; Theil, Diethilde; Moggs, Jonathan G; Marrer, Estelle; Couttet, Philippe
2013-01-01
MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.
Exosomal microRNA profiling to identify hypoxia-related biomarkers in prostate cancer
Panigrahi, Gati K.; Ramteke, Anand; Birks, Diane; Abouzeid Ali, Hamdy E.; Venkataraman, Sujatha; Agarwal, Chapla; Vibhakar, Rajeev; Miller, Lance D.; Agarwal, Rajesh; Abd Elmageed, Zakaria Y.; Deep, Gagan
2018-01-01
Hypoxia and expression of hypoxia-related biomarkers are associated with disease progression and treatment failure in prostate cancer (PCa). We have reported that exosomes (nanovesicles of 30-150 nm in diameter) secreted by human PCa cells under hypoxia promote invasiveness and stemness in naïve PCa cells. Here, we identified the unique microRNAs (miRNAs) loaded in exosomes secreted by PCa cells under hypoxia. Using TaqMan® array microRNA cards, we analyzed the miRNA profile in exosomes secreted by human PCa LNCaP cells under hypoxic (ExoHypoxic) and normoxic (ExoNormoxic) conditions. We identified 292 miRNAs loaded in both ExoHypoxic and ExoNormoxic. The top 11 miRNAs with significantly higher level in ExoHypoxic compared to ExoNormoxic were miR-517a, miR-204, miR-885, miR-143, miR-335, miR-127, miR-542, miR-433, miR-451, miR-92a and miR-181a; and top nine miRNA with significantly lower expression level in ExoHypoxic compared to ExoNormoxic were miR-521, miR-27a, miR-324, miR-579, miR-502, miR-222, miR-135b, miR-146a and miR-491. Importantly, the two differentially expressed miRNAs miR-885 (increased expression) and miR-521 (decreased expression) showed similar expression pattern in exosomes isolated from the serum of PCa patients compared to healthy individuals. Additionally, miR-204 and miR-222 displayed correlated expression patterns in prostate tumors (Pearson R = 0.66, p < 0.0001) by The Cancer Genome Atlas (TCGA) prostate adenocarcinoma (PRAD) genomic dataset analysis. Overall, the present study identified unique miRNAs with differential expression in exosomes secreted from hypoxic PCa cells and suggests their potential usefulness as a biomarker of hypoxia in PCa patients. PMID:29568403
Growth and Morphology of Supercritical Fluids Studied in Microgravity on Mir
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
2000-01-01
The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center at Lewis Field and under the guidance of U.S. principal investigator Professor John Hegseth of the University of New Orleans and three French coinvestigators Daniel Beysens, Yves Garrabos, and Carole Chabot. In early 1999, GMSF experiments were operated for 20 days on the Russian Space Station Mir. Mir astronauts performed experiments One through Seven, which spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) to be applied to the sample.
Metabolic and miRNA Profiling of TMV Infected Plants Reveals Biphasic Temporal Changes
Bazzini, Ariel A.; Manacorda, Carlos A.; Tohge, Takayuki; Conti, Gabriela; Rodriguez, Maria C.; Nunes-Nesi, Adriano; Villanueva, Sofía; Fernie, Alisdair R.; Carrari, Fernando; Asurmendi, Sebastian
2011-01-01
Plant viral infections induce changes including gene expression and metabolic components. Identification of metabolites and microRNAs (miRNAs) differing in abundance along infection may provide a broad view of the pathways involved in signaling and defense that orchestrate and execute the response in plant-pathogen interactions. We used a systemic approach by applying both liquid and gas chromatography coupled to mass spectrometry to determine the relative level of metabolites across the viral infection, together with a miRs profiling using a micro-array based procedure. Systemic changes in metabolites were characterized by a biphasic response after infection. The first phase, detected at one dpi, evidenced the action of a systemic signal since no virus was detected systemically. Several of the metabolites increased at this stage were hormone-related. miRs profiling after infection also revealed a biphasic alteration, showing miRs alteration at 5 dpi where no virus was detected systemically and a late phase correlating with virus accumulation. Correlation analyses revealed a massive increase in the density of correlation networks after infection indicating a complex reprogramming of the regulatory pathways, either in response to the plant defense mechanism or to the virus infection itself. Our data propose the involvement of a systemic signaling on early miRs alteration. PMID:22174812
mirPub: a database for searching microRNA publications.
Vergoulis, Thanasis; Kanellos, Ilias; Kostoulas, Nikos; Georgakilas, Georgios; Sellis, Timos; Hatzigeorgiou, Artemis; Dalamagas, Theodore
2015-05-01
Identifying, amongst millions of publications available in MEDLINE, those that are relevant to specific microRNAs (miRNAs) of interest based on keyword search faces major obstacles. References to miRNA names in the literature often deviate from standard nomenclature for various reasons, since even the official nomenclature evolves. For instance, a single miRNA name may identify two completely different molecules or two different names may refer to the same molecule. mirPub is a database with a powerful and intuitive interface, which facilitates searching for miRNA literature, addressing the aforementioned issues. To provide effective search services, mirPub applies text mining techniques on MEDLINE, integrates data from several curated databases and exploits data from its user community following a crowdsourcing approach. Other key features include an interactive visualization service that illustrates intuitively the evolution of miRNA data, tag clouds summarizing the relevance of publications to particular diseases, cell types or tissues and access to TarBase 6.0 data to oversee genes related to miRNA publications. mirPub is freely available at http://www.microrna.gr/mirpub/. vergoulis@imis.athena-innovation.gr or dalamag@imis.athena-innovation.gr Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Eriksen, Anne Haahr Mellergaard; Andersen, Rikke Fredslund; Pallisgaard, Niels; Sørensen, Flemming Brandt; Jakobsen, Anders; Hansen, Torben Frøstrup
2016-01-01
MicroRNAs (miRNAs) play important roles in regulating biological processes at the post-transcriptional level. Deregulation of miRNAs has been observed in cancer, and miRNAs are being investigated as potential biomarkers regarding diagnosis, prognosis and prediction in cancer management. Real-time quantitative polymerase chain reaction (RT-qPCR) is commonly used, when measuring miRNA expression. Appropriate normalisation of RT-qPCR data is important to ensure reliable results. The aim of the present study was to identify stably expressed miRNAs applicable as normaliser candidates in future studies of miRNA expression in rectal cancer. We performed high-throughput miRNA profiling (OpenArray®) on ten pairs of laser micro-dissected rectal cancer tissue and adjacent stroma. A global mean expression normalisation strategy was applied to identify the most stably expressed miRNAs for subsequent validation. In the first validation experiment, a panel of miRNAs were analysed on 25 pairs of micro dissected rectal cancer tissue and adjacent stroma. Subsequently, the same miRNAs were analysed in 28 pairs of rectal cancer tissue and normal rectal mucosa. From the miRNA profiling experiment, miR-645, miR-193a-5p, miR-27a and let-7g were identified as stably expressed, both in malignant and stromal tissue. In addition, NormFinder confirmed high expression stability for the four miRNAs. In the RT-qPCR based validation experiments, no significant difference between tumour and stroma/normal rectal mucosa was detected for the mean of the normaliser candidates miR-27a, miR-193a-5p and let-7g (first validation P = 0.801, second validation P = 0.321). MiR-645 was excluded from the data analysis, because it was undetected in 35 of 50 samples (first validation) and in 24 of 56 samples (second validation), respectively. Significant difference in expression level of RNU6B was observed between tumour and adjacent stromal (first validation), and between tumour and normal rectal mucosa (second validation). We recommend the mean expression of miR-27a, miR-193a-5p and let-7g as normalisation factor, when performing miRNA expression analyses by RT-qPCR on rectal cancer tissue.
2015-01-01
Background Intensive research based on the inverse expression relationship has been undertaken to discover the miRNA-mRNA regulatory modules involved in the infection of Hepatitis C virus (HCV), the leading cause of chronic liver diseases. However, biological studies in other fields have found that inverse expression relationship is not the only regulatory relationship between miRNAs and their targets, and some miRNAs can positively regulate a mRNA by binding at the 5' UTR of the mRNA. Results This work focuses on the detection of both inverse and positive regulatory relationships from a paired miRNA and mRNA expression data set of HCV patients through a 'change-to-change' method which can derive connected discriminatory rules. Our study uncovered many novel miRNA-mRNA regulatory modules. In particular, it was revealed that GFRA2 is positively regulated by miR-557, miR-765 and miR-17-3p that probably bind at different locations of the 5' UTR of this mRNA. The expression relationship between GFRA2 and any of these three miRNAs has not been studied before, although separate research for this gene and these miRNAs have all drawn conclusions linked to hepatocellular carcinoma. This suggests that the binding of mRNA GFRA2 with miR-557, miR-765, or miR-17-3p, or their combinations, is worthy of further investigation by experimentation. We also report another mRNA QKI which has a strong inverse expression relationship with miR-129 and miR-493-3p which may bind at the 3' UTR of QKI with a perfect sequence match. Furthermore, the interaction between hsa-miR-129-5p (previous ID: hsa-miR-129) and QKI is supported with CLIP-Seq data from starBase. Our method can be easily extended for the expression data analysis of other diseases. Conclusion Our rule discovery method is useful for integrating binding information and expression profile for identifying HCV miRNA-mRNA regulatory modules and can be applied to the study of the expression profiles of other complex human diseases. PMID:25707620
Calo, Nicolas; Ramadori, Pierluigi; Sobolewski, Cyril; Romero, Yannick; Maeder, Christine; Fournier, Margot; Rantakari, Pia; Zhang, Fu-Ping; Poutanen, Matti; Dufour, Jean-François; Humar, Bostjan; Nef, Serge; Foti, Michelangelo
2016-11-01
miR-21 is an oncomir highly upregulated in hepatocellular carcinoma and in early stages of liver diseases characterised by the presence of steatosis. Whether upregulation of miR-21 contributes to hepatic metabolic disorders and their progression towards cancer is unknown. This study aims at investigating the role of miR-21/miR-21* in early stages of metabolic liver disorders associated with diet-induced obesity (DIO). Constitutive miR-21/miR-21* knockout (miR21KO) and liver-specific miR-21/miR-21* knockout (LImiR21KO) mice were generated. Mice were then fed with high-fat diet (HFD) and alterations of the lipid and glucose metabolism were investigated. Serum and ex vivo explanted liver tissue were analysed. Under normal breeding conditions and standard diet, miR-21/miR-21* deletion in mice was not associated with any detectable phenotypic alterations. However, when mice were challenged with an obesogenic diet, glucose intolerance, steatosis and adiposity were improved in mice lacking miR-21/miR-21* . Deletion of miR-21/miR-21* specifically in hepatocytes led to similar improvements in mice fed an HFD, indicating a crucial role for hepatic miR-21/miR-21* in metabolic disorders associated with DIO. Further molecular analyses demonstrated that miR-21/miR-21* deletion in hepatocytes increases insulin sensitivity and modulates the expression of multiple key metabolic transcription factors involved in fatty acid uptake, de novo lipogenesis, gluconeogenesis and glucose output. Hepatic miR-21/miR-21* deficiency prevents glucose intolerance and steatosis in mice fed an obesogenic diet by altering the expression of several master metabolic regulators. This study points out miR-21/miR-21 * as a potential therapeutic target for non-alcoholic fatty liver disease and the metabolic syndrome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
The investigation of circulating microRNAs associated with lipid metabolism in childhood obesity.
Can, U; Buyukinan, M; Yerlikaya, F H
2016-06-01
Childhood obesity is an increasing health challenge related to increased risk of chronic diseases. microRNAs (miRNAs) are noncoding short RNA molecules regulating multiple biological processes linked to obesity. We aimed at evaluating the association between circulating miRNA levels and lipid metabolism in obese and non-obese children and adolescents. By constituting study group, 45 obese children and adolescents were recruited. To perform comparisons with study group, 41 lean controls were matched for age and sex. Using real-time quantitative PCR analysis, circulating miRNAs were evaluated in both groups. Circulating miR-335 (P < 0.001), miR-143 (P = 0.001) and miR-758 (P = 0.006) in obese children were significantly lower than those of controls. However, circulating miR-27 (P = 0.032), miR-378 (P < 0.001) and miR-370 (P = 0.045) in obese children were significantly higher, compared with those of controls. In addition, circulating miR-33 in obese children was higher than those of controls, but no significant difference was present (P = 0.687). Our findings showed that a significant association is present between circulating miR-370, miR-33, miR-378, miR-27, miR-335, miR-143 and miR-758 values, and childhood obesity. Low levels of miR-335, miR-143 and miR-758, and high levels of miR-27, miR-378, miR-33 and miR-370 may have been responsible for elevated triglycerides and low-density lipoprotein (LDL-C) levels, and low level of high-density lipoprotein (HDL-C) in obese subjects. Therefore, miRNAs may be a good novel biomarker for childhood obesity. © 2015 World Obesity.
miR-92a family and their target genes in tumorigenesis and metastasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Molin, E-mail: molin_li@hotmail.com; Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044; Guan, Xingfang
2014-04-15
The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed inmore » many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis.« less
Adi Harel, S; Bossel Ben-Moshe, N; Aylon, Y; Bublik, D R; Moskovits, N; Toperoff, G; Azaiza, D; Biagoni, F; Fuchs, G; Wilder, S; Hellman, A; Blandino, G; Domany, E; Oren, M
2015-01-01
MicroRNAs (miRs) regulate a variety of cellular processes, and their impaired expression is involved in cancer. Silencing of tumor-suppressive miRs in cancer can occur through epigenetic modifications, including DNA methylation and histone deacetylation. We performed comparative miR profiling on cultured lung cancer cells before and after treatment with 5′aza-deoxycytidine plus Trichostatin A to reverse DNA methylation and histone deacetylation, respectively. Several tens of miRs were strongly induced by such ‘epigenetic therapy'. Two representatives, miR-512-5p (miR-512) and miR-373, were selected for further analysis. Both miRs were secreted in exosomes. Re-expression of both miRs augmented cisplatin-induced apoptosis and inhibited cell migration; miR-512 also reduced cell proliferation. TEAD4 mRNA was confirmed as a direct target of miR-512; likewise, miR-373 was found to target RelA and PIK3CA mRNA directly. Our results imply that miR-512 and miR-373 exert cell-autonomous and non-autonomous tumor-suppressive effects in lung cancer cells, where their re-expression may benefit epigenetic cancer therapy. PMID:25591738
Jiang, Rui; Zhao, Chunming; Gao, Binbin; Xu, Jiawen; Song, Wei; Shi, Peng
2018-06-08
This study aimed at finding the long non-coding RNA (lncRNA), miRNA and mRNA which played critical roles in breast cancer (BrCa) by using mixOmics R package. The BrCa dataset were obtained from TCGA and then analyzed using "DESeq2" R package. Multivariate analyses were performed with the "mixOmics" R package and the first component of the stacked partial least-Squares discriminant analysis results were used for searching the interested lncRNA, miRNA and mRNA. qRT-PCR was applied to identify the bioinformatics results in four BrCa cell lines (MCF7, BT-20, ZR-75-1, and MX-1) and the breast epithelial cell line MCF-10 A. Then cells (MCF-1 and MX-1) were transfected with si-linc01561, miR-145-5p mimics and si-MMP11 to further investigate the effects of linc01561, miR-145-5p and MMP11 on the BrCa cells proliferation and apoptosis. MixOmics results showed that linc01561, miR-145-5p and MMP11 might play important roles in BrCa. qRT-PCR results identified that in BrCa cell lines, linc01561 and MMP11 were higher expressed while miR-145-5p was lower expressed compared with those in epithelial cell line. The linc01561 inhibition elevated miR-145-5p expression and then suppressed MMP11 expression. Moreover, linc01561 inhibition suppressed the BrCa cells proliferation and promoted the apoptosis, which was realized by up-regulating expression of miR-145-5p and down-regulating expression of MMP11. In summary, the findings of this study, based on ceRNA theory, combining the research foundation of miR-145-5p and MMP11, and taking linc01561 as a new study point, provide new insight into molecular-level reversing proliferation and apoptosis of BrCa. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Yen-Li; Chang, Shih-Ting; Liao, Ko-Hsun; Lo, Hung-Hao; Chiu, Ya-Lin; Hsieh, Tsung-Han; Huang, Tse-Shun; Lin, Chin-Sheng; Cheng, Shu-Meng; Cheng, Cheng-Chung
2016-01-01
Diabetes mellitus (DM) is a metabolic disease that is increasing worldwide. Furthermore, it is associated with the deregulation of vascular-related functions, which can develop into major complications among DM patients. Endothelial colony forming cells (ECFCs) have the potential to bring about medical repairs because of their post-natal angiogenic activities; however, such activities are impaired by high glucose- (HG) and the DM-associated conditions. Far-infrared radiation (FIR) transfers energy as heat that is perceived by the thermoreceptors in human skin. Several studies have revealed that FIR improves vascular endothelial functioning and boost angiogenesis. FIR has been used as anti-inflammatory therapy and as a clinical treatment for peripheral circulation improvement. In addition to vascular repair, there is increasing evidence to show that FIR can be applied to a variety of diseases, including cardiovascular disorders, hypertension and arthritis. Yet mechanism of action of FIR and the biomarkers that indicate FIR effects remain unclear. MicroRNA-134 (miR-134-5p) was identified by small RNA sequencing as being increased in high glucose (HG) treated dfECFCs (HG-dfECFCs). Highly expressed miR-134 was also validated in dmECFCs by RT-qPCR and it is associated with impaired angiogenic activities of ECFCs. The functioning of ECFCs is improved by FIR treatment and this occurs via a reduction in the level of miR-134 and an increase in the NRIP1 transcript, a direct target of miR-134. Using a mouse ischemic hindlimb model, the recovery of impaired blood flow in the presence of HG-dfECFCs was improved by FIR pretreatment and this enhanced functionality was decreased when there was miR-134 overexpression in the FIR pretreated HG-dfECFCs. In conclusion, our results reveal that the deregulation of miR-134 is involved in angiogenic defects found in DM patients. FIR treatment improves the angiogenic activity of HG-dfECFCs and dmECFCs and FIR has potential as a treatment for DM. Detection of miR-134 expression in FIR-treated ECFCs should help us to explore further the effectiveness of FIR therapy. PMID:26799933
Wang, Hsei-Wei; Su, Shu-Han; Wang, Yen-Li; Chang, Shih-Ting; Liao, Ko-Hsun; Lo, Hung-Hao; Chiu, Ya-Lin; Hsieh, Tsung-Han; Huang, Tse-Shun; Lin, Chin-Sheng; Cheng, Shu-Meng; Cheng, Cheng-Chung
2016-01-01
Diabetes mellitus (DM) is a metabolic disease that is increasing worldwide. Furthermore, it is associated with the deregulation of vascular-related functions, which can develop into major complications among DM patients. Endothelial colony forming cells (ECFCs) have the potential to bring about medical repairs because of their post-natal angiogenic activities; however, such activities are impaired by high glucose- (HG) and the DM-associated conditions. Far-infrared radiation (FIR) transfers energy as heat that is perceived by the thermoreceptors in human skin. Several studies have revealed that FIR improves vascular endothelial functioning and boost angiogenesis. FIR has been used as anti-inflammatory therapy and as a clinical treatment for peripheral circulation improvement. In addition to vascular repair, there is increasing evidence to show that FIR can be applied to a variety of diseases, including cardiovascular disorders, hypertension and arthritis. Yet mechanism of action of FIR and the biomarkers that indicate FIR effects remain unclear. MicroRNA-134 (miR-134-5p) was identified by small RNA sequencing as being increased in high glucose (HG) treated dfECFCs (HG-dfECFCs). Highly expressed miR-134 was also validated in dmECFCs by RT-qPCR and it is associated with impaired angiogenic activities of ECFCs. The functioning of ECFCs is improved by FIR treatment and this occurs via a reduction in the level of miR-134 and an increase in the NRIP1 transcript, a direct target of miR-134. Using a mouse ischemic hindlimb model, the recovery of impaired blood flow in the presence of HG-dfECFCs was improved by FIR pretreatment and this enhanced functionality was decreased when there was miR-134 overexpression in the FIR pretreated HG-dfECFCs. In conclusion, our results reveal that the deregulation of miR-134 is involved in angiogenic defects found in DM patients. FIR treatment improves the angiogenic activity of HG-dfECFCs and dmECFCs and FIR has potential as a treatment for DM. Detection of miR-134 expression in FIR-treated ECFCs should help us to explore further the effectiveness of FIR therapy.
Epigenetic inactivation of the MIR129-2 in hematological malignancies
2013-01-01
Background MIR129-2 has been shown to be a tumor suppressor microRNA hypermethylated in epithelial cancers. Patients and methods Epigenetic inactivation of MIR129-2 was studied by methylation-specific PCR (MSP) in 13 cell lines (eight myeloma and five lymphoma), 15 normal controls and 344 primary samples including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), non-Hodgkin’s lymphoma (NHL), multiple myeloma (MM) at diagnosis, MM at relapse/progression, and monoclonal gammopathy of undetermined significance (MGUS). Expression of MIR129 and its target, SOX4, in cell lines was measured before and after hypomethylating treatment and MIR129 overexpression. MIR129 expression was correlated with MIR129-2 methylation status in primary lymphoma samples. Tumor suppressor function of MIR129 was demonstrated by MTT and trypan blue exclusion assay after MIR129 overexpression. Results The sensitivity of the methylated-MSP was one in 103. Different MSP statuses, including complete methylation, partial methylation, and complete unmethylation, were verified by quantitative bisulfite pyrosequencing. All five lymphoma and seven of eight myeloma cell lines showed complete and partial MIR129-2 methylation. In primary samples, MIR129-2 methylation was absent in AML and CML, but detected in 5% ALL, 45.9% CLL, 49.5% MM at diagnosis, and 59.1% NHL. In CLL, MIR129-2 methylation adversely impacted on survival (p=0.004). In MM, MIR129-2 methylation increased from 27.5% MGUS to 49.5% MM at diagnosis and 41.5% at relapse/progression (p=0.023). In NHL, MIR129-2 methylation was associated with MIR124-1 and MIR203 methylation (p<0.001), and lower MIR129 expression (p=0.009). Hypomethylation treatment of JEKO-1, homozygously methylated for MIR129-2, led to MIR129-2 demethylation and MIR129 re-expression, with downregulation of SOX4 mRNA. Moreover, MIR129 overexpression in both mantle cell lines, JEKO-1 and GRANTA-519, inhibited cellular proliferation and enhanced cell death, with concomitant SOX4 mRNA downregulation. Conclusions MIR129-2 is a tumor suppressive microRNA frequently methylated in lymphoid but not myeloid malignancies, leading to reversible MIR129-2 silencing. In CLL, MIR129-2 methylation was associated with an inferior survival. In MM, MIR129-2 methylation might be acquired during progression from MGUS to symptomatic MM. In NHL, MIR129-2 methylation might collaborate with MIR124-1 and MIR203 methylation in lymphomagenesis. PMID:23406679
Troppan, Katharina; Wenzl, Kerstin; Pichler, Martin; Pursche, Beata; Schwarzenbacher, Daniela; Feichtinger, Julia; Thallinger, Gerhard G.; Beham-Schmid, Christine; Neumeister, Peter; Deutsch, Alexander
2015-01-01
Micro-RNAs (miRNAs) are short non-coding single-stranded RNA molecules regulating gene expression at the post-transcriptional level. miRNAs are involved in cell development, differentiation, apoptosis, and proliferation. miRNAs can either function as tumor suppressor genes or oncogenes in various important pathways. The expression of specific miRNAs has been identified to correlate with tumor prognosis. For miRNA expression analysis real-time PCR on 81 samples was performed, including 63 diffuse large B-cell lymphoma (DLBCL, 15 of germinal center B-cell like subtype, 17 non germinal center B-cell, 23 transformed, and eight unclassified) and 18 controls, including nine peripheral B-cells, 5 germinal-center B-cells, four lymphadenitis samples, and 4 lymphoma cell lines (RI-1, SUDHL4, Karpas, U2932). Expression levels of a panel of 11 miRNAs that have been previously involved in other types of cancer (miR-15b_2, miR-16_1*, miR-16_2, miR-16_2*, miR-27a, miR-27a*, miR-98-1, miR-103a, miR-185, miR-199a, and miR-497) were measured and correlated with clinical data. Furthermore, cell lines, lacking miR-199a and miR-497 expression, were electroporated with the two respective miRNAs and treated with standard immunochemotherapy routinely used in patients with DLBCL, followed by functional analyses including cell count and apoptosis assays. Seven miRNAs (miR-16_1*, miR-16_2*, miR-27a, miR-103, miR-185, miR-199, and miR-497) were statistically significantly up-regulated in DLBCL compared to normal germinal cells. However, high expression of miR-497 or miR-199a was associated with better overall survival (p = 0.042 and p = 0.007). Overexpression of miR-199a and miR-497 led to a statistically significant decrease in viable cells in a dose-dependent fashion after exposure to rituximab and various chemotherapeutics relevant in multi-agent lymphoma therapy. Our data indicate that elevated miR-199a and miR-497 levels are associated with improved survival in aggressive lymphoma patients most likely by modifying drug sensitivity to immunochemotherapy. This functional impairment may serve as a potential novel therapeutic target in future treatment of patients with DLBCL. PMID:26251897
OMIT: dynamic, semi-automated ontology development for the microRNA domain.
Huang, Jingshan; Dang, Jiangbo; Borchert, Glen M; Eilbeck, Karen; Zhang, He; Xiong, Min; Jiang, Weijian; Wu, Hao; Blake, Judith A; Natale, Darren A; Tan, Ming
2014-01-01
As a special class of short non-coding RNAs, microRNAs (a.k.a. miRNAs or miRs) have been reported to perform important roles in various biological processes by regulating respective target genes. However, significant barriers exist during biologists' conventional miR knowledge discovery. Emerging semantic technologies, which are based upon domain ontologies, can render critical assistance to this problem. Our previous research has investigated the construction of a miR ontology, named Ontology for MIcroRNA Target Prediction (OMIT), the very first of its kind that formally encodes miR domain knowledge. Although it is unavoidable to have a manual component contributed by domain experts when building ontologies, many challenges have been identified for a completely manual development process. The most significant issue is that a manual development process is very labor-intensive and thus extremely expensive. Therefore, we propose in this paper an innovative ontology development methodology. Our contributions can be summarized as: (i) We have continued the development and critical improvement of OMIT, solidly based on our previous research outcomes. (ii) We have explored effective and efficient algorithms with which the ontology development can be seamlessly combined with machine intelligence and be accomplished in a semi-automated manner, thus significantly reducing large amounts of human efforts. A set of experiments have been conducted to thoroughly evaluate our proposed methodology.
OMIT: Dynamic, Semi-Automated Ontology Development for the microRNA Domain
Huang, Jingshan; Dang, Jiangbo; Borchert, Glen M.; Eilbeck, Karen; Zhang, He; Xiong, Min; Jiang, Weijian; Wu, Hao; Blake, Judith A.; Natale, Darren A.; Tan, Ming
2014-01-01
As a special class of short non-coding RNAs, microRNAs (a.k.a. miRNAs or miRs) have been reported to perform important roles in various biological processes by regulating respective target genes. However, significant barriers exist during biologists' conventional miR knowledge discovery. Emerging semantic technologies, which are based upon domain ontologies, can render critical assistance to this problem. Our previous research has investigated the construction of a miR ontology, named Ontology for MIcroRNA Target Prediction (OMIT), the very first of its kind that formally encodes miR domain knowledge. Although it is unavoidable to have a manual component contributed by domain experts when building ontologies, many challenges have been identified for a completely manual development process. The most significant issue is that a manual development process is very labor-intensive and thus extremely expensive. Therefore, we propose in this paper an innovative ontology development methodology. Our contributions can be summarized as: (i) We have continued the development and critical improvement of OMIT, solidly based on our previous research outcomes. (ii) We have explored effective and efficient algorithms with which the ontology development can be seamlessly combined with machine intelligence and be accomplished in a semi-automated manner, thus significantly reducing large amounts of human efforts. A set of experiments have been conducted to thoroughly evaluate our proposed methodology. PMID:25025130
Genome-wide microRNA expression profiling in placentae from frozen-thawed blastocyst transfer.
Hiura, Hitoshi; Hattori, Hiromitsu; Kobayashi, Norio; Okae, Hiroaki; Chiba, Hatsune; Miyauchi, Naoko; Kitamura, Akane; Kikuchi, Hiroyuki; Yoshida, Hiroaki; Arima, Takahiro
2017-01-01
Frozen-thawed embryo transfer (FET) is increasingly available for the improvement of the success rate of assisted reproductive technologies other than fresh embryo transfer (ET). There have been numerous findings that FET provides better obstetric and perinatal outcomes. However, the birth weight of infants conceived using FET is heavier than that of those conceived via ET. In addition, some reports have suggested that FET is associated with perinatal diseases such as placenta accreta and pregnancy-induced hypertension (PIH). In this study, we compared the microRNA (miRNA) expression profiles in term placentae derived from FET, ET, and spontaneous pregnancy (SP). We identified four miRNAs, miR-130a-3p, miR-149-5p, miR-423-5p, and miR-487b-3p, that were significantly downregulated in FET placentae compared with those from SP and ET. We found that DNA methylation of MEG3 -DMR, not but IG-DMR, was associated with miRNA expression of the DLK1-DIO3 imprinted domain in the human placenta. In functional analyses, GO terms and signaling pathways related to positive regulation of gene expression, growth, development, cell migration, and type II diabetes mellitus (T2DM) were enriched. This study supports the hypothesis that the process of FET may increase exposure of epigenome to external influences.
SAMS Acceleration Measurement on Mir From March to September 1996
NASA Technical Reports Server (NTRS)
Moskowitz, Milton E.; Hrovat, Ken; Truong, Duc; Reckart, Timothy
1997-01-01
During NASA Increment 2 (March to September 1996), over 15 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 55 optical disks and were returned to Earth on STS-79. During this time, SAMS data were collected in the Kristall and Kvant modules, and in the Priroda module to support the following experiments: the Queen's University Experiments in Liquid Diffusion (QUELD), the Technological Evaluation of the MIM (TEM), the Forced Flow Flame Spreading Test (FFFT), and Candle Flames in Microgravity (CFM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-76 operations, an extravehicular activity (EVA) to install and deploy solar panels on the Kvant module, a Progress engine burn to raise Mir's altitude, and an on-orbit SAMS calibration procedure. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.
NASA Astrophysics Data System (ADS)
Kolyakov, Sergei; Afanasyeva, Natalia; Bruch, Reinhard; Afanasyeva, Natalia
1998-05-01
The new method of fiber optical evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy has been applied to the diagnostics of normal skin tissue, as well as precancerous and cancerous conditions. The FEW-FTIR technique is nondestructive and sensitive to changes of vibrational spectra in the IR region, without heating and damaging human and animal skin tissue. Therefore this method and technique is an ideal diagnostic tool for tumor and cancer characterization at an early stage of development on a molecular level. The application of fiber optic technology in the middle infrared (MIR) region is relatively inexpensive and can be adapted easily to any commercially available tabletop FTIR spectrometers. This method of diagnostics is fast (several seconds), and can be applied to many fields. Noninvasive medical diagnostics of skin cancer and other skin diseases in vivo, ex vivo, and in vitro allow for the development of convenient, remote clinical applications in dermatology and related fields. The spectral variations from normal to pathological skin tissue and environmental influence on skin have been measured.
miR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression.
Tang, Hailin; Deng, Min; Tang, Yunyun; Xie, Xinhua; Guo, Jiaoli; Kong, Yanan; Ye, Feng; Su, Qi; Xie, Xiaoming
2013-10-15
The purpose of this study was to investigate the clinicopathologic significance and potential role of miR-200b and miR-200c in the development and progression of gastric cancer. We examined miR-200b and miR-200c expression in 36 paired normal and stomach tumor specimens, as well as gastric cancer cell lines, by quantitative real-time PCR. In addition, miR-200b and miR-200c were detected by ISH using gastric cancer tissue microarrays, and the association between miR-200b and miR-200c levels and clinicopathologic factors and prognosis were analyzed. A luciferase assay was conducted for target evaluation. The functional effects of miR-200b and miR-200c on gastric cancer cells were validated by a cell proliferation assay and cell invasion and migration assays. miR-200b and miR-200c were downregulated in the gastric cancer specimens and cell lines tested. miR-200b and miR-200c levels were significantly correlated with the clinical stage, T stage, lymph node metastasis, and survival of patients. Ectopic expression of miR-200b and miR-200c impaired cell growth and invasion. In addition, when overexpressed, miR-200b and miR-200c commonly directly targeted DNMT3A, DNMT3B, and SP1 (a transactivator of the DNMT1 gene), which resulted in marked reduction of the expression of DNA methyltransferases DNMT1, DNMT3A, and DNMT3B at the protein level. This effect, in turn, led to a decrease in global DNA methylation and reexpression of p16, RASS1A1, and E-cadherin via promoter DNA hypomethylation. Our findings suggest that miR-200b and miR-200c, as valuable markers of gastric cancer prognosis, may be a promising approach to human gastric cancer treatment. ©2013 AACR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, Hisashi; Tatsumi, Tomohide; Hosui, Atsushi
2011-08-19
Highlights: {yields} HCV infection upregulated miR-192, -194, -215, downregulated miR-320, -491. {yields} Transfection of miR-192, -215, and -491 enhanced HCV replication. {yields} Transfection of miR-491 inhibited Akt phosphorylation. {yields} Akt inhibition could be responsible for augmentation of HCV replication by miR-491. -- Abstract: The aim of this study was to investigate the role of microRNA (miRNA) on hepatitis C virus (HCV) replication in hepatoma cells. Using miRNA array analysis, miR-192/miR-215, miR-194, miR-320, and miR-491 were identified as miRNAs whose expression levels were altered by HCV infection. Among them, miR-192/miR-215 and miR-491 were capable of enhancing replication of the HCV repliconmore » as well as HCV itself. HCV IRES activity or cell proliferation was not increased by forced expression of miR-192/miR-215 or miR-491. Investigation of signaling pathways revealed that miR-491 specifically suppressed the phosphoinositol-3 (PI3) kinase/Akt pathway. Under inhibition of PI3 kinase by LY294002, the suppressive effect of miR-491 on HCV replication was abolished, indicating that suppression of HCV replication by miR-491 was dependent on the PI3 kinase/Akt pathway. miRNAs altered by HCV infection would then affect HCV replication, which implies a complicated mechanism for regulating HCV replication. HCV-induced miRNA may be involved in changes in cellular properties including hepatocarcinogenesis.« less
Khosravi, Maryam; Azarpira, Negar; Shamdani, Sara; Hojjat-Assari, Suzzan; Naserian, Sina; Karimi, Mohammad Hossein
2018-08-15
Studying the profile of micro RNAs (miRs) elucidated the highest expressed miRs in hepatic differentiation. In this study, we investigated to clarify the role of three embryonic overexpressed miRs (miR-106a, miR-574-3p and miR-451) during hepatic differentiation of human umbilical cord derived mesenchymal stem cells (UC-MSCs). We furthermore, aimed to explore whether overexpression of any of these miRs alone is sufficient to induce the differentiation of the UC-MSCs into hepatocyte-like cells. UC-MSCs were transfected either alone or together with miR-106a, miR-574-3p and miR-451 and their potential hepatic differentiation and alteration in gene expression profile, morphological changes and albumin secretion ability were investigated. We found that up-regulation of any of these three miRs alone cannot induce expression of all hepatic specific genes. Transfection of each miR alone, led to Sox17, FoxA2 expression that are related to initiation step of hepatic differentiation. However, concurrent ectopic overexpression of three miRs together can induce UC-MSCs differentiation into functionally mature hepatocytes. These results show that miRs have the capability to directly convert UC-MSCs to a hepatocyte phenotype in vitro. Copyright © 2018. Published by Elsevier B.V.
2001-10-01
Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.
Tissue grown in space in NASA Bioreactor
NASA Technical Reports Server (NTRS)
2001-01-01
Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.
A peer-to-peer music sharing system based on query-by-humming
NASA Astrophysics Data System (ADS)
Wang, Jianrong; Chang, Xinglong; Zhao, Zheng; Zhang, Yebin; Shi, Qingwei
2007-09-01
Today, the main traffic in peer-to-peer (P2P) network is still multimedia files including large numbers of music files. The study of Music Information Retrieval (MIR) brings out many encouraging achievements in music search area. Nevertheless, the research of music search based on MIR in P2P network is still insufficient. Query by Humming (QBH) is one MIR technology studied for years. In this paper, we present a server based P2P music sharing system which is based on QBH and integrated with a Hierarchical Index Structure (HIS) to enhance the relation between surface data and potential information. HIS automatically evolving depends on the music related items carried by each peer such as midi files, lyrics and so forth. Instead of adding large amount of redundancy, the system generates a bit of index for multiple search input which improves the traditional keyword-based text search mode largely. When network bandwidth, speed, etc. are no longer a bottleneck of internet serve, the accessibility and accuracy of information provided by internet are being more concerned by end users.
Circulating microRNAs as potential biomarkers of aerobic exercise capacity.
Mooren, Frank C; Viereck, Janika; Krüger, Karsten; Thum, Thomas
2014-02-15
Purpose microRNAs (miRs) are crucial intracellular mediators of various biological processes, also affecting the cardiovascular system. Recently, it has been shown that miRs circulate extracellularly in the bloodstream and that such circulating miRs change in response to physical activity. Therefore, the purpose of the current study was to investigate heart/muscle specific and inflammation related miRs in plasma of individuals before, directly after, and 24 h after a marathon run and to analyze their relation to conventional biochemical, cardiovascular, and performance indexes. Male endurance athletes (n =14) were recruited for the study after performing a battery of cardiac functional tests. Blood samples were collected before, directly after, and 24 h after a public marathon run. miR-1, miR-133, miR-206, miR-499, miR-208b, miR-21, and miR-155 were measured using individual Taqman assays and normalized to Caenorhabditis elegans miR-39 (cel-39) spike-in control. Moreover, soluble cardiac, inflammatory, and muscle damage markers were determined. As a result, skeletal- and heart muscle-specific miRs showed a significant increase after the marathon. The strongest increase was observed for miR-206. Twenty-four hours after the run, only miR-499 and miR-208b were returned to preexercise levels, whereas the others were still enhanced. In contrast, miR-21 and -155 were not affected by exercise. miR-1, -133a, and -206 correlated to aerobic performance parameters such as maximum oxygen uptake (VO(2max)) and running speed at individual anaerobic lactate threshold (VIAS). miR-1 showed a moderate negative correlation with fractional shortening, whereas miR-133a was positively related to the thickness of intraventricular septum. None of the miRs correlated with cardiac injury markers such as troponin T, troponin I, and pro-brain natriuretic peptide. In conclusion, these findings suggest a potential role for muscle- and heart-specific miRs in cardiovascular adaptation processes after endurance exercise. Moreover, the specific correlation of miR-1, -133a, and -206 to performance parameters indicated their potential role as biomarkers of aerobic capacity.
Circulating micrornas as potential biomarkers of aerobic exercise capacity
Viereck, Janika; Krüger, Karsten; Thum, Thomas
2013-01-01
Purpose microRNAs (miRs) are crucial intracellular mediators of various biological processes, also affecting the cardiovascular system. Recently, it has been shown that miRs circulate extracellularly in the bloodstream and that such circulating miRs change in response to physical activity. Therefore, the purpose of the current study was to investigate heart/muscle specific and inflammation related miRs in plasma of individuals before, directly after, and 24 h after a marathon run and to analyze their relation to conventional biochemical, cardiovascular, and performance indexes. Male endurance athletes (n =14) were recruited for the study after performing a battery of cardiac functional tests. Blood samples were collected before, directly after, and 24 h after a public marathon run. miR-1, miR-133, miR-206, miR-499, miR-208b, miR-21, and miR-155 were measured using individual Taqman assays and normalized to Caenorhabditis elegans miR-39 (cel-39) spike-in control. Moreover, soluble cardiac, inflammatory, and muscle damage markers were determined. As a result, skeletal- and heart muscle-specific miRs showed a significant increase after the marathon. The strongest increase was observed for miR-206. Twenty-four hours after the run, only miR-499 and miR-208b were returned to preexercise levels, whereas the others were still enhanced. In contrast, miR-21 and -155 were not affected by exercise. miR-1, -133a, and -206 correlated to aerobic performance parameters such as maximum oxygen uptake (V̇o2max) and running speed at individual anaerobic lactate threshold (VIAS). miR-1 showed a moderate negative correlation with fractional shortening, whereas miR-133a was positively related to the thickness of intraventricular septum. None of the miRs correlated with cardiac injury markers such as troponin T, troponin I, and pro-brain natriuretic peptide. In conclusion, these findings suggest a potential role for muscle- and heart-specific miRs in cardiovascular adaptation processes after endurance exercise. Moreover, the specific correlation of miR-1, -133a, and -206 to performance parameters indicated their potential role as biomarkers of aerobic capacity. PMID:24363306
NASA Astrophysics Data System (ADS)
Crawford, Bridget M.; Wang, Hsin-Neng; Fales, Andrew M.; Bowie, Michelle L.; Seewaldt, Victoria L.; Vo-Dinh, Tuan
2017-02-01
The development of sensitive and selective biosensing techniques is of great interest for clinical diagnostics. Here, we describe the development and application of a surface enhanced Raman scattering (SERS) sensing technology, referred to as "inverse Molecular Sentinel (iMS)" nanoprobes, for the detection of nucleic acid biomarkers in biological samples. This iMS nanoprobe involves the use of plasmonic-active nanostars as the sensing platform for a homogenous assay for multiplexed detection of nucleic acid biomarkers, including DNA, RNA and microRNA (miRNA). The "OFF-to-ON" signal switch is based on a non-enzymatic strand-displacement process and the conformational change of stem-loop (hairpin) oligonucleotide probes upon target binding. Here, we demonstrate the development of iMS nanoprobes for the detection of DNA sequences as well as a modified design of the nanoprobe for the detection of short (22-nt) microRNA sequences. The application of iMS nanoprobes to detect miRNAs in real biological samples was performed with total small RNA extracted from breast cancer cell lines. The multiplex capability of the iMS technique was demonstrated using a mixture of the two differently labeled nanoprobes to detect miR-21 and miR-34a miRNA biomarkers for breast cancer. The results of this study demonstrate the feasibility of applying the iMS technique for multiplexed detection of nucleic acid biomarkers, including short miRNAs molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Le; Wang, Jinlong; Lu, Hongwei
Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3′-untranslated region (3′-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl{sub 4}) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a,more » miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3′-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. - Highlights: • MiR-130a and miR-130b are increased and PPARγ is decreased in liver fibrosis models. • MiR-130a and miR-130b decreased PPARγ by targeting the 3′-UTR of PPARγ mRNA. • MiR-130a and miR-130b enhanced HSC cell proliferation by involving Runx3. • TGF-β1 may mediate miR-130a and miR-130b overexpression.« less
Suppression of bone resorption by miR-141 in aged rhesus monkeys.
Yang, Shihua; Zhang, Wenhui; Cai, Mingxiang; Zhang, Yuanxu; Jin, Fujun; Yan, Sen; Baloch, Zulqurain; Fang, Zhihao; Xue, Senren; Tang, Rongping; Xiao, Jia; Huang, Qunshan; Sun, Yao; Wang, Xiaogang
2018-05-31
Aging-related osteoporosis is considered as serious public health concern. Approximately 30% of postmenopausal women suffer from osteoporosis, and more than 40% of them risk fragility fractures. Multiple types of drugs have been applied to treat osteoporosis, but they are not ideal due to insufficient curing and adverse side effects. miRNA-based gene therapy is a rapidly developed strategy in disease treatment that presents certain advantages, such as large-scale production, genetic safety and rapid effects. Until now, miRNA drugs have been used in investigations of cancer treatments. However, in primates, miRNA drugs have not yet been reported as candidates for osteoclast-targeting osteoporosis treatment. In addition, the therapeutic efficacy was limited by several shortcomings, such as low efficiency of selective delivery, insufficient expression levels in targeting cells, and unexpected side effects. Here, we identify miR-141 as a critical suppressor of osteoclastogenesis and bone resorption. The expression levels of miR-141 are positively correlated with bone mineral density and negatively correlated with aging of bones in both aged rhesus monkeys (Macaca mulatta) and osteoporotic patients. Selective delivery of miR-141 into osteoclasts of aged rhesus monkeys via a nucleic acid delivery system allowed for a gradual increase in bone mass without significant effects on health behavior and function of primary organs. Furthermore, we found that the functional mechanism of miR-141 is targeting two osteoclast differentiation players, Calcr (calcitonin receptors) and EphA2 (Ephrin type-A receptor 2 precursor). Our study suggests that miRNAs such as miR-141 could play a crucial role in suppressing bone resorption in primates and provide reliable experimental evidence for the clinical application of miRNA in osteoporosis treatment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Jasinski-Bergner, Simon; Stoehr, Christine; Bukur, Juergen; Massa, Chiara; Braun, Juliane; Hüttelmaier, Stefan; Spath, Verena; Wartenberg, Roland; Legal, Wolfgang; Taubert, Helge; Wach, Sven; Wullich, Bernd; Hartmann, Arndt; Seliger, Barbara
2015-01-01
In human tumors of distinct origin including renal cell carcinoma (RCC), the non-classical human leukocyte antigen G (HLA-G) is frequently expressed, thereby inhibiting the cytotoxic activity of T and natural killer (NK) cells. Recent studies demonstrated a strong post-transcriptional gene regulation of the HLA-G by miR-152, −148A, −148B and −133A. Standard methods were applied to characterize the expression and function of HLA-G, HLA-G-regulatory microRNAs (miRs) and the immune cell infiltration in 453 RCC lesions using a tissue microarray and five RCC cell lines linking these results to clinical parameters. Direct interactions with HLA-G regulatory miRs and the HLA-G 3′ untranslated region (UTR) were detected and the affinities of these different miRs to the HLA-G 3′-UTR compared. qPCR analyses and immunohistochemical staining revealed an inverse expression of miR-148A and −133A with the HLA-G protein in situ and in vitro. Stable miR overexpression caused a downregulation of HLA-G protein enhancing the NK and LAK cell-mediated cytotoxicity in in vitro CD107a activation assays revealing a HLA-G-dependent cytotoxic activity of immune effector cells. A significant higher frequency of CD3+/CD8+ T cell lymphocytes, but no differences in the activation markers CD69, CD25 or in the presence of CD56+, FoxP3+ and CD4+ immune cells were detected in HLA-G+ compared to HLA-G− RCC lesions. This could be associated with higher WHO grade, but not with a disease-specific survival. These data suggest a miR-mediated control of HLA-G expression in RCC, which is associated with a distinct pattern of immune cell infiltration. PMID:26155421
McParland, S; Lewis, E; Kennedy, E; Moore, S G; McCarthy, B; O'Donovan, M; Butler, S T; Pryce, J E; Berry, D P
2014-09-01
Interest is increasing in the feed intake complex of individual dairy cows, both for management and animal breeding. However, energy intake data on an individual-cow basis are not routinely available. The objective of the present study was to quantify the ability of routinely undertaken mid-infrared (MIR) spectroscopy analysis of individual cow milk samples to predict individual cow energy intake and efficiency. Feed efficiency in the present study was described by residual feed intake (RFI), which is the difference between actual energy intake and energy used (e.g., milk production, maintenance, and body tissue anabolism) or supplied from body tissue mobilization. A total of 1,535 records for energy intake, RFI, and milk MIR spectral data were available from an Irish research herd across 36 different test days from 535 lactations on 378 cows. Partial least squares regression analyses were used to relate the milk MIR spectral data to either energy intake or efficiency. The coefficient of correlation (REX) of models to predict RFI across lactation ranged from 0.48 to 0.60 in an external validation data set; the predictive ability was, however, strongest (REX=0.65) in early lactation (<60 d in milk). The inclusion of milk yield as a predictor variable improved the accuracy of predicting energy intake across lactation (REX=0.70). The correlation between measured RFI and measured energy balance across lactation was 0.85, whereas the correlation between RFI and energy balance, both predicted from the MIR spectrum, was 0.65. Milk MIR spectral data are routinely generated for individual cows throughout lactation and, therefore, the prediction equations developed in the present study can be immediately (and retrospectively where MIR spectral data have been stored) applied to predict energy intake and efficiency to aid in management and breeding decisions. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
2011-01-01
Background To understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs), microRNAs (miRNAs) and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date. Results To identify and analyze molecular interaction networks, we developed MIR@NT@N, an integrative approach based on a meta-regulation network model and a large-scale database. MIR@NT@N uses a graph-based approach to predict novel molecular actors across multiple regulatory processes (i.e. TFs acting on protein-coding or miRNA genes, or miRNAs acting on messenger RNAs). Exploiting these predictions, the user can generate networks and further analyze them to identify sub-networks, including motifs such as feedback and feedforward loops (FBL and FFL). In addition, networks can be built from lists of molecular actors with an a priori role in a given biological process to predict novel and unanticipated interactions. Analyses can be contextualized and filtered by integrating additional information such as microarray expression data. All results, including generated graphs, can be visualized, saved and exported into various formats. MIR@NT@N performances have been evaluated using published data and then applied to the regulatory program underlying epithelium to mesenchyme transition (EMT), an evolutionary-conserved process which is implicated in embryonic development and disease. Conclusions MIR@NT@N is an effective computational approach to identify novel molecular regulations and to predict gene regulatory networks and sub-networks including conserved motifs within a given biological context. Taking advantage of the M@IA environment, MIR@NT@N is a user-friendly web resource freely available at http://mironton.uni.lu which will be updated on a regular basis. PMID:21375730
Diagnostic accuracy of serum miR-122 and miR-199a in women with endometriosis.
