Science.gov

Sample records for mir-124 regulates adult

  1. miR-124 Regulates Diverse Aspects of Rhythmic Behavior in Drosophila

    PubMed Central

    Garaulet, Daniel L.; Sun, Kailiang; Li, Wanhe; Wen, Jiayu; Panzarino, Alexandra M.; O'Neil, Jenna L.; Hiesinger, P. Robin; Young, Michael W.

    2016-01-01

    Circadian clocks enable organisms to anticipate and adapt to fluctuating environmental conditions. Despite substantial knowledge of central clock machineries, we have less understanding of how the central clock's behavioral outputs are regulated. Here, we identify Drosophila miR-124 as a critical regulator of diurnal activity. During normal light/dark cycles, mir-124 mutants exhibit profoundly abnormal locomotor activity profiles, including loss of anticipatory capacities at morning and evening transitions. Moreover, mir-124 mutants exhibited striking behavioral alterations in constant darkness (DD), including a temporal advance in peak activity. Nevertheless, anatomical and functional tests demonstrate a normal circadian pacemaker in mir-124 mutants, indicating this miRNA regulates clock output. Among the extensive miR-124 target network, heterozygosity for targets in the BMP pathway substantially corrected the evening activity phase shift in DD. Thus, excess BMP signaling drives specific circadian behavioral output defects in mir-124 knock-outs. SIGNIFICANCE STATEMENT Circadian clocks control rhythmic behaviors of most life-forms. Despite extensive knowledge of the central clock, there is less understanding of how its behavioral outputs are regulated. Here, we identify a conserved neural microRNA as a critical regulator of diurnal behavior. We find Drosophila mir-124 mutants exhibit robust activity abnormalities during normal light/dark cycles and during constant darkness. Nevertheless, as the central pacemaker is functional in these mutants, miR-124 regulates clock output. We provide mechanistic insight by showing deregulation of miR-124 targets in BMP signaling drives specific mir-124 defects. In summary, Drosophila mir-124 mutants reveal post-transcriptional control of circadian activities, and impact of BMP signaling in behavioral output. PMID:27013671

  2. miR-124-regulated RhoG

    PubMed Central

    Schumacher, Stefan; Franke, Kristin

    2013-01-01

    RhoG is a member of the Rho family of small GTPases sharing highest sequence similarity with Rac and Cdc42. Mig-2 and Mtl represent the functional equivalents of RhoG in Caenorhabditis elegans and Drosophila, respectively. RhoG has attracted great interest because it plays a central role in the regulation of cytoskeletal reorganization in various physiological and pathophysiological situations. For example, it is fundamental to phagocytotic processes, is able to regulate gene expression, cell survival and proliferation, and is involved in cell migration and in the invasion of pathogenic bacteria. The activation of Rac1 via an ELMO/Dock180 module has been elaborated to be important for RhoG signaling. Although a stimulatory role for neurite outgrowth in the pheochromocytoma PC12 cell line has been assigned to RhoG, the exact function of this GTPase for the development of the processes of primary neurons remains to be clarified. In this view, we discuss the impact of RhoG on axonal and dendritic differentiation, its role as a conductor of Rac1 and Cdc42 activity and the functional regulation of RhoG expression by the microRNA miR-124. PMID:23303397

  3. Epigenetic silencing of miR-124 prevents spermine oxidase regulation: implications for Helicobacter pylori-induced gastric cancer.

    PubMed

    Murray-Stewart, T; Sierra, J C; Piazuelo, M B; Mera, R M; Chaturvedi, R; Bravo, L E; Correa, P; Schneider, B G; Wilson, K T; Casero, R A

    2016-10-20

    Chronic inflammation contributes to the development of various forms of cancer. The polyamine catabolic enzyme spermine oxidase (SMOX) is induced in chronic inflammatory conditions, including Helicobacter pylori-associated gastritis, where its production of hydrogen peroxide contributes to DNA damage and subsequent tumorigenesis. MicroRNA expression levels are also altered in inflammatory conditions; specifically, the tumor suppressor miR-124 becomes silenced by DNA methylation. We sought to determine if this repression of miR-124 is associated with elevated SMOX activity and concluded that miR-124 is indeed a negative regulator of SMOX. In gastric adenocarcinoma cells harboring highly methylated and silenced mir-124 gene loci, 5-azacytidine treatment allowed miR-124 re-expression and decreased SMOX expression. Overexpression of an exogenous miR-124-3p mimic repressed SMOX mRNA and protein expression as well as H2O2 production by >50% within 24 h. Reporter assays indicated that direct interaction of miR-124 with the 3'-untranslated region of SMOX mRNA contributes to this negative regulation. Importantly, overexpression of miR-124 before infection with H. pylori prevented the induction of SMOX believed to contribute to inflammation-associated tumorigenesis. Compelling human in vivo data from H. pylori-positive gastritis tissues indicated that the mir-124 gene loci are more heavily methylated in a Colombian population characterized by elevated SMOX expression and a high risk for gastric cancer. Furthermore, the degree of mir-124 methylation significantly correlated with SMOX expression throughout the population. These results indicate a protective role for miR-124 through the inhibition of SMOX-mediated DNA damage in the etiology of H. pylori-associated gastric cancer.

  4. Epigenetic silencing of miR-124 prevents spermine oxidase regulation: Implications for Helicobacter pylori-induced gastric cancer

    PubMed Central

    Murray-Stewart, Tracy; Sierra, Johanna C.; Piazuelo, M. Blanca; Mera, Robertino M.; Chaturvedi, Rupesh; Bravo, Luis E.; Correa, Pelayo; Schneider, Barbara G.; Wilson, Keith T.; Casero, Robert A.

    2016-01-01

    Chronic inflammation contributes to the development of various forms of cancer. The polyamine catabolic enzyme spermine oxidase (SMOX) is induced in chronic inflammatory conditions, including Helicobacter pylori-associated gastritis, where its production of hydrogen peroxide contributes to DNA damage and subsequent tumorigenesis. MicroRNA expression levels are also altered in inflammatory conditions; specifically, the tumor suppressor miR-124 becomes silenced by DNA methylation. We sought to determine if this repression of miR-124 is associated with elevated SMOX activity and concluded that miR-124 is indeed a negative regulator of SMOX. In gastric adenocarcinoma cells harboring highly methylated and silenced mir-124 gene loci, 5-azacytidine treatment allowed miR-124 re-expression and decreased SMOX expression. Overexpression of an exogenous miR-124-3p mimic repressed SMOX mRNA and protein expression as well as H2O2 production by >50% within 24 hours. Reporter assays indicated that direct interaction of miR-124 with the 3′-untranslated region of SMOX mRNA contributes to this negative regulation. Importantly, overexpression of miR-124 prior to infection with H. pylori prevented the induction of SMOX believed to contribute to inflammation-associated tumorigenesis. Compelling human in vivo data from H. pylori-positive gastritis tissues indicated that the mir-124 gene loci are more heavily methylated in a Colombian population characterized by elevated SMOX expression and a high risk for gastric cancer. Furthermore, the degree of mir-124 methylation significantly correlated with SMOX expression throughout the population. These results indicate a protective role for miR-124 through the inhibition of SMOX-mediated DNA damage in the etiology of H. pylori-associated gastric cancer. PMID:27041578

  5. miR-124 regulates cell apoptosis and autophagy in dopaminergic neurons and protects them by regulating AMPK/mTOR pathway in Parkinson’s disease

    PubMed Central

    Gong, Xin; Wang, Huiqing; Ye, Yongyi; Shu, Yugao; Deng, Yongwen; He, Xiaozheng; Lu, Guohui; Zhang, Shizhong

    2016-01-01

    The important roles of miR-124 in the development and progression of various diseases are being increasing recognized. This study was aimed to investigate the potential roles of miR-124 in dopaminergic (DA) neuronal apoptosis and autophagy in Parkinson’s disease (PD) and to explore their mechanisms. Human SH-SY5Y cells that are treated with MPTP were transfected with mature miR-124 vector and control empty vector. The effect of MPTP on miR-124 mRNA level was analyzed using RT-PCR analysis. Furthermore, the effects of miR-124 expression on neuronal apoptosis and autophagy, as well as the expression of proteins in the AMPK/mTOR pathway, were analyzed using RT-PCR and western blotting. This study found that miR-124 was down-regulated in the MPTP-treated (100 μM) neurons, and miR-124 suppression significantly increased cell apoptosis and induced autophagy-associated protein expression, including that of Beclin 1 and increased the ratio of LC3 II/LC3 I compared with that in controls. In addition, in vitro rescue of miR-124 significantly decreased the percentage of apoptotic cells and the ratio of LC3 II/LC3 I, findings that were approximately equal to the controls. Moreover, miR-124 suppression increased p-AMPK but decreased p-mTOR levels in neurons. Our study suggested that miR-124 functions as a protector of DA neurons during PD through the involvement of cell apoptosis and autophagy by regulating the AMPK/mTOR pathway. PMID:27347320

  6. The RNA-binding protein QKI5 regulates primary miR-124-1 processing via a distal RNA motif during erythropoiesis.

    PubMed

    Wang, Fang; Song, Wei; Zhao, Hongmei; Ma, Yanni; Li, Yuxia; Zhai, Di; Pi, Jingnan; Si, Yanmin; Xu, Jiayue; Dong, Lei; Su, Rui; Zhang, Mengmeng; Zhu, Yong; Ren, Xiaoxia; Miao, Fei; Liu, Wenjie; Li, Feng; Zhang, Junwu; He, Aibin; Shan, Ge; Hui, Jingyi; Wang, Linfang; Yu, Jia

    2017-03-01

    MicroRNA (miRNA) biogenesis is finely controlled by complex layers of post-transcriptional regulators, including RNA-binding proteins (RBPs). Here, we show that an RBP, QKI5, activates the processing of primary miR-124-1 (pri-124-1) during erythropoiesis. QKI5 recognizes a distal QKI response element and recruits Microprocessor through interaction with DGCR8. Furthermore, the recruited Microprocessor is brought to pri-124-1 stem loops by a spatial RNA-RNA interaction between two complementary sequences. Thus, mutations disrupting their base-pairing affect the strength of QKI5 activation. When erythropoiesis proceeds, the concomitant decrease of QKI5 releases Microprocessor from pri-124-1 and reduces mature miR-124 levels to facilitate erythrocyte maturation. Mechanistically, miR-124 targets TAL1 and c-MYB, two transcription factors involved in normal erythropoiesis. Importantly, this QKI5-mediated regulation also gives rise to a unique miRNA signature, which is required for erythroid differentiation. Taken together, these results demonstrate the pivotal role of QKI5 in primary miRNA processing during erythropoiesis and provide new insights into how a distal element on primary transcripts affects miRNA biogenesis.

  7. MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA

    SciTech Connect

    Lang, Qingbo; Ling, Changquan

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer PIK3CA is a novel target of miR-124 in HepG2 cells. Black-Right-Pointing-Pointer MiR-124 suppresses cell proliferation by downregulating PIK3CA expression. Black-Right-Pointing-Pointer MiR-124 regulates the PI3K/Akt pathway in HepG2 cells. Black-Right-Pointing-Pointer MiR-124 overexpression inhibits the tumorigenesis in nude mice. -- Abstract: MicroRNAs (miRNAs) have crucial roles in the development and progression of human cancers, including hepatocellular carcinoma (HCC). Recent studies have shown that microRNA-124 (miR-124) was downregulated in HCC; however, the underlying mechanisms by which miR-124 suppresses tumorigenesis in HCC are largely unknown. In this study, we report that phosphoinositide 3-kinase catalytic subunit alpha (PIK3CA) is a novel target of miR-124 in HepG2 cells. Overexpression of miR-124 resulted in decreased expression of PIK3CA at both mRNA and protein levels. We found that miR-124 overexpression markedly suppressed cell proliferation by inducing G1-phase cell-cycle arrest in vitro. Consistent with the restoring miR-124 expression, PIK3CA knockdown suppressed cell proliferation, whereas overexpression of PIK3CA abolished the suppressive effect of miR-124. Mechanistic studies showed that miR-124-mediated reduction of PIK3CA resulted in suppression of PI3K/Akt pathway. The expressions of Akt and mTOR, key components of the PI3K/Akt pathway, were all downregulated. Moreover, we found overexpressed miR-124 effectively repressed tumor growth in xenograft animal experiments. Taken together, our results demonstrate that miR-124 functions as a growth-suppressive miRNA and plays an important role in inhibiting the tumorigenesis through targeting PIK3CA.

  8. miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the Notch signaling pathway.

    PubMed

    Chen, Jerry S; Pedro, Matthew San; Zeller, Robert W

    2011-11-01

    The nervous system-enriched microRNA miR-124 is necessary for proper nervous system development, although the mechanism remains poorly understood. Here, through a comprehensive analysis of miR-124 and its gene targets, we demonstrate that, in the chordate ascidian Ciona intestinalis, miR-124 plays an extensive role in promoting nervous system development. We discovered that feedback interaction between miR-124 and Notch signaling regulates the epidermal-peripheral nervous system (PNS) fate choice in tail midline cells. Notch signaling silences miR-124 in epidermal midline cells, whereas in PNS midline cells miR-124 silences Notch, Neuralized and all three Ciona Hairy/Enhancer-of-Split genes. Furthermore, ectopic expression of miR-124 is sufficient to convert epidermal midline cells into PNS neurons, consistent with a role in modulating Notch signaling. More broadly, genome-wide target extraction with validation using an in vivo tissue-specific sensor assay indicates that miR-124 shapes neuronal progenitor fields by downregulating non-neural genes, notably the muscle specifier Macho-1 and 50 Brachyury-regulated notochord genes, as well as several anti-neural factors including SCP1 and PTBP1. 3'UTR conservation analysis reveals that miR-124 targeting of SCP1 is likely to have arisen as a shared, derived trait in the vertebrate/tunicate ancestor and targeting of PTBP1 is conserved among bilaterians except for ecdysozoans, while extensive Notch pathway targeting appears to be Ciona specific. Altogether, our results provide a comprehensive insight into the specific mechanisms by which miR-124 promotes neuronal development.

  9. Down regulation of miR-124 in both Werner syndrome DNA helicase mutant mice and mutant Caenorhabditis elegans wrn-1 reveals the importance of this microRNA in accelerated aging.

    PubMed

    Dallaire, Alexandra; Garand, Chantal; Paquel, Eric R; Mitchell, Sarah J; de Cabo, Rafael; Simard, Martin J; Lebel, Michel

    2012-09-01

    Small non-coding microRNAs are believed to be involved in the mechanism of aging but nothing is known on the impact of microRNAs in the progeroid disorder Werner syndrome (WS). WS is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN ortholog exhibit many phenotypic features of WS, including a pro-oxidant status and a shorter mean life span.Caenorhabditis elegans (C. elegans) with a nonfunctional wrn-1 DNA helicase also exhibit a shorter life span. Thus, both models are relevant to study the expression of microRNAs involved in WS. In this study, we show that miR-124 expression is lost in the liver of Wrn helicase mutant mice. Interestingly, the expression of this conserved miR-124 in whole wrn-1 mutant worms is also significantly reduced. The loss of mir-124 in C. elegans increases reactive oxygen species formation and accumulation of the aging marker lipofuscin, reduces whole body ATP levels and results in a reduction in life span. Finally, supplementation of vitamin C normalizes the median life span of wrn-1 and mir-124 mutant worms. These results suggest that biological pathways involving WRN and miR-124 are conserved in the aging process across different species.

  10. MiR-124 inhibits the migration and invasion of human hepatocellular carcinoma cells by suppressing integrin αV expression

    PubMed Central

    Cai, Qian Qian; Dong, Yi Wei; Wang, Rong; Qi, Bing; Guo, Jun Xia; Pan, Jing; Liu, Yuan Yuan; Zhang, Chun Yi; Wu, Xing Zhong

    2017-01-01

    Tumor metastasis is the major cause of cancer-related death especially in human hepatocellular carcinoma (HCC). Although microRNAs have been implicated in tumor development, the roles of miR-124 in HCC metastasis are still not well understood. We conducted functional analysis in this study to investigate miR-124. We observed that miR-124 significantly retarded the wound healing and migration of HCC SMMC-7721 and BEL-7404 cells. Further analysis indicated miR-124 directly targeting the transcriptional factor Sp1 which is an important transcription factor for the integrin αV subunit gene transcription. Co-transfection of miR-124 with the luciferase reporter containing Sp1 3′ untranslated region (UTR) significantly suppressed the luciferase activities. While mutation of the binding site of miR-124 in Sp1 mRNA 3′UTR completely abrogated the suppression of miR-124. Overexpression of miR-124 resulted in robust downregulation of Sp1 and integrin αV expression at either mRNA or protein level. Ectopic expression of miR-124 in HCC dramatically repressed the wound healing and migration in vitro and tumor metastasis in mouse experiments. Our findings demonstrated that miR-124 played as an important role in regulation of integrin αV expression in HCC, and reintroduction of miR-124 might be an alternative therapeutic strategy for controlling integrin αV expression in HCC. PMID:28094803

  11. MiR-124 represses vasculogenic mimicry and cell motility by targeting amotL1 in cervical cancer cells.

    PubMed

    Wan, Hai-Ying; Li, Qin-Qin; Zhang, Yan; Tian, Wei; Li, Ya-Nan; Liu, Min; Li, Xin; Tang, Hua

    2014-12-01

    miRNAs have extensive functions in differentiation, metabolism, programmed cell death, and tumor metastasis by post-transcriptional regulation. Vasculogenic mimicry is an important pathway in tumor metastasis. Many factors can regulate vasculogenic mimicry, including miRNAs. In previous studies, miR-124 was found to repress proliferation and metastasis in different types of cancers, but whether it functions in cervical cancer remained unknown. Here, we demonstrate that miR-124 can repress vasculogenic mimicry, migration and invasion in HeLa and C33A cells in vitro. Furthermore, we reveal that the effect of miR-124 on vasculogenic mimicry, migration and invasion results from its interaction with AmotL1. MiR-124 regulates AmotL1 negatively by targeting its 3'untranslated region (3'UTR). We found that miR-124 can repress the EMT process. Together, these results improve our understanding of the function of miR-124 in tumor metastasis and will help to provide new potential target sites for cervical cancer treatment.

  12. miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1.

    PubMed

    Chen, Zhiheng; Liu, Shaojun; Tian, Li; Wu, Minghao; Ai, Feiyan; Tang, Wuliang; Zhao, Lian; Ding, Juan; Zhang, Liyang; Tang, Anliu

    2015-11-10

    miR-124 and miR-506 are reportedly down-regulated and associated with tumor progression in many cancers, but little is known about their intrinsic regulatory mechanisms in colorectal cancer (CRC). In this study, we found that the miR-124 and miR-506 levels were significantly lower in human CRC tissues than in controls, as indicated by qRT-PCR and in situ hybridization histochemistry. We also found that the overexpression of miR-124 or miR-506 inhibited tumor cell progression and increased sensitivity to chemotherapy in vitro. Increased miR-124 or miR-506 expression also inhibited tumor cell proliferation and invasion in vivo. Luciferase reporter assays and western blotting were used to determine the association between miR-124, miR-506 and their target genes, DNMTs. We further identified that miR-124 and miR-506 directly targeted DNMT3B and indirectly targeted DNMT1. The overexpression of miR-124 and miR-506 reduced global DNA methylation and restored the expression of E-cadherin, MGMT and P16. In conclusion, our data showed that miR-124 and miR-506 inhibit progression and increase sensitivity to chemotherapy by targeting DNMT3B and DNMT1 in CRC. These findings may provide novel avenues for the development of targeted therapies.

  13. Activation of PPARγ inhibits pro-inflammatory cytokines production by upregulation of miR-124 in vitro and in vivo.

    PubMed

    Wang, Dan; Shi, Liuyan; Xin, Wei; Xu, Jiancheng; Xu, Jing; Li, Qi; Xu, Zhi; Wang, Jianchun; Wang, Guansong; Yao, Wei; He, Binfeng; Yang, Yu; Hu, Mingdong

    2017-03-22

    Peroxisome proliferator-activated receptor gamma (PPARγ) and miR-124 have been reported to play important roles in regulation of inflammation. However, the underlying anti-inflammatory mechanisms remain not well understood. In the present study, we demonstrated that the expression level of PPARγ is positively correlated with that of miR-124 in patients with sepsis. Activation of PPARγ upregulates miR-124 and in turn inhibits miR-124 target gene. PPARγ bound directly to PPRE in the miR-124 promoter region, and enhanced the promoter transcriptional activity. PPARγ-induced miR-124 is involved in the suppression of pro-inflammatory cytokine in vitro and in vivo. These results suggest that PPARγ-induced miR-124 inhibits the production of pro-inflammatory cytokines is a novel PPARγ anti-inflammatory mechanism and also indicate that miR-124 may be a potential therapeutic target for the treatment of inflammatory diseases.

  14. MiR-124 governs glioma growth and angiogenesis and enhances chemosensitivity by targeting R-Ras and N-Ras

    PubMed Central

    Shi, Zhumei; Chen, Qiudan; Li, Chongyong; Wang, Lin; Qian, Xu; Jiang, Chengfei; Liu, Xue; Wang, Xiefeng; Li, Hai; Kang, Chunsheng; Jiang, Tao; Liu, Ling-Zhi; You, Yongping; Liu, Ning; Jiang, Bing-Hua

    2014-01-01

    Background Glioma is one of the most aggressive and lethal human brain tumors. Accumulating evidence shows that microRNAs play important roles in cancers, including glioma. Previous studies reported that miR-124 levels were downregulated in glioma specimens. Here, we further investigate the potential role of miR-124 in glioma. Methods The expression levels of miR-124 were detected in glioma specimens by quantitative reverse transcriptase PCR. The direct targets of miR-124 were identified by bioinformatics analysis and were further validated by immunoblotting and luciferase reporter assay. The effects of miR-124 on glioma cell proliferation and chemosensitivity to temozolomide were analyzed by Cell-Counting Kit 8 assay. Apoptosis was evaluated by fluorescence activated cell sorting analysis. A xenograft model was used to study the effect of miR-124 on tumor growth and angiogenesis. Results Expression levels of miR-124 were greatly downregulated in glioma specimens. related Ras viral oncogene homolog (R-Ras) and neuroblastoma Ras viral oncogene homolog (N-Ras) were identified as direct targets of miR-124. MiR-124 inhibited glioma cell growth, invasion, angiogenesis, and tumor growth and increased chemosensitivity to temozolomide treatment by negatively regulating the Ras family and its downstream signaling pathways: phosphatidylinositol-3 kinase/Akt and Raf/extracellular signal-regulated kinase 1/2. Furthermore, overexpression of R-Ras rescued the inhibitory effects of miR-124. Meanwhile, overexpression of R-Ras and N-Ras restored miR-124–inhibited vascular endothelial growth factor (VEGF) transcription activation. In clinical glioma specimens, protein levels of R-Ras and N-Ras were upregulated and inversely correlated with miR-124 expression levels. Conclusions Taken together, these results revealed that miR-124 levels in tumor tissues are associated with glioma occurrence, angiogenesis, and chemoresistance and that miR-124 may be used as a new diagnostic marker

  15. MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway

    PubMed Central

    Wang, Ye; Wang, Desheng; Guo, Dawen

    2016-01-01

    Objective Some recent studies suggest that multiple miRNAs might regulate neurogenic transdifferentiation of mesenchymal stromal cells (MSCs). In the present study, we hypothesized that the miR-124 can repress the expression of RhoA upon the neurogenesis of adipose derived MSCs (ADMSCs). Methods MiRNA expression dynamics during neurogenic transdifferentiation of ADMSCs were measured. The expression of neuron-specific enolase (NSE), Tuj-1 (Neuron-specific class III beta-tubulin) and glial fibrillary acidic protein (GFAP), as well as electrophysiological properties, were detected after neurogenic transdifferentiation. The targeting of miR-124 over RhoA was verified by dual luciferase assay, qRT-PCR and western blot. The functions of miR-124 and the RhoA/ROCK signaling pathway were studied using gain and loss of function experiments in vitro. Results MiR-124 is significantly upregulated during neurogenic transdifferentiation of ADMSCs. Knockdown of endogenous miR-124 hampered neurogenic transdifferentiation and the acquired electrophysiological properties. MiR-124 could directly target RHOA mRNA and repress its expression, through which it increased the proportion of transdifferentiated (transdiff.) cells with positive NSE, Tuj-1 and GFAP. RhoA/ROCK1, but not ROCK2 is a downstream signaling pathway of miR-124 in the process of transdifferentiation. Conclusion MiR-124 is an important miRNA modulating neurogenic transdifferentiation of ADMSCs at least partly via the miR-124/RhoA/ROCK1 signaling pathway. These findings provided some fundamental information for future use of ADMSCs as an agent for regenerative medicine and cell therapy for neurological diseases. PMID:26745800

  16. miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Müller glia.

    PubMed

    Wohl, Stefanie Gabriele; Reh, Thomas Andrew

    2016-05-01

    The Müller glia of fish provide a source for neuronal regeneration after injury, but they do not do so in mammals. We previously showed that lentiviral gene transfer of the transcription factor Achaete-scute homolog 1 (Ascl1/Mash1) in murine Müller glia cultures resulted in partial reprogramming of the cells to retinal progenitors. The microRNAs (miRNAs) miR-124-9-9* facilitate neuronal reprogramming of fibroblasts, but their role in glia reprogramming has not been reported. The aim of this study was to test whether (1) lentiviral gene transfer of miR-124-9-9* can reprogram Müller glia into retinal neurons and (2) miR-124-9-9* can improve Ascl1-induced reprogramming. Primary Müller glia cultures were generated from postnatal day (P) 11/12 mice, transduced with lentiviral particles, i.e., miR-124-9-9*-RFP, nonsense-RFP, Ascl1-GFP, or GFP-control. Gene expression and immunofluorescence analyses were performed within 3 weeks after infection. 1. Overexpression of miR-124-9-9* induced the expression of the proneural factor Ascl1 and additional markers of neurons, including TUJ1 and MAP2. 2. When Ascl1 and miR-124-9-9* were combined, 50 to 60% of Müller glia underwent neuronal reprogramming, whereas Ascl1 alone results in a 30 to 35% reprogramming rate. 3. Analysis of the miR-124-9-9* treated glial cells showed a reduction in the level of Ctdsp1 and Ptbp1, indicating a critical role for the REST pathway in the repression of neuronal genes in Müller glia. Our data further suggest that miR-124-9-9* and the REST complex may play a role in regulating the reprogramming of Müller glia to progenitors that underlies retinal regeneration in zebrafish.

  17. Decline of miR-124 in myeloid cells promotes regulatory T-cell development in hepatitis C virus infection.

    PubMed

    Ren, Jun P; Wang, Lin; Zhao, Juan; Wang, Ling; Ning, Shun B; El Gazzar, Mohamed; Moorman, Jonathan P; Yao, Zhi Q

    2017-02-01

    Myeloid-derived suppressor cells (MDSCs) and microRNAs (miRNAs) contribute to attenuating immune responses during chronic viral infection; however, the precise mechanisms underlying their suppressive activities remain incompletely understood. We have recently shown marked expansion of MDSCs that promote regulatory T (Treg) cell development in patients with chronic hepatitis C virus (HCV) infection. Here we further investigated whether the HCV-induced expansion of MDSCs and Treg cells is regulated by an miRNA-mediated mechanism. The RNA array analysis revealed that six miRNAs were up-regulated and six miRNAs were down-regulated significantly in myeloid cells during HCV infection. Real-time RT-PCR confirmed the down-regulation of miR-124 in MDSCs from HCV patients. Bioinformatic analysis suggested that miR-124 may be involved in the regulation of signal transducer and activator of transcription 3 (STAT-3), which was overexpressed in MDSCs from HCV patients. Notably, silencing of STAT-3 significantly increased the miR-124 expression, whereas reconstituting miR-124 decreased the levels of STAT-3, as well as interleukin-10 and transforming growth factor-β, which were overexpressed in MDCSs, and reduced the frequencies of Foxp3(+) Treg cells that were developed during chronic HCV infection. These results suggest that reciprocal regulation of miR-124 and STAT-3 in MDSCs promotes Treg cell development, thus uncovering a novel mechanism for the expansion of MDSC and Treg cells during HCV infection.

  18. Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants

    PubMed Central

    Sun, Kailiang; Westholm, Jakub Orzechowski; Tsurudome, Kazuya; Hagen, Joshua W.; Lu, Yubing; Kohwi, Minoree; Betel, Doron; Gao, Fen-Biao; Haghighi, A. Pejmun; Doe, Chris Q.; Lai, Eric C.

    2012-01-01

    miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124–expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology. PMID:22347817

  19. Exosome-Based Delivery of miR-124 in a Huntington’s Disease Model

    PubMed Central

    Lee, Soon-Tae; Im, Wooseok; Ban, Jae-Jun; Lee, Mijung; Jung, Keun-Hwa; Lee, Sang Kun; Chu, Kon; Kim, Manho

    2017-01-01

    Objective Huntington’s disease (HD) is a genetic neurodegenerative disease that is caused by abnormal CAG expansion. Altered microRNA (miRNA) expression also causes abnormal gene regulation in this neurodegenerative disease. The delivery of abnormally downregulated miRNAs might restore normal gene regulation and have a therapeutic effect. Methods We developed an exosome-based delivery method to treat this neurodegenerative disease. miR-124, one of the key miRNAs that is repressed in HD, was stably overexpressed in a stable cell line. Exosomes were then harvested from these cells using an optimized protocol. The exosomes (Exo-124) exhibited a high level of miR-124 expression and were taken up by recipient cells. Results When Exo-124 was injected into the striatum of R6/2 transgenic HD mice, expression of the target gene, RE1-Silencing Transcription Factor, was reduced. However, Exo-124 treatment did not produce significant behavioral improvement. Conclusion This study serves as a proof of concept for exosome-based delivery of miRNA in neurodegenerative diseases. PMID:28122430

  20. miR-124 and miR-9 Mediated Downregulation of HDAC5 Promotes Neurite Development Through Activating MEF2C- GPM6A Pathway.

    PubMed

    Gu, Xi; Fu, Congcong; Lin, Lifang; Liu, Shuhu; Su, Xiaohong; Li, Aili; Wu, Qiaoqi; Jia, Chunhong; Zhang, Peidong; Chen, Lu; Zhu, Xinhong; Wang, Xuemin

    2017-03-23

    The class IIa histone deacetylases (HDACs) play important roles in the central nervous system during diverse biological processes such as synaptic plasticity, axon regeneration, cell apoptosis, and neural differentiation. Although it is known that HDAC5 regulates neuronal differentiation, neither the physiological function nor the regulation of HDAC5 in neuronal differentiation is clear. Here, we identify HDAC5 as an inhibitor of neurite elongation and show that HDAC5 is regulated by the brain enriched microRNA miR-124 and miR-9. We discover that HDAC5 inhibits neurite extension both in differentiated P19 cells and primary neurons. We also show that the neuronal membrane glycoprotein GPM6A (M6a) is a direct target gene of HDAC5 regulated transcriptional factor MEF2C. HDAC5 inhibits neurite elongation, acting at least partially via a MEF2C/M6a signaling pathway. We also confirmed the miR-124/miR-9 regulated HDAC5-MEF2C-M6a pathway regulates neurite development in primary neurons. Thus, HDAC5 emerges as a cellular conductor of MEF2C and M6a activity and is regulated by miR-124 and miR-9 to control neurite development. This article is protected by copyright. All rights reserved.

  1. Reactivation of epigenetically silenced miR-124 reverses the epithelial-to-mesenchymal transition and inhibits invasion in endometrial cancer cells via the direct repression of IQGAP1 expression

    PubMed Central

    Watari, Hidemichi; Hanley, Sharon J.B.; Yamada, Takahiro; Hosaka, Masayoshi; Kudo, Masataka; Yue, Junming; Sakuragi, Noriaki

    2016-01-01

    Overexpression of IQGAP1 and microRNA (miRNA) dysregulation are frequent in human tumors, but little is known about the role of IQGAP1 and its relationship to miRNA in endometrial carcinogenesis. We demonstrate that IQGAP1 activates the epithelial–mesenchymal transition (EMT) program and that miR-124 directly represses IQGAP1 expression in endometrial cancer (EC) cells. The overexpression of IQGAP1 stimulates EMT features and enhances migration, invasion and proliferation of EC cells, whereas knocking down IQGAP1 expression reverses EMT and inhibits these malignant properties. Using miRNA microarray profiling, we identified 29 miRNAs (let-7b, let-7f, miR-10b, miR-15b, miR-23a, miR-24, miR-25, miR-27a, miR-29b, miR-30a-5p, miR-34a, miR-124, miR-127, miR-130b, miR-148a, miR-155, miR-191*, miR-194, miR-224, miR-362, miR-409-3p, miR-422b, miR-424, miR-453, miR-497, miR-518d, miR-518f*, miR-526a and miR-656) that are significantly down-regulated in an in vitro-selected highly invasive derivative cell line (HEC-50-HI) relative to the parental HEC-50 cells. We further identified miR-124 as a direct regulator of IQGAP1 in EC cells. Enforced expression of miR-124 suppresses EC cell invasion and proliferation. The expression of IQGAP1 mRNA was significantly elevated in EC tissues, while the expression of miR-124 was decreased. The downregulation of miR-124 correlates with a poor survival outcome for patients with EC. Treating EC cells with the demethylating agent 5-aza-2′-deoxycytidine increased miR-124 expression and down-regulated IQGAP1 levels. Our data suggest that IQGAP1 promotes EMT, migration and invasion of EC cells. MiR-124, a novel tumor suppressor miRNA that is epigenetically silenced in EC, can reverse EMT and the invasive properties, by attenuating the expression of the IQGAP1 oncogene. PMID:26934121

  2. Long non-coding RNA MALAT1 interacts with miR-124 and modulates tongue cancer growth by targeting JAG1.

    PubMed

    Zhang, Tong-Han; Liang, Li-Zhong; Liu, Xiao-Ling; Wu, Ji-Nan; Su, Kui; Chen, Jue-Yao; Zheng, Qiao-Yi; Huang, Hong-Zhang; Liao, Gui-Qing

    2017-04-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA (lncRNA), was the earliest discovered to be correlated with cancer and contributes to the initiation and development of several types of tumors. Dysregulation of MALAT1 expression is frequently observed in many types of cancer such as gastric cancer, esophageal squamous cell carcinoma and glioma. To date, the role of MALAT1 and the underlying mechanisms in tongue cancer development remain unclear. In the present study, we studied the influence of MALAT1 on tongue cancer cell lines and clinical tongue cancer samples so as to detect its function and the underlying mechanism. In the present study, lncRNA-MALAT1 was specifically upregulated in tongue cancer cell lines and overexpression promoted tongue cancer cell growth by targeting miR-124. Knockdown of MALAT1 suppressed the growth and invasion of human tongue cancer cells and inhibited metastasis in vitro and in vivo. In addition, miR-124-dependent jagged1 (JAG1) regulation was required for MALAT1-induced tongue cancer cell growth. Our data revealed that MALAT1 inhibited tongue cancer cell growth and metastasis through miR-124-dependent JAG1 regulation. In conclusion, we revealed that MALAT1 may play an oncogenic role by increasing proliferation and metastasis of tongue cancer and is a potential therapeutic target in human tongue cancer.

  3. The tumor suppressor miR-124 inhibits cell proliferation and invasion by targeting B7-H3 in osteosarcoma.

    PubMed

    Wang, Ling; Kang, Fu-Biao; Sun, Nan; Wang, Juan; Chen, Wei; Li, Dong; Shan, Bao-En

    2016-11-01

    Our previous studies have shown that the expression level of B7 homolog 3 (B7-H3) was correlated with clinical staging and prognosis of osteosarcoma (OS) patients, and its silencing inhibited the proliferation and invasion of OS cells in vitro. However, its overexpression mechanism behind was far from elucidated. On the basis of bioinformatics and the preliminary screening data, we hypothesized that miR-124 might play an important role in OS development and as a lead candidate for modulating B7-H3 expression. In this study, we found that miR-124 was downregulated significantly in OS tumor tissue, compared to normal adjacent tissues (NATs). Lower miR-124 expression levels were associated with advanced Ennecking stage, lower tumor differentiation, and common pulmonary metastasis. The 5-year overall survival rate in the miR-124 upregulated group was 61.5 %, while with low miR-124 expression, only 11.8 % survived. Further studies in vitro showed that B7-H3 was a direct target of miR-124. Overexpression of miR-124 decreased B7-H3 mRNA and protein level and inhibited B7-H3 3'-UTR reporter activity. Treatment of OS cells with miR-124 mimics induced the inhibition of cell growth and invasion in vitro, which could be abrogated by transfected by B7-H3 expression vector. Our findings highlight the potential application of miR-124 as a novel onco-miRNA in OS, and its oncogenic effects are mediated chiefly through downregulation of B7-H3, thus suggesting a model for identifying miR-124 that can be exploited to improve the therapeutic potential efficacy of mAb targeting to B7-H3.

  4. Early methyl donor deficiency may induce persistent brain defects by reducing Stat3 signaling targeted by miR-124

    PubMed Central

    Kerek, R; Geoffroy, A; Bison, A; Martin, N; Akchiche, N; Pourié, G; Helle, D; Guéant, J-L; Bossenmeyer-Pourié, C; Daval, J-L

    2013-01-01

    The methyl donors folate (vitamin B9) and vitamin B12 are centrepieces of the one-carbon metabolism that has a key role in transmethylation reactions, and thus in epigenetic and epigenomic regulations. Low dietary intakes of folate and vitamin B12 are frequent, especially in pregnant women and in the elderly, and deficiency constitutes a risk factor for various diseases, including neurological and developmental disorders. In this respect, both vitamins are essential for normal brain development, and have a role in neuroplasticity and in the maintenance of neuronal integrity. The consequences of a methyl donor deficiency (MDD) were studied both in vivo in rats exposed in utero, and in vitro in hippocampal progenitors (H19-7 cell line). Deficiency was associated with growth retardation at embryonic day 20 (E20) and postnatally with long-term brain defects in selective areas. mRNA and protein levels of the transcription factor Stat3 were found to be decreased in the brains of deprived fetuses and in differentiating progenitors (62 and 48% for total Stat3 protein, respectively), along with a strong reduction in its phosphorylation at both Tyr705 and Ser727 residues. Vitamin shortage also affected upstream kinases of Stat3 signaling pathway (phospho-Erk1/2, phospho-Src, phospho-JNK, and phospho-p38) as well as downstream target gene products (Bcl-2 and Bcl-xL), thus promoting apoptosis. Conversely, the expression of the Stat3 regulator miR-124 was upregulated in deficiency conditions (≥65%), and its silencing by using siRNA partly restored Stat3 signaling in hippocampal neurons by increasing specifically the phosphorylation of Erk1/2 and Src kinases. Furthermore, miR-124 siRNA improved the phenotype of deprived cells, with enhanced neurite outgrowth. Taken together, our data suggest that downregulation of Stat3 signaling by miR-124 would be a key factor in the deleterious effects of MDD on brain development. PMID:23928694

  5. miR-124, -128, and -137 Orchestrate Neural Differentiation by Acting on Overlapping Gene Sets Containing a Highly Connected Transcription Factor Network.

    PubMed

    Santos, Márcia C T; Tegge, Allison N; Correa, Bruna R; Mahesula, Swetha; Kohnke, Luana Q; Qiao, Mei; Ferreira, Marco A R; Kokovay, Erzsebet; Penalva, Luiz O F

    2016-01-01

    The ventricular-subventricular zone harbors neural stem cells (NSCs) that can differentiate into neurons, astrocytes, and oligodendrocytes. This process requires loss of stem cell properties and gain of characteristics associated with differentiated cells. miRNAs function as important drivers of this transition; miR-124, -128, and -137 are among the most relevant ones and have been shown to share commonalities and act as proneurogenic regulators. We conducted biological and genomic analyses to dissect their target repertoire during neurogenesis and tested the hypothesis that they act cooperatively to promote differentiation. To map their target genes, we transfected NSCs with antagomiRs and analyzed differences in their mRNA profile throughout differentiation with respect to controls. This strategy led to the identification of 910 targets for miR-124, 216 for miR-128, and 652 for miR-137. The target sets show extensive overlap. Inspection by gene ontology and network analysis indicated that transcription factors are a major component of these miRNAs target sets. Moreover, several of these transcription factors form a highly interconnected network. Sp1 was determined to be the main node of this network and was further investigated. Our data suggest that miR-124, -128, and -137 act synergistically to regulate Sp1 expression. Sp1 levels are dramatically reduced as cells differentiate and silencing of its expression reduced neuronal production and affected NSC viability and proliferation. In summary, our results show that miRNAs can act cooperatively and synergistically to regulate complex biological processes like neurogenesis and that transcription factors are heavily targeted to branch out their regulatory effect.

  6. A functional MiR-124 binding-site polymorphism in IQGAP1 affects human cognitive performance.

    PubMed

    Yang, Lixin; Zhang, Rui; Li, Ming; Wu, Xujun; Wang, Jianhong; Huang, Lin; Shi, Xiaodong; Li, Qingwei; Su, Bing

    2014-01-01

    As a product of the unique evolution of the human brain, human cognitive performance is largely a collection of heritable traits. Rather surprisingly, to date there have been no reported cases to highlight genes that underwent adaptive evolution in humans and which carry polymorphisms that have a marked effect on cognitive performance. IQ motif containing GTPase activating protein 1 (IQGAP1), a scaffold protein, affects learning and memory in a dose-dependent manner. Its expression is regulated by miR-124 through the binding sites in the 3'UTR, where a SNP (rs1042538) exists in the core-binding motif. Here we showed that this SNP can influence the miR-target interaction both in vitro and in vivo. Individuals carrying the derived T alleles have higher IQGAP1 expression in the brain as compared to the ancestral A allele carriers. We observed a significant and male-specific association between rs1042538 and tactile performances in two independent cohorts. Males with the derived allele displayed higher tactual performances as compared to those with the ancestral allele. Furthermore, we found a highly diverged allele-frequency distribution of rs1042538 among world human populations, likely caused by natural selection and/or recent population expansion. These results suggest that current human populations still carry sequence variations that affect cognitive performances and that these genetic variants may likely have been subject to comparatively recent natural selection.

  7. The expression of miR-124 increases in aged skin to cause cell senescence and it decreases in squamous cell carcinoma.

    PubMed

    Harada, Miho; Jinnin, Masatoshi; Wang, Zhongzhi; Hirano, Ayaka; Tomizawa, Yukiko; Kira, Tomomi; Igata, Toshikatsu; Masuguchi, Shinichi; Fukushima, Satoshi; Ihn, Hironobu

    2017-01-16

    Skin senescence is induced by various factors including intrinsic aging and extrinsic aging. The current study compared the expression of microRNAs in young facial skin and senescent facial skin, and this study identified skin aging-related microRNAs. According to the results from a microRNA PCR Array, miR-124 was the microRNA that increased the most in senescent skin compared to young skin. Real-time PCR with a greater number of samples indicated that the increase in miR-124 levels in senescent facial skin was statistically significant. In situ hybridization was performed, and results indicated that the signal for miR-124 was evident in keratinocytes of senescent skin but not in those of young skin. The morphology of cultured normal human epidermal keratinocytes (NHEKs) transfected with a miR-124 mimic changed to an enlarged and irregular shape. In addition, the number of NHEKs positive for senescence-associated β-galactosidase (SA-β-gal) increased significantly as a result of the overexpression of the miR-124 mimic. The expression of miR-124 increased in UVB-irradiated NHEKs compared to controls in a dose-dependent manner. Expression of miR-124 in A431, a human cutaneous squamous cell carcinoma (SCC) cell line, decreased significantly compared to that in NHEKs. Forced overexpression of miR-124 as a result of the transfection of a miR-124 mimic in A431 resulted in the significant suppression of the proportion of cancer cells. The current results indicated that miR-124 increases as a result of cell senescence and that it decreases during tumorigenesis. The effect of supplementation of miR-124 in an SCC cell line suggests that senescence induction therapy with microRNA may be a new therapeutic approach for treatment of SCC.

  8. MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma.

    PubMed

    Zhao, Yuan; Ling, Zhiqiang; Hao, Yubin; Pang, Xiaowu; Han, Xianlin; Califano, Joseph A; Shan, Liang; Gu, Xinbin

    2017-02-15

    By analyzing the expression profile of microRNAs in head and neck squamous cell carcinomas (HNSCC), we found that the expression level of miR-124 was 4.59-fold lower in tumors than in normal tissues. To understand its functions, we generated a miR-124-expressing subline (JHU-22miR124) and a mock vector-transfected subline (JHU-22vec) by transfecting the mimic of miR-124 into JHU-22 cancer cells. Restored expression of miR-124 in JHU-22miR124 cells led to reduced cell proliferation, delayed colony formation, and decreased tumor growth, indicating a tumor-suppressive effect of miR-124. Subsequent target search revealed that the 3'-UTR of SphK1 mRNA carries a complementary site for the seed region of miR-124. SphK1 was also detected to be overexpressed in HNSCC cell lines, but down-expressed in JHU-22miR124 cells and tumor xenografts. These results suggest that SphK1 is a target of miR-124. To confirm this finding, we constructed a 3'-UTR-Luc-SphK1 vector and a binding site-mutated luciferase reporter vector. Co-transfection of 3'-UTR-Luc-SphK1 with miR-124 expression vector exhibited a 9-fold decrease in luciferase activity compared with mutated vector, suggesting that miR-124 inhibits SphK1 activity directly. Further studies on downstream signaling demonstrated accumulation of ceramide, increased expression of the pro-apoptotic Bax, BAD and PARP, decreased expression of the anti-apoptotic Bcl-2 and Bcl-xL, and enhanced expression of cytochrome c and caspase proteins in JHU-22miR124 compared with JHU-22vec cells and tumor xenografts. We conclude that miR-124 acts as a tumor suppressor in HNSCC by directly inhibiting SphK1 activity and its downstream signals.

  9. Upregulation of miR-124 by physcion 8-O-β-glucopyranoside inhibits proliferation and invasion of malignant melanoma cells via repressing RLIP76.

    PubMed

    Zhang, Di; Han, Yantao; Xu, Luo

    2016-12-01

    Melanoma is the most malignant type of skin cancer. In recent years, mounting studies have evidenced the involvement of miRNAs in melanoma. One of these miRNAs, miR-124 has been found aberrantly downregulated in a variety of human malignancies. In this study, our results showed that the expression of miR-124 was significantly lower in malignant melanoma tissues and cell lines and miR-124 functioned as a tumor suppressor in melanoma. Moreover, our findings showed that miR-124 exerted anti-tumor effect by directly targeting RLIP76, a stress-inducible non-ABC transporter that plays a crucial role in the development of melanoma. Furthermore, our study also showed that physcion 8-O-β-glucopyranoside, a natural compound from medicinal plant, could inhibit the proliferation and invasion of melanoma cells by targeting miR-124/RLIP76 signaling.

  10. Increased Brain-Specific MiR-9 and MiR-124 in the Serum Exosomes of Acute Ischemic Stroke Patients

    PubMed Central

    Peng, Jingwen; Zhou, Xin; Chen, Xinya; Zhao, Heng; Xu, Tian; Chen, Ling; Xu, Yun

    2016-01-01

    The aims of this study were to examine the alternation in serum exosome concentrations and the levels of serum exosomal miR-9 and miR-124, two brain-specific miRNAs, in acute ischemic stroke (AIS) patients and to explore the predictive values of these miRNAs for AIS diagnosis and damage evaluation. Sixty-five patients with AIS at the acute stage were enrolled and 66 non-stroke volunteers served as controls. Serum exosomes isolated by ExoQuick precipitations were characterized by transmission electron microscopy, nanoparticle-tracking analysis and western blotting. The levels of exosomal miR-9 and miR-124 were determined by real-time quantitative PCR. Compared with controls, the concentration of serum exosomes and the median levels of serum exosomal miR-9 and miR-124 were significantly higher in AIS patients (p<0.01). The levels of both miR-9 and miR-124 were positively correlated with National Institutes of Health Stroke Scale (NIHSS) scores, infarct volumes and serum concentrations of IL-6. The areas under the curve for exosomal miR-9 and miR-124 were 0.8026 and 0.6976, respectively. This proof of concept study suggests that serum exosomal miR-9 and miR-124 are promising biomarkers for diagnosing AIS and evaluating the degree of damage caused by ischemic injury. However, further studies are needed to explore the potential roles of the exosomes released from brain tissues in post stroke complications. PMID:27661079

  11. Yokukansan normalizes glucocorticoid receptor protein expression in oligodendrocytes of the corpus callosum by regulating microRNA-124a expression after stress exposure.

    PubMed

    Shimizu, Shoko; Tanaka, Takashi; Tohyama, Masaya; Miyata, Shingo

    2015-05-01

    Stressful events are known to down-regulate expression levels of glucocorticoid receptors (GRs) in the brain. Recently, we reported that stressed mice with elevated plasma levels of corticosterone exhibit morphological changes in the oligodendrocytes of nerve fiber bundles, such as those in the corpus callosum. However, little is known about the molecular mechanism of GR expression regulation in oligodendrocytes after stress exposure. A previous report has suggested that GR protein levels might be regulated by microRNA (miR)-18 and/or -124a in the brain. In this study, we aimed to elucidate the GR regulation mechanism in oligodendrocytes and evaluate the effects of yokukansan (YKS), a Kampo medicine, on GR protein regulation. Acute exposure to stress increased plasma corticosterone levels, decreased GR protein expression, and increased miR-124a expression in the corpus callosum of adult male mice, though the GR mRNA and miR-18 expression levels were not significant changes. YKS normalized the stress-induced changes in the plasma corticosterone, GR protein, and miR124a expression levels. An oligodendrocyte primary culture study also showed that YKS down-regulated miR-124a, but not miR-18, expression levels in dexamethasone-treated cells. These results suggest that the down-regulation of miR124a expression might be involved in the normalization of stress-induced decreases in GR protein in oligodendrocytes by YKS. This effect may imply the molecular mechanisms underlying the ameliorative effects of YKS on psychological symptoms and stress-related behaviors.

  12. Reduction of COX-2 through modulating miR-124/SPHK1 axis contributes to the antimetastatic effect of alpinumisoflavone in melanoma

    PubMed Central

    Gao, Ming; Chang, Yuan; Wang, Xiuyong; Ban, Chao; Zhang, Fan

    2017-01-01

    Alpinumisoflavone (AIF) is a naturally occurring flavonoid that is a major bioactive component of the medicinal plant Derris eriocarpa. In this study we evaluated the antimetastatic effect of AIF and investigated the underlying mechanism of action using in vitro and in vivo models of melanoma. We found that AIF impaired the metastatic potential of A375 and SK-MEL-1 human melanoma cells by promoting cell differentiation as assessed by melanin content, protoporphyrin IX accumulation, and tissue transglutaminase activity. In addition, AIF inhibited cell adhesion, migration, and invasion in melanoma cells. We found that AIF treatment decreased cyclooxygenase-2 (COX-2) expression, and COX-2 overexpression attenuated the inhibitory effects of AIF on the metastatic behaviors of melanoma cells. AIF dose-dependently increased microRNA-124 (miR-124) levels and decreased levels of sphingosine kinase 1 (SPHK1), a target of miR-124. In a mouse model of melanoma, AIF suppressed lung metastasis. Taken together, our findings suggest that AIF inhibits metastasis in melanoma by modulating COX-2 expression, at least in part, through targeting the miR-124/SphK1 axis. Our study provides evidence that AIF may be useful as an antimetastatic agent in the treatment of melanoma. PMID:28386327

  13. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis

    PubMed Central

    Wang, Xingxing; Li, Yuan; Dai, Yi; Liu, Qinqiang; Ning, Shilong; Liu, Jiao; Shen, Zhaoxia; Zhu, Dongmei; Jiang, Fei; Zhang, Jianping; Li, Zhong

    2016-01-01

    Gastric carcinoma (GC) is the second leading cause of cancer-related mortality worldwide. The efficacy of standard chemotherapy for GC, such as cisplatin (CDDP), is dissatisfactory partly due to the toxic/side-effects. Sulforaphane (SFN), which exhibits effective anti-cancer functions, is a phytochemical converted from cruciferous plants. Our present study aimed to identify whether SFN could enhance the anti-cancer effects of low-dose CDDP and to determine the underlying mechanisms. Herein, co-exposure of SFN and CDDP significantly inhibited the viabilities of gastric cancer cells. For the molecular mechanisms, CDDP alone increased the cancer stem cell (CSC)-like properties in gastric cancer cells via activating the interleukin-6 (IL-6)/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signaling. However, SFN could activate the microRNA-124 (miR-124), which directly targets the 3′-untranslated regions (UTR) of the IL-6R and STAT3. Moreover, knockdown of miR-124 eliminated the effects of SFN on CSC-like properties in GC cells, and in turn enhanced the anti-cancer effects of low-dose CDDP. These findings not only suggested a mechanism whereby SFN enhanced the anti-cancer functions of CDDP, but also helped to regard SFN as a potential chemotherapeutic factor in gastric cancer. PMID:27824145

  14. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus.

    PubMed

    Lukiw, Walter J

    2007-02-12

    Micro-RNAs constitute a family of small noncoding ribonucleic acids that are posttranscriptional regulators of messenger RNA activity. Although micro-RNAs are known to be dynamically regulated during neural development, the role of micro-RNAs in brain aging and neurodegeneration is not known. This study examined micro-RNA abundance in the hippocampal region of fetal, adult and Alzheimer's disease brain. The data indicate that micro-RNAs encoding miR-9, miR-124a, miR-125b, miR-128, miR-132 and miR-219 are abundantly represented in fetal hippocampus, are differentially regulated in aged brain, and an alteration in specific micro-RNA complexity occurs in Alzheimer hippocampus. These data are consistent with the idea that altered micro-RNA-mediated processing of messenger RNA populations may contribute to atypical mRNA abundance and neural dysfunction in Alzheimer's disease brain.

  15. Vocational and Adult Education: Major Regulation Issues.

    ERIC Educational Resources Information Center

    Worthington, Robert M.

    Federal regulations for the Adult Education Act and the Carl D. Perkins Vocational Education Act were revised in 1985. The following are the major changes to the Adult Education Act regulations: (1) the definition of "adult" was changed to permit services to persons under the age of 16 in some cases; (2) the definition of…

  16. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  17. Regulation of intestinal lactase in adult hypolactasia.

    PubMed Central

    Lloyd, M; Mevissen, G; Fischer, M; Olsen, W; Goodspeed, D; Genini, M; Boll, W; Semenza, G; Mantei, N

    1992-01-01

    Relative deficiency of intestinal lactase activity during adulthood, adult hypolactasia, is a common condition worldwide. We studied the regulation of lactase-phlorizin hydrolase in normal and adult hypolactasic subjects by correlating transcript abundance in intestinal biopsies with relative synthetic rates for the protein in cultured intestinal explants. After metabolic labelling studies in six subjects, precursor lactase-phlorizin hydrolase was identified in amounts directly proportional to the enzyme-specific activity suggesting that levels of intestinal lactase are regulated by synthetic rate. Total intestinal RNA was extracted from biopsies of these subjects and three hypolactasic adults who had participated in previous biosynthesis studies. Transcript levels were markedly reduced in deficient subjects who demonstrated diminished lactase-phlorizin hydrolase synthesis. The sequence of 1 kb of 5'-flanking region of the lactase-phlorizin hydrolase gene was determined in two hypolactasic subjects and two controls. No sequence variability was identified to account for differences in mRNA levels or biosynthetic rates between the two groups. A single hypolactasic subject previously characterized as demonstrating delayed posttranslational processing, showed message levels intermediate between other deficients and controls. These results suggest that in the majority of our subjects, pretranslational mechanisms account for the predominate regulatory control of lactase-phlorizin hydrolase expression in the proximal intestine. Images PMID:1737843

  18. Emotion Regulation and Impulsivity in Young Adults

    PubMed Central

    Schreiber, Liana R.N.; Grant, Jon E.; Odlaug, Brian L.

    2012-01-01

    Past research has linked both emotion regulation and impulsivity with the development and maintenance of addictions. However, no research has investigated the relationship between emotion regulation and impulsivity within young adults. In the present study, we analyzed 194 young adults (27.8% female; 21.3 ± 3.32 years old; 91.8% single; 85.1% Caucasian), grouping them as low, average, or high emotionally dysregulated, and compared self-reported impulsivity, impulsive behaviors (such as alcohol and substance use and gambling) and cognitive impulsivity. We hypothesized that those with high levels of emotion dysregulation would score higher on self-reported and cognitive impulsivity, and report more impulsive behaviors. Analysis indicated that compared to low, the high emotion dysregulation group scored significantly higher on two self-report measures of impulsivity, harm avoidance, and cognitive reasoning. No significant differences were found between groups in impulsive behaviors and cognitive impulsivity. Overall, this study highlights the relationship between emotion dysregulation and impulsivity, suggesting that emotion regulation may be an important factor to consider when assessing individuals at a higher risk for developing an addiction. PMID:22385661

  19. Tet1 Regulates Adult Hippocampal Neurogenesis and Cognition

    PubMed Central

    Zhang, Run-Rui; Cui, Qing-Yan; Murai, Kiyohito; Lim, Yen Ching; Smith, Zachary D.; Jin, Shengnan; Ye, Peng; Rosa, Luis; Lee, Yew Kok; Wu, Hai-Ping; Liu, Wei; Xu, Zhi-Mei; Yang, Lu; Ding, Yu-Qiang; Tang, Fuchou; Meissner, Alexander; Ding, Chunming; Shi, Yanhong; Xu, Guo-Liang

    2015-01-01

    SUMMARY DNA hydroxylation catalyzed by Tet dioxygenases occurs abundantly in embryonic stem cells and neurons in mammals. However, its biological function in vivo is largely unknown. Here we demonstrate that Tet1 plays an important role in regulating neural progenitor cell proliferation in adult mouse brain. Mice lacking Tet1 exhibit impaired hippocampal neurogenesis accompanied by poor learning and memory. In adult neural progenitor cells deficient in Tet1, a cohort of genes involved in progenitor proliferation were hypermethylated and down-regulated. Our results indicate that Tet1 is positively involved in the epigenetic regulation of neural progenitor cell proliferation in the adult brain. PMID:23770080

  20. Self-Regulation of Behavior: Students versus Other Adults

    ERIC Educational Resources Information Center

    Jakesova, Jitka; Gavora, Peter; Kalenda, Jan

    2016-01-01

    The objective of this research is to compare self-regulation of behaviour of two Czech samples. The first one was the representative sample of Czech adults that consisted of 1060 respondents. The second sample was university students and consisted of 1244 respondents. The measuring tool was an adapted Self-Regulation Questionnaire of which two…

  1. Wnt signaling in the regulation of adult hippocampal neurogenesis

    PubMed Central

    Varela-Nallar, Lorena; Inestrosa, Nibaldo C.

    2013-01-01

    In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells (NSCs) give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/β-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/β-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed. PMID:23805076

  2. Self-regulation of adult thalamocortical neurons

    PubMed Central

    Kasten, Michael R.