Maged, Ahmed M; Deeb, Wesam S; El Amir, Azza; Zaki, Sherif S; El Sawah, Heba; Al Mohamady, Maged; Metwally, Ahmed A; Katta, Maha A
2018-04-01
To evaluate the value of serum microRNA-122 (miR-122) and miR-199a as reliable noninvasive biomarkers in the diagnosis of endometriosis. During 2015-2016, at a teaching hospital in Egypt, a prospective cohort study was conducted on 45 women with pelvic endometriosis and 35 women who underwent laparoscopy for pelvic pain but were not diagnosed with endometriosis. Blood and peritoneal fluid (PF) samples were collected; interleukin-6 (IL-6) was detected by enzyme-linked immunosorbent assay and miR-122 and miR-199a expression was measured by quantitative real-time polymerase chain reaction. The serum and PF levels of IL-6, miR-122, and miR-199a were significantly higher in women with endometriosis than in controls (P<0.001 for all comparisons). Serum miR-122 expression was positively correlated with serum IL-6 (r=0.597), PF IL-6 (r=0.603), PF miR-122 (r=0.934), serum miR-199a (r=0.727), and PF miR-199a (r=0.653). Serum miR-199a expression was positively correlated with serum IL-6 (r=0.677), PF IL-6 (r=0.678), PF miR-122 (r=0.744), and PF miR-199a (r=0.932). Serum miR-122 and miR-199a had a sensitivity of 95.6% and 100.0%, and a specificity of 91.4% and 100%, respectively, for the detection of endometriosis. Serum miR-122 and miR-199a were significantly increased in endometriosis, indicating that these microRNAs might serve as biomarkers for the diagnosis of endometriosis. © 2017 International Federation of Gynecology and Obstetrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Mingjun; Wang, Xiaolei; Li, Wanhu
Although a series of oncogenes and tumor suppressors were identified in the pathological development of gastric adenocarcinoma (GAC), the underlying molecule mechanism were still not fully understood. The current study explored the expression profile of miR-107 and miR-25 in GAC patients and their downstream regulative network. qRT-PCR analysis was performed to quantify the expression of these two miRNAs in serum samples from both patients and healthy controls. Dual luciferase assay was conducted to verify their putative bindings with LATS2. MTT assay, cell cycle assay and transwell assay were performed to explore how miR-107 and miR-25 regulate proliferation and invasion ofmore » gastric cancer cells. Findings of this study demonstrated that total miR-107 or miR-25 expression might be overexpressed in gastric cancer patients and they can simultaneously and synchronically regulate LATS2 expression, thereby affecting gastric cancer cell growth and invasion. Therefore, the miR-25/miR-107-LATS2 axis might play an important role in proliferation and invasion of the gastric cancer cells. - Highlights: • Total miR-107 and miR-25 expression is significantly increased in GAC patients. • Both miR-107 and miR-25 can promote proliferation and invasion of GAC cells. • Both miR-107 and miR-25 can target LATS2 and regulate its expression. • miR-107 and miR-25 regulate proliferation and invasion of GAC cells though LATS2.« less
miR-17-92 cluster microRNAs confers tumorigenicity in multiple myeloma.
Chen, Lijuan; Li, Chunming; Zhang, Run; Gao, Xiao; Qu, Xiaoyan; Zhao, Min; Qiao, Chun; Xu, Jiaren; Li, Jianyong
2011-10-01
miRNAs play important roles in the regulation of cell proliferation, differentiation and apoptosis. The deregulation of miRNAs expression contributes to tumorigenesis by modulating oncogenic and tumor suppressor signaling pathways. Oncogenic transcription factor Myc can control expression of a large set of microRNAs (miRNAs). Previous studies have shown that the expression of miR-17-92 cluster, a polycistron encoding six microRNAs (miRNA), has close relationship with the expression of Myc. In current study, silencing Myc in multiple myeloma (MM)cells induced cell death and growth inhibition, and downregulated expression of miR-17-92 cluster. Overexpression of miR-17 or miR-18 could partly abrogated Myc-knockdown-induced MM cell apoptosis. One of the mechanism of Myc inhibiting MM cell apoptosis is through Myc activates miR-17-92 cluster and subsequently down-modulates proapoptotic protein Bim. Although miR-17-92 cluster are located at 13q31.3, the expression of miR-18, miR-19 and miR-20 (especially miR-19) in patients with del(13q14) was higher than those without del(13q14). Patients with miR-17, miR-20 and miR-92 high-expression had shorter PFS compared to those with miR-17, miR-20 and miR-92 low-expression. These results suggest the Myc-inducible miR-17-92 cluster miRNAs contribute to tumorigenesis and poor prognosis in multiple myeloma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Liu, Jianbo; Li, Min; Wang, Yuewei; Luo, Jianchao
2017-08-01
Curcumin has been reported as a radiosensitizer in prostate cancer. But the underlying mechanism is not well understood. In this study, we firstly assessed how curcumin affects the expression of miR-143/miR-145 cluster. Then, we investigated whether miR-143 is involved in regulation of radiosensitivity and its association with autophagy in prostate cancer cells. Our data showed that PC3, DU145 and LNCaP cells treated with curcumin had significantly restored miR-143 and miR-145 expression. Curcumin showed similar effect as 5-AZA-dC on reducing methylation of CpG dinucleotides in miR-143 promoter. In addition, curcumin treatment reduced the expression of DNMT1 and DNMT3B, which contribute to promoter hypermethylation of the miR-143/miR-145 cluster. Therefore, we infer that curcumin can restore miR-143 and miR-145 expression via hypomethylation. MiR-143 overexpression and curcumin pretreatment enhanced radiation induced cancer cell growth inhibition and apoptosis. MiR-143 and curcumin remarkably reduced radiation-induced autophagy in PC3 and DU145 cells. MiR-143 overexpression alone also reduced the basal level of autophagy in DU145 cells. Mechanistically, miR-143 can suppress autophagy in prostate cancer cells at least via downregulating ATG2B. Based on these findings, we infer that curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition.
Detection of an abundant plant-based small RNA in consumers
USDA-ARS?s Scientific Manuscript database
Mechanisms of delivery of plant small RNAs to consumers must be addressed in order to harness this technology to positively impact agbiotechnology. Two groups have used honeysuckle (Lonicera japonica) feeding regimes to detect a plant-based small RNA, termed MIR2911, in sera. Meanwhile, numerous gro...
Targeted Disruption of miR-17-92 Impairs Mouse Spermatogenesis by Activating mTOR Signaling Pathway.
Xie, Raoying; Lin, Xiaolin; Du, Tao; Xu, Kang; Shen, Hongfen; Wei, Fang; Hao, Weichao; Lin, Taoyan; Lin, Xia; Qin, Yujuan; Wang, Huiyan; Chen, Lin; Yang, Sheng; Yang, Jie; Rong, Xiaoxiang; Yao, Kaitai; Xiao, Dong; Jia, Junshuang; Sun, Yan
2016-02-01
The miR-17-92 cluster and its 6 different mature microRNAs, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a, play important roles in embryo development, immune system, kidney and heart development, adipose differentiation, aging, and tumorigenicity. Currently, increasing evidence indicates that some members of miR-17-92 cluster may be critical players in spermatogenesis, including miR-17, miR-18a, and miR-20a. However, the roles and underlying mechanisms of miR-17-92 in spermatogenesis remain largely unknown. Our results showed that the targeted disruption of miR-17-92 in the testes of adult mice resulted in severe testicular atrophy, empty seminiferous tubules, and depressed sperm production. This phenotype is partly because of the reduced number of spermatogonia and spermatogonial stem cells, and the significantly increased germ cell apoptosis in the testes of miR-17-92-deficient mice. In addition, overactivation of the mammalian target of rapamycin signaling pathway and upregulation of the pro-apoptotic protein Bim, Stat3, c-Kit, and Socs3 were also observed in miR-17-92-deficient mouse testes, which might be, at least partially if not all, responsible for the aforementioned phenotypic changes in mutant testes. Taken together, these findings suggest that miR-17-92 is essential for normal spermatogenesis in mice.
miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenna, Declan J., E-mail: dj.mckenna@ulster.ac.uk; Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL; Patel, Daksha, E-mail: d.patel@qub.ac.uk
2014-01-05
A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in themore » cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes.« less
BESTIA - the next generation ultra-fast CO 2 laser for advanced accelerator research
Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; ...
2015-12-02
Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO 2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO 2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO 2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimesmore » in the particle acceleration of ions and electrons.« less
The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury.
Kriegel, Alison J; Liu, Yong; Fang, Yi; Ding, Xiaoqiang; Liang, Mingyu
2012-02-27
The human miR-29 family of microRNAs has three mature members, miR-29a, miR-29b, and miR-29c. miR-29s are encoded by two gene clusters. Binding sites for several transcriptional factors have been identified in the promoter regions of miR-29 genes. The miR-29 family members share a common seed region sequence and are predicted to target largely overlapping sets of genes. However, the miR-29 family members exhibit differential regulation in several cases and different subcellular distribution, suggesting their functional relevance may not be identical. miR-29s directly target at least 16 extracellular matrix genes, providing a dramatic example of a single microRNA targeting a large group of functionally related genes. Strong antifibrotic effects of miR-29s have been demonstrated in heart, kidney, and other organs. miR-29s have also been shown to be proapoptotic and involved in the regulation of cell differentiation. It remains to be explored how various cellular effects of miR-29s determine functional relevance of miR-29s to specific diseases and how the miR-29 family members may function cooperatively or separately.
Clinical significance of miRNA host gene promoter methylation in prostate cancer.
Daniunaite, Kristina; Dubikaityte, Monika; Gibas, Povilas; Bakavicius, Arnas; Rimantas Lazutka, Juozas; Ulys, Albertas; Jankevicius, Feliksas; Jarmalaite, Sonata
2017-07-01
Only a part of prostate cancer (PCa) patients has aggressive malignancy requiring adjuvant treatment after radical prostatectomy (RP). Biomarkers capable to predict biochemical PCa recurrence (BCR) after RP would significantly improve preoperative risk stratification and treatment decisions. MicroRNA (miRNA) deregulation has recently emerged as an important phenomenon in tumor development and progression, however, the mechanisms remain largely unstudied. In the present study, based on microarray profiling of DNA methylation in 9 pairs of PCa and noncancerous prostate tissues (NPT), host genes of miR-155-5p, miR-152-3p, miR-137, miR-31-5p, and miR-642a, -b were analyzed for promoter methylation in 129 PCa, 35 NPT, and 17 benign prostatic hyperplasia samples (BPH) and compared to the expression of mature miRNAs and their selected targets (DNMT1, KDM1A, and KDM5B). The Cancer Genome Atlas dataset was utilized for validation. Methylation of mir-155, mir-152, and mir-137 host genes was PCa-specific, and downregulation of miR-155-5p significantly correlated with promoter methylation. Higher KDM5B expression was observed in samples with methylated mir-155 or mir-137 promoters, whereas upregulation of KDM1A and DNMT1 was associated with mir-155 and mir-152 methylation status, respectively. Promoter methylation of mir-155, mir-152, and mir-31 was predictive of BCR-free survival in various Cox models and increased the prognostic value of clinicopathologic factors. In conclusion, methylated mir-155, mir-152, mir-137, and mir-31 host genes are promising diagnostic and/or prognostic biomarkers of PCa. Methylation status of particular miRNA host genes as independent variables or in combinations might assist physicians in identifying poor prognosis PCa patients preoperatively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
MicroRNA meta-signature of oral cancer: evidence from a meta-analysis.
Zeljic, Katarina; Jovanovic, Ivan; Jovanovic, Jasmina; Magic, Zvonko; Stankovic, Aleksandra; Supic, Gordana
2018-03-01
It was the aim of the study to identify commonly deregulated miRNAs in oral cancer patients by performing a meta-analysis of previously published miRNA expression profiles in cancer and matched normal non-cancerous tissue in such patients. Meta-analysis included seven independent studies analyzed by a vote-counting method followed by bioinformatic enrichment analysis. Amongst seven independent studies included in the meta-analysis, 20 miRNAs were found to be deregulated in oral cancer when compared with non-cancerous tissue. Eleven miRNAs were consistently up-regulated in three or more studies (miR-21-5p, miR-31-5p, miR-135b-5p, miR-31-3p, miR-93-5p, miR-34b-5p, miR-424-5p, miR-18a-5p, miR-455-3p, miR-450a-5p, miR-21-3p), and nine were down-regulated (miR-139-5p, miR-30a-3p, miR-376c-3p, miR-885-5p, miR-375, miR-486-5p, miR-411-5p, miR-133a-3p, miR-30a-5p). The meta-signature of identified miRNAs was functionally characterized by KEGG enrichment analysis. Twenty-four KEGG pathways were significantly enriched, and TGF-beta signaling was the most enriched signaling pathway. The highest number of meta-signature miRNAs was involved in the sphingolipid signaling pathway. Natural killer cell-mediated cytotoxicity was the pathway with most genes regulated by identified miRNAs. The rest of the enriched pathways in our miRNA list describe different malignancies and signaling. The identified miRNA meta-signature might be considered as a potential battery of biomarkers when distinguishing oral cancer tissue from normal, non-cancerous tissue. Further mechanistic studies are warranted in order to confirm and fully elucidate the role of deregulated miRNAs in oral cancer.
Perez-Sanchez, Carlos; Font-Ugalde, Pilar; Ruiz-Limon, Patricia; Lopez-Pedrera, Chary; Castro-Villegas, Maria C; Abalos-Aguilera, Maria C; Barbarroja, Nuria; Arias-de la Rosa, Ivan; Lopez-Montilla, Maria D; Escudero-Contreras, Alejandro; Lopez-Medina, Clementina; Collantes-Estevez, Eduardo; Jimenez-Gomez, Yolanda
2018-03-01
Ankylosing spondylitis (AS) remains difficult to diagnose before irreversible damage to sacroiliac joint is noticeable. Circulating microRNAs have demonstrated to serve as diagnostic tools for several human diseases. Here, we analysed plasma microRNAs to identify potential AS biomarkers. Higher expression levels of microRNA (miR)-146a-5p, miR-125a-5p, miR-151a-3p and miR-22-3p, and lower expression of miR-150-5p, and miR-451a were found in AS versus healthy donors. Interestingly, higher miR-146a-5p, miR-125a-5p, miR-151a-3p, miR-22-3p and miR-451a expression was also observed in AS than psoriatic arthritis patients. The areas under the curve, generated to assess the accuracy of microRNAs as diagnostic biomarkers for AS, ranged from 0.614 to 0.781; the six-microRNA signature reached 0.957. Bioinformatics analysis revealed that microRNAs targeted inflammatory and bone remodeling genes, underlying their potential role in this pathology. Indeed, additional studies revealed an association between these six microRNAs and potential target proteins related to AS pathophysiology. Furthermore, miR-146a-5p, miR-125a-5p and miR-22-3p expression was increased in active versus non-active patients. Moreover, miR-125a-5p, miR-151a-3p, miR-150-5p and miR-451a expression was related to the presence of syndesmophytes in AS patients. Overall, this study identified a six-plasma microRNA signature that could be attractive candidates as non-invasive biomarkers for the AS diagnosis, and may help to elucidate the disease pathogenesis.
Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke
Izzotti, Alberto; Calin, George A.; Arrigo, Patrizio; Steele, Vernon E.; Croce, Carlo M.; De Flora, Silvio
2009-01-01
Although microRNAs have been investigated extensively in cancer research, little is known regarding their response to noxious agents in apparently healthy tissues. We analyzed the expression of 484 miRNAs in the lungs of rats exposed to environmental cigarette smoke (ECS) for 28 days. ECS down-regulated 126 miRNAs (26.0%) at least 2-fold and 24 miRNAs more than 3-fold. We previously demonstrated that 107 of 4858 genes (2.9%) and 50 of 518 proteins (9.7%) were up-regulated by ECS in the same tissue, which is consistent with the role of microRNAs as negative regulators of gene expression. The most remarkably down-regulated microRNAs belonged to the families of let-7, miR-10, miR-26, miR-30, miR-34, miR-99, miR-122, miR-123, miR-124, miR-125, miR-140, miR-145, miR-146, miR-191, miR-192, miR-219, miR-222, and miR-223, which regulate stress response, apoptosis, proliferation, angiogenesis, and expression of genes. In contrast, miR-294, an inhibitor of transcriptional repressor genes, was up-regulated by ECS. There was a strong parallelism in dysregulation of rodent microRNAs and their human homologues, which are often transcribed from genes localized in fragile sites deleted in lung cancer. Five ECS-down-regulated microRNAs are known to be affected by single nucleotide polymorphisms. Thus, changes in microRNA expression are an early event following exposure to cigarette smoke.—Izzotti, A., Calin, G. A., Arrigo, P., Steele, V. E., Croce, C. M., De Flora, S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. PMID:18952709
Kusakabe, Rie; Tani, Saori; Nishitsuji, Koki; Shindo, Miyuki; Okamura, Kohji; Miyamoto, Yuki; Nakai, Kenta; Suzuki, Yutaka; Kusakabe, Takehiro G; Inoue, Kunio
2013-01-01
Muscle-specific miR-1/206 and miR-133 families have been suggested to play fundamental roles in skeletal and cardiac myogenesis in vertebrates. To gain insights into the relationships between the divergence of these miRs and muscular tissue types, we investigated the expression patterns of miR-1 and miR-133 in two ascidian Ciona species and compared their genomic structures with those of other chordates. We found that Ciona intestinalis and Ciona savignyi each possess a single copy of the miR-1/miR-133 cluster, which is only 350 nucleotide long. During embryogenesis, Ciona miR-1 and miR-133 are generated as a single continuous primary transcript accumulated in the nuclei of the tail muscle cells, starting at the gastrula stage. In adults, mature miR-133 and miR-1 are differentially expressed in the heart and body wall muscle. Expression of the reporter gene linked to the 850-bp upstream region of the predicted transcription start site confirmed that this region drives the muscle-specific expression of the primary transcript of miR-1/miR-133. In many deuterostome lineages, including that of Ciona, the miR-1/133 cluster is located in the same intron of the mind bomb (mib) gene in reverse orientation. Our results suggest that the origin of genomic organization and muscle-specific regulation of miR-1/133 can be traced back to the ancestor of chordates. Duplication of this miR cluster might have led to the remarkable elaboration in the morphology and function of skeletal muscles in the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.
Peng, Liu; Chun-guang, Qiu; Bei-fang, Li; Xue-zhi, Ding; Zi-hao, Wang; Yun-fu, Li; Yan-ping, Dang; Yang-gui, Liu; Wei-guo, Li; Tian-yong, Hu; Zhen-wen, Huang
2014-05-01
Acute myocardial infarction (AMI) is one of the leading causes for death in both developed and developing countries and it is the single largest cause of death in the United States, responsible for 1 out of every 6 deaths. The objective of this study was to determine microRNA (miRNA) expression in AMI and determine whether miR-133, miR-1291 and miR-663b could be measured in plasma as a biomarker for recurrence. Patients with AMI and those without AMI were retrospectively recruited for a comparison of their plasma miR-133, miR-1291 and miR-663b expression. miR-133, miR-1291 and miR-663b levels were significantly overexpressed in AMI compared with Non-AMI. MiR-133 showed an AUC of 0.912, with a sensitivity of 81.1% and a specificity of 91.2%. The AUC for miR-1291 was 0.695, with a sensitivity of 78.4% and a specificity of 89.5%. The AUC for miR-663b was 0.611, with a sensitivity of 72.4% and a specificity of 76.5%. This study demonstrated that the levels of miR-133, miR-1291 and miR-663b are associated with AMI. The potential of these miRNAs as biomarkers to improve patient stratification according to the risk of AMI and as circulating biomarkers for the AMI progonos warrants further study. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/8183629061241474.
MiR-145 mediates zebrafish hepatic outgrowth through progranulin A signaling
Li, Ya-Wen; Chiang, Keng-Yu; Li, Yen-Hsing; Wu, Sung-Yu; Liu, Wangta; Lin, Chia-Ray
2017-01-01
MicroRNAs (miRs) are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA) as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. The low level of miR-145 seen in hepatocarinogenesis has been shown to promote pathological liver growth. However, little is known about the regulatory mechanism of miR-145 in embryonic liver development. In this study, we demonstrate a significant decrease in miR-145 expression during hepatogenesis. We modulate miR-145 expression in zebrafish embryos by injection with a miR-145 mimic or a miR-145 hairpin inhibitor. Altered embryonic liver outgrowth is observed in response to miR-145 expression modulation. We also confirm a critical role of miR-145 in hepatic outgrowth by using whole-mount in situ hybridization. Loss of miR-145 expression in embryos results in hepatic cell proliferation, and vice versa. Furthermore, we demonstrate that GrnA is a target of miR-145 and GrnA-induced MET signaling is also regulated by miR-145 as determined by luciferase reporter assay and gene expression analysis, respectively. In addition, co-injection of GrnA mRNA with miR-145 mimic or MO-GrnA with miR-145 inhibitor restores the liver defects caused by dysregulation of miR-145 expression. In conclusion, our findings suggest an important role of miR-145 in regulating GrnA-dependent hepatic outgrowth in zebrafish embryonic development. PMID:28531199
MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Nianxi; Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008; Shen, Liangfang
Highlights: • Decreased miR-153 and up-regulated ADAM19 are correlated with NSCLC pathology. • MiR-153 inhibits the proliferation and migration and invasion of NSCLC cells in vitro. • ADAM19 is a direct target of miR-153. • ADAM19 is involved in miR-153-suppressed migration and invasion of NSCLC cells. - Abstract: MiR-153 was reported to be dysregulated in some human cancers. However, the function and mechanism of miR-153 in lung cancer cells remains unknown. In this study, we investigated the role of miR-153 in human non-small-cell lung cancer (NSCLC). Using qRT-PCR, we demonstrated that miR-153 was significantly decreased in clinical NSCLC tissues andmore » cell lines, and downregulation of miR-153 was significantly correlated with lymph node status. We further found that ectopic expression of miR-153 significantly inhibited the proliferation and migration and invasion of NSCLC cells in vitro, suggesting that miR-153 may be a novel tumor suppressor in NSCLC. Further integrated analysis revealed that ADAM19 is as a direct and functional target of miR-153. Luciferase reporter assay demonstrated that miR-153 directly targeted 3′UTR of ADAM19, and correlation analysis revealed an inverse correlation between miR-153 and ADAM19 mRNA levels in clinical NSCLC tissues. Knockdown of ADAM19 inhibited migration and invasion of NSCLC cells which was similar with effects of overexpression of miR-153, while overexpression of ADAM19 attenuated the function of miR-153 in NSCLC cells. Taken together, our results highlight the significance of miR-153 and ADAM19 in the development and progression of NSCLC.« less
Frequent downregulation of miR-34 family in human ovarian cancers.
Corney, David C; Hwang, Chang-Il; Matoso, Andres; Vogt, Markus; Flesken-Nikitin, Andrea; Godwin, Andrew K; Kamat, Aparna A; Sood, Anil K; Ellenson, Lora H; Hermeking, Heiko; Nikitin, Alexander Yu
2010-02-15
The miR-34 family is directly transactivated by tumor suppressor p53, which is frequently mutated in human epithelial ovarian cancer (EOC). We hypothesized that miR-34 expression would be decreased in EOC and that reconstituted miR-34 expression might reduce cell proliferation and invasion of EOC cells. miR-34 expression was determined by quantitative reverse transcription-PCR and in situ hybridization in a panel of 83 human EOC samples. Functional characterization of miR-34 was accomplished by reconstitution of miR-34 expression in EOC cells with synthetic pre-miR molecules followed by determining changes in proliferation, apoptosis, and invasion. miR-34a expression is decreased in 100%, and miR-34b*/c in 72%, of EOC with p53 mutation, whereas miR-34a is also downregulated in 93% of tumors with wild-type p53. Furthermore, expression of miR-34b*/c is significantly reduced in stage IV tumors compared with stage III (P = 0.0171 and P = 0.0029, respectively). Additionally, we observed promoter methylation and copy number variations at mir-34. In situ hybridization showed that miR-34a expression is inversely correlated with MET immunohistochemical staining, consistent with translational inhibition by miR-34a. Finally, miR-34 reconstitution experiments in p53 mutant EOC cells resulted in reduced proliferation, motility, and invasion, the latter of which was dependent on MET expression. Our work suggests that miR-34 family plays an important role in EOC pathogenesis and reduced expression of miR-34b*/c may be particularly important for progression to the most advanced stages. Part of miR-34 effects on motility and invasion may be explained by regulation of MET, which is frequently overexpressed in EOC.
GALAXY EVOLUTION IN THE MID-INFRARED GREEN VALLEY: A CASE OF THE A2199 SUPERCLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gwang-Ho; Lee, Myung Gyoon; Sohn, Jubee
2015-02-20
We study the mid-infrared (MIR) properties of the galaxies in the A2199 supercluster at z = 0.03 to understand the star formation activity of galaxy groups and clusters in the supercluster environment. Using the Wide-field Infrared Survey Explorer data, we find no dependence of mass-normalized integrated star formation rates of galaxy groups/clusters on their virial masses. We classify the supercluster galaxies into three classes in the MIR color-luminosity diagram: MIR blue cloud (massive, quiescent, and mostly early-type), MIR star-forming sequence (mostly late-type), and MIR green valley galaxies. These MIR green valley galaxies are distinguishable from the optical green valley galaxiesmore » in the sense that they belong to the optical red sequence. We find that the fraction of each MIR class does not depend on the virial mass of each group/cluster. We compare the cumulative distributions of surface galaxy number density and cluster/group-centric distance for the three MIR classes. MIR green valley galaxies show the distribution between MIR blue cloud and MIR star-forming (SF) sequence galaxies. However, if we fix galaxy morphology, early- and late-type MIR green valley galaxies show different distributions. Our results suggest a possible evolutionary scenario of these galaxies: (1) late-type MIR SF sequence galaxies → (2) late-type MIR green valley galaxies → (3) early-type MIR green valley galaxies → (4) early-type MIR blue cloud galaxies. In this sequence, the star formation of galaxies is quenched before the galaxies enter the MIR green valley, and then morphological transformation occurs in the MIR green valley.« less
Wang, Feng; Wang, Jun; Ju, Linlin; Chen, Lin; Cai, Weihua; Yang, Jialin
2018-01-01
Background It has been reported that both of the miR-132/212 (micro-RNA) cluster members, miR-132 and miR-212, are downregulated in hepatocellular carcinoma. Nevertheless, the expression pattern and clinical utility of serum miR-132/212 in hepatocellular carcinoma are still unknown. Methods In this study, serum concentrations of miR-132 and miR-212 were measured in 80 hepatocellular carcinoma patients, 51 controls with chronic liver diseases and 42 healthy volunteers by using quantitative real-time polymerase chain reaction. Results In hepatocellular carcinoma patients, serum concentrations of miR-132 and miR-212 were significantly reduced and strongly correlated (r = 0.603, p < 0.001). Receiver operator characteristic analyses showed that serum miR-132 and miR-212 might have a potential role in the diagnosis of hepatocellular carcinoma. Moreover, the combination of serum miR-132, miR-212 and alpha-fetoprotein improved the diagnostic efficiency for hepatocellular carcinoma, especially in sensitivity and negative predictive value. Serum miR-132 was associated with tumour differentiation degree ( p = 0.021) and tumour-node-metastasis stage ( p = 0.002); serum miR-212 correlated with tumour size ( p = 0.023) and tumour-node-metastasis stage ( p = 0.007). Kaplan-Meier analyses indicated poorer overall survival in hepatocellular carcinoma patients with lower serum concentrations of miR-132 ( p < 0.001) and miR-212 ( p = 0.005). Conclusions Our results suggest that both components of the miR-132/212 cluster have potential roles as non-invasive serum biomarkers for diagnosis and prognosis of hepatocellular carcinoma.
Jauhari, Abhishek; Singh, Tanisha; Pandey, Ankita; Singh, Parul; Singh, Nishant; Srivastava, Ankur Kumar; Pant, Aditya Bhushan; Parmar, Devendra; Yadav, Sanjay
2017-09-01
MicroRNAs (miRNAs) are generated by endonuclease activity of Dicer, which also helps in loading of miRNAs to their target sequences. SH-SY5Y, a human neuroblastoma and a cellular model of neurodevelopment, consistently expresses genes related to neurodegenerative disorders at different biological levels (DNA, RNA, and proteins). Using SH-SY5Y cells, we have studied the role of Dicer and miRNAs in neuronal differentiation and explored involvement of P53, a master regulator of gene expression in differentiation-induced induction of miRNAs. Knocking down Dicer gene induced senescence in differentiating SH-SY5Y cells, which indicate the essential role of Dicer in brain development. Differentiation of SH-SY5Y cells by retinoic acid (RA) or RA + brain-derived neurotrophic factor (BDNF) induced dramatic changes in global miRNA expression. Fully differentiated SH-SY5Y cells (5-day RA followed by 3-day BDNF) significantly (p < 0.05 and atleast >3-fold change) upregulated and downregulated the expression of 77 and 17 miRNAs, respectively. Maximum increase was observed in the expression of miR-193-5p, miR-199a-5p, miR-192, miR-145, miR-28-5p, miR-29b, and miR-222 after RA exposure and miR-193-5p, miR-146a, miR-21, miR-199a-5p, miR-153, miR-29b, and miR-222 after RA + BDNF exposure in SH-SY5Y cells. Exploring the role of P53 in differentiating SH-SY5Y cells, we have observed that induction of miR-222, miR-192, and miR-145 is P53 dependent and expression of miR-193a-5p, miR-199a-5p, miR-146a, miR-21, miR-153, and miR-29b is P53 independent. In conclusion, decreased Dicer level enforces differentiating cells to senescence, and differentiating SH-SY5Y cells needs increased expression of P53 to cope up with changes in protein levels of mature neurons.
miRNA-216 and miRNA-499 target cyb561d2 in zebrafish in response to fipronil exposure.
Zhou, Yongyong; Huang, Hannian; Zhang, Kai; Ding, Xianfeng; Jia, Longlue; Yu, Liang; Zhu, Guonian; Guo, Jiangfeng
2016-07-01
MicroRNA (miRNA) can regulate the expression of its target gene by mediating mRNA cleavage or by translational repression at a post-transcriptional level. Usually, one miRNA may regulate many genes as its targets, while one gene may also be targeted by many miRNAs. We previously demonstrated that cyb561d2, whose protein product is involved in cell defense, and chemical stress, is targeted by miR-155 in adult zebrafish (Danio rerio) when exposed to fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulphinyl]-1H-pyrazole-3-carbonitrile). Microcosm Targets prediction showed that the cyb561d2 gene is also highly possibly targeted by miR-194a, miR-216b, miR-429, and miR-499. These interactions need to be further validated experimentally. In this study, we evaluated the effects of fipronil on miR-194a, miR-216b, miR-429, miR-499 and cyb561d2 in zebrafish and investigated whether these four miRNAs could regulate the expression of cyb561d2 in both mRNA and protein levels. The expression of cyb561d2 was upregulated in both mRNA and protein level in a dose-dependent manner upon stimulation of fipronil, and miR-216b and miR-499 were downregulated concurrently, whereas there was no significant changes were observed in the expression level of miR-194a and miR-429. The dual luciferase report assay demonstrated that miR-216b and miR-499 interacted with cyb561d2 3'-untranslated regions (3'-UTR), miR-194a and miR-429 did not stimulate degradation of cyb561d2 mRNA. The expression of cyb561d2 was reduced in both mRNA and protein level when ZF4 cells were transfected with miR-499 mimic, whereas expression level of both mRNA and protein was increased when endogenous miR-499 was inhibited by transfection with miR-499 inhibitor. Likewise, the mRNA and protein level of cyb561d2 was affected by treatment with the mimics and the inhibitor of miR-216b. In contrast, when ZF4 cells were transfected with a mimic of miR-194a or miR-429, the expression of cyb561d2 mRNA was not significantly changed. As a result, cyb561d2 is targeted by miR-155, miR-216b and miR-499 upon fipronil exposure, and miR-194a and miR-429 can not target cyb561d2. The expression pattern of these 3 miRNAs presents novel fipronil responses that could be used as a toxicological biomarker. Copyright © 2016 Elsevier B.V. All rights reserved.
Distinct anti-oncogenic effect of various microRNAs in different mouse models of liver cancer
Wu, Heng; Liu, Yan; Wang, XinWei; Calvisi, Diego F.; Song, Guisheng; Chen, Xin
2015-01-01
Deregulation of microRNAs (miRNAs) is a typical feature of human hepatocellular carcinoma (HCC). However, the in vivo relevance of miRNAs along hepatocarcinogenesis remains largely unknown. Here, we show that liver tumors induced in mice by c-Myc overexpression or AKT/Ras co-expression exhibit distinct miRNA expression profiles. Among the downregulated miRNAs, eight (miR-101, miR-107, miR-122, miR-29, miR-365, miR-375, miR-378, and miR-802) were selected and their tumor suppressor activity was determined by overexpressing each of them together with c-Myc or AKT/Ras oncogenes in mouse livers via hydrodynamic transfection. The tumor suppressor activity of these microRNAs was extremely heterogeneous in c-Myc and AKT/Ras mice: while miR-378 had no tumor suppressor activity, miR-107, mir-122, miR-29, miR-365 and miR-802 exhibited weak to moderate tumor suppressor potential. Noticeably, miR-375 showed limited antineoplastic activity against c-Myc driven tumorigenesis, whereas it strongly inhibited AKT/Ras induced hepatocarcinogenesis. Furthermore, miR-101 significantly suppressed both c-Myc and AKT/Ras liver tumor development. Altogether, the present data demonstrate that different oncogenes induce distinct miRNA patterns, whose modulation differently affects hepatocarcinogenesis depending on the driving oncogenes. Finally, our findings support a strong tumor suppressor activity of miR-101 in liver cancer models regardless of the driver oncogenes involved, thus representing a promising therapeutic target in human HCC. PMID:25762642
Characteristic miR-24 Expression in Gastric Cancers among Atomic Bomb Survivors.
Naito, Yutaka; Oue, Naohide; Pham, Trang T B; Yamamoto, Manabu; Fujihara, Megumu; Ishida, Teruyoshi; Mukai, Shoichiro; Sentani, Kazuhiro; Sakamoto, Naoya; Hida, Eisuke; Sasaki, Hiroki; Yasui, Wataru
2015-01-01
To elucidate the mechanism of radiation-induced cancers, we analyzed the expression profiles of microRNAs extracted from formalin-fixed paraffin-embedded (FFPE) gastric cancer (GC) tissue samples from atomic bomb survivors. The expression levels of miR-21, miR-24, miR-34a, miR-106a, miR-143, and miR-145 were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The expression of microRNAs was measured by qRT-PCR in a Hiroshima University Hospital cohort comprising 32 patients in the high-dose-exposed group and 18 patients in the low-dose-exposed group who developed GC after the bombing. The GC cases showing high expression of miR-24, miR-143, and miR-145 were more frequently found in the high-dose-exposed group than in the low-dose-exposed group. We next performed qRT-PCR of miR-24, miR-143, and miR-145 in a cohort from the Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital comprising 122 patients in the high-dose-exposed group and 48 patients in the low-dose-exposed group who developed GC after the bombing. High expressions of miR-24 and miR-143 were more frequently found in the high-dose-exposed group than in the low-dose-exposed group. Multivariate analysis demonstrated that only high expression of miR-24 was an independent predictor for the exposure status. These results suggest that the measurement of miR-24 expression from FFPE samples is useful to identify radiation-associated GC.
Xu, Rui; Huang, Huaping; Han, Zhong; Li, Minchao; Zhou, Xiangdong
2016-01-01
To investigate the role of miR-21 in airway immunologic dysfunction induced by cold air irritation. Immortalized human airway epithelial cell lines BEAS-2B and 16HBE cells were cultured in air-liquid phases. The differential expressions of endogenous miR-21, miR-164, and miR-155 in the cells induced by cold air exposure for different time were detected by real-time PCR. The reporter plasmid containing wild-type or mutated 3'UTR of TLR-4 were constructed and co-transfected into BEAS-2B cells or 16HBE cells together with miR-21 mimic, miR-21 mimic control, miR-21 inhibitor, or miR-21 inhibitor control. Following the transfection, dual luciferase reporter assay was performed to verify the action of miR-21 on TLR-4. miR-21 mimic, miR-21 mimic control, miR-21 inhibitor, and miR-21 inhibitor control were transfected via lipofectamine 2000 in BEAS-2B or 16HBE cells that were subsequently exposed to a temperature at 37 degrees celsius; or cold irritation (30 degrees celsius;), and the protein levels of TLR-4/MyD88 were detected by Western blotting. Cold irritation caused a time- dependent up-regulation of miR-21 in both BEAS-2B and 16HBE cells (P<0.05) without obviously affecting the expressions of miR-164 and miR-155. Dual luciferase reporter assay demonstrated a direct combination of miR-21 and its target protein TLR-4. The synthesis levels of TLR-4/MyD88 protein were decreased in miR-21 mimic group even at a routine culture temperature (P<0.05), as also seen in cells with cold irritation (P<0.05). Treatment with the miR-21 inhibitor partially attenuated cold irritation-induced down-regulation of TLR-4/MyD88 protein (P<0.05). Cold air irritation-induced airway immunologic dysfunction is probably associated with TLR-4/MyD88 down-regulation by an increased endogenic miR-21.
Derrick, Tamsyn; Ramadhani, Athumani M; Mtengai, Karim; Massae, Patrick; Burton, Matthew J; Holland, Martin J
2017-03-01
We previously showed that conjunctival miR-147b and miR-1285 were upregulated in Gambian adults with inflammatory scarring trachoma, and miR-155 and miR-184 expression was strongly associated with conjunctival inflammation and ocular Chlamydia trachomatis infection in children from Guinea-Bissau. We investigated whether the single or combined expression of miR-147b, miR-1285, miR-155 and miR-184 was able to identify individuals with increased risk of incident or progressive scarring trachoma. Conjunctival swab samples were collected from 506 children between the ages of 4 and 12 living in northern Tanzania. These 506 samples formed the baseline sample set of a 4-year longitudinal study. Chlamydia trachomatis infection was diagnosed by droplet digital PCR and expression of miR-155, miR-184, miR-1285 and miR-147b was tested by qPCR. Individuals were assessed for incidence and progression of conjunctival scarring by comparison of conjunctival photographs taken at baseline and 4 years later. miR-184 and miR-155 were strongly associated with inflammation and infection at baseline; however, no miR was associated with 4-year scarring incidence or progression. miR-184 expression was more strongly downregulated during inflammation in non-progressors relative to progressors, suggesting that a disequilibrium in the efficiency of wound healing is a significant determinant of progressive conjunctival fibrosis. © FEMS 2017.
Role of miR-191/425 cluster in tumorigenesis and diagnosis of gastric cancer.
Peng, Wei-Zhao; Ma, Ren; Wang, Fang; Yu, Jia; Liu, Zhi-Bin
2014-03-05
Gastric cancer (GC) is among the most frequent types of cancer worldwide. Therefore, understanding the biology of GC tumorigenesis is important for appropriate diagnosis and patient surveillance. The miR-191/425 cluster has been reported to be overexpressed in various human cancers, but the tumorigenic role and clinical significance of miR-191/425 overexpression in gastric carcinogenesis is currently undefined. In this study, the expression of miR-191 and miR-425 in GC tissue and serum was assessed, and the relationship between miRNA expression and clinicopathological data was analyzed. We found that miR-191 and miR-425 were both significantly increased in human GC tissues relative to adjacent normal controls. In addition, miR-191 levels correlated with GC tumor stage and metastatic state. Furthermore, the level of serum miR-191 was significantly higher in the GC group than in the control group when using serum miR-16 as an endogenous control. Finally, inhibition of miR-191 or miR-425 in the GC cell lines HGC-27 not only reduced cell proliferation and cell cycle progression but also impaired cell migration and invasion. Taken together, our results revealed the oncogenic roles of miR-191 and miR-425 in gastric carcinogenesis, and indicated the potential use of serum miR-191 as a novel and stable biomarker for GC diagnosis.
Bhogale, Sneha; Mahajan, Ameya S.; Natarajan, Bhavani; Rajabhoj, Mohit; Thulasiram, Hirekodathakallu V.; Banerjee, Anjan K.
2014-01-01
MicroRNA156 (miR156) functions in maintaining the juvenile phase in plants. However, the mobility of this microRNA has not been demonstrated. So far, only three microRNAs, miR399, miR395, and miR172, have been shown to be mobile. We demonstrate here that miR156 is a potential graft-transmissible signal that affects plant architecture and tuberization in potato (Solanum tuberosum). Under tuber-noninductive (long-day) conditions, miR156 shows higher abundance in leaves and stems, whereas an increase in abundance of miR156 has been observed in stolons under tuber-inductive (short-day) conditions, indicative of a photoperiodic control. Detection of miR156 in phloem cells of wild-type plants and mobility assays in heterografts suggest that miR156 is a graft-transmissible signal. This movement was correlated with changes in leaf morphology and longer trichomes in leaves. Overexpression of miR156 in potato caused a drastic phenotype resulting in altered plant architecture and reduced tuber yield. miR156 overexpression plants also exhibited altered levels of cytokinin and strigolactone along with increased levels of LONELY GUY1 and StCyclin D3.1 transcripts as compared with wild-type plants. RNA ligase-mediated rapid amplification of complementary DNA ends analysis validated SQUAMOSA PROMOTER BINDING-LIKE3 (StSPL3), StSPL6, StSPL9, StSPL13, and StLIGULELESS1 as targets of miR156. Gel-shift assays indicate the regulation of miR172 by miR156 through StSPL9. miR156-resistant SPL9 overexpression lines exhibited increased miR172 levels under a short-day photoperiod, supporting miR172 regulation via the miR156-SPL9 module. Overall, our results strongly suggest that miR156 is a phloem-mobile signal regulating potato development. PMID:24351688
Tang, Xiaoli; Zheng, Dong; Hu, Ping; Zeng, Zongyue; Li, Ming; Tucker, Lynne; Monahan, Renee; Resnick, Murray B; Liu, Manran; Ramratnam, Bharat
2014-03-01
Glycogen synthase kinase 3 beta (GSK3β) is a critical protein kinase that phosphorylates numerous proteins in cells and thereby impacts multiple pathways including the β-Catenin/TCF/LEF-1 pathway. MicroRNAs (miRs) are a class of noncoding small RNAs of ∼22 nucleotides in length. Both GSK3β and miR play myriad roles in cell functions including stem cell development, apoptosis, embryogenesis and tumorigenesis. Here we show that GSK3β inhibits the expression of miR-96, miR-182 and miR-183 through the β-Catenin/TCF/LEF-1 pathway. Knockout of GSK3β in mouse embryonic fibroblast cells increases expression of miR-96, miR-182 and miR-183, coinciding with increases in the protein level and nuclear translocation of β-Catenin. In addition, overexpression of β-Catenin enhances the expression of miR-96, miR-182 and miR-183 in human gastric cancer AGS cells. GSK3β protein levels are decreased in human gastric cancer tissue compared with surrounding normal gastric tissue, coinciding with increases of β-Catenin protein, miR-96, miR-182, miR-183 and primary miR-183-96-182 cluster (pri-miR-183). Furthermore, suppression of miR-183-96-182 cluster with miRCURY LNA miR inhibitors decreases the proliferation and migration of AGS cells. Knockdown of GSK3β with siRNA increases the proliferation of AGS cells. Mechanistically, we show that β-Catenin/TCF/LEF-1 binds to the promoter of miR-183-96-182 cluster gene and thereby activates the transcription of the cluster. In summary, our findings identify a novel role for GSK3β in the regulation of miR-183-96-182 biogenesis through β-Catenin/TCF/LEF-1 pathway in gastric cancer cells.
Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy
Zhang, Hongliang; Liu, Shenghua; Dong, Tianwei; Yang, Jun; Xie, Yuanyuan; Wu, Yike; Kang, Kang; Hu, Shengshou; Gou, Deming; Wei, Yingjie
2016-01-01
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a kind of primary cardiomyopathy characterized by the fibro-fatty replacement of right ventricular myocardium. Currently, myocardial microRNAs have been reported to play critical role in the pathophysiology of cardiovascular pathophysiology. So far, the profiling of microRNAs in ARVC has not been described. In this study, we applied S-Poly (T) Plus method to investigate the expression profile of microRNAs in 24 ARVC patients heart samples. The tissue levels of 1078 human microRNAs were assessed and were compared with levels in a group of 24 healthy controls. Analysis of the area under the receiver operating characteristic curve (ROC) supported the 21 validated microRNAs to be miRNA signatures of ARVC, eleven microRNAs were significantly increased in ARVC heart tissues and ten microRNAs were significantly decreased. After functional enrichment analysis, miR-21-5p and miR-135b were correlated with Wnt and Hippo pathway, which might involve in the molecular pathophysiology of ARVC. Overall, our data suggested that myocardial microRNAs were involved in the pathophysiology of ARVC, miR-21-5p and miR-135b were significantly associated with both the myocardium adipose and fibrosis, which was a potential disease pathway for ARVC and might to be useful as therapeutic targets for ARVC. PMID:27307080
A WISE Selection of MIR AGN in Different Environments
NASA Astrophysics Data System (ADS)
Cheeseboro, Belinda D.; Norman, Dara J.
2015-01-01
This study was undertaken to understand the role of large scale environment in the evolution of MIR-selected AGN. In this study we examine AGN candidates in two types of environments: 7 clusters and 6 blank fields. Two types of clusters were studied in this project: 3 virialized and 4 non-virialized. The redshift of the clusters ranged 0.22≤z≤0.28. We used the mid-infrared WISE All-Sky database to identify AGN, applying various methods to refine our AGN candidate selection. To ascertain if there is an excess or deficit of MIR AGN in galaxy clusters vs. blank fields, we compared the AGN candidate distributions in virialized vs. non-virialized clusters to the blank fields. After close examination and comparison of the results to X-ray selected AGN from the Gilmour et al. (2009) study, we concluded that we do not detect an excess or deficit of MIR AGN in our clusters whether the cluster was virialized or non-virialized. This contrasted the conclusion of the Gilmour et al. (2009) study where there was an excess of X-Ray selected AGN in clusters.We also note an interesting feature in our WISE color-color plots that might be used for further investigation.Cheeseboro was supported by the NOAO/KPNO ResearchExperiences for Undergraduates (REU) Program which is funded by theNational Science Foundation Research Experiences for UndergraduatesProgram (AST-1262829).
Identification and analysis of ZFPM2 as a target gene of miR-17-92 cluster in chicken.
Zhang, Xiao-fei; Song, He; Liu, Jing; Zhang, Wen-jian; Yan, Xiao-hong; Li, Hui; Wang, Ning
2017-04-20
The miR-17-92 cluster plays important roles in a variety of physiological and pathological processes in mammals. Previously, we showed that miR-17-92 cluster promotes chicken preadipocyte proliferation; however, the mechanism for its action is unknown. In order to explore the mechanism by which miR-17-92 cluster promotes chicken preadipocyte proliferation, CCK8 proliferation assay was performed to determine the effect of ZFPM2 knockdown on chicken preadipocyte proliferation. The results showed that ZFPM2 knockdown significantly promoted chicken preadipocyte proliferation (P<0.01). Consistent with the CCK8 results, the mRNA levels of cell proliferation marker genes, i.e., Cyclin D1, PCNA and Ki67, were markedly increased in the si-ZFPM2-transfected preadipocytes (P<0.01 or P<0.05). Bioinformatics analysis showed that there were two potential miRNA binding sites for the four individual members of miR-17-92 cluster in the ZFPM2 3'UTR, one for miR-17-5p and miR-20a and the other for miR-19a and miR-19b. To test whether ZFPM2 is a target for the miR-17-92 cluster, the ZFPM2 3'UTR reporter (psi-CHECK2-ZFPM2-3'UTR-WT) and its mutant reporter (psi-CHECK2-ZFPM2-3'UTR-MUT) were constructed. Reporter assays showed that overexpression of miR-17-92 cluster significantly inhibited the luciferase reporter activity of psi-CHECK2-ZFPM2-3'UTR-WT (P<0.01), as compared with control vector (empty pcDNA3.1). Transfection of miR-17-5p, miR-19a and miR-20a inhibitors increased the reporter activities of psi-CHECK2-ZFPM2-3'UTR-WT (P<0.01 or P<0.05). In contrast, transfection of miR-17-5p, miR-19a, and miR-20a inhibitors had no obvious effect on reporter activity of psi-CHECK2-ZFPM2-3'UTR-MUT. Further qRT-PCR analysis showed that miR-17-5p, miR-20a and miR-19a inhibitors significantly elevated the endogenous ZFPM2 mRNA expression (P<0.01 or P<0.05). Cotransfection of either miR-17-5p or miR-19a inhibitor and siZFPM2 showed that both inhibitors tended to reduce only slightly the promoting effect of siZFPM2 on chicken preadipocyte proliferation. Taken together, these data demonstrated that ZFPM2 is a target of miR-17-5p, miR-20a, miR-19a, and miR-19b, and that miR-17-92 cluster promotes chicken preadipocyte proliferation at least in part by targeting ZFPM2 and inhibiting its expression.
NASA Astrophysics Data System (ADS)
Seddon, Angela B.