    2015-01-01

    The thalamus acts as a conduit for sensory and other information traveling to the cortex. In response to continuous sensory stimulation in vivo, the firing rate of thalamocortical neurons initially increases, but then within a minute firing rate decreases and T-type Ca2+ channel-dependent action potential burst firing emerges. While neuromodulatory systems could play a role in this inhibitory response, we instead report a novel and cell-autonomous inhibitory mechanism intrinsic to the thalamic relay neuron. Direct intracellular stimulation of thalamocortical neuron firing initially triggered a continuous and high rate of action potential discharge, but within a minute membrane potential (Vm) was hyperpolarized and firing rate to the same stimulus was decreased. This self-inhibition was observed across a wide variety of thalamic nuclei, and in a subset firing mode switched from tonic to bursting. The self-inhibition resisted blockers of intracellular Ca2+ signaling, Na+-K+-ATPases, and G protein-regulated inward rectifier (GIRK) channels as implicated in other neuron subtypes, but instead was in part inhibited by an ATP-sensitive K+ channel blocker. The results identify a new homeostatic mechanism within the thalamus capable of gating excitatory signals at the single-cell level. PMID:25948871

  3. REST regulation of gene networks in adult neural stem cells

    PubMed Central

    Mukherjee, Shradha; Brulet, Rebecca; Zhang, Ling; Hsieh, Jenny

    2016-01-01

    Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state. PMID:27819263

  4. REST regulation of gene networks in adult neural stem cells.

    PubMed

    Mukherjee, Shradha; Brulet, Rebecca; Zhang, Ling; Hsieh, Jenny

    2016-11-07

    Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state.

  5. 34 CFR 460.3 - What regulations apply to the adult education programs?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What regulations apply to the adult education programs...) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION-GENERAL PROVISIONS § 460.3 What regulations apply to the adult education programs? The following regulations apply to...

  6. 34 CFR 460.3 - What regulations apply to the adult education programs?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What regulations apply to the adult education programs...) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION-GENERAL PROVISIONS § 460.3 What regulations apply to the adult education programs? The following regulations apply to...

  7. Selectivity as an Emotion Regulation Strategy: Lessons from Older Adults

    PubMed Central

    Sims, Tamara; Hogan, Candice; Carstensen, Laura

    2015-01-01

    Findings based on studies of daily life consistently associate older ages with relatively positive emotional experience, suggesting that older adults may regulate emotions more effectively than younger adults. Findings from laboratory studies are equivocal, however, with mixed evidence for age-related improvements in use of emotion regulatory strategies. In the current paper, we propose that findings may reflect a failure of laboratory-based experiments to capture the regulatory strategies that older people use in their everyday lives. We argue that the advantages older people have are likely due to antecedent emotion regulation as opposed to response-focused strategies. Understanding the regulatory approaches that older people actually use may inform developmental models of emotion regulation throughout adulthood as well as interventions for improving emotional experience across the life span. PMID:25914897

  8. Regulation and Function of Adult Neurogenesis: From Genes to Cognition

    PubMed Central

    Aimone, James B.; Li, Yan; Lee, Star W.; Clemenson, Gregory D.; Deng, Wei; Gage, Fred H.

    2014-01-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders. PMID:25287858

  9. Regulation and Function of Adult Neurogenesis. From Genes to Cognition

    DOE PAGES

    Aimone, J. B.; Li, Y.; Lee, S. W.; ...

    2014-10-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. Our review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages ofmore » maturation, ultimately integrating into the adult dentate gyrus network. Furthermore, the increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.« less

  10. Regulation and Function of Adult Neurogenesis. From Genes to Cognition

    SciTech Connect

    Aimone, J. B.; Li, Y.; Lee, S. W.; Clemenson, G. D.; Deng, W.; Gage, F. H.

    2014-10-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. Our review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. Furthermore, the increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.

  11. Dietary glucose regulates yeast consumption in adult Drosophila males

    PubMed Central

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G.

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  12. The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators.

    PubMed

    Kaletsky, Rachel; Lakhina, Vanisha; Arey, Rachel; Williams, April; Landis, Jessica; Ashraf, Jasmine; Murphy, Coleen T

    2016-01-07

    Insulin/insulin-like growth factor signalling (IIS) is a critical regulator of an organism's most important biological decisions from growth, development, and metabolism to reproduction and longevity. It primarily does so through the activity of the DAF-16 transcription factor (forkhead box O (FOXO) homologue), whose global targets were identified in Caenorhabditis elegans using whole-worm transcriptional analyses more than a decade ago. IIS and FOXO also regulate important neuronal and adult behavioural phenotypes, such as the maintenance of memory and axon regeneration with age, in both mammals and C. elegans, but the neuron-specific IIS/FOXO targets that regulate these functions are still unknown. By isolating adult C. elegans neurons for transcriptional profiling, we identified both the wild-type and IIS/FOXO mutant adult neuronal transcriptomes for the first time. IIS/FOXO neuron-specific targets are distinct from canonical IIS/FOXO-regulated longevity and metabolism targets, and are required for extended memory in IIS daf-2 mutants. The activity of the forkhead transcription factor FKH-9 in neurons is required for the ability of daf-2 mutants to regenerate axons with age, and its activity in non-neuronal tissues is required for the long lifespan of daf-2 mutants. Together, neuron-specific and canonical IIS/FOXO-regulated targets enable the coordinated extension of neuronal activities, metabolism, and longevity under low-insulin signalling conditions.

  13. Motor regulation problems and pain in adults diagnosed with ADHD

    PubMed Central

    2013-01-01

    Background Most children who are diagnosed with attention deficit-hyperactivity disorder (ADHD) have moderate-to-severe motor problems using the Motor Function Neurological Assessment battery (MFNU). The MFNU focuses on specific muscle adjustment problems associated with ADHD, especially motor inhibition problems and high muscle tone. Here we investigated whether adults with ADHD/hyperkinetic disorder (HKD) have similar motor problems. In our clinical experience, adults with ADHD often complain about back, shoulder, hip, and leg pain. We also investigate reported pain in adults with ADHD. Methods Twenty-five adult outpatients diagnosed with ADHD/HKD who were responders to methylphenidate (MPH) were compared to 23 non-ADHD controls on 16 MFNU subtests and using a ‘total score’ (‘TS’) parameter. The MFNU test leader was blinded to group identity. The two groups were also compared using the Pain Drawing and Numerical Pain Rating Scale. Results The adult ADHD group had significantly (p < .001) more motor problems (higher TS) than controls. On the muscle regulation subtests, 36–96% of the ADHD group showed ‘moderate’ to ‘severe’ problems compared to 13–52% of the control group, and 80% of the ADHD group reported widespread pain. Highly significant differences were found between the ADHD and control groups for the variables ‘pain level’ (p < .001) and ‘pain location’ (p < .001). Significant correlations were found between TS and ‘pain location’ and between TS and ‘pain level’. Conclusions These findings suggest that similar to children with ADHD, adults diagnosed with ADHD also have motor inhibition problems and heightened muscle tone. The presence of significantly higher pain levels and more widespread pain in the ADHD group compared to non-ADHD controls might indicate that pain is a long-term secondary effect of heightened muscle tone and restricted movement that can be demonstrated in children and adults by the MFNU

  14. Population-regulating processes during the adult phase in flatfish

    NASA Astrophysics Data System (ADS)

    Rijnsdorp, A. D.

    Flatfish support major fisheries and the study of regulatory processes are of paramount importance for evaluating the resilience of the resource to exploitation. This paper reviews the evidence for processes operating during the adult phase that may 1. generate interannual variability in recruitment; 2. contribute to population regulation through density-dependent growth, density-dependent ripening of adults and density-dependent egg production. With regard to (1), there is evidence that in the adult phase processes do occur that may generate recruitment variability through variation in size-specific fecundity, contraction of spawning season, reduction in egg quality, change in sex ratio and size composition of the adult population. However, time series of recruitment do not provide support for this hypothesis. With regard to (2), there is ample evidence that exploitation of flatfish coincides with an increase in growth, although the mechanisms involved are not always clear. The presence of density-dependent growth in the adult phase of unexploited populations appears to be the most likely explanation in some cases. From the early years of exploitation of flatfish stocks inhabiting cold waters, evidence exists that adult fish do not spawn each year. Fecundity schedules show annual variations, but the available information suggests that size-specific fecundity is stable over a broad range of population abundance and may only decrease at high population abundance. The analysis is complicated by the possibility of a trade-off between egg numbers and egg size. Nevertheless, a density-dependent decrease in growth will automatically result in a decrease in absolute fecundity because of the reduced body size. The potential contribution of these regulatory effects on population regulation is explored. Results indicate that density-dependent ripening and absolute fecundity, mediated through density-dependent growth, may control recruitment at high levels of population

  15. Exosomes as Novel Regulators of Adult Neurogenic Niches

    PubMed Central

    Bátiz, Luis Federico; Castro, Maite A.; Burgos, Patricia V.; Velásquez, Zahady D.; Muñoz, Rosa I.; Lafourcade, Carlos A.; Troncoso-Escudero, Paulina; Wyneken, Ursula

    2016-01-01

    Adult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the sub-ventricular zone (SVZ) of the lateral ventricles (LV). SGZ newborn neurons are destined to the granular cell layer (GCL) of the DG, while new neurons from the SVZ neurons migrate rostrally into the olfactory bulb (OB). The process of adult neurogenesis persists throughout life and is supported by a pool of neural stem cells (NSCs), which reside in a unique and specialized microenvironment known as “neurogenic niche”. Neurogenic niches are structured by a complex organization of different cell types, including the NSC-neuron lineage, glial cells and vascular cells. Thus, cell-to-cell communication plays a key role in the dynamic modulation of homeostasis and plasticity of the adult neurogenic process. Specific cell-cell contacts and extracellular signals originated locally provide the necessary support and regulate the balance between self-renewal and differentiation of NSCs. Furthermore, extracellular signals originated at distant locations, including other brain regions or systemic organs, may reach the niche through the cerebrospinal fluid (CSF) or the vasculature and influence its nature. The role of several secreted molecules, such as cytokines, growth factors, neurotransmitters, and hormones, in the biology of adult NSCs, has been systematically addressed. Interestingly, in addition to these well-recognized signals, a novel type of intercellular messengers has been identified recently: the extracellular vesicles (EVs). EVs, and particularly exosomes, are implicated in the transfer of mRNAs, microRNAs (miRNAs), proteins and lipids between cells and thus are able to modify the function of recipient cells. Exosomes appear to play a significant role in different stem cell niches such as the mesenchymal stem cell niche, cancer stem cell niche and pre-metastatic niche; however, their

  16. Exosomes as Novel Regulators of Adult Neurogenic Niches.

    PubMed

    Bátiz, Luis Federico; Castro, Maite A; Burgos, Patricia V; Velásquez, Zahady D; Muñoz, Rosa I; Lafourcade, Carlos A; Troncoso-Escudero, Paulina; Wyneken, Ursula

    2015-01-01

    Adult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the sub-ventricular zone (SVZ) of the lateral ventricles (LV). SGZ newborn neurons are destined to the granular cell layer (GCL) of the DG, while new neurons from the SVZ neurons migrate rostrally into the olfactory bulb (OB). The process of adult neurogenesis persists throughout life and is supported by a pool of neural stem cells (NSCs), which reside in a unique and specialized microenvironment known as "neurogenic niche". Neurogenic niches are structured by a complex organization of different cell types, including the NSC-neuron lineage, glial cells and vascular cells. Thus, cell-to-cell communication plays a key role in the dynamic modulation of homeostasis and plasticity of the adult neurogenic process. Specific cell-cell contacts and extracellular signals originated locally provide the necessary support and regulate the balance between self-renewal and differentiation of NSCs. Furthermore, extracellular signals originated at distant locations, including other brain regions or systemic organs, may reach the niche through the cerebrospinal fluid (CSF) or the vasculature and influence its nature. The role of several secreted molecules, such as cytokines, growth factors, neurotransmitters, and hormones, in the biology of adult NSCs, has been systematically addressed. Interestingly, in addition to these well-recognized signals, a novel type of intercellular messengers has been identified recently: the extracellular vesicles (EVs). EVs, and particularly exosomes, are implicated in the transfer of mRNAs, microRNAs (miRNAs), proteins and lipids between cells and thus are able to modify the function of recipient cells. Exosomes appear to play a significant role in different stem cell niches such as the mesenchymal stem cell niche, cancer stem cell niche and pre-metastatic niche; however, their roles

  17. Inflammation regulates functional integration of neurons born in adult brain.

    PubMed

    Jakubs, Katherine; Bonde, Sara; Iosif, Robert E; Ekdahl, Christine T; Kokaia, Zaal; Kokaia, Merab; Lindvall, Olle

    2008-11-19

    Inflammation influences several steps of adult neurogenesis, but whether it regulates the functional integration of the new neurons is unknown. Here, we explored, using confocal microscopy and whole-cell patch-clamp recordings, whether a chronic inflammatory environment affects the morphological and electrophysiological properties of new dentate gyrus granule cells, labeled with a retroviral vector encoding green fluorescent protein. Rats were exposed to intrahippocampal injection of lipopolysaccharide, which gave rise to long-lasting microglia activation. Inflammation caused no changes in intrinsic membrane properties, location, dendritic arborization, or spine density and morphology of the new cells. Excitatory synaptic drive increased to the same extent in new and mature cells in the inflammatory environment, suggesting increased network activity in hippocampal neural circuitries of lipopolysaccharide-treated animals. In contrast, inhibitory synaptic drive was more enhanced by inflammation in the new cells. Also, larger clusters of the postsynaptic GABA(A) receptor scaffolding protein gephyrin were found on dendrites of new cells born in the inflammatory environment. We demonstrate for the first time that inflammation influences the functional integration of adult-born hippocampal neurons. Our data indicate a high degree of synaptic plasticity of the new neurons in the inflammatory environment, which enables them to respond to the increase in excitatory input with a compensatory upregulation of activity and efficacy at their afferent inhibitory synapses.

  18. Fgf regulates dedifferentiation during skeletal muscle regeneration in adult zebrafish.

    PubMed

    Saera-Vila, Alfonso; Kish, Phillip E; Kahana, Alon

    2016-09-01

    Fibroblast growth factors (Fgfs) regulate critical biological processes such as embryonic development, tissue homeostasis, wound healing, and tissue regeneration. In zebrafish, Fgf signaling plays an important role in the regeneration of the spinal cord, liver, heart, fin, and photoreceptors, although its exact mechanism of action is not fully understood. Utilizing an adult zebrafish extraocular muscle (EOM) regeneration model, we demonstrate that blocking Fgf receptor function using either a chemical inhibitor (SU5402) or a dominant-negative transgenic construct (dnFGFR1a:EGFP) impairs muscle regeneration. Adult zebrafish EOMs regenerate through a myocyte dedifferentiation process, which involves a muscle-to-mesenchyme transition and cell cycle reentry by differentiated myocytes. Blocking Fgf signaling reduced cell proliferation and active caspase 3 levels in the regenerating muscle with no detectable levels of apoptosis, supporting the hypothesis that Fgf signaling is involved in the early steps of dedifferentiation. Fgf signaling in regenerating myocytes involves the MAPK/ERK pathway: inhibition of MEK activity with U0126 mimicked the phenotype of the Fgf receptor inhibition on both muscle regeneration and cell proliferation, and activated ERK (p-ERK) was detected in injured muscles by immunofluorescence and western blot. Interestingly, following injury, ERK2 expression is specifically induced and activated by phosphorylation, suggesting a key role in muscle regeneration. We conclude that the critical early steps of myocyte dedifferentiation in EOM regeneration are dependent on Fgf signaling.

  19. Affective Self-Regulation Trajectories During Secondary School Predict Substance Use Among Urban Minority Young Adults

    PubMed Central

    Griffin, Kenneth W.; Lowe, Sarah R.; Acevedo, Bianca P.; Botvin, Gilbert J.

    2015-01-01

    This study explored the relationship between trajectories of affective self-regulation skills during secondary school and young adult substance use in a large multi-ethnic, urban sample (N = 995). During secondary school, participants completed a measure of cognitive and behavioral skills used to control negative, unpleasant emotions or perceived stress. As young adults, participants reported on the frequency and quantity of their alcohol, cigarette, and marijuana use in a telephone interview. Controlling for demographic variables, self-regulation did not significantly change over adolescence, although there was significant variation in participants’ rates of growth and decline. Lower seventh grade self-regulation and less steep increases in self-regulation were predictive of higher young adult substance use. Male participants had significantly lower initial self-regulation and higher young adult substance use. The results suggest that interventions that build affective self-regulation skills in adolescence may decrease the risk of young adult substance use. PMID:26549966

  20. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs

    PubMed Central

    Zheng, Qiupeng; Bao, Chunyang; Guo, Weijie; Li, Shuyi; Chen, Jie; Chen, Bing; Luo, Yanting; Lyu, Dongbin; Li, Yan; Shi, Guohai; Liang, Linhui; Gu, Jianren; He, Xianghuo; Huang, Shenglin

    2016-01-01

    Circular RNAs (circRNAs) represent a class of widespread and diverse endogenous RNAs that may regulate gene expression in eukaryotes. However, the regulation and function of human circRNAs remain largely unknown. Here we generate ribosomal-depleted RNA sequencing data from six normal tissues and seven cancers, and detect at least 27,000 circRNA candidates. Many of these circRNAs are differently expressed between the normal and cancerous tissues. We further characterize one abundant circRNA derived from Exon2 of the HIPK3 gene, termed circHIPK3. The silencing of circHIPK3 but not HIPK3 mRNA significantly inhibits human cell growth. Via a luciferase screening assay, circHIPK3 is observed to sponge to 9 miRNAs with 18 potential binding sites. Specifically, we show that circHIPK3 directly binds to miR-124 and inhibits miR-124 activity. Our results provide evidence that circular RNA produced from precursor mRNA may have a regulatory role in human cells. PMID:27050392

  1. Intravesical treatment of advanced urothelial bladder cancers with oncolytic HSV-1 co-regulated by differentially expressed microRNAs.

    PubMed

    Zhang, K-X; Matsui, Y; Lee, C; Osamu, O; Skinner, L; Wang, J; So, A; Rennie, P S; Jia, W W

    2016-05-01

    Urothelial bladder cancer is the most common malignancy of the urinary tract. Although most cases are initially diagnosed as non-muscle-invasive, more than 80% of patients will develop recurrent or metastatic tumors. No effective therapy exists currently for late-stage metastatic tumors. By intravesical application, local administration of oncolytic Herpes Simplex virus (oHSV-1) can provide a promising new therapy for this disease. However, its inherent neurotoxicity has been a perceived limitation for such application. In this study, we present a novel microRNA-regulatory approach to reduce HSV-1-induced neurotoxicity by suppressing viral replication in neurons while maintaining oncolytic selectivity toward urothelial tumors. Specifically, we designed a recombinant virus that utilizes differentially expressed endogenous microR143 (non-cancerous, ubiquitous) and microR124 (neural-specific) to regulate expression of ICP-4, a gene essential for HSV-1 replication. We found that expression of ICP-4 must be controlled by a combination of both miR143 and miR124 to achieve the most effective attenuation in HSV-1-induced toxicity while retaining maximal oncolytic capacity. These results suggest that interaction between miR143 and miR124 may be required to successfully regulate HSV-1 replication. Our resent study is the first proof-in-principle that miRNA combination can be exploited to fine-tune the replication of HSV-1 to treat human cancers.

  2. The Older Adult Positivity Effect in Evaluations of Trustworthiness: Emotion Regulation or Cognitive Capacity?

    PubMed Central

    Zebrowitz, Leslie A.; Boshyan, Jasmine; Ward, Noreen; Gutchess, Angela; Hadjikhani, Nouchine

    2017-01-01

    An older adult positivity effect, i.e., the tendency for older adults to favor positive over negative stimulus information more than do younger adults, has been previously shown in attention, memory, and evaluations. This effect has been attributed to greater emotion regulation in older adults. In the case of attention and memory, this explanation has been supported by some evidence that the older adult positivity effect is most pronounced for negative stimuli, which would motivate emotion regulation, and that it is reduced by cognitive load, which would impede emotion regulation. We investigated whether greater older adult positivity in the case of evaluative responses to faces is also enhanced for negative stimuli and attenuated by cognitive load, as an emotion regulation explanation would predict. In two studies, younger and older adults rated trustworthiness of faces that varied in valence both under low and high cognitive load, with the latter manipulated by a distracting backwards counting task. In Study 1, face valence was manipulated by attractiveness (low /disfigured faces, medium, high/fashion models’ faces). In Study 2, face valence was manipulated by trustworthiness (low, medium, high). Both studies revealed a significant older adult positivity effect. However, contrary to an emotion regulation account, this effect was not stronger for more negative faces, and cognitive load increased rather than decreased the rated trustworthiness of negatively valenced faces. Although inconsistent with emotion regulation, the latter effect is consistent with theory and research arguing that more cognitive resources are required to process negative stimuli, because they are more cognitively elaborated than positive ones. The finding that increased age and increased cognitive load both enhanced the positivity of trustworthy ratings suggests that the older adult positivity effect in evaluative ratings of faces may reflect age-related declines in cognitive capacity

  3. GABA regulates synaptic integration of newly generated neurons in the adult brain

    NASA Astrophysics Data System (ADS)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  4. Adult Antisocial Behavior and Affect Regulation among Primary Crack/Cocaine-Using Women

    ERIC Educational Resources Information Center

    Litt, Lisa Caren; Hien, Denise A.; Levin, Deborah

    2003-01-01

    The relationship between deficits in affect regulation and Adult Antisocial Behavior (ASB) in primary crack/cocaine-using women was explored in a sample of 80 inner-city women. Narrative early memories were coded for two components of affect regulation, Affect Tolerance and Affect Expression, using the Epigenetic Assessment Rating Scale (EARS;…

  5. Driving Skills of Young Adults with Developmental Coordination Disorder: Regulating Speed and Coping with Distraction

    ERIC Educational Resources Information Center

    de Oliveira, Rita F.; Wann, John P.

    2011-01-01

    In two experiments, we used an automatic car simulator to examine the steering control, speed regulation and response to hazards of young adults with developmental coordination disorder (DCD) and limited driving experience. In Experiment 1 participants either used the accelerator pedal to regulate their speed, or used the brake pedal when they…

  6. Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis.

    PubMed

    Jang, Mi-Hyeon; Bonaguidi, Michael A; Kitabatake, Yasuji; Sun, Jiaqi; Song, Juan; Kang, Eunchai; Jun, Heechul; Zhong, Chun; Su, Yijing; Guo, Junjie U; Wang, Marie Xun; Sailor, Kurt A; Kim, Ju-Young; Gao, Yuan; Christian, Kimberly M; Ming, Guo-li; Song, Hongjun

    2013-02-07

    Adult neurogenesis, the process of generating mature neurons from adult neural stem cells, proceeds concurrently with ongoing neuronal circuit activity and is modulated by various physiological and pathological stimuli. The niche mechanism underlying the activity-dependent regulation of the sequential steps of adult neurogenesis remains largely unknown. Here, we report that neuronal activity decreases the expression of secreted frizzled-related protein 3 (sFRP3), a naturally secreted Wnt inhibitor highly expressed by adult dentate gyrus granule neurons. Sfrp3 deletion activates quiescent radial neural stem cells and promotes newborn neuron maturation, dendritic growth, and dendritic spine formation in the adult mouse hippocampus. Furthermore, sfrp3 reduction is essential for activity-induced adult neural progenitor proliferation and the acceleration of new neuron development. Our study identifies sFRP3 as an inhibitory niche factor from local mature dentate granule neurons that regulates multiple phases of adult hippocampal neurogenesis and suggests an interesting activity-dependent mechanism governing adult neurogenesis via the acute release of tonic inhibition.

  7. Anxiety symptomatology and perceived health in African American adults: Moderating role of emotion regulation

    PubMed Central

    Carter, Sierra E.; Walker, Rheeda L.

    2014-01-01

    Though emotional health has been theoretically and empirically linked to physical health, the anxiety-physical health association in particular is not well understood for African American adults. This study examined anxiety as a specific correlate of perceived health in addition to testing the potential moderating role of emotion regulation, an index of how and when individuals modulate emotions, in the association for anxiety to perceived health. Study participants were 151 community-based African American adults who completed measures of anxiety symptomatology and emotion regulation in addition to responding to a self-report question of perceived health. Results showed that higher levels of anxiety symptomatology were associated with poorer health ratings for those who reported more limited access to emotion regulation strategies but not those who reported having more emotion regulation strategies. The findings suggest that anxiety-related distress and health problems may be interrelated when emotion regulation strategies are limited. PMID:25045943

  8. Situation Selection and Modification for Emotion Regulation in Younger and Older Adults

    PubMed Central

    Livingstone, Kimberly M.; Isaacowitz, Derek M.

    2016-01-01

    This research investigated age differences in use and effectiveness of situation selection and situation modification for emotion regulation. Socioemotional selectivity theory suggests stronger emotional well-being goals in older age; emotion regulation may support this goal. Younger and older adults assigned to an emotion regulation or “just view” condition first freely chose to engage with negative, neutral, or positive material (situation selection), then chose to view or skip negative and positive material (situation modification), rating affect after each experience. In both tasks, older adults in both goal conditions demonstrated pro-hedonic emotion regulation, spending less time with negative material compared to younger adults. Younger adults in the regulate condition also engaged in pro-hedonic situation selection, but not modification. Whereas situation selection was related to affect, modification of negative material was not. This research supports more frequent pro-hedonic motivation in older age, as well as age differences in use of early-stage emotion regulation. PMID:26998196

  9. Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli.

    PubMed

    Mishra, Abhishek Kumar; Bargmann, Bastiaan O R; Tsachaki, Maria; Fritsch, Cornelia; Sprecher, Simon G

    2016-02-15

    Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli.

  10. Self-Regulated Learning in Younger and Older Adults: Does Aging Affect Metacognitive Control?

    PubMed Central

    Price, Jodi; Hertzog, Christopher; Dunlosky, John

    2011-01-01

    Two experiments examined whether younger and older adults’ self-regulated study (item selection and study time) conformed to the region of proximal learning (RPL) model when studying normatively easy, medium, and difficult vocabulary pairs. Experiment 2 manipulated the value of recalling different pairs and provided learning goals for words recalled and points earned. Younger and older adults in both experiments selected items for study in an easy-to-difficult order, indicating the RPL model applies to older adults’ self-regulated study. Individuals allocated more time to difficult items, but prioritized easier items when given less time or point values favoring difficult items. Older adults studied more items for longer but realized lower recall than did younger adults. Older adults’ lower memory self-efficacy and perceived control correlated with their greater item restudy and avoidance of difficult items with high point values. Results are discussed in terms of RPL and agenda-based regulation models. PMID:19866382

  11. Immune Influence on Adult Neural Stem Cell Regulation and Function

    PubMed Central

    Carpentier, Pamela A.; Palmer, Theo D.

    2009-01-01

    Neural stem cells (NSCs) lie at the heart of central nervous system development and repair, and deficiency or dysregulation of NSCs or their progeny can have significant consequences at any stage of life. Immune signaling is emerging as one of the influential variables that define resident NSC behavior. Perturbations in local immune signaling accompany virtually every injury or disease state and signaling cascades that mediate immune activation, resolution, or chronic persistence influence resident stem and progenitor cells. Some aspects of immune signaling are beneficial, promoting intrinsic plasticity and cell replacement, while others appear to inhibit the very type of regenerative response that might restore or replace neural networks lost in injury or disease. Here we review known and speculative roles that immune signaling plays in the postnatal and adult brain, focusing on how environments encountered in disease or injury may influence the activity and fate of endogenous or transplanted NSCs. PMID:19840551

  12. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells.

    PubMed

    Luo, Yuping; Shan, Ge; Guo, Weixiang; Smrt, Richard D; Johnson, Eric B; Li, Xuekun; Pfeiffer, Rebecca L; Szulwach, Keith E; Duan, Ranhui; Barkho, Basam Z; Li, Wendi; Liu, Changmei; Jin, Peng; Zhao, Xinyu

    2010-04-08

    Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs). We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3beta. Dysregulation of GSK3beta led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis.

  13. A Common Language: How Neuroimmunological Cross Talk Regulates Adult Hippocampal Neurogenesis

    PubMed Central

    Leiter, Odette; Kempermann, Gerd; Walker, Tara L.

    2016-01-01

    Immune regulation of the brain is generally studied in the context of injury or disease. Less is known about how the immune system regulates the brain during normal brain function. Recent work has redefined the field of neuroimmunology and, as long as their recruitment and activation are well regulated, immune cells are now known to have protective properties within the central nervous system in maintaining brain health. Adult neurogenesis, the process of new neuron generation in the adult brain, is highly plastic and regulated by diverse extrinsic and intrinsic cues. Emerging research has shown that immune cells and their secreted factors can influence adult neurogenesis, both under baseline conditions and during conditions known to change neurogenesis levels, such as aging and learning in an enriched environment. This review will discuss how, under nonpathological conditions, the immune system can interact with the neural stem cells to regulate adult neurogenesis with particular focus on the hippocampus—a region crucial for learning and memory. PMID:27143977

  14. Effects of reduced-risk pesticides and plant growth regulators on rove beetle (Coleoptera: Staphylinidae) adults.

    PubMed

    Echegaray, Erik R; Cloyd, Raymond A

    2012-12-01

    In many regions, pest management of greenhouse crops relies on the use of biological control agents; however, pesticides are also widely used, especially when dealing with multiple arthropod pests and attempting to maintain high esthetic standards. As such, there is interest in using biological control agents in conjunction with chemical control. However, the prospects of combining natural enemies and pesticides are not well known in many systems. The rove beetle, Atheta coriaria (Kraatz), is a biological control agent mainly used against fungus gnats (Bradysia spp.). This study evaluated the effects of reduced-risk pesticides and plant growth regulators on A. coriaria adult survival, development, and prey consumption under laboratory conditions. Rove beetle survival was consistently higher when adults were released 24 h after rather than before applying pesticides. The pesticides acetamiprid, lambda-cyhalothrin, and cyfluthrin were harmful to rove beetle adults, whereas Beauveria bassiana (Balsamo) Vuillemin, azadirachtin, and organic oils (cinnamon oils, rosemary oil, thyme oil, and clove oil) were nontoxic to A. coriaria adults. Similarly, the plant growth regulators acymidol, paclobutrazol, and uniconazole were not harmful to rove beetle adults. In addition, B. bassiana, azadirachtin, kinoprene, organic oils, and the plant growth regulators did not negatively affect A. coriaria development. However, B. bassiana did negatively affect adult prey consumption. This study demonstrated that A. coriaria may not be used when applying the pesticides, acetamiprid, lambda-cyhalothrin, and cyfluthrin, whereas organic oils, B. bassiana, azadirachtin, and the plant growth regulators evaluated may be used in conjunction with A. coriaria adults. As such, these compounds may be used in combination with A. coriaria in greenhouse production systems.

  15. AML1/Runx1 as a versatile regulator of hematopoiesis: regulation of its function and a role in adult hematopoiesis.

    PubMed

    Kurokawa, Mineo

    2006-08-01

    AML1/Runx1, originally identified as a gene located at the breakpoint of the t(8;21) translocation, encodes a transcription factor that is widely expressed in multiple hematopoietic lineages and that regulates the expression of a variety of hematopoietic genes. Numerous studies have shown that AML1 is a critical regulator of hematopoietic development. In addition, AML1 is a frequent target for chromosomal translocation in human leukemia. The activity of AML1 can be modulated by various types of posttranslational modification, including phosphorylation and acetylation. Phosphorylation by extracellular signal-regulated kinase (ERK) is one of the mechanisms that dictate whether AML1 acts as either a transcriptional repressor or an activator of gene expression. Recently, a physiological role for AML1 in adult hematopoiesis was revealed by conditional gene targeting in mice. Remarkably, adult hematopoietic progenitors are maintained even in the absence of AML1, in stark contrast to the total disruption of definitive hematopoiesis during embryogenesis. AML1 is, however, critical for megakaryopoiesis and plays an important role in T-cell and B-cell development in adult mice. Recent analyses engineered to recreate hematopoiesis in vitro revealed that the transcriptional activity of AML1 is closely related with the potential of AML1 to generate hematopoietic cells and support thymocyte development.

  16. Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes.

    PubMed

    Li, Xiaoheng; Wang, Zhao; Jiang, Zhenming; Guo, Jingjing; Zhang, Yuxi; Li, Chenhao; Chung, Jinyong; Folmer, Janet; Liu, June; Lian, Qingquan; Ge, Renshan; Zirkin, Barry R; Chen, Haolin

    2016-03-08

    Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor β (TGF-β). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-β, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry.

  17. Self-Regulation, Self-Efficacy and Health Behavior Change in Older Adults.

    ERIC Educational Resources Information Center

    Purdie, Nola; McCrindle, Andrea

    2002-01-01

    Presents an overview of self-regulation models: theory of planned behavior, protection motivation theory, health belief model, action control theory, transtheoretical model of behavior change, health action process, and precaution adoption process. Applies models to health behavior change in older adults with cardiovascular disease or diabetes.…

  18. Affective Self-Regulation Trajectories during Secondary School Predict Substance Use among Urban Minority Young Adults

    ERIC Educational Resources Information Center

    Griffin, Kenneth W.; Lowe, Sarah R.; Acevedo, Bianca P.; Botvin, Gilbert J.

    2015-01-01

    This study explored the relationship between trajectories of affective self-regulation skills during secondary school and young adult substance use in a large multiethnic, urban sample (N = 995). During secondary school, participants completed a measure of cognitive and behavioral skills used to control negative, unpleasant emotions or perceived…

  19. Basolateral amygdala regulation of adult hippocampal neurogenesis and fear-related activation of newborn neurons

    PubMed Central

    Kirby, Elizabeth D.; Friedman, Aaron R.; Covarrubias, David; Ying, Carl; Sun, Wayne G.; Goosens, Ki A.; Sapolsky, Robert M.; Kaufer, Daniela

    2014-01-01

    Impaired regulation of emotional memory is a feature of several affective disorders, including depression, anxiety and post-traumatic stress disorder. Such regulation occurs, in part, by interactions between the hippocampus and the basolateral amygdala (BLA). Recent studies have indicated that within the adult hippocampus, newborn neurons may contribute to support of emotional memory, and that regulation of hippocampal neurogenesis is implicated in depressive disorders. How emotional information impacts newborn neurons in adults is not clear. Given the role of the BLA in hippocampus-dependent emotional memory, we investigated whether hippocampal neurogenesis was sensitive to emotional stimuli from the BLA. We show that BLA lesions suppress adult neurogenesis, while lesions of the central nucleus of the amygdala do not. Similarly, we show that reducing BLA activity through viral vector-mediated overexpression of an outwardly rectifying potassium channel suppresses neurogenesis. We also show that BLA lesions prevent selective activation of immature newborn neurons in response to a fear conditioning task. These results demonstrate that BLA activity regulates adult hippocampal neurogenesis and the fear context-specific activation of newborn neurons. Together, these findings denote functional implications for proliferation and recruitment of new neurons into emotional memory circuits. PMID:21670733

  20. Using humour as an extrinsic source of emotion regulation in young and older adults.

    PubMed

    Harm, Jonathan; Vieillard, Sandrine; Didierjean, André

    2014-10-01

    It has been suggested that intrinsic abilities for regulating emotions remain stable or improve with ageing, but, to date, no studies have examined age-related differences in extrinsic emotion regulation. Since humour has been found to be an effective form of emotion regulation, we used a paradigm similar to that of Strick and colleagues (2009) with two objectives: to compare extrinsic humorous emotion regulation in young and older adults and to test whether the potential beneficial effect of humour on negative emotion is better explained by the cognitive distraction hypothesis or by the positive affect elicitation hypothesis. To this end, neutral, moderately, and strongly negative pictures followed by humorous, simply positive, or weird cartoons, controlled for both their funniness and cognitive demands, were presented to 26 young and 25 older adults with the instruction to report their negative feelings. When induced to feel moderately negative emotions, both young and older adults reported a lower negative feeling after viewing the humorous cartoons than after the other ones. This indicates that the extrinsic humorous emotion regulation skill remains stable with ageing and suggests that the beneficial effect of humour on emotional feeling cannot be seen as a purely cognitive distraction.

  1. Epigenetic (de)regulation of adult hippocampal neurogenesis: implications for depression

    PubMed Central

    2011-01-01

    Adult neurogenesis represents a dynamic level of modulation upon the neuroplastic properties of the mature nervous system, that is essential to the homeostatic brain function. The adult neurogenic process comprises several sequential steps, all of which subjected to an assortment of cell-intrinsic and neurogenic-niche complex regulatory mechanisms. Among these, epigenetic regulation is now emerging as a crucial regulator of several neurogenesis steps. In particular, the active regulation of hippocampal neurogenesis and its repercussions in global hippocampal function are of special interest for the biomedical field, since imbalances at this level have been strongly related to the precipitation of several neuropsychyatric disorders, such as depression. Indeed, growing evidence supports that the detrimental effects on adult hippocampal neurogenesis, that have been associated with depression, might be epigenetically-mediated. Therefore, understanding the epigenetic regulation of the neurogenic process may provide a link between neurogenesis imbalances and the deterioration of the behavioural and cognitive domains frequently affected in depression, thus contributing to unravel the complex pathophysiology of this disorder. Here, we outline some of the major epigenetic mechanisms contributing to the regulation of hippocampal neurogenesis and discuss several lines of evidence supporting their involvement on the development of imbalances in the neurogenic process, often correlated to behavioural and cognitive deficits commonly observed in major depressive disorder. PMID:22414227

  2. Prohibition or coffee shops: regulation of amphetamine and methylphenidate for enhancement use by healthy adults.

    PubMed

    Dubljević, Veljko

    2013-01-01

    This article analyzes appropriate public policies for enhancement use of two most important stimulant drugs: Ritalin (methylphenidate) and Adderall (mixed amphetamine salts). The author argues that appropriate regulation of cognition enhancement drugs cannot be a result of a general discussion on cognitive enhancements as such, but has to be made on a case-by-case basis. Starting from the recently proposed taxation approach to cognition enhancement drugs, the author analyzes available, moderately permissive models of regulation. After a thorough analysis of relevant characteristics of methylphenidate and amphetamine, the author concludes that a moderately liberal permissive regulation of enhancement use by healthy adults might be appropriate for extended release forms of methylphenidate. However, due to their danger profile, amphetamine and instant release forms of methylphenidate should not be made readily available to healthy adults and would need to be prohibited.

  3. Homeostatic regulation of adult hippocampal neurogenesis in aging rats: long-term effects of early exercise

    PubMed Central

    Merkley, Christina M.; Jian, Charles; Mosa, Adam; Tan, Yao-Fang; Wojtowicz, J. Martin

    2014-01-01

    Adult neurogenesis is highly responsive to environmental and physiological factors. The majority of studies to date have examined short-term consequences of enhancing or blocking neurogenesis but long-term changes remain less well understood. Current evidence for age-related declines in neurogenesis warrant further investigation into these long-term changes. In this report we address the hypothesis that early life experience, such as a period of voluntary running in juvenile rats, can alter properties of adult neurogenesis for the remainder of the animal's life. The results indicate that the number of proliferating and differentiating neuronal precursors is not altered in runners beyond the initial weeks post-running, suggesting homeostatic regulation of these processes. However, the rate of neuronal maturation and survival during a 4 week period after cell division was enhanced up to 11 months of age (the end of the study period). This study is the first to show that a transient period of physical activity at a young age promotes changes in neurogenesis that persist over the long-term, which is important for our understanding of the modulation of neurogenesis by exercise with age. Functional integration of adult-born neurons within the hippocampus that resist homeostatic regulation with aging, rather than the absolute number of adult-born neurons, may be an essential feature of adult neurogenesis that promotes the maintenance of neural plasticity in old age. PMID:25071426

  4. [Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain].

    PubMed

    Respondek, Michalina; Buszman, Ewa

    2015-12-31

    Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC), which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  5. Comprehensive Expression Map of Transcription Regulators in the Adult Zebrafish Telencephalon Reveals Distinct Neurogenic Niches

    PubMed Central

    Diotel, Nicolas; Rodriguez Viales, Rebecca; Armant, Olivier; März, Martin; Ferg, Marco; Rastegar, Sepand; Strähle, Uwe

    2015-01-01

    The zebrafish has become a model to study adult vertebrate neurogenesis. In particular, the adult telencephalon has been an intensely studied structure in the zebrafish brain. Differential expression of transcriptional regulators (TRs) is a key feature of development and tissue homeostasis. Here we report an expression map of 1,202 TR genes in the telencephalon of adult zebrafish. Our results are summarized in a database with search and clustering functions to identify genes expressed in particular regions of the telencephalon. We classified 562 genes into 13 distinct patterns, including genes expressed in the proliferative zone. The remaining 640 genes displayed unique and complex patterns of expression and could thus not be grouped into distinct classes. The neurogenic ventricular regions express overlapping but distinct sets of TR genes, suggesting regional differences in the neurogenic niches in the telencephalon. In summary, the small telencephalon of the zebrafish shows a remarkable complexity in TR gene expression. The adult zebrafish telencephalon has become a model to study neurogenesis. We established the expression pattern of more than 1200 transcription regulators (TR) in the adult telencephalon. The neurogenic regions express overlapping but distinct sets of TR genes suggesting regional differences in the neurogenic potential. J. Comp. Neurol. 523:1202–1221, 2015. © 2015 Wiley Periodicals, Inc. PMID:25556858

  6. The Developmental Intestinal Regulator ELT-2 Controls p38-Dependent Immune Responses in Adult C. elegans

    PubMed Central

    Block, Dena H. S.; Twumasi-Boateng, Kwame; Kang, Hae Sung; Carlisle, Jolie A.; Hanganu, Alexandru; Lai, Ty Yu-Jen; Shapira, Michael

    2015-01-01

    GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity. PMID:26016853

  7. The Developmental Intestinal Regulator ELT-2 Controls p38-Dependent Immune Responses in Adult C. elegans.

    PubMed

    Block, Dena H S; Twumasi-Boateng, Kwame; Kang, Hae Sung; Carlisle, Jolie A; Hanganu, Alexandru; Lai, Ty Yu-Jen; Shapira, Michael

    2015-05-01

    GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity.

  8. Steroidogenic Factor 1 Differentially Regulates Fetal and Adult Leydig Cell Development in Male Mice1

    PubMed Central

    Karpova, Tatiana; Ravichandiran, Kumarasamy; Insisienmay, Lovella; Rice, Daren; Agbor, Valentine; Heckert, Leslie L.

    2015-01-01

    The nuclear receptor steroidogenic factor 1 (SF-1, AD4BP, NR5A1) is a key regulator of the endocrine axes and is essential for adrenal and gonad development. Partial rescue of Nr5a1−/− mice with an SF-1-expressing transgene caused a hypomorphic phenotype that revealed its roles in Leydig cell development. In contrast to controls, all male rescue mice (Nr5a1−/−;tg+/0) showed varying signs of androgen deficiency, including spermatogenic arrest, cryptorchidism, and poor virilization. Expression of various Leydig cell markers measured by immunohistochemistry, Western blot analysis, and RT-PCR indicated fetal and adult Leydig cell development were differentially impaired. Whereas fetal Leydig cell development was delayed in Nr5a1−/−;tg+/0 embryos, it recovered to control levels by birth. In contrast, Sult1e1, Vcam1, and Hsd3b6 transcript levels in adult rescue testes indicated complete blockage in adult Leydig cell development. In addition, between Postnatal Days 8 and 12, peritubular cells expressing PTCH1, SF-1, and CYP11A1 were observed in control testes but not in rescue testes, indicating SF-1 is needed for either survival or differentiation of adult Leydig cell progenitors. Cultured prepubertal rat peritubular cells also expressed SF-1 and PTCH1, but Cyp11a1 was expressed only after treatment with cAMP and retinoic acid. Together, data show SF-1 is needed for proper development of fetal and adult Leydig cells but with distinct primary functions; in fetal Leydig cells, it regulates differentiation, whereas in adult Leydig cells it regulates progenitor cell formation and/or survival. PMID:26269506

  9. Do local tobacco regulations influence perceived smoking norms? Evidence from adult and youth surveys in Massachusetts.

    PubMed

    Hamilton, William L; Biener, Lois; Brennan, Robert T

    2008-08-01

    Smoking behavior has been shown to be influenced by individuals' perceptions of social norms about smoking. This study examines whether local regulations regarding clean indoor air and youth access to tobacco are associated with residents' subsequent perceptions of smoking norms. Data came from Massachusetts surveys of adults and youths and from records of local tobacco control policies. Indices of perceived smoking norms were based on perceived smoking prevalence and perceived community acceptance of smoking. Multilevel models tested the association between perceived norms and the presence of strong local regulations in four policy domains (restaurant smoking bans, smoking restrictions in other venues, enforcement of laws prohibiting sales to youths and youth-oriented marketing restrictions). The model controlled for town voting results on a tobacco tax referendum, which served as a measure of antismoking sentiment pre-dating the regulations. Results showed that youths perceived community norms to be significantly more 'antismoking' if they lived in a town that had strong regulations in at least three of the four domains. For adults, having strong regulations in as few as one to two domains was associated with perceiving community norms to be significantly more antismoking. Implementing and publicizing local regulations may help shape perceptions of community smoking norms.

  10. Sterilization Effects of Adult-targeted Baits Containing Insect Growth Regulators on Delia antiqua

    PubMed Central

    Zhou, Fangyuan; Zhu, Guodong; Zhao, Haipeng; Wang, Zheng; Xue, Ming; Li, Xianxian; Xu, Huaqiang; Ma, Xiaodan; Liu, Yanyan

    2016-01-01

    The onion maggot, Delia antiqua, is a devastating pest of liliaceous crops and current control measures fail to avert pesticide residues, threats to agroecosystem, and costly expenditures. Insect growth regulators (IGRs) are used as trypetid pest chemosterilants for their suppression on adult fertility and fecundity, but their effects on onion flies are unknown. Here, three IGRs (lufenuron, cyromazine, pyriproxyfen) were incorporated into baits to evaluate their effects on onion fly survival, fecundity, fertility, susceptibility of adults in different ages and offspring development. Lufenuron and cyromazine did not affect survival of new-emerged adults, but lufenuron inhibited adult fertility without affecting fecundity, and cyromazine reduced fertility and fecundity. Differently, pyriproxyfen enhanced fecundity within 10 days after treatment, while it reduced adult survival without affecting fertility. The fertility of younger adults was affected by lufenuron and cyromazine whereas the fecundity was affected with cyromazine and pyriproxyfen. For offspring of onion flies treated with lufenuron or cyromazine, most of larvae died within 5 days after hatch, but surviving larvae pupated and emerged normally. Pyriproxyfen did not affect offspring larval survival or pupation but affected pupal emergence. Thus, lufenuron and cyromazine could be potential chemosterilants for onion flies. PMID:27619006

  11. Understanding deficient emotional self-regulation in adults with attention deficit hyperactivity disorder: a controlled study

    PubMed Central

    Biederman, Joseph; Spencer, Thomas; Miller, Carolyn A.; McDermott, Katie M.; Faraone, Stephen V.

    2014-01-01

    While symptoms of deficient emotional self-regulation (DESR) such as low frustration tolerance, temper outbursts, emotional impulsivity, and mood lability are commonly associated with attention deficit hyperactivity disorder (ADHD), little is known about their nature. The main aim of this post hoc study was to examine the correlates of DESR in a large sample of adults with and without ADHD. Subjects were 206 adults with ADHD and 123 adults without ADHD from a family study of ADHD. Emotional impulsivity was operationalized using items from the Barkley Current Behavior Scale. Subjects were comprehensively assessed for psychiatric comorbidity using structured diagnostic interview methodology. We used the Quality of Life, Enjoyment, and Satisfaction Questionnaire-Short Form (QLES-Q-SF) and Social Adjustment Scale-Self-report (SAS-SR) to assess quality of life and psychosocial functioning. DESR was more common among ADHD compared with non-ADHD adults, and 55 % of adults with ADHD reported extreme DESR of greater severity than 95 % of control subjects. The association of ADHD and DESR was not entirely accounted for by either current or lifetime comorbid disorders. DESR was also associated with significant functional impairment as evaluated by the QLES-Q-SF and SAS-SR, and with reduced marital status, as well as higher risk for traffic accidents and arrests. DESR adversely impacts quality of life in adults with ADHD. More work is needed to further evaluate DESR in clinical and investigational studies of subjects with ADHD. PMID:23413201

  12. Understanding deficient emotional self-regulation in adults with attention deficit hyperactivity disorder: a controlled study.

    PubMed

    Surman, Craig B H; Biederman, Joseph; Spencer, Thomas; Miller, Carolyn A; McDermott, Katie M; Faraone, Stephen V

    2013-09-01

    While symptoms of deficient emotional self-regulation (DESR) such as low frustration tolerance, temper outbursts, emotional impulsivity, and mood lability are commonly associated with attention deficit hyperactivity disorder (ADHD), little is known about their nature. The main aim of this post hoc study was to examine the correlates of DESR in a large sample of adults with and without ADHD. Subjects were 206 adults with ADHD and 123 adults without ADHD from a family study of ADHD. Emotional impulsivity was operationalized using items from the Barkley Current Behavior Scale. Subjects were comprehensively assessed for psychiatric comorbidity using structured diagnostic interview methodology. We used the Quality of Life, Enjoyment, and Satisfaction Questionnaire-Short Form (QLES-Q-SF) and Social Adjustment Scale-Self-report (SAS-SR) to assess quality of life and psychosocial functioning. DESR was more common among ADHD compared with non-ADHD adults, and 55% of adults with ADHD reported extreme DESR of greater severity than 95% of control subjects. The association of ADHD and DESR was not entirely accounted for by either current or lifetime comorbid disorders. DESR was also associated with significant functional impairment as evaluated by the QLES-Q-SF and SAS-SR, and with reduced marital status, as well as higher risk for traffic accidents and arrests. DESR adversely impacts quality of life in adults with ADHD. More work is needed to further evaluate DESR in clinical and investigational studies of subjects with ADHD.

  13. Sequoia regulates cell fate decisions in the external sensory organs of adult Drosophila.

    PubMed

    Andrews, Hillary K; Giagtzoglou, Nikolaos; Yamamoto, Shinya; Schulze, Karen L; Bellen, Hugo J

    2009-06-01

    The adult Drosophila external sensory organ (ESO), comprising the hair, socket, neuron, sheath and glia cells, arises through the asymmetric division of sensory organ precursor cells (SOPs). In a mosaic screen designed to identify new components in ESO development, we isolated mutations in sequoia, which encodes a putative zinc-finger transcription factor that has previously been shown to have a role in dendritogenesis. Here, we show that adult clones mutant for seq exhibit a loss of hair cells and a gain of socket cells. We propose that the seq mutant phenotype arises, in part, owing to the loss of several crucial transcription factors known to be important in peripheral nervous system development such as D-Pax2, Prospero and Hamlet. Thus, Sequoia is a new upstream regulator of genes that orchestrates cell fate specification during development of the adult ESO lineage.

  14. Gender differences in self-regulation patterns and attitudes toward driving among older adults.

    PubMed

    D'Ambrosio, Lisa A; Donorfio, Laura K M; Coughlin, Joseph F; Mohyde, Maureen; Meyer, Joachim

    2008-01-01

    The automobile is essential for many older adults to fulfill their daily needs, especially since many live where they lack access to public transit or other acceptable modes of transportation. Increased self-regulation is one way older drivers continue to drive safely and maintain mobility. This research considers whether self-regulation attitudes and patterns differ by gender. Results indicate that women and men report distinct patterns of self-regulation behaviors. Age, health status, and household status also interact with gender, influencing the extent of self-regulation. The results also show that women report lower levels of confidence in their driving skills than men, although the difference varies based on whether or not a woman lives alone. Implications of these results are considered for an aging population--particularly women--that over the coming decades will be more reliant on the automobile for transportation than ever before.

  15. Anxiety symptomatology and perceived health in African American adults: moderating role of emotion regulation.

    PubMed

    Carter, Sierra E; Walker, Rheeda L

    2014-07-01

    Although emotional health has been theoretically and empirically linked to physical health, the anxiety-physical health association in particular is not well understood for African American adults. This study examined anxiety as a specific correlate of perceived health in addition to testing the potential moderating role of emotion regulation, an index of how and when individuals modulate emotions, in the association for anxiety to perceived health. Study participants were 151 community-based African American adults who completed measures of anxiety symptomatology and emotion regulation in addition to responding to a self-report question of perceived health. Results showed that higher levels of anxiety symptomatology were associated with poorer health ratings for those who reported more limited access to emotion regulation strategies but not those who reported having more emotion regulation strategies. The findings suggest that anxiety-related distress and health problems may be interrelated when emotion regulation strategies are limited. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  16. Regulation of sadness via acceptance or suppression in adult Attention Deficit Hyperactivity Disorder (ADHD).

    PubMed

    Matthies, Swantje; Philipsen, Alexandra; Lackner, Helmut Karl; Sadohara, Chiharu; Svaldi, Jennifer

    2014-12-15

    Emotion dysregulation is a recognized symptom of adult Attention Deficit Hyperactivity Disorder (ADHD). The aim of this study is to induce sadness in adults suffering from ADHD and to investigate the impact of emotion regulation strategies on sadness intensity, and psychophysiological measures. Thirty-six adults diagnosed with ADHD were randomly assigned to either expressive suppression (SUPP) or acceptance (ACC) of emotion. Sadness was induced using a film clip. Participants estimated the intensity of sadness and the perception of being overwhelmed with emotion before (T1), immediately after (T2) and 2 min after the film (T3). Physiological measures were obtained. Sadness induction was effective in both conditions. The perception of being overwhelmed with emotion increased between T1 and T2 in both conditions, but persisted until T3 only in the expressive suppression condition whereas a decrease was observed in the acceptance condition. In ADHD expressive suppression of sadness seems to be associated to a prolonged recovery from the perception of being overwhelmed with emotion. Emotion-regulation via acceptance in contrast appears to allow faster recovery from the perception of being overwhelmed with emotion. To our knowledge, this is the first study to identify suppression as a critical mediator between an induced emotion and delayed recovery from emotional reactions in adult ADHD.

  17. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  18. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis

    PubMed Central

    Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón; Carmona, Rita

    2017-01-01

    Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA), acting through nuclear retinoic acid receptors (RARs), is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system. PMID:28230720

  19. Nicotine protects against DSS colitis through regulating microRNA-124 and STAT3.

    PubMed

    Qin, Zhen; Wan, Jing-Jing; Sun, Yang; Wu, Tingyu; Wang, Peng-Yuan; Du, Peng; Su, Ding-Feng; Yang, Yili; Liu, Xia

    2017-02-01

    Although it is generally believed that nicotine accounts for the beneficial effect of smoking on ulcerative colitis, the underlying mechanisms remain not well understood. Our previous finding that nicotine inhibits inflammatory responses through inducing miR-124 prompted us to ask whether the miRNA is involved in the protective action of nicotine against UC. Our present study found that miR-124 expression is upregulated in colon tissues from UC patients and DSS colitis mice. Nicotine treatment further augmented miR-124 expression in lymphocytes isolated from human ulcerative colonic mucosa and ulcerative colon tissues from DSS mice, both in infiltrated lymphocytes and epithelial cells. Moreover, knockdown of miR-124 significantly diminished the beneficial effect of nicotine on murine colitis and IL-6-treated Caco-2 colon epithelial cells. Further analysis indicated that nicotine inhibited STAT3 activation in vivo and in IL-6 treated Caco-2 cells and Jurkat human T lymphocytes, in which miR-124 knockdown led to increased activation of STAT3. Blocking STAT3 activity alone is beneficial for DSS colitis and also abolished nicotine's protective effect in this model. These data indicate that nicotine exerts its protective action in UC through inducing miR-124 and inhibiting STAT3, and suggest that the miR-124/STAT3 system is a potential target for the therapeutic intervention of UC.

  20. Noradrenergic regulation of plasticity marker expression in the adult rodent piriform cortex.

    PubMed

    Vadodaria, Krishna C; Yanpallewar, Sudhirkumar U; Vadhvani, Mayur; Toshniwal, Devyani; Liles, L Cameron; Rommelfanger, Karen S; Weinshenker, David; Vaidya, Vidita A

    2017-02-23

    The adult rodent piriform cortex has been reported to harbor immature neurons that express markers associated with neurodevelopment and plasticity, namely polysialylated neural cell adhesion molecule (PSA-NCAM) and doublecortin (DCX). We characterized the expression of PSA-NCAM and DCX across the rostrocaudal axis of the rat piriform cortex and observed higher numbers of PSA-NCAM and DCX positive cells in the posterior subdivision. As observed in the rat piriform cortex, Nestin-GFP reporter mice also revealed a similar gradient of GFP-positive cells with an increasing rostro-caudal gradient of expression. Given the extensive noradrenergic innervation of the piriform cortex and its role in regulating piriform cortex function and synaptic plasticity, we addressed the influence of norepinephrine (NE) on piriform cortex plasticity marker expression. Depletion of NE by treatment with the noradrenergic neurotoxin DSP-4 significantly increased the number of DCX and PSA-NCAM immunopositive cells in the piriform cortex of adult rats. Similarly, DSP-4 treated Nestin-GFP reporter mice revealed a robust induction of GFP-positive cells within the piriform cortex following NE depletion. Genetic loss of NE in dopamine β-hydroxylase knockout (Dbh -/-) mice phenocopied the effects of DSP-4, with an increase noted in PSA-NCAM and DCX positive cells in the piriform cortex. Further, chronic α2-adrenergic receptor stimulation with the agonist guanabenz increased PSA-NCAM and DCX positive cells in the piriform cortex of adult rats and GFP-positive cells in the piriform cortex of Nestin-GFP mice. By contrast, chronic α2-adrenergic receptor blockade with the antagonist yohimbine reduced PSA-NCAM and DCX positive cells in the piriform cortex of adult rats. Our results provide novel evidence for a role of NE in regulating the expression of plasticity markers, including PSA-NCAM, DCX, and nestin, within the adult mouse and rat piriform cortex.