2016-10-01
The case for new, portable, real-time mid-infrared (MIR) molecular sensing and imaging is discussed. We set a record in demonstrating extreme broad-band supercontinuum (SC) generated light 1.4-13.3 μm in a specially engineered, step-index MIR optical fiber of high numerical aperture. This was the first experimental demonstration truly to reveal the potential of MIR fibers to emit across the MIR molecular "fingerprint spectral region" and a key first step towards bright, portable, broadband MIR sources for chemical and biomedical, molecular sensing and imaging in real-time. Potential applications are in the healthcare, security, energy, environmental monitoring, chemical-processing, manufacturing and the agriculture sectors. MIR narrow-line fiber lasers are now required to pump the fiber MIR-SC for a compact all-fiber solution. Rare-earth-ion (RE-) doped MIR fiber lasers are not yet demonstrated >=4 μm wavelength. We have fabricated small-core RE-fiber with photoluminescence across 3.5-6 μm, and long excited-state lifetimes. MIR-RE-fiber lasers are also applicable as discrete MIR fiber sensors in their own right, for applications including: ship-to-ship free-space communications, aircraft counter-measures, coherent MIR imaging, MIR-optical coherent tomography, laser-cutting/ patterning of soft materials and new wavelengths for fiber laser medical surgery.
miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yong, E-mail: gaoyongunion@163.com; Luo, Ling-hui; Li, Shuai
2014-02-07
Highlights: • miR-17 was increased in OS tissues and cell lines. • Inhibition of miR-17 suppressed OS cell proliferation. • Inhibition of miR-17 suppressed OS cell migration and invasion. • PTEN was a target of miR-17. • miR-17 was negatively correlated with PTEN in OS tissues. - Abstract: MicroRNAs (miRNAs) play essential roles in cancer development and progression. Here, we investigated the role of miR-17 in the progression and metastasis of osteosarcoma (OS). miR-17 was frequently increased in OS tissues and cell lines. Inhibition of miR-17 in OS cell lines substantially suppressed cell proliferation, migration, and invasion. Phosphatase and tensinmore » homolog (PTEN) was identified as a target of miR-17, and ectopic expression of miR-17 inhibited PTEN by direct binding to its 3′-untranslated region (3′-UTR). Expression of miR-17 was negatively correlated with PTEN in OS tissues. Together, these findings indicate that miR-17 acts as an oncogenic miRNA and may contribute to the progression and metastasis of OS, suggesting miR-17 as a potential novel diagnostic and therapeutic target of OS.« less
Transcriptional regulation of miR-146b by C/EBPβ LAP2 in esophageal cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Junxia; Shan, Fabo; Xiong, Gang
2014-03-28
Highlights: • MiR-146b promotes esophageal cancer cell proliferation. • MiR-146b inhibits esophageal cancer cell apoptosis. • C/EBPβ directly binds to miR-146b promoter conserved region. • MiR-146b is up-regulated by C/EBPβ LAP2 transcriptional activation. - Abstract: Recent clinical study indicated that up-regulation of miR-146b was associated with poor overall survival of patients in esophageal squamous cell carcinoma. However, the underlying mechanism of miR-146b dysregulation remains to be explored. Here we report that miR-146b promotes cell proliferation and inhibits cell apoptosis in esophageal cancer cell lines. Mechanismly, two C/EBPβ binding motifs are located in the miR-146b promoter conserved region. Among the threemore » isoforms of C/EBPβ, C/EBPβ LAP2 positively regulated miR-146b expression and increases miR-146b levels in a dose-dependent manner through transcription activation of miR-146b gene. Together, these results suggest a miR-146b regulatory mechanism involving C/EBPβ, which may contribute to the up-regulation of miR-146b in esophageal squamous cell carcinoma.« less
Signs of embryo-maternal communication: miRNAs in the maternal serum of pregnant pigs.
Reliszko, Z P; Gajewski, Z; Kaczmarek, M M
2017-09-01
Circulating miRNAs were proposed to be indicators of normal or complicated pregnancies. Based on this knowledge and our recent transcriptomic approach showing expression of miRNAs in the porcine endometrium, conceptuses and uterine extracellular vesicles during pregnancy, we have hypothesized that signs of ongoing local embryo-maternal crosstalk involving miRNAs can be detected in the circulation of pregnant gilts as early as a few days after maternal recognition of pregnancy. By applying several molecular biology techniques that differ in dynamic range and precision in maternal serum of Day 16 pregnant pigs, we were able to show for the first time increased levels of several miRNAs, previously reported to be expressed in either conceptuses and extracellular vesicles (miR-26a and miR-125b) or pregnant endometrium (miR-23b). Our results clearly showed that real-time RT-PCR and digital PCR are the most reliable methods, being able to detect small-fold changes of low-abundant circulating miRNAs. Further validation in a separate group of gilts confirmed an increase in miR-23b and miR-125b levels. In silico analyses identified pregnancy-related biological processes and pathways affected by these miRNAs. Target prediction analysis revealed hundreds of porcine transcripts with conserved sites for these miRNAs, which were classified into signaling pathways relevant to pregnancy. We conclude that a unique set of miRNAs can already be observed in the circulation of pigs during the first weeks of pregnancy, as a result of the initiation of embryo-maternal communication. © 2017 Society for Reproduction and Fertility.
NASA Astrophysics Data System (ADS)
Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara
2016-10-01
We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the thermally pulsing asymptotic giant branch, for which we compute spectra and colours. Then, we compare our modelled colours in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduce several colours in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colours greater than 2 mag in some cases. We conclude that the complete set of observed NIR and MIR colours are best reproduced by small grains, with sizes between ˜0.035 and ˜0.12 μm, rather than by large grains between ˜0.2 and 0.7 μm. The inability of large grains to reproduce NIR and MIR colours seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.
NASA Astrophysics Data System (ADS)
Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Berhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara
2016-07-01
We present our recent investigation aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC).We applied our recent dust growth model, coupled with a radiative transfer code, to the dusty CSEs of C-stars along the TP-AGB phase, for which we computed spectra and colors. We then compared our modeled colors in the Near and Mid Infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing different optical constants data sets for carbon dust. We constrained the optical properties of carbon dust by identifying the combinations of typical grain size and optical constants data set which simultaneously reproduce several colors in the NIR and MIR wavelengths. In particular, the different choices of optical properties and grain size lead to differences in the NIR and MIR colors greater than two magnitudes in some cases. We concluded that the complete set of selected NIR and MIR colors are best reproduced by small grains, with sizes between 0.06 and 0.1 mum, rather than by large grains of 0.2-0.4 mum. The inability of large grains to reproduce NIR and MIR colors is found to be independent of the adopted optical data set and the deviations between models and observations tend to increase for increasing grain sizes. We also find a possible trend of the typical grain size with mss-loss and/or carbon-excess in the CSEs of these stars.The work presented is preparatory to future studies aimed at calibrating the TP-AGB phase through resolved stellar populations in the framework of the STARKEY project.
Tezcan, Kerem Can; Schaufler, Wladimir; Bestvater, Felix; Patil, Nitin; Birk, Udo; Hafner, Mathias; Altevogt, Peter; Cremer, Christoph; Allgayer, Heike
2015-01-01
We describe a novel approach for the detection of small non-coding RNAs in single cells by Single-Molecule Localization Microscopy (SMLM). We used a modified SMLM–setup and applied this instrument in a first proof-of-principle concept to human cancer cell lines. Our method is able to visualize single microRNA (miR)-molecules in fixed cells with a localization accuracy of 10–15 nm, and is able to quantify and analyse clustering and localization in particular subcellular sites, including exosomes. We compared the metastasis-site derived (SW620) and primary site derived (SW480) human colorectal cancer (CRC) cell lines, and (as a proof of principle) evaluated the metastasis relevant miR-31 as a first example. We observed that the subcellular distribution of miR-31 molecules in both cell lines was very heterogeneous with the largest subpopulation of optically acquired weakly metastatic cells characterized by a low number of miR-31 molecules, as opposed to a significantly higher number in the majority of the highly metastatic cells. Furthermore, the highly metastatic cells had significantly more miR-31-molecules in the extracellular space, which were visualized to co-localize with exosomes in significantly higher numbers. From this study, we conclude that miRs are not only aberrantly expressed and regulated, but also differentially compartmentalized in cells with different metastatic potential. Taken together, this novel approach, by providing single molecule images of miRNAs in cellulo can be used as a powerful supplementary tool in the analysis of miRNA function and behaviour and has far reaching potential in defining metastasis-critical subpopulations within a given heterogeneous cancer cell population. PMID:26561203
Prediction of Host-Derived miRNAs with the Potential to Target PVY in Potato Plants
Iqbal, Muhammad S.; Hafeez, Muhammad N.; Wattoo, Javed I.; Ali, Arfan; Sharif, Muhammad N.; Rashid, Bushra; Tabassum, Bushra; Nasir, Idrees A.
2016-01-01
Potato virus Y has emerged as a threatening problem in all potato growing areas around the globe. PVY reduces the yield and quality of potato cultivars. During the last 30 years, significant genetic changes in PVY strains have been observed with an increased incidence associated with crop damage. In the current study, computational approaches were applied to predict Potato derived miRNA targets in the PVY genome. The PVY genome is approximately 9 thousand nucleotides, which transcribes the following 6 genes:CI, NIa, NIb-Pro, HC-Pro, CP, and VPg. A total of 343 mature miRNAs were retrieved from the miRBase database and were examined for their target sequences in PVY genes using the minimum free energy (mfe), minimum folding energy, sequence complementarity and mRNA-miRNA hybridization approaches. The identified potato miRNAs against viral mRNA targets have antiviral activities, leading to translational inhibition by mRNA cleavage and/or mRNA blockage. We found 86 miRNAs targeting the PVY genome at 151 different sites. Moreover, only 36 miRNAs potentially targeted the PVY genome at 101 loci. The CI gene of the PVY genome was targeted by 32 miRNAs followed by the complementarity of 26, 19, 18, 16, and 13 miRNAs. Most importantly, we found 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h, and miR5303d) that could target the CI, NIa, NIb-Pro, HC-Pro, CP, and VPg genes of PVY. The predicted miRNAs can be used for the development of PVY-resistant potato crops in the future. PMID:27683585
miR-625 suppresses cell proliferation and migration by targeting HMGA1 in breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Wen-bin; Zhong, Cai-neng; Luo, Xun-peng
Dysregulation of microRNA contributes to the high incidence and mortality of breast cancer. Here, we show that miR-625 was frequently down-regulated in breast cancer. Decrease of miR-625 was closely associated with estrogen receptor (P = 0.004), human epidermal growth factor receptor 2 (P = 0.003) and clinical stage (P = 0.001). Kaplan–Meier and multivariate analyses indicated miR-625 as an independent factor for unfavorable prognosis (hazard ratio = 2.654, 95% confident interval: 1.300–5.382, P = 0.007). Re-expression of miR-625 impeded, whereas knockdown of miR-625 enhanced cell viabilities and migration abilities in breast cancer cells. HMGA1 was confirmed as a direct target of miR-625. The expressions of HMGA1 mRNA and protein weremore » induced by miR-625 mimics, but reduced by miR-625 inhibitor. Re-introduction of HMGA1 in cells expressing miR-625 distinctly abrogated miR-625-mediated inhibition of cell growth. Taken together, our data demonstrate that miR-625 suppresses cell proliferation and migration by targeting HMGA1 and suggest miR-625 as a promising prognostic biomarker and a potential therapeutic target for breast cancer. - Highlights: • miR-625 expression was significantly decreased in breast cancer. • Decrease of miR-625 was associated with poor clinical outcomes and unfavorable overall survival. • miR-625 overexpression inhibits cell proliferation and migration in vitro. • miR-625 directly targets and suppresses the expression of HMGA1.« less
microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3.
Qin, Ji-Zheng; Wang, Shao-Jie; Xia, Chun
2018-06-13
Endothelial nitric oxide synthase (eNOS) encoded by nitric oxide synthase 3 (NOS3), can generate nitric oxide (NO) which serves as an important deterrent to the pathogenesis of thrombosis by modulating the activation, adhesion and aggregate formation of platelets. Three serum miRNAs (miR-195, miR-532 and miR-582) have been suggested as biomarkers for the diagnosis of deep vein thrombosis (DVT), however their potential roles in DVT is not clear. The effect of miRNAs inhibiting the expression of NOS3 was evaluated in vitro. miR-195, miR-532 and miR-582 mimic, inhibitor, and control miRNAs were transfected into endothelial cells. The roles of miR-195, miR-532 and miR-582 regulating the expression of eNOS were evaluated by real-time quantitative PCR, Western Blotting and luciferase reporter assays. NO release was measured by Griess method. We confirmed NOS3 as a direct target of miR-195 and miR-582, which binds to the 3'-UTR of NOS3 mRNA in endothelial cells. A significantly inverse correlation between these two miRNAs and eNOS expression was detected. NO release from endothelial cells was decreased when the expression level of miR-195 and miR-582 was up-regulated. These findings indicated that miR-195 and miR-582 regulated NO release by targeting 3'-UTR of NOS3 post-transcriptionally in endothelial cells. Therefore, miR-195 and miR-582 might play an important role in maintaining endothelial NO bioavailability and could be a novel target for treatment of thrombotic diseases.
Zhang, Xiaowei; Wang, Xiaohong; Zhu, Hongyan; Zhu, Cheng; Wang, Yigang; Pu, William T.; Jegga, Anil G.; Fan, Guo-Chang
2010-01-01
Among the identified microRNAs (miRs) thus far, ~50% of mammalian miRs are clustered in the genome and transcribed as polycistronic primary transcripts. However, whether clustered miRs mediate non-redundant and cooperative functions remains poorly understood. In this study, we first identified activation of the promoter of miR-144/451 by GATA-4, a critical transcription factor in the heart. Next, we observed that ectopic expression of miR-144 and -451 individually augmented cardiomyocyte survival, which was further improved by overexpression of miR-144/451, compared to control cells in response to simulated ischemia/reperfusion. In contrast, knockdown of endogenous miR-144 and -451 revealed opposite effects. Using luciferase reporter assay and western blot analysis, we also validated that both miR-144 and miR-451 target CUG triplet repeat-binding protein 2 (CUGBP2), a ubiquitously expressed RNA-binding protein, known to interact with COX-2 3′-UTR and inhibit its translation. Accordingly, protein levels of CUGBP2 were greatly reduced and COX-2 activity was markedly increased in miR-144-, miR-451- and miR-144/451-overexpressing cardiomyocytes, compared to GFP-cells. Furthermore, inhibition of COX-2 activity by either NS-398 or DUP-697 partially offset protective effects of the miR-144/451 cluster. Together, these data indicate that both partners of the miR-144/451 cluster confer protection against simulated I/R-induced cardiomyocyte death via targeting CUGBP2-COX-2 pathway, at least in part. Thus, both miR-144 and miR-451 may represent new therapeutic agents for the treatment of ischemic heart disease. PMID:20708014
miR-200a controls hepatic stellate cell activation and fibrosis via SIRT1/Notch1 signal pathway.
Yang, Jing-Jing; Tao, Hui; Liu, Li-Ping; Hu, Wei; Deng, Zi-Yu; Li, Jun
2017-04-01
miR-200a has been established as a key regulator of HSC activation processes in liver fibrosis. Epigenetic silencing of miR-200a contributing to SIRT1 over-expression has been discussed in breast cancer; however, whether miR-200a controls SIRT1 gene expression in hepatic fibrosis is still unknown. We analyzed miR-200a regulation of SIRT1 expression in CCl 4 -induced liver fibrosis and TGF-β1-mediated activation of HSC. miR-200a, SIRT1, α-SMA, Col1A1, Notch1 and NICD expression were estimated by Western blotting, qRT-PCR and Immunohistochemistry. HSCs were transfected with miR-200a mimic, miR-200a inhibitor and SIRT1-RNAi. Luciferase reporter assays further confirmed the interaction between miR-200a and the SIRT1 mRNA 3'-UTR. Cell proliferation ability was assessed by MTT and cell cycle. We found that treatment activated HSC with miR-200a mimics, restored miR-200a expression and reduced SIRT1 levels. Conversely, treatment activated HSC with miR-200a inhibitors, decreased miR-200a expression and up-regulated SIRT1 levels. Restoration of miR-200a or the knockdown of SIRT1 prevented HSC activation and proliferation. We have established the SIRT1 transcript as subject to regulation by miR-200a, through miR-200a targeting of SIRT1 3'-UTR. Finally, HSC transfected with SIRT1-siRNA increased the levels of Notch1 protein and mRNA expression. Our study demonstrated that miR-200a regulates SIRT1/Notch1 expression during HSC activation and fibrosis.
Wang, Huijuan; Zhang, Pengjun; Chen, Weijun; Feng, Dan; Jia, Yanhong; Xie, Li-xin
2012-02-11
Serum microRNAs may be useful biomarkers for diagnosing human diseases. We investigated serum levels of miR-15a and miR-16 in patients with sepsis and systemic inflammatory response syndrome (SIRS) without infection. We enrolled 166 sepsis patients, 32 SIRS patients, and 24 normal controls. Serum miR-15a and miR-16 expression levels were determined by quantitative reverse transcriptase polymerase chain reaction assays (qRT-PCR). Serum miR-15a (p<0.001) and miR-16 (p<0.05) were both significantly higher in sepsis patients compared with normal controls, and miR-15a (p<0.001) and miR-16 (p<0.01) levels in SIRS patients were also significantly higher than those in normal controls. Serum miR-15a and miR-16 levels were not correlated with white blood cell counts. Receiver operating characteristic curves showed that miR-15a had the highest area under the curve of 0.858 [95% confidence interval (CI) 0.800-0.916] for the diagnosis of sepsis compared with C reactive protein and procalcitonin with areas under the curve of 0.572 (95% CI 0.479-0.665; p=0.198) and 0.605 (95% CI 0.443-0.767; p=0.168), respectively. When its cut-off point was set at 0.21, serum miR-15a had a sensitivity of 68.3% and a specificity of 94.4%. Serum miR-15a and miR-16 can both distinguish sepsis/SIRS from normal controls. miR-15a may be a biomarker that distinguishes between sepsis and SIRS.
Wei, Shuanzeng; Bing, Zhanyong; Yao, Yuan; Master, Stephen R; Gupta, Prabodh
2015-01-01
MicroRNAs (miRs) are short noncoding RNA molecules that posttranscriptionally modulate protein expression. There are distinct miR alterations characterizing urothelial cell carcinoma (UCC) of the urinary bladder. In this study, we investigate the possibility of using miR as a noninvasive marker in the screening of UCC. The total RNA was extracted from 75 cytology specimens including bladder or renal washings and voided urines. Cases comprise UCC (21 high grade and 6 low grade), 25 normal controls and 23 cases with a history of UCC but negative at the time of testing (negative with a positive history). The expressions of miR-96, miR-182, miR-183, miR-200c, miR-21, miR-141 and miR-30b were determined using quantitative TaqMan real-time PCR. This study shows that the level of miR-182 is higher in cytology specimens from high-grade UCC patients as compared to normal controls. Measuring miR-182 may provide a potential alternative or adjunct approach for screening high-grade UCC. © 2015 S. Karger AG, Basel.
García-Díaz, Diego F; Pizarro, Carolina; Camacho-Guillén, Patricia; Codner, Ethel; Soto, Néstor; Pérez-Bravo, Francisco
2018-02-01
Objective The aim of this research was to analyze the expression profile of miR-155, miR-146a, and miR-326 in peripheral blood mononuclear cells (PBMC) of 47 patients with type 1 diabetes mellitus (T1D) and 39 control subjects, as well as the possible association with autoimmune or inflammatory markers. Subjects and methods Expression profile of miRs by means of qPCR using TaqMan probes. Autoantibodies and inflammatory markers by ELISA. Statistical analysis using bivariate correlation. Results The analysis of the results shows an increase in the expression of miR-155 in T1D patients in basal conditions compared to the controls (p < 0.001) and a decreased expression level of miR-326 (p < 0.01) and miR-146a (p < 0.05) compared T1D patients to the controls. miR-155 was the only miRs associated with autoinmmunity (ZnT8) and inflammatory status (vCAM). Conclusion Our data show a possible role of miR-155 related to autoimmunity and inflammation in Chilean patients with T1D.
Mandemakers, W; Abuhatzira, L; Xu, H; Caromile, L A; Hébert, S S; Snellinx, A; Morais, V A; Matta, S; Cai, T; Notkins, A L; De Strooper, B
2013-07-01
We analysed the genomic organisation of miR-153, a microRNA embedded in genes that encode two of the major type 1 diabetes autoantigens, islet-associated protein (IA)-2 and IA-2β. We also identified miR-153 target genes that correlated with IA-2β localisation and function. A bioinformatics approach was used to identify miR-153's genomic organisation. To analyse the co-regulation of miR-153 and IA-2β, quantitative PCR analysis of miR-153 and Ia-2β (also known as Ptprn2) was performed after a glucose stimulation assay in MIN6B cells and isolated murine pancreatic islets, and also in wild-type Ia-2 (also known as Ptprn), Ia-2β single knockout and Ia-2/Ia-2β double knockout mouse brain and pancreatic islets. Bioinformatics identification of miR-153 target genes and validation via luciferase reporter assays, western blotting and quantitative PCR were also carried out. Two copies of miR-153, miR-153-1 and miR-153-2, are localised in intron 19 of Ia-2 and Ia-2β, respectively. In rodents, only miR-153-2 is conserved. We demonstrated that expression of miR-153-2 and Ia-2β in rodents is partially co-regulated as demonstrated by a strong reduction of miR-153 expression levels in Ia-2β knockout and Ia-2/Ia-2β double knockout mice. miR-153 levels were unaffected in Ia-2 knockout mice. In addition, glucose stimulation, which increases Ia-2 and Ia-2β expression, also significantly increased expression of miR-153. Several predicted targets of miR-153 were reduced after glucose stimulation in vitro, correlating with the increase in miR-153 levels. This study suggests the involvement of miR-153, IA-2β and miR-153 target genes in a regulatory network, which is potentially relevant to insulin and neurotransmitter release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalan, Vinod; Islam, Farhadul; Pillai, Suja
Purpose: This study aims to examine the expression profiles miR-1288 in oesophageal squamous cell carcinoma (ESCC). The cellular implications and target interactions of ESCC cells following miR-1288 overexpression was also examined. Methods: In total, 120 oesophageal tissues (90 primary ESCCs and 30 non-neoplastic tissues) were recruited for miR-1288 expression analysis using qRT-PCR. An exogenous miR-1288 mimic and its inhibitor were used to explore the in-vitro effects of miR-1288 on ESCC cells by performing cell proliferation, colony formation, cell invasion and migration assays. Localisation and modulatory changes of various miR-1288 regulated proteins such as FOXO1, p53, TAB3, BCL2 and kRAS wasmore » examined using immunofluorescence and western blot. Results: Overexpression of miR-1288 was more often noted in ESCC tissues when compared to non-neoplastic oesophageal tissues. High expression was often noted in high grade carcinomas and with metastases. Patients with high levels of miR-1288 expression showed a slightly better survival compared to patients with low miR-1288 levels. Furthermore, overexpression of miR-1288 showed increased cell proliferation and colony formation, improved cell migration and enhanced cell invasion properties in ESCC cells. In addition, miR-1288 overexpression in ESCC cells showed repression of cytoplasmic tumour suppressor FOXO1 protein expression. Inversely, inhibition of miR-1288 expression exhibited remarkable upregulation of FOXO1 protein, while expressions of other tested proteins remain unchanged. Conclusions: Up regulation of miR-1288 expression in ESCC tissues and miR-1288 induced oncogenic features of ESCC cells in-vitro indicates the oncogenic roles of miR-1288 in ESCCs. Overexpression of miR-1288 play a key role in the pathogenesis of ESCCs and its modulation may have potential therapeutic value in patients with ESCC. - Highlights: • miR-1288 was more often noted in neoplastic than non-neoplastic tissue. • miR-1288 overexpression increased proliferative/invasive activities of ESCC. • miR-1288 overexpression showed repression of FOXO1 protein expression. • miR-1288 functions as an oncogenic miRNA in ESCCs.« less
Li, Xuyan; Xie, Xin; Li, Ji; Cui, Yuhai; Hou, Yanming; Zhai, Lulu; Wang, Xiao; Fu, Yanli; Liu, Ranran; Bian, Shaomin
2017-02-01
microRNA166 (miR166) is a highly conserved family of miRNAs implicated in a wide range of cellular and physiological processes in plants. miR166 family generally comprises multiple miR166 members in plants, which might exhibit functional redundancy and specificity. The soybean miR166 family consists of 21 members according to the miRBase database. However, the evolutionary conservation and functional diversification of miR166 family members in soybean remain poorly understood. We identified five novel miR166s in soybean by data mining approach, thus enlarging the size of miR166 family from 21 to 26 members. Phylogenetic analyses of the 26 miR166s and their precursors indicated that soybean miR166 family exhibited both evolutionary conservation and diversification, and ten pairs of miR166 precursors with high sequence identity were individually grouped into a discrete clade in the phylogenetic tree. The analysis of genomic organization and evolution of MIR166 gene family revealed that eight segmental duplications and four tandem duplications might occur during evolution of the miR166 family in soybean. The cis-elements in promoters of MIR166 family genes and their putative targets pointed to their possible contributions to the functional conservation and diversification. The targets of soybean miR166s were predicted, and the cleavage of ATHB14-LIKE transcript was experimentally validated by RACE PCR. Further, the expression patterns of the five newly identified MIR166s and 12 target genes were examined during seed development and in response to abiotic stresses, which provided important clues for dissecting their functions and isoform specificity. This study enlarged the size of soybean miR166 family from 21 to 26 members, and the 26 soybean miR166s exhibited evolutionary conservation and diversification. These findings have laid a foundation for elucidating functional conservation and diversification of miR166 family members, especially during seed development or under abiotic stresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Baocan; Li, Wenxi; Guo, Kun
2012-04-27
Highlights: Black-Right-Pointing-Pointer miR-181a and miR-181b, especially, miR-181b could be induced by transforming growth factor-beta 1 (TGF-{beta}1) in hepatic stellate cells. Black-Right-Pointing-Pointer miR-181b could promote HSC-T6 cell proliferation by directly targeting the negative cell regulator-p27 in HSC-T6 cell. Black-Right-Pointing-Pointer miR-181b was identified as potential serum diagnostic marker for liver cirrhosis patients. -- Abstract: MicroRNAs, as a kind of negative gene regulators, were demonstrated to be involved in many types of diseases. In this study, we found that transforming growth factor-beta 1 could induce the expression of miR-181a and miR-181b, and miR-181b increased in the much higher folds than miR-181a. Because ofmore » the important role of transforming growth factor-beta 1 in HSC activation and liver cirrhosis, we investigate the effect of miR-181a and miR-181b on HSC proliferation. The results showed that miR-181b could promote HSC-T6 cell proliferation by regulating cell cycle. Further study showed p27, the cell cycle regulator, was the direct target of miR-181b in HSC-T6 cell. But miR-181a had no effects on HSC-T6 cell proliferation and cell cycle, and did not target p27. Interestingly, miR-181b is elevated significantly in serum of liver cirrhosis cases comparing to that of normal persons, whereas miR-181a expression was in the similar level with that of normal persons. These results suggested that miR-181b could be induced by TGF-{beta}1 and promote the growth of HSCs by directly targeting p27. The elevation of miR-181b in serum suggested that it may be potential diagnostic biomarkers for cirrhosis. As for miR-181a, it may work in TGF-{beta}1 pathway by a currently unknown mechanism.« less
Dong, Ying; Si, Jing-Wen; Li, Wen-Ting; Liang, Li; Zhao, Jian; Zhou, Mei; Li, Dong; Li, Ting
2015-01-01
The aim of this study was to compare the clinicopathological significance of miR-200a/miR-141 and miR-205 expression in endometrioid carcinomas (ECs) versus nonendometrioid carcinomas (NECs) and to assess their correlation with hormone receptor status. miR-200a/miR-141 and miR-205 expression in 154 endometrial cancers was determined by qRT-PCR. The status of estrogen and progesterone receptor (ER/PR) was assessed using immunohistochemistry. miR-200a/miR-141 and miR-205 increased significantly in ECs and in NECs. The expression level of miR-200a was significantly higher in NECs than in ECs (P=0.025). Furthermore, there was a trend that NECs with worse clinicopathological variables had a higher miR-200a expression, while an inverse trend existed in ECs. miR-205 upregulation occurred frequently in NECs without lymph node metastases (P=0.030), whereas such association was not present in ECs. Interestingly, In ECs, miR-200a/miR-141 upregulation occurred frequently in the hormone receptor positive subgroups than the negative subgroups (P<0.05). Similarly, the expression level of miR-205 was higher in the hormone receptor positive subgroups and the association between miR-205 and PR reached statistical significance (P=0.024). In contrast, in NECs, a negative correlation was found between miR-200a/miR-141 and ER or PR status. Meanwhile, in ECs, miR-200a upregulation correlated with prolonged survival in the ER positive subgroup (P=0.046), whereas an inverse trend existed in the ER negative subgroup. Our findings suggest that miR-200a/miR-141 and miR-205 increased significantly in ECs and in NECs. However, they might behave differently in ECs versus NECs. miR-200a/miR-141 and miR-205 might be associated with hormone receptor status in endometrial cancer and may possess prognostic impacts.
Kapodistrias, Nikolaos; Mavridis, Konstantinos; Batistatou, Anna; Gogou, Penelope; Karavasilis, Vasilios; Sainis, Ioannis; Briasoulis, Evangelos; Scorilas, Andreas
2017-01-01
Liposarcoma (LPS) is a malignancy with extreme heterogeneity and thus optimization towards personalizing patient prognosis and treatment is essential. Here, we evaluated miR-155, miR-21, miR-143, miR-145 and miR-451 that are implicated in LPS, as novel FFPE tissue biomarkers. A total of 83 FFPE tissue specimens from primary LPS and lipomas (LPM) were analyzed. A proteinase K incubation-Trizol treatment coupled protocol was used for RNA isolation. After polyadenylation of total RNA and reverse transcription, expression analysis of 9 candidate reference and 5 target miRNAs was performed by qPCR. Genorm and NormFinder were used for finding the most suitable molecules for normalization. Survival analyses were performed in order to evaluate the prognostic potential of miRNAs. MiR-103 and miR-191 are most suitable for normalization of miRNA expression in LPS. MiR-155 and miR-21 are clearly overexpressed (P<0.001) in LPS compared with LPM specimens, whereas miR-145 (P<0.001), miR-143 (P =0.008) and miR-451 (P=0.037) are underexpressed. MiR-155 (P=0.007) and miR-21 (P=0.029) are differentially expressed between well-differentiated, dedifferentiated, myxoid/round cell and pleomorphic LPs tumor subtypes. MiR-155 represents a novel independent indicator of unfavorable prognosis in LPS (HR = 2.97, 95% CI = 1.23–7.17, P = 0.016). PMID:28036291
MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Li-Juan; Liao, Lan; Yang, Li
MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and blockmore » of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis.« less
miR319, miR390, and miR393 Are Involved in Aluminum Response in Flax (Linum usitatissimum L.)
Zyablitsin, Alexander V.; Rozhmina, Tatiana A.; Speranskaya, Anna S.; Sadritdinova, Asiya F.
2017-01-01
Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In the present work, we investigated expression alterations of microRNAs in flax (Linum usitatissimum L.) plants under Al stress. Flax seedlings of resistant (TMP1919 and G1071/4_k) and sensitive (Lira and G1071/4_o) to Al cultivars and lines were exposed to AlCl3 solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total, 97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al genotypes. Expression level changes of miR319 and miR390 were confirmed using qPCR analysis. In flax, potential targets of miR319 are TCPs, miR390–TAS3 and GRF5, and miR393–AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation of plant growth and development. The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in flax plants. PMID:28299328
miR319, miR390, and miR393 Are Involved in Aluminum Response in Flax (Linum usitatissimum L.).
Dmitriev, Alexey A; Kudryavtseva, Anna V; Bolsheva, Nadezhda L; Zyablitsin, Alexander V; Rozhmina, Tatiana A; Kishlyan, Natalya V; Krasnov, George S; Speranskaya, Anna S; Krinitsina, Anastasia A; Sadritdinova, Asiya F; Snezhkina, Anastasiya V; Fedorova, Maria S; Yurkevich, Olga Yu; Muravenko, Olga V; Belenikin, Maxim S; Melnikova, Nataliya V
2017-01-01
Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In the present work, we investigated expression alterations of microRNAs in flax ( Linum usitatissimum L.) plants under Al stress. Flax seedlings of resistant (TMP1919 and G1071/4_k) and sensitive (Lira and G1071/4_o) to Al cultivars and lines were exposed to AlCl 3 solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total, 97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al genotypes. Expression level changes of miR319 and miR390 were confirmed using qPCR analysis. In flax, potential targets of miR319 are TCPs, miR390-TAS3 and GRF5, and miR393-AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation of plant growth and development. The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in flax plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dan; Shi, Liuyan; Xin, Wei
Peroxisome proliferator-activated receptor gamma (PPARγ) and miR-124 have been reported to play important roles in regulation of inflammation. However, the underlying anti-inflammatory mechanisms remain not well understood. In the present study, we demonstrated that the expression level of PPARγ is positively correlated with that of miR-124 in patients with sepsis. Activation of PPARγ upregulates miR-124 and in turn inhibits miR-124 target gene. PPARγ bound directly to PPRE in the miR-124 promoter region, and enhanced the promoter transcriptional activity. PPARγ-induced miR-124 is involved in the suppression of pro-inflammatory cytokine in vitro and in vivo. These results suggest that PPARγ-induced miR-124 inhibits the productionmore » of pro-inflammatory cytokines is a novel PPARγ anti-inflammatory mechanism and also indicate that miR-124 may be a potential therapeutic target for the treatment of inflammatory diseases. - Highlights: • The expression level of PPARγ is positively correlated with that of miR-124 in patients with sepsis. • PPARγ upregulates miR-124 and in turn inhibits miR-124 target gene. • PPARγ promotes miR-124 transcription through binding to miR-124 promoter region. • Inhibition of miR-124 attenuates the PPARγ-mediated suppression of proinflammatory cytokines in vitro. • PPARγ-induced miR-124 is involved in the suppression of pro-inflammatory cytokine in vivo.« less
MicroRNA-143 suppresses gastric cancer cell growth and induces apoptosis by targeting COX-2
Wu, Xiao-Li; Cheng, Bin; Li, Pei-Yuan; Huang, Huan-Jun; Zhao, Qiu; Dan, Zi-Li; Tian, De-An; Zhang, Peng
2013-01-01
AIM: To investigate the function of microRNA-143 (miR-143) in gastric cancer and explore the target genes of miR-143. METHODS: A quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis was performed to evaluate miR-143 expression in gastric cancer cell lines. After transfecting gastric cancer cells with miR-143-5p and miR-143-3p precursors, Alamar blue and apoptosis assays were used to measure the respective proliferation and apoptosis rates. Cyclooxygenase-2 (COX-2) expression was determined by real-time RT-PCR and Western blot assays after miR-143 transfection. Reporter plasmids were constructed, and a luciferase reporter assay was used to identify the miR-143 binding site on COX-2. RESULTS: Both miR-143-5p and miR-143-3p were significantly downregulated in multiple gastric cancer cell lines. Forced miR-143-5p and miR-143-3p expression in gastric cancer cells produced a profound cytotoxic effect. MiR-145-5p transfection into gastric cancer cells resulted in a greater growth inhibitory effect (61.23% ± 3.16% vs 46.58% ± 4.28%, P < 0.05 in the MKN-1 cell line) and a higher apoptosis rate (28.74% ± 1.93% vs 22.13% ± 3.31%, P < 0.05 in the MKN-1 cell line) than miR-143-3p transfection. Further analysis indicated that COX-2 expression was potently suppressed by miR-143-5p but not by miR-143-3p. The activity of a luciferase reporter construct that contained the 3’-untranslated region (UTR) of COX-2 was downregulated by miR-143-5p (43.6% ± 4.86%, P < 0.01) but not by miR-143-3p. A mutation in the miR-145-5p binding site completely ablated the regulatory effect on luciferase activity, which suggests that there is a direct miR-145-5p binding site in the 3’-UTR of COX-2. CONCLUSION: Both miR-143-5p and miR-143-3p function as anti-oncomirs in gastric cancer. However, miR-143-5p alone directly targets COX-2, and it exhibits a stronger tumor suppressive effect than miR-143-3p. PMID:24616567
Nhouchi, Zeineb; Karoui, Romdhane
2018-06-30
The aim of the present study was to investigate the ability of MIR and texture analyzer to evaluate the quality of pound cake samples produced with palm oil and rapeseed oil throughout storage. The MIR spectra analyzed by using principal component analysis (PCA) showed a clear separation of pound cakes as a function of the storage time and the nature of the used oil in the recipe. By applying partial least square regression (PLSR), excellent prediction was obtained for hardness (R 2 = 0.91; RPD = 2.26), while an approximate qualitative prediction was found for springiness (R 2 = 0.73; RPD = 2.07), cohesiveness (R 2 = 0.67; RPD = 1.31) and resilience (R 2 = 0.65; RPD = 1.24). It could be concluded that the MIR spectroscopy could be used as a rapid and non-destructive technique for monitoring texture of pound cakes throughout storage as well as for the prediction of their hardness. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bispectral infrared forest fire detection and analysis using classification techniques
NASA Astrophysics Data System (ADS)
Aranda, Jose M.; Melendez, Juan; de Castro, Antonio J.; Lopez, Fernando
2004-01-01
Infrared cameras are well established as a useful tool for fire detection, but their use for quantitative forest fire measurements faces difficulties, due to the complex spatial and spectral structure of fires. In this work it is shown that some of these difficulties can be overcome by applying classification techniques, a standard tool for the analysis of satellite multispectral images, to bi-spectral images of fires. Images were acquired by two cameras that operate in the medium infrared (MIR) and thermal infrared (TIR) bands. They provide simultaneous and co-registered images, calibrated in brightness temperatures. The MIR-TIR scatterplot of these images can be used to classify the scene into different fire regions (background, ashes, and several ember and flame regions). It is shown that classification makes possible to obtain quantitative measurements of physical fire parameters like rate of spread, embers temperature, and radiated power in the MIR and TIR bands. An estimation of total radiated power and heat release per unit area is also made and compared with values derived from heat of combustion and fuel consumption.
MiR-564 functions as a tumor suppressor in human lung cancer by targeting ZIC3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bin; Jia, Lin; Guo, Qiaojuan
2015-11-27
Although miR-564 was reported to be dysregulated in human malignancy, the function and mechanism of miR-564 in tumorigenesis remains unknown. In the present study, we found that miR-564 frequently downregulated in lung cancer cells and significantly inhibited cell proliferation, cell cycle progression, motility, and the tumorigenicity of lung cancer cells. Moreover, we identified zic family member 3 (ZIC3) as a direct target of miR-564. ZIC3 overexpression impaired the suppressive effects of miR-564 on the capacity of lung cancer cells for proliferation and motility. Finally, we detected the expression level of miR-564 and ZIC3 protein in tissue specimens, and found amore » significant negative correlation between them. Patients with low levels of miR-564 showed a poorer overall survival. Taken together, our present study revealed the tumor suppressor role of miR-564, indicating restoration of miR-564 as a potential therapeutic strategy for the treatment of lung cancer. - Highlights: • MiR-564 inhibits cancer cell proliferation, cell cycle progression, migration, and invasion. • miR-564 suppresses the tumorigenicity of lung cancer cell in vivo. • ZIC3 is a direct and functional target of miR-564. • The expression of miR-564 was negatively correlated with ZIC3 protein in tumors. • Both low miR-564 and high ZIC3 was associated with tumor stage and prognosis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xiangrui, E-mail: mengxiangruibb2008@163.com; Lu, Peng; Fan, Qingxia
2016-01-29
MicroRNAs play important roles in the carcinogenesis of many types of cancers by inhibiting gene expression at posttranscriptional level. However, the roles of microRNAs in hepatocellular carcinoma, are still unclear. Here, we identified that miR-367 promotes hepatocellular carcinoma (HCC) cell proliferation by negatively regulates its target gene PTEN. The expression of miR-367 and PTEN are significantly inverse correlated in 35 HCC patients. In HCC cell line, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-367, while miR-367 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-367 mimics significantly promoted the migration and invasion of HCCmore » cells, whereas miR-367 inhibitors significantly reduced cell migration and invasion. Luciferase assays confirmed that miR-367 directly bound to the 3'untranslated region of PTEN, and western blotting showed that miR-367 suppressed the expression of PTEN at the protein levels. This study indicated that miR-367 negatively regulates PTEN and promotes proliferation and invasion of HCC cells. Thus, miR-367 may represent a potential therapeutic target for HCC intervention. - Highlights: • miR-367 mimics promote the proliferation and invasion of HCC cells. • miR-367 inhibitors inhibit the proliferation and invasion of HCC cells. • miR-367 targets 3′UTR of PTEN in HCC cells. • miR-367 negatively regulates PTEN in HCC cells.« less
MicroRNAs in the prognosis of triple-negative breast cancer: A systematic review and meta-analysis.
Lü, Lingshuang; Mao, Xuhua; Shi, Peiyi; He, Biyu; Xu, Kun; Zhang, Simin; Wang, Jianming
2017-06-01
Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors characterized by their aggressive nature and poor associated survival. MicroRNAs (miRs) have been found to play an important role in the occurrence and development of human cancers, but their role in the prognosis of TNBC patients remains unclear. We performed a meta-analysis to explore the prognostic value of miRs in TNBC. We systematically searched the PubMed, Embase, and Web of Science databases to identify eligible studies. A meta-analysis was performed to estimate the pooled hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) for the associations between levels of miR expression (predictive factors) and overall survival (OS) and disease-free survival (DFS) (outcomes) in patients with TNBC. After performing the literature search and review, 21 relevant studies including 2510 subjects were identified. Six miRs (miR-155, miR-21, miR-27a/b, miR-374a/b, miR-210, and miR-454) were assessed in the meta-analysis. Decreased expression of miR-155 was associated with reduced OS (adjusted HR = 0.58, 95% CI: 0.34-0.99; crude HR = 0.67, 95% CI: 0.58-0.79). High miR-21 expression was also predictive of reduced OS (crude HR = 2.50, 95% CI: 1.56-4.01). We found that elevated levels of miR-27a/b, miR-210, and miR-454 expression were associated with shorter OS, while the levels of miR-454 and miR-374a/b expression were associated with DFS. Specific miRs could serve as potential prognostic biomarkers in TNBC. Due to the limited research available, the clinical application of these findings has yet to be verified.
Liu, Jun; Guo, Bo; Chen, Zhuo; Wang, Nayi; Iacovino, Michelina; Cheng, Jijun; Roden, Christine; Pan, Wen; Khan, Sajid; Chen, Suning; Kyba, Michael; Fan, Rong; Guo, Shangqin
2017-01-01
The hematopoietic stem cell–enriched miR-125 family microRNAs (miRNAs) are critical regulators of hematopoiesis. Overexpression of miR-125a or miR-125b is frequent in human acute myeloid leukemia (AML), and the overexpression of these miRNAs in mice leads to expansion of hematopoietic stem cells accompanied by perturbed hematopoiesis with mostly myeloproliferative phenotypes. However, whether and how miR-125 family miRNAs cooperate with known AML oncogenes in vivo, and how the resultant leukemia is dependent on miR-125 overexpression, are not well understood. We modeled the frequent co-occurrence of miR-125b overexpression and MLL translocations by examining functional cooperation between miR-125b and MLL-AF9. By generating a knock-in mouse model in which miR-125b overexpression is controlled by doxycycline induction, we demonstrated that miR-125b significantly enhances MLL-AF9–driven AML in vivo, and the resultant leukemia is partially dependent on continued overexpression of miR-125b. Surprisingly, miR-125b promotes AML cell expansion and suppresses apoptosis involving a non–cell-intrinsic mechanism. MiR-125b expression enhances VEGFA expression and production from leukemia cells, in part by suppressing TET2. Recombinant VEGFA recapitulates the leukemia-promoting effects of miR-125b, whereas knockdown of VEGFA or inhibition of VEGF receptor 2 abolishes the effects of miR-125b. In addition, significant correlation between miR-125b and VEGFA expression is observed in human AMLs. Our data reveal cooperative and dependent relationships between miR-125b and the MLL oncogene in AML leukemogenesis, and demonstrate a miR-125b-TET2-VEGFA pathway in mediating non–cell-intrinsic leukemia-promoting effects by an oncogenic miRNA. PMID:28053194
Syndecan-1 responsive microRNA-126 and 149 regulate cell proliferation in prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, Tomomi; Shimada, Keiji; Tatsumi, Yoshihiro
2015-01-02
Highlights: • Syndecan-1 is highly expressed in androgen independent prostate cancer cells, PC3. • Syndecan-1 regulates the expression of miR-126 and -149 in prostate cancer cells. • MiR-126 and 149 control cell growth via p21 induction and senescence mechanism. • MiR-126 and 149 promote cell proliferation by suppressing SOX2, NANOG, and Oct4. - Abstract: MicroRNAs (miRNAs) are short (19–24 nt), low molecular weight RNAs that play important roles in the regulation of target genes associated with cell proliferation, differentiation, and development, by binding to the 3′-untranslated region of the target mRNAs. In this study, we examined the expression of miRNA-126more » (miR-126) and miR-149 in prostate cancer, and investigated the molecular mechanisms by which they affect syndecan-1 in prostate cancer. Functional analysis of miR-126 and miR-149 was conducted in the prostate cancer cell lines, PC3, Du145, and LNCaP. The expression levels of SOX2, NANOG, Oct4, miR-126 and miR-149 were evaluated by quantitative RT-PCR. After silencing syndecan-1, miR-126, and/or miR-149 in the PC3 cells, cell proliferation, senescence, and p21 induction were assessed using the MTS assay, senescence-associated β-galactosidase (SA-β-Gal) assay, and immunocytochemistry, respectively. Compared to the Du145 and LNCaP cells, PC3 cells exhibited higher expression of syndecan-1. When syndecan-1 was silenced, the PC3 cells showed reduced expression of miR-126 and miR-149 most effectively. Suppression of miR-126 and/or miR-149 significantly inhibited cell growth via p21 induction and subsequently, induced senescence. The mRNA expression levels of SOX2, NANOG, and Oct4 were significantly increased in response to the silencing of miR-126 and/or miR-149. Our results suggest that miR-126 and miR-149 are associated with the expression of syndecan-1 in prostate cancer cells. These miRNAs promote cell proliferation by suppressing SOX2, NANOG, and Oct4. The regulation of these factors by miR-126 and miR-149 is essential for syndecan-1-mediated development of androgen-refractory prostate cancer.« less
MiR-205 and MiR-373 Are Associated with Aggressive Human Mucinous Colorectal Cancer.
Eyking, Annette; Reis, Henning; Frank, Magdalena; Gerken, Guido; Schmid, Kurt W; Cario, Elke
2016-01-01
Mucinous adenocarcinoma (MAC) represents a distinct histopathological entity of colorectal cancer (CRC), which is associated with disease progression and poor prognosis. Here, we found that expression levels of miR-205 and miR-373 were specifically upregulated only in patients with mucinous colon cancers, but not in CRC that lack mucinous components. To investigate the effects of miR-205 and miR-373 on intestinal epithelial cell (IEC) biology by gain- and loss-of-function experiments in a proof-of-concept approach, we chose previously established in-vitro human Caco-2-based models of differentiated, non-invasive (expressing TLR4 wild-type; termed Caco-2[WT]) versus undifferentiated, invasive (expressing TLR4 mutant D299G; termed Caco-2[D299G]) IEC. Enterocyte-like Caco-2[WT] showed low levels of miR-205 and miR-373 expression, while both miRNAs were significantly upregulated in colorectal carcinoma-like Caco-2[D299G], thus resembling the miRNA expression pattern of paired normal versus tumor samples from MAC patients. Using stable transfection, we generated miR-205- or miR-373-expressing and miR-205- or miR-373-inhibiting subclones of these IEC lines. We found that introduction of miR-205 into Caco-2[WT] led to expansion of mucus-secreting goblet cell-like cells, which was associated with induction of KLF4, MUC2 and TGFβ1 expression. Activation of miR-205 in Caco-2[WT] induced chemoresistance, while inhibition of miR-205 in Caco-2[D299G] promoted chemosensitivity. Caco-2[WT] overexpressing miR-373 showed mitotic abnormalities and underwent morphologic changes (loss of epithelial polarity, cytoskeletal reorganization, and junctional disruption) associated with epithelial-mesenchymal transition and progression to inflammation-associated colonic carcinoma, which correlated with induction of phosphorylated STAT3 and N-CADHERIN expression. Functionally, introduction of miR-373 into Caco-2[WT] mediated loss of cell-cell adhesion and increased proliferation and invasion. Reversely, inhibition of miR-373 allowed mesenchymal IEC to regain epithelial properties, which correlated with absence of neoplastic progression. Using xenografts in mice demonstrated miR-373-mediated acceleration of malignant intestinal tumor growth. In conclusion, our results provide first evidence that miR-205 and miR-373 may differentially contribute to the aggressive phenotype of MAC in CRC.