  1. MicroRNA-124 suppresses growth of human hepatocellular carcinoma by targeting STAT3

    SciTech Connect

    Lu, Yanxin; Yue, Xupeng; Cui, Yuanyuan; Zhang, Jufeng; Wang, KeWei

    2013-11-29

    Highlights: •miR-124 is down-regulated in hepatocellular carcinoma HepG2 cells. •Over-expression of miR-124 suppresses proliferation and induces apoptosis in HepG2 cells. •miR-124 inhibits xenograft tumor growth in nude mice implanted with HepG2 cells by reducing STAT3 expression. •STATs function as a novel target of miR-124 in HCC HepG2 cells. -- Abstract: The aberrant expression of microRNAs is associated with development and progression of cancers. Down-regulation of miR-124 has been demonstrated in the hepatocellular carcinoma (HCC), but the underlying mechanism by which miR-124 suppresses tumorigenesis in HCC remains elusive. In this study, we found that miR-124 suppresses the tumor growth of HCC through targeting the signal transducers and activators of transcription 3 (STAT3). Overexpression of miR-124 suppressed proliferation and induced apoptosis in HepG-2 cells. Luciferase assay confirmed that miR-124 binding to the 3′-UTR region of STAT3 inhibited the expression of STAT3 and phosphorylated STAT3 proteins in HepG-2 cells. Knockdown of STAT3 by siRNA in HepG-2 cells mimicked the effect induced by miR-124. Overexpression of STAT3 in miR-124-transfected HepG-2 cells effectively rescued the inhibition of cell proliferation caused by miR-124. Furthermore, miR-124 suppressed xenograft tumor growth in nude mice implanted with HepG-2 cells by reducing STAT3 expression. Taken together, our findings show that miR-124 functions as tumor suppressor in HCC by targeting STAT3, and miR-124 may therefore serve as a biomarker for diagnosis and therapeutics in HCC.

  2. Professionalisation as development and as regulation: Adult education in Germany, the United Kingdom and India

    NASA Astrophysics Data System (ADS)

    Doyle, Lesley; Egetenmeyer, Regina; Singai, Chetan; Devi, Uma

    2016-06-01

    In this paper, the authors seek to disentangle what they see as contradictory uses of the term "professionalisation" with reference to adult educator development and training (AEDT). They set out to distinguish professionalisation from professionalism, and to identify the locus of control of AEDT in Germany, the UK and India. In these three countries, all of which have a long tradition of adult education, "professionalisation" and "professionalism" are used interchangeably to describe conflicting purposes. The authors aim to identify and critically explore the organisations and policies which control and support AEDT in their own countries using American sociologist Eliot Freidson's "third logic" model, and drawing on his juxtaposition of "professions", "the market" and "bureaucracy". Applying Freidson's models to the organisations highlights the role of bureaucracy and that where adult education is concerned, national governments, the European Union and aid organisations not only serve bureaucracy but also support the market rather than operating separately from it. While the term "professionalisation" continues to be used to mean professional development, either by adult educators and representative organisations (as in the UK) or by organisations acting on their behalf (as in Germany and India), it is also used to denote regulation and standardisation issuing from bureaucratic institutions and adult education provider organisations in the interests of the market. The authors suggest that Freidson's model provides a useful tool for adult educators in other countries to reflect on their professional position and to engage in the development of their own professional standards, both in their own interests and in the interests of those they educate.

  3. Differential regulation of laminin b1 transgene expression in the neonatal and adult mouse brain.

    PubMed

    Sharif, K A; Baker, H; Gudas, L J

    2004-01-01

    Laminins are the major glycoproteins present in basement membrane, a type of extracellular matrix. We showed that the LAMB1 gene, which encodes the laminin beta1 subunit, is transcriptionally activated by retinoic acid in embryonic stem cells. However, little information is available concerning LAMB1 developmental regulation and spatial expression in the adult mouse brain. In this study we used transgenic mice expressing different lengths of LAMB1 promoter driving beta-galactosidase to investigate developmental and adult transcriptional regulation in the regions of the brain in which the laminin beta1 protein is expressed. CNS expression was not observed in transgenic mice carrying a 1.4LAMB1betagal construct. Mice carrying a 2.5LAMB1betagal construct expressed the LAMB1 transgene, as assayed by X-gal staining, only in the molecular layer of the neonatal cerebellum. In contrast, a 3.9LAMB1betagal transgene showed broad regional expression in the adult mouse brain, including the hippocampus, entorhinal cortex, colliculi, striatum, and substantia nigra. Similar expression patterns were observed for the endogenous laminin beta1 protein and for the 3.9LAMB1betagal transgene, analyzed with an antibody against the beta-galactosidase protein. The 3.9LAMB1betagal transgene expression in the hippocampal tri-synaptic circuit suggests a role for the LAMB1 gene in learning and memory.

  4. Reelin Exerts Structural, Biochemical and Transcriptional Regulation Over Presynaptic and Postsynaptic Elements in the Adult Hippocampus

    PubMed Central

    Bosch, Carles; Muhaisen, Ashraf; Pujadas, Lluís; Soriano, Eduardo; Martínez, Albert

    2016-01-01

    Reelin regulates neuronal positioning and synaptogenesis in the developing brain, and adult brain plasticity. Here we used transgenic mice overexpressing Reelin (Reelin-OE mice) to perform a comprehensive dissection of the effects of this protein on the structural and biochemical features of dendritic spines and axon terminals in the adult hippocampus. Electron microscopy (EM) revealed both higher density of synapses and structural complexity of both pre- and postsynaptic elements in transgenic mice than in WT mice. Dendritic spines had larger spine apparatuses, which correlated with a redistribution of Synaptopodin. Most of the changes observed in Reelin-OE mice were reversible after blockade of transgene expression, thus supporting the specificity of the observed phenotypes. Western blot and transcriptional analyses did not show major changes in the expression of pre- or postsynaptic proteins, including SNARE proteins, glutamate receptors, and scaffolding and signaling proteins. However, EM immunogold assays revealed that the NMDA receptor subunits NR2a and NR2b, and p-Cofilin showed a redistribution from synaptic to extrasynaptic pools. Taken together with previous studies, the present results suggest that Reelin regulates the structural and biochemical properties of adult hippocampal synapses by increasing their density and morphological complexity and by modifying the distribution and trafficking of major glutamatergic components. PMID:27303269

  5. Neuronal Splicing Regulator RBFOX3 (NeuN) Regulates Adult Hippocampal Neurogenesis and Synaptogenesis

    PubMed Central

    Lin, Meng-Ying; Chou, Chih-Hsuan; Wu, I-Ju; Huang, Guo-Jen; Gau, Susan Shur-Fen

    2016-01-01

    Dysfunction of RBFOX3 has been identified in neurodevelopmental disorders such as autism spectrum disorder, cognitive impairments and epilepsy and a causal relationship with these diseases has been previously demonstrated with Rbfox3 homozygous knockout mice. Despite the importance of RBFOX3 during neurodevelopment, the function of RBFOX3 regarding neurogenesis and synaptogenesis remains unclear. To address this critical question, we profiled the developmental expression pattern of Rbfox3 in the brain of wild-type mice and analyzed brain volume, disease-relevant behaviors, neurogenesis, synaptic plasticity, and synaptogenesis in Rbfox3 homozygous knockout mice and their corresponding wild-type counterparts. Here we report that expression of Rbfox3 differs developmentally for distinct brain regions. Moreover, Rbfox3 homozygous knockout mice exhibited cold hyperalgesia and impaired cognitive abilities. Focusing on hippocampal phenotypes, we found Rbfox3 homozygous knockout mice displayed deficits in neurogenesis, which was correlated with cognitive impairments. Furthermore, RBFOX3 regulates the exons of genes with synapse-related function. Synaptic plasticity and density, which are related to cognitive behaviors, were altered in the hippocampal dentate gyrus of Rbfox3 homozygous knockout mice; synaptic plasticity decreased and the density of synapses increased. Taken together, our results demonstrate the important role of RBFOX3 during neural development and maturation. In addition, abnormalities in synaptic structure and function occur in Rbfox3 homozygous knockout mice. Our findings may offer mechanistic explanations for human brain diseases associated with dysfunctional RBFOX3. PMID:27701470

  6. Relaxation Therapy and Anxiety, Self-Esteem, and Emotional Regulation among Adults with Intellectual Disabilities: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Bouvet, Cyrille; Coulet, Aurélie

    2016-01-01

    This pilot study is a randomized controlled trial on the effects of relaxation on anxiety, self-esteem, and emotional regulation in adults with intellectual disabilities (ID) working in a center of supported employment in France. We studied 30 adults with mild or moderate ID who were split at random into a relaxation group (RG, 15 subjects), who…

  7. Self-Regulation, Metacognition and Child- and Adult-Initiated Activity: Does It Matter Who Initiates the Task?

    ERIC Educational Resources Information Center

    Robson, Sue

    2016-01-01

    Debate about the balance between child- and adult-initiated activities in early childhood settings is long standing. This article reports a study of 29 children aged 4-5 years in a London state school, on the influences of child- and adult-initiated activities on children's self-regulation and metacognition. Whilst both contexts were supportive,…

  8. The role of CD44 in fetal and adult hematopoietic stem cell regulation.

    PubMed

    Cao, Huimin; Heazlewood, Shen Y; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44(-/-) mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells.

  9. The role of CD44 in fetal and adult hematopoietic stem cell regulation

    PubMed Central

    Cao, Huimin; Heazlewood, Shen Y.; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K.

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44−/− mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells. PMID:26546504

  10. Metacognition in Later Adulthood: Spared Monitoring Can Benefit Older Adults' Self-regulation.

    PubMed

    Hertzog, Christopher; Dunlosky, John

    2011-06-01

    Metacognition includes two key concepts: monitoring of internal states, and adaptive use of control strategies based on that monitoring. We review studies that indicate that aging does not materially affect the accuracy of elementary forms of monitoring encoding and retrieval states in episodic memory tasks, even though it does influence episodic memory itself. Spared monitoring accuracy can therefore serve as a basis for older adults' use of compensatory strategies to achieve learning goals, despite the influence of aging on mechanisms of learning. Metacognitive intervention studies based on this premise show greater effects on learning than traditional strategy-training approaches. Use of strategies for self-regulation, informed by monitoring, may be an important tool for older adults' effective cognitive functioning in everyday life.

  11. CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation.

    PubMed

    Su, Weiping; Foster, Scott C; Xing, Rubing; Feistel, Kerstin; Olsen, Reid H J; Acevedo, Summer F; Raber, Jacob; Sherman, Larry S

    2017-03-17

    Adult neurogenesis in the hippocampal subgranular zone (SGZ) is involved in learning and memory throughout life but declines with aging. Mice lacking the CD44 transmembrane receptor for the glycosaminoglycan hyaluronan (HA) demonstrate a number of neurological disturbances including hippocampal memory deficits, implicating CD44 in the processes underlying hippocampal memory encoding, storage, or retrieval. Here, we found that HA and CD44 play important roles in regulating adult neurogenesis, and we provide evidence that HA contributes to age-related reductions in neural stem cell (NSC) expansion and differentiation in the hippocampus. CD44-expressing NSCs isolated from the mouse SGZ are self-renewing and capable of differentiating into neurons, astrocytes, and oligodendrocytes. Mice lacking CD44 demonstrate increases in NSC proliferation in the SGZ. This increased proliferation is also observed in NSCs grown in vitro, suggesting that CD44 functions to regulate NSC proliferation in a cell-autonomous manner. HA is synthesized by NSCs and increases in the SGZ with aging. Treating wild type but not CD44-null NSCs with HA inhibits NSC proliferation. HA digestion in wild type NSC cultures or in the SGZ induces increased NSC proliferation, and CD44-null as well as HA-disrupted wild type NSCs demonstrate delayed neuronal differentiation. HA therefore signals through CD44 to regulate NSC quiescence and differentiation, and HA accumulation in the SGZ may contribute to reductions in neurogenesis that are linked to age-related decline in spatial memory.

  12. Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation.

    PubMed

    Lubin, Farah D

    2011-07-01

    Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic.

  13. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults.

    PubMed

    Riby, Leigh M; McLaughlin, Jennifer; Riby, Deborah M; Graham, Cheryl

    2008-11-01

    Interventions aimed at improving glucose regulatory mechanisms have been suggested as a possible source of cognitive enhancement in the elderly. In particular, previous research has identified episodic memory as a target for facilitation after either moderate increases in glycaemia (after a glucose drink) or after improvements in glucose regulation. The present study aimed to extend this research by examining the joint effects of glucose ingestion and glucose regulation on cognition. In addition, risk factors associated with the development of poor glucose regulation in middle-aged adults were considered. In a repeated measures design, thirty-three middle-aged adults (aged 35-55 years) performed a battery of memory and non-memory tasks after either 25 g or 50 g glucose or a sweetness matched placebo drink. To assess the impact of individual differences in glucose regulation, blood glucose measurements were taken on four occasions during testing. A lifestyle and diet questionnaire was also administered. Consistent with previous research, episodic memory ability benefited from glucose ingestion when task demands were high. Blood glucose concentration was also found to predict performance across a number of cognitive domains. Interestingly, the risk factors associated with poor glucose regulation were linked to dietary impacts traditionally associated with poor health, e.g. the consumption of high-sugar sweets and drinks. The research replicates earlier work suggesting that task demands are critical to the glucose facilitation effect. Importantly, the data demonstrate clear associations between elevated glycaemia and relatively poor cognitive performance, which may be partly due to the effect of dietary and lifestyle factors.

  14. Executive Cognitive Functioning and Cardiovascular Autonomic Regulation in a Population-Based Sample of Working Adults

    PubMed Central

    Stenfors, Cecilia U. D.; Hanson, Linda M.; Theorell, Töres; Osika, Walter S.

    2016-01-01

    Objective: Executive cognitive functioning is essential in private and working life and is sensitive to stress and aging. Cardiovascular (CV) health factors are related to cognitive decline and dementia, but there is relatively few studies of the role of CV autonomic regulation, a key component in stress responses and risk factor for cardiovascular disease (CVD), and executive processes. An emerging pattern of results from previous studies suggest that different executive processes may be differentially associated with CV autonomic regulation. The aim was thus to study the associations between multiple measures of CV autonomic regulation and measures of different executive cognitive processes. Method: Participants were 119 healthy working adults (79% women), from the Swedish Longitudinal Occupational Survey of Health. Electrocardiogram was sampled for analysis of heart rate variability (HRV) measures, including the Standard Deviation of NN, here heart beats (SDNN), root of the mean squares of successive differences (RMSSD), high frequency (HF) power band from spectral analyses, and QT variability index (QTVI), a measure of myocardial repolarization patterns. Executive cognitive functioning was measured by seven neuropsychological tests. The relationships between CV autonomic regulation measures and executive cognitive measures were tested with bivariate and partial correlational analyses, controlling for demographic variables, and mental health symptoms. Results: Higher SDNN and RMSSD and lower QTVI were significantly associated with better performance on cognitive tests tapping inhibition, updating, shifting, and psychomotor speed. After adjustments for demographic factors however (age being the greatest confounder), only QTVI was clearly associated with these executive tests. No such associations were seen for working memory capacity. Conclusion: Poorer CV autonomic regulation in terms of lower SDNN and RMSSD and higher QTVI was associated with poorer executive

  15. Executive Cognitive Functioning and Cardiovascular Autonomic Regulation in a Population-Based Sample of Working Adults.

    PubMed

    Stenfors, Cecilia U D; Hanson, Linda M; Theorell, Töres; Osika, Walter S

    2016-01-01

    Objective: Executive cognitive functioning is essential in private and working life and is sensitive to stress and aging. Cardiovascular (CV) health factors are related to cognitive decline and dementia, but there is relatively few studies of the role of CV autonomic regulation, a key component in stress responses and risk factor for cardiovascular disease (CVD), and executive processes. An emerging pattern of results from previous studies suggest that different executive processes may be differentially associated with CV autonomic regulation. The aim was thus to study the associations between multiple measures of CV autonomic regulation and measures of different executive cognitive processes. Method: Participants were 119 healthy working adults (79% women), from the Swedish Longitudinal Occupational Survey of Health. Electrocardiogram was sampled for analysis of heart rate variability (HRV) measures, including the Standard Deviation of NN, here heart beats (SDNN), root of the mean squares of successive differences (RMSSD), high frequency (HF) power band from spectral analyses, and QT variability index (QTVI), a measure of myocardial repolarization patterns. Executive cognitive functioning was measured by seven neuropsychological tests. The relationships between CV autonomic regulation measures and executive cognitive measures were tested with bivariate and partial correlational analyses, controlling for demographic variables, and mental health symptoms. Results: Higher SDNN and RMSSD and lower QTVI were significantly associated with better performance on cognitive tests tapping inhibition, updating, shifting, and psychomotor speed. After adjustments for demographic factors however (age being the greatest confounder), only QTVI was clearly associated with these executive tests. No such associations were seen for working memory capacity. Conclusion: Poorer CV autonomic regulation in terms of lower SDNN and RMSSD and higher QTVI was associated with poorer executive

  16. Goal orientation, self-regulation strategies, and job-seeking intensity in unemployed adults.

    PubMed

    Creed, Peter A; King, Vivien; Hood, Michelle; McKenzie, Robert

    2009-05-01

    At Time 1 (T1), the authors surveyed 277 unemployed adults using measures of human capital, goal orientation, self-regulation (emotion control, motivation control, work commitment), and job-seeking intensity. At Time 2 (T2), 4 months later, 155 participants indicated their reemployment outcomes in number of job interviews and number of job offers. Using T1 data, the authors tested the predictors of job-seeking intensity and whether self-regulation mediated between goal orientation and job-seeking intensity. Using T1 and T2 data, they tested for predictors of reemployment outcomes and whether job-seeking intensity mediated the relationship between T1 antecedent variables and the reemployment outcomes. Learning goal orientation and self-regulation predicted job-seeking intensity, and self-regulation mediated between learning goal orientation and job-seeking intensity. Job-seeking intensity did not mediate the relationship among human capital, goal orientation, and self-regulation variables and reemployment outcomes.

  17. STRESS REGULATION AS A LINK BETWEEN EXECUTIVE FUNCTION AND PRE-FRAILTY IN OLDER ADULTS

    PubMed Central

    Roiland, R.A.; Lin, F.; Phelan, C.; Chapman, B.P.

    2017-01-01

    Objectives Both pre-frailty and frailty are linked with impaired executive function (EF) but the mechanism underlying this relationship is not known. Williams and colleagues’ model posits EF affects health outcomes via stress regulation. This model was utlized to test indicators of stress regulation as mediators of the relationship between EF and pre-frailty in older adults. Design Cross-sectional. Setting Academic general clinical research centers. Participants 690 community-dwelling older adults ≥ 50 years of age. Measurements Pre-frailty was measured using a modified form of the Fried Frailty measure. EF was assessed via telephone-based neurocognitive assessments. Indicators of stress regulation included: stress exposure (measured by perceived stress), reactivity and recovery (measured by heart rate) and restoration (measured by serum interleukin-6 and sleep quality). Results 396 individuals were classified as non-frail, 277 as pre-frail, and 17 as frail. Pre-frail and non-frail individuals were included in data analyses. Compared to non-frail individuals, prefrail were older and exhibited poorer EF, higher levels of stress exposure and poorer stress restoration. Poorer EF was associated with greater stress exposure, less stress reactivity, longer stress recovery and poorer stress restoration. The total effect of the relationship between EF and pre-frailty was significant with significant indirect effects supporting stress exposure and restoration as mediators of the relationship. Conclusion Stress exposure and restoration appear to mediate the relationship between EF and pre-frailty. Longitudinal studies are needed to clarify the direction of causality and determine whether stress regulation processes are appropriate targets for interventions aiming to prevent declines in EF and the development of pre-frailty. PMID:26412287

  18. Energy Density, Energy Intake, and Body Weight Regulation in Adults12345

    PubMed Central

    Karl, J. Philip; Roberts, Susan B.

    2014-01-01

    The role of dietary energy density (ED) in the regulation of energy intake (EI) is controversial. Methodologically, there is also debate about whether beverages should be included in dietary ED calculations. To address these issues, studies examining the effects of ED on EI or body weight in nonelderly adults were reviewed. Different approaches to calculating dietary ED do not appear to alter the direction of reported relations between ED and body weight. Evidence that lowering dietary ED reduces EI in short-term studies is convincing, but there are currently insufficient data to determine long-term effectiveness for weight loss. The review also identified key barriers to progress in understanding the role of ED in energy regulation, in particular the absence of a standard definition of ED, and the lack of data from multiple long-term clinical trials examining the effectiveness of low-ED diet recommendations for preventing both primary weight gain and weight regain in nonobese individuals. Long-term clinical trials designed to examine the impact of dietary ED on energy regulation, and including multiple ED calculation methods within the same study, are still needed to determine the importance of ED in the regulation of EI and body weight. PMID:25398750

  19. Susceptibility of Ceraeochrysa cubana larvae and adults to six insect growth-regulator insecticides.

    PubMed

    Ono, Éric Kodi; Zanardi, Odimar Zanuzo; Aguiar Santos, Kenia Fernanda; Yamamoto, Pedro Takao

    2017-02-01

    The impacts of six insect growth-regulators were assessed on the predator Ceraeochrysa cubana (Hagen) larvae and adults. Our results showed that diflubenzuron, lufenuron and pyriproxyfen caused 100% larva mortality, whereas buprofezin, methoxyfenozide and tebufenozide were similar to control treatment. In comparison to the control, buprofezin prolonged the duration of larval stage, while methoxyfenozide and tebufenozide reduced the predator larva development time. Buprofezin, methoxyfenozide and tebufenozide did not affect the C. cubana duration and survival of pupal stage, fecundity and fertility. However, methoxyfenozide and tebufenozide reduced predator female and male longevities. Based on a reduction coefficient, diflubenzuron, lufenuron and pyriproxyfen were highly harmful to first instar larvae, while buprofezin, methoxyfenozide and tebufenozide were considered slightly harmful to the predator. Estimating the life table parameters, our results showed that buprofezin, methoxyfenozide and tebufenozide reduced the C. cubana Ro, r and λ. In comparison to the control, buprofezin prolonged the T and methoxyfenozide and tebufenozide shortened the predator T. In adults, our results showed that the insecticides did not cause significant mortality, but diflubenzuron, lufenuron and pyriproxyfen reduced the C. cubana fecundity and longevity. Diflubenzuron and lufenuron also reduced the C. cubana fertility. Based on a reduction coefficient, diflubenzuron and lufenuron were highly harmful to C. cubana adults, while pyriproxyfen was slightly harmful and buprofezin, methoxyfenozide and tebufenozide were considered harmless to the predator. Therefore, insect growth-regulators affect the C. cubana biological or populational parameters, and they can harm the integrated pest management programs that aim the predator conservation and/or augmentation in agroecosystems.

  20. Executive function and self-regulated exergaming adherence among older adults

    PubMed Central

    Anderson-Hanley, Cay; Arciero, Paul J.; Barcelos, Nicole; Nimon, Joseph; Rocha, Tracey; Thurin, Marisa; Maloney, Molly

    2014-01-01

    The rise in dementia and the evidence of cognitive benefits of exercise for the older adult population together make salient the research into variables affecting cognitive benefit and exercise behavior. One promising avenue for increasing exercise participation has been the introduction of exergaming, a type of exercise that works in combination with virtual reality to enhance both the exercise experience and health outcomes. Past research has revealed that executive function (EF) was related to greater use of self-regulatory strategies, which in turn was related to greater adherence to exercise following an intervention (McAuley et al., 2011). Best et al. (2014) found improvement in EF related to adherence to exercise post- intervention. Anderson-Hanley et al. (2012) found that for older adults aerobic exergaming yielded greater cognitive benefit than traditional exercise alone; however, questions remain as to the possible impact of greater cognitive benefit and other factors on participants’ involvement in exercise following the end of an intervention. The current study presents follow-up data exploring the relationship between EF, self-regulation, and exercise behavior in the post-intervention (naturalistic) period. Herein, it was predicted that higher EF at the start of the naturalistic window, would predict subsequent exercise with an exergame. Contrary to expectations, results suggest that those with poorer EF are likely to exergame more frequently. The results of this study contradict previous literature, but suggest an interesting relationship between EF, self-regulation, and exercise behaviors when exergaming is employed, particularly with older adults with some cognitive decline. We hypothesize that other factors may be at work, perhaps expectation of cognitive benefit might act as a unique motivator. PMID:25538608

  1. Driving skills of young adults with developmental coordination disorder: regulating speed and coping with distraction.

    PubMed

    de Oliveira, Rita F; Wann, John P

    2011-01-01

    In two experiments, we used an automatic car simulator to examine the steering control, speed regulation and response to hazards of young adults with developmental coordination disorder (DCD) and limited driving experience. In Experiment 1 participants either used the accelerator pedal to regulate their speed, or used the brake pedal when they needed to slow down from a pre-set speed. In Experiment 2, we introduced an auditory distraction condition that shared similarities with maintaining a conversation. Overall, the DCD group produced a larger variance in heading and needed more steering adjustments on straight roads, compared to age-matched controls. When turning bends, the DCD group showed greater difficulty in controlling steering while regulating their speed with the accelerator pedal but this was less problematic when using the brake. The DCD group also responded slower than the control group to pedestrians who walked towards their path. The auditory distraction in Experiment 2 had no visible effects on steering control but increased the reaction times to pedestrians in both groups. We discuss the results in terms of the visuomotor control in steering and the learning of optimal mappings between optic flow and vehicle control.

  2. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    PubMed

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  3. Regulation of molecular components of the synapse in the developing and adult rat superior cervical ganglion

    SciTech Connect

    Wu, K.; Black, I.B.

    1987-12-01

    Rat superior cervical sympathetic ganglion was used to begin studying the regulation of molecular components of the synapse. Ganglionic postsynaptic densities (PSDs) exhibited a thin, disc-shaped profile electron microscopically, comparable to that described for brain. Moreover, the presumptive ganglionic PSD protein (PSDp) was phosphorylated in the presence of Ca/sup 2 +/ and calmodulin, bound /sup 125/I-labeled calmodulin, and exhibited a M/sub r/ of 51,000 all characteristic of the major PSD protein of brain. These initial studies indicated that ganglionic PSDp and the major PSD protein of brain are comparable, allowing the study synaptic regulation in the well-defined superior cervical sympathetic ganglion. To obtain enough quantities of ganglionic PSDp, the authors used synaptic membrane fractions. During postnatal development, calmodulin binding to the ganglionic PSDp increased 411-fold per ganglion from birth to 60 days, whereas synaptic membrane protein increased only 4.5-fold. Consequently, different synaptic components apparently develop differently. Moreover, denervation of the superior cervical sympathetic ganglion in adult rats caused an 85% decrease in ganglionic PSDp-calmodulin binding, but denervation caused no change in synaptic membrane protein 2 weeks postoperatively. The observations suggest that presynaptic innervation selectively regulates specific molecular components of the postsynaptic membrane structure.

  4. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans

    SciTech Connect

    Fierro-Gonzalez, Juan Carlos; Gonzalez-Barrios, Maria; Miranda-Vizuete, Antonio

    2011-03-18

    Highlights: {yields} First in vivo data for thioredoxin in dietary-restriction-(DR)-induced longevity. {yields} Thioredoxin (trx-1) loss suppresses longevity of eat-2 mutant, a genetic DR model. {yields} trx-1 overexpression extends wild-type longevity, but not that of eat-2 mutant. {yields} Longevity by dietary deprivation (DD), a non-genetic DR model, requires trx-1. {yields} trx-1 expression in ASJ neurons of aging adults is increased in response to DD. -- Abstract: Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose

  5. miRNA-124 in Immune System and Immune Disorders

    PubMed Central

    Qin, Zhen; Wang, Peng-Yuan; Su, Ding-Feng; Liu, Xia

    2016-01-01

    In recent years, miR-124 has emerged as a critical modulator of immunity and inflammation. Here, we summarize studies on the function and mechanism of miR-124 in the immune system and immunity-related diseases. They indicated that miR-124 exerts a crucial role in the development of immune system, regulation of immune responses, and inflammatory disorders. It is evident that miR-124 may serve as an informative diagnostic biomarker and therapeutic target in the future. PMID:27757114

  6. Sox2-mediated regulation of adult neural crest precursors and skin repair.

    PubMed

    Johnston, Adam P W; Naska, Sibel; Jones, Karen; Jinno, Hiroyuki; Kaplan, David R; Miller, Freda D

    2013-01-01

    Nerve-derived neural crest cells are essential for regeneration in certain animals, such as newts. Here, we asked whether they play a similar role during mammalian tissue repair, focusing on Sox2-positive neural crest precursors in skin. In adult skin, Sox2 was expressed in nerve-terminal-associated neural crest precursor cells (NCPCs) around the hair follicle bulge, and following injury was induced in nerve-derived cells, likely dedifferentiated Schwann cell precursors. At later times postinjury, Sox2-positive cells were scattered throughout the regenerating dermis, and lineage tracing showed that these were all neural-crest-derived NCPCs. These Sox2-positive NCPCs were functionally important, since acute deletion of Sox2 prior to injury caused a decrease of NCPCs in the wound and aberrant skin repair. These data demonstrate that Sox2 regulates skin repair, likely by controlling NCPCs, and raise the possibility that nerve-derived NCPCs may play a general role in mammalian tissue repair.

  7. Fragile X Mental Retardation Protein Regulates New Neuron Differentiation in the Adult Olfactory Bulb

    PubMed Central

    Scotto-Lomassese, Sophie; Nissant, Antoine; Mota, Tatiana; Néant-Féry, Marie; Oostra, Ben A.; Greer, Charles A.; Lledo, Pierre-Marie; Trembleau, Alain; Caillé, Isabelle

    2013-01-01

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines. We used the well known continuous production of adult-born granule cells (GCs) in the mouse olfactory bulb (OB) to analyze the consequences of Fmrp loss on the differentiation of GCs. Morphological analysis of GCs in the Fmr1 KO mice showed an increase in spine density without a change in spine length. We developed an RNA interference strategy to cell-autonomously mutate Fmr1 in a wild-type OB network. Mutated GCs displayed an increase in spine density and spine length. Detailed analysis of the spines through immunohistochemistry, electron microscopy, and electrophysiology surprisingly showed that, despite these abnormalities, spines receive normal glutamatergic synapses, and thus that mutated adult-born neurons are synaptically integrated into the OB circuitry. Time-course analysis of the spine defects showed that Fmrp cell-autonomously downregulates the level and rate of spine production and limits their overgrowth. Finally, we report that Fmrp does not regulate dendritogenesis in standard conditions but is necessary for activity-dependent dendritic remodeling. Overall, our study of Fmrp in the context of adult neurogenesis has enabled us to carry out a precise dissection of the role of Fmrp in neuronal differentiation and underscores its pleiotropic involvement in both spinogenesis and dendritogenesis. PMID:21307257

  8. Regulation of adult cardiocyte growth: effects of active and passive mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, M. L.; Janes, D. M.; Barclay, M. M.; Harger, L.; Decker, R. S.

    1997-01-01

    Fluctuations in hemodynamic load have been documented to modulate contractile protein turnover and myofibrillar structure in the heart; however, the relative importance of active and passive loading in regulating adult cardiocyte growth remains unresolved. To address this issue at the cellular level, adult feline cardiocytes were cultured either on Silastic membranes or plastic surfaces. Cardiocyte-laden membranes were stretched 10% of their rest length to enhance passive loading, whereas heart cells cultured on plastic or Silastic were field stimulated at 1 Hz to mimic active loading. Turnover of contractile proteins and structural integrity of the contractile-cytoskeletal apparatus were monitored for periods ranging from 4 to 72 h. Active and passive loading elevated contractile protein synthesis nearly equally (approximately 50%) and promoted the attachment of remodeled myofibrils to vinculin-positive focal contacts and/or costameres during the first 24 h of loading. Thereafter, rates of contractile protein synthesis returned to control values in passively stretched heart cells but remained elevated in field-stimulated cultures. The fractional rate of growth was increased significantly (approximately 8%/day) in electrically paced cells, whereas in passively stretched cardiocytes the growth rate rose only modestly (approximately 2%/day). Changes in the rate of myocyte growth appeared more closely correlated with the development of focal contacts and myofibril remodeling than with changes in myofibrillar protein turnover per se. 2,3-Butanedione monoxime, nifedipine, and, to a lesser extent, ryanodine blocked field-stimulated contractile protein synthesis and myofibrillar remodeling but had no impact on protein turnover or myofibril reassembly in passively loaded cardiocytes. The results of these experiments imply that both active and passive loading stimulate contractile protein turnover and myofibril remodeling, but the generation of active tension accelerates

  9. Exploration of the Brn4-regulated genes enhancing adult hippocampal neurogenesis by RNA sequencing.

    PubMed

    Guo, Jingjing; Cheng, Xiang; Zhang, Lei; Wang, Linmei; Mao, Yongxin; Tian, Guixiang; Xu, Wenhao; Wu, Yuhao; Ma, Zhi; Qin, Jianbing; Tian, Meiling; Jin, Guohua; Shi, Wei; Zhang, Xinhua

    2017-02-18

    Adult hippocampal neurogenesis is essential for learning and memory, and its dysfunction is involved in neurodegenerative diseases. However, the molecular mechanisms underlying adult hippocampal neurogenesis are still largely unknown. Our previous studies indicated that the transcription factor Brn4 was upregulated and promoted neuronal differentiation of neural stem cells (NSCs) in the surgically denervated hippocampus in rats. In this study, we use high-throughput RNA sequencing to explore the molecular mechanisms underlying the enhancement of adult hippocampal neurogenesis induced by lentivirus-mediated Brn4 overexpression in vivo. After 10 days of the lentivirus injection, we found that the expression levels of genes related to neuronal development and maturation were significantly increased and the expression levels of genes related to NSC maintenance were significantly decreased, indicating enhanced neurogenesis in the hippocampus after Brn4 overexpression. Through RNA sequencing, we found that 658 genes were differentially expressed in the Brn4-overexpressed hippocampi compared with GFP-overexpressed controls. Many of these differentially expressed genes are involved in NSC division and differentiation. By using quantitative real-time PCR, we validated the expression changes of three genes, including Ctbp2, Notch2, and Gli1, all of which are reported to play key roles in neuronal differentiation of NSCs. Importantly, the expression levels of Ctbp2 and Notch2 were also significantly changed in the hippocampus of Brn4 KO mice, which indicates that the expression levels of Ctbp2 and Notch2 may be directly regulated by Brn4. Our current study provides a solid foundation for further investigation and identifies Ctbp2 and Notch2 as possible downstream targets of Brn4. © 2017 Wiley Periodicals, Inc.

  10. Fragile X mental retardation protein regulates new neuron differentiation in the adult olfactory bulb.

    PubMed

    Scotto-Lomassese, Sophie; Nissant, Antoine; Mota, Tatiana; Néant-Féry, Marie; Oostra, Ben A; Greer, Charles A; Lledo, Pierre-Marie; Trembleau, Alain; Caillé, Isabelle

    2011-02-09

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines. We used the well known continuous production of adult-born granule cells (GCs) in the mouse olfactory bulb (OB) to analyze the consequences of Fmrp loss on the differentiation of GCs. Morphological analysis of GCs in the Fmr1 KO mice showed an increase in spine density without a change in spine length. We developed an RNA interference strategy to cell-autonomously mutate Fmr1 in a wild-type OB network. Mutated GCs displayed an increase in spine density and spine length. Detailed analysis of the spines through immunohistochemistry, electron microscopy, and electrophysiology surprisingly showed that, despite these abnormalities, spines receive normal glutamatergic synapses, and thus that mutated adult-born neurons are synaptically integrated into the OB circuitry. Time-course analysis of the spine defects showed that Fmrp cell-autonomously downregulates the level and rate of spine production and limits their overgrowth. Finally, we report that Fmrp does not regulate dendritogenesis in standard conditions but is necessary for activity-dependent dendritic remodeling. Overall, our study of Fmrp in the context of adult neurogenesis has enabled us to carry out a precise dissection of the role of Fmrp in neuronal differentiation and underscores its pleiotropic involvement in both spinogenesis and dendritogenesis.

  11. Eating regulation styles, appearance schemas, and body satisfaction predict changes in body fat for emerging adults.

    PubMed

    Morgan, Ali Zaremba; Keiley, Margaret K; Ryan, Aubrey E; Radomski, Juliana Groves; Gropper, Sareen S; Connell, Lenda Jo; Simmons, Karla P; Ulrich, Pamela V

    2012-09-01

    . Overall, males and females with high autonomous regulation and high motivational salience are likely to maintain (instead of increase) percent body fat over the college years. Knowing the influence of these predictors can be useful for promoting health and intervening with young adults in the college setting and other emerging adults who are not enrolled in postsecondary institutions.

  12. Epigenetic regulation of the glucocorticoid receptor promoter 1(7) in adult rats.

    PubMed

    Witzmann, Simone R; Turner, Jonathan D; Mériaux, Sophie B; Meijer, Onno C; Muller, Claude P

    2012-11-01

    Regulation of glucocorticoid receptor (GR) levels is an important stress adaptation mechanism. Transcription factor Nfgi-a and environmentally induced Gr promoter 1 7 methylation have been implicated in fine-tuning the expression of Gr 1 7 transcripts. Here, we investigated Gr promoter 1 7 methylation and Gr 1 7 expression in adult rats exposed to either acute or chronic stress paradigms. A strong negative correlation was observed between the sum of promoter-wide methylation levels and Gr 1 7 transcript levels, independent of the stressor. Methylation of individual sites did not, however, correlate with transcript levels. This suggested that promoter 1 7 was directly regulated by promoter-wide DNA methylation. Although acute stress increased Ngfi-a expression in the hypothalamic paraventricular nucleus (PVN), Gr 1 7 transcript levels remained unaffected despite low methylation levels. Acute stress had little effect on these low methylation levels, except at four hippocampal CpGs. Chronic stress altered the corticosterone response to an acute stressor. In the adrenal and pituitary glands, but not in the brain, this was accompanied by an increase in methylation levels in orchestrated clusters rather than individual CpGs. PVN methylation levels, unaffected by acute or chronic stress, were significantly more variable within- than between-groups, suggesting that they were instated probably during the perinatal period and represent a pre-established trait. Thus, in addition to the known perinatal programming, the Gr 1 7 promoter is epigenetically regulated by chronic stress in adulthood, and retains promoter-wide tissue-specific plasticity. Differences in methylation susceptibility between the PVN in the perinatal period and the peripheral HPA axis tissues in adulthood may represent an important "trait" vs. "state" regulation of the Gr gene.

  13. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis

    PubMed Central

    Ferrón, S. R.; Radford, E. J.; Domingo-Muelas, A.; Kleine, I.; Ramme, A.; Gray, D.; Sandovici, I.; Constancia, M.; Ward, A.; Menheniott, T. R.; Ferguson-Smith, A. C.

    2015-01-01

    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis. PMID:26369386

  14. Small-molecule screen in adult Drosophila identifies VMAT as a regulator of sleep.

    PubMed

    Nall, Aleksandra H; Sehgal, Amita

    2013-05-08

    Sleep is an important physiological state, but its function and regulation remain elusive. In Drosophila melanogaster, a useful model organism for studying sleep, forward genetic screens have identified important sleep-modulating genes and pathways; however, the results of such screens may be limited by developmental abnormalities or lethality associated with mutation of certain genes. To circumvent these limitations, we used a small-molecule screen to identify sleep-modulating genes and pathways. We administered 1280 pharmacologically active small molecules to adult flies and monitored their sleep. We found that administration of reserpine, a small-molecule inhibitor of the vesicular monoamine transporter (VMAT) that repackages monoamines into presynaptic vesicles, resulted in an increase in sleep. Supporting the idea that VMAT is the sleep-relevant target of reserpine, we found that VMAT-null mutants have an increased sleep phenotype, as well as an increased arousal threshold and resistance to the effects of reserpine. However, although the VMAT mutants are consistently resistant to reserpine, other aspects of their sleep phenotype are dependent on genetic background. These findings indicate that small-molecule screens can be used effectively to identify sleep-modulating genes whose phenotypes may be suppressed in traditional genetic screens. Mutations affecting single monoamine pathways did not affect reserpine sensitivity, suggesting that effects of VMAT/reserpine on sleep are mediated by multiple monoamines. Overall, we identify VMAT as an important regulator of sleep in Drosophila and demonstrate that small-molecule screens provide an effective approach to identify genes and pathways that impact adult Drosophila behavior.

  15. Regulation of Müller Glial Dependent Neuronal Regeneration in the Damaged Adult Zebrafish Retina

    PubMed Central

    Gorsuch, Ryne A.; Hyde, David R.

    2013-01-01

    This article examines our current knowledge underlying the mechanisms involved in neuronal regeneration in the adult zebrafish retina. Zebrafish, which has the capacity to regenerate a wide variety of tissues and organs (including the fins, kidney, heart, brain, and spinal cord), has become the premier model system to study retinal regeneration due to the robustness and speed of the response and the variety of genetic tools that can be applied to study this question. It is now well documented that retinal damage induces the resident Müller glia to dedifferentiate and reenter the cell cycle to produce neuronal progenitor cells that continue to proliferate, migrate to the damaged retinal layer and differentiate into the missing neuronal cell types. Increasing our understanding of how these cellular events are regulated and occur in response to neuronal damage may provide critical information that can be applied to stimulating a regeneration response in the mammalian retina. In this review, we will focus on the genes/proteins that regulate zebrafish retinal regeneration and will attempt to critically evaluate how these factors may interact to correctly orchestrate the definitive cellular events that occur during regeneration. PMID:23880528

  16. Regulation of Müller glial dependent neuronal regeneration in the damaged adult zebrafish retina.

    PubMed

    Gorsuch, Ryne A; Hyde, David R

    2014-06-01

    This article examines our current knowledge underlying the mechanisms involved in neuronal regeneration in the adult zebrafish retina. Zebrafish, which has the capacity to regenerate a wide variety of tissues and organs (including the fins, kidney, heart, brain, and spinal cord), has become the premier model system to study retinal regeneration due to the robustness and speed of the response and the variety of genetic tools that can be applied to study this question. It is now well documented that retinal damage induces the resident Müller glia to dedifferentiate and reenter the cell cycle to produce neuronal progenitor cells that continue to proliferate, migrate to the damaged retinal layer and differentiate into the missing neuronal cell types. Increasing our understanding of how these cellular events are regulated and occur in response to neuronal damage may provide critical information that can be applied to stimulating a regeneration response in the mammalian retina. In this review, we will focus on the genes/proteins that regulate zebrafish retinal regeneration and will attempt to critically evaluate how these factors may interact to correctly orchestrate the definitive cellular events that occur during regeneration.

  17. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells

    PubMed Central

    Shin, Jae-Won; Spinler, Kyle R.; Swift, Joe; Chasis, Joel A.; Mohandas, Narla; Discher, Dennis E.

    2013-01-01

    Hematopoietic stem and progenitor cells, as well as nucleated erythroblasts and megakaryocytes, reside preferentially in adult marrow microenvironments whereas other blood cells readily cross the endothelial barrier into the circulation. Because the nucleus is the largest organelle in blood cells, we hypothesized that (i) cell sorting across microporous barriers is regulated by nuclear deformability as controlled by lamin-A and -B, and (ii) lamin levels directly modulate hematopoietic programs. Mass spectrometry-calibrated intracellular flow cytometry indeed reveals a lamin expression map that partitions human blood lineages between marrow and circulating compartments (P = 0.00006). B-type lamins are highly variable and predominate only in CD34+ cells, but migration through micropores and nuclear flexibility in micropipette aspiration both appear limited by lamin-A:B stoichiometry across hematopoietic lineages. Differentiation is also modulated by overexpression or knockdown of lamins as well as retinoic acid addition, which regulates lamin-A transcription. In particular, erythroid differentiation is promoted by high lamin-A and low lamin-B1 expression whereas megakaryocytes of high ploidy are inhibited by lamin suppression. Lamins thus contribute to both trafficking and differentiation. PMID:24191023

  18. Ethical and Regulatory Challenges with Autologous Adult Stem Cells: A Comparative Review of International Regulations.

    PubMed

    Lysaght, Tamra; Kerridge, Ian H; Sipp, Douglas; Porter, Gerard; Capps, Benjamin J

    2017-02-28

    Cell and tissue-based products, such as autologous adult stem cells, are being prescribed by physicians across the world for diseases and illnesses that they have neither been approved for or been demonstrated as safe and effective in formal clinical trials. These doctors often form part of informal transnational networks that exploit differences and similarities in the regulatory systems across geographical contexts. In this paper, we examine the regulatory infrastructure of five geographically diverse but socio-economically comparable countries with the aim of identifying similarities and differences in how these products are regulated and governed within clinical contexts. We find that while there are many subtle technical differences in how these regulations are implemented, they are sufficiently similar that it is difficult to explain why these practices appear more prevalent in some countries and not in others. We conclude with suggestions for how international governance frameworks might be improved to discourage the exploitation of vulnerable patient populations while enabling innovation in the clinical application of cellular therapies.

  19. An RbAp48-like gene regulates adult stem cells in planarians.

    PubMed

    Bonuccelli, Lucia; Rossi, Leonardo; Lena, Annalisa; Scarcelli, Vittoria; Rainaldi, Giuseppe; Evangelista, Monica; Iacopetti, Paola; Gremigni, Vittorio; Salvetti, Alessandra

    2010-03-01

    Retinoblastoma-associated proteins 46 and 48 (RbAp46 and RbAp48) are factors that are components of different chromatin-modelling complexes, such as polycomb repressive complex 2, the activity of which is related to epigenetic gene regulation in stem cells. To date, no direct findings are available on the in vivo role of RbAp48 in stem-cell biology. We recently identified DjRbAp48 - a planarian (Dugesia japonica) homologue of human RBAP48 - expression of which is restricted to the neoblasts, the adult stem cells of planarians. In vivo silencing of DjRbAp48 induces lethality and inability to regenerate, even though neoblasts proliferate and accumulate after wounding. Despite a partial reduction in neoblast number, we were always able to detect a significant number of these cells in DjRbAp48 RNAi animals. Parallel to the decrease in neoblasts, a reduction in the number of differentiated cells and the presence of apoptotic-like neoblasts were detectable in RNAi animals. These findings suggest that DjRbAp48 is not involved in neoblast maintenance, but rather in the regulation of differentiation of stem-cell progeny. We discuss our data, taking into account the possibility that DjRbAp48 might control the expression of genes necessary for cell differentiation by influencing chromatin architecture.

  20. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes.

    PubMed

    Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2010-06-01

    By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.

  1. Fluid cognitive ability is a resource for successful emotion regulation in older and younger adults

    PubMed Central

    Opitz, Philipp C.; Lee, Ihno A.; Gross, James J.; Urry, Heather L.

    2014-01-01

    The Selection, Optimization, and Compensation with Emotion Regulation (SOC-ER) framework suggests that (1) emotion regulation (ER) strategies require resources and that (2) higher levels of relevant resources may increase ER success. In the current experiment, we tested the specific hypothesis that individual differences in one internal class of resources, namely cognitive ability, would contribute to greater success using cognitive reappraisal (CR), a form of ER in which one reinterprets the meaning of emotion-eliciting situations. To test this hypothesis, 60 participants (30 younger and 30 older adults) completed standardized neuropsychological tests that assess fluid and crystallized cognitive ability, as well as a CR task in which participants reinterpreted the meaning of sad pictures in order to alter (increase or decrease) their emotions. In a control condition, they viewed the pictures without trying to change how they felt. Throughout the task, we indexed subjective emotional experience (self-reported ratings of emotional intensity), expressive behavior (corrugator muscle activity), and autonomic physiology (heart rate and electrodermal activity) as measures of emotional responding. Multilevel models were constructed to explain within-subjects variation in emotional responding as a function of ER contrasts comparing increase or decrease conditions with the view control condition and between-subjects variation as a function of cognitive ability and/or age group (older, younger). As predicted, higher fluid cognitive ability—indexed by perceptual reasoning, processing speed, and working memory—was associated with greater success using reappraisal to alter emotional responding. Reappraisal success did not vary as a function of crystallized cognitive ability or age group. Collectively, our results provide support for a key tenet of the SOC-ER framework that higher levels of relevant resources may confer greater success at emotion regulation. PMID:24987387

  2. Two Measures of Self-Regulation for Young Adults and Late Adolescents in the Academic and Social Domains

    ERIC Educational Resources Information Center

    Geldhof, John; Little, Todd D.; Hawley, Patricia H.

    2012-01-01

    In this paper we present domain-specific measures of academic and social self-regulation in young adults. We base our scales on Baltes and colleagues' Selection, Optimization, and Compensation (SOC) model, and establish the factor structure of our new measures using data collected from a sample of 152 college students. We then compare the…

  3. Self-Regulation and Metacognition in Young Children: Does It Matter if Adults Are Present or Not?

    ERIC Educational Resources Information Center

    Robson, Sue

    2016-01-01

    This paper brings together two areas of considerable interest to researchers, practitioners and policy makers: young children's developing self-regulation and metacognition, and the impact of adult (practitioner) presence or absence on their behaviour and learning. One hundred and twenty-eight observations of 29 children aged 4-5 years in a…

  4. Emotion Regulation Difficulties, Youth-Adult Relationships, and Suicide Attempts among High School Students in Underserved Communities

    ERIC Educational Resources Information Center

    Pisani, Anthony R.; Wyman, Peter A.; Petrova, Mariya; Schmeelk-Cone, Karen; Goldston, David B.; Xia, Yinglin; Gould, Madelyn S.

    2013-01-01

    To develop and refine interventions to prevent youth suicide, knowledge is needed about specific processes that reduce risk at a population level. Using a cross-sectional design, the present study tested hypotheses regarding associations between self-reported suicide attempts, emotion regulation difficulties, and positive youth-adult relationships…

  5. Genetic and Environmental Regulation on Longitudinal Change of Metabolic Phenotypes in Danish and Chinese Adult Twins

    PubMed Central

    Li, Shuxia; Kyvik, Kirsten Ohm; Pang, Zengchang; Zhang, Dongfeng; Duan, Haiping; Tan, Qihua; Hjelmborg, Jacob; Kruse, Torben; Dalgård, Christine

    2016-01-01

    Objective The rate of change in metabolic phenotypes can be highly indicative of metabolic disorders and disorder-related modifications. We analyzed data from longitudinal twin studies on multiple metabolic phenotypes in Danish and Chinese twins representing two populations of distinct ethnic, cultural, social-economic backgrounds and geographical environments. Materials and Methods The study covered a relatively large sample of 502 pairs of Danish adult twins followed up for a long period of 12 years with a mean age at intake of 38 years (range: 18–65) and a total of 181 Chinese adult twin pairs traced for about 7 years with a mean baseline age of 39.5 years (range: 23–64). The classical twin models were fitted to the longitudinal change in each phenotype (Δphenotype) to estimate the genetic and environmental contributions to the variation in Δphenotype. Results Moderate to high contributions by the unique environment were estimated for all phenotypes in both Danish (from 0.51 for low density lipoprotein cholesterol up to 0.72 for triglycerides) and Chinese (from 0.41 for triglycerides up to 0.73 for diastolic blood pressure) twins; low to moderate genetic components were estimated for long-term change in most of the phenotypes in Danish twins except for triglycerides and hip circumference. Compared with Danish twins, the Chinese twins tended to have higher genetic control over the longitudinal changes in lipids (except high density lipoprotein cholesterol) and glucose, higher unique environmental contribution to blood pressure but no genetic contribution to longitudinal change in body mass traits. Conclusion Our results emphasize the major contribution of unique environment to the observed intra-individual variation in all metabolic phenotypes in both samples, and meanwhile reveal differential patterns of genetic and common environmental regulation on changes over time in metabolic phenotypes across the two samples. PMID:26862898

  6. Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity.

    PubMed

    Jorquera, Gonzalo; Altamirano, Francisco; Contreras-Ferrat, Ariel; Almarza, Gonzalo; Buvinic, Sonja; Jacquemond, Vincent; Jaimovich, Enrique; Casas, Mariana

    2013-03-01

    An important pending question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype as slow or fast twitch muscle fibers. We have previously shown that voltage-gated L-type calcium channel (Cav1.1) acts as a voltage sensor for activation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P₃]-dependent Ca(2+) signals that regulates gene expression. ATP released by muscle cells after electrical stimulation through pannexin-1 channels plays a key role in this process. We show now that stimulation frequency determines both ATP release and Ins(1,4,5)P₃ production in adult skeletal muscle and that Cav1.1 and pannexin-1 colocalize in the transverse tubules. Both ATP release and increased Ins(1,4,5)P₃ was seen in flexor digitorum brevis fibers stimulated with 270 pulses at 20 Hz, but not at 90 Hz. 20 Hz stimulation induced transcriptional changes related to fast-to-slow muscle fiber phenotype transition that required ATP release. Addition of 30 µM ATP to fibers induced the same transcriptional changes observed after 20 Hz stimulation. Myotubes lacking the Cav1.1-α1 subunit released almost no ATP after electrical stimulation, showing that Cav1.1 has a central role in this process. In adult muscle fibers, ATP release and the transcriptional changes produced by 20 Hz stimulation were blocked by both the Cav1.1 antagonist nifedipine (25 µM) and by the Cav1.1 agonist (-)S-BayK 8644 (10 µM). We propose a new role for Cav1.1, independent of its calcium channel activity, in the activation of signaling pathways allowing muscle fibers to decipher the frequency of electrical stimulation and to activate specific transcriptional programs that define their phenotype.

  7. IGFBP-4 regulates adult skeletal growth in a sex-specific manner.

    PubMed

    Maridas, David E; DeMambro, Victoria E; Le, Phuong T; Nagano, Kenichi; Baron, Roland; Mohan, Subburaman; Rosen, Clifford J

    2017-04-01

    Insulin-like growth factor-1 (IGF-1) and its binding proteins are critical mediators of skeletal growth. Insulin-like growth factor-binding protein 4 (IGFBP-4) is highly expressed in osteoblasts and inhibits IGF-1 actions in vitro Yet, in vivo studies suggest that it could potentiate IGF-1 and IGF-2 actions. In this study, we hypothesized that IGFBP-4 might potentiate the actions of IGF-1 on the skeleton. To test this, we comprehensively studied 8- and 16-week-old Igfbp4(-/-) mice. Both male and female adult Igfbp4(-/-) mice had marked growth retardation with reductions in body weight, body and femur lengths, fat proportion and lean mass at 8 and 16 weeks. Marked reductions in aBMD and aBMC were observed in 16-week-old Igfbp4(-/-) females, but not in males. Femoral trabecular BV/TV and thickness, cortical fraction and thickness in 16-week-old Igfbp4(-/-) females were significantly reduced. However, surprisingly, males had significantly more trabeculae with higher connectivity density than controls. Concordantly, histomorphometry revealed higher bone resorption and lower bone formation in Igfbp4(-/-) females. In contrast, Igfbp4(-/-) males had lower mineralized surface/bone surface. Femoral expression of Sost and circulating levels of sclerostin were reduced but only in Igfbp4(-/-) males. Bone marrow stromal cultures from mutants showed increased osteogenesis, whereas osteoclastogenesis was markedly increased in cells from Igfbp4(-/-) females but decreased in males. In sum, our results indicate that loss of Igfbp4 affects mesenchymal stromal cell differentiation, regulates osteoclastogenesis and influences both skeletal development and adult bone maintenance. Thus, IGFBP-4 modulates the skeleton in a gender-specific manner, acting as both a cell autonomous and cell non-autonomous factor.

  8. Coping, emotion regulation, and self-blame as mediators of sexual abuse and psychological symptoms in adult sexual assault.

    PubMed

    Ullman, Sarah E; Peter-Hagene, Liana C; Relyea, Mark

    2014-01-01

    This study examined whether coping, emotion regulation, and self-blame mediate relationships of trauma histories with post-traumatic stress disorder and depression in adult sexual assault victims (N = 1863). A path analysis showed that theorized mediators partially mediated associations between trauma history variables and psychological symptoms. Specifically, child sexual abuse severity was related to greater post-traumatic stress disorder and depression indirectly through maladaptive coping and decreased emotion regulation but not self-blame. Other traumas had direct relationships with symptoms and partially mediated effects through maladaptive coping and emotion regulation. Child sexual abuse was unrelated to self-blame, but other traumas were related to greater self-blame. Results differed according to whether women had counseling post-assault. Implications are drawn for future research and clinical treatment of adult sexual assault victims.

  9. Mindfulness predicts less texting while driving among young adults: Examining attention- and emotion-regulation motives as potential mediators

    PubMed Central

    Feldman, Greg; Greeson, Jeff; Renna, Megan; Robbins-Monteith, Kendra

    2011-01-01

    Many young adult drivers read and send text messages while driving despite clear safety risks. Understanding predictors of texting-while-driving may help to indentify relevant targets for interventions to reduce this dangerous behavior. The present study examined whether individual differences in mindfulness is associated with texting-while-driving in a sample of young-adult drivers. Using path analysis, we tested whether this relationship would be mediated by the degree to which individuals use text-messaging as a means of reducing unpleasant emotions (emotion-regulation motives) and the degree to which individuals limit texting in order to focus on present-moment experiences (attention-regulation motives). Individuals lower in mindfulness reported more frequent texting-while-driving and this relationship appeared to be mediated primarily by emotion-regulation motives. Results may help inform the development of mindfulness-based interventions to prevent texting-while-driving. PMID:22031789

  10. Mindfulness predicts less texting while driving among young adults: Examining attention- and emotion-regulation motives as potential mediators.

    PubMed

    Feldman, Greg; Greeson, Jeff; Renna, Megan; Robbins-Monteith, Kendra

    2011-11-01

    Many young adult drivers read and send text messages while driving despite clear safety risks. Understanding predictors of texting-while-driving may help to indentify relevant targets for interventions to reduce this dangerous behavior. The present study examined whether individual differences in mindfulness is associated with texting-while-driving in a sample of young-adult drivers. Using path analysis, we tested whether this relationship would be mediated by the degree to which individuals use text-messaging as a means of reducing unpleasant emotions (emotion-regulation motives) and the degree to which individuals limit texting in order to focus on present-moment experiences (attention-regulation motives). Individuals lower in mindfulness reported more frequent texting-while-driving and this relationship appeared to be mediated primarily by emotion-regulation motives. Results may help inform the development of mindfulness-based interventions to prevent texting-while-driving.

  11. Periodic variation in R-R intervals and cardiovascular autonomic regulation in young adult Syrian hamsters.

    PubMed

    Mongue-Din, H; Salmon, A; Fiszman, M Y; Fromes, Y

    2009-03-01

    Several hamster strains are commonly used as models for cardiomyopathic phenotypes evolving toward heart failure. However, little is known about heart rate variability (HRV) in this species. Prolonged surface ECG recording, a prerequisite to HRV studies, can be obtained either by telemetry or by restraints. Here, we performed long time ECG recording using telemetry on young adult Syrian hamsters and we analyzed time series of interbeat intervals. Standard statistics showed that the mean of normal R-R intervals slightly increased with age, with standard deviation of normal R-R intervals remaining stable over time. However, time domain analysis using Poincaré plots revealed dynamic changes in the HRV. Analysis of frequency domains revealed that the ratio of spectral components (low frequency/high frequency) exhibited a maturation pattern. Thus refined analysis of HRV revealed a more complex pattern than common statistical analysis would translate. Unlike other rodents, hamsters display a great spontaneous variability of their heart rate. As the complexity canvas of HRV might be the consequence of extracardiac regulation factors, we assessed the sympathovagal balance in both time and frequency domain of heart rate. Pharmacological tests revealed that both sympathetic and vagal tones contribute to HRV in Syrian hamsters. Thus Syrian hamsters have a broad intrinsic HRV with large influences of the neurovegetative system. However, the influence of the previous beat seems to prevail over the autonomic oscillators. These animals present a high sensitivity to artificially altered cardiac regulation and might be great models for the diagnosis of early alterations in the HRV related to pathology. Therefore, Syrian hamsters represent a unique model for HRV studies.