D'Agostino, Marco; Martino, Francesco; Sileno, Sara; Barillà, Francesco; Beji, Sara; Marchetti, Lorenza; Gangi, Fabio Maria; Persico, Luca; Picozza, Mario; Montali, Anna; Martino, Eliana; Zanoni, Cristina; Avitabile, Daniele; Parrotto, Sandro; Capogrossi, Maurizio Colognesi; Magenta, Alessandra
2017-09-15
Hypercholesterolaemia provokes reactive oxygen species (ROS) increase and is a major risk factor for cardiovascular disease (CVD) development. We previously showed that circulating miR-33a/b expression levels were up-regulated in children with familial hypercholesterolaemia (FH). miR-33a/b control cholesterol homoeostasis and recently miR-33b has been demonstrated to directly target the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1). The latter acts in a negative feedback loop with the miR-200 family. Our previous studies showed that the ROS-dependent miR-200c up-regulation induces endothelial dysfunction and provokes a ZEB1-dependent apoptosis and senescence. In the present study, we aimed to verify whether circulating miR-200c was induced in FH children, and whether a correlation existed with miR-33a/b Total RNA was extracted from plasma of 28 FH children and 25 age-matched healthy subjects (HS) and miR-200c levels were measured. We found that miR-200c was up-regulated in FH compared with HS (4.00 ± 0.48-fold increase, P <0.05) and exhibited a positive correlation with miR-33a/b. miR-200c did not correlate with plasma lipids, but correlated with C-reactive protein (CRP) plasma levels and glycaemia (GLI). Ordinary least squares (OLS) regression analysis revealed that miR-200c was significantly affected by GLI and by miR-33a ( P <0.01; P <0.001 respectively). Moreover, we found that miR-33 overexpression, in different cell lines, decreased ZEB1 expression and up-regulated both the intracellular and the extracellular miR-200c expression levels. In conclusion, circulating miR-200c is up-regulated in FH, probably due to oxidative stress and inflammation and via a miR-33a/b -ZEB1-dependent mechanism. The present study could provide the first evidence to point to the use of miR-33a/b and miR-200c , as early biomarkers of CVD, in paediatric FH. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Moazzeni, Hamidreza; Najafi, Ali; Khani, Marzieh
2017-08-01
Some microRNAs have carcinogenic or tumor suppressive effects in breast cancer, which is the most common cancer in women worldwide. MiR-7 and miR-9 are tumor suppressor microRNAs, which induce apoptosis and inhibit proliferation in breast cancer cells. Moreover, miR-96 and miR-182 are onco-microRNAs that increase proliferation, migration, and tumorigenesis in breast cancer cells. This study aimed to identify the direct target genes of these four microRNAs in the human breast cancer cell lines MCF-7 and MDA-MB-231. Initially, bioinformatics tools were used to identify the target genes that have binding sites for miR-7, MiR-9, MiR-96, and miR-182 and are also associated with breast cancer. Subsequently, the findings of the bioinformatics analysis relating to the effects of these four microRNAs on the 3'-UTR activity of the potential target genes were confirmed using the dual luciferase assay in MCF-7 and MDA-MB-231 cells co-transfected with the vectors containing 3'-UTR segments of the target genes downstream of a luciferase coding gene and each of the microRNAs. Finally, the effects of microRNAs on the endogenous expression of potential target genes were assessed by the overexpression of each of the four microRNAs in MCF-7 and MDA-MB-231 cells. Respectively, three, three, three, and seven genes were found to have binding sites for miR-7, miR-9, miR-96, and miR-182 and were associated with breast cancer. The results of empirical studies including dual luciferase assays and real-time PCR confirmed that miR-7 regulates the expression of BRCA1 and LASP1; MiR-9 regulates the expression of AR; miR-96 regulates the expression of ABCA1; and miR-182 regulates the expression of NBN, TOX3, and LASP1. Taken together, our results suggest that the tumor suppressive effects of miR-7 may be mediated partly by regulating the expression of BRCA1 as a tumor suppressor gene in breast cancer. In addition, this microRNA and miR-182 may have effects on the nodal-positivity and tumor size of breast carcinoma through the regulation of LASP1. The tumor suppressive functions of miR-9 may be mediated partly by suppressing the expression of AR-an oncogene in breast cancer. Moreover, miR-96 may play an oncogenic role in breast cancer by suppressing the apoptosis through the regulation of ABCA1. Copyright © 2017 Elsevier Ltd. All rights reserved.
miR-618 Inhibits Prostate Cancer Migration and Invasion by Targeting FOXP2.
Song, Xian-Lu; Tang, Yao; Lei, Xiang-Hui; Zhao, Shan-Chao; Wu, Zi-Qing
2017-01-01
miRNAs play critical role in the development and progression of prostate cancer. Here we studied the role of miR-618 in prostate cancer migration and invasion. miR-618 was downregulated in metastatic androgen-independent prostate cancer (AIPC), patients with low miR-618 had poor outcome. Overexpression of miR-618 inhibited migration and invasion and induced mesenchymal to epithelial transition (MET). Conversely, knockdown of miR-618 promoted migration and invasion and induced epithelial to mesenchymal transition (EMT). FOXP2 was the direct target of miR-618, and promoted TGF-β expression, inhibition of TGF-β reversed the effect of miR-618 knockdown. We further analyzed the correlation between miR-618 expression and FOXP2 in human prostate cancer tissues, and found there was a negative correlation between miR-618 expression and FOXP2 levels. In conclusion, we found miR-618 inhibited prostate cancer migration and invasion by targeting FOXP2 and inhibiting TGF-β.
miR-215 functions as an oncogene in high-grade glioma by regulating retinoblastoma 1.
Meng, Xiaofeng; Shi, Baozhong
2017-09-01
To investigate the roles of miR-215 in high-grade glioma and to clarify the regulation of retinoblastoma 1 (RB1) by miR-215. miR-215 is frequently up-regulated in high-grade glioma tissues. Increased miR-215 expression is significantly associated with World Health Organization grade (P < 0.01) tumor size (P < 0.05) and poor prognosis (P < 0.01). Over-expression of miR-215 promoted cell proliferation and knockdown of miR-215 inhibited cell proliferation in vitro. RB1 was identified as a direct and functional target of miR-215. RB1 is generally down-regulated in glioma tissues and its expression inversely correlated with miR-215, which is up-regulated in high-grade glioma tissues, and its expression was negatively correlated with miR-215. The new miR-215/RB1 axis provides new insights into the molecular mechanism and treatment for glioma.
A systems immunology approach identifies the collective impact of 5 miRs in Th2 inflammation.
Kılıç, Ayşe; Santolini, Marc; Nakano, Taiji; Schiller, Matthias; Teranishi, Mizue; Gellert, Pascal; Ponomareva, Yuliya; Braun, Thomas; Uchida, Shizuka; Weiss, Scott T; Sharma, Amitabh; Renz, Harald
2018-06-07
Allergic asthma is a chronic inflammatory disease dominated by a CD4+ T helper 2 (Th2) cell signature. The immune response amplifies in self-enforcing loops, promoting Th2-driven cellular immunity and leaving the host unable to terminate inflammation. Posttranscriptional mechanisms, including microRNAs (miRs), are pivotal in maintaining immune homeostasis. Since an altered expression of various miRs has been associated with T cell-driven diseases, including asthma, we hypothesized that miRs control mechanisms ensuring Th2 stability and maintenance in the lung. We isolated murine CD4+ Th2 cells from allergic inflamed lungs and profiled gene and miR expression. Instead of focusing on the magnitude of miR differential expression, here we addressed the secondary consequences for the set of molecular interactions in the cell, the interactome. We developed the Impact of Differential Expression Across Layers, a network-based algorithm to prioritize disease-relevant miRs based on the central role of their targets in the molecular interactome. This method identified 5 Th2-related miRs (mir27b, mir206, mir106b, mir203, and mir23b) whose antagonization led to a sharp reduction of the Th2 phenotype. Overall, a systems biology tool was developed and validated, highlighting the role of miRs in Th2-driven immune response. This result offers potentially novel approaches for therapeutic interventions.
STS-71 mission highlights resource tape
NASA Astrophysics Data System (ADS)
1995-09-01
This video highlights the international cooperative Shuttle/Mir mission of the STS-71 flight. The STS-71 flightcrew consists of Cmdr. Robert Hoot' Gibson, Pilot Charles Precourt, and Mission Specialists Ellen Baker, Bonnie Dunbar, and Gregory Harbaugh. The Mir 18 flightcrew consisted of Cmdr. Vladamir Dezhurov, Flight Engineer Gennady Strekalov, and Cosmonaut-Research Dr. Norman Thagard. The Mir 18 crew consisted of Cmdr. Anatoly Solovyev and Flight Engineer Nikolai Budarin. The prelaunch, launch, shuttle in-orbit, and in-orbit rendezvous and docking of the Mir Space Station to the Atlantis Space Shuttle are shown. The Mir 19 crew accompanied the STS-71 crew and will replace the Mir 18 crew upon undocking from the Mir Space Station. Shown is on-board footage from the Mir Space Station of the Mir 18 crew engaged in hardware testing and maintenance, medical and physiological tests, and a tour of the Mir. A spacewalk by the two Mir 18 cosmonauts is shown as they performed maintenance of the Mir Space Station. After the docking between Atlantis and Mir is completed, several mid-deck physiological experiments are performed along with a tour of Atlantis. Dr Thagard remained behind with the Shuttle after undocking to return to Earth with reports from his Mir experiments and observations. In-cabin experiments included the IMAX Camera Systems tests and the Shuttle Amateur Radio Experiment-2 (SAREX-2). There is footage of the shuttle landing.
Liu, Wei; Ling, Shukuan; Sun, Weijia; Liu, Tong; Li, Yuheng; Zhong, Guohui; Zhao, Dingsheng; Zhang, Pengfei; Song, Jinping; Jin, Xiaoyan; Xu, Zi; Song, Hailin; Li, Qi; Liu, Shujuan; Chai, Meng; Dai, Qinyi; He, Yi; Fan, Zhanming; Zhou, Yu Jie; Li, Yingxian
2015-01-01
The purpose of this study was to find the circulating microRNAs (miRNAs) co-related with the severity of coronary artery calcification (CAC), and testify whether the selected miRNAs could reflect the obstructive coronary artery disease in symptomatic patients. Patients with chest pain and moderated risk for coronary artery disease (CAD) were characterized with coronary artery calcium score (CACS) from cardiac computed tomography (CT). We analyzed plasma miRNA levels of clinical matched 11 CAC (CACS > 100) and 6 non-CAC (CACS = 0) subjects by microarray profile. Microarray analysis identified 34 differentially expressed miRNAs between CAC and non CAC groups. Eight miRNAs (miR-223, miR-3135b, miR-133a-3p, miR-2861, miR-134, miR-191-3p, miR-3679-5p, miR-1229 in CAC patients) were significantly increased in CAC plasma in an independent clinical matched cohort. Four miRNAs (miR-2861, 134, 1229 and 3135b) were correlated with the degree of CAC. Validation test in angiographic cohort showed that miR-134, miR-3135b and miR-2861 were significantly changed in patients with obstructive CAD . We identified three significantly upregulated circulating miRNAs (miR-134, miR-3135b and 2861) correlated with CAC while detected obstructive coronary disease in symptomatic patients. PMID:26537670
Detection, monitoring, and quantitative analysis of wildfires with the BIRD satellite
NASA Astrophysics Data System (ADS)
Oertel, Dieter A.; Briess, Klaus; Lorenz, Eckehard; Skrbek, Wolfgang; Zhukov, Boris
2004-02-01
Increasing concern about environment and interest to avoid losses led to growing demands on space borne fire detection, monitoring and quantitative parameter estimation of wildfires. The global change research community intends to quantify the amount of gaseous and particulate matter emitted from vegetation fires, peat fires and coal seam fires. The DLR Institute of Space Sensor Technology and Planetary Exploration (Berlin-Adlershof) developed a small satellite called BIRD (Bi-spectral Infrared Detection) which carries a sensor package specially designed for fire detection. BIRD was launched as a piggy-back satellite on October 22, 2001 with ISRO"s Polar Satellite Launch Vehicle (PSLV). It is circling the Earth on a polar and sun-synchronous orbit at an altitude of 572 km and it is providing unique data for detailed analysis of high temperature events on Earth surface. The BIRD sensor package is dedicated for high resolution and reliable fire recognition. Active fire analysis is possible in the sub-pixel domain. The leading channel for fire detection and monitoring is the MIR channel at 3.8 μm. The rejection of false alarms is based on procedures using MIR/NIR (Middle Infra Red/Near Infra Red) and MIR/TIR (Middle Infra Red/Thermal Infra Red) radiance ratio thresholds. Unique results of BIRD wildfire detection and analysis over fire prone regions in Australia and Asia will be presented. BIRD successfully demonstrates innovative fire recognition technology for small satellites which permit to retrieve quantitative characteristics of active burning wildfires, such as the equivalent fire temperature, fire area, radiative energy release, fire front length and fire front strength.
Xiong, X R; Lan, D L; Li, J; Zi, X D; Li, M Y
2016-12-01
Small RNA represents several unique non-coding RNA classes that have important function in a wide range of biological processes including development of germ cells and early embryonic, cell differentiation, cell proliferation and apoptosis in diverse organisms. However, little is known about their expression profiles and effects in yak oocytes maturation and early development. To investigate the function of small RNAs in the maturation process of yak oocyte and early development, two small RNA libraries of oocytes were constructed from germinal vesicle stage (GV) and maturation in vitro to metaphase II-arrested stage (M II) and then sequenced using small RNA high-throughput sequencing technology. A total of 9,742,592 and 12,168,523 clean reads were obtained from GV and M II oocytes, respectively. In total, 801 and 1,018 known miRNAs were acquired from GV and M II oocytes, and 75 miRNAs were found to be significantly differentially expressed: 47 miRNAs were upregulated and 28 miRNAs were downregulated in the M II oocytes compared to the GV stage. Among the upregulated miRNAs, miR-342 has the largest fold change (9.25-fold). Six highly expressed miRNAs (let-7i, miR-10b, miR-10c, miR-143, miR-146b and miR-148) were validated by real-time quantitative PCR (RT-qPCR) and consistent with the sequencing results. Furthermore, the expression patterns of two miRNAs and their potential targets were analysed in different developmental stages of oocytes and early embryos. This study provides the first miRNA profile in the mature process of yak oocyte. Seventy-five miRNAs are expressed differentially in GV and M II oocytes as well as among different development stages of early embryos, suggesting miRNAs involved in regulating oocyte maturation and early development of yak. These results showed specific miRNAs in yak oocytes had dynamic changes during meiosis. Further functional and mechanistic studies on the miRNAs during meiosis may beneficial to understanding the role of miRNAs on meiotic division. © 2016 Blackwell Verlag GmbH.
Skaftnesmo, K O; Edvardsen, R B; Furmanek, T; Crespo, D; Andersson, E; Kleppe, L; Taranger, G L; Bogerd, J; Schulz, R W; Wargelius, A
2017-10-18
Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b, miR-222a/b, miR-190a) or have now been found connected (miR-2188, miR-144, miR-731, miR-8157 and the novel n2) to the initiation of puberty. This study has - for the first time - linked testis maturation to specific miRNAs and their inversely correlated expressed targets in Atlantic salmon. The study indicates a broad functional conservation of already known miRNAs and associated pathways involved in the transition into puberty in vertebrates. The analysis also reveals miRNAs not previously associated with testis tissue or its maturation, which calls for further functional studies in the testis.
Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients
Delić, Denis; Eisele, Claudia; Schmid, Ramona; Baum, Patrick; Wiech, Franziska; Gerl, Martin; Zimdahl, Heike; Pullen, Steven S.; Urquhart, Richard
2016-01-01
MicroRNAs (miRNAs) are short non-coding RNA species which are important post-transcriptional regulators of gene expression and play an important role in the pathogenesis of diabetic nephropathy. miRNAs are present in urine in a remarkably stable form packaged in extracellular vesicles, predominantly exosomes. In the present study, urinary exosomal miRNA profiling was conducted in urinary exosomes obtained from 8 healthy controls (C), 8 patients with type II diabetes (T2D) and 8 patients with type II diabetic nephropathy (DN) using Agilent´s miRNA microarrays. In total, the expression of 16 miRNA species was deregulated (>2-fold) in DN patients compared to healthy donors and T2D patients: the expression of 14 miRNAs (miR-320c, miR-6068, miR-1234-5p, miR-6133, miR-4270, miR-4739, miR-371b-5p, miR-638, miR-572, miR-1227-5p, miR-6126, miR-1915-5p, miR-4778-5p and miR-2861) was up-regulated whereas the expression of 2 miRNAs (miR-30d-5p and miR-30e-5p) was down-regulated. Most of the deregulated miRNAs are involved in progression of renal diseases. Deregulation of urinary exosomal miRNAs occurred in micro-albuminuric DN patients but not in normo-albuminuric DN patients. We used qRT-PCR based analysis of the most strongly up-regulated miRNAs in urinary exosomes from DN patients, miRNAs miR-320c and miR-6068. The correlation of miRNA expression and micro-albuminuria levels could be replicated in a confirmation cohort. In conclusion, urinary exosomal miRNA content is altered in type II diabetic patients with DN. Deregulated miR-320c, which might have an impact on the TGF-β-signaling pathway via targeting thrombospondin 1 (TSP-1) shows promise as a novel candidate marker for disease progression in type II DN that should be evaluated in future studies. PMID:26930277
Grimes, Janet A; Prasad, Nripesh; Levy, Shawn; Cattley, Russell; Lindley, Stephanie; Boothe, Harry W; Henderson, Ralph A; Smith, Bruce F
2016-12-03
Splenic masses are common in older dogs; yet diagnosis preceding splenectomy and histopathology remains elusive. MicroRNAs (miRNAs) are short, non-coding RNAs that play a role in post-transcriptional regulation, and differential expression of miRNAs between normal and tumor tissue has been used to diagnose neoplastic diseases. The objective of this study was to determine differential expression of miRNAs by use of RNA-sequencing in canine spleens that were histologically confirmed as hemangiosarcoma, nodular hyperplasia, or normal. Twenty-two miRNAs were found to be differentially expressed in hemangiosarcoma samples (4 between hemangiosarcoma and both nodular hyperplasia and normal spleen and 18 between hemangiosarcoma and normal spleen only). In particular, mir-26a, mir-126, mir-139, mir-140, mir-150, mir-203, mir-424, mir-503, mir-505, mir-542, mir-30e, mir-33b, mir-365, mir-758, mir-22, and mir-452 are of interest in the pathogenesis of hemangiosarcoma. Findings of this study confirm the hypothesis that miRNA expression profiles are different between canine splenic hemangiosarcoma, nodular hyperplasia, and normal spleens. A large portion of the differentially expressed miRNAs have roles in angiogenesis, with an additional group of miRNAs being dysregulated in vascular disease processes. Two other miRNAs have been implicated in cancer pathways such as PTEN and cell cycle checkpoints. The finding of multiple miRNAs with roles in angiogenesis and vascular disease is important, as hemangiosarcoma is a tumor of endothelial cells, which are driven by angiogenic stimuli. This study shows that miRNA dysregulation is a potential player in the pathogenesis of canine splenic hemangiosarcoma.
Wan, Yong; Cui, Ruixia; Gu, Jingxian; Zhang, Xing; Xiang, Xiaohong; Liu, Chang; Qu, Kai; Lin, Ting
2017-01-01
Increasing evidence suggests that oxidative stress plays an essential role during carcinogenesis. However, the underlying mechanism between oxidative stress and carcinogenesis remains unknown. Recently, microRNAs (miRNAs) are revealed to be involved in oxidative stress response and carcinogenesis. This study aims to identify miRNAs in hepatocellular carcinoma (HCC) cells which might involve in oxidative stress response. An integrated analysis of miRNA expression signature was performed by employing robust rank aggregation (RRA) method, and four miRNAs (miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p) were identified as the oxidative stress-responsive miRNAs. Pathway enrichment analysis suggested that these four miRNAs played an important role in antiapoptosis process. Our data also revealed miR-34a-5p and miR-1915-3p, but not miR-150-3p and miR-638, were regulated by p53 in HCC cell lines under oxidative stress. In addition, clinical investigation revealed that these four miRNAs might be involved in oxidative stress response by targeting oxidative stress-related genes in HCC tissues. Kaplan-Meier analysis showed that these four miRNAs were associated with patients' overall survival. In conclusion, we identified four oxidative stress-responsive miRNAs, which were regulated by p53-dependent (miR-34a-5p and miR-1915-3p) and p53-independent pathway (miR-150-3p and miR-638). These four miRNAs may offer new strategy for HCC diagnosis and prognosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Ki-Hyuk, E-mail: kshin@dentistry.ucla.edu; Dental Research Institute, University of California, Los Angeles, CA 90095; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
2011-01-28
Research highlights: {yields} MicroRNA-181a (miR-181a) was frequently downregulated in oral squamous cell carcinoma (OSCC). {yields} Overexpression of miR-181a suppressed OSCC growth. {yields} K-ras is a novel target of miR-181a. {yields} Decreased miR-181a expression is attributed to its lower promoter activity in OSCC. -- Abstract: MicroRNAs (miRNAs) are epigenetic regulators of gene expression, and their deregulation plays an important role in human cancer, including oral squamous cell carcinoma (OSCC). Recently, we found that miRNA-181a (miR-181a) was upregulated during replicative senescence of normal human oral keratinocytes. Since senescence is considered as a tumor suppressive mechanism, we thus investigated the expression and biologicalmore » role of miR-181a in OSCC. We found that miR-181a was frequently downregulated in OSCC. Ectopic expression of miR-181a suppressed proliferation and anchorage independent growth ability of OSCC. Moreover, miR-181a dramatically reduces the growth of OSCC on three dimensional organotypic raft culture. We also identified K-ras as a novel target of miR-181a. miR-181a decreased K-ras protein level as well as the luciferase activity of reporter vectors containing the 3'-untranslated region of K-ras gene. Finally, we defined a minimal regulatory region of miR-181a and found a positive correlation between its promoter activity and the level of miR-181a expression. In conclusion, miR-181a may function as an OSCC suppressor by targeting on K-ras oncogene. Thus, miR-181a should be considered for therapeutic application for OSCC.« less
Lin, Da-Cen; Lin, Jia-Bing; Chen, Zhou; Chen, Rong; Wan, Chun-Yu; Lin, Shao-Wei; Ruan, Qi-Shuang; Li, Huang-Yuan; Wu, Si-Ying
2017-11-01
To evaluate the effects of environmental factors and microRNAs (miRNAs) (miR-126, miR-143, and miR-145) on the risk of coronary heart disease (CHD). A frequency-matched case-control study (450 patients, 450 controls) was conducted from April 2014 to December 2016 in Fuzhou City, China. Environmental factors were investigated using a self-administered questionnaire, and the expression levels of miR-126, miR-143, and miR-145 were determined by quantitative real-time Polymerase Chain Reaction (PCR) in peripheral blood mononuclear cells. Unconditional logistic regression models were used for statistical evaluation. Alcohol consumption, high-salt diets, high-intensity work, and lack of physical activity were significantly associated with increased CHD risk, whereas light diet was significantly associated with decreased risk. MiR-126, miR-143, and miR-145 were highly expressed in the CHD group compared with the control group. After adjustment for other environmental factors, unconditional logistic regression results revealed that miR-126, miR-143, and depression were the independent risk factors of CHD, and light diet was the independent protective factor of CHD. Our data suggest that a family history of CHD, anxiety, and alcohol consumption was significantly associated with increased CHD risk, whereas light diet was significantly associated with decreased risk. Furthermore, miR-126 and miR-143 in combination with several risk factors, could play a joint role in the development of CHD. Therefore, it is necessary to manage patients with CHD in all directions and multiple level.
Feng, Y; Niu, L-L; Wei, W; Zhang, W-Y; Li, X-Y; Cao, J-H; Zhao, S-H
2013-01-01
MiR-133 was found to be specifically expressed in cardiac and skeletal muscle in previous studies. There are two members in the miR-133 family: miR-133a and miR-133b. Although previous studies indicated that miR-133a was related to myogenesis, the signaling pathways regulated by miR-133 were still not very clear. In this study, we showed that both miR-133a and miR-133b were upregulated during myogenesis through Solexa sequencing. We confirmed that miR-133 could promote myoblast differentiation and inhibit cell proliferation through the regulation of the extracellular signal-regulated kinase (ERK) signaling pathway in C2C12 cells. FGFR1 and PP2AC, which both participate in signal transduction of the ERK1/2 pathway, were found to be negatively regulated by miR-133a and miR-133b at the post-transcriptional level. Also, downregulation of ERK1/2 phosphorylation by miR-133 was detected. FGFR1 and PP2AC were also found to repress C2C12 differentiation by specific siRNAs. In addition, we found that inhibition of ERK1/2 pathway activity can inhibit C2C12 cell proliferation and promote the initiation of differentiation but form short and small myotubes. Furthermore, we found that the expression of miR-133 was negatively regulated by ERK1/2 signaling pathway. In summary, we demonstrated the role of miR-133 in myoblast and further revealed a new feedback loop between miR-133 and the ERK1/2 signaling pathway involving an exquisite mechanism for regulating myogenesis. PMID:24287695
Feng, Y; Niu, L-L; Wei, W; Zhang, W-Y; Li, X-Y; Cao, J-H; Zhao, S-H
2013-11-28
MiR-133 was found to be specifically expressed in cardiac and skeletal muscle in previous studies. There are two members in the miR-133 family: miR-133a and miR-133b. Although previous studies indicated that miR-133a was related to myogenesis, the signaling pathways regulated by miR-133 were still not very clear. In this study, we showed that both miR-133a and miR-133b were upregulated during myogenesis through Solexa sequencing. We confirmed that miR-133 could promote myoblast differentiation and inhibit cell proliferation through the regulation of the extracellular signal-regulated kinase (ERK) signaling pathway in C2C12 cells. FGFR1 and PP2AC, which both participate in signal transduction of the ERK1/2 pathway, were found to be negatively regulated by miR-133a and miR-133b at the post-transcriptional level. Also, downregulation of ERK1/2 phosphorylation by miR-133 was detected. FGFR1 and PP2AC were also found to repress C2C12 differentiation by specific siRNAs. In addition, we found that inhibition of ERK1/2 pathway activity can inhibit C2C12 cell proliferation and promote the initiation of differentiation but form short and small myotubes. Furthermore, we found that the expression of miR-133 was negatively regulated by ERK1/2 signaling pathway. In summary, we demonstrated the role of miR-133 in myoblast and further revealed a new feedback loop between miR-133 and the ERK1/2 signaling pathway involving an exquisite mechanism for regulating myogenesis.
Lee, Jonghwan; Choi, Kyung-Ju; Moon, Sung Ung; Kim, Soonhag
2016-01-01
Recently, microRNA (miRNA or miR) has emerged as a new cancer biomarker because of its high expression level in various cancer types and its role in the control of tumor suppressor genes. In cancer studies, molecular imaging and treatment based on target cancer markers have been combined to facilitate simultaneous cancer diagnosis and therapy. In this study, for combined therapy with diagnosis of cancer, we developed a doxorubicin-conjugated miR-221 molecular beacon (miR-221 DOXO MB) in a single platform composed of three different nucleotides: miR-221 binding sequence, black hole quencher 1 (BHQ1), and doxorubicin binding site. Imaging of endogenous miR-221 was achieved by specific hybridization between miR-221 and the miR-221 binding site in miR-221 DOXO MB. The presence of miR-221 triggered detachment of the quencher oligo and subsequent activation of a fluorescent signal of miR-221 DOXO MB. Simultaneous cancer therapy in C6 astrocytoma cells and nude mice was achieved by inhibition of miRNA-221 function that downregulates tumor suppressor genes. The detection of miR-221 expression and inhibition of miR-221 function by miR-221 DOXO MB provide the feasibility as a cancer theragnostic probe. Furthermore, a cytotoxic effect was induced by unloading of doxorubicin intercalated into miR-221 DOXO MB inside cells. Loss of miR-221 function and cytotoxicity induced by the miR-221 DOXO MB provides combined therapeutic efficacy against cancers. This method could be used as a new theragnostic probe with enhanced therapy to detect and inhibit many cancer-related miRNAs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Identification of novel microRNA signatures linked to acquired aplastic anemia.
Hosokawa, Kohei; Muranski, Pawel; Feng, Xingmin; Keyvanfar, Keyvan; Townsley, Danielle M; Dumitriu, Bogdan; Chen, Jichun; Kajigaya, Sachiko; Taylor, James G; Hourigan, Christopher S; Barrett, A John; Young, Neal S
2015-12-01
Emerging evidence indicates that microRNA control and modulate immunity. MicroRNA have not been investigated in acquired aplastic anemia, a T-cell-mediated immune disease. Analysis of 84 microRNA expression levels in CD4(+) and CD8(+) T cells of patients with aplastic anemia revealed concurrent down-regulation of miR-126-3p, miR-145-5p, miR-223-3p, and miR-199a-5p (>3-fold change, P<0.05) in both T-cell populations, which were unique in aplastic anemia compared to other hematologic disorders. MiR-126-3p and miR-223-3p were down-regulated in CD4(+) T effector memory cells, and miR-126-3p, miR-145-5p, and miR-223-3p were down-regulated in CD8(+) T effector memory and terminal effector cells. Successful immunosuppressive therapy was associated with restoration to normal expression levels of miR-126-3p, miR-145-5p, and miR-223-3p (>2-fold change, P<0.05). In CD4(+) and CD8(+) T cells in aplastic anemia patients, MYC and PIK3R2 were up-regulated and proved to be targets of miR-145-5p and miR-126-3p, respectively. MiR-126-3p and miR-145-5p knockdown promoted proliferation and increased interferon-γ and granzyme B production in both CD4(+) and CD8(+) T cells. Our work describes previously unknown regulatory roles of microRNA in T-cell activation in aplastic anemia, which may open a new perspective for development of effective therapy. Clinicaltrials.gov identifier: NCT 01623167. Copyright© Ferrata Storti Foundation.
Chen, Zhi; Luo, Jun; Sun, Shuang; Cao, Duoyao; Shi, Huaiping; Loor, Juan J
2017-03-04
MicroRNA (miRNA) are a class of '18-25' nt RNA molecules which regulate gene expression and play an important role in several biologic processes including fatty acid metabolism. Here we used S-Poly (T) and high-throughput sequencing to evaluate the expression of miRNA and mRNA during early-lactation and in the non-lactating ("dry") period in goat mammary gland tissue. Results indicated that miR-148a, miR-17-5p, PPARGC1A and PPARA are highly expressed in the goat mammary gland in early-lactation and non-lactating periods. Utilizing a Luciferase reporter assay and Western Blot, PPARA, an important regulator of fatty acid oxidation, and PGC1a (PPARGC1A), a major regulator of fat metabolism, were demonstrated to be targets of miR-148a and miR-17-5p in goat mammary epithelial cells (GMECs). It was also revealed that miR-148a expression can regulate PPARA, and miR-17-5p represses PPARGC1A in GMECs. Furthermore, the overexpression of miR-148a and miR-17-5p promoted triacylglycerol (TAG) synthesis while the knockdown of miR-148a and miR-17-5p impaired TAG synthesis in GMEC. These findings underscore the importance of miR-148a and miR-17-5p as key components in the regulation of TAG synthesis. In addition, miR-148a cooperates with miR-17-5p to regulate fatty acid metabolism by repressing PPARGC1A and PPARA in GMECs. Further studies on the functional role of miRNAs in lipid metabolism of ruminant mammary cells seem warranted.
miR-182 targets CHL1 and controls tumor growth and invasion in papillary thyroid carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hongling; Fang, Jin; Zhang, Jichen
2014-07-18
Highlights: • miR-182 and CHL1 expression patterns are negatively correlated. • CHL1 is a direct target of miR-182 in PTC cells. • miR-182 suppression inhibits PTC cell growth and invasion. • CHL1 is involved in miR-182-mediated cell behavior. - Abstract: In this study, we investigated the role and underlying mechanism of action of miR-182 in papillary thyroid carcinoma (PTC). Bioinformatics analysis revealed close homolog of LI (CHL1) as a potential target of miR-182. Upregulation of miR-182 was significantly correlated with CHL1 downregulation in human PTC tissues and cell lines. miR-182 suppressed the expression of CHL1 mRNA through direct targeting ofmore » the 3′-untranslated region (3′-UTR). Downregulation of miR-182 suppressed growth and invasion of PTC cells. Silencing of CHL1 counteracted the effects of miR-182 suppression, while its overexpression mimicked these effects. Our data collectively indicate that miR-182 in PTC promotes cell proliferation and invasion through direct suppression of CHL1, supporting the potential utility of miR-182 inhibition as a novel therapeutic strategy against PTC.« less
Recurrence of Early Stage Colon Cancer Predicted by Expression Pattern of Circulating microRNAs
Shivapurkar, Narayan; Weiner, Louis M.; Marshall, John L.; Madhavan, Subha; Deslattes Mays, Anne; Juhl, Hartmut; Wellstein, Anton
2014-01-01
Systemic treatment of patients with early-stage cancers attempts to eradicate occult metastatic disease to prevent recurrence and increased morbidity. However, prediction of recurrence from an analysis of the primary tumor is limited because disseminated cancer cells only represent a small subset of the primary lesion. Here we analyze the expression of circulating microRNAs (miRs) in serum obtained pre-surgically from patients with early stage colorectal cancers. Groups of five patients with and without disease recurrence were used to identify an informative panel of circulating miRs using quantitative PCR of genome-wide miR expression as well as a set of published candidate miRs. A panel of six informative miRs (miR-15a, mir-103, miR-148a, miR-320a, miR-451, miR-596) was derived from this analysis and evaluated in a separate validation set of thirty patients. Hierarchical clustering of the expression levels of these six circulating miRs and Kaplan-Meier analysis showed that the risk of disease recurrence of early stage colon cancer can be predicted by this panel of miRs that are measurable in the circulation at the time of diagnosis (P = 0.0026; Hazard Ratio 5.4; 95% CI of 1.9 to 15). PMID:24400111
MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes
Polioudakis, Damon; Abell, Nathan S.; Iyer, Vishwanath R.
2015-01-01
miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191’s regulation of primary human fibroblast proliferation. PMID:25992613
Kaneko, Manami; Satomi, Tomoko; Fujiwara, Shuji; Uchiyama, Hidefumi; Kusumoto, Keiji; Nishimoto, Tomoyuki
Our study measured circulating microRNA (miRNA) levels in the plasma of calsequestrin (CSQ)-tg mouse, a severe heart failure model, and evaluated whether treatment with angiotensin II type 1 receptor blocker, azilsartan medoxomil (AZL-M) influenced their levels using miRNA array analysis. MiR-146a, miR-149, miR-150, and miR-342-3p were reproducibly reduced in the plasma of CSQ-tg mice. Among them, miR-146a and miR-342-3p were significantly restored by AZL-M, which were associated with improvement of survival rate and reduction of congestion. These results suggest that miRNA, especially miR-146a and miR-342-3p, could be used as potential biomarkers for evaluating the efficacy of anti-heart failure drugs.
Albers, C E; Haefeli, P C; Zimmermann, H; de Moya, M; Exadaktylos, A K
2013-05-01
Pneumothoraces are a common injury pattern in emergency medicine. Rapid and safe identification can reduce morbidity and mortality. A new handheld, battery powered device, the Pneumoscan (CE 561036, PneumoSonics Inc., Cleveland, OH, USA), using micropower impulse radar (MIR) technology, has recently been introduced in Europe for the rapid and reliable detection of PTX. However, this technology has not yet been tested in trauma patients. This is the first quality control evaluation to report on emergency room performance of a new device used in the trauma setting. This study was performed at a Level I trauma centre in Switzerland. All patients with thoracic trauma and undergoing chest X-ray and CT-scan were eligible for the study. Readings were performed before the chest X-ray and CT scan. The patients had eight lung fields tested (four on each side). All readings with the Pneumoscan were performed by two junior residents in our department who had previously received an instructional tutorial of 15min. The qualitative MIR results were blinded, and stored on the device. We then compared the results of the MIR to those of the clinical examination, chest X-ray and CT-scan. 50 patients were included, with a mean age of 46 (SD 17) years. Seven patients presented with PTX diagnosed by CT; six of these were detected by Pneumoscan, leading to an overall sensitivity of 85.7 (95% confidence interval 42.1-99.6)%. Only two of seven PTX were found during clinical examination and on chest X-ray (sensitivity 28.6 (95% CI 3.7-71.0)%). Of the remaining 43 of 50 patients without PTX, one false-positive PTX was found by the Pneumoscan, resulting in a specificity of 97.7 (95% CI 87.7-99.9)%. The Pneumoscan is an easy to use handheld technology with reliable results. In this series, the sensitivity to detect a PTX by the Pneumoscan was higher than by clinical examination and chest X-ray. Further studies with higher case numbers and a prospective study design are needed to confirm our findings. Copyright © 2012 Elsevier Ltd. All rights reserved.
Widely tunable quantum cascade lasers for spectroscopic sensing
NASA Astrophysics Data System (ADS)
Wagner, J.; Ostendorf, R.; Grahmann, J.; Merten, A.; Hugger, S.; Jarvis, J.-P.; Fuchs, F.; Boskovic, D.; Schenk, H.
2015-01-01
In this paper recent advances in broadband-tuneable mid-infrared (MIR) external-cavity quantum cascade lasers (EC-QCL) technology are reported as well as their use in spectroscopic process analysis and imaging stand-off detection of hazardous substances, such as explosive and related precursors. First results are presented on rapid scan EC-QCL, employing a custom-made MOEMS scanning grating in Littrow-configuration as wavelength-selective optical feedback element. This way, a scanning rate of 1 kHz was achieved, which corresponds to 2000 full wavelength scans per second. Furthermore, exemplary case studies of EC-QCL based MIR spectroscopy will be presented. These include timeresolved analysis of catalytic reactions in chemical process control, as well as imaging backscattering spectroscopy for the detection of residues of explosives and related precursors in a relevant environment.
Steinhilber, Julia; Bonin, Michael; Walter, Michael; Fend, Falko; Bonzheim, Irina; Quintanilla-Martinez, Leticia
2015-01-01
Anaplastic large cell lymphoma (ALCL) is divided into two systemic diseases according to the expression of the anaplastic lymphoma kinase (ALK). We investigated the differential expression of miRNAs between ALK+ ALCL, ALK- ALCL cells and normal T-cells using next generation sequencing (NGS). In addition, a C/EBPβ-dependent miRNA profile was generated. The data were validated in primary ALCL cases. NGS identified 106 miRNAs significantly differentially expressed between ALK+ and ALK- ALCL and 228 between ALK+ ALCL and normal T-cells. We identified a signature of 56 miRNAs distinguishing ALK+ ALCL, ALK- ALCL and T-cells. The top candidates significant differentially expressed between ALK+ and ALK- ALCL included 5 upregulated miRNAs: miR-340, miR-203, miR-135b, miR-182, miR-183; and 7 downregulated: miR-196b, miR-155, miR-146a, miR-424, miR-503, miR-424*, miR-542-3p. The miR-17-92 cluster was also upregulated in ALK+ cells. Additionally, we identified a signature of 3 miRNAs significantly regulated by the transcription factor C/EBPβ, which is specifically overexpressed in ALK+ ALCL, including the miR-181 family. Of interest, miR-181a, which regulates T-cell differentiation and modulates TCR signalling strength, was significantly downregulated in ALK+ ALCL cases. In summary, our data reveal a miRNA signature linking ALK+ ALCL to a deregulated immune response and may reflect the abnormal TCR antigen expression known in ALK+ ALCL.
miR-152 regulated glioma cell proliferation and apoptosis via Runx2 mediated by DNMT1.
Zhang, Peng; Sun, Hongwei; Yang, Bo; Luo, Wenzheng; Liu, Zengjin; Wang, Junkuan; Zuo, Yuchao
2017-08-01
Aberrant DNA methylation is associated with tumor onset and progression. Study has verified that the DNA methylation of miR-152 was mediated in many tumors, but whether it involved in glioblastomas was still unclear. This study enrolled 20 patients with glioma to analyze the expression pattern of miR-152. Real-time PCR and western blot were used to detect the mRNA or protein expression level, respectively. The relationship between miR-152 and runx2 was detected by Luciferase reporter assay. The methylation level of miR-152 was determined by methylation-specific PCR. Cell proliferation and apoptosis were detected by MTT and Annexin-FITC/PI assay. The expression of miR-152 was down-regulated while the expression of DNMT1 was up-regulated in both glioma tissue and cell lines. MiR-152 was hypermethylated and its expression was negatively correlated with DNMT in glioma cell lines. DNMT1 knockdown promoted the expression of miR-152, however, DNMT1 overexpression suppressed the expression of miR-152. MiR-152 overexpression promoted glioma cell apoptosis while miR-152 knockdown promoted cell proliferation. MiR-152 targets Runx2 to regulate its expression, Runx2 overexpression abolished the effects of miR-152 overexpression. MiR-152 regulated cell proliferation and apoptosis of glioma mediated by Runx2, while the mechanism of down regulated miR-152 in glioma tissues and cells was its hypermethylation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
miR-148b-3p functions as a tumor suppressor in GISTs by directly targeting KIT.
Wang, Yu; Li, Jun; Kuang, Dong; Wang, Xiaoyan; Zhu, Yuanli; Xu, Sanpeng; Chen, Yaobing; Cheng, Henghui; Zhao, Qiu; Duan, Yaqi; Wang, Guoping
2018-04-16
Gain-of-function mutations and overexpression of KIT are characteristic features of gastrointestinal stromal tumor (GIST). Dysregulation in miRNA expression may lead to KIT overexpression and tumorigenesis. miRNA microarray analysis and real-time PCR were used to determine the miRNA expression profiles in a cohort of 69 clinical samples including 50 CD117 IHC+ /KIT mutation GISTs and 19 CD117 IHC- /wild-type GISTs. GO enrichment and KEGG pathway analyses were performed to reveal the predicted targets of the dysregulated miRNAs. Of the dysregulated miRNAs whose expression was inversely correlated with that of KIT miRNAs were predicted by bioinformatics analysis and confirmed by luciferase reporter assay. Cell counting kit-8 (CCK-8) and flow cytometry were used to measure the cell proliferation, cycle arrest and apoptosis. Wound healing and transwell assays were used to evaluate migration and invasion. A xenograft BALB/c nude mouse model was applied to investigate the tumorigenesis in vivo. Western blot and qRT-PCR were used to investigate the protein and mRNA levels of KIT and its downstream effectors including ERK, AKT and STAT3. Of the six miRNAs whose expression was inversely correlated with that of KIT, we found that miR-148b-3p was significantly downregulated in the CD117 IHC+ /KIT mutation GIST cohort. This miRNA was subsequently found to inhibit proliferation, migration and invasion of GIST882 cells. Mechanistically, miR-148b-3p was shown to regulate KIT expression through directly binding to the 3'-UTR of the KIT mRNA. Restoration of miR-148b-3p expression in GIST882 cells led to reduced expression of KIT and the downstream effectors proteins ERK, AKT and STAT3. However, overexpression of KIT reversed the inhibitory effect of miR-148b-3p on cell proliferation, migration and invasion. Furthermore, we found that reduced miR-148b-3p expression correlated with poor overall survival (OS) and disease-free survival (DFS) in GIST patients. miR-148b-3p functions as an important regulator of KIT expression and a potential prognostic biomarker for GISTs.
Fang, Yao; Chen, Hai; Hu, Yi; Li, Qian; Hu, Zhiqiang; Ma, Tengfei; Mao, Xuhu
2016-11-28
Burkholderia pseudomallei (Bp) is the causative agent of melioidosis, a kind of tropical disease. Burkholderia thailandensis (Bt), with a high sequence similarity to Bp, is thought to be an avirulent organism. Since there are numerous similarities between Bp and Bt, their differences in pathogenesis of host response and related mechanism are still undermined. In recent years, microRNAs have been researched in many diseases, but seldom involved in bacterial infection, bacteria-host interaction or explaining the differences between virulent and avirulent species. We found that Bp and Bt had similar phenotypes in terms of intracellular replication, dissemination (reflected by multinucleated giant cell formation), TNF-α release and apoptosis in RAW264.7 macrophages or TC-1 pulmonary cell but in different level. Especially, at the late infection phases (after 12 h post infection), Bp showed faster intracellular growth, stronger cytotoxicity, and higher TNF-α release. After microRNA array analysis, we found some microRNAs were significantly expressed in macrophages treated by Bp. miR-3473 was one of them specifically induced, but not significantly changed in Bt-treated macrophages. In addition, TargetScan suggested that miR-3473 possibly target TRAF3 (TNF receptor-associated factor 3), a well-known negative regulator of the NF-κB pathway, which was probably involved in the TNF-α induction and apoptosis in cells with Bp infection. In vivo, it was found that miR-3473 expression of total lungs cells from Bp-treated was higher than that from Bt-treated mice. And miR-3473 inhibitor was able to decrease the TNF-α release of mice and prolong the survival of mice with Bp infection. In sum, miR-3473 plays an important role in the differential pathogenicity of Bp and Bt via miR-3473-TRAF3-TNF-α network, and regulates TNF-α release, cell apoptosis and animal survival after Bp treatment. In this study, we have found a specific microRNA is related to bacterial virulence and provide insight into the mechanism for host-bacteria interaction, which suggests that potential oligonucleotides should be applied against bacterial infection.
Gao, Fu; Chen, Song; Sun, Mingjuan; Mitchel, Ronald E.J.; Li, Bailong; Chu, Zhiyong; Cai, Jianming; Liu, Cong
2015-01-01
It has been reported dysregulation of certain microRNAs (miRNAs / miRs) is involved in tumorigenesis. However, the miRNAs associated with radiocarcinogenesis remain undefined. In this study, we validated the upregulation of miR-467a in radiation-induced mouse thymic lymphoma tissues. Then, we investigated whether miR-467a functions as an oncogenic miRNA in thymic lymphoma cells. For this purpose, we assessed the biological effect of miR-467a on thymic lymphoma cells. Using miRNA microarray, we found four miRNAs (miR-467a, miR-762, miR-455 and miR-714) were among the most upregulated (>4-fold) miRNAs in tumor tissues. Bioinformatics prediction suggests miR-467a may potentially regulate apoptosis pathway via targeting Fas and Bax. Consistently, in miR-467a-transfected cells, both proliferation and colony formation ability were significantly increased with decrease of apoptosis rate, while, in miR-467a-knockdown cells, proliferation was suppressed with increase of apoptosis rate, indicating that miR-467a may be involved in the regulation of apoptosis. Furthermore, miR-467a-knockdown resulted in smaller tumors and better prognosis in an in vivo tumor-transplanted model. To explain the mechanism of apoptosis suppression by miR-467a, we explore the expression of candidate target genes (Fas and Bax) in miR-467a-transfected relative to negative control transfected cells using flow cytometry and immunoblotting. Fas and Bax were commonly downregulated in miR-467a-transfected EL4 and NIH3T3 cells, and all of the genes harbored miR-467a target sequences in the 3'UTR of their mRNA. Fas and Bax were actually downregulated in radiation-induced thymic lymphoma tissues, and therefore both were identified as possible targets of miR-467a in thymic lymphoma. To ascertain whether downregulation of Fas and / or Bax is involved in apoptosis suppression by miR-467a, we transfected vectors expressing Fas and Bax into miR-467a-upregulated EL4 cells. Then we found that both Fas- and Bax-overexpression decreased cell viability with increase of apoptosis rate, indicating that downregulation of Fas and Bax may be at least partly responsible for apoptosis suppression by miR-467a. These data suggest that miR-467a may have oncogenic functions in radiation-induced thymic lymphoma cells and that its increased expression may confer a growth advantage on tumor cells via aberrant expression of Fas and Bax. PMID:25552935
New GasB-based single-mode diode lasers in the NIR and MIR spectral regime for sensor applications
NASA Astrophysics Data System (ADS)
Milde, Tobias; Hoppe, Morten; Tatenguem, Herve; Honsberg, Martin; Mordmüller, Mario; O'Gorman, James; Schade, Wolfgang; Sacher, Joachim
2018-02-01
The NIR/MIR region between 1.8μm and 3.5μm contains important absorption lines for gas detection. State of the art are InP laser based setups, which show poor gain above 1.8μm and cannot be applied beyond 2.1μm. GaSb laser show a significantly higher output power (100mW for Fabry-Perot, 30mW for DFB). The laser design is presented with simulation and actual performance data. The superior performance of the GaSb lasers is verified in gas sensing applications. TDLAS and QEPAS measurements at trace gases like CH4, CO2 and N2O are shown to prove the spectroscopy performance.
MicroRNA-503 and the Extended MicroRNA-16 Family in Angiogenesis
Caporali, Andrea; Emanueli, Costanza
2011-01-01
MicroRNAs (miRs) are post-transcriptional inhibitory regulators of gene expression acting by direct binding to complementary messenger RNA (mRNA) transcripts. Recent studies have demonstrated that miRs are crucial determinants of endothelial cell behavior and angiogenesis. We have provided evidence of the prominent role of miR-503 in impairment of postischemic reparative angiogenesis in the setting of diabetes. Because miR-503 belongs to the miR-16 extended family of miRs, in this review, we describe the cardiovascular functions of miR-503 and other members of the miR-16 family and their impact on angiogenesis. PMID:22814423
miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction.
Izarra, Alberto; Moscoso, Isabel; Levent, Elif; Cañón, Susana; Cerrada, Inmaculada; Díez-Juan, Antonio; Blanca, Vanessa; Núñez-Gil, Iván-J; Valiente, Iñigo; Ruíz-Sauri, Amparo; Sepúlveda, Pilar; Tiburcy, Malte; Zimmermann, Wolfram-H; Bernad, Antonio
2014-12-09
miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction
Izarra, Alberto; Moscoso, Isabel; Levent, Elif; Cañón, Susana; Cerrada, Inmaculada; Díez-Juan, Antonio; Blanca, Vanessa; Núñez-Gil, Iván-J.; Valiente, Iñigo; Ruíz-Sauri, Amparo; Sepúlveda, Pilar; Tiburcy, Malte; Zimmermann, Wolfram-H.; Bernad, Antonio
2014-01-01
Summary miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue. PMID:25465869
Sakai, Atsushi; Saitow, Fumihito; Maruyama, Motoyo; Miyake, Noriko; Miyake, Koichi; Shimada, Takashi; Okada, Takashi; Suzuki, Hidenori
2017-01-01
miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviates mechanical allodynia in a rat model of neuropathic pain. Plausible targets for the miR-17-92 cluster include genes encoding numerous voltage-gated potassium channels and their modulatory subunits. Single-cell analysis reveals extensive co-expression of miR-17-92 cluster and its predicted targets in primary sensory neurons. miR-17-92 downregulates the expression of potassium channels, and reduced outward potassium currents, in particular A-type currents. Combined application of potassium channel modulators synergistically alleviates mechanical allodynia induced by nerve injury or miR-17-92 overexpression. miR-17-92 cluster appears to cooperatively regulate the function of multiple voltage-gated potassium channel subunits, perpetuating mechanical allodynia. PMID:28677679
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.; Benton, E. R.