  12. Emotion regulation in disordered eating: Psychometric properties of the Difficulties in Emotion Regulation Scale among Spanish adults and its interrelations with personality and clinical severity

    PubMed Central

    Wolz, Ines; Agüera, Zaida; Granero, Roser; Jiménez-Murcia, Susana; Gratz, Kim L.; Menchón, José M.; Fernández-Aranda, Fernando

    2015-01-01

    Objective: The aims of the study were to (1) validate the Difficulties in Emotion Regulation Scale (DERS) in a sample of Spanish adults with and without eating disorders, and (2) explore the role of emotion regulation difficulties in eating disorders (ED), including its mediating role in the relation between key personality traits and ED severity. Methods: One hundred and thirty four patients (121 female, mean age = 29 years) with anorexia nervosa (n = 30), bulimia nervosa (n = 54), binge eating (n = 20), or Other Specified Feeding or Eating Disorders (n = 30) and 74 healthy control participants (51 female, mean age = 21 years) reported on general psychopathology, ED severity, personality traits and difficulties in emotion regulation. Exploratory and confirmatory factor analyses were conducted to examine the psychometrics of the DERS in this Spanish sample (Aim 1). Additionally, to examine the role of emotion regulation difficulties in ED (Aim 2), differences in emotion regulation difficulties across eating disorder subgroups were examined and structural equation modeling was used to explore the interrelations among emotion regulation, personality traits, and eating disorder severity. Results: Results support the validity and reliability of the DERS within this Spanish adult sample and suggest that this measure has a similar factor structure in this sample as in the original sample. Moreover, emotion regulation difficulties were found to differ as a function of eating disorder subtype and to mediate the relation between two specific personality traits (i.e., high harm avoidance and low self-directedness) and ED severity. Conclusions: Personality traits of high harm avoidance and low self-directedness may increase vulnerability to ED pathology indirectly, through emotion regulation difficulties. PMID:26175710

  13. Distinct stages of adult hippocampal neurogenesis are regulated by running and the running environment.

    PubMed

    Bednarczyk, Matthew R; Hacker, Lindsay C; Fortin-Nunez, Stéphanie; Aumont, Anne; Bergeron, Raynald; Fernandes, Karl J L

    2011-12-01

    Hippocampal neurogenesis continues into adulthood in mammalian vertebrates, and in experimental rodent models it is powerfully stimulated by exposure to a voluntary running wheel. In this study, we demonstrate that exposure to a running wheel environment, in the absence of running, is sufficient to regulate specific aspects of hippocampal neurogenesis. Adult mice were provided with standard housing, housing enriched with a running wheel or housing enriched with a locked wheel (i.e., an environment comparable to that of running animals, without the possibility of engaging in running). We found that mice in the running wheel and locked wheel groups exhibited equivalent increases in proliferation within the neurogenic niche of the dentate gyrus; this included comparable increases in the proliferation of radial glia-like stem cells and the number of proliferating neuroblasts. However, only running animals displayed increased numbers of postmitotic neuroblasts and mature neurons. These results demonstrate that the running wheel environment itself is sufficient for promoting proliferation of early lineage hippocampal precursors, while running per se enables newly generated neuroblasts to survive and mature into functional hippocampal neurons. Thus, both running-independent and running-dependent stimuli are integral to running wheel-induced hippocampal neurogenesis.

  14. MicroRNA-101 Regulates Multiple Developmental Programs to Constrain Excitation in Adult Neural Networks.

    PubMed

    Lippi, Giordano; Fernandes, Catarina C; Ewell, Laura A; John, Danielle; Romoli, Benedetto; Curia, Giulia; Taylor, Seth R; Frady, E Paxon; Jensen, Anne B; Liu, Jerry C; Chaabane, Melanie M; Belal, Cherine; Nathanson, Jason L; Zoli, Michele; Leutgeb, Jill K; Biagini, Giuseppe; Yeo, Gene W; Berg, Darwin K

    2016-12-21

    A critical feature of neural networks is that they balance excitation and inhibition to prevent pathological dysfunction. How this is achieved is largely unknown, although deficits in the balance contribute to many neurological disorders. We show here that a microRNA (miR-101) is a key orchestrator of this essential feature, shaping the developing network to constrain excitation in the adult. Transient early blockade of miR-101 induces long-lasting hyper-excitability and persistent memory deficits. Using target site blockers in vivo, we identify multiple developmental programs regulated in parallel by miR-101 to achieve balanced networks. Repression of one target, NKCC1, initiates the switch in γ-aminobutyric acid (GABA) signaling, limits early spontaneous activity, and constrains dendritic growth. Kif1a and Ank2 are targeted to prevent excessive synapse formation. Simultaneous de-repression of these three targets completely phenocopies major dysfunctions produced by miR-101 blockade. Our results provide new mechanistic insight into brain development and suggest novel candidates for therapeutic intervention.

  15. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila

    PubMed Central

    Yu, Yue; Huang, Rui; Ye, Jie; Zhang, Vivian; Wu, Chao; Cheng, Guo; Jia, Junling; Wang, Liming

    2016-01-01

    Starvation induces sustained increase in locomotion, which facilitates food localization and acquisition and hence composes an important aspect of food-seeking behavior. We investigated how nutritional states modulated starvation-induced hyperactivity in adult Drosophila. The receptor of the adipokinetic hormone (AKHR), the insect analog of glucagon, was required for starvation-induced hyperactivity. AKHR was expressed in a small group of octopaminergic neurons in the brain. Silencing AKHR+ neurons and blocking octopamine signaling in these neurons eliminated starvation-induced hyperactivity, whereas activation of these neurons accelerated the onset of hyperactivity upon starvation. Neither AKHR nor AKHR+ neurons were involved in increased food consumption upon starvation, suggesting that starvation-induced hyperactivity and food consumption are independently regulated. Single cell analysis of AKHR+ neurons identified the co-expression of Drosophila insulin-like receptor (dInR), which imposed suppressive effect on starvation-induced hyperactivity. Therefore, insulin and glucagon signaling exert opposite effects on starvation-induced hyperactivity via a common neural target in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.15693.001 PMID:27612383

  16. Regulation of neuropilin 1 by spinal cord injury in adult rats.

    PubMed

    Agudo, Marta; Robinson, Michelle; Cafferty, William; Bradbury, Elizabeth J; Kilkenny, Carol; Hunt, Stephen P; McMahon, Stephen B

    2005-03-01

    Using RT-PCR, in situ hybridization, Western blotting, and immunofluorescence, we have analyzed the expression of neuropilin 1 (Np1) in two models of spinal cord injury (spinal cord hemisection and dorsal column crush) and following dorsal root rhizotomy in adult rats. Our results show that Np1 RNA and protein are up-regulated in the spinal cord after all these lesions but remain unaltered in the adjacent dorsal root ganglia. In control animals, Np1 levels in the spinal cord are low and appear to be localized mainly in blood vessels, motoneurons, and in the superficial layers of the dorsal horn. After DCC and rhizotomy, Np1 is expressed de novo around the injury and in the deafferentated dorsal horn, respectively, mainly by OX42-positive microglial cells. Both lesions affect the sensory projections, and interestingly a consistent increase of Np1 signal is additionally seen in the dorsal horn where these projections terminate. Unexpectedly, this increase is bilateral after unilateral rhizotomy.

  17. CPG15 regulates synapse stability in the developing and adult brain

    PubMed Central

    Fujino, Tadahiro; Leslie, Jennifer H.; Eavri, Ronen; Chen, Jerry L.; Lin, Walter C.; Flanders, Genevieve H.; Borok, Erzsebet; Horvath, Tamas L.; Nedivi, Elly

    2011-01-01

    Use-dependent selection of optimal connections is a key feature of neural circuit development and, in the mature brain, underlies functional adaptation, such as is required for learning and memory. Activity patterns guide circuit refinement through selective stabilization or elimination of specific neuronal branches and synapses. The molecular signals that mediate activity-dependent synapse and arbor stabilization and maintenance remain elusive. We report that knockout of the activity-regulated gene cpg15 in mice delays developmental maturation of axonal and dendritic arbors visualized by anterograde tracing and diolistic labeling, respectively. Electrophysiology shows that synaptic maturation is also delayed, and electron microscopy confirms that many dendritic spines initially lack functional synaptic contacts. While circuits eventually develop, in vivo imaging reveals that spine maintenance is compromised in the adult, leading to a gradual attrition in spine numbers. Loss of cpg15 also results in poor learning. cpg15 knockout mice require more trails to learn, but once they learn, memories are retained. Our findings suggest that CPG15 acts to stabilize active synapses on dendritic spines, resulting in selective spine and arbor stabilization and synaptic maturation, and that synapse stabilization mediated by CPG15 is critical for efficient learning. PMID:22190461

  18. Makorin ortholog LEP-2 regulates LIN-28 stability to promote the juvenile-to-adult transition in Caenorhabditis elegans.

    PubMed

    Herrera, R Antonio; Kiontke, Karin; Fitch, David H A

    2016-03-01

    The heterochronic genes lin-28, let-7 and lin-41 regulate fundamental developmental transitions in animals, such as stemness versus differentiation and juvenile versus adult states. We identify a new heterochronic gene, lep-2, in Caenorhabditis elegans. Mutations in lep-2 cause a delay in the juvenile-to-adult transition, with adult males retaining pointed, juvenile tail tips, and displaying defective sexual behaviors. In both sexes, lep-2 mutants fail to cease molting or produce an adult cuticle. We find that LEP-2 post-translationally regulates LIN-28 by promoting LIN-28 protein degradation. lep-2 encodes the sole C. elegans ortholog of the Makorin (Mkrn) family of proteins. Like lin-28 and other heterochronic pathway members, vertebrate Mkrns are involved in developmental switches, including the timing of pubertal onset in humans. Based on shared roles, conservation and the interaction between lep-2 and lin-28 shown here, we propose that Mkrns, together with other heterochronic genes, constitute an evolutionarily ancient conserved module regulating switches in development.

  19. Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect.

    PubMed

    Rinehart, Joseph P; Hayward, Scott A L; Elnitsky, Michael A; Sandro, Luke H; Lee, Richard E; Denlinger, David L

    2006-09-19

    Antarctica's terrestrial environment is a challenge to which very few animals have adapted. The largest, free-living animal to inhabit the continent year-round is a flightless midge, Belgica antarctica. Larval midges survive the lengthy austral winter encased in ice, and when the ice melts in summer, the larvae complete their 2-yr life cycle, and the wingless adults form mating aggregations while subjected to surprisingly high substrate temperatures. Here we report a dichotomy in survival strategies exploited by this insect at different stages of its life cycle. Larvae constitutively up-regulate their heat shock proteins (small hsp, hsp70, and hsp90) and maintain a high inherent tolerance to temperature stress. High or low temperature exposure does not further up-regulate these genes nor does it further enhance thermotolerance. Such "preemptive" synthesis of hsps is sufficient to prevent irreversible protein aggregation in response to a variety of common environmental stresses. Conversely, adults exhibit no constitutive up-regulation of their hsps and have a lower intrinsic tolerance to high temperatures, but their hsps can be thermally activated, resulting in enhanced thermotolerance. Thus, the midge larvae, but not the adults, have adopted the unusual strategy of expressing hsps continuously, possibly to facilitate proper protein folding in a cold habitat that is more thermally stable than that of the adults but a habitat subjected frequently to freeze-thaw episodes and bouts of pH, anoxic, and osmotic stress.

  20. Makorin ortholog LEP-2 regulates LIN-28 stability to promote the juvenile-to-adult transition in Caenorhabditis elegans

    PubMed Central

    Herrera, R. Antonio; Kiontke, Karin; Fitch, David H. A.

    2016-01-01

    The heterochronic genes lin-28, let-7 and lin-41 regulate fundamental developmental transitions in animals, such as stemness versus differentiation and juvenile versus adult states. We identify a new heterochronic gene, lep-2, in Caenorhabditis elegans. Mutations in lep-2 cause a delay in the juvenile-to-adult transition, with adult males retaining pointed, juvenile tail tips, and displaying defective sexual behaviors. In both sexes, lep-2 mutants fail to cease molting or produce an adult cuticle. We find that LEP-2 post-translationally regulates LIN-28 by promoting LIN-28 protein degradation. lep-2 encodes the sole C. elegans ortholog of the Makorin (Mkrn) family of proteins. Like lin-28 and other heterochronic pathway members, vertebrate Mkrns are involved in developmental switches, including the timing of pubertal onset in humans. Based on shared roles, conservation and the interaction between lep-2 and lin-28 shown here, we propose that Mkrns, together with other heterochronic genes, constitute an evolutionarily ancient conserved module regulating switches in development. PMID:26811380

  1. Knowledge About E-Cigarette Constituents and Regulation: Results From a National Survey of U.S. Young Adults

    PubMed Central

    Tan, Andy S. L.; Bigman, Cabral A.; Henriksen, Lisa

    2015-01-01

    Objectives: To examine young adults’ knowledge of e-cigarette constituents and regulation and its association with product use and self-reported exposure to marketing. Methods: Young adults (18–34 years, N = 1,247) from a U.S. web panel were surveyed in March 2014. Using multinomial logistic regressions, self-reported exposure to marketing was examined as a predictor of whether participants responded correctly (reference category), incorrectly, or “don’t know” to four knowledge items—whether e-cigarettes contain nicotine, contain toxic chemicals, are regulated by government for safety, and are regulated for use as a cessation aid. Analyses adjusted for demographics and smoking status and were weighted to match the U.S. young adult population. Results: Most respondents did not know if e-cigarettes, contain toxic chemicals (48%), are regulated for safety (61%), and are regulated as cessation aids (68%); fewer than 37% answered all of these items correctly. Current users of e-cigarettes (past 30 days) had a lower likelihood of being incorrect about safety testing (p = .006) and being regulated as a cessation aid (p = .017). Higher exposure to e-cigarette marketing was associated with a lower likelihood of responding “don’t know” than being correct, and with a higher likelihood of being incorrect as opposed to correct about e-cigarettes containing nicotine. Conclusions: Knowledge about e-cigarette constituents and regulation was low among young adults, who are the largest consumer group for these products. Interventions, such as warning labels or information campaigns, may be necessary to educate and correct misinformation about these products. PMID:25542915

  2. A self-regulation resource model of self-compassion and health behavior intentions in emerging adults

    PubMed Central

    Sirois, Fuschia M.

    2015-01-01

    Objective This study tested a self-regulation resource model (SRRM) of self-compassion and health-promoting behavior intentions in emerging adults. The SRRM posits that positive and negative affect in conjunction with health self-efficacy serve as valuable self-regulation resources to promote health behaviors. Methods An online survey was completed by 403 emerging adults recruited from the community and a Canadian University in late 2008. Multiple meditation analyses with bootstrapping controlling for demographics and current health behaviors tested the proposed explanatory role of the self-regulation resource variables (affect and self-efficacy) in linking self-compassion to health behavior intentions. Results Self-compassion was positively associated with intentions to engage in health-promoting behaviors. The multiple mediation model explained 23% of the variance in health behavior intentions, with significant indirect effects through health self-efficacy and low negative affect. Conclusion Interventions aimed at increasing self-compassion in emerging adults may help promote positive health behaviors, perhaps through increasing self-regulation resources. PMID:26844074

  3. MicroRNA-124 inhibits cellular proliferation and invasion by targeting Ets-1 in breast cancer.

    PubMed

    Li, Wentao; Zang, Wenqiao; Liu, Pei; Wang, Yuanyuan; Du, Yuwen; Chen, Xiaonan; Deng, Meng; Sun, Wencong; Wang, Lei; Zhao, Guoqiang; Zhai, Baoping

    2014-11-01

    MicroRNAs (miRNAs) are small non-coding RNAs that, by targeting certain messenger RNAs (mRNAs) for translational repression or cleavage, can regulate the expression of these genes. In addition, miRNAs may also function as oncogenes and tumor-suppressor genes, as the abnormal expression of miRNAs is associated with various human tumors. However, the effects of the expression of miR-124 in breast cancer remain unclear. The present study was conducted to study the expression of miR-124 in breast cancer, paying particular attention to miR-124's relation to the proliferation, invasion, and apoptosis in breast cancer cell MCF-7 and MDA-MB-231. Real-time quantitative RT-PCR (qRT-PCR) was performed to identify miR-124 that was down-regulated in breast cancer tissues. We also showed E26 transformation specific-1 (Ets-1) and miR-124 expression levels in breast cancer tissues that were associated with lymph node metastases. With transfected synthetic miR-124 agomir into MCF-7 and MDA-MB-231, a significant reduction (P < 0.05) in MCF-7 and MDA-MB-231 cell proliferation and colony forming potential was observed after treatment with miR-124. Apoptosis and migration rates were found to be significantly higher in two breast-derived cell lines transfected with a miR-124 agomir (P < 0.05). Luciferase reporter assay and Western blot were used to verify Ets-1 as a potential major target gene of miR-124, and the result showed that miR-124 can bind to putative binding sites within the Ets-1 mRNA 3' untranslated region (UTR) to reduce its expression. Based on these findings, we propose that miR-124 and Ets-1 may serve as a therapeutic agent in breast cancer.

  4. HIPPOCAMPAL ADULT NEUROGENESIS: ITS REGULATION AND POTENTIAL ROLE IN SPATIAL LEARNING AND MEMORY

    PubMed Central

    Lieberwirth, Claudia; Pan, Yongliang; Liu, Yan; Zhang, Zhibin; Wang, Zuoxin

    2016-01-01

    Adult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning behavior is discussed by summarizing the literature focusing on traditional animal models (e.g., rats and mice), non-traditional animal models (e.g., tree shrews), as well as natural populations (e.g., chickadees and Siberian chipmunk). PMID:27174001

  5. SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells*

    PubMed Central

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M.; Evans, Ronald M.; Gage, Fred H.

    2012-01-01

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs. PMID:22194602

  6. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action.

    PubMed

    Lucassen, P J; Meerlo, P; Naylor, A S; van Dam, A M; Dayer, A G; Fuchs, E; Oomen, C A; Czéh, B

    2010-01-01

    Adult hippocampal neurogenesis, a once unorthodox concept, has changed into one of the most rapidly growing fields in neuroscience. The present report results from the ECNP targeted expert meeting in 2007 during which cellular plasticity changes were addressed in the adult brain, focusing on neurogenesis and apoptosis in hippocampus and frontal cortex. We discuss recent studies investigating factors that regulate neurogenesis with special emphasis on effects of stress, sleep disruption, exercise and inflammation, a group of seemingly unrelated factors that share at least two unifying properties, namely that they all regulate adult hippocampal neurogenesis and have all been implicated in the pathophysiology of mood disorders. We conclude that although neurogenesis has been implicated in cognitive function and is stimulated by antidepressant drugs, its functional impact and contribution to the etiology of depression remains unclear. A lasting reduction in neurogenesis following severe or chronic stress exposure, either in adult or early life, may represent impaired hippocampal plasticity and can contribute to the cognitive symptoms of depression, but is, by itself, unlikely to produce the full mood disorder. Normalization of reductions in neurogenesis appears at least partly, implicated in antidepressant action.

  7. IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain

    PubMed Central

    Nieto-Estévez, Vanesa; Defterali, Çağla; Vicario-Abejón, Carlos

    2016-01-01

    The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs). This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I) exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type, and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP) and the subventricular zone-olfactory bulb (SVZ-OB). By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis, and neuron integration in synaptic circuits. PMID:26941597

  8. The development, factor structure and psychometric properties of driving self-regulation scales for older adults: Has self-regulation evolved in the last 15 years?

    PubMed

    Wong, Ides Y; Smith, Simon S; Sullivan, Karen A

    2015-07-01

    The term driving self-regulation is typically used to describe the practice of drivers who avoid driving in situations that they regard as unsafe because of perceived physical impairment. Older adults report using this strategy to improve safety while retaining mobility. Self-regulation is typically assessed using the driving avoidance items from the driving habits questionnaire (DHQ) and the driver mobility questionnaire (DMQ-A). However, the psychometric properties of these measures are not well understood. Using data from 277 older drivers, exploratory factor analysis was used to test the homogeneity of three driving self-regulation scales: the DHQ, DMQ-A, and an extended DMQ-A. Good internal consistency for each of the scales was identified (all αs≥.9). A one factor solution was identified for two of the measures (DHQ, DMQ-A) and a two factor solution accounting for over 70% of the score variance was identified for the third measure. The two factors assessed situations that may be avoided while driving because of the "external" (e.g., weather-related) or "internal" (e.g., passenger-related) driving environments, respectively. The findings suggest that the interpretation of an overall summated scale score, or single-item interpretations, may not be appropriate. Instead, driving self-regulation may be a multifaceted construct comprised of distinct dimensions that have not been identified previously but can be reliably measured. These data have implications for our understanding of driving self-regulation by older adults and the way in which this behavior is measured.

  9. Effects of tamoxifen on autosomal genes regulating ovary maintenance in adult mice.

    PubMed

    Yu, Mingxi; Liu, Wei; Wang, Jingyun; Qin, Junwen; Wang, Yongan; Wang, Yu

    2015-12-01

    Environmental endocrine-disrupting chemicals (EDCs), known to bind to estrogen/androgen receptors and mimic native estrogens, have been implicated as a main source for increasing human reproductive and developmental deficiencies and diseases. Tamoxifen (TAM) is one of the most well-known antiestrogens with defined adverse effects on the female reproductive tract, but the mechanisms related to autosomal gene regulation governing ovary maintenance in mammals remain unclear. The expression pattern and levels of key genes and proteins involved in maintaining the ovarian phenotype in mice were analyzed. The results showed that TAM induced significant upregulation of Sox9, which is the testis-determining factor gene. The results showed that TAM induced significant upregulation of Sox9, the testis-determining factor gene, and the expression level of Sox9 mRNA in the ovaries of mice exposed to 75 or 225 mg/kg bw TAM was 2- and 10-fold that in the control group, respectively (p < 0.001). Furthermore, the testicular fibroblast growth factor gene, Fgf9, was also elevated in TAM-treated ovaries. Accordingly, expression of the ovary development marker, forkhead transcription factor (FOXL2), and WNT4/FST signaling, were depressed. The levels of protein expression changed consistently with the target genes. Moreover, the detection of platelet/endothelial cell adhesion molecule 1 (PECAM-1) in TAM-treated ovaries suggested the formation of vascular endothelial cells, which is a further evidence for the differentiation of the ovaries to a testis-like phenotype. During this period, the level of 17β-estradiol, progesterone, and luteinizing hormone decreased, while that of testosterone increased by 3.3-fold (p = 0.013). The activation of a testis-specific molecular signaling cascade was a potentially important mechanism contributing to the gender disorder induced by TAM, which resulted in the differentiation of the ovaries to a testis-like phenotype in adult mice. Limited with

  10. Short- and Long-Term Self-Regulation and Sexual Risk-Taking Behaviors in Unmarried Heterosexual Young Adults.

    PubMed

    Moilanen, Kristin L

    2015-01-01

    The goal of this study was to explore associations between short- and long-term self-regulation and dimensions of oral and coital sexual risk-taking in emerging adulthood. A total of 287 unmarried heterosexual young adults ages 18 to 26 years (62% female; 87% European American; 81% enrolled in college) provided study data via Internet surveys. High levels of long-term self-regulation predicted later initiation of oral sex and coitus, fewer lifetime coital partners, increased likelihood of condom and other contraceptive use at last intercourse, and low composite levels of coital risk. High levels of short-term self-regulation predicted reduced likelihood of condom use and high overall coital risk. The discussion focuses on the interpretation of these effects and potential directions for future research.

  11. Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus.

    PubMed

    Hassouna, I; Ott, C; Wüstefeld, L; Offen, N; Neher, R A; Mitkovski, M; Winkler, D; Sperling, S; Fries, L; Goebbels, S; Vreja, I C; Hagemeyer, N; Dittrich, M; Rossetti, M F; Kröhnert, K; Hannke, K; Boretius, S; Zeug, A; Höschen, C; Dandekar, T; Dere, E; Neher, E; Rizzoli, S O; Nave, K-A; Sirén, A-L; Ehrenreich, H

    2016-12-01

    Recombinant human erythropoietin (EPO) improves cognitive performance in neuropsychiatric diseases ranging from schizophrenia and multiple sclerosis to major depression and bipolar disease. This consistent EPO effect on cognition is independent of its role in hematopoiesis. The cellular mechanisms of action in brain, however, have remained unclear. Here we studied healthy young mice and observed that 3-week EPO administration was associated with an increased number of pyramidal neurons and oligodendrocytes in the hippocampus of ~20%. Under constant cognitive challenge, neuron numbers remained elevated until >6 months of age. Surprisingly, this increase occurred in absence of altered cell proliferation or apoptosis. After feeding a (15)N-leucine diet, we used nanoscopic secondary ion mass spectrometry, and found that in EPO-treated mice, an equivalent number of neurons was defined by elevated (15)N-leucine incorporation. In EPO-treated NG2-Cre-ERT2 mice, we confirmed enhanced differentiation of preexisting oligodendrocyte precursors in the absence of elevated DNA synthesis. A corresponding analysis of the neuronal lineage awaits the identification of suitable neuronal markers. In cultured neurospheres, EPO reduced Sox9 and stimulated miR124, associated with advanced neuronal differentiation. We are discussing a resulting working model in which EPO drives the differentiation of non-dividing precursors in both (NG2+) oligodendroglial and neuronal lineages. As endogenous EPO expression is induced by brain injury, such a mechanism of adult neurogenesis may be relevant for central nervous system regeneration.

  12. Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus

    PubMed Central

    Hassouna, I; Ott, C; Wüstefeld, L; Offen, N; Neher, R A; Mitkovski, M; Winkler, D; Sperling, S; Fries, L; Goebbels, S; Vreja, I C; Hagemeyer, N; Dittrich, M; Rossetti, M F; Kröhnert, K; Hannke, K; Boretius, S; Zeug, A; Höschen, C; Dandekar, T; Dere, E; Neher, E; Rizzoli, S O; Nave, K-A; Sirén, A-L; Ehrenreich, H

    2016-01-01

    Recombinant human erythropoietin (EPO) improves cognitive performance in neuropsychiatric diseases ranging from schizophrenia and multiple sclerosis to major depression and bipolar disease. This consistent EPO effect on cognition is independent of its role in hematopoiesis. The cellular mechanisms of action in brain, however, have remained unclear. Here we studied healthy young mice and observed that 3-week EPO administration was associated with an increased number of pyramidal neurons and oligodendrocytes in the hippocampus of ~20%. Under constant cognitive challenge, neuron numbers remained elevated until >6 months of age. Surprisingly, this increase occurred in absence of altered cell proliferation or apoptosis. After feeding a 15N-leucine diet, we used nanoscopic secondary ion mass spectrometry, and found that in EPO-treated mice, an equivalent number of neurons was defined by elevated 15N-leucine incorporation. In EPO-treated NG2-Cre-ERT2 mice, we confirmed enhanced differentiation of preexisting oligodendrocyte precursors in the absence of elevated DNA synthesis. A corresponding analysis of the neuronal lineage awaits the identification of suitable neuronal markers. In cultured neurospheres, EPO reduced Sox9 and stimulated miR124, associated with advanced neuronal differentiation. We are discussing a resulting working model in which EPO drives the differentiation of non-dividing precursors in both (NG2+) oligodendroglial and neuronal lineages. As endogenous EPO expression is induced by brain injury, such a mechanism of adult neurogenesis may be relevant for central nervous system regeneration. PMID:26809838

  13. p53 E3 ubiquitin protein ligase homolog regulates p53 in vivo in the adult mouse eye lens

    PubMed Central

    Jaramillo-Rangel, Gilberto; Ortega-Martínez, Marta; Sepúlveda-Saavedra, Julio; Saucedo-Cárdenas, Odila; Montes-de-Oca-Luna, Roberto

    2013-01-01

    Purpose p53 is a transcription factor that plays an important role in preventing cancer development. p53 participates in relevant aspects of cell biology, including apoptosis and cell cycle control and must be strictly regulated to maintain normal tissue homeostasis. p53 E3 ubiquitin protein ligase homolog (Mdm2) is an important negative regulator of p53. The purpose of this study was to determine if Mdm2 regulates p53 in vivo in the adult lens. Methods We analyzed mice expressing human p53 transgene (Tgp53) selectively in the lens in the presence or absence of Mdm2. Mice with the required genotypes were obtained by crossing transgenic, mdm2+/−, and p53−/− mice. Eye phenotype and lens histology and ultrastructure were analyzed in adult mice. Results In a wild-type genetic background (mdm2+/+), lens damage and microphthalmia were observed only in mice homozygous for Tgp53 (t/t). However, in an mdm2 null background, just one allele of Tgp53 (mdm2−/−/Tgp53t/0 mice) was sufficient to cause lens damage and microphthalmia. Furthermore, Mdm2 in only one allele was sufficient to rescue these deleterious effects, since the mdm2+/−/Tgp53t/0 mice had eye size and lens morphology similar to the control mice. Conclusions Mdm2 regulates p53 in the adult lens in vivo. This information may have relevance for analyzing normal and pathological conditions of the lens, and designing cancer therapies targeting Mdm2–p53 interaction. PMID:24339722

  14. Timing of Expression of a Gene in the Adult Drosophila Is Regulated by Mechanisms Independent of Temperature and Metabolic Rate

    PubMed Central

    Rogina, B.; Helfand, S. L.