1998-01-01
As part of the NASA/Mir Phase 1B Science Program, the ionizing radiation environment inside and outside the Russian Mir's Space Station was monitored using a combination of Thermoluminescent Detectors (TLD) and CR-39 Plastic Nuclear Track Detectors (PNTD). Radiation measurements inside the Mir station were carried out using six Area Passive Dosimeters (APD), four located inside the Mir Base Block and two located inside the Kvant 2 module, during the NASA-2/Mir-21, NASA-3/Mir-22 and NASA-4/Mir-23 missions. The radiation environment under low shielding was measured using an External Dosimeter Array (EDA) mounted on the outer surface of the Kvant 2 module. The external radiation environment and a location inside the Kvant 2 roughly corresponding to the location of the EDA were monitored for 130 days during the NASA- 4/Mir-23 and NASA-5/Mir-24 missions. Dose rates measured by APD TLDs ranged from 271 to 407 microGy/d during the NASA-2/Mir-21 mission, from 265 to 378 microGy/d during the NASA-3/Mir-22 mission, and from 287 to 421 microGy/d during the NASA-4/Mir-23 mission. APD PNTDs have been analyzed and LET spectra have been Cenerated for the five APDs exposed on the NASA-2/Mir-21 mission and for two APD PNTDs exposed on the NASA-3/Mir-22 mission. Dose equivalent rates on the NASA-2/Mir-21 mission ranged from 513 microSv/d in the Kvant 2 module to 710 microSv/d on the floor of the Base Block. Dose as a function of shielding depth in TLDs has been measured in the thin TLD stacks including in the EDA. EDA dose range from 72.5 Gy under 0.0146 g/sq cm to 0.093 Gy under 3.25 g/sq cm of shielding. Readout and analysis of the reaming PNTDs form the NASA-3/Mir-22 mission and PNTDs from the NASA-4/Mir-23 mission (including those from the EDA) is ongoing and will be completed during the final year of this experiment. Dose equivalent rates for the NASA-3/Mir-22 and NASA-4/Mir-23 APDs will then be determined and comparisons will be made with both model calculations and with results from similar measurements.
miR-342-3p affects hepatocellular carcinoma cell proliferation via regulating NF-κB pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Liang; Zhang, Yubao, E-mail: zhyb880077@sina.com
2015-02-13
Recent research indicates that non-coding microRNAs (miRNAs) help regulate basic cellular processes in many types of cancer cells. We hypothesized that overexpression of miR-342-3p might affect proliferation of hepatocellular carcinoma (HCC) cells. After confirming overexpression of miR-342-3p with qRT-PCR, MTT assay showed that HCC cell proliferation was significantly inhibited by miR-342-3p, and that it significantly decreased BrdU-positive cell proliferation by nearly sixfold. Searching for targets using three algorithms we found that miR-342-3p is related to the NF-κB pathway and luciferase assay found that IKK-γ, TAB2 and TAB3 are miR-342-3p target genes. Results of western blot on extracted nuclear proteins ofmore » HepG2 and HCT-116 cells showed that miR-342-3p reduced and miR-342-3p-in increased p65 nuclear levels and qRT-PCR found that NF-κB pathway downstream genes were downregulated by miR-342-3p and upregulated by miR-342-3p-in, confirming that miR-342 targets NF-κB pathway. Overexpression of Ikk-γ, TAB2 and TAB3 partially rescued HCC cells proliferation inhibited by miR-342-3p. Using the GSE54751 database we evaluated expression from 10 HCC samples, which strongly suggested downregulation of miR-342-3p and we also found inverse expression between miR-342-3p and its targets IKK-γ, TAB2 and TAB3 from 71 HCC samples. Our results show that miR-342-3p has a significant role in HCC cell proliferation and is suitable for investigation of therapeutic targets. - Highlights: • MiR-342-3p suppresses hepatocellular carcinoma cell proliferation. • MiR-342-3p targets IKK-γ, TAB2 and TAB3 genes. • MiR-342-3p downregulates NF-kB signaling pathway. • MiR-342-3p is downregulated in clinical hepatocellular carcinoma samples. • The expression of miR-342-3p and its target gene is inversely related.« less
Emanueli, Costanza; Shearn, Andrew I U; Laftah, Abas; Fiorentino, Francesca; Reeves, Barnaby C; Beltrami, Cristina; Mumford, Andrew; Clayton, Aled; Gurney, Mark; Shantikumar, Saran; Angelini, Gianni D
2016-01-01
Exosome nanoparticles carry a composite cargo, including microRNAs (miRs). Cultured cardiovascular cells release miR-containing exosomes. The exosomal trafficking of miRNAs from the heart is largely unexplored. Working on clinical samples from coronary-artery by-pass graft (CABG) surgery, we investigated if: 1) exosomes containing cardiac miRs and hence putatively released by cardiac cells increase in the circulation after surgery; 2) circulating exosomes and exosomal cardiac miRs correlate with cardiac troponin (cTn), the current "gold standard" surrogate biomarker of myocardial damage. The concentration of exosome-sized nanoparticles was determined in serial plasma samples. Cardiac-expressed (miR-1, miR-24, miR-133a/b, miR-208a/b, miR-210), non-cardiovascular (miR-122) and quality control miRs were measured in whole plasma and in plasma exosomes. Linear regression analyses were employed to establish the extent to which the circulating individual miRs, exosomes and exosomal cardiac miR correlated with cTn-I. Cardiac-expressed miRs and the nanoparticle number increased in the plasma on completion of surgery for up to 48 hours. The exosomal concentration of cardiac miRs also increased after CABG. Cardiac miRs in the whole plasma did not correlate significantly with cTn-I. By contrast cTn-I was positively correlated with the plasma exosome level and the exosomal cardiac miRs. The plasma concentrations of exosomes and their cargo of cardiac miRs increased in patients undergoing CABG and were positively correlated with hs-cTnI. These data provide evidence that CABG induces the trafficking of exosomes from the heart to the peripheral circulation. Future studies are necessary to investigate the potential of circulating exosomes as clinical biomarkers in cardiac patients.
Hu, Yanyan; Wang, Qian; Wang, Zengmin; Wang, Fengxue; Guo, Xiaobo; Li, Guimei
2015-02-01
Since the tissue of children with combined pituitary hormone deficiency (CPHD) is not readily accessible, a new focus in children with CPHD is the blood-based expression profiling of non-protein coding genes, such as microRNAs (miRNAs or miRs), which regulate gene expression by inhibiting the translation of mRNAs. In this study, to address this, we identified potential miRNA signatures for CPHD by comparing genome-wide miRNA expression profiles in the serum of children with CPHD vs. normal (healthy) controls. Human embryonic kidney 293T cells were transfected with miR-593 or miR-511 oligonucleotides. Potential target gene expression was validated by western blot analysis for proteins and by miR-593 or miR-511 reporter assay using PROP1 gene 3'-untranslated region (3'-UTR) reporter. The miR-593 and miR-511 levels in the serum of 103 children with CPHD were assessed using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method. We found 23 upregulated and 19 downregulated miRNAs with abnormal expression in children with CPHD compared with the normal controls using miRNA microarray analysis and RT-qPCR. miR-593 and miR-511 targeted the 3'-UTR of the PROP1 gene and attenuated the expression of PROP1. The levels of miR-593 and miR-511 in the serum of children with CPHD were increased compared with those in the control subjects. According to Youden's index, the sensitivity was 82.54 and 84.86%, and the specificity was 98.15 and 91.36% for miR-593 and miR-511, respectively. The various levels of specific miRNAs, particularly miR-593 and miR-511 whose direct target is the PROP1 gene, may serve as a non-invasive diagnostic biomarkers for children with CPHD.
Clinical significance of miR-146a in gastric cancer cases.
Kogo, Ryunosuke; Mimori, Koshi; Tanaka, Fumiaki; Komune, Shizuo; Mori, Masaki
2011-07-01
The profiles of microRNAs change significantly in gastric cancer. MiR-146a is reported to be a tumor suppressor in pancreatic cancer, breast cancer, and prostate cancer. We investigated the clinical significance of miR-146a in gastric cancer, in particular focusing on hypothetical miR-146a target genes, such as epidermal growth factor receptor (EGFR) and interleukin-1 receptor-associated kinase (IRAK1). We examined miR-146a levels in 90 gastric cancer samples by q-real-time (qRT)-PCR and analyzed the association between miR-146a levels and clinicopathologic factors and prognosis. The regulation of EGFR and IRAK1 by miR-146a was examined with miR-146a-transfected gastric cancer cells. Moreover, we analyzed the association between miR-146a levels and the G/C single nucleotide polymorphism (SNP) within pre-miR-146a seed sequences in 76 gastric cancer samples, using direct sequencing of genomic DNA. In 90 clinical samples of gastric cancer, miR-146a levels in cancer tissues were significantly lower than those in the corresponding noncancerous tissue (P < 0.001). Lower levels of miR-146a were associated with lymph node metastasis and venous invasion (P < 0.05). Moreover, a lower level of miR-146a was an independent prognostic factor for overall survival (P = 0.003). Ectopic expression of miR-146a inhibited migration and invasion and downregulated EGFR and IRAK1 expression in gastric cancer cells. In addition, G/C SNP within the pre-miR-146a seed sequence significantly reduced miR-146a levels in the GG genotype compared with the CC genotype. MiR-146a contains an SNP, which is associated with mature miR-146a expression. MiR-146a targeting of EGFR and IRAK1 is an independent prognostic factor in gastric cancer cases.
Biggar, Kyle K.; Kornfeld, Samantha F.; Maistrovski, Yulia; Storey, Kenneth B.
2012-01-01
Several recent studies of vertebrate adaptation to environmental stress have suggested roles for microRNAs (miRNAs) in regulating global suppression of protein synthesis and/or restructuring protein expression patterns. The present study is the first to characterize stress-responsive alterations in the expression of miRNAs during natural freezing or anoxia exposures in an invertebrate species, the intertidal gastropod Littorina littorea. These snails are exposed to anoxia and freezing conditions as their environment constantly fluctuates on both a tidal and seasonal basis. The expression of selected miRNAs that are known to influence the cell cycle, cellular signaling pathways, carbohydrate metabolism and apoptosis was evaluated using RT-PCR. Compared to controls, significant changes in expression were observed for miR-1a-1, miR-34a and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-125b, miR-29b and miR-2a in foot muscle after freezing exposure at −6 °C for 24 h (P < 0.05). In addition, in response to anoxia stress for 24 h, significant changes in expression were also observed for miR-1a-1, miR-210 and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-29b and miR-2a in foot muscle (P < 0.05). Moreover, protein expression of Dicer, an enzyme responsible for mature microRNA processing, was increased in foot muscle during freezing and anoxia and in hepatopancreas during freezing. Alterations in expression of these miRNAs in L. littorea tissues may contribute to organismal survival under freezing and anoxia. PMID:23200140
Emanueli, Costanza; Fiorentino, Francesca; Reeves, Barnaby C.; Beltrami, Cristina; Mumford, Andrew; Clayton, Aled; Gurney, Mark; Shantikumar, Saran; Angelini, Gianni D.
2016-01-01
Introduction Exosome nanoparticles carry a composite cargo, including microRNAs (miRs). Cultured cardiovascular cells release miR-containing exosomes. The exosomal trafficking of miRNAs from the heart is largely unexplored. Working on clinical samples from coronary-artery by-pass graft (CABG) surgery, we investigated if: 1) exosomes containing cardiac miRs and hence putatively released by cardiac cells increase in the circulation after surgery; 2) circulating exosomes and exosomal cardiac miRs correlate with cardiac troponin (cTn), the current “gold standard” surrogate biomarker of myocardial damage. Methods and Results The concentration of exosome-sized nanoparticles was determined in serial plasma samples. Cardiac-expressed (miR-1, miR-24, miR-133a/b, miR-208a/b, miR-210), non-cardiovascular (miR-122) and quality control miRs were measured in whole plasma and in plasma exosomes. Linear regression analyses were employed to establish the extent to which the circulating individual miRs, exosomes and exosomal cardiac miR correlated with cTn-I. Cardiac-expressed miRs and the nanoparticle number increased in the plasma on completion of surgery for up to 48 hours. The exosomal concentration of cardiac miRs also increased after CABG. Cardiac miRs in the whole plasma did not correlate significantly with cTn-I. By contrast cTn-I was positively correlated with the plasma exosome level and the exosomal cardiac miRs. Conclusions The plasma concentrations of exosomes and their cargo of cardiac miRs increased in patients undergoing CABG and were positively correlated with hs-cTnI. These data provide evidence that CABG induces the trafficking of exosomes from the heart to the peripheral circulation. Future studies are necessary to investigate the potential of circulating exosomes as clinical biomarkers in cardiac patients. PMID:27128471
Integrated Analysis of Dysregulated miRNA-gene Expression in HMGA2-silenced Retinoblastoma Cells
Venkatesan, Nalini; Deepa, PR; Vasudevan, Madavan; Khetan, Vikas; Reddy, Ashwin M; Krishnakumar, Subramanian
2014-01-01
Retinoblastoma (RB) is a primary childhood eye cancer. HMGA2 shows promise as a molecule for targeted therapy. The involvement of miRNAs in genome-level molecular dys-regulation in HMGA2-silenced RB cells is poorly understood. Through miRNA expression microarray profiling, and an integrated array analysis of the HMGA2-silenced RB cells, the dysregulated miRNAs and the miRNA-target relationships were modelled. Loop network analysis revealed a regulatory association between the transcription factor (SOX5) and the deregulated miRNAs (miR-29a, miR-9*, miR-9-3). Silencing of HMGA2 deregulated the vital oncomirs (miR-7, miR-331, miR-26a, miR-221, miR-17~92 and miR-106b∼25) in RB cells. From this list, the role of the miR-106b∼25 cluster was examined further for its expression in primary RB tumor tissues (n = 20). The regulatory targets of miR-106b∼25 cluster namely p21 (cyclin-dependent kinase inhibitor) and BIM (pro-apoptotic gene) were elevated, and apoptotic cell death was observed, in RB tumor cells treated with the specific antagomirs of the miR-106b∼25 cluster. Thus, suppression of miR-106b∼25 cluster controls RB tumor growth. Taken together, HMGA2 mediated anti-tumor effect present in RB is, in part, mediated through the miR-106b∼25 cluster. PMID:25232279
Montalban, Enrica; Mattugini, Nicola; Ciarapica, Roberta; Provenzano, Claudia; Savino, Mauro; Scagnoli, Fiorella; Prosperini, Gianluca; Carissimi, Claudia; Fulci, Valerio; Matrone, Carmela; Calissano, Pietro; Nasi, Sergio
2014-06-01
The neurotrophins Ngf, Bdnf, NT-3, NT4-5 have key roles in development, survival, and plasticity of neuronal cells. Their action involves broad gene expression changes at the level of transcription and translation. MicroRNAs (miRs)-small RNA molecules that control gene expression post-transcriptionally-are increasingly implicated in regulating development and plasticity of neural cells. Using PC12 cells as a model system, we show that Ngf modulates changes in expression of a variety of microRNAs, including miRs known to be modulated by neurotrophins-such as the miR-212/132 cluster-and several others, such as miR-21, miR-29c, miR-30c, miR-93, miR-103, miR-207, miR-691, and miR-709. Pathway analysis indicates that Ngf-modulated miRs may regulate many protein components of signaling pathways involved in neuronal development and disease. In particular, we show that miR-21 enhances neurotrophin signaling and controls neuronal differentiation induced by Ngf. Notably, in a situation mimicking neurodegeneration-differentiated neurons deprived of Ngf-this microRNA is able to preserve the neurite network and to support viability of the neurons. These findings uncover a broad role of microRNAs in regulating neurotrophin signaling and suggest that aberrant expression of one or more Ngf-modulated miRs may be involved in neurodegenerative diseases.
Laxman, Navya; Mallmin, Hans; Nilsson, Olle; Kindmark, Andreas
2016-12-23
MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17-24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5 , which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism.
Laxman, Navya; Mallmin, Hans; Nilsson, Olle; Kindmark, Andreas
2016-01-01
MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17–24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5, which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism. PMID:28025541
Decreased miR-128 and increased miR-21 synergistically cause podocyte injury in sepsis.
Wang, Shanshan; Wang, Jun; Zhang, Zengdi; Miao, Hongjun
2017-08-01
Glomerular podocytes are injured in sepsis. We studied, in a sepsis patient, whether microRNAs (miRNAs) play a role in the podocyte injury. Podocytes were cultured and treated with lipopolysaccharide (LPS). Filtration barrier function of podocyte was analyzed with albumin influx assay. Nephrin level was analyzed with reverse transcription polymerase chain reaction (RT-PCR) and western blot. MiRNAs were detected using miRNAs PCR Array and in situ hybridization. MiRNA target sites were evaluated with luciferase reporter assays. LPS impaired the filtration barrier function of podocytes. MiR-128 level was decreased and miR-21 level was increased in podocytes in vitro and in the sepsis patient. The decrease in miR-128 was sufficient to induce the loss of nephrin and the impairment of filtration barrier function, while the increase of miR-21 exacerbated the process. Snail and phosphatase and tensin homolog (PTEN) were identified as the targets of miR-128 and miR-21. Decreased miR-128 induced Snail expression, and the increased miR-21 stabilized Snail by regulating the PTEN/Akt/GSK3β pathway. Supplementation of miR-128 and inhibition of miR-21 suppressed Snail expression and prevented the podocyte injury induced by LPS. Our study suggests that decreased miR-128 and increased miR-21 synergistically cause podocyte injury and are the potential therapeutic targets in sepsis.
miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Mingchen; Geng, Yiwei; Laboratory of Tumor Biology, Zhengzhou University, Zhengzhou
2015-09-04
MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in anaplastic thyroid carcinoma (ATC), has remained elusive. Here, we identified that miR-4295 promotes ATC cell proliferation by negatively regulates its target gene CDKN1A. In ATC cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-4295, while miR-4295 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-4295 mimics significantly promoted the migration and invasion of ATC cells, whereas miR-4295 inhibitors significantly reduced cell migration and invasion. luciferase assaysmore » confirmed that miR-4295 directly bound to the 3'untranslated region of CDKN1A, and western blotting showed that miR-4295 suppressed the expression of CDKN1A at the protein levels. This study indicated that miR-4295 negatively regulates CDKN1A and promotes proliferation and invasion of ATC cell lines. Thus, miR-4295 may represent a potential therapeutic target for ATC intervention. - Highlights: • miR-4295 mimics promote the proliferation and invasion of ATC cells. • miR-4295 inhibitors inhibit the proliferation and invasion of ATC cells. • miR-4295 targets 3′UTR of CDKN1A in ATC cells. • miR-4295 negatively regulates CDKN1A in ATC cells.« less
Saito, Yoshimasa; Suzuki, Hidekazu; Tsugawa, Hitoshi; Imaeda, Hiroyuki; Matsuzaki, Juntaro; Hirata, Kenro; Hosoe, Naoki; Nakamura, Masahiko; Mukai, Makio; Saito, Hidetsugu; Hibi, Toshifumi
2012-01-01
microRNAs (miRNAs) are small non-coding RNAs that can function as endogenous silencers of target genes and play critical roles in human malignancies. To investigate the molecular pathogenesis of gastric mucosa-associated lymphoid tissue (MALT) lymphoma, the miRNA expression profile was analyzed. miRNA microarray analysis with tissue specimens from gastric MALT lymphomas and surrounding non-tumor mucosae revealed that a hematopoietic-specific miRNA miR-142 and an oncogenic miRNA miR-155 were overexpressed in MALT lymphoma lesions. The expression levels of miR-142-5p and miR-155 were significantly increased in MALT lymphomas which do not respond to Helicobacter pylori (H. pylori) eradication. The expression levels of miR-142-5p and miR-155 were associated with the clinical courses of gastric MALT lymphoma cases. Overexpression of miR-142-5p and miR-155 was also observed in Helicobacter heilmannii-infected C57BL/6 mice, an animal model of gastric MALT lymphoma. In addition, miR-142-5p and miR-155 suppress the proapoptotic gene TP53INP1 as their target. The results of this study indicate that overexpression of miR-142-5p and miR-155 plays a critical role in the pathogenesis of gastric MALT lymphoma. These miRNAs might have potential application as therapeutic targets and novel biomarkers for gastric MALT lymphoma. PMID:23209550
Cho, Sung Hwan; An, Hui Jeong; Kim, Kyung Ah; Ko, Jung Jae; Kim, Ji Hyang; Kim, Young Ran; Ahn, Eun Hee; Rah, HyungChul; Lee, Woo Sik; Kim, Nam Keun
2017-01-01
MicroRNAs post-transcriptionally regulate gene expression in animals and plants. The aim of this study was to identify new target genes for microRNA polymorphisms (miR-146aC>G and miR-196a2T>C) in primary ovarian insufficiency (POI). We cloned and transfected miR-146aC>G and miR-196a2T>C into human granulosa cells and used microarrays and qPCR-arrays to examine the changes in the messenger RNA expression profile. We show miR-146aC>G and miR-196a2T>C change the mRNA expression patterns in granulosa cell. In each case, mRNAs were up or down-regulated after treatments with miR-146a C or G and miR-196a2 T or C. We found that miR-146a led to a significantly altered regulation of the mRNA levels of FOXO3, FOXL2 and CCND2 compared to controls. We also found that the polymorphisms of miR-146a led to a significantly altered regulation of CCND2 and FOXO3. Our results suggest that miR-146aC>G and miR-196a2T>C can regulate the levels of many of their target transcripts. In addition, specific target genes of miR-146aC>G polymorphisms may be involved in granulosa cell regulation.
Cho, Sung Hwan; An, Hui Jeong; Kim, Kyung Ah; Ko, Jung Jae; Kim, Ji Hyang; Kim, Young Ran; Ahn, Eun Hee; Rah, HyungChul; Lee, Woo Sik
2017-01-01
MicroRNAs post-transcriptionally regulate gene expression in animals and plants. The aim of this study was to identify new target genes for microRNA polymorphisms (miR-146aC>G and miR-196a2T>C) in primary ovarian insufficiency (POI). We cloned and transfected miR-146aC>G and miR-196a2T>C into human granulosa cells and used microarrays and qPCR-arrays to examine the changes in the messenger RNA expression profile. We show miR-146aC>G and miR-196a2T>C change the mRNA expression patterns in granulosa cell. In each case, mRNAs were up or down-regulated after treatments with miR-146a C or G and miR-196a2 T or C. We found that miR-146a led to a significantly altered regulation of the mRNA levels of FOXO3, FOXL2 and CCND2 compared to controls. We also found that the polymorphisms of miR-146a led to a significantly altered regulation of CCND2 and FOXO3. Our results suggest that miR-146aC>G and miR-196a2T>C can regulate the levels of many of their target transcripts. In addition, specific target genes of miR-146aC>G polymorphisms may be involved in granulosa cell regulation. PMID:28841705
MicroRNA-34a regulation of endothelial senescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Takashi; Yagi, Shusuke; Yamakuchi, Munekazu, E-mail: munekazu_yamakuchi@urmc.rochester.edu
2010-08-06
Research highlights: {yields} MicroRNA-34a (miR-34a) regulates senescence and cell cycle progression in endothelial cells. {yields} MiR-34a expression increases during endothelial cell senescence and in older mice. {yields} SIRT1 is a miR-34a target gene in endothelial cells. {yields} SIRT1 mediates the effects of miR-34a upon cell senescence in endothelial cells. -- Abstract: Endothelial senescence is thought to play a role in cardiovascular diseases such as atherosclerosis. We hypothesized that endothelial microRNAs (miRNAs) regulate endothelial survival and senescence. We found that miR-34a is highly expressed in primary endothelial cells. We observed that miR-34a expression increases in senescent human umbilical cord vein endothelialmore » cells (HUVEC) and in heart and spleen of older mice. MiR-34a over-expression induces endothelial cell senescence and also suppresses cell proliferation by inhibiting cell cycle progression. Searching for how miR-34a affects senescence, we discovered that SIRT1 is a target of miR-34a. Over-expressing miR-34a inhibits SIRT1 protein expression, and knocking down miR-34a enhances SIRT1 expression. MiR-34a triggers endothelial senescence in part through SIRT1, since forced expression of SIRT1 blocks the ability of miR-34a to induce senescence. Our data suggest that miR-34a contributes to endothelial senescence through suppression of SIRT1.« less
MiR-205 and MiR-373 Are Associated with Aggressive Human Mucinous Colorectal Cancer
Eyking, Annette; Reis, Henning; Frank, Magdalena; Gerken, Guido; Schmid, Kurt W.; Cario, Elke
2016-01-01
Mucinous adenocarcinoma (MAC) represents a distinct histopathological entity of colorectal cancer (CRC), which is associated with disease progression and poor prognosis. Here, we found that expression levels of miR-205 and miR-373 were specifically upregulated only in patients with mucinous colon cancers, but not in CRC that lack mucinous components. To investigate the effects of miR-205 and miR-373 on intestinal epithelial cell (IEC) biology by gain- and loss-of-function experiments in a proof-of-concept approach, we chose previously established in-vitro human Caco-2-based models of differentiated, non-invasive (expressing TLR4 wild-type; termed Caco-2[WT]) versus undifferentiated, invasive (expressing TLR4 mutant D299G; termed Caco-2[D299G]) IEC. Enterocyte-like Caco-2[WT] showed low levels of miR-205 and miR-373 expression, while both miRNAs were significantly upregulated in colorectal carcinoma-like Caco-2[D299G], thus resembling the miRNA expression pattern of paired normal versus tumor samples from MAC patients. Using stable transfection, we generated miR-205- or miR-373-expressing and miR-205- or miR-373-inhibiting subclones of these IEC lines. We found that introduction of miR-205 into Caco-2[WT] led to expansion of mucus-secreting goblet cell-like cells, which was associated with induction of KLF4, MUC2 and TGFβ1 expression. Activation of miR-205 in Caco-2[WT] induced chemoresistance, while inhibition of miR-205 in Caco-2[D299G] promoted chemosensitivity. Caco-2[WT] overexpressing miR-373 showed mitotic abnormalities and underwent morphologic changes (loss of epithelial polarity, cytoskeletal reorganization, and junctional disruption) associated with epithelial-mesenchymal transition and progression to inflammation-associated colonic carcinoma, which correlated with induction of phosphorylated STAT3 and N-CADHERIN expression. Functionally, introduction of miR-373 into Caco-2[WT] mediated loss of cell-cell adhesion and increased proliferation and invasion. Reversely, inhibition of miR-373 allowed mesenchymal IEC to regain epithelial properties, which correlated with absence of neoplastic progression. Using xenografts in mice demonstrated miR-373-mediated acceleration of malignant intestinal tumor growth. In conclusion, our results provide first evidence that miR-205 and miR-373 may differentially contribute to the aggressive phenotype of MAC in CRC. PMID:27271572
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Dongjing; Wu, Jilin, E-mail: 6296082@qq.com; Liu, Meizhou
Hepatitis C virus (HCV) Core protein has been demonstrated to induce epithelial–mesenchymal transition (EMT) and is associated with cancer progression of hepatocellular carcinoma (HCC). However, how the Core protein regulates EMT is still unclear. In this study, HCV Core protein was overexpressed by an adenovirus. The protein levels of EMT markers were measured by Western blot. The xenograft animal model was established by inoculation of HepG2 cells. Results showed that ectopic expression of HCV core protein induced EMT in L02 hepatocytes and HepG2 tumor cells by upregulating vimentin, Sanl1, and Snal2 expression and downregulating E-cadherin expression. Moreover, Core protein downregulatedmore » miR-30c and miR-203a levels in L02 and HepG2 cells, but artificial expression of miR-30c and miR-203a reversed Core protein-induced EMT. Further analysis showed that ectopic expression of HCV core protein stimulated cell proliferation, inhibited apoptosis, and increased cell migration, whereas artificial expression of miR-30c and miR-203a significantly reversed the role of Core protein in these cell functions in L02 and HepG2 cells. In the HepG2 xenograft tumor models, artificial expression of miR-30c and miR-203a inhibited EMT and tumor growth. Moreover, L02 cells overexpressing Core protein can form tumors in nude mice. In HCC patients, HCV infection significantly shortened patients' survival time, and loss of miR-30c and miR-203 expression correlated with poor survival. In conclusion, HCV core protein downregulates miR-30c and miR-203a expression, which results in activation of EMT in normal hepatocytes and HCC tumor cells. The Core protein-activated-EMT is involved in the carcinogenesis and progression of HCC. Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC. - Highlights: • HCV core protein downregulates miR-30c and miR-203a expression. • Downregulation of miR-30c and miR-203a activates EMT. • Activated-EMT is involved in the carcinogenesis and progression of HCC. • Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC.« less
miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells
Sun, GuoQiang; Ye, Peng; Murai, Kiyohito; Lang, Ming-Fei; Li, Shengxiu; Zhang, Heying; Li, Wendong; Fu, Chelsea; Yin, Jason; Wang, Allen; Ma, Xiaoxiao; Shi, Yanhong
2012-01-01
miR-137 is a brain-enriched microRNA. Its role in neural development remains unknown. Here we show that miR-137 plays an essential role in controlling embryonic neural stem cell fate determination. miR-137 negatively regulates cell proliferation and accelerates neural differentiation of embryonic neural stem cells. In addition, we show that histone demethylase LSD1, a transcriptional co-repressor of nuclear receptor TLX, is a downstream target of miR-137. In utero electroporation of miR-137 in embryonic mouse brains led to premature differentiation and outward migration of the transfected cells. Introducing a LSD1 expression vector lacking the miR-137 recognition site rescued miR-137-induced precocious differentiation. Furthermore, we demonstrate that TLX, an essential regulator of neural stem cell self-renewal, represses the expression of miR-137 by recruiting LSD1 to the genomic regions of miR-137. Thus, miR-137 forms a feedback regulatory loop with TLX and LSD1 to control the dynamics between neural stem cell proliferation and differentiation during neural development. PMID:22068596
Li, Weidong; Miao, Xiaobo; Liu, Lingling; Zhang, Yue; Jin, Xuejun; Luo, Xiaojun; Gao, Hai; Deng, Xubin
2017-04-11
Aberrant expression of miR-211 has frequently been reported in cancer studies; however, its role in glioblastoma multiforme (GBM) has not been examined in detail. We investigated the function and the underlying mechanism of miR-211 in GBM. We revealed that miR-211 was downregulated in GBM tissues and cell lines. Restoration of miR-211 inhibited GBM cell growth and invasion both in vitro and in vivo. The epithelial to mesenchymal transition (EMT) phenotype was reversed when miR-211 expression was restored. HMGA2 was identified as a down-stream target of miR-211. MiR-211 had an inhibitory effect on AKT/β-catenin signaling, which was reversed by HMGA2 overexpression or miR-211 restoration. In addition, miR-211 was transcriptionally repressed by EZH2-induced H3K27 trimethylation and promoter methylation. Overall, our findings revealed miR-211 as a tumor suppressor in GBM and mir-211 may be a potential therapeutic target for GBM patients.
Sabre, Liis; Maddison, Paul; Sadalage, Girija; Ambrose, Philip Alexander; Punga, Anna Rostedt
2018-05-08
There are no biomarkers for late onset myasthenia gravis (LOMG; onset >50 years). We evaluated circulating microRNA in a discovery cohort of 4 LOMG patients and 4 healthy controls and in a prospective diagnostic validation cohort of 73 LOMG patients (48 male) with longitudinal follow-up samples. In immunosuppression naïve patients, levels of miRNAs miR-150-5p, miR-21-5p and miR-30e-5p decreased in parallel with clinical improvement after initiation of immunosuppression and their levels positively correlated with the clinical MG composite score. Levels of miR-150-5p and miR-21-5p were lower in patients with ocular compared to generalized LOMG. Circulating miR-150-5p, miR-21-5p and miR-30e-5p correlate with the clinical course in LOMG. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.
Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei
2017-01-01
MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.
miR-22 suppresses the proliferation and invasion of gastric cancer cells by inhibiting CD151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xun; Yu, Honggang, E-mail: honggang_yuwh@163.com; Lu, Xinyao
2014-02-28
Highlights: • miR-22 was decreased in GC tissue samples and cell lines. • miR-22 suppressed GC cell growth and motility in vitro. • CD151 was a direct target of miR-22. • miR-22 suppressed GC cell growth and motility by inhibiting CD151. - Abstract: Gastric cancer (GC) is the second common cause of cancer-related death worldwide. microRNAs (miRNAs) play important roles in the carcinogenesis of GC. Here, we found that miR-22 was significantly decreased in GC tissue samples and cell lines. Ectopic overexpression of miR-22 remarkably suppressed cell proliferation and colony formation of GC cells. Moreover, overexpression of miR-22 significantly suppressedmore » migration and invasion of GC cells. CD151 was found to be a target of miR-22. Furthermore, overexpression of CD151 significantly attenuated the tumor suppressive effect of miR-22. Taken together, miR-22 might suppress GC cells growth and motility partially by inhibiting CD151.« less
Serum miR-29a and miR-122 as Potential Biomarkers for Non-Alcoholic Fatty Liver Disease (NAFLD).
Jampoka, Kanisa; Muangpaisarn, Puth; Khongnomnan, Kritsada; Treeprasertsuk, Sombat; Tangkijvanich, Pisit; Payungporn, Sunchai
2018-05-30
Non-alcoholic fatty liver disease (NAFLD) is an over accumulation of triglyceride in the liver without alcohol consumption which its major cause is from insulin resistance. Patients with NAFLD can develop to be liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) are non-coding RNAs that regulate post-transcriptional gene silencing. Previous research reported that miR-29 family (a, b and c) and miR-122 have an important role in regulating insulin resistance related to NAFLD. The purpose of this study was to investigate that miR-29 and miR-122 can be possible biomarkers for non-invasive diagnosis of NAFLD. Serum samples were collected from 58 NAFLD patients and 34 healthy controls. MiRNAs were extracted from serum by using microRNA purification kit followed by polyuridylation, reverse transcription and quantitative real-time PCR. Also, we analyzed the correlation between miR-29 and miR-122 and level of liver inflammation in NAFLD patients. We found that the serum miR-29a levels in NAFLD patients were significantly lower (P = 0.006) than the control group, while miR-29c levels were unchanged, and miR-29b levels were undetectable. However, we found that serum miR-122 levels in NAFLD patients were significantly higher (P < 0.001) than those found in the control group. For miR-29a, the area under curve (AUC) was 0.679 (P = 0.0065) with 60.87% sensitivity and 82.35% specificity. For miR-122, the AUC was 0.831 (P < 0.0001) with 75.00% sensitivity and 82.35% specificity. Interestingly, the level of serum miR-122 were significantly different between patients with not steatohepatitis (NAS < 4) and steatohepatitis (NAS ≥ 4), indicating that the levels of miR-122 were related to the severity of NAFLD. The levels of miR-29a and miR-122 might be beneficial and compelling as possible biomarkers for non-invasive diagnosis of NAFLD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Luo-Qiao; Zhang, Yue; Yan, Huan
miR-373 was reported to be elevated in several tumors; however, the role of miR-373 in cervical cancer has not been investigated. In this study we aimed to investigate the role of miR-373 in tumorigenicity of cervical cancer cells in vivo and in vitro. The expression of miR-373 was investigated using real-time reverse transcription-polymerase chain reaction assay in 45 cervical specimens and cervical cancer cell lines. The role of miR-373 in tumorigenicity of cervical cancer cells was assessed by cell proliferation, colony formation in vitro as well as tumor growth assays in vivo with the overexpression of miR-373 or gene silencing. The functional target genemore » of miR-373 in cervical cancer cells was identified using integrated bioinformatics analysis, gene expression arrays, and luciferase assay. We founded that the expression of miR-373 is upregulated in human cervical cancer tissues and cervical carcinoma cell lines when compared to the corresponding noncancerous tissues. Ectopic overexpression of miR-373 in human cervical cancer cells promoted cell growth in vitro and tumorigenicity in vivo, whereas silencing the expression of miR-373 decreased the rate of cell growth. YOD1 was identified as a direct and functional target of miR-373 in cervical cancer cells. Expression levels of miR-373 were inversely correlated with YOD1 levels in human cervical cancer tissues. RNAi-mediated knockdown of YOD1 phenocopied the proliferation-promoting effect of miR-373. Moreover, overexpression of YOD1 abrogated miR-373-induced proliferation of cervical cancer cells. These results demonstrate that miR-373 increases proliferation by directly targeting YOD1, a new potential therapeutic target in cervical cancer. - Highlights: • The expression of miR-373 is upregulated in human cervical cancer tissues. • miR-373 effects as oncogenic miRNA in cervical cancer in vitro and in vivo. • miR-373 increases proliferation of cervical cancer cells by directly targeting YOD1.« less
2014-01-01
Background Epithelial-to-mesenchymal transition (EMT) is a key step of the progression of tumor cell metastasis. Recent work has demonstrated some miRNAs play critical roles in EMT. In this study, we focused on the roles of miR-300 in regulating EMT. Methods The expression levels of miR-300 were examined in epithelial carcinoma cells that underwent an EMT using quantitative reverse transcription-PCR. The role of miR-300 in EMT was investigated by transfection of the miR-300 mimic or inhibitor in natural epithelial-mesenchymal phenotype cell line pairs and in transforming growth factor (TGF) beta-induced EMT cell models. A luciferase reporter assay and a rescue experiment were conducted to confirm the target gene of miR-300. The efficacy of miR-300 against tumor invasion and metastasis was evaluated both in vitro and in vivo. Correlation analysis between miR-300 expression and the expression levels of its target gene, as well as tumor metastasis was performed in specimens from patients with head and neck squamous cell carcinoma (HNSCC). Results MiR-300 was found down-regulated in the HNSCC cells and breast cancer cells that underwent EMT. Ectopic expression of miR-300 effectively blocked TGF-beta-induced EMT and reversed the phenotype of EMT in HN-12 and MDA-MB-231 cells, but inhibition of miR-300 in the epithelial phenotype cells, HN-4 and MCF-7 cells, could induce EMT. The luciferase reporter assay and the rescue assay results showed that miR-300 directly targets the 3′UTR of Twist. Enforced miR-300 expression suppressed cell invasion in vitro and experimental metastasis in vivo. Clinically, miR-300 expression was found inversely correlated with Twist expression and reduced miR-300 was associated with metastasis in patient specimens. Conclusions Down-regulation of miR-300 is required for EMT initiation and maintenance. MiR-300 may negatively regulate EMT by direct targeting Twist and therefore inhibit cancer cell invasion and metastasis, which implicates miR-300 as an attractive candidate for cancer therapy. PMID:24885626
Yu, Jingshuang; Xie, Furong; Bao, Xin; Chen, Wantao; Xu, Qin
2014-05-24
Epithelial-to-mesenchymal transition (EMT) is a key step of the progression of tumor cell metastasis. Recent work has demonstrated some miRNAs play critical roles in EMT. In this study, we focused on the roles of miR-300 in regulating EMT. The expression levels of miR-300 were examined in epithelial carcinoma cells that underwent an EMT using quantitative reverse transcription-PCR. The role of miR-300 in EMT was investigated by transfection of the miR-300 mimic or inhibitor in natural epithelial-mesenchymal phenotype cell line pairs and in transforming growth factor (TGF) beta-induced EMT cell models. A luciferase reporter assay and a rescue experiment were conducted to confirm the target gene of miR-300. The efficacy of miR-300 against tumor invasion and metastasis was evaluated both in vitro and in vivo. Correlation analysis between miR-300 expression and the expression levels of its target gene, as well as tumor metastasis was performed in specimens from patients with head and neck squamous cell carcinoma (HNSCC). MiR-300 was found down-regulated in the HNSCC cells and breast cancer cells that underwent EMT. Ectopic expression of miR-300 effectively blocked TGF-beta-induced EMT and reversed the phenotype of EMT in HN-12 and MDA-MB-231 cells, but inhibition of miR-300 in the epithelial phenotype cells, HN-4 and MCF-7 cells, could induce EMT. The luciferase reporter assay and the rescue assay results showed that miR-300 directly targets the 3'UTR of Twist. Enforced miR-300 expression suppressed cell invasion in vitro and experimental metastasis in vivo. Clinically, miR-300 expression was found inversely correlated with Twist expression and reduced miR-300 was associated with metastasis in patient specimens. Down-regulation of miR-300 is required for EMT initiation and maintenance. MiR-300 may negatively regulate EMT by direct targeting Twist and therefore inhibit cancer cell invasion and metastasis, which implicates miR-300 as an attractive candidate for cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jiangtao; Song, Kaifang; Feng, Xiaoshan, E-mail: xiaoshan.feng@aol.com
Purpose: In this study, we investigated whether microRNA-367 (miR-367) may serve as a circulating biomarker and tumor oncogene in esophageal squamous carcinoma (ESCC). Methods: Circulating serum miR-367 was compared by quantitative RT-PCR (qRT-PCR) between 35 ESCC patients and 35 normal control patients, as well paired ESCC tumor tissues and adjacent non-tumor esophageal epithelial tissues in 46 patients. The correlation between serum miR-367 and clinicopathological properties of ESCC patients was assessed. The overall survival (OS) was assessed by Kaplan–Meier method and compared by log-rank test between patients with high serum miR-367 and low serum miR-367. The possibility of miR-367 being independentmore » prognostic factor for ESCC was also assessed. Furthermore, lentivirus-mediated miR-367 downregulation was conducted in ESCC cell lines Kyse30 and TE-1 cells to assess the possible oncogenic effect of miR-367 on ESCC proliferation and cell cycle transition in vitro. Results: MiR-367 was aberrantly upregulated in sera and tumors of ESCC patients, whereas downregulated in ESCC patients after the treatments of esophagectomy and chemotherapy. Serum miR-367 was found to be closely correlated with the clinicopathological properties of differentiation grades, clinical stage and tumor metastasis in ESCC patients. Serum miR-367 was also confirmed to be associated with OS, as well as serving independent prognostic factor in ESCC patients. Moreover, lentivirus-induced miR-367 downregulation inhibited cancer growth and cell cycle transition in Kyse30 and TE-1 cells. Conclusion: MiR-367 is a potential biomarker for ESCC and may act as an oncogene in regulating ESCC development. - Highlights: • MiR-367 was aberrantly upregulated in sera and tumors of ESCC patients. • MiR-367 was downregulated in ESCC patients after esophagectomy or chemotherapy. • Serum miR-367 was correlated with the clinicopathological properties of ESCC patients. • Serum miR-367 was associated with OS in ESCC patients. • lentivirus-induced miR-367 downregulation inhibited ESCC growth and cell cycle transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Shen, Shiqiang, E-mail: shenshiqiang2014@hotmail.com; Wu, Shanmin
2015-08-28
This study explored the effects of microRNA-3178 (miR-3178) on hepatocellular carcinoma (HCC) tumor endothelial cells (TECs) and on the target mRNA. Real-time polymerase chain reaction (PCR) was performed to detect the differential expression of miR-3178 in hepatic sinusoidal endothelial cells (HSECs) and HCC TECs. Furthermore, HCC TECs were transfected with miR-3178 mimic/inhibitor or their respective negative controls. The expression of miR-3178 before and after transfection was confirmed through RT-PCR. The effects of miR-3178 on the proliferation, apoptosis, cell cycle, invasion, migration, and angiogenesis of HCC TECs were also investigated through methyl thiazol tetrazolium assay, flow cytometry, matrigel invasion assay, transwellmore » migration assay, and tube formation assay. Early growth responsive gene 3 (EGR3), as the putative target of miR-3178, was detected through RT-PCR and Western blot. Compared with HSECs, HCC TECs had lower miR-3178 expression levels (P < 0.001). MiR-3178 mimic inhibited proliferation, arrested cell cycle in G1 phase, and increased apoptosis. The numbers of migrated and invaded cells and capillary-like structures were significantly less in the mimic group than in the other groups. MiR-3178 mimic significantly decreased the mRNA and protein expression levels of EGR3. By contrast, miR-3178 inhibitor induced opposite effects. We conclude that miR-3178 was lowly expressed in HCC TECs, and miR-3178 mimic specifically inhibited the proliferation, migration, invasion, and angiogenesis and promoted the apoptosis and G1 phase arrest of HCC TECs in vitro through the inhibition of EGR3 expression. Thus, miR-3178 might be a critical target in HCC therapy. - Highlights: • MiR-3178 is significantly low-expression in HCC TECs. • MiR-3178 acts as a tumor suppressor to inhibit tumorigenesis and metastasis. • MiR-3178 inhibit angiogenesis of HCC TECs. • EGR3 may be a target gene of miR-3178. • MiR-3178 may have therapeutic application for treatment of HCC.« less
miR-155 modulates the progression of neuropathic pain through targeting SGK3
Liu, Shaoxing; Zhu, Bo; Sun, Yan; Xie, Xianfeng
2015-01-01
This study aimed to illustrate the potential effects of miR-155 in neuropathic pain and its potential mechanism. Spragure-Dawley (SD) rats were used for neuropathic pain model of bilateral chronic constriction injury (bCCI) construction. Effects of miR-155 expression on pain threshold of mechanical stimuli (MWT), paw withdrawal threshold latency (PMTL) and cold threshold were analyzed. Target for miR-155 was analyzed using bioinformatics methods. Moreover, effects of miR-155 target gene expression on pain thresholds were also assessed. Compared with the controls and sham group, miR-155 was overexpressed in neuropathic pain rats (P<0.05), but miR-155 slicing could significantly decreased the pain thresholds (P<0.05). Serum and glucocorticoid regulated protein kinase 3 (SGK3) was predicted as the target gene for miR-155, and miR-155 expression was negatively correlated to SGK3 expression. Furthermore, SGK3 overexpression could significantly decreased the pain thresholds which was the same as miR-155 (P<0.05). Moreover, miR-155 slicing and SGK3 overexpression could significantly decrease the painthreshold. The data presented in this study suggested that miR-155 slicing could excellently alleviate neuropathic pain in rats through targeting SGK3 expression. miR-155 may be a potential therapeutic target for neuropathic pain treatment. PMID:26823753
MiR-155 modulates the progression of neuropathic pain through targeting SGK3.
Liu, Shaoxing; Zhu, Bo; Sun, Yan; Xie, Xianfeng
2015-01-01
This study aimed to illustrate the potential effects of miR-155 in neuropathic pain and its potential mechanism. Spragure-Dawley (SD) rats were used for neuropathic pain model of bilateral chronic constriction injury (bCCI) construction. Effects of miR-155 expression on pain threshold of mechanical stimuli (MWT), paw withdrawal threshold latency (PMTL) and cold threshold were analyzed. Target for miR-155 was analyzed using bioinformatics methods. Moreover, effects of miR-155 target gene expression on pain thresholds were also assessed. Compared with the controls and sham group, miR-155 was overexpressed in neuropathic pain rats (P<0.05), but miR-155 slicing could significantly decreased the pain thresholds (P<0.05). Serum and glucocorticoid regulated protein kinase 3 (SGK3) was predicted as the target gene for miR-155, and miR-155 expression was negatively correlated to SGK3 expression. Furthermore, SGK3 overexpression could significantly decreased the pain thresholds which was the same as miR-155 (P<0.05). Moreover, miR-155 slicing and SGK3 overexpression could significantly decrease the painthreshold. The data presented in this study suggested that miR-155 slicing could excellently alleviate neuropathic pain in rats through targeting SGK3 expression. miR-155 may be a potential therapeutic target for neuropathic pain treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Quanjun, E-mail: quanjun_d@126.com; Xie, Liqun; Li, Hua
2015-11-27
Recent studies have shown that miR-506 plays important roles in human cancer progression. However, little is known about the function of miR-506 in hepatocellular carcinoma (HCC). In this study, we found that miR-506 significantly inhibits HCC cell proliferation in vitro and tumorigenicity in vivo. Moreover, miR-506 induced G1/S cell cycle arrest and apoptosis in HCC cells. Rho-associated protein kinase 1(ROCK1) was identified as a novel target of miR-506; overexpression of ROCK1 reversed the suppressive effects of miR-506 in HCC cells. Additionally, ROCK1 was found up-regulated and inversely correlated with miR-506 in HCC tissues. Therefore, our findings collectively suggest that miR-506 acts asmore » a tumor suppressor via regulation of ROCK1 expression and may thus be a promising therapeutic target for HCC. - Highlights: • miR-506 inhibits HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-506 induced G1/S cell cycle arrest and apoptosis in HCC cells. • ROCK1 was identified as a novel target of miR-506. • ROCK1 was found up-regulated and inversely correlated with miR-506 in HCC tissues.« less
Reversing Anoikis Resistance in Triple-Negative Breast Cancer
2014-10-01
determine if restoration of miR-200c and inhibition of miR-222 can enhance TNBC differentiation in 3D culture . We found addition of miR-200c and miR-222...inhibition make TNBC colonies in culture in 3D in matrigel smaller, rounder and increase Dicer protein. Additionally, restoration of miR-200c decreases... culture , we have found that addition of miR- 200c and miR-222 inhibition make TNBC colonies in 3D culture in matrigel smaller, rounder and increase Dicer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Della Vittoria Scarpati, Giuseppina; Falcetta, Francesca; Carlomagno, Chiara, E-mail: chiara.carlomagno@unina.it
2012-07-15
Purpose: MicroRNAs (miRNAs) are small, noncoding RNA molecules that can be down- or upregulated in colorectal cancer and have been associated to prognosis and response to treatment. We studied miRNA expression in tumor biopsies of patients with rectal cancer to identify a specific 'signature' correlating with pathological complete response (pCR) after neoadjuvant chemoradiotherapy. Methods and Materials: A total of 38 T3-4/N+ rectal cancer patients received capecitabine-oxaliplatin and radiotherapy followed by surgery. Pathologic response was scored according to the Mandard TRG scale. MiRNA expression was analyzed by microarray and confirmed by real-time Reverse Transcription Polymerase Chain Reaction (qRT-PCR) on frozen biopsiesmore » obtained before treatment. The correlation between miRNA expression and TRG, coded as TRG1 (pCR) vs. TRG >1 (no pCR), was assessed by methods specifically designed for this study. Results: Microarray analysis selected 14 miRNAs as being differentially expressed in TRG1 patients, and 13 were confirmed by qRT-PCR: 11 miRNAs (miR-1183, miR-483-5p, miR-622, miR-125a-3p, miR-1224-5p, miR-188-5p, miR-1471, miR-671-5p, miR-1909 Asterisk-Operator , miR-630, miR-765) were significantly upregulated in TRG1 patients, 2 (miR-1274b, miR-720) were downexpressed. MiR-622 and miR-630 had a 100% sensitivity and specificity in selecting TRG1 cases. Conclusions: A set of 13 miRNAs is strongly associated with pCR and may represent a specific predictor of response to chemoradiotherapy in rectal cancer patients.« less
miR-543 promotes gastric cancer cell proliferation by targeting SIRT1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Juan; Dong, Guoying; Wang, Bo
SIRT1, a class III histone deacetylase, exerts inhibitory effects on tumorigenesis and is downregulated in gastric cancer. However, the role of microRNAs in the regulation of SIRT1 in gastric cancer is still largely unknown. Here, we identified miR-543 as a predicted upstream regulator of SIRT1 using 3 different bioinformatics databases. Mimics of miR-543 significantly inhibited the expression of SIRT1, whereas an inhibitor of miR-543 increased SIRT1 expression. MiR-543 directly targeted the 3′-UTR of SIRT1, and both of the two binding sites contributed to the inhibitory effects. In gastric epithelium-derived cell lines, miR-543 promoted cell proliferation and cell cycle progression, andmore » overexpression of SIRT1 rescued the above effects of miR-543. The inhibitory effects of miR-543 on SIRT1 were also validated using clinical gastric cancer samples. Moreover, we found that miR-543 expression was positively associated with tumor size, clinical grade, TNM stage and lymph node metastasis in gastric cancer patients. Our results identify a new regulatory mechanism of miR-543 on SIRT1 expression in gastric cancer, and raise the possibility that the miR-543/SIRT1 pathway may serve as a potential target for the treatment of gastric cancer. - Highlights: • SIRT1 is a novel target of miR-543. • miR-543 promotes gastric cancer cell proliferation and cell cycle progression by targeting SIRT1. • miR-543 is upregulated in GC and positively associated with tumor size, clinical grade, TNM stage and lymph node metastasis. • miR-543 is negatively correlated with SIRT1 expression in gastric cancer tissues.« less
Mishra, Nibha; Milikovsky, Dan Z.; Hanin, Geula; Zelig, Daniel; Sheintuch, Liron; Berson, Amit; Greenberg, David S.; Friedman, Alon
2017-01-01
Epilepsy is a common neurological disease, manifested in unprovoked recurrent seizures. Epileptogenesis may develop due to genetic or pharmacological origins or following injury, but it remains unclear how the unaffected brain escapes this susceptibility to seizures. Here, we report that dynamic changes in forebrain microRNA (miR)-211 in the mouse brain shift the threshold for spontaneous and pharmacologically induced seizures alongside changes in the cholinergic pathway genes, implicating this miR in the avoidance of seizures. We identified miR-211 as a putative attenuator of cholinergic-mediated seizures by intersecting forebrain miR profiles that were Argonaute precipitated, synaptic vesicle target enriched, or differentially expressed under pilocarpine-induced seizures, and validated TGFBR2 and the nicotinic antiinflammatory acetylcholine receptor nAChRa7 as murine and human miR-211 targets, respectively. To explore the link between miR-211 and epilepsy, we engineered dTg-211 mice with doxycycline-suppressible forebrain overexpression of miR-211. These mice reacted to doxycycline exposure by spontaneous electrocorticography-documented nonconvulsive seizures, accompanied by forebrain accumulation of the convulsive seizures mediating miR-134. RNA sequencing demonstrated in doxycycline-treated dTg-211 cortices overrepresentation of synaptic activity, Ca2+ transmembrane transport, TGFBR2 signaling, and cholinergic synapse pathways. Additionally, a cholinergic dysregulated mouse model overexpressing a miR refractory acetylcholinesterase-R splice variant showed a parallel propensity for convulsions, miR-211 decreases, and miR-134 elevation. Our findings demonstrate that in mice, dynamic miR-211 decreases induce hypersynchronization and nonconvulsive and convulsive seizures, accompanied by expression changes in cholinergic and TGFBR2 pathways as well as in miR-134. Realizing the importance of miR-211 dynamics opens new venues for translational diagnosis of and interference with epilepsy. PMID:28584127
Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy.
Zanotti, Simona; Gibertini, Sara; Curcio, Maurizio; Savadori, Paolo; Pasanisi, Barbara; Morandi, Lucia; Cornelio, Ferdinando; Mantegazza, Renato; Mora, Marina
2015-07-01
Excessive extracellular matrix deposition progressively replacing muscle fibres is the endpoint of most severe muscle diseases. Recent data indicate major involvement of microRNAs in regulating pro- and anti-fibrotic genes. To investigate the roles of miR-21 and miR-29 in muscle fibrosis in Duchenne muscle dystrophy, we evaluated their expression in muscle biopsies from 14 patients, and in muscle-derived fibroblasts and myoblasts. In Duchenne muscle biopsies, miR-21 expression was significantly increased, and correlated directly with COL1A1 and COL6A1 transcript levels. MiR-21 expression was also significantly increased in Duchenne fibroblasts, more so after TGF-β1 treatment. In Duchenne fibroblasts the expression of miR-21 target transcripts PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SPRY-1 (Sprouty homolog 1) was significantly reduced; while collagen I and VI transcript levels and soluble collagen production were significantly increased. MiR-29a and miR-29c were significantly reduced in Duchenne muscle and myoblasts, and miR-29 target transcripts, COL3A1, FBN1 and YY1, significantly increased. MiR-21 silencing in mdx mice reduced fibrosis in the diaphragm muscle and in both Duchenne fibroblasts and mdx mice restored PTEN and SPRY-1 expression, and significantly reduced collagen I and VI expression; while miR-29 mimicking in Duchenne myoblasts significantly decreased miR-29 target transcripts. These findings indicate that miR-21 and miR-29 play opposing roles in Duchenne muscle fibrosis and suggest that pharmacological modulation of their expression has therapeutic potential for reducing fibrosis in this condition. Copyright © 2015. Published by Elsevier B.V.
MicroRNAs as a potential prognostic factor in gastric cancer
Brenner, Baruch; Hoshen, Moshe B; Purim, Ofer; David, Miriam Ben; Ashkenazi, Karin; Marshak, Gideon; Kundel, Yulia; Brenner, Ronen; Morgenstern, Sara; Halpern, Marisa; Rosenfeld, Nitzan; Chajut, Ayelet; Niv, Yaron; Kushnir, Michal
2011-01-01
AIM: To compare the microRNA (miR) profiles in the primary tumor of patients with recurrent and non-recurrent gastric cancer. METHODS: The study group included 45 patients who underwent curative gastrectomies from 1995 to 2005 without adjuvant or neoadjuvant therapy and for whom adequate tumor content was available. Total RNA was extracted from formalin-fixed paraffin-embedded tumor samples, preserving the small RNA fraction. Initial profiling using miR microarrays was performed to identify potential biomarkers of recurrence after resection. The expression of the differential miRs was later verified by quantitative real-time polymerase chain reaction (qRT-PCR). Findings were compared between patients who had a recurrence within 36 mo of surgery (bad-prognosis group, n = 14, 31%) and those who did not (good-prognosis group, n = 31, 69%). RESULTS: Three miRs, miR-451, miR-199a-3p and miR-195 were found to be differentially expressed in tumors from patients with good prognosis vs patients with bad prognosis (P < 0.0002, 0.0027 and 0.0046 respectively). High expression of each miR was associated with poorer prognosis for both recurrence and survival. Using miR-451, the positive predictive value for non-recurrence was 100% (13/13). The expression of the differential miRs was verified by qRT-PCR, showing high correlation to the microarray data and similar separation into prognosis groups. CONCLUSION: This study identified three miRs, miR-451, miR-199a-3p and miR-195 to be predictive of recurrence of gastric cancer. Of these, miR-451 had the strongest prognostic impact. PMID:22046085
Cao, Wei; Dai, Hong; Yang, Shengqing; Liu, Zhijun; Yi Chen, Qian
2017-01-10
MicroRNAs (miRs) are reported to play key roles in various disease models. In this study, the functional role of miR-300 in the regulation of lung injury was explored to assess the feasibility of serum miR-300 as a potential biomarker for lung injury. Firstly, the expression of miR-300 was studied in the serum of 50 lung injury patients and 50 healthy controls. And the expression of miR-300 was also explored in the serum and lung tissues of mouse models. To further explore the possible mechanism in which miR-300 may contribute to lung injury, the target genes of miR-300 were predicted by TargetScan and validated using dual luciferase reporter assay. Moreover, the expression of inflammation factors was studied after transfection of miR-300 mimics and inhibitors into A549 cells. Here, we first identified that the level of miR-300 was significantly upregulated in the blood samples of acute lung injury patients compared with healthy control. Meanwhile, miR-300 was also found to be enhanced in the blood samples and lung tissues of LPS-induced mouse models. Further study showed that miR-300 significantly suppressed the expression of IκBα and luciferase reporter assay showed that IκBα was a target gene of miR-300. More importantly, the levels of inflammatory factors, such as TNFα, COX-2, iNOS, IL-6 and IL8, were significantly upregulated accompanied by overexpression of miR-300 in A549 cells. In summary, enhanced miR-300 expression in the peripheral blood contributed to the lung injury mainly by inhibiting the expression of IκBα.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanxia; Department of Rehabilitation, Xi'an Children's Hospital, Xi'an 710003; Liu, Xiaoguai
Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis alsomore » showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.« less
Bekenstein, Uriya; Mishra, Nibha; Milikovsky, Dan Z; Hanin, Geula; Zelig, Daniel; Sheintuch, Liron; Berson, Amit; Greenberg, David S; Friedman, Alon; Soreq, Hermona
2017-06-20
Epilepsy is a common neurological disease, manifested in unprovoked recurrent seizures. Epileptogenesis may develop due to genetic or pharmacological origins or following injury, but it remains unclear how the unaffected brain escapes this susceptibility to seizures. Here, we report that dynamic changes in forebrain microRNA (miR)-211 in the mouse brain shift the threshold for spontaneous and pharmacologically induced seizures alongside changes in the cholinergic pathway genes, implicating this miR in the avoidance of seizures. We identified miR-211 as a putative attenuator of cholinergic-mediated seizures by intersecting forebrain miR profiles that were Argonaute precipitated, synaptic vesicle target enriched, or differentially expressed under pilocarpine-induced seizures, and validated TGFBR2 and the nicotinic antiinflammatory acetylcholine receptor nAChRa7 as murine and human miR-211 targets, respectively. To explore the link between miR-211 and epilepsy, we engineered dTg-211 mice with doxycycline-suppressible forebrain overexpression of miR-211. These mice reacted to doxycycline exposure by spontaneous electrocorticography-documented nonconvulsive seizures, accompanied by forebrain accumulation of the convulsive seizures mediating miR-134. RNA sequencing demonstrated in doxycycline-treated dTg-211 cortices overrepresentation of synaptic activity, Ca 2+ transmembrane transport, TGFBR2 signaling, and cholinergic synapse pathways. Additionally, a cholinergic dysregulated mouse model overexpressing a miR refractory acetylcholinesterase-R splice variant showed a parallel propensity for convulsions, miR-211 decreases, and miR-134 elevation. Our findings demonstrate that in mice, dynamic miR-211 decreases induce hypersynchronization and nonconvulsive and convulsive seizures, accompanied by expression changes in cholinergic and TGFBR2 pathways as well as in miR-134. Realizing the importance of miR-211 dynamics opens new venues for translational diagnosis of and interference with epilepsy.
MicroRNA-7a regulates Müller glia differentiation by attenuating Notch3 expression.
Baba, Yukihiro; Aihara, Yuko; Watanabe, Sumiko
2015-09-01
miRNA-7a plays critical roles in various biological aspects in health and disease. We aimed to reveal roles of miR-7a in mouse retinal development by loss- and gain-of-function analyses of miR-7a. Plasmids encoding miR-7a or miR-7a-decoy (anti-sense miR-7a) were introduced into mouse retina at P0, and the retina was cultured as explant. Then, proliferation of retinal progenitors and differentiation of retinal subtypes were examined by immunostaining. miR-7a had no apparent effect on the proliferation of retinal progenitor cells. However, the expression of Müller glia marker, cyclin D3, was reduced by miR-7a overexpression and up-regulated by miR-7a decoy, suggesting that miR-7a negatively regulates differentiation of Müller glia. Targets of miR-7a, which were predicted by using a public program miRNA.org, and Notch3 was suggested to be one of candidate genes of miR-7a target. Notch3 3' UTR appeared to contain complementary sequence to the seed sequence of miR-7a. A reporter assay in NIH3T3 cells using a plasmid containing multiple repeats of potential target sequence of 3' Notch UTR showed that miR-7a suppress expression of reporter EGFP through 3'UTR region. Expression of sh-Notch3 and over-expression of NICD3 in retina suggested that miR-7a regulates Müller glia differentiation through attenuation of Notch3 expression. Taken together, we revealed that the miR-7a regulates the differentiation of Müller glia through the suppression of Notch3 expression. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pizzimenti, Stefania; Ferracin, Manuela; Sabbioni, Silvia; Toaldo, Cristina; Pettazzoni, Piergiorgio; Dianzani, Mario Umberto; Negrini, Massimo; Barrera, Giuseppina
2009-01-15
4-Hydroxynonenal (HNE) is one of several lipid oxidation products that may have an impact on human pathophysiology. It is an important second messenger involved in the regulation of various cellular processes and exhibits antiproliferative and differentiative properties in various tumor cell lines. The mechanisms by which HNE affects cell growth and differentiation are only partially clarified. Because microRNAs (miRNAs) have the ability to regulate several cellular processes, we hypothesized that HNE, in addition to other mechanisms, could affect miRNA expression. Here, we present the results of a genome-wide miRNA expression profiling of HNE-treated HL-60 leukemic cells. Among 470 human miRNAs, 10 were found to be differentially expressed between control and HNE-treated cells (at p<0.05). Six miRNAs were down-regulated (miR-181a*, miR-199b, miR-202, miR-378, miR-454-3p, miR-575) and 4 were up-regulated (miR-125a, miR-339, miR-663, miR-660). Three of these regulated miRNAs (miR-202, miR-339, miR-378) were further assayed and validated by quantitative real-time RT-PCR. Moreover, consistent with the down-regulation of miR-378, HNE also induced the expression of the SUFU protein, a tumor suppressor recently identified as a target of miR-378. The finding that HNE could regulate the expression of miRNAs and their targets opens new perspectives on the understanding of HNE-controlled pathways. A functional analysis of 191 putative gene targets of miRNAs modulated by HNE is discussed.
Wang, Hongdi; Liu, Shikai; Cui, Jun; Li, Chengze; Hu, Yucai; Zhou, Wei; Chang, Yaqing; Qiu, Xuemei; Liu, Zhanjiang; Wang, Xiuli
2015-01-01
MicroRNAs (miRNAs), as a family of non-coding small RNAs, play important roles in the post-transcriptional regulation of gene expression. Sea cucumber (Apostichopus japonicus) is an important economic species which is widely cultured in East Asia. The longitudinal muscle (LTM) and respiratory tree (RPT) are two important tissues in sea cucumber, playing important roles such as respiration and movement. In this study, we identified and characterized miRNAs in the LTM and RPT of sea cucumber (Apostichopus japonicus) using Illumina HiSeq 2000 platform. A total of 314 and 221 conserved miRNAs were identified in LTM and RPT, respectively. In addition, 27 and 34 novel miRNAs were identified in the LTM and RPT, respectively. A set of 58 miRNAs were identified to be differentially expressed between LTM and RPT. Among them, 9 miRNAs (miR-31a-3p, miR-738, miR-1692, let-7a, miR-72a, miR-100b-5p, miR-31b-5p, miR-429-3p, and miR-2008) in RPT and 7 miRNAs (miR-127, miR-340, miR-381, miR-3543, miR-434-5p, miR-136-3p, and miR-300-3p) in LTM were differentially expressed with foldchange value being greater than 10. A total of 14,207 and 12,174 target genes of these miRNAs were predicted, respectively. Functional analysis of these target genes of miRNAs were performed by GO analysis and pathway analysis. This result provided in this work will be useful for understanding biological characteristics of the LTM and RPT of sea cucumber and assisting molecular breeding of sea cucumber for aquaculture.
[A trace methane gas sensor using mid-infrared quantum cascaded laser at 7.5 microm].
Chen, Chen; Dang, Jing-Min; Huang, Jian-Qiang; Yang, Yue; Wang, Yi-Ding
2012-11-01
Presented is a compact instrument developed for in situ high-stable and sensitive continuous measurement of trace gases in air, with results shown for ambient methane (CH4) concentration accurate, real-time and in-situ. This instrument takes advantage of recent technology in thermoelectrically cooling (TEC) pulsed Fabry-Perot (FP) quantum cascaded laser (QCL) driving in a pulse mode operating at 7.5 microm ambient temperature to cover a fundamental spectral absorption band near v4 of CH4. A high quality Liquid Nitrogen (LN) cooled Mercury Cadmium Telluride (HgCdTe) mid-infrared (MIR) detector is used along with a total reflection coated gold ellipsoid mirror offering 20 cm single pass optical absorption in an open-path cell to achieve stability of 5.2 x 10(-3) under experimental condition of 200 micromol x mol(-1) measured ambient CH4. The instrument integrated software via time discriminating electronics technology to control QCL provides continuous quantitative trace gas measurements without calibration. The results show that the instrument can be applied to field measurements of gases of environmental concern. Additional, operator could substitute a QCL operating at a different wavelength to measure other gases.
Cañueto, J; Cardeñoso-Álvarez, E; García-Hernández, J L; Galindo-Villardón, P; Vicente-Galindo, P; Vicente-Villardón, J L; Alonso-López, D; De Las Rivas, J; Valero, J; Moyano-Sanz, E; Fernández-López, E; Mao, J H; Castellanos-Martín, A; Román-Curto, C; Pérez-Losada, J
2017-07-01
Cutaneous squamous cell carcinoma (CSCC) is the second most widespread cancer in humans and its incidence is rising. These tumours can evolve as diseases of poor prognosis, and therefore it is important to identify new markers to better predict its clinical evolution. We aimed to identify the expression pattern of microRNAs (miRNAs or miRs) at different stages of skin cancer progression in a panel of murine skin cancer cell lines. Owing to the increasing importance of miRNAs in the pathogenesis of cancer, we considered the possibility that miRNAs could help to define the prognosis of CSCC and aimed to evaluate the potential use of miR-203 and miR-205 as biomarkers of prognosis in human tumours. Seventy-nine human primary CSCCs were collected at the University Hospital of Salamanca in Spain. We identified differential miRNA expression patterns at different stages of CSCC progression in a well-established panel of murine skin cancer cell lines, and then selected miR-205 and miR-203 to evaluate their association with the clinical prognosis and evolution of human CSCC. miR-205 was expressed in tumours with pathological features recognized as indicators of poor prognosis such as desmoplasia, perineural invasion and infiltrative growth pattern. miR-205 was mainly expressed in undifferentiated areas and in the invasion front, and was associated with both local recurrence and the development of general clinical events of poor evolution. miR-205 expression was an independent variable selected to predict events of poor clinical evolution using the multinomial logistic regression model described in this study. In contrast, miR-203 was mainly expressed in tumours exhibiting the characteristics associated with a good prognosis, was mainly present in well-differentiated zones, and rarely expressed in the invasion front. Therefore, the expression and associations of miR-205 and miR-203 were mostly mutually exclusive. Finally, using a logistic biplot we identified three clusters of patients with differential prognosis based on miR-203 and miR-205 expression, and pathological tumour features. miR-205 and miR-203 tended to exhibit mutually exclusive expression patterns in human CSCC. This work highlights the utility of miR-205 and miR-203 as prognostic markers in CSCC. © 2016 British Association of Dermatologists.
miR-187 inhibits the growth of cervical cancer cells by targeting FGF9.
Liang, Hua; Luo, Ruoyu; Chen, Xiaoqi; Zhao, Yuzi; Tan, Aili
2017-10-01
MicroRNAs (miRNAs) are a cluster of short non-coding RNAs playing critical roles in human cancers. miR-187 was recently found to be a novel cancer-related microRNA. However, the expression and function of miR-187 in cervical cancer have not been investigated. In this study, we found that miR-187 level was decreased in cervical cancer tissues and cell lines. Patients with low level of miR-187 had significantly decreased rate of overall survival (OS) and progression-free survival (DFS). miR-187 overexpression inhibited proliferation and promoted apoptosis of cervical cancer cells, whereas miR-187 knockdown promoted proliferation and inhibited apoptosis of cervical cancer cells. Forced expression of miR-187 inhibited the subcutaneous growth of cervical cancer cells in nude mice. Furthermore, FGF9 was found to be the downstream target of miR-187 in cervical cancer cells. Importantly, targeting FGF9 was required for miR-187 exerting its tumor suppressive roles in cervical cancer cells.
Tang, Chunhai; Yang, Zhenxiu; Chen, Dongliang; Xie, Qinghai; Peng, Tao; Wu, Jingzhan; Qi, Songtao
2017-12-01
Aberrant expression of miR-130a is usually found in cancer studies; however, the role of miR-130a has seldom been reported in glioma. We explored miR-130a's function and the underlying mechanism in glioma. It was found that miR-130a expression was significantly down-regulated in glioma tissues and cell lines. Overexpression of miR-130a decreased glioma cell growth and invasion both in vitro and in vivo. We identified the oncogene HMGB2 as a downstream target of miR-130a by using luciferase and western blot assays. Knockdown of HMGB2 mimicked the effect of miR-130a in glioma cells. Taken together, our study demonstrate that miR-130a may function as a tumor suppressor in glioma and suggest that miR-130a is a potential therapeutic target for glioma patients. Copyright © 2017. Published by Elsevier Ltd.
Mir Contamination Observations and Implications to the International Space Station
NASA Technical Reports Server (NTRS)
Soares, Carlos; Mikatarian, Ron
2000-01-01
A series of external contamination measurements were made on the Russian Mir Space Station. The Mir external contamination observations summarized in this paper were essential in assessing the system level impact of Russian Segment induced contamination on the International Space Station (ISS). Mir contamination observations include results from a series of flight experiments: CNES Comes-Aragatz, retrieved NASA camera bracket, Euro-Mir '95 ICA, retrieved NASA Trek blanket, Russian Astra-II, Mir Solar Array Return Experiment (SARE), etc. Results from these experiments were studied in detail to characterize Mir induced contamination. In conjunction with Mir contamination observations, Russian materials samples were tested for condensable outgassing rates in the U.S. These test results were essential in the characterization of Mir contamination sources. Once Mir contamination sources were identified and characterized, activities to assess the implications to ISS were implemented. As a result, modifications in Russian materials selection and/or usage were implemented to control contamination and mitigate risk to ISS.
Epigenetic modification of miR-141 regulates SKA2 by an endogenous ‘sponge’ HOTAIR in glioma
Wang, Chao; Zong, Gang; Wang, Hong-Liang; Zhao, Bing
2016-01-01
Aberrant expression of miR-141 has recently implicated in the occurrence and development of various types of malignant tumors. However whether the involvement of miR-141 in the pathogenesis of glioma remains unknown. Here, we showed that miR-141 was markedly downregulated in glioma tissues and cell lines compared with normal brain tissues, and its expression correlated with the pathological grading. Enforced expression of miR-141 in glioma cells significantly inhibited cell proliferation, migration and invasion, whereas knockdown of miR-141 exerted opposite effect. Mechanistic investigations revealed that HOTAIR might act as an endogenous ‘sponge’ of miR-141, thereby regulating the derepression of SKA2. Further, we explored the molecular mechanism by which miR-141 expression was regulated, and found that the miR-141 promoter was hypermethylated and that promoter methylation of miR-141 was mediated by DNMT1 in glioma cells. Finally, both overexpression of miR-141 and knockdown of HOTAIR in a mouse model of human glioma resulted in significant reduction of tumor growth in vivo. Collectively, these results suggest that epigenetic modification of miR-141 and the interaction of ceRNA regulatory network will provide a new approach for therapeutics against glioma. PMID:27121316
Overexpression of miR-484 and miR-744 in Vero cells alters Dengue virus replication
Castrillón-Betancur, Juan Camilo; Urcuqui-Inchima, Silvio
2017-01-01
BACKGROUND Dengue is considered one of the world’s most important mosquito-borne diseases. MicroRNAs (miRNAs) are small non-coding single-stranded RNAs that play an important role in the regulation of gene expression in eukaryotes. Although miRNAs possess antiviral activity against many mammalian-infecting viruses, their involvement in Dengue virus (DENV) replication remains poorly understood. OBJECTIVE To determine the role of miR-484 and miR-744 in DENV infection and to examine whether DENV infection alters the expression of both miRNAs. METHODS We used bioinformatics tools to explore the relationship between DENV and cellular miRNAs. We then overexpressed miR-484 or miR-744 in Vero cells to examine their role in DENV replication using flow cytometry, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), and western blotting. FINDINGS We found several cellular miRNAs that target a conserved region within the 3′ untranslated region (3′ UTR) of the genome of the four DENV serotypes and found that overexpression of miR-484 or miR-744 inhibits infection by DENV-1 to DENV-4. Furthermore, we observed that DENV RNA might be involved in the downregulation of endogenous miR-484 and miR-744. CONCLUSION Our study identifies miR-484 and miR-744 as two possible restriction host factors against DENV infection. However, further studies are needed to directly verify whether miR-484 and miR-744 both have an anti-DENV effect in vivo. PMID:28327787
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang
2015-04-03
MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereasmore » miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.« less
The distinct role of strand-specific miR-514b-3p and miR-514b-5p in colorectal cancer metastasis.
Ren, Lin-Lin; Yan, Ting-Ting; Shen, Chao-Qin; Tang, Jia-Yin; Kong, Xuan; Wang, Ying-Chao; Chen, Jinxian; Liu, Qiang; He, Jie; Zhong, Ming; Chen, Hao-Yan; Hong, Jie; Fang, Jing-Yuan
2018-06-07
The abnormal expression of microRNAs (miRNAs) in colorectal cancer (CRC) progression has been widely investigated. It was reported that the same hairpin RNA structure could generate mature products from each strand, termed 5p and 3p, which binds different target mRNAs. Here, we explored the expression, functions, and mechanisms of miR-514b-3p and miR-514b-5p in CRC cells and tissues. We found that miR-514b-3p was significantly down-regulated in CRC samples, and the ratio of miR-514b-3p/miR-514b-5p increased from advanced CRC, early CRC to matched normal colorectal tissues. Follow-up functional experiments illustrated that miR-514b-3p and miR-514b-5p had distinct effects through interacting with different target genes: MiR-514b-3p reduced CRC cell migration, invasion and drug resistance through increasing epithelial marker and decreasing mesenchymal marker expressions, conversely, miR-514b-5p exerted its pro-metastatic properties in CRC by promoting EMT progression. MiR-514b-3p overexpressing CRC cells developed tumors more slowly in mice compared with control cells, however, miR-514b-5p accelerated tumor metastasis. Overall, our data indicated that though miR-514b-3p and miR-514b-5p were transcribed from the same RNA hairpin, each microRNA has distinct effect on CRC metastasis.
miR-361-5p inhibits hepatocellular carcinoma cell proliferation and invasion by targeting VEGFA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Wenxian; Li, Yuanguo; Xu, Keqing
MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. Here, we found that miR-361-5p is down-regulated in 135 patients with HCV-related hepatocellular carcinoma (HCC). Moreover, the expressions of miR-361-5p were highly correlated with VEGFA in these HCC patients. Further, CCK-8 proliferation assay indicated that miR-361-5p mimics inhibited the cell proliferation of HepG2 and SNU-398 HCC cells. Transwell assay showed that miR-361-5p mimics inhibited the invasion and migration of HepG2 and SNU-398 HCC cells. Luciferase assays revealed that miR-361-5p directly bound to the 3'untranslated region of VEGFA, and westernmore » blotting showed that miR-361-5p inhibited the expression of VEGFA. Generally, this study indicated that miR-361-5p is down-regulated in HCC and inhibits proliferation and invasion of HCC cell lines via VEGFA. In future, miR-361-5p will be a potential therapeutic agent for HCC. - Highlights: • miR-361-5p is down-regulated in HCV-related HCC. • miR-361-5p mimics inhibit the proliferation and invasion of HCC cells. • miR-361-5p inhibitors promote the proliferation and invasion of HCC cells. • miR-361-5p targets 3′ UTR of VEGFA in HCC cells. • miR-361-5p inhibits VEGFA in HCC cells.« less
MicroRNA-132 protects hippocampal neurons against oxygen-glucose deprivation-induced apoptosis.
Sun, Zu-Zhen; Lv, Zhan-Yun; Tian, Wen-Jing; Yang, Yan
2017-09-01
Hypoxic-ischemic brain injury (HIBI) results in death or long-term neurologic impairment in both adults and children. In this study, we investigated the effects of microRNA-132 (miR-132) dysregulation on oxygen-glucose deprivation (OGD)-induced apoptosis in fetal rat hippocampal neurons, in order to reveal the therapeutic potential of miR-132 on HIBI. MiR-132 dysregulation was induced prior to OGD exposure by transfection of primary fetal rat hippocampal neurons with miR-132 mimic or miR-132 inhibitor. The effects of miR-132 overexpression and suppression on OGD-stimulated hippocampal neurons were evaluated by detection of cell viability, apoptotic cells rate, and the expression of apoptosis-related proteins. Besides, TargetScan database and dual luciferase activity assay were used to seek a target gene of miR-132. As a result, miR-132 was highly expressed in hippocampal neurons following 2 h of OGD exposure. MiR-132 overexpression significantly increased OGD-diminished cell viability and reduced OGD-induced apoptosis at 12, 24, and 48 h post-OGD. MiR-132 overexpression significantly down-regulated the expressions of Bax, cytochrome c, and caspase-9, but up-regulated BCl-2. Caspase-3 activity was also significantly decreased by miR-132 overexpression. Furthermore, FOXO3 was a direct target of miR-132, and it was negatively regulated by miR-132. To conclude, our results provide evidence that miR-132 protects hippocampal neurons against OGD injury by inhibiting apoptosis.
Mazzone, Annette L; Baker, Robert A; McNicholas, Kym; Woodman, Richard J; Michael, Michael Z; Gleadle, Jonathan M
2018-03-01
A pilot study to measure and compare blood and urine microRNAs miR-210 and miR-16 in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and off-pump coronary artery bypass grafting surgery. Frequent serial blood and urine samples were taken from patients undergoing cardiac surgery with CPB (n = 10) and undergoing off-pump cardiac surgery (n = 5) before, during, and after surgery. Circulating miR-210 and miR-16 levels were determined by relative quantification real-time polymerase chain reaction. Levels of plasma-free haemoglobin (fHb), troponin-T, creatine kinase, and creatinine were measured. Perioperative serum miR-210 and miR-16 were elevated significantly compared to preoperative levels in patients undergoing cardiac surgery with CPB (CPB vs. Pre Op and Rewarm vs. Pre Op; p < .05 for both). There were increases of greater than 200% in miR-210 levels during rewarming and immediately postoperatively and a 3,000% increase in miR-16 levels immediately postoperatively in urine normalized to urinary creatinine concentration. Serum levels of miR-16 were relatively constant during off-pump surgery. miR-210 levels increased significantly in off-pump patients perioperatively ( p < .05 Octopus on vs. Pre Op); however, the release was less marked when compared to cardiac surgery with CPB. A significant association was observed between both miR-16 and miR-210 and plasma fHb when CPB was used ( r = -.549, p < .0001 and r = -.463, p < .0001 respectively). Serum and urine concentrations of hypoxically regulated miR-210 and hemolysis-associated miR-16 increased in cardiac surgery using CPB compared to off-pump surgery. These molecules may have utility in indicating severity of cardiac, red cell, and renal injury during cardiac surgery.
Chávez-Hernández, Elva C.; Alejandri-Ramírez, Naholi D.; Juárez-González, Vasti T.; Dinkova, Tzvetanka D.
2015-01-01
Maize somatic embryogenesis (SE) is induced from the immature zygotic embryo in darkness and under the appropriate hormones' levels. Small RNA expression is reprogrammed and certain miRNAs become particularly enriched during induction while others, characteristic to the zygotic embryo, decrease. To explore the impact of different environmental cues on miRNA regulation in maize SE, we tested specific miRNA abundance and their target gene expression in response to photoperiod and hormone depletion for two different maize cultivars (VS-535 and H-565). The expression levels of miR156, miR159, miR164, miR168, miR397, miR398, miR408, miR528, and some predicted targets (SBP23, GA-MYB, CUC2, AGO1c, LAC2, SOD9, GR1, SOD1A, PLC) were examined upon staged hormone depletion in the presence of light photoperiod or darkness. Almost all examined miRNA, except miR159, increased upon hormone depletion, regardless photoperiod absence/presence. miR528, miR408, and miR398 changed the most. On the other hand, expression of miRNA target genes was strongly regulated by the photoperiod exposure. Stress-related miRNA targets showed greater differences between cultivars than development-related targets. miRNA/target inverse relationship was more frequently observed in darkness than light. Interestingly, miR528, but not miR159, miR168 or miR398, was located on polyribosome fractions suggesting a role for this miRNA at the level of translation. Overall our results demonstrate that hormone depletion exerts a great influence on specific miRNA expression during plant regeneration independently of light. However, their targets are additionally influenced by the presence of photoperiod. The reproducibility or differences observed for particular miRNA-target regulation between two different highly embryogenic genotypes provide clues for conserved miRNA roles within the SE process. PMID:26257760
Use of Serum MicroRNAs as Biomarker for Hepatobiliary Diseases in Dogs.
Dirksen, K; Verzijl, T; Grinwis, G C; Favier, R P; Penning, L C; Burgener, I A; van der Laan, L J; Fieten, H; Spee, B
2016-11-01
Current biochemical indicators cannot discriminate between parenchymal, biliary, vascular, and neoplastic hepatobiliary diseases. MicroRNAs are promising new biomarkers for hepatobiliary disease in humans and dogs. To measure serum concentrations of an established group of microRNAs in dogs and to investigate their concentrations in various types of hepatobiliary diseases. Forty-six client-owned dogs with an established diagnosis of hepatobiliary disease and stored serum samples and eleven client-owned healthy control Labrador Retrievers. Retrospective study. Medical records of dogs with parenchymal, biliary, vascular, or neoplastic hepatobiliary diseases and control dogs were reviewed. Concentrations of miR-21, miR-122, miR-126, miR-148a, miR-200c, and miR-222 were quantified in serum by real-time polymerase chain reaction. No different microRNA concentrations were found in the adenoma and congenital portosystemic shunt groups. In all other diseases, miR-122 concentrations were elevated with the highest concentration in the mucocele group (267-fold, CI: 40-1,768, P < .001). In dogs with biliary diseases, miR-21 and miR-222 were only increased in dogs with mucoceles (26-fold, CI: 5-141, P = .005 and 13-fold, CI: 2-70, P = .025, respectively). Uniquely increased microRNAs were found in the hepatocellular carcinoma group (miR-200c, 35-fold increase, CI: 3-382, P = .035) and the chronic hepatitis group (miR-126, 22-fold increase, CI: 5-91, P = .002). A microRNA panel consisting of miR-21, miR-122, miR-126, miR-200c, and miR-222 can distinguish between parenchymal, biliary, and neoplastic hepatobiliary diseases. Serum microRNA profiling is a promising new tool that might be a valuable addition to conventional diagnostics to help diagnose various hepatobiliary diseases in dogs. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
miR-17-92 Cluster Promotes Cholangiocarcinoma Growth
Zhu, Hanqing; Han, Chang; Lu, Dongdong; Wu, Tong
2015-01-01
miR-17-92 is an oncogenic miRNA cluster implicated in the development of several cancers; however, it remains unknown whether the miR-17-92 cluster is able to regulate cholangiocarcinogenesis. This study was designed to investigate the biological functions and molecular mechanisms of the miR-17-92 cluster in cholangiocarcinoma. In situ hybridization and quantitative RT-PCR analysis showed that the miR-17-92 cluster is highly expressed in human cholangiocarcinoma cells compared with the nonneoplastic biliary epithelial cells. Forced overexpression of the miR-17-92 cluster or its members, miR-92a and miR-19a, in cultured human cholangiocarcinoma cells enhanced tumor cell proliferation, colony formation, and invasiveness, in vitro. Overexpression of the miR-17-92 cluster or miR-92a also enhanced cholangiocarcinoma growth in vivo in hairless outbred mice with severe combined immunodeficiency (SHO-PrkdcscidHrhr). The tumor-suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), was identified as a bona fide target of both miR-92a and miR-19a in cholangiocarcinoma cells via sequence prediction, 3′ untranslated region luciferase activity assay, and Western blot analysis. Accordingly, overexpression of the PTEN open reading frame protein (devoid of 3′ untranslated region) prevented miR-92a– or miR-19a–induced cholangiocarcinoma cell growth. Microarray analysis revealed additional targets of the miR-17-92 cluster in human cholangiocarcinoma cells, including APAF-1 and PRDM2. Moreover, we observed that the expression of the miR-17-92 cluster is regulated by IL-6/Stat3, a key oncogenic signaling pathway pivotal in cholangiocarcinogenesis. Taken together, our findings disclose a novel IL-6/Stat3–miR-17-92 cluster–PTEN signaling axis that is crucial for cholangiocarcinogenesis and tumor progression. PMID:25239565
Climent, Montserrat; Quintavalle, Manuela; Miragoli, Michele; Chen, Ju; Condorelli, Gianluigi; Elia, Leonardo
2015-05-22
The miR-143/145 cluster is highly expressed in smooth muscle cells (SMCs), where it regulates phenotypic switch and vascular homeostasis. Whether it plays a role in neighboring endothelial cells (ECs) is still unknown. To determine whether SMCs control EC functions through passage of miR-143 and miR-145. We used cocultures of SMCs and ECs under different conditions, as well as intact vessels to assess the transfer of miR-143 and miR-145 from one cell type to another. Imaging of cocultured cells transduced with fluorescent miRNAs suggested that miRNA transfer involves membrane protrusions known as tunneling nanotubes. Furthermore, we show that miRNA passage is modulated by the transforming growth factor (TGF) β pathway because both a specific transforming growth factor-β (TGFβ) inhibitor (SB431542) and an shRNA against TGFβRII suppressed the passage of miR-143/145 from SMCs to ECs. Moreover, miR-143 and miR-145 modulated angiogenesis by reducing the proliferation index of ECs and their capacity to form vessel-like structures when cultured on matrigel. We also identified hexokinase II (HKII) and integrin β 8 (ITGβ8)-2 genes essential for the angiogenic potential of ECs-as targets of miR-143 and miR-145, respectively. The inhibition of these genes modulated EC phenotype, similarly to miR-143 and miR-145 overexpression in ECs. These findings were confirmed by ex vivo and in vivo approaches, in which it was shown that TGFβ and vessel stress, respectively, triggered miR-143/145 transfer from SMCs to ECs. Our results demonstrate that miR-143 and miR-145 act as communication molecules between SMCs and ECs to modulate the angiogenic and vessel stabilization properties of ECs. © 2015 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tianjun; Gao, Fei; Feng, Sifang
2015-08-28
MicroRNAs have been shown to act as crucial modulators during carcinogenesis. Recent studies have implied that miR-134 expression associated with epithelial-to-mesenchymal transition phenotype and invasive potential of NSCLC cells. Our study investigated the pathogenic implications of miR-134 in small cell lung cancer (SCLC). Overexpression or inhibition MiR-134 expression by miR-134 mimics or miR-134 inhibitors (anti-miR-134) in SCLC cell lines was detected using qRT-PCR. Lactate dehydrogenase (LDH) assay, MTT assays and flow cytometry were performed in order to clarify the growth and apoptosis of SCLC cells which had been transfected with miR-134 mimics or anti-miR-134. WWOX expression in H69 cells wasmore » detected by qRT-PCR and western blot, respectively. The results showed that overexpression miR-134 was significantly promoting SCLC cells growth and inhibit its apoptosis. In addition, reduced miR-134 expression was significantly correlated with cell growth inhibition and apoptosis promotion. Furthermore, transfection of miR-134 mimics into the SCLC cells markedly down-regulated the level of WWOX, whereas, anti-miR-134 up-regulated WWOX expression. We also found that overexpression WWOX attenuate miR-134 induced H69 cells growth, and promote cell apoptosis. Moreover, miR-134 promoted cell proliferation and inhibit apoptosis via the activation of ERK1/2 pathway. These findings suggest that miR-134 may be an ideal diagnostic and prognostic marker, and may be attributed to the molecular therapy of SCLC. - Highlights: • MiR-134 play roles in small cell lung cancer cell growth and apoptosis. • MiR-134 negative regulated the level of WWOX in H69 cells. • WWOX overexpression attenuate miR-134 induced H69 cells growth. • MiR-134 promotes cell growth via the activation of ERK1/2 pathway.« less
Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma.
Gopalan, Vinod; Islam, Farhadul; Pillai, Suja; Tang, Johnny Cheuk-On; Tong, Daniel King-Hung; Law, Simon; Chan, Kwok-Wah; Lam, Alfred King-Yin
2016-11-01
This study aims to examine the expression profiles miR-1288 in oesophageal squamous cell carcinoma (ESCC). The cellular implications and target interactions of ESCC cells following miR-1288 overexpression was also examined. In total, 120 oesophageal tissues (90 primary ESCCs and 30 non-neoplastic tissues) were recruited for miR-1288 expression analysis using qRT-PCR. An exogenous miR-1288 mimic and its inhibitor were used to explore the in-vitro effects of miR-1288 on ESCC cells by performing cell proliferation, colony formation, cell invasion and migration assays. Localisation and modulatory changes of various miR-1288 regulated proteins such as FOXO1, p53, TAB3, BCL2 and kRAS was examined using immunofluorescence and western blot. Overexpression of miR-1288 was more often noted in ESCC tissues when compared to non-neoplastic oesophageal tissues. High expression was often noted in high grade carcinomas and with metastases. Patients with high levels of miR-1288 expression showed a slightly better survival compared to patients with low miR-1288 levels. Furthermore, overexpression of miR-1288 showed increased cell proliferation and colony formation, improved cell migration and enhanced cell invasion properties in ESCC cells. In addition, miR-1288 overexpression in ESCC cells showed repression of cytoplasmic tumour suppressor FOXO1 protein expression. Inversely, inhibition of miR-1288 expression exhibited remarkable upregulation of FOXO1 protein, while expressions of other tested proteins remain unchanged. Up regulation of miR-1288 expression in ESCC tissues and miR-1288 induced oncogenic features of ESCC cells in-vitro indicates the oncogenic roles of miR-1288 in ESCCs. Overexpression of miR-1288 play a key role in the pathogenesis of ESCCs and its modulation may have potential therapeutic value in patients with ESCC. Copyright © 2016 Elsevier Inc. All rights reserved.
King, Isabelle N.; Yartseva, Valeria; Salas, Donaldo; Kumar, Abhishek; Heidersbach, Amy; Ando, D. Michael; Stallings, Nancy R.; Elliott, Jeffrey L.; Srivastava, Deepak; Ivey, Kathryn N.
2014-01-01
MicroRNA (miRNA) maturation is regulated by interaction of particular miRNA precursors with specific RNA-binding proteins. Following their biogenesis, mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) where they interact with mRNAs to negatively regulate protein production. However, little is known about how mature miRNAs are regulated at the level of their activity. To address this, we screened for proteins differentially bound to the mature form of the miR-1 or miR-133 miRNA families. These muscle-enriched, co-transcribed miRNA pairs cooperate to suppress smooth muscle gene expression in the heart. However, they also have opposing roles, with the miR-1 family, composed of miR-1 and miR-206, promoting myogenic differentiation, whereas miR-133 maintains the progenitor state. Here, we describe a physical interaction between TDP-43, an RNA-binding protein that forms aggregates in the neuromuscular disease, amyotrophic lateral sclerosis, and the miR-1, but not miR-133, family. Deficiency of the TDP-43 Drosophila ortholog enhanced dmiR-1 activity in vivo. In mammalian cells, TDP-43 limited the activity of both miR-1 and miR-206, but not the miR-133 family, by disrupting their RISC association. Consistent with TDP-43 dampening miR-1/206 activity, protein levels of the miR-1/206 targets, IGF-1 and HDAC4, were elevated in TDP-43 transgenic mouse muscle. This occurred without corresponding Igf-1 or Hdac4 mRNA increases and despite higher miR-1 and miR-206 expression. Our findings reveal that TDP-43 negatively regulates the activity of the miR-1 family of miRNAs by limiting their bioavailability for RISC loading and suggest a processing-independent mechanism for differential regulation of miRNA activity. PMID:24719334
MiR-26a enhances invasive capacity by suppressing GSK3β in human lung cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Gaoyang; Liu, Boning; Meng, Zhaowei
Lung cancer is the common cause of death from cancer, and most lung cancer patients die of metastasis. MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors, playing crucial role not only in tumorigenesis, but also in tumor invasion and metastasis. There are several studies showed that miR-26a is involved in carcinogenesis, however, its role in tumor metastasis need to be elucidated. In this study, we showed that ectopic expression of miR-26a enhanced migration and invasion of lung cancer cells. Glycogen synthase kinase-3β (GSK3β) was identified as a direct target of miR-26a. GSK3β expression negatively correlated with miR-26a expression inmore » lung cancer tissues. Silencing of GSK3β achieved similar effect as miR-26a over-expression; over-expression of GSK3β reversed the enhanced effect of miR-26a on lung cancer cell migration and invasion. Further study indicated that miR-26a increased β-catenin expression and nuclear translocation. C-myc and cyclin D1, the downstream genes of β-catenin, were also up-regulated by miR-26a. Furthermore, xenograft study showed that miR-26a promoted lung cancer cell growth in vivo, and suppressed GSK3β expression. Collectively, our results demonstrated that miR-26a enhanced metastatic potential of lung cancer cells via activation of β-catenin pathway by targeting GSK3β, suggesting the potential applicability of miR-26a as a target for cancer treatment. - Highlights: • miR-26a enhances migration and invasion of lung cancer cells. • GSK3β is identified as a direct target of miR-26a. • miR-26a activates β-catenin pathway by targeting GSK3β. • miR-26a promotes lung cancer cell growth in vivo.« less
miR-1271 promotes non-small-cell lung cancer cell proliferation and invasion via targeting HOXA5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yongfang; Xu, Lianhong; Jiang, Lixin, E-mail: jianglx66766@163.com
2015-03-13
MicroRNAs (miRNAs) are short, non-coding RNAs (∼22 nt) that play important roles in the pathogenesis of human diseases by negatively regulating numerous target genes at posttranscriptional level. However, the role of microRNAs in lung cancer, particularly non-small-cell lung cancer (NSCLC), has remained elusive. In this study, two microRNAs, miR-1271 and miR-628, and their predicted target genes were identified differentially expressed in NSCLC by analyzing the miRNA and mRNA expression data from NSCLC tissues and their matching normal controls. miR-1271 and its target gene HOXA5 were selected for further investigation. CCK-8 proliferation assay showed that the cell proliferation was promoted by miR-1271more » in NSCLC cells, while miR-1271 inhibitor could significantly inhibited the proliferation of NSCLC cells. Interestingly, migration and invasion assay indicated that overexpression of miR-1271 could significantly promoted the migration and invasion of NSCLC cells, whereas miR-1271 inhibitor could inhibited both cell migration and invasion of NSCLC cells. Western blot showed that miR-1271 suppressed the protein level of HOXA5, and luciferase assays confirmed that miR-1271 directly bound to the 3'untranslated region of HOXA5. This study indicated indicate that miR-1271 regulates NSCLC cell proliferation and invasion, via the down-regulation of HOXA5. Thus, miR-1271 may represent a potential therapeutic target for NSCLC intervention. - Highlights: • Overexpression of miR-1271 promoted proliferation and invasion of NSCLC cells. • miR-1271 inhibitor inhibited the proliferation and invasion of NSCLC cells. • miR-1271 targets 3′ UTR of HOXA5 in NSCLC cells. • miR-1271 negatively regulates HOXA5 in NSCLC cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Zheng; Qi, Ruizhao; Guo, Xiaodong
Hepatocellular carcinoma (HCC) is a common digestive malignancy. MiR-223, a well-identified miRNA, exhibits diverse properties in different cancers. In this study, we demonstrated that miR-223 could suppress cell growth and promote apoptosis in HepG2 and Bel-7402 HCC cell lines. We screened and identified a novel miR-223 target, Ras-related protein Rab-1(Rab1). Upregulation of miR-223 would specifically and markedly down-regulate Rab1 expression. In addition, miR-223-overexpressing subclones showed significant cell growth inhibition by increasing cell apoptosis in HepG2 and Bel-7402 cells. To identify the mechanisms, we firstly investigated the mTOR pathway and found that pmTOR, p70S6K and Bcl-2 were dramatically down-regulated after miR-223 transfection,more » while no changes in the level of Bax was visualized. Furthermore, our data showed that the anti-tumor effects arising from miR-223 transfection in HCC cells may be due to the deactivation of mTOR pathway caused by the suppression of Rab1 expression when miR-223 is overexpressed. In summary, our results indicate that miR-223 functions as a tumor suppressor and plays a critical role in inhibiting the tumorigenesis and promoting the apoptosis of HCC through the mTOR signaling pathway in vitro. By targeting Rab1, miR-223 efficiently mediates the mTOR pathway. Given these, miR-223 may be a potential therapeutic target for treating HCC. - Highlights: • miR-223 is downregulated in hepatocellular carcinomas. • Rab1 is a novel downstream target of miR-223. • miR-223 suppressed cell growth and enhanced apoptosis in HepG2 and Bel-7402 cells. • miR-223 modulated mTOR signaling pathway by targeting Rab1.« less
PLK1-associated microRNAs are correlated with pediatric medulloblastoma prognosis.
Pezuk, Julia Alejandra; Brassesco, María Sol; de Oliveira, Ricardo Santos; Machado, Hélio Rubens; Neder, Luciano; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga
2017-04-01
Medulloblastoma (MB) is the most common malignant tumor of the central nervous system (CNS) in children. Despite its relative good survival rates, treatment can cause long time sequels and may impair patients' lifespan and quality, making the search for new treatment options still necessary. Polo like kinases (PLKs) constitute a five-member serine/threonine kinases family (PLK 1-5) that regulates different stages during cell cycle. Abnormal PLKs expression has been observed in several cancer types, including MB. As gene regulators, miRNAs have also been described with variable expression in cancer. We evaluated gene expression profiles of all PLK family members and related miRNAs (miR-100, miR-126, miR-219, and miR-593*) in MB cell lines and tumor samples. RT-qPCR analysis revealed increased levels of PLK1-4 in all cell lines and in most MB samples, while PLK5 was found underexpressed. In parallel, miR-100 was also found upregulated while miR-129, miR-216, and miR-593* were decreased in MB cell lines. Variable miRNAs expression patterns were observed in MB samples. However, a correlation between miR-100 and PLK4 expression was observed, and associations between miR-100, miR-126, and miR-219 expression and overall and event free survival were also evinced in our cohort. Moreover, despite the lack of association with clinico-pathological features, when comparing primary tumors to those relapsed, we found a consistent decrease on PLK2, miR-219, and miR-598* and an increase on miR-100 and miR-126. Specific dysregulation on PLKs and associated miRNAs may be important in MB and can be used to predict prognosis. Although miRNAs sequences are fundamental to predict its target, the cell type may also be consider once that mRNA repertoire can define different roles for specific miRNA in a given cell.
Wang, Shukui; Liu, Xiangxiang; Pan, Bei; Sun, Li; Chen, Xiaoxiang; Zeng, Kaixuan; Hu, Xiuxiu; Xu, Tao; Xu, Mu
2018-05-08
Colorectal cancer (CRC) is one of the most common cancers worldwide usually with poor prognosis due to the advanced stage when diagnosed. This study aimed to investigate whether specific circulating exosomal miRNAs could act as biomarkers for early diagnosis of CRC. A total of 369 peripheral blood samples were included in this study. In the discovery phase, circulating exosomal miR-27a and miR-130a were selected after synthetical analysis of two GEO datasets and TCGA database. The differential expression and diagnostic utility of miR-27a and miR-130a panel were validated using quantitative reverse-transcriptase PCR (qRT-PCR) and Receiver operating characteristic (ROC) curve analysis in subsequent training phase, validation phase and external validation phase. The prognosis of circulating exosomal miR-27a and miR-130a were investigated using the Kaplan-Meier method. The expression of exosomal miR-27a and miR-130a in plasma significantly increased in CRC. The area under ROC curves (AUCs) of miR-27a (miR-130a) were 0.773 (0.742) in the training phase, 0.82 (0.787) in the validation phase, and 0.746 (0.697) in the external validation phase. The combination of two miRNAs presented higher diagnostic utility for CRC (AUCs = 0.846, 0.898 and 0.801 for the training, validation, and external validation phases, respectively). CRC patients with high expression of circulating exosomal miR-27a or miR-130a underwent poorer prognosis. We identified a circulating exosomal miRNAs panel for the detection of CRC. The exosomal miR-27a and miR-130a panel in plasma may act as a non-invasive biomarker for early detection and predicting prognosis of CRC. Copyright ©2018, American Association for Cancer Research.
King, Isabelle N; Yartseva, Valeria; Salas, Donaldo; Kumar, Abhishek; Heidersbach, Amy; Ando, D Michael; Stallings, Nancy R; Elliott, Jeffrey L; Srivastava, Deepak; Ivey, Kathryn N
2014-05-16
MicroRNA (miRNA) maturation is regulated by interaction of particular miRNA precursors with specific RNA-binding proteins. Following their biogenesis, mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) where they interact with mRNAs to negatively regulate protein production. However, little is known about how mature miRNAs are regulated at the level of their activity. To address this, we screened for proteins differentially bound to the mature form of the miR-1 or miR-133 miRNA families. These muscle-enriched, co-transcribed miRNA pairs cooperate to suppress smooth muscle gene expression in the heart. However, they also have opposing roles, with the miR-1 family, composed of miR-1 and miR-206, promoting myogenic differentiation, whereas miR-133 maintains the progenitor state. Here, we describe a physical interaction between TDP-43, an RNA-binding protein that forms aggregates in the neuromuscular disease, amyotrophic lateral sclerosis, and the miR-1, but not miR-133, family. Deficiency of the TDP-43 Drosophila ortholog enhanced dmiR-1 activity in vivo. In mammalian cells, TDP-43 limited the activity of both miR-1 and miR-206, but not the miR-133 family, by disrupting their RISC association. Consistent with TDP-43 dampening miR-1/206 activity, protein levels of the miR-1/206 targets, IGF-1 and HDAC4, were elevated in TDP-43 transgenic mouse muscle. This occurred without corresponding Igf-1 or Hdac4 mRNA increases and despite higher miR-1 and miR-206 expression. Our findings reveal that TDP-43 negatively regulates the activity of the miR-1 family of miRNAs by limiting their bioavailability for RISC loading and suggest a processing-independent mechanism for differential regulation of miRNA activity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Dysregulation of the mitogen granulin in human cancer through the miR-15/107 microRNA gene group
Wang, Wang-Xia; Kyprianou, Natasha; Wang, Xiaowei; Nelson, Peter T.
2010-01-01
Granulin (GRN) is a potent mitogen and growth factor implicated in many human cancers, but its regulation is poorly understood. Recent findings indicate that GRN is regulated strongly by the microRNA miR-107, which functionally overlap with miR-15, miR-16, and miR-195 due to a common 5' sequence critical for target specificity. In this study, we queried whether miR-107 and paralogs regulated GRN in human cancers. In cultured cells, anti-Argonaute RIP-ChIP experiments indicate that GRN mRNA is directly targeted by numerous miR-15/107 miRNAs. Further tests of this association in human tumors. MiR-15 and miR-16 are known to be downregulated in chronic lymphocytic leukemia (CLL). Using pre-existing microarray datasets, we found that GRN expression is higher in CLL relative to non-neoplastic lymphocytes (P>0.00001). By contrast, other prospective miR-15/miR-16 targets in the dataset (BCL-2 and cyclin D1) were not up-regulated in CLL. Unlike in CLL, GRN was not up-regulated in chronic myelogenous leukemia (CML) where miR-107 paralogs are not known to be dysregulated. Prior studies have shown that GRN is also up-regulated, and miR-107 down-regulated, in prostate carcinoma. Our results indicate that multiple members of the miR-107 gene group indeed repress GRN protein levels when transfected into prostate cancer cells. At least a dozen distinct types of cancer have the pattern of increased GRN and decreased miR-107 expression. These findings indicate for the first time that the mitogen and growth factor GRN is dysregulated via the miR-15/107 gene group in multiple human cancers, which may provide a potential common therapeutic target. PMID:20884628
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagge, Annika; Clausen, Trine R.; Larsen, Sylvester
Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cellsmore » and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.« less
Role of miR-27a, miR-181a and miR-20b in gastric cancer hypoxia-induced chemoresistance
Danza, Katia; Silvestris, Nicola; Simone, Giovanni; Signorile, Michele; Saragoni, Luca; Brunetti, Oronzo; Monti, Manlio; Mazzotta, Annalisa; De Summa, Simona; Mangia, Anita; Tommasi, Stefania
2016-01-01
ABSTRACT Despite the search for new therapeutic strategies for gastric cancer (GC), there is much evidence of progression due to resistance to chemotherapy. Multidrug resistance (MDR) is the ability of cancer cells to survive after exposure to chemotherapeutic agents. The involvement of miRNAs in the development of MDR has been well described but miRNAs able to modulate the sensitivity to chemotherapy by regulating hypoxia signaling pathways have not yet been fully addressed in GC. Our aim was to analyze miR-20b, miR-27a and miR-181a expression with respect to (epirubicin/oxaliplatin/capecitabine (EOX)) chemotherapy regimen in a set of GC patients, in order to investigate whether miRNAs deregulation may influence GC MDR also via hypoxia signaling modulation. Cancer biopsy were obtained from 21 untreated HER2 negative advanced GC patients, retrospectively analyzed. All patients received a first-line chemotherapy (EOX) regimen. MirWalk database was used to identify miR-27a, miR-181a and miR-20b target genes. The expression of miRNAs and of HIPK2, HIF1A and MDR1 genes were detected by real-time PCR. HIPK2 localization was assessed by immunohistochemistry. Our data showed the down-regulation of miR-20b, miR-27a, miR-181a concomitantly to higher levels of MDR1, HIF1A and HIPK2 genes in GC patients with a progressive disease respect to those with a disease control rate. Moreover, immunohistochemistry assay highlighted a higher cytoplasmic HIPK2 staining, suggesting a different role for it. We showed that aberrant expression of miR-20b, miR27a and miR-181a was associated with chemotherapeutic response in GC through HIF1A, MDR1 and HIPK2 genes modulation, suggesting a possible novel therapeutic strategy. PMID:26793992
MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer
Suh, Seong O.; Chen, Yi; Zaman, Mohd Saif; Hirata, Hiroshi; Yamamura, Soichiro; Shahryari, Varahram; Liu, Jan; Tabatabai, Z.Laura; Kakar, Sanjay; Deng, Guoren; Tanaka, Yuichiro; Dahiya, Rajvir
2011-01-01
MiR-145 is downregulated in various cancers including prostate cancer. However, the underlying mechanisms of miR-145 downregulation are not fully understood. Here, we reported that miR-145 was silenced through DNA hypermethylation and p53 mutation status in laser capture microdissected (LCM) prostate cancer and matched adjacent normal tissues. In 22 of 27 (81%) prostate tissues, miR-145 was significantly downregulated in the cancer compared with the normal tissues. Further studies on miR-145 downregulation mechanism showed that miR-145 is methylated at the promoter region in both prostate cancer tissues and 50 different types of cancer cell lines. In seven cancer cell lines with miR-145 hypermethylation, 5-aza-2′-deoxycytidine treatment dramatically induced miR-145 expression. Interestingly, we also found a significant correlation between miR-145 expression and the status of p53 gene in both LCM prostate tissues and 47 cancer cell lines. In 29 cell lines with mutant p53, miR-145 levels were downregulated in 28 lines (97%), whereas in 18 cell lines with wild-type p53 (WT p53), miR-145 levels were downregulated in only 6 lines (33%, P < 0.001). Electrophoretic mobility shift assay showed that p53 binds to the p53 response element upstream of miR-145, but the binding was inhibited by hypermethylation. To further confirm that p53 binding to miR-145 could regulate miR-145 expression, we transfected WT p53 and MUT p53 into PC-3 cells and found that miR-145 is upregulated by WT p53 but not with MUTp53. The apoptotic cells are increased after WT p53 transfection. In summary, this is the first report documenting that downregulation of miR-145 is through DNA methylation and p53 mutation pathways in prostate cancer. PMID:21349819
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jong-Kook; Henry, Jon C.; Jiang, Jinmai
2011-03-25
Research highlights: {yields} The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. {yields} miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. {yields} miR-132 and miR-212 expression is increased by a {beta}2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target themore » retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G{sub 2}/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the {beta}2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The {beta}2 adrenergic pathway may play an important role in this novel mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Jun; Tao, Zhong-Hua; Wen, Duo
Highlights: • miR-612 suppresses tumorsphere and clone formation of HCC cells. • miR-612 reduces drug resistance of HCC cells. • miR-612 suppresses tumorigenesis of HCC in NOD/SCID mice. • miR-612 inhibits an invasive frontier of HCC xenografts. • miR-612 suppresses Wnt/β-catenin signaling. - Abstract: Previous research showed that microRNA-612 (miR-612) has inhibitory effects on cell proliferation, migration, invasion, and metastasis of hepatocellular carcinoma (HCC). AKT2 was confirmed to be a direct target of miR-612, through which the epithelial–mesenchymal transition (EMT) and metastasis of HCC were inhibited. Our present findings reveal that miR-612 is able to suppress the stemness of HCCmore » by reducing the number and size of tumorspheres as well as clone formation in soft agar, and to relieve drug resistance to cisplatin and 5-fluorouracil. In addition, miR-612 hampered the capacity of tumorigenesis in NOD/SCID mice and redistributed the tumor invasive frontier of miR-612-modulating cells. Finally, our findings suggest that Wnt/β-catenin signaling is required in the regulation of EMT-associated stem cell-like traits by miR-612.« less
miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells.
Sun, GuoQiang; Ye, Peng; Murai, Kiyohito; Lang, Ming-Fei; Li, Shengxiu; Zhang, Heying; Li, Wendong; Fu, Chelsea; Yin, Jason; Wang, Allen; Ma, Xiaoxiao; Shi, Yanhong
2011-11-08
miR-137 is a brain-enriched microRNA. Its role in neural development remains unknown. Here we show that miR-137 has an essential role in controlling embryonic neural stem cell fate determination. miR-137 negatively regulates cell proliferation and accelerates neural differentiation of embryonic neural stem cells. In addition, we show that the histone lysine-specific demethylase 1 (LSD1), a transcriptional co-repressor of nuclear receptor TLX, is a downstream target of miR-137. In utero electroporation of miR-137 in embryonic mouse brains led to premature differentiation and outward migration of the transfected cells. Introducing a LSD1 expression vector lacking the miR-137 recognition site rescued miR-137-induced precocious differentiation. Furthermore, we demonstrate that TLX, an essential regulator of neural stem cell self-renewal, represses the expression of miR-137 by recruiting LSD1 to the genomic regions of miR-137. Thus, miR-137 forms a feedback regulatory loop with TLX and LSD1 to control the dynamics between neural stem cell proliferation and differentiation during neural development.
microRNA-184 Induces a Commitment Switch to Epidermal Differentiation.
Nagosa, Sara; Leesch, Friederike; Putin, Daria; Bhattacharya, Swarnabh; Altshuler, Anna; Serror, Laura; Amitai-Lange, Aya; Nasser, Waseem; Aberdam, Edith; Rouleau, Matthieu; Tattikota, Sudhir G; Poy, Matthew N; Aberdam, Daniel; Shalom-Feuerstein, Ruby
2017-12-12
miR-184 is a highly evolutionary conserved microRNA (miRNA) from fly to human. The importance of miR-184 was underscored by the discovery that point mutations in miR-184 gene led to corneal/lens blinding disease. However, miR-184-related function in vivo remained unclear. Here, we report that the miR-184 knockout mouse model displayed increased p63 expression in line with epidermal hyperplasia, while forced expression of miR-184 by stem/progenitor cells enhanced the Notch pathway and induced epidermal hypoplasia. In line, miR-184 reduced clonogenicity and accelerated differentiation of human epidermal cells. We showed that by directly repressing cytokeratin 15 (K15) and FIH1, miR-184 induces Notch activation and epidermal differentiation. The disease-causing miR-184 C57U mutant failed to repress K15 and FIH1 and to induce Notch activation, suggesting a loss-of-function mechanism. Altogether, we propose that, by targeting K15 and FIH1, miR-184 regulates the transition from proliferation to early differentiation, while mis-expression or mutation in miR-184 results in impaired homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Li, Kun-Ping; Fang, Yong-Ping; Liao, Jin-Qi; Duan, Jin-Dong; Feng, Li-Guang; Luo, Xiao-Zai; Liang, Zhi-Jian
2018-01-01
Colorectal cancer (CRC) is one of the most common types of cancer worldwide. Recently, microRNAs (miRs) have been considered as novel therapeutic targets for the treatment of cancer. miR-598 is a poorly investigated miR. The underlying mechanism of miR-598 in CRC cells remains to be elucidated. In the present study, miR-598 was demonstrated to be significantly upregulated in CRC tissue by analyzing data from The Cancer Genome Atlas and the Gene Expression Omnibus. The results of a polymerase chain reaction demonstrated that miR-598 expression was significantly upregulated in CRC tissues and cells. Gain of function and loss of function assays demonstrated that miR-598 significantly promoted cell proliferation and cell cycle progression. miR-598 was demonstrated to modulate cell functions by regulating 72 kDa inositol polyphosphate-5-phosphatase (INPP5E). In addition, knockdown of INPP5E counteracted the growth arrest caused by an miR-598-inhibitor. In conclusion, the present study demonstrated that miR-598 contributed to cell proliferation and cell cycle progression in CRC by targeting INPP5E. PMID:29257251
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Mingjun; Chen, Wei; Yu, Hongmei
MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. Here, we identified that miR-543 is up-regulated in gefitinib-resistant non-small cell lung cancer (NSCLC) patients comparing gefitinib-sensitive ones. It promotes NSCLC cell proliferation by negatively regulates its target gene PTEN. In NSCLC cell lines, CCK-8 proliferation assay indicated that the cell proliferation is promoted by miR-543 mimics. Transwell assay showed that miR-543 mimics promotes the invasion and migration of NSCLC cells. Luciferase assays confirmed that miR-543 directly binds to the 3'untranslated region of PTEN, and western blotting showed thatmore » miR-543 suppresses the expression of PTEN at the protein level. This study indicates that miR-543 promotes proliferation and invasion of NSCLC cell lines by PTEN. The miR-543 may represent a potential therapeutic target for gefitinib-resistant NSCLC intervention. - Highlights: • miR-543 is highly expressed in gefitinib-resistant NSCLC. • miR-543 promotes the proliferation and invasion of NSCLC cells. • miR-543 inhibitors inhibits the proliferation and invasion of NSCLC cells. • miR-543 targets 3′ UTR of PTEN in NSCLC cells. • miR-543 inhibits PTEN in NSCLC cells.« less
Bai, Juanjuan; Zhang, Zhongling; Li, Xing; Liu, Huifan
2015-01-01
The role of miR-365 in cancer cells seemed controversial in previous studies. We thereby in this article aimed to define the role of miR-365 in malignant melanoma (MM) pathogenesis. We detected miR-365 expression in malignant melanoma cell lines and then investigated the effects of miR-365 on the metastasis and malignancy of melanoma cells. The correlation between miR-365 level and NRP1 (neuropilin1) was further investigated in clinical malignant melanoma specimens. MiR-365 was strongly down-regulated in malignant melanoma (MM) tissues and cell lines, and its expression levels were associated with lymph node metastasis and clinical stage, as well as overall survival and replase-free survival of MM. We also found that ectopic expression of miR-365 inhibited MM cell proliferation and MM metastasis in vitro and in vivo. We further identified a novel mechanism of miR-365 to suppress MM growth and metastasis. NRP1 was proved to be a direct target of miR-365, using luciferase assay and western blot. NRP1 over-expression in miR-365 expressing cells could rescue invasion and growth defects of miR-365. In addition, miR-365 expression inversely correlated with NRP1 protein levels in MM. Our data suggest that miR-365 functions as a tumor suppressor in MM development and progression, and holds promise as a prognostic biomarker and potential therapeutic target for MM.
MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Haigang; Hou, Liyue; Liu, Jingjing
MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 bymore » luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.« less
MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium
Cerutti, Camilla; Edwards, Laura J.; de Vries, Helga E.; Sharrack, Basil; Male, David K.; Romero, Ignacio A.
2017-01-01
Leukocyte adhesion to brain endothelial cells, the blood-brain barrier main component, is a critical step in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). Leukocyte adhesion is mediated mainly by selectins, cell adhesion molecules and chemokines induced by pro-inflammatory cytokines such as TNFα and IFNγ, but the regulation of this process is not fully clear. This study investigated the regulation of firm leukocyte adhesion to human brain endothelium by two different brain endothelial microRNAs (miRs), miR-126 and miR-126*, that are downregulated by TNFα and IFNγ in a human brain endothelial cell line, hCMEC/D3. Using a leukocyte adhesion in vitro assay under shear forces mimicking blood flow, we observed that reduction of endothelial miR-126 and miR-126* enhanced firm monocyte and T cell adhesion to hCMEC/D3 cells, whereas their increased expression partially prevented THP1, Jurkat and primary MS patient-derived PBMC firm adhesion. Furthermore, we observed that miR-126* and miR-126 downregulation increased E-selectin and VCAM1, respectively, while miR-126 overexpression reduced VCAM1 and CCL2 expression by hCMEC/D3 cells, suggesting that these miRs regulate leukocyte adhesion by modulating the expression of adhesion-associated endothelial mRNA targets. Hence, human brain endothelial miR-126 and miR-126* could be used as a therapeutic tool to reduce leukocyte adhesion and thus reduce neuroinflammation. PMID:28358058
Wang, Yingying; Tian, Yongjie
2018-01-02
miR-206 and bcl2-associated athanogene 3 (BAG3) have been suggested as important regulators in various cancer types. However, the biological role of miR-206 and BAG3 in cervical cancer (CC) remains unclear. Here, we investigated the expressions and mechanisms of miR-206 and BAG3 in cervical cancer using in vitro and in vivo assays. In the present study, miR-206 expression was expressed at a lower level in CC tissues and cells than adjacent normal tissues and NEEC cells. By contrast, BAG3 mRNA and protein were expressed at higher levels in CC tissues and cells. Furthermore, miR-206 overexpression repressed cell proliferation, migration and invasion in vitro, and the 3'-untranslated region (3'-UTR) of BAG3 was a direct target of miR-206. miR-206 overexpression also inhibited EGFR, Bcl-2 and MMP2/9 protein expression, but promoted Bax protein expression. Besides, BAG3 over-expression partially abrogated miR-206-inhibited cell proliferation and invasion, while BAG3 silencing enhanced miR206-mediated inhibition. In vivo assay revealed that miR-206 repressed tumor growth in nude mice xenograft model. In conclusion, miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer. Thus, miR-206-BAG3 can be used as a useful target for cervical cancer.
A Noninvasive Test for MicroRNA Expression in Oral Squamous Cell Carcinoma.
Gissi, Davide B; Morandi, Luca; Gabusi, Andrea; Tarsitano, Achille; Marchetti, Claudio; Cura, Francesca; Palmieri, Annalisa; Montebugnoli, Lucio; Asioli, Sofia; Foschini, Maria P; Scapoli, Luca
2018-06-16
MicroRNAs have recently been proposed as non-invasive biomarkers in Oral Squamous Cell Carcinoma (OSCC). The aim of this study was to analyze the expression of a panel of miRNAs in epithelial cells collected by oral brushing from OSCCs from regenerative areas after OSCC surgical resection and from their respective normal distant mucosa. Oral brushing specimens were collected from 24 healthy donors, 14 OSCC patients with specimens from tumour and normal distant mucosa, and from 13 patients who had OSCC resection, with samples from regenerative areas after OSCC resection and normal distant mucosa. Expression levels of eight targets (miR-21, miR-375, miR-345, miR-181b, miR-146a, miR-649, miR-518b, and miR-191) were evaluated by real-time Polymerase Chain Reaction (PCR). A highly significant between-group difference was found for miR-21 (F = 6.58, p < 0.001), miR-146a (F = 6.974, p < 0.001), and miR-191 (F = 17.07, p < 0.001). The major difference was observed between samples from healthy donors and from OSCC brushing, whereas no significant differences were observed between areas infiltrated by OSCC and their respective normal distant mucosa. Furthermore, altered expression of miR-146a and miR-191 was also observed in regenerative areas after OSCC resection. Oral brushing could be proposed as a noninvasive method to study microRNA expression in oral mucosa in OSCC patients.
HU, YANYAN; WANG, QIAN; WANG, ZENGMIN; WANG, FENGXUE; GUO, XIAOBO; LI, GUIMEI
2015-01-01
Since the tissue of children with combined pituitary hormone deficiency (CPHD) is not readily accessible, a new focus in children with CPHD is the blood-based expression profiling of non-protein coding genes, such as microRNAs (miRNAs or miRs), which regulate gene expression by inhibiting the translation of mRNAs. In this study, to address this, we identified potential miRNA signatures for CPHD by comparing genome-wide miRNA expression profiles in the serum of children with CPHD vs. normal (healthy) controls. Human embryonic kidney 293T cells were transfected with miR-593 or miR-511 oligonucleotides. Potential target gene expression was validated by western blot analysis for proteins and by miR-593 or miR-511 reporter assay using PROP1 gene 3′-untranslated region (3′-UTR) reporter. The miR-593 and miR-511 levels in the serum of 103 children with CPHD were assessed using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method. We found 23 upregulated and 19 down-regulated miRNAs with abnormal expression in children with CPHD compared with the normal controls using miRNA microarray analysis and RT-qPCR. miR-593 and miR-511 targeted the 3′-UTR of the PROP1 gene and attenuated the expression of PROP1. The levels of miR-593 and miR-511 in the serum of children with CPHD were increased compared with those in the control subjects. According to Youden’s index, the sensitivity was 82.54 and 84.86%, and the specificity was 98.15 and 91.36% for miR-593 and miR-511, respectively. The various levels of specific miRNAs, particularly miR-593 and miR-511 whose direct target is the PROP1 gene, may serve as a non-invasive diagnostic biomarkers for children with CPHD. PMID:25434367
Hromadnikova, Ilona; Kotlabova, Katerina; Ivankova, Katarina; Krofta, Ladislav
2017-01-01
A nested case control study of a longitudinal cohort comparing pregnant women enrolled at 10 to 13 gestational weeks was carried out to evaluate risk assessment for preeclampsia and IUGR based on circulating placental specific C19MC microRNAs in early pregnancy. The expression of placental specific C19MC microRNAs (miR-516b-5p, miR-517-5p, miR-518b, miR-520a-5p, miR-520h, and miR-525-5p) was determined in plasma samples from pregnancies that subsequently developed preeclampsia (n = 21), IUGR (n = 18), and 58 normal pregnancies using real-time PCR and comparative Ct method relative to synthetic Caenorhabditis elegans microRNA (cel-miR-39). Circulating C19MC microRNAs were up-regulated (miR-517-5p, p = 0.005; miR-518b, p = 0.013; miR-520h, p = 0.021) or showed a trend toward up-regulation in patients destined to develop preeclampsia (miR-520a-5p, p = 0.067; miR-525-5p, p = 0.073). MiR-517-5p had the best predictive performance for preeclampsia with a sensitivity of 42.9%, a specificity of 86.2%, a PPV of 52.9% and a NPV of 80.6%. The combination of all examined circulating C19MC microRNAs had no advantage over using only the miR-517-5p biomarker to predict the occurrence of preeclampsia (a sensitivity of 20.6%, a specificity of 90.8%, a PPV of 44.8%, and a NPV of 76.0%). Up-regulation of miR-517-5p, miR-518b and miR-520h was associated with a risk of later development of preeclampsia. First trimester screening of extracellular miR-517-5p identified a proportion of women with subsequent preeclampsia. No circulating C19MC microRNA biomarkers were identified that could predict later occurrence of IUGR.
Altered regulation of miR-34a and miR-483-3p in alcoholic hepatitis and DDC fed mice.
Liu, Hui; French, Barbara A; Li, Jun; Tillman, Brittany; French, Samuel W
2015-12-01
MicroRNAs are small noncoding RNAs that negatively regulate gene expression by binding to the untranslated regions of their target mRNAs. Deregulation of miRNAs is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of miR-34a and miR-483-3p by RNA sequencing (RNA-Seq) analyses. Real-time PCR further shows a 3- and 6-fold upregulation (respectively) of miR-34a in the AH livers and in the livers of DDC re-fed mice, while miR-483-3p was significantly downregulated in AH and DDC re-fed mice livers. This indicates that miR-34a and miR-483-3p may be crucial for liver MDB formation. P53 mRNA was found to be significantly downregulated both in the AH livers and in the livers of DDC re-fed mice, indicating that the upregulation of miR-34a is permitted by the decrease of p53 in AH since miR-34a is a main target of p53. Overexpression of miR-34a leads to an increase of p53 targets such as p27, which inhibits the cell cycle leading to cell cycle arrest. Importantly, BRCA1 is a target gene of miR-483-3p by RNA-Seq analyses and the downregulation of miR-483-3p may be the mechanism for liver MDB formation since the BRCA1 signal was markedly upregulated in AH livers. These results constitute a demonstration of the altered regulation of miR-34a and miR-483-3p in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by miR-34a and miR-483-3p in AH. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meng; Long, Chaoqin; Yang, Guilan
2016-03-11
Alterations in microRNA-26b (miR-26b) expression have been shown to participate in various malignant tumor developments. However, the possible function of miR-26b in human melanoma cells remains unclarified. In this study, quantitative polymerase chain reaction was used to explore the expression profiles of miR-26b in melanoma cells. The effect of miR-26b on cell viability was determined by using MTT assays and colony formation assay. The apoptosis levels were evaluated by using Annexin V/fluorescein isothiocyanate (FITC) apoptosis detection kit and the apoptosis cells were confirmed by Transmission Electron Microscopy (TEM). Luciferase reporter plasmids were constructed to confirm direct targeting. Our study foundmore » that the expression of miR-26b was downregulated in human melanoma specimens. Overexpression of miR-26b significantly increased the anti-proliferative effects and apoptosis in A375 and B16F10 melanoma cells. In addition, luciferase gene reporter assays confirmed that TRAF5 was a direct target gene of miR-26b and the anti-tumor effect of miR-26b in melanoma cells was significantly counteracted by treatment with TRAF5 overexpression. Furthermore, the molecular mechanisms underlying the tumor suppressor of miR-26b in malignant melanomas may be due to the dephosphorylation of MAPK pathway caused by the decrease in TRAF5 expression when miR-26b is up-regulated in melanoma cells. These findings indicate that miR-26b might influence TRAF5-MAPK signaling pathways to facilitate the malignant progression of melanoma cells. - Highlights: • miR-26b is downregulated in human melanomas. • miR-26b suppressed melanoma cell proliferation and enhanced cell apoptosis. • TRAF5 is a direct target of miR-26b and inversely correlates with miR-26b expression. • miR-26b modulated MAPK signaling pathway by targeting TRAF5.« less
MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori)
Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou
2009-01-01
Background MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Results Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). Conclusion We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal. PMID:19785751
MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori).
Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou
2009-09-28
MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Jesus Adrian; Alvarez-Salas, Luis Marat, E-mail: lalvarez@cinvestav.mx
Highlights: {yields} In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. {yields} We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. {yields} We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. {yields} miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. {yields} In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effectormore » of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.« less
Dorvel, Brian R.; Reddy, Bobby; Go, Jonghyun; Guevara, Carlos Duarte; Salm, Eric; Alam, Muhammad Ashraful; Bashir, Rashid
2012-01-01
Nanobiosensors based on silicon nanowire field effect transistors offer advantages of low cost, label-free detection, and potential for massive parallelization. As a result, these sensors have often been suggested as an attractive option for applications in Point-of-care (POC) medical diagnostics. Unfortunately, a number of performance issues such as gate leakage and current instability due to fluid contact, have prevented widespread adoption of the technology for routine use. High-k dielectrics, such as hafnium oxide (HfO2), have the known ability to address these challenges by passivating the exposed surfaces against destabilizing concerns of ion transport. With these fundamental stability issues addressed, a promising target for POC diagnostics and SiNWFET’s has been small oligonucleotides, more specifically microRNA (miRNA). MicroRNA’s are small RNA oligonucleotides which bind to messenger RNA’s, causing translational repression of proteins, gene silencing, and expressions are typically altered in several forms of cancer. In this paper, we describe a process for fabricating stable HfO2 dielectric based silicon nanowires for biosensing applications. Here we demonstrate sensing of single stranded DNA analogues to their microRNA cousins using miR-10b and miR-21 as templates, both known to be upregulated in breast cancer. We characterize the effect of surface functionalization on device performance using the miR-10b DNA analogue as the target sequence and different molecular weight poly-l-lysine as the functionalization layer. By optimizing the surface functionalization and fabrication protocol, we were able to achieve <100fM detection levels of miR-10b DNA analogue, with a theoretical limit of detection of 1fM. Moreover, the non-complementary DNA target strand, based on miR-21, showed very little response, indicating a highly sensitive and highly selective biosensing platform. PMID:22695179
NASA Astrophysics Data System (ADS)
Haugen, Paul
Mid-infrared (MIR) spectroscopy has been a tool used to identify specific features of normal and malignant tissue samples by utilizing MIR characteristics, specifically in the "fingerprint" region. The fingerprint region is a biologically significant spectral region typically identified between 1500 and 500 cm-1. MIR spectroscopy can be used to study molecular changes and variations occurring in samples, which can then be used to fingerprint specific spectral characteristics and biomarkers in order to categorize the specimens. The most common instruments currently used in this analysis are Fourier transform infrared (FTIR) spectrometers, although properties inherent in these instruments, such as slow data collection time and an inability to specify sample location for the spectral data collection, have placed a ceiling on the clinical practicality of their use for specimen classification and identification. In this thesis, we use a prototype of an infrared hyperspectral imaging microscopy platform based around tunable quantum cascade laser (QCL) technology that has a spectral coverage from 1800-900 cm-1. The quantum cascade lasers are coupled with a series of MIR refractive objectives and an uncooled microbolometer camera. The speed of spectral imaging improves to 30 frames per second, and the high magnification objective has a 1.34 microm pixel resolution with a 0.70 numerical aperture and 4.3 microm spatial resolution. We are able to specify data collection at specific discrete wavelengths as opposed to the full spectrum, which improves the data collection time and de-clutters the data for analysis expediency. Finally, we perform spectral imaging real-time, which aides in selecting precise regions of interest on the target sample. This thesis demonstrates the advantages of exploiting the capabilities of the QCL microscope to advance MIR spectroscopy in the identification of distinguishing traits of normal and malignant breast and cervical tissue samples.
Impaired neurosteroid synthesis in multiple sclerosis
Noorbakhsh, Farshid; Ellestad, Kristofor K.; Maingat, Ferdinand; Warren, Kenneth G.; Han, May H.; Steinman, Lawrence; Baker, Glen B.
2011-01-01
High-throughput technologies have led to advances in the recognition of disease pathways and their underlying mechanisms. To investigate the impact of micro-RNAs on the disease process in multiple sclerosis, a prototypic inflammatory neurological disorder, we examined cerebral white matter from patients with or without the disease by micro-RNA profiling, together with confirmatory reverse transcription–polymerase chain reaction analysis, immunoblotting and gas chromatography-mass spectrometry. These observations were verified using the in vivo multiple sclerosis model, experimental autoimmune encephalomyelitis. Brains of patients with or without multiple sclerosis demonstrated differential expression of multiple micro-RNAs, but expression of three neurosteroid synthesis enzyme-specific micro-RNAs (miR-338, miR-155 and miR-491) showed a bias towards induction in patients with multiple sclerosis (P < 0.05). Analysis of the neurosteroidogenic pathways targeted by micro-RNAs revealed suppression of enzyme transcript and protein levels in the white matter of patients with multiple sclerosis (P < 0.05). This was confirmed by firefly/Renilla luciferase micro-RNA target knockdown experiments (P < 0.05) and detection of specific micro-RNAs by in situ hybridization in the brains of patients with or without multiple sclerosis. Levels of important neurosteroids, including allopregnanolone, were suppressed in the white matter of patients with multiple sclerosis (P < 0.05). Induction of the murine micro-RNAs, miR-338 and miR-155, accompanied by diminished expression of neurosteroidogenic enzymes and allopregnanolone, was also observed in the brains of mice with experimental autoimmune encephalomyelitis (P < 0.05). Allopregnanolone treatment of the experimental autoimmune encephalomyelitis mouse model limited the associated neuropathology, including neuroinflammation, myelin and axonal injury and reduced neurobehavioral deficits (P < 0.05). These multi-platform studies point to impaired neurosteroidogenesis in both multiple sclerosis and experimental autoimmune encephalomyelitis. The findings also indicate that allopregnanolone and perhaps other neurosteroid-like compounds might represent potential biomarkers or therapies for multiple sclerosis. PMID:21908875
miR-7-1 POTENTIATED ESTROGEN RECEPTOR AGONISTS FOR FUNCTIONAL NEUROPROTECTION IN VSC4.1 MOTONEURONS
CHAKRABARTI, M.; BANIK, N. L.; RAY, S. K.
2013-01-01
Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERβ agonist), and estrogen (EST, ERα and ERβ agonist) in preventing apoptosis in the calcium ionophore (CI) insulted VSC4.1 motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERβ, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using miRDB indicated that miR-7-1 could inhibit expression of L-type Ca2+ channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca2+/calmodulin-dependent protein kinase II beta (CaMKIIβ) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future to attenuate apoptosis of motoneurons in SCI. PMID:24157932
MiR-7-1 potentiated estrogen receptor agonists for functional neuroprotection in VSC4.1 motoneurons.
Chakrabarti, M; Banik, N L; Ray, S K
2014-01-03
Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERβ agonist), and estrogen (EST, ERα and ERβ agonist) in preventing apoptosis in the calcium ionophore (CI)-insulted ventral spinal cord 4.1 (VSC4.1) motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERβ, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI-insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI-insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using microRNA database (miRDB) indicated that miR-7-1 could inhibit the expression of L-type Ca(2+) channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca(2+)/calmodulin-dependent protein kinase II beta (CaMKIIβ) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI-insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future to attenuate apoptosis of motoneurons in SCI. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Fernandez, Serena; Risolino, Maurizio; Mandia, Nadia; Talotta, Francesco; Soini, Ylermi; Incoronato, Mariarosaria; Condorelli, Gerolama; Banfi, Sandro; Verde, Pasquale
2014-01-01
MicroRNAs (miRNAs) control cell cycle progression by targeting the transcripts encoding for cyclins, CDKs and CDK inhibitors, such as p27KIP1 (p27). p27 expression is controlled by multiple transcriptional and posttranscriptional mechanisms, including translational inhibition by miR-221/222 and posttranslational regulation by the SCFSKP2 complex. The oncosuppressor activity of miR-340 has been recently characterized in breast, colorectal and osteosarcoma tumor cells. However, the mechanisms underlying miR-340-induced cell growth arrest have not been elucidated. Here we describe miR-340 as a novel tumor suppressor in non-small cell lung cancer (NSCLC). Starting from the observation that the growth-inhibitory and proapoptotic effects of miR-340 correlate with the accumulation of p27 in lung adenocarcinoma and glioblastoma cells, we have analyzed the functional relationship between miR-340 and p27 expression. miR-340 targets three key negative regulators of p27. The miR-340-mediated inhibition of both Pumilio-family RNA-binding proteins (PUM1 and PUM2), required for the miR-221/222 interaction with the p27 3′UTR, antagonizes the miRNA-dependent downregulation of p27. At the same time, miR-340 induces the stabilization of p27 by targeting SKP2, the key posttranslational regulator of p27. Therefore, miR-340 controls p27 at both translational and posttranslational levels. Accordingly, the inhibition of either PUM1 or SKP2 partially recapitulates the miR-340 effect on cell proliferation and apoptosis. In addition to the effect on tumor cell proliferation, miR-340 also inhibits intercellular adhesion and motility in lung cancer cells. These changes correlate with the miR-340-mediated inhibition of previously validated (MET and ROCK1) and potentially novel (RHOA and CDH1) miR-340 target transcripts. Finally, we show that in a small cohort of NSCLC patients (n=23), representative of all four stages of lung cancer, miR-340 expression inversely correlates with clinical staging, thus suggesting that miR-340 downregulation contributes to the disease progression. PMID:25151966
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shikai; Song, Lili, E-mail: commasll@163.com; Zhang, Liang
Although multiple miRNAs are found involved in radioresistance development in HR-HPV positive (+) cervical cancer, only limited studies explored the regulative mechanism of the miRNAs. miR-21 is one of the miRNAs significantly upregulated in HR-HPV (+) cervical cancer is also significantly associated with radioresistance. However, the detailed regulative network of miR-21 in radioresistance is still not clear. In this study, we confirmed that miR-21 overexpression was associated with higher level of radioresistance in HR-HPV (+) cervical cancer patients and thus decided to further explore its role. Findings of this study found miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervicalmore » cancer cells and decrease radiation induced G2/M block and increase S phase accumulation. By using dual luciferase assay, we verified a binding site between miR-21 and 3′-UTR of large tumor suppressor kinase 1 (LATS1). Through direct binding, miR-21 can regulate LATS1 expression in cervical cancer cells. LATS1 overexpression can reverse miR-21 induced higher colony formation rate and also reduced miR-21 induced S phase accumulation and G2/M phase block reduction under radiation treatment. These results suggested that miR-21-LATS1 axis plays an important role in regulating radiosensitivity. - Highlights: • miR-21 is highly expressed in HR-HPV (+) radioresistant cervical cancer patients. • miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells. • miR-21 can decrease radiation induced G2/M block and increase S phase accumulation. • miR-21 modulates radiosensitivity cervical cancer cell by directly targeting LATS1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Shuang, E-mail: luoshuangsch@163.com; Wang, Jidong; Ma, Ying
miR-125b has essential roles in coordinating tumor proliferation, angiogenesis, invasiveness, metastasis and chemotherapy recurrence. In ovarian cancer miR-125b has been shown to be downregulated and acts as a tumor suppressor by targeting proto-oncogene BCL3. PPARγ, a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of proliferation and induction of differentiation and apoptosis by targeting the tumor related genes. However, it is unclear whether miR-125b is regulated by PPARγ in ovarian cancer. In this study, we demonstrated that the miR-125b downregulated in ovarian cancer tissues and cell lines. Ligands-activated PPARγ suppressed proliferation of ovarian cancer cellsmore » and this PPARγ-induced growth inhibition is mediated by the upregulation of miR-125b. PPARγ promoted the expression of miR-125b by directly binding to the responsive element in miR-125b gene promoter region. Thus, our results suggest that PPARγ can induce growth suppression of ovarian cancer by upregulating miR-125b which inhibition of proto-oncogene BCL3. These findings will extend our understanding of the function of PPARγ in tumorigenesis and miR-125b may be a therapeutic intervention of ovarian cancer. - Highlights: • miR-125b is down-regulated in ovarian cancer tissues and cells. • PPARγ upregulates miR-125b and downregulates its target gene BCL3 expression. • Silence of miR-125b attenuates PPARγ-mediated growth suppression of ovarian cancer cells. • PPARγ promotes the transcription of miR-125b via binding to PPARE in miR-125b gene promoter region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuqin; Zheng, Lin; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province
2015-08-01
Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Aktmore » pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.« less
Hou, Shengping; Ye, Zi; Liao, Dan; Bai, Lin; Liu, Yunjia; Zhang, Jun; Kijlstra, Aize; Yang, Peizeng
2016-01-28
Ninety-eight miRNAs are involved in the immune response. However, the genetic roles of these miRNAs remain unclear in Behcet's disease (BD) and Vogt-Koyanagi-Harada (VKH) syndrome. This study aimed to explore the association and functional roles of copy number variants (CNV) in several miRNAs with BD and VKH syndrome. Genotyping of CNVs was examined by TaqMan PCR. The expression of miR-23a, transfection efficiency and cytokine production were measured by real-time PCR, flow cytometry or ELISA. First, replication and combined studies for miR-23a, miR-146a and miR-301a demonstrated a similar association with VKH syndrome (Combined: P = 5.53 × 10(-8); P = 8.43 × 10(-31); P = 9.23 × 10(-8), respectively). No association of CNVs of the above mentioned miRNAs was observed in BD patients. mRNA expression of miR-23a showed a positive association with its copy numbers. Additionally, individuals with high copy number of miR-23a show an increased production of interleukin-6 (IL-6), but not IL-8 and monocyte chemoattractant protein-1 (MCP-1) by stimulated PBMCs. miR-23a transfected ARPE-19 cells modulated the production of IL-6 and IL-8, but not MCP-1. Our results suggest that CNVs of miR-146a, miR-23a and miR-301a confer susceptibility to VKH syndrome, but not to BD. The contribution of miR-23a to VKH syndrome may be mediated by increasing the production of IL-6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenyao, E-mail: wangwy117@163.com; Zhang, Hongfei; Wang, Lichao
microRNAs (miRNAs) play key regulatory roles in various biological processes. In this study, we aimed to determine the expression and biological roles of miR-613 in hepatocellular carcinoma (HCC). Compared with non-cancerous liver tissues, miR-613 was significantly downregulated in HCC tissues. Ectopic expression of miR-613 significantly suppressed the proliferation and invasion of Hep3B and SMMC-7721 HCC cells. Bioinformatic and luciferase reporter analysis identified doublecortin-like kinase 1 (DCLK1) as a direct target of miR-613. Overexpression of miR-613 inhibited the expression of DCLK1 in HCC cells. There was a significant inverse correlation between miR-613 and DCLK1 protein expression in HCC samples. Small interferingmore » RNA-mediated silencing of DCLK1 phenocopied the suppressive effects of miR-613 in HCC cells. Rescue experiments demonstrated that co-transfection of DCLK1 lacking the 3′-untranslated region partially prevented miR-613-induced suppression of HCC cell proliferation and invasion. In vivo studies confirmed that miR-613 overexpression retarded the growth of Hep3B xenograft tumors in nude mice, coupled with a reduction in the percentage of Ki67-positive tumor cells and DCLK1 protein expression. In conclusion, we provide first evidence for the suppressive activity of miR-613 in HCC, which is causally linked to targeting of DCLK1. Restoration of miR-613 may provide a potential therapeutic strategy for HCC. - Highlights: • miR-613 inhibits the aggressive phenotypes of HCC cells. • DCLK1 is a direct target of miR-613 in HCC. • miR-613 impairs HCC tumorigenesis in vivo.« less
miR-935 suppresses gastric signet ring cell carcinoma tumorigenesis by targeting Notch1 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Chao; Yu, Jianchun, E-mail: yu_jchpumch@163.com; Kang, Weiming
Gastric signet ring cell carcinoma (GSRCC) is a unique pathological type of gastric carcinoma that is extremely invasive and has a poor prognosis. Expression of microRNAs (miRNAs) has been closely linked to the carcinogenesis of gastric cancer and has been considered as a powerful prognostic marker. The function of miR-935 has never been reported in cancer before. We found, using microRNA array, that expression of miR-935 in GSRCC cell lines is lower than in non-GSRCC cell lines, and enhanced expression of miR-935 in GSRCC cell-lines inhibit cell proliferation, migration and invasion. We also identified Notch1 as a direct target ofmore » miR-935. Knockdown of Notch1 reduced proliferation, migration/invasion of GSRCC cells, and overexpression Notch1's activated form (Notch intracellular domain) could rescue miR-935's tumor suppressive effect on GSRCC. Expression of miR-935 was lower in gastric carcinoma tissue than in paired normal tissue samples, and lower in GSRCC than in non-GSRCC. Our results demonstrate the inverse correlation between the expression of miR-935 and Notch1 in gastric tissues. We conclude that miR-935 inhibits gastric carcinoma cell proliferation, migration and invasion by targeting Notch1, suggesting potential applications of the miR-935-Notch1 pathway in gastric cancer clinical diagnosis and therapeutics, especially in gastric signet ring cell carcinoma. - Highlights: • The expression of miR-935 is lower in GC tissue than in paired normal tissue. • The expression of miR-935 is lower in GSRCC tissue than in non-GSRCC. • Enhanced expression of miR-935 suppresses tumorigenesis of GSRCC. • Notch1 is a direct target of miR-935.« less
Li, Zhipeng; Li, Xu; Yu, Chao; Wang, Min; Peng, Feng; Xiao, Jie; Tian, Rui; Jiang, Jianxin; Sun, Chengyi
2014-12-01
We intended to investigate the role of microRNA 100 (miR-100) in regulating pancreatic cancer cells' growth in vitro and tumor development in vivo. QTR-PCR was used to examine the expression of miR-100 in pancreatic cancer cell lines and tumor cells from human patients. Lentivirual vector containing miR-100 mimics (lv-miR-100) was used to overexpress miR-100 in MIA PaCa-2 and FCPAC-1 cells. The effects of overexpressing miR-100 on pancreatic cancer cell proliferation and chemosensitivity to cisplatin were examined by cell proliferation essay in vitro. MIA PaCa-2 cells with endogenously overexpressed miR-100 were transplanted into null mice to examine tumor growth in vivo. The predicted target of miR-100, fibroblast growth factor receptor 3 (FGFR3), was downregulated by siRNA to examine its effect on pancreatic cancer cells. We found miR-100 was markedly underexpressed in both pancreatic cancer cell lines and tumor cells from patients. In cancer cells, transfection of lv-miR-100 was able to upregulate endogenous expression of miR-100, inhibited cancer cell proliferation, and increased sensitivities to cisplatin. Overexpressing miR-100 led to significant inhibition on tumor formation in vivo. Luciferase essay showed FGFR3 was direct target of miR-100. FGFR3 was significantly downregulated by overexpressing miR-100 in pancreatic cancer cells and knocking down FGFR3 by siRNA exerted similar effect as miR-100. Our study demonstrated that miR-100 played an important role in pancreatic cancer development, possibly through targeting FGFR3. It may become a new therapeutic target for gene therapy in patients suffered from pancreatic cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chuanyi; Shen, Liangfang, E-mail: lfshen2008@163.com; Mao, Lei
MicroRNAs (miRNAs) are involved in the cervical carcinogenesis and progression. In this study, we investigated the role of miR-92a in progression and invasion of cervical cancer. MiR-92a was significantly upregulated in cervical cancer tissues and cell lines. Overexpression of miR-92a led to remarkably enhanced proliferation by promoting cell cycle transition from G1 to S phase and significantly enhanced invasion of cervical cancer cells, while its knockdown significantly reversed these cellular events. Bioinformatics analysis suggested F-box and WD repeat domain-containing 7 (FBXW7) as a novel target of miR-92a, and miR-92a suppressed the expression level of FBXW7 mRNA by direct binding tomore » its 3′-untranslated region (3′UTR). Expression of miR-92a was negatively correlated with FBXW7 in cervical cancer tissues. Furthermore, Silencing of FBXW7 counteracted the effects of miR-92a suppression, while its overexpression reversed oncogenic effects of miR-92a. Together, these findings indicate that miR-92a acts as an onco-miRNA and may contribute to the progression and invasion of cervical cancer, suggesting miR-92a as a potential novel diagnostic and therapeutic target of cervical cancer. - Highlights: • miR-92a is elevated in cervical cancer tissues and cell lines. • miR-92a promotes cervical cancer cell proliferation, cell cycle transition from G1 to S phase and invasion. • FBXW7 is a direct target of miR-92a. • FBXW7 counteracts the oncogenic effects of miR-92a on cervical cancer cells.« less
Deng, Minnan; Du, Ganqin; Zhao, Jiegang; Du, Xiaowei
2017-06-01
Increasing evidence confirms the involvement of virus infection and miRNA, such as miR-146a, in neuroinflammation-associated epilepsy. In the present study, we investigated the upregulation of miR-146a with RT-qPCR and in situ hybridization methods in a mice infection model of Japanese encephalitis virus (JEV) and in vitro. Subsequently we investigated the involvement of miR-146a in modulating JEV-induced neuroinflammation. It was demonstrated that JEV infection promoted miR-146a production in BALB/c mice brain and in cultured mouse microglial C8-B4 cells, along with pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, IFN-β and IFN-α. We also found that miR-146a exerted negative regulatory effects upon IL-1β, IL-6, TNF-α, IFN-β and IFN-α in C8-B4 cells. Accordingly, miR-146a downregulation with a miR-146a inhibitor promoted the upregulation of IL-1β, IL-6, TNF-α, IFN-β and IFN-α, whereas miR-146a upregulation with miR-146a mimics reduced the upregulation of these cytokines. Moreover, miR-146a exerted no regulation upon JEV growth in C8-B4 cells. In conclusion, JEV infection upregulated miR-146a and pro-inflammatory cytokine production, in mice brain and in cultured C8-B4 cells. Furthermore, miR-146a negatively regulated the production of JEV-induced pro-inflammatory cytokines, in virus growth independent fashion, identifying miR-146a as a negative feedback regulator in JEV-induced neuroinflammation, and possibly in epilepsy.
MiR-181b regulates steatosis in nonalcoholic fatty liver disease via targeting SIRT1.
Wang, Yunxia; Zhu, Kongxi; Yu, Weihua; Wang, Hongjuan; Liu, Lan; Wu, Qiong; Li, Shuai; Guo, Jianqiang
2017-11-04
Non-alcoholic fatty liver diseases (NAFLD) is one of the leading cause of chronic liver diseases in the world. However, the pathogenesis of NAFLD is still unclear. Emerging studies have demonstrated that microRNAs (miRs) are profoundly involved in NAFLD and related metabolic diseases. Here, we investigated the mechanisms by which miR-181b influences NAFLD via direct targeting SIRT1. The expression of miR181b was up-regulated while SIRT1 was down-regulated in both human NAFLD patients and high fat diet (HFD) induced NAFDL mice model. And palmitic acid (PA) treatment increased the miR-181b expression while decreased SIRT1 expression in HepG2 cells. Further, we identified that SIRT1 is a direct downstream target of miR-181b. Ectopic expression of miR-181b significantly repressed the 3'-UTR reporter activities of SIRT1 in a dose-dependent manner, while the effect of miR-181b was interrupted when the binding site of miR-181b within the SIRT1 3'-UTR was mutated. And overexpression of miR-181b reduced both the mRNA and protein levels of SIRT1 in HepG2 cells. We also found that inhibition of miR-181b expression alleviates hepatic steatosis both in vitro and in vivo. And the effect of miR-181b on steatosis was blocked by SIRT1 overexpression. Taken together, our data indicated that increased expression of miR-181b potentially contributes to altered lipid metabolism in NAFLD. Downregulation of miR-34a may be a therapeutic strategy against NAFLD by regulating its target SIRT1. Copyright © 2017 Elsevier Inc. All rights reserved.
Wright, C.; Gupta, C. N.; Chen, J.; ...
2016-02-02
Evidence suggests that microRNA-137 (miR-137) is involved in the genetic basis of schizophrenia. Risk variants within the miR-137 host gene ( MIR137HG) influence structural and functional brain-imaging measures, and miR-137 itself is predicted to regulate hundreds of genes. We evaluated the influence of a MIR137HG risk variant (rs1625579) in combination with variants in miR-137- regulated genes TCF4, PTGS2, MAPK1 and MAPK3 on gray matter concentration (GMC). These genes were selected based on our previous work assessing schizophrenia risk within possible miR-137-regulated gene sets using the same cohort of subjects. A genetic risk score (GRS) was determined based on genotypes ofmore » these four schizophrenia risk-associated genes in 221 Caucasian subjects (89 schizophrenia patients and 132 controls). The effects of the rs1625579 genotype with the GRS of miR-137-regulated genes in a three-way interaction with diagnosis on GMC patterns were assessed using a multivariate analysis. We found that schizophrenia subjects homozygous for the MIR137HG risk allele show significant decreases in occipital, parietal and temporal lobe GMC with increasing miR-137-regulated GRS, whereas those carrying the protective minor allele show significant increases in GMC with GRS. No correlations of GMC and GRS were found in control subjects. Variants within or upstream of genes regulated by miR-137 in combination with the MIR137HG risk variant may influence GMC in schizophrenia-related regions in patients. Furthermore, given that the genes evaluated here are involved in protein kinase A signaling, dysregulation of this pathway through alterations in miR-137 biogenesis may underlie the gray matter loss seen in the disease.« less
MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; He, Xijing; Wei, Wenzhi
Osteoblast differentiation is a vital process in maintaining bone homeostasis in which various transcriptional factors, signaling molecules, and microRNAs (miRNAs) are involved. Recently, signal transducer and activator of transcription 1 (STAT1) has been found to play an important role in regulating osteoblast differentiation. Here, we identified that STAT1 expression was regulated by miR-194. Using mouse bone mesenchymal stem cells (BMSCs), we found that miR-194 expression was significantly increased following osteoblast differentiation induction. Overexpression of miR-194 by lentivirus-mediated gene transfer markedly increased osteoblast differentiation, whereas inhibition of miR-194 significantly suppressed osteoblast differentiation of BMSCs. Using a dual-luciferase reporter assay, a directmore » interaction between miR-194 and the 3′-untranslated region (UTR) of STAT1 was confirmed. Additionally, miR-194 regulated mRNA and protein expression of STAT1 in BMSCs. Further analysis showed that miR-194 overexpression promoted the nuclear translocation of runt-related transcription factor 2 (Runx2), which is critical for osteoblast differentiation. In contrast, inhibition of miR-194 blocked the nuclear translocation of Runx2. Moreover, overexpression of STAT1 significantly blocked Runx2 nuclear translocation and osteoblast differentiation mediated by miR-194 overexpression. Taken together, our data suggest that miR-194 regulates osteoblast differentiation through modulating STAT1-mediated Runx2 nuclear translocation. - Highlights: • Overexpression of miR-194 significantly increased osteoblast differentiation. • miR-194 directly targeted the 3′- UTR of STAT1. • miR-194 regulated the expression of STAT1. • Overexpression of miR-194 promoted the nuclear translocation of Runx2.« less
Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines.
Shan, Hongli; Zhang, Yong; Lu, Yanjie; Zhang, Ying; Pan, Zhenwei; Cai, Benzhi; Wang, Ning; Li, Xuelian; Feng, Tieming; Hong, Yuan; Yang, Baofeng
2009-08-01
The present study was designed to decipher molecular mechanisms underlying nicotine's promoting atrial fibrillation (AF) by inducing atrial structural remodelling. The canine model of AF was successfully established by nicotine administration and rapid pacing. The atrial fibroblasts isolated from healthy dogs were treated with nicotine. The role of microRNAs (miRNAs) on the expression and regulation of transforming growth factor-beta1 (TGF-beta1), TGF-beta receptor type II (TGF-betaRII), and collagen production was evaluated in vivo and in vitro. Administration of nicotine for 30 days increased AF vulnerability by approximately eight- to 15-fold in dogs. Nicotine stimulated remarkable collagen production and atrial fibrosis both in vitro in cultured canine atrial fibroblasts and in vivo in atrial tissues. Nicotine produced significant upregulation of expression of TGF-beta1 and TGF-betaRII at the protein level, and a 60-70% decrease in the levels of miRNAs miR-133 and miR-590. This downregulation of miR-133 and miR-590 partly accounts for the upregulation of TGF-beta1 and TGF-betaRII, because our data established TGF-beta1 and TGF-betaRII as targets for miR-133 and miR-590 repression. Transfection of miR-133 or miR-590 into cultured atrial fibroblasts decreased TGF-beta1 and TGF-betaRII levels and collagen content. These effects were abolished by the antisense oligonucleotides against miR-133 or miR-590. The effects of nicotine were prevented by an alpha7 nicotinic acetylcholine receptor antagonist. We conclude that the profibrotic response to nicotine in canine atrium is critically dependent upon downregulation of miR-133 and miR-590.
Salvador-Guirao, Raquel; Hsing, Yue-ie; San Segundo, Blanca
2018-01-01
MicroRNAs (miRNAs) are small RNAs acting as regulators of gene expression at the post-transcriptional level. In plants, most miRNAs are generated from independent transcriptional units, and only a few polycistronic miRNAs have been described. miR166 is a conserved miRNA in plants targeting the HD-ZIP III transcription factor genes. Here, we show that a polycistronic miRNA comprising two miR166 family members, miR166k and miR166h, functions as a positive regulator of rice immunity. Rice plants with activated MIR166k-166h expression showed enhanced resistance to infection by the fungal pathogens Magnaporthe oryzae and Fusarium fujikuroi, the causal agents of the rice blast and bakanae disease, respectively. Disease resistance in rice plants with activated MIR166k-166h expression was associated with a stronger expression of defense responses during pathogen infection. Stronger induction of MIR166k-166h expression occurred in resistant but not susceptible rice cultivars. Notably, the ethylene-insensitive 2 (EIN2) gene was identified as a novel target gene for miR166k. The regulatory role of the miR166h-166k polycistron on the newly identified target gene results from the activity of the miR166k-5p specie generated from the miR166k-166h precursor. Collectively, our findings support a role for miR166k-5p in rice immunity by controlling EIN2 expression. Because rice blast is one of the most destructive diseases of cultivated rice worldwide, unraveling miR166k-166h-mediated mechanisms underlying blast resistance could ultimately help in designing appropriate strategies for rice protection. PMID:29616057
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Mingning, E-mail: lcuzfy@163.com; Liu, Lei, E-mail: leiliulab@163.com; Chen, Lieqian, E-mail: lieqianchen@163.com
Highlights: • miR-183 was up-regulated in renal cancer tissues. • Inhibition of endogenous miR-183 suppressed renal cancer cell growth and metastasis. • miR-183 increased cell growth and metastasis. • miR-183 regulated renal cancer cell growth and metastasis via directly targeting tumor suppressor protein phosphatase 2A. - Abstract: The aim of this study was to investigate the function of miR-183 in renal cancer cells and the mechanisms miR-183 regulates this process. In this study, level of miR-183 in clinical renal cancer specimens was detected by quantitative real-time PCR. miR-183 was up- and down-regulated in two renal cancer cell lines ACHN andmore » A498, respectively, and cell proliferation, Caspase 3/7 activity, colony formation, in vitro migration and invasion were measured; and then the mechanisms of miR-183 regulating was analyzed. We found that miR-183 was up-regulated in renal cancer tissues; inhibition of endogenous miR-183 suppressed in vitro cell proliferation, colony formation, migration, and invasion and stimulated Caspase 3/7 activity; up-regulated miR-183 increased cell growth and metastasis and suppressed Caspase 3/7 activity. We also found that miR-183 directly targeted tumor suppressor, specifically the 3′UTR of three subunits of protein phosphatase 2A (PP2A-Cα, PP2A-Cβ, and PP2A-B56-γ) transcripts, inhibiting their expression and regulated the downstream regulators p21, p27, MMP2/3/7 and TIMP1/2/3/4. These results revealed the oncogenes role of miR-183 in renal cancer cells via direct targeting protein phosphatase 2A.« less
Xiao, Jie; Peng, Feng; Yu, Chao; Wang, Min; Li, Xu; Li, Zhipeng; Jiang, Jianxin; Sun, Chengyi
2014-01-01
Background: We intended to investigate the role of microRNA 137 (miR-137) in regulating pancreatic cancer cells’ growth in vitro and tumor development in vivo. Methods: QTR-PCR was used to examine the expression of miR-137 in pancreatic cancer cell lines and tumor cells from human patients. Lentivirual vector containing miR-137 mimic was used to overexpress miR-137 in PANC-1 and MIA PaCa-2 cells. The effects of overexpressing miR-137 on pancreatic cancer cell invasion and chemo-sensitivity to 5-fluorouracil (5-FU) were examined by cell migration and survival essays in vitro. The molecular target of miR-137, pleiotropic growth factor (PTN), was down-regulated by siRNA to examine its effects on cancer cell invasion. MIA PaCa-2 cells with endogenously overexpressed miR-137 were transplanted into null mice to examine tumor growth in vivo. Results: We found miR-137 was markedly underexpressed in both pancreatic cancer cell lines and tumor cells from patients. In cancer cells, transfection of lentivirus containing miR-137 mimic was able to markedly upregulate endogenous expression of miR-137, inhibited cancer cell invasion and increased sensitivities to chemotherapy reagent 5-FU. PTN was significantly down-regulated by overexpressing miR-137 in pancreatic cancer cells, and knocking down PTN was effective to rescue the reduced cancer cell invasion ability caused by miR-137 overexpression. More importantly, overexpressing miR-137 led to significant inhibition on tumor formation, including reductions in tumor weight and tumor size in vivo. Conclusion: Our study demonstrated that miR-137 played an important role in pancreatic cancer development. It may become a new therapeutic target for gene therapy in patients suffered from pancreatic cancer. PMID:25550779
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Wei, E-mail: detachedy@yahoo.com.cn; Sun, Ting; Cao, Jianping
2012-05-01
Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase inmore » all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, C.; Gupta, C. N.; Chen, J.
Evidence suggests that microRNA-137 (miR-137) is involved in the genetic basis of schizophrenia. Risk variants within the miR-137 host gene ( MIR137HG) influence structural and functional brain-imaging measures, and miR-137 itself is predicted to regulate hundreds of genes. We evaluated the influence of a MIR137HG risk variant (rs1625579) in combination with variants in miR-137- regulated genes TCF4, PTGS2, MAPK1 and MAPK3 on gray matter concentration (GMC). These genes were selected based on our previous work assessing schizophrenia risk within possible miR-137-regulated gene sets using the same cohort of subjects. A genetic risk score (GRS) was determined based on genotypes ofmore » these four schizophrenia risk-associated genes in 221 Caucasian subjects (89 schizophrenia patients and 132 controls). The effects of the rs1625579 genotype with the GRS of miR-137-regulated genes in a three-way interaction with diagnosis on GMC patterns were assessed using a multivariate analysis. We found that schizophrenia subjects homozygous for the MIR137HG risk allele show significant decreases in occipital, parietal and temporal lobe GMC with increasing miR-137-regulated GRS, whereas those carrying the protective minor allele show significant increases in GMC with GRS. No correlations of GMC and GRS were found in control subjects. Variants within or upstream of genes regulated by miR-137 in combination with the MIR137HG risk variant may influence GMC in schizophrenia-related regions in patients. Furthermore, given that the genes evaluated here are involved in protein kinase A signaling, dysregulation of this pathway through alterations in miR-137 biogenesis may underlie the gray matter loss seen in the disease.« less
microRNA profiling for early detection of nonmelanoma skin cancer.
Balci, S; Ayaz, L; Gorur, A; Yildirim Yaroglu, H; Akbayir, S; Dogruer Unal, N; Bulut, B; Tursen, U; Tamer, L
2016-06-01
microRNAs (miRNAs) are single-stranded, noncoding RNA molecules. Given the vast regulatory potential of miRNAs and their often tissue-specific and disease-specific expression patterns, miRNAs are being assessed as possible biomarkers to aid diagnosis and prediction of different types and stages of cancers, including skin cancer. Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common forms of nonmelanoma skin cancer (NMSC). BCC originates from the basal layer of the epidermis, while SCC arises from epidermal keratinocytes or from the dermal appendages. Although NMSCs are currently the most common types of malignancies, both BCC and SCC have a better than 95% cure rate if detected early. To identify plasma miRNAs suitable for early detection of NMSC. Expression profiles of 741 miRNAs were evaluated using high-throughput real-time quantitative PCR from plasma samples in 42 patients with NMSC and 282 healthy controls (HCs). Our results demonstrated that in patients with NMSC, compared with HCs, expression levels of miR-30e-3p, miR-145-5p, miR-186-5p and miR-875-5p were significantly (P < 0.05) upregulated, while those of miR-19a-3p, miR-25-3p, miR-30a-5p, miR-451 and miR-576-3p were significantly downregulated. Our study suggests that the miRNAs with significant changes in expression (miR-19a-3p, miR-25-3p, miR-30a-5p, miR-145-5p and miR-186-5p) could serve as novel noninvasive biomarkers for detection of NMSC. © 2015 British Association of Dermatologists.
miR-598 acts as a tumor suppressor in human gastric cancer by targeting IGF-1R.
Liu, Na; Yang, Hua; Wang, Hong
2018-01-01
In recent years, the aberrant expression of miR-598 in tumorigenesis has been demonstrated, as well as the fact that the IGF-1R pathway is also involved in the development of human gastric cancer (GC). The present study aimed to investigate the molecular mechanisms underlying miR-598-regulated IGF-1R expression in human GC. We analyzed the expression of miR-598 and IGF-1R in GC samples and cells, and evaluated the clinical significance of miR-598 and IGF-1R in GC patients. Furthermore, in vitro and in vivo assays were used to investigate the molecular mechanisms of miR-598 and IGF-1R. miR-598 expression was frequently downregulated in GC tissues and cells, and significantly correlated with poor prognosis, vascular invasion, TNM stage, and lymph node metastases as well as IGF-1R expression. The overexpression of miR-598 obviously inhibited cell proliferation, migration, invasion, and induced cell cycle arrest in the G1/S phase, and increased the apoptosis of GC cells. The overexpression of miR-598 also significantly inhibited ERK1/2 and Akt phosphorylation level. In vivo assay validated the inhibitory effect of miR-598 on tumor growth. Further studies showed that miR-598 inhibited IGF-1R protein expression by directly targeting its 3'-UTR. Besides, over-expression of IGF-1R reversed the inhibitory effects of miR-598, while suppression of IGF-1R expression showed inverse effects. miR-598 suppresses GC cell proliferation, migration and invasion by directly targeting IGF-1R expression. Thus, miR-598 may be a useful target for GC patients.
Terakawa, Maki; Muneoka, Satoshi; Nagahira, Kazuhiro; Nagane, Yuriko; Yamate, Jyoji; Motomura, Masakatsu; Utsugisawa, Kimiaki
2017-01-01
The majority of patients with myasthenia gravis (MG), an organ-specific autoimmune disease, harbor autoantibodies that attack the nicotinic acetylcholine receptor (nAChR-Abs) at the neuromuscular junction of skeletal muscles, resulting in muscle weakness. Single cell manipulation technologies coupled with genetic engineering are very powerful tools to examine T cell and B cell repertoires and the dynamics of adaptive immunity. These tools have been utilized to develop mAbs in parallel with hybridomas, phage display technologies and B-cell immortalization. By applying a single cell technology and novel high-throughput cell-based binding assays, we identified peripheral B cells that produce pathogenic nAChR-Abs in patients with MG. Although anti-nAChR antibodies produced by individual peripheral B cells generally exhibited low binding affinity for the α-subunit of the nAChR and great sequence diversity, a small fraction of these antibodies bound with high affinity to native-structured nAChRs on cell surfaces. B12L, one such Ab isolated here, competed with a rat Ab (mAb35) for binding to the human nAChR and thus considered to recognize the main immunogenic region (MIR). By evaluating the Ab in in vitro cell-based assays and an in vivo rat passive transfer model, B12L was found to act as a pathogenic Ab in rodents and presumably in humans.These findings suggest that B cells in peripheral blood may impact MG pathogenicity. Our methodology can be applied not only to validate pathogenic Abs as molecular target of MG treatment, but also to discover and analyze Ab production systems in other human diseases. PMID:29040265
Makino, Tomohiro; Nakamura, Ryuichi; Terakawa, Maki; Muneoka, Satoshi; Nagahira, Kazuhiro; Nagane, Yuriko; Yamate, Jyoji; Motomura, Masakatsu; Utsugisawa, Kimiaki
2017-01-01
The majority of patients with myasthenia gravis (MG), an organ-specific autoimmune disease, harbor autoantibodies that attack the nicotinic acetylcholine receptor (nAChR-Abs) at the neuromuscular junction of skeletal muscles, resulting in muscle weakness. Single cell manipulation technologies coupled with genetic engineering are very powerful tools to examine T cell and B cell repertoires and the dynamics of adaptive immunity. These tools have been utilized to develop mAbs in parallel with hybridomas, phage display technologies and B-cell immortalization. By applying a single cell technology and novel high-throughput cell-based binding assays, we identified peripheral B cells that produce pathogenic nAChR-Abs in patients with MG. Although anti-nAChR antibodies produced by individual peripheral B cells generally exhibited low binding affinity for the α-subunit of the nAChR and great sequence diversity, a small fraction of these antibodies bound with high affinity to native-structured nAChRs on cell surfaces. B12L, one such Ab isolated here, competed with a rat Ab (mAb35) for binding to the human nAChR and thus considered to recognize the main immunogenic region (MIR). By evaluating the Ab in in vitro cell-based assays and an in vivo rat passive transfer model, B12L was found to act as a pathogenic Ab in rodents and presumably in humans.These findings suggest that B cells in peripheral blood may impact MG pathogenicity. Our methodology can be applied not only to validate pathogenic Abs as molecular target of MG treatment, but also to discover and analyze Ab production systems in other human diseases.
miR-204-5p suppresses cell proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lianyong; Wang, Jingnan; Li, Xiangqi
2015-02-20
microRNAs (miRNAs) are frequently dysregulated in human malignancies. It was recently shown that miR-204-5p is downregulated in papillary thyroid carcinoma (PTC); however, the functional significance of this observation is not known. This study investigated the role of miR-204-5p in PTC. Overexpressing miR-204-5p suppressed PTC cell proliferation and induced cell cycle arrest and apoptosis. The results of a luciferase reporter assay showed that miR-204-5p can directly bind to the 3′ untranslated region (UTR) of insulin-like growth factor-binding protein 5 (IGFBP5) mRNA, and IGFBP5 overexpression partially reversed the growth-inhibitory effects of miR-204-5p. These results indicate that miR-204-5p acts as a tumor suppressormore » in PTC by regulating IGFBP5 expression and that miR-204-5p can potentially serve as an antitumorigenic agent in the treatment of PTC. - Highlights: • miR-204-5p expression is downregulated in PTC tissues and cell lines. • miR-204-5p suppresses proliferation and promotes apoptosis in PTC cells. • miR-204-5p suppresses IGFBP5 expression by direct binding to the 3′-UTR. • IGFBP5 overexpression reverses the effects of miR-204-5p.« less
MiR-188 Inhibits Glioma Cell Proliferation and Cell Cycle Progression through Targeting ß-catenin.
Li, Nan; Shi, Hangyu; Zhang, Lu; Li, Xu; Gao, Lu; Zhang, Gang; Shi, Yongqiang; Guo, Shiwen
2017-12-21
MicroRNAs (miRNAs) play important roles in several human cancers. Although miR188 has been suggested to function as a tumor repressor in cancers, its precise role in glioma and the molecular mechanism remain unknown. In the present study, we investigated the effect of miR-188 on glioma and explored its relevant mechanisms. We found that the expression of miR-188 is dramatically downregulated in glioma tissues and cell lines. Subsequent investigation revealed that miR-188 expression was inversely correlated with ß-catenin expression in glioma tissue samples. Using a luciferase reporter assay, ß-catenin was determined to be a direct target of miR-188. Overexpression of miR-188 reduced ß-catenin expression at both the mRNA and protein levels, and inhibition of miR-188 increased ß-catenin expression. Moreover, we found that overexpression of miR-188 suppressed glioma cell proliferation and cell cycle G1-S transition, whereas inhibition of miR-188 promoted glioma cell proliferation. Importantly, silencing ß-catenin recapitulated the cellular and molecular effects seen upon miR-188 overexpression, which included inhibiting glioma cell proliferation and G1-S transition. Taken together, our results demonstrated that miR188 inhibits glioma cell proliferation by targeting ß-catenin, representing an effective therapeutic strategy for glioma.
Boo, Lily; Ho, Wan Yong; Mohd Ali, Norlaily; Yeap, Swee Keong; Ky, Huynh; Chan, Kok Gan; Yin, Wai Fong; Satharasinghe, Dilan Amila; Liew, Woan Charn; Tan, Sheau Wei; Cheong, Soon Keng; Ong, Han Kiat
2017-01-01
Breast cancer spheroids have been widely used as in vitro models of cancer stem cells (CSCs), yet little is known about their phenotypic characteristics and microRNAs (miRNAs) expression profiles. The objectives of this research were to evaluate the phenotypic characteristics of MDA-MB-231 spheroid-enriched cells for their CSCs properties and also to determine their miRNAs expression profile. Similar to our previously published MCF-7 spheroid, MDA-MB-231 spheroid also showed typical CSCs characteristics namely self-renewability, expression of putative CSCs-related surface markers and enhancement of drug resistance. From the miRNA profile, miR-15b, miR-34a, miR-148a, miR-628 and miR-196b were shown to be involved in CSCs-associated signalling pathways in both models of spheroids, which highlights the involvement of these miRNAs in maintaining the CSCs features. In addition, unique clusters of miRNAs namely miR-205, miR-181a and miR-204 were found in basal-like spheroid whereas miR-125, miR-760, miR-30c and miR-136 were identified in luminal-like spheroid. Our results highlight the roles of miRNAs as well as novel perspectives of the relevant pathways underlying spheroid-enriched CSCs in breast cancer.
Yang, Seung Yeob; Choi, Seung Ah; Lee, Ji Yeoun; Park, Ae-Kyung; Wang, Kyu-Chang; Phi, Ji Hoon; Koh, Eun Jung; Park, Woong-Yang; Park, Sung-Hye; Hwang, Do Won; Jung, Hee Won; Kim, Seung-Ki
2015-12-22
The main cause of death in medulloblastoma is recurrence associated with leptomeningeal dissemination. During this process, the role of microRNAs (miRs) in the acquisition of metastatic phenotype remains poorly understood. This study aimed to identify the miR involved in leptomeningeal dissemination and to elucidate its biological functional mechanisms. We analyzed the miR expression profiles of 29 medulloblastomas according to the presence of cerebrospinal fluid (CSF) seeding. Differentially expressed miRs (DEmiRs) were validated in 29 medulloblastoma tissues and three medulloblastoma cell lines. The biological functions of the selected miRs were evaluated using in vitro and in vivo studies. A total of 12 DEmiRs were identified in medulloblastoma with seeding, including miR-192. The reduced expression of miR-192 was confirmed in the tumor seeding group and in the medulloblastoma cells. Overexpression of miR-192 inhibited cellular proliferation by binding DHFR. miR-192 decreased cellular anchoring via the repression of ITGAV, ITGB1, ITGB3, and CD47. Animals in the miR-192-treated group demonstrated a reduction of spinal seeding (P < 0.05) and a significant survival benefit (P < 0.05). Medulloblastoma with seeding showed specific DEmiRs compared with those without. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring ability.
miR-34a inhibits the in vitro cell proliferation and migration in human esophageal cancer.
Shi, Hui; Zhou, Shengluan; Liu, Junhua; Zhu, Jun; Xue, Jianhua; Gu, Luo; Chen, Yijiang
2016-05-01
Increasing studies demonstrate that reduced expression of miR-34a is involved in the initiation and progression of cancers, and it has been characterized as a tumor suppressor in various types of cancers. In present study, we investigated the expression and role of miR-34a in esophageal cancer. qRT-PCR assays were performed to analyze the expression of miR-34a in human esophageal cancer tissues and adjacent esophageal tissues. CCK8 assay, flow cytometry analysis and in vitro migration assays were performed to analyze the role of miR-34a in human esophageal cancer cell. MSP assay was performed to analyze the DNA methylation of the miR-34a promoter. The expression of miR-34a was down-regulated in human esophageal cancer tissues. miR-34a ectopic expression affected esophageal cancer cells survival, proliferation and capabilities of migration in vitro. p53 status was not correlated with miR-34a. Subsequently, aberrant DNA methylation of the miR-34a promoter was found in human esophageal cancer, and 5-AZA-dC inhibited DNA methylation of the miR-34a promoter. our data showed that miR-34a acted as a tumor suppressor in human esophageal cancer. Copyright © 2016. Published by Elsevier GmbH.
Estrella, Santiago; Garcia-Diaz, Diego F; Codner, Ethel; Camacho-Guillén, Patricia; Pérez-Bravo, Francisco
2016-09-16
Type 1 diabetes (T1D) is an autoimmune disease of complex aetiology. Several microRNAs (miR) have been linked to the pathogenesis of autoimmune diseases. To analyze the possible association of miR-22 and miR-150 with autoimmunity and clinical severity of T1D. The study was performed in peripheral blood mononuclear cells of 20 patients with T1D and 20 control subjects. The expression of miR-22 and miR-150 was performed in peripheral blood mononuclear cells using TaqMan probes to different glucose concentrations (baseline, 11mm, 25mm). Our results suggest that the expression of miR-22 is increased in T1D patients compared to the controls. This effect was observed in baseline glucose conditions and decreased in 11 and 25mM of glucose. The expression of miR-150 was lower in T1D patients versus the controls. There was no correlation between the autoimmune profile and the two studied miRNAs. miR-22 (baseline condition) and miR-150 (11mM condition) or the ketoacidosis component. miR-22 and 150 were not associated with the autoimmune component present in T1D patients. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
miR-34a: Multiple Opposing Targets and One Destiny in Hepatocellular Carcinoma.
Yacoub, Radwa Alaa; Fawzy, Injie Omar; Assal, Reem Amr; Hosny, Karim Adel; Zekri, Abdel-Rahman Nabawy; Esmat, Gamal; El Tayebi, Hend Mohamed; Abdelaziz, Ahmed Ihab
2016-12-28
Background and Aims: The role of miR-34a in hepatocellular carcinoma (HCC) is controversial and several unresolved issues remain, including its expression pattern and relevance to tumor etiology, tumor stage and prognosis, and finally, its impact on apoptosis. Methods: miR-34a expression was assessed in hepatitis C virus (HCV)-induced non-metastatic HCC tissues by RT-Q-PCR. Huh-7 cells were transfected with miR-34a mimics and the impact of miR-34a was examined on 84 pro-apoptotic/anti-apoptotic genes using PCR array; its net effect was tested on cell viability via MTT assay. Results: miR-34a expression was up-regulated in HCC tissues. Moreover, miR-34a induced a large set of pro-apoptotic/anti-apoptotic genes, with a net result of triggering apoptosis and repressing cell viability. Conclusions: HCC-related differential expression of miR-34a could be etiology-based or stage-specific, and low expression of miR-34a may predict poor prognosis. This study's findings also emphasize the role of miR-34a in apoptosis.
miR-34 increases in vitro PANC-1 cell sensitivity to gemcitabine via targeting Slug/PUMA.
Zhang, Qing-An; Yang, Xu-Hai; Chen, Dong; Yan, Xiang; Jing, Fu-Chun; Liu, Hong-Qian; Zhang, Ronghua
2018-01-01
miR-34 was deregulated in tumor tissues compared with corresponding noncancerous tissue samples. Furthermore, miR-34 may contribute to cancer-stromal interaction associated with cancer progression. However, whether miR-34 could decrease chemoresistance of cancer cells to chemotherapeutic agent remains unclear. In our study, we examined whether overexpression of miR-34 could sensitize gemcitabine -mediated apoptosis in human pancreatic cancer PANC-1 cells. We found that miR-34 markedly induced gemcitabine -mediated apoptosis in PANC-1 cells. miR-34 induced down-regulation of Slug expression and upregulation of p53 up-regulated modulator of apoptosis (PUMA) expression. The over-expression of Slug or downregulation of PUMA by Slug cDNA or PUMA siRNA transfection markedly blocked miR-34-induced gemcitabine sensitization. Furthermore, miR-34 induced PUMA expression by downregulation of Slug. Taken together, our study demonstrates that miR-34 enhances sensitization against gemcitabine-mediated apoptosis through the down-regulation of Slug expression, and up-regulation of Slug-dependent PUMA expression.
Small RNA Deep Sequencing and the Effects of microRNA408 on Root Gravitropic Bending in Arabidopsis
NASA Astrophysics Data System (ADS)
Li, Huasheng; Lu, Jinying; Sun, Qiao; Chen, Yu; He, Dacheng; Liu, Min
2015-11-01
MicroRNA (miRNA) is a non-coding small RNA composed of 20 to 24 nucleotides that influences plant root development. This study analyzed the miRNA expression in Arabidopsis root tip cells using Illumina sequencing and real-time PCR before (sample 0) and 15 min after (sample 15) a 3-D clinostat rotational treatment was administered. After stimulation was performed, the expression levels of seven miRNA genes, including Arabidopsis miR160, miR161, miR394, miR402, miR403, miR408, and miR823, were significantly upregulated. Illumina sequencing results also revealed two novel miRNAsthat have not been previously reported, The target genes of these miRNAs included pentatricopeptide repeat-containing protein and diadenosine tetraphosphate hydrolase. An overexpression vector of Arabidopsis miR408 was constructed and transferred to Arabidopsis plant. The roots of plants over expressing miR408 exhibited a slower reorientation upon gravistimulation in comparison with those of wild-type. This result indicate that miR408 could play a role in root gravitropic response.
Jia, Xiaojian; Wang, Feng; Han, Ying; Geng, Xuewen; Li, Minghua; Shi, Yu; Lu, Lin; Chen, Yun
2016-12-01
The dopamine transporter (DAT) is involved in the regulation of extracellular dopamine levels. A 40-bp variable-number tandem repeat (VNTR) polymorphism in the 3'-untranslated region (3'UTR) of the DAT has been reported to be associated with various phenotypes that are involved in the aberrant regulation of dopaminergic neurotransmission. In the present study, we found that miR-137 and miR-491 caused a marked reduction of DAT expression, thereby influencing neuronal dopamine transport. Moreover, the regulation of miR-137 and miR-491 on this transport disappeared after the DAT was silenced. The miR-491 seed region that is located on the VNTR sequence in the 3'UTR of the DAT and the regulatory effect of miR-491 on the DAT depended on the VNTR copy-number. These data indicate that miR-137 and miR-491 regulate DAT expression and dopamine transport at the post-transcriptional level, suggesting that microRNA may be targeted for the treatment of diseases associated with DAT dysfunction.
MiR-212 exerts suppressive effect on SKOV3 ovarian cancer cells through targeting HBEGF.
Wei, Li-Qiang; Liang, Hui-Tao; Qin, Dong-Chun; Jin, Hui-Fang; Zhao, Yong; She, Ming-Cong
2014-12-01
MicroRNAs (miRNAs) play critical roles in the development and progression of ovarian cancer. We found that miR-212 was significantly downregulated in serum and tissues from epithelial ovarian cancer (EOC) patients. Overexpression of miR-212 in ovarian cancer cells inhibited cell proliferation, migration, and invasion. Luciferase reporter assay confirmed HBEGF as a direct target of miR-212. Overexpression of miR-212 decreased HBEGF expression at both the protein and messenger RNA (mRNA) levels. Knockdown of HBEGF expression in SKOV3 cell line significantly inhibited cell growth, migration, and invasion. HBEGF mRNA level was upregulated in EOC tissues and inversely correlated with miR-212 expression in tissues. Upregulation of HBEGF could attenuate the effect induced by miR-212. These findings indicate that miR-212 displays a tumor-suppressive effect in human ovarian cancer. And miR-212 suppresses cell proliferation, migration, and invasion by targeting the HBEGF transcript, highlighting the therapeutic potential of miR-212 and HBEGF in epithelial ovarian cancer treatment.
Isobe, Taichi; Hisamori, Shigeo; Hogan, Daniel J; Zabala, Maider; Hendrickson, David G; Dalerba, Piero; Cai, Shang; Scheeren, Ferenc; Kuo, Angera H; Sikandar, Shaheen S; Lam, Jessica S; Qian, Dalong; Dirbas, Frederick M; Somlo, George; Lao, Kaiqin; Brown, Patrick O; Clarke, Michael F; Shimono, Yohei
2014-01-01
MicroRNAs (miRNAs) are important regulators of stem and progenitor cell functions. We previously reported that miR-142 and miR-150 are upregulated in human breast cancer stem cells (BCSCs) as compared to the non-tumorigenic breast cancer cells. In this study, we report that miR-142 efficiently recruits the APC mRNA to an RNA-induced silencing complex, activates the canonical WNT signaling pathway in an APC-suppression dependent manner, and activates the expression of miR-150. Enforced expression of miR-142 or miR-150 in normal mouse mammary stem cells resulted in the regeneration of hyperproliferative mammary glands in vivo. Knockdown of endogenous miR-142 effectively suppressed organoid formation by BCSCs and slowed tumor growth initiated by human BCSCs in vivo. These results suggest that in some tumors, miR-142 regulates the properties of BCSCs at least in part by activating the WNT signaling pathway and miR-150 expression. DOI: http://dx.doi.org/10.7554/eLife.01977.001 PMID:25406066
MiR-661 inhibits glioma cell proliferation, migration and invasion by targeting hTERT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhen, E-mail: lizhen7111@163.com; Liu, Yun-hui; Diao, Hong-yu
In this study, we analyzed the functional role of miR-661 in glioma cell proliferation, migration and invasion. We found that overexpression of miR-661 obviously suppressed the proliferation, migration and invasion of glioma cells. MiRNA target prediction algorithms implied that hTERT is a candidate target gene for miR-661. A fluorescent reporter assay confirmed that miR-661 could lead to hTERT gene silencing by recognizing and specifically binding to the predicted site of the hTERT mRNA 3′ untranslated region (3′UTR) specifically. Furthermore, hTERT knockdown significantly decreased the growth and viability of glioma cells. These results indicate that miR-661 can inhibit glioma cell proliferation,more » migration and invasion by targeting hTERT. - Highlights: • MiR-661 was downregulated in glioma tissues and functional as a tumor suppressor. • MiR-661 modulates cell proliferation, invasion and migration of glioma cells. • MiR-661 directly target hTERT in glioma cells. • MiR-661 inhibits glioma cell tumorgenesis by targeting hTERT.« less
Wu, Qingwei; Zhao, Yingying; Wang, Peihua
2018-03-01
This study aims to investigate the roles of miR-204 in tumor angiogenesis of head and neck squamous cell carcinoma (HNSCC). Here, we found that miR-204 level was reduced in HNSCC tissues relative to that in normal adjacent tissues. Overexpression of miR-204 promoted tumor angiogenesis in HNSCC cells. Mechanistically, JAK2 was identified as a direct target of miR-204, and miR-204 overexpression blocked JAK2/STAT3 pathway. Moreover, overexpression of JAK2 attenuated the inhibition of miR-204 on tumor angiogenesis of HNSCC. Furthermore, overexpression of miR-204 enhanced sensitivity of cetuximab in HNSCC cells, this effect was attenuated by JAK2 overexpression too. Importantly, JAK2 expression was negatively correlated with miR-204 level in HNSCC tissues. Therefore, miR-204 acts as a tumor suppressor by blocking JAK2/STAT3 pathway in HNSCC cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Sun, Xiaoli; Zhai, Hongjun; Chen, Xi; Kong, Ranran; Zhang, Xinwu
2018-02-01
Recent studies have reported an important role for microRNA-1271 (miR-1271) in tumorigenesis. However, the role of miR-1271 in colorectal cancer remains unknown. Here, we found that miR-1271 was significantly decreased in colorectal cancer tissues and cell lines. Overexpression of miR-1271 inhibited cell proliferation, colony formation, cell invasion, and induced cell cycle arrest in colorectal cancer cells. Metadherin (MTDH) was identified as a target gene of miR-1271. Moreover, miR-1271 negatively regulated MTDH expression in colorectal cancer cells and reversely correlated with MTDH expression in colorectal cancer specimens. Additionally, miR-1271 also regulated the activation of Wnt signaling in colorectal cancer cells. The restoration of MTDH expression significantly reversed the antitumor effect of miR-1271 in colorectal cancer cells. These findings indicate an important role for miR-1271/MTDH in the tumorigenesis of colorectal cancer, and suggest that miR-1271 may be a novel therapeutic target for colorectal cancer. © 2018 Wiley Periodicals, Inc.
miR-613 inhibits proliferation and invasion of breast cancer cell via VEGFA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Junzhao; Yuan, Peng; Mao, Qixin
MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in breast cancer, has remained elusive. Here, we identified that miR-613 inhibits breast cancer cell proliferation by negatively regulates its target gene VEGFA. In breast cancer cell lines, CCK-8 proliferation assay indicated that the cell proliferation was inhibited by miR-613, while miR-613 inhibitor significantly promoted the cell proliferation. Transwell assay showed that miR-613 mimics significantly inhibited the migration and invasion of breast cancer cells, whereas miR-613 inhibitors significantly increased cell migration and invasion. Luciferasemore » assays confirmed that miR-613 directly bound to the 3′ untranslated region of VEGFA, and western blotting showed that miR-613 suppressed the expression of VEGFA at the protein levels. This study indicated that miR-613 negatively regulates VEGFA and inhibits proliferation and invasion of breast cancer cell lines. Thus, miR-613 may represent a potential therapeutic molecule for breast cancer intervention.« less
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.; Kunkee, D. B.; Jackson, D. M.; Blackwell, W.; Sharpe, S.
1994-01-01
Progress by the Georgia Institute of Technology's Laboratory for Radio-science and Remote Sensing in developing techniques for passive microwave retrieval of water vapor profiles and cloud and precipitation parameters using millimeter and submillimeter wavelength channels is reviewed. Channels of particular interest are in the tropospheric transmission windows at 90, 166, 220, 340, and 410 GHz and centered around the water vapor lines at 183 and 325 GHz. Collectively, these channels have potential application in high-resolution precipitation mapping (e.g., from geosynchronous orbit), remote sensing of cloud and precipitation parameters, including cirrus ice mass, and improved retrieval of water vapor profiles. During the period from January 1, 1994 through June 30, 1994 research activities focussed on calibrating and interpreting data from the Millimeter-Wave Imaging Radiometer (MIR). The MIR was deployed on the NASA ER-2 during the Convective Atmospheric Moisture Experiment (CAMEX, September-October 1993) to obtain the first submillimeter-wave tropospheric imagery of convective precipitations. A 325-GHz radiometer consisted of a submillimeter-wave DSB receiver with three IF channels at +/- 1, 3, and 8.5 GHz, and approximately 14 dB DSB noise figure was successfully operated during these experiments. Activities supported under this grant include a study of the impact of local oscillator reflections from the MIR calibration loads, the development of optimal gain and offset filters for radiometric calibration, and the modeling and interpretation of the MIR 325-GHz data over both clear and cloudy atmospheres. In addition, polarimetric radiometer measurements and modeling for ocean surface and atmospheric cloud-ice studies_were supported.
Human Milk Analysis Using Mid-Infrared Spectroscopy.
Groh-Wargo, Sharon; Valentic, Jennifer; Khaira, Sharmeel; Super, Dennis M; Collin, Marc
2016-04-01
The composition of human milk is known to vary with length of gestation, stage of lactation, and other factors. Human milk contains all nutrients required for infant health but requires fortification to meet the needs of low-birth-weight infants. Without a known nutrient profile of the mother's milk or donor milk fed to a baby, the composition of the fortified product is only an estimate. Human milk analysis has the potential to improve the nutrition care of high-risk newborns by increasing the information about human milk composition. Equipment to analyze human milk is available, and the technology is rapidly evolving. This pilot study compares mid-infrared (MIR) spectroscopy to reference laboratory milk analysis. After obtaining informed consent, we collected human milk samples from mothers of infants weighing <2 kg at birth. Duplicate samples were analyzed for macronutrients by MIR and by reference laboratory analysis including Kjeldahl for protein, Mojonnier for fat, and high-pressure liquid chromatography for lactose. Intraclass correlation coefficients, Bland-Altman scatter plots, and paired t tests were used to compare the two methods. No significant differences were detected between the macronutrient content of human milk obtained by MIR vs reference laboratory analysis. MIR analysis appears to provide an accurate assessment of macronutrient content in expressed human milk from mothers of preterm infants. The small sample size of this study limits confidence in the results. Measurement of lactose is confounded by the presence of oligosaccharides. Human milk analysis is a potentially useful tool for establishing an individualized fortification plan. © 2015 American Society for Parenteral and Enteral Nutrition.
Arabidopsis ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly.
Endo, Yayoi; Iwakawa, Hiro-oki; Tomari, Yukihide
2013-07-01
Plant ARGONAUTE7 (AGO7) assembles RNA-induced silencing complex (RISC) specifically with miR390 and regulates the auxin-signalling pathway via production of TAS3 trans-acting siRNAs (tasiRNAs). However, how AGO7 discerns miR390 among other miRNAs remains unclear. Here, we show that the 5' adenosine of miR390 and the central region of miR390/miR390* duplex are critical for the specific interaction with AGO7. Furthermore, despite the existence of mismatches in the seed and central regions of the duplex, cleavage of the miR390* strand is required for maturation of AGO7-RISC. These findings suggest that AGO7 uses multiple checkpoints to select miR390, thereby circumventing promiscuous tasiRNA production.
Naji, Mohammad; Nekoonam, Saeid; Aleyasin, Ashraf; Arefian, Ehsan; Mahdian, Reza; Azizi, Elham; Shabani Nashtaei, Maryam; Amidi, Fardin
2018-01-01
Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies that affects women in reproductive age. MicroRNAs (miRNAs) play crucial roles in normal function of female reproductive system and folliculogenesis. Deregulated expression of miRNAs in PCOS condition may be significantly implicated in the pathogenesis of PCOS. We determined relative expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells (GLCs), follicular fluid (FF), and serum of PCOS patients. Human subjects were divided into PCOS (n = 20) and control (n = 21) groups. GLCs, FF, and serum were isolated and stored. RNA isolation was performed and cDNA was reversely transcribed using specific stem-loop RT primers. Relative expression of miRNAs was calculated after normalization against U6 expression. Correlation of miRNAs' expression level with basic clinical features and predictive value of miRNAs in FF and serum were appraised. Relative expression of miR-145 and miR-182 in GLCs was significantly decreased in PCOS, but miR-182 in FF of PCOS patients revealed up-regulated levels. Significant correlations between level of miRNAs in FF and serum and hormonal profile of subjects were observed. MiR-182 in FF showed a significant predictive value with AUC of 0.73, 76.4% sensitivity, and 70.5% specificity which was improved after combination of miR-182 and miR-145. A significant dysregulation of miR-145 and miR-182 in GLCs of PCOS may indicate their involvement in pathogenesis of PCOS. Differential up-regulation of miR-182 in FF of PCOS patients with its promising predictive values for discrimination of PCOS reinforced the importance of studying miRNAs' profile in FF.
miRNA-205 affects infiltration and metastasis of breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhouquan; Department of Tumor, SenGong Hospital of Shaanxi, Xi’an 710300; Liao, Hehe
2013-11-08
Highlights: •We detected expression of miR-205 in breast cancer cell lines and tissue samples. •We suggest miR-205 is downregulated in human breast cancer tissues and MCF7 cells. •We suggest the lower expression of miR-205 play a role in breast cancer onset. •These data suggest that miR-205 directly targets HER3 in human breast cancer. -- Abstract: Background: An increasing number of studies have shown that miRNAs are commonly deregulated in human malignancies, but little is known about the function of miRNA-205 (miR-205) in human breast cancer. The present study investigated the influence of miR-205 on breast cancer malignancy. Methods: The expressionmore » level of miR-205 in the MCF7 breast cancer cell line was determined by quantitative (q)RT-PCR. We then analyzed the expression of miR-205 in breast cancer and paired non-tumor tissues. Finally, the roles of miR-205 in regulating tumor proliferation, apoptosis, migration, and target gene expression were studied by MTT assay, flow cytometry, qRT-PCR, Western blotting and luciferase assay. Results: miR-205 was downregulated in breast cancer cells or tissues compared with normal breast cell lines or non-tumor tissues. Overexpression of miR-205 reduced the growth and colony-formation capacity of MCF7 cells by inducing apoptosis. Overexpression of miR-205 inhibited MCF7 cell migration and invasiveness. By bioinformation analysis, miR-205 was predicted to bind to the 3′ untranslated regions of human epidermal growth factor receptor (HER)3 mRNA, and upregulation of miR-205 reduced HER3 protein expression. Conclusion: miR-205 is a tumor suppressor in human breast cancer by post-transcriptional inhibition of HER3 expression.« less