    1996-01-01

    The examination of β-galactosidase (β-gal) expression in the third segment of the antenna of the 2216 enhancer trap line in Drosophila melanogaster reveals two distinct spatial and temporal regulatory patterns of expression during adult life. Type I expression is characterized by a decline in the level of β-gal expression with increasing age. Starting from a maximal level of expression at the time of adult emergence, there is a decrease in the number of cells that express β-gal so that by 40-50 days of adult life few cells express β-gal. Varying the ambient temperature and using hyperactivity mutants (Hyperkinetic(1), Shaker(5)) demonstrates that the rate of this decline is independent of temperature and metabolic rate. Type II expression is distinctly different in spatial distribution and temporal regulation from the first pattern. Type II expression is restricted in the antenna to a small (<20-30) set of cells whose level of expression changes in a periodic manner with time. The regulation of this periodicity appears to be linked to ambient temperature. PMID:8844152

  15. Type 1 inositol trisphosphate receptor regulates cerebellar circuits by maintaining the spine morphology of purkinje cells in adult mice.

    PubMed

    Sugawara, Takeyuki; Hisatsune, Chihiro; Le, Tung Dinh; Hashikawa, Tsutomu; Hirono, Moritoshi; Hattori, Mitsuharu; Nagao, Soichi; Mikoshiba, Katsuhiko

    2013-07-24

    The structural maintenance of neural circuits is critical for higher brain functions in adulthood. Although several molecules have been identified as regulators for spine maintenance in hippocampal and cortical neurons, it is poorly understood how Purkinje cell (PC) spines are maintained in the mature cerebellum. Here we show that the calcium channel type 1 inositol trisphosphate receptor (IP3R1) in PCs plays a crucial role in controlling the maintenance of parallel fiber (PF)-PC synaptic circuits in the mature cerebellum in vivo. Significantly, adult mice lacking IP3R1 specifically in PCs (L7-Cre;Itpr1(flox/flox)) showed dramatic increase in spine density and spine length of PCs, despite having normal spines during development. In addition, the abnormally rearranged PF-PC synaptic circuits in mature cerebellum caused unexpectedly severe ataxia in adult L7-Cre;Itpr1(flox/flox) mice. Our findings reveal a specific role for IP3R1 in PCs not only as an intracellular mediator of cerebellar synaptic plasticity induction, but also as a critical regulator of PF-PC synaptic circuit maintenance in the mature cerebellum in vivo; this mechanism may underlie motor coordination and learning in adults.

  16. The COP1 ortholog PPS regulates the juvenile-adult and vegetative-reproductive phase changes in rice.

    PubMed

    Tanaka, Nobuhiro; Itoh, Hironori; Sentoku, Naoki; Kojima, Mikiko; Sakakibara, Hitoshi; Izawa, Takeshi; Itoh, Jun-Ichi; Nagato, Yasuo

    2011-06-01

    Because plant reproductive development occurs only in adult plants, the juvenile-to-adult phase change is an indispensable part of the plant life cycle. We identified two allelic mutants, peter pan syndrome-1 (pps-1) and pps-2, that prolong the juvenile phase in rice (Oryza sativa) and showed that rice PPS is an ortholog of Arabidopsis thaliana CONSTITUTIVE PHOTOMORPHOGENIC1. The pps-1 mutant exhibits delayed expression of miR156 and miR172 and the suppression of GA biosynthetic genes, reducing the GA(3) content in this mutant. In spite of its prolonged juvenile phase, the pps-1 mutant flowers early, and this is associated with derepression of RAP1B expression in pps-1 plants independently of the Hd1-Hd3a/RFT1 photoperiodic pathway. PPS is strongly expressed in the fourth and fifth leaves, suggesting that it regulates the onset of the adult phase downstream of MORI1 and upstream of miR156 and miR172. Its ability to regulate the vegetative phase change and the time of flowering suggests that rice PPS acquired novel functions during the evolution of rice/monocots.

  17. A Case Study on the Impacts of Connective Technology on Self-Efficacy and Self-Regulated Learning of Female Adult Students Managing Work-Life Balance

    ERIC Educational Resources Information Center

    Sheetz, Tracey L.

    2014-01-01

    Adults frequently define their lives as "hectic" and "overextended;" yet, many make the decision to return to school and add the role of student into their busy lives. This research study explored and explained the impact of connective technology on self-efficacy and self-regulated learning of female adult students balancing…

  18. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation

    PubMed Central

    Plümpe, Tobias; Ehninger, Dan; Steiner, Barbara; Klempin, Friederike; Jessberger, Sebastian; Brandt, Moritz; Römer, Benedikt; Rodriguez, Gerardo Ramirez; Kronenberg, Golo; Kempermann, Gerd

    2006-01-01

    Background In the course of adult hippocampal neurogenesis most regulation takes place during the phase of doublecortin (DCX) expression, either as pro-proliferative effect on precursor cells or as survival-promoting effect on postmitotic cells. We here obtained quantitative data about the proliferative population and the dynamics of postmitotic dendrite development during the period of DCX expression. The question was, whether any indication could be obtained that the initiation of dendrite development is timely bound to the exit from the cell cycle. Alternatively, the temporal course of morphological maturation might be subject to additional regulatory events. Results We found that (1) 20% of the DCX population were precursor cells in cell cycle, whereas more than 70% were postmitotic, (2) the time span until newborn cells had reached the most mature stage associated with DCX expression varied between 3 days and several weeks, (3) positive or negative regulation of precursor cell proliferation did not alter the pattern and dynamics of dendrite development. Dendrite maturation was largely independent of close contacts to astrocytes. Conclusion These data imply that dendrite maturation of immature neurons is initiated at varying times after cell cycle exit, is variable in duration, and is controlled independently of the regulation of precursor cell proliferation. We conclude that in addition to the major regulatory events in cell proliferation and selective survival, additional micro-regulatory events influence the course of adult hippocampal neurogenesis. PMID:17105671

  19. MicroRNAs: potential regulators involved in human anencephaly.

    PubMed

    Zhang, Zhiping; Chang, Huibo; Li, Yuanyuan; Zhang, Ting; Zou, Jizhen; Zheng, Xiaoying; Wu, Jianxin

    2010-02-01

    MicroRNAs (miRNAs) are posttranscriptional regulators of messenger RNA activity. Neural tube defects (NTDs) are severe congenital anomalies that substantially impact an infant's morbidity and mortality. The miRNAs are known to be dynamically regulated during neurodevelopment; their role in human NTDs, however, is still unknown. In this study, we show the presence of a specific miRNA expression profile from tissues of fetuses with anencephaly, one of the most severe forms of NTDs. Furthermore, we map the target genes of these miRNAs in the human genome. In comparison to healthy human fetal brain tissues, tissues from fetuses with anencephaly exhibited 97 down-regulated and 116 up-regulated miRNAs. The microarray findings were extended using real-time qRT-PCR for nine miRNAs. Specifically, of these validated miRNAs, miR-126, miR-198, and miR-451 were up-regulated, while miR-9, miR-212, miR-124, miR-138, and miR-103/107 were down-regulated in the tissues of fetuses with anencephaly. A bioinformatic analysis showed 881 potential target genes that are regulated by the validated miRNAs. Seventy-nine of these potential genes are involved in a protein interaction network. There were 6 co-occurrence annotations within the GOSlim process and 7 co-occurrence annotations within the GOSlim function found by GeneCodis 2.0. Our results suggest that miRNA dysregulation is possibly involved in the pathogenesis of anencephaly.

  20. Ubx dynamically regulates Dpp signaling by repressing Dad expression during copper cell regeneration in the adult Drosophila midgut.

    PubMed

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-11-15

    The gastrointestinal (GI) tract of metazoans is lined by a series of regionally distinct epithelia. To maintain structure and function of the GI tract, regionally diversified differentiation of somatic stem cell (SC) lineages is critical. The adult Drosophila midgut provides an accessible model to study SC regulation and specification in a regionally defined manner. SCs of the posterior midgut (PM) have been studied extensively, but the control of SCs in the middle midgut (MM) is less well understood. The MM contains a stomach-like copper cell region (CCR) that is regenerated by gastric stem cells (GSSCs) and contains acid-secreting copper cells (CCs). Bmp-like Decapentaplegic (Dpp) signaling determines the identity of GSSCs, and is required for CC regeneration, yet the precise control of Dpp signaling activity in this lineage remains to be fully established. Here, we show that Dad, a negative feedback regulator of Dpp signaling, is dynamically regulated in the GSSC lineage to allow CC differentiation. Dad is highly expressed in GSSCs and their first daughter cells, the gastroblasts (GBs), but has to be repressed in differentiating CCs to allow Dpp-mediated differentiation into CCs. We find that the Hox gene ultrabithorax (Ubx) is required for this regulation. Loss of Ubx prevents Dad repression in the CCR, resulting in defective CC regeneration. Our study highlights the need for dynamic control of Dpp signaling activity in the differentiation of the GSSC lineage and identifies Ubx as a critical regulator of this process.

  1. Sonic hedgehog acts as a negative regulator of {beta}-catenin signaling in the adult tongue epithelium.

    PubMed

    Schneider, Fabian T; Schänzer, Anne; Czupalla, Cathrin J; Thom, Sonja; Engels, Knut; Schmidt, Mirko H H; Plate, Karl H; Liebner, Stefan

    2010-07-01

    Wnt/beta-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/beta-catenin pathway activation in reporter mice and by nuclear beta-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. beta-Catenin activation in APC(min/+) mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in the tongue epithelium without formation of squamous cell carcinoma (SCC). We demonstrate that Shh suppresses beta-catenin transcriptional activity in a signaling-dependent manner in vitro and in vivo. A similar regulation and function was observed for JAG2, suggesting that both pathways negatively regulate beta-catenin, thereby preventing SCC formation in the tongue. This was supported by reduced nuclear beta-catenin in the tongue epithelium of Patched(+/-) mice, exhibiting dominant active Shh signaling. At the invasive front of human tongue cancer, nuclear beta-catenin and Shh were increased, suggesting their participation in tumor progression. Interestingly, Shh but not JAG2 was able to reduce beta-catenin signaling in SCC cells, arguing for a partial loss of negative feedback on beta-catenin transcription in tongue cancer. We show for the first time that the putative Wnt/beta-catenin targets Shh and JAG2 control beta-catenin signaling in the adult tongue epithelium, a function that is partially lost in lingual SCC.

  2. Sonic Hedgehog Acts as a Negative Regulator of β-Catenin Signaling in the Adult Tongue Epithelium

    PubMed Central

    Schneider, Fabian T.; Schänzer, Anne; Czupalla, Cathrin J.; Thom, Sonja; Engels, Knut; Schmidt, Mirko H.H.; Plate, Karl H.; Liebner, Stefan

    2010-01-01

    Wnt/β-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/β-catenin pathway activation in reporter mice and by nuclear β-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. β-Catenin activation in APCmin/+ mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in the tongue epithelium without formation of squamous cell carcinoma (SCC). We demonstrate that Shh suppresses β-catenin transcriptional activity in a signaling-dependent manner in vitro and in vivo. A similar regulation and function was observed for JAG2, suggesting that both pathways negatively regulate β-catenin, thereby preventing SCC formation in the tongue. This was supported by reduced nuclear β-catenin in the tongue epithelium of Patched+/− mice, exhibiting dominant active Shh signaling. At the invasive front of human tongue cancer, nuclear β-catenin and Shh were increased, suggesting their participation in tumor progression. Interestingly, Shh but not JAG2 was able to reduce β-catenin signaling in SCC cells, arguing for a partial loss of negative feedback on β-catenin transcription in tongue cancer. We show for the first time that the putative Wnt/β-catenin targets Shh and JAG2 control β-catenin signaling in the adult tongue epithelium, a function that is partially lost in lingual SCC. PMID:20508033

  3. Professionalisation as Development and as Regulation: Adult Education in Germany, the United Kingdom and India

    ERIC Educational Resources Information Center

    Doyle, Lesley; Egetenmeyer, Regina; Singai, Chetan; Devi, Uma

    2016-01-01

    In this paper, the authors seek to disentangle what they see as contradictory uses of the term "professionalisation" with reference to adult educator development and training (AEDT). They set out to distinguish "professionalisation" from "professionalism," and to identify the locus of control of AEDT in Germany, the…

  4. The Association among Difficulties in Emotion Regulation, Hostility, and Empathy in a Sample of Young Italian Adults

    PubMed Central

    Contardi, Anna; Imperatori, Claudio; Penzo, Ilaria; Del Gatto, Claudia; Farina, Benedetto

    2016-01-01

    The aim of the present study was to assess the role of empathy in mediating the association between difficulties in emotion regulation and hostility. Three hundred and sixty young Italian adults (220 women and 140 men) were enrolled in the study. Psychopathological assessments included the Difficulties in Emotion Regulation Scale (DERS), the Interpersonal Reactivity Index and the Buss–Durkee Hostility Inventory (BDHI). Perspective taking (PT) and Personal distress (PD) are significantly associated with both DERS total score and BDHI total score. A mediational model analyzing the direct and indirect effects of DERS on BDHI through the mediating role of PT and PD showed that the relation between DERS and BDHI was partially mediated by PT total score (b = 0.16; se = 0.01; p = 0.02). Taken together our findings support the possibility that PT skills could play a crucial role in inhibiting hostility behaviors. PMID:27486417

  5. The use and evaluation of self-regulation techniques can predict health goal attainment in adults: an explorative study

    PubMed Central

    De Bourdeaudhuij, Ilse; Verloigne, Maite; Crombez, Geert

    2016-01-01

    Background. Self-regulation tools are not always used optimally, and implementation intention plans often lack quality. Therefore, this study explored participants’ use and evaluation of self-regulation techniques and their impact on goal attainment. Methods. Data were obtained from 452 adults in a proof of concept (POC) intervention of ‘MyPlan’, an eHealth intervention using self-regulation techniques to promote three healthy behaviours (physical activity (PA), fruit intake, or vegetable intake). Participants applied self-regulation techniques to a self-selected health behaviour, and evaluated the self-regulation techniques. The quality of implementation intentions was rated by the authors as a function of instrumentality (instrumental and non-instrumental) and specificity (non-specific and medium to highly specific). Logistic regression analyses were conducted to predict goal attainment. Results. Goal attainment was significantly predicted by the motivational value of the personal advice (OR:1.86), by the specificity of the implementation intentions (OR:3.5), by the motivational value of the action plan (OR:1.86), and by making a new action plan at follow-up (OR:4.10). Interaction-effects with behaviour showed that the specificity score of the implementation intention plans (OR:4.59), the motivational value of the personal advice (OR:2.38), selecting hindering factors and solutions(OR:2.00) and making a new action plan at follow-up (OR:7.54) were predictive of goal attainment only for fruit or vegetable intake. Also, when participants in the fruit and vegetable group made more than three plans, they were more likely to attain their goal (OR:1.73), whereas the reverse was the case in the PA group (OR:0.34). Discussion. The chance that adults reach fruit and vegetable goals can be increased by including motivating personal advice, self-formulated action plans, and instructions/strategies to make specific implementation intentions into eHealth interventions

  6. p38α MAPK regulates adult muscle stem cell fate by restricting progenitor proliferation during postnatal growth and repair.

    PubMed

    Brien, Patrick; Pugazhendhi, Dhamayanthi; Woodhouse, Samuel; Oxley, David; Pell, Jennifer M

    2013-08-01

    Stem cell function is essential for the maintenance of adult tissue homeostasis. Controlling the balance between self-renewal and differentiation is crucial to maintain a receptive satellite cell pool capable of responding to growth and regeneration cues. The mitogen-activated protein kinase p38α has been implicated in the regulation of these processes but its influence in adult muscle remains unknown. Using conditional satellite cell p38α knockout mice we have demonstrated that p38α restricts excess proliferation in the postnatal growth phase while promoting timely myoblast differentiation. Differentiation was still able to occur in the p38α-null satellite cells, however, but was delayed. An absence of p38α resulted in a postnatal growth defect along with the persistence of an increased reservoir of satellite cells into adulthood. This population was still capable of responding to cardiotoxin-induced injury, resulting in complete, albeit delayed, regeneration, with further enhancement of the satellite cell population. Increased p38γ phosphorylation accompanied the absence of p38α, and inhibition of p38γ ex vivo substantially decreased the myogenic defect. We have used genome-wide transcriptome analysis to characterize the changes in expression that occur between resting and regenerating muscle, and the influence p38α has on these expression profiles. This study provides novel evidence for the fundamental role of p38α in adult muscle homeostasis in vivo.

  7. Long-distance axonal regeneration in the filum terminale of adult rats is regulated by ependymal cells.

    PubMed

    Kwiecien, Jacek M; Avram, Ronen

    2008-03-01

    Studies of regeneration of transected adult central nervous system (CNS) axons are difficult due to lack of appropriate in vivo models. In adult rats, we described filum terminale (FT), a caudal slender extension of the sacral spinal cord and an integral part of the central nervous system (CNS), to use it as a model of spinal cord injury. FT is more than 3 cm long, encompasses a central canal lined with ependymal cells surrounded by a narrow band of axons interspersed with oligodendrocytes and astrocytes but not neurons. Two weeks after the crush of FT, histological, ultrastructural, and axonal tracing studies revealed long distance descending axonal regeneration uniquely in close proximity of the ependymal cells of the central canal. Ependymal cells extended basal processes to form channels encompassing axons apparently regenerating at a rate of more than 2 mm a day. Remarkable increase of axonal sprouting was observed in the sacral spinal cord of Long Evans Shaker (LES) rats with crushed FT. FT offers an excellent model to study mechanisms of axonal regeneration regulated by ependymal cells in the adult CNS.

  8. 34 CFR 460.3 - What regulations apply to the adult education programs?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Education Programs and Activities). (6) 34 CFR part 80 (Uniform Administrative Requirements for Grants and...) 34 CFR part 86 (Drug-Free Schools and Campuses). (b) The regulations in this part 460. (c)...

  9. 34 CFR 460.3 - What regulations apply to the adult education programs?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Education Programs and Activities). (6) 34 CFR part 80 (Uniform Administrative Requirements for Grants and...) 34 CFR part 86 (Drug-Free Schools and Campuses). (b) The regulations in this part 460. (c)...

  10. 34 CFR 460.3 - What regulations apply to the adult education programs?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Education Programs and Activities). (6) 34 CFR part 80 (Uniform Administrative Requirements for Grants and...) 34 CFR part 86 (Drug-Free Schools and Campuses). (b) The regulations in this part 460. (c)...

  11. Gender difference in older adult's utilization of gravitational and ground reaction force in regulation of angular momentum during stair descent.

    PubMed

    Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki-Hoon; Kwon, Young-Hoo

    2015-06-01

    Angular momentum of the body is a highly controlled quantity signifying stability, therefore, it is essential to understand its regulation during stair descent. The purpose of this study was to investigate how older adults use gravity and ground reaction force to regulate the angular momentum of the body during stair descent. A total of 28 participants (12 male and 16 female; 68.5 years and 69.0 years of mean age respectively) performed stair descent from a level walk in a step-over-step manner at a self-selected speed over a custom made three-step staircase with embedded force plates. Kinematic and force data were used to calculate angular momentum, gravitational moment, and ground reaction force moment about the stance foot center of pressure. Women show a significantly greater change in normalized angular momentum (0.92Nms/Kgm; p=.004) as compared to men (0.45Nms/Kgm). Women produce higher normalized GRF (p=.031) during the double support phase. The angular momentum changes show largest backward regulation for Step 0 and forward regulation for Step 2. This greater difference in overall change in the angular momentum in women may explain their increased risk of fall over the stairs.

  12. Childhood maltreatment and difficulties in emotion regulation: associations with sexual and relationship satisfaction among young adult women.

    PubMed

    Rellini, Alessandra H; Vujanovic, Anka A; Gilbert, Myani; Zvolensky, Michael J

    2012-01-01

    This study examined relations among childhood maltreatment, difficulties in emotion regulation, and sexual and relationship satisfaction among young adult women reporting current involvement in committed, romantic relationships. A sample of 192 women (ages 18-25) completed self-report questionnaires as part of an Internet-based survey. It was hypothesized that severity of childhood maltreatment and difficulties in emotion regulation would each independently and negatively predict (a) sexual satisfaction, (b) relationship intimacy, and (c) expression of affection within the context of the relationship. Furthermore, it was hypothesized that greater emotion regulation difficulties would moderate the effects of childhood maltreatment on these sexual and relationship variables (i.e., sexual satisfaction, relationship intimacy, and expression of affection). Findings suggest that difficulties in emotion regulation demonstrated an incremental effect with regard to sexual satisfaction, but not with intimacy and affection expression. In contrast to predictions, no significant interactive effects were documented. Clinical implications and future directions related to this line of inquiry are discussed.

  13. Circadian Regulation Gene Polymorphisms are Associated with Sleep Disruption and Duration, and Circadian Phase and Rhythm in Adults with HIV

    PubMed Central

    Lee, Kathryn A.; Gay, Caryl; Byun, Eeeseung; Lerdal, Anners; Pullinger, Clive R.; Aouizerat, Bradley E.

    2016-01-01

    Genes involved in circadian regulation, such as circadian locomotor output cycles kaput [CLOCK], cryptochrome [CRY1], and period [PER], have been associated with sleep outcomes in prior animal and human research. However, it is unclear whether polymorphisms in these genes are associated with the sleep disturbances commonly experienced by adults living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thus, the purpose of this study was to describe polymorphisms in selected circadian genes that are associated with sleep duration or disruption as well as the sleep-wake rhythm strength and phase timing among adults living with HIV/AIDS. A convenience sample of 289 adults with HIV/AIDS was recruited from HIV clinics and community sites in the San Francisco Bay Area. A wrist actigraph was worn for 72 hours on weekdays to estimate sleep duration or total sleep time (TST), sleep disruption or percentage of wake after sleep onset (WASO), and several circadian rhythm parameters: mesor, amplitude, the ratio of mesor to amplitude (circadian quotient), and 24-hour autocorrelation. Circadian phase measures included clock time for peak activity (acrophase) from actigraphy movement data, and bed time and final wake time from actigraphy and self-report. Genotyping was conducted for polymorphisms in 5 candidate genes involved in circadian regulation: CLOCK, CRY1, PER1, PER2, and PER3. Demographic and clinical variables were evaluated as potential covariates. Interactions between genotype and HIV variables (i.e., viral load, years since HIV diagnosis) were also evaluated. Controlling for potentially confounding variables (e.g., race, gender, CD4+ T-cell count, waist circumference, medication use, smoking, depressive symptoms), CLOCK was associated with WASO, 24-hour autocorrelation, and objectively-measured bed time; CRY1 was associated with circadian quotient; PER1 was associated with mesor and self-reported habitual wake time; PER2 was associated

  14. Circadian regulation gene polymorphisms are associated with sleep disruption and duration, and circadian phase and rhythm in adults with HIV.

    PubMed

    Lee, Kathryn A; Gay, Caryl; Byun, Eeeseung; Lerdal, Anners; Pullinger, Clive R; Aouizerat, Bradley E

    2015-01-01

    Genes involved in circadian regulation, such as circadian locomotor output cycles kaput [CLOCK], cryptochrome [CRY1] and period [PER], have been associated with sleep outcomes in prior animal and human research. However, it is unclear whether polymorphisms in these genes are associated with the sleep disturbances commonly experienced by adults living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thus, the purpose of this study was to describe polymorphisms in selected circadian genes that are associated with sleep duration or disruption as well as the sleep-wake rhythm strength and phase timing among adults living with HIV/AIDS. A convenience sample of 289 adults with HIV/AIDS was recruited from HIV clinics and community sites in the San Francisco Bay Area. A wrist actigraph was worn for 72 h on weekdays to estimate sleep duration or total sleep time (TST), sleep disruption or percentage of wake after sleep onset (WASO) and several circadian rhythm parameters: mesor, amplitude, the ratio of mesor to amplitude (circadian quotient), and 24-h autocorrelation. Circadian phase measures included clock time for peak activity (acrophase) from actigraphy movement data, and bed time and final wake time from actigraphy and self-report. Genotyping was conducted for polymorphisms in five candidate genes involved in circadian regulation: CLOCK, CRY1, PER1, PER2 and PER3. Demographic and clinical variables were evaluated as potential covariates. Interactions between genotype and HIV variables (i.e. viral load, years since HIV diagnosis) were also evaluated. Controlling for potentially confounding variables (e.g. race, gender, CD4+ T-cell count, waist circumference, medication use, smoking and depressive symptoms), CLOCK was associated with WASO, 24-h autocorrelation and objectively-measured bed time; CRY1 was associated with circadian quotient; PER1 was associated with mesor and self-reported habitual wake time; PER2 was associated with TST

  15. Opposite-sex attraction in male mice requires testosterone-dependent regulation of adult olfactory bulb neurogenesis

    PubMed Central

    Schellino, Roberta; Trova, Sara; Cimino, Irene; Farinetti, Alice; Jongbloets, Bart C.; Pasterkamp, R. Jeroen; Panzica, Giancarlo; Giacobini, Paolo; De Marchis, Silvia; Peretto, Paolo

    2016-01-01

    Opposite-sex attraction in most mammals depends on the fine-tuned integration of pheromonal stimuli with gonadal hormones in the brain circuits underlying sexual behaviour. Neural activity in these circuits is regulated by sensory processing in the accessory olfactory bulb (AOB), the first central station of the vomeronasal system. Recent evidence indicates adult neurogenesis in the AOB is involved in sex behaviour; however, the mechanisms underlying this function are unknown. By using Semaphorin 7A knockout (Sema7A ko) mice, which show a reduced number of gonadotropin-releasing-hormone neurons, small testicles and subfertility, and wild-type males castrated during adulthood, we demonstrate that the level of circulating testosterone regulates the sex-specific control of AOB neurogenesis and the vomeronasal system activation, which influences opposite-sex cue preference/attraction in mice. Overall, these data highlight adult neurogenesis as a hub for the integration of pheromonal and hormonal cues that control sex-specific responses in brain circuits. PMID:27782186

  16. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis.

    PubMed

    Wagner, Daniel E; Ho, Jaclyn J; Reddien, Peter W

    2012-03-02

    Pluripotency is a central, well-studied feature of embryonic development, but the role of pluripotent cell regulation in somatic tissue regeneration remains poorly understood. In planarians, regeneration of entire animals from tissue fragments is promoted by the activity of adult pluripotent stem cells (cNeoblasts). We utilized transcriptional profiling to identify planarian genes expressed in adult proliferating, regenerative cells (neoblasts). We also developed quantitative clonal analysis methods for expansion and differentiation of cNeoblast descendants that, together with RNAi, revealed gene roles in stem cell biology. Genes encoding two zinc finger proteins, Vasa, a LIM domain protein, Sox and Jun-like transcription factors, two candidate RNA-binding proteins, a Setd8-like protein, and PRC2 (Polycomb) were required for proliferative expansion and/or differentiation of cNeoblast-derived clones. These findings suggest that planarian stem cells utilize molecular mechanisms found in germ cells and other pluripotent cell types and identify genetic regulators of the planarian stem cell system.

  17. Perception of Self-Motion and Regulation of Walking Speed in Young-Old Adults.

    PubMed

    Lalonde-Parsi, Marie-Jasmine; Lamontagne, Anouk

    2015-07-01

    Whether a reduced perception of self-motion contributes to poor walking speed adaptations in older adults is unknown. In this study, speed discrimination thresholds (perceptual task) and walking speed adaptations (walking task) were compared between young (19-27 years) and young-old individuals (63-74 years), and the relationship between the performance on the two tasks was examined. Participants were evaluated while viewing a virtual corridor in a helmet-mounted display. Speed discrimination thresholds were determined using a staircase procedure. Walking speed modulation was assessed on a self-paced treadmill while exposed to different self-motion speeds ranging from 0.25 to 2 times the participants' comfortable speed. For each speed, participants were instructed to match the self-motion speed described by the moving corridor. On the walking task, participants displayed smaller walking speed errors at comfortable walking speeds compared with slower of faster speeds. The young-old adults presented larger speed discrimination thresholds (perceptual experiment) and larger walking speed errors (walking experiment) compared with young adults. Larger walking speed errors were associated with higher discrimination thresholds. The enhanced performance on the walking task at comfortable speed suggests that intersensory calibration processes are influenced by experience, hence optimized for frequently encountered conditions. The altered performance of the young-old adults on the perceptual and walking tasks, as well as the relationship observed between the two tasks, suggest that a poor perception of visual motion information may contribute to the poor walking speed adaptations that arise with aging.

  18. The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain

    PubMed Central

    2012-01-01

    Background Unlike mammals, zebrafish exhibits extensive neural regeneration after injury in adult stages of its lifetime due to the neurogenic activity of the radial glial cells. However, the genes involved in the regenerative neurogenesis response of the zebrafish brain are largely unknown. Thus, understanding the underlying principles of this regeneration capacity of the zebrafish brain is an interesting research realm that may offer vast clinical ramifications. Results In this paper, we characterized the expression pattern of cxcr5 and analyzed the function of this gene during adult neurogenesis and regeneration of the zebrafish telencephalon. We found that cxcr5 was upregulated transiently in the RGCs and neurons, and the expression in the immune cells such as leukocytes was negligible during both adult neurogenesis and regeneration. We observed that the transgenic misexpression of cxcr5 in the ventricular cells using dominant negative and full-length variants of the gene resulted in altered proliferation and neurogenesis response of the RGCs. When we knocked down cxcr5 using antisense morpholinos and cerebroventricular microinjection, we observed outcomes similar to the overexpression of the dominant negative cxcr5 variant. Conclusions Thus, based on our results, we propose that cxcr5 imposes a proliferative permissiveness to the radial glial cells and is required for differentiation of the RGCs to neurons, highlighting novel roles of cxcr5 in the nervous system of vertebrates. We therefore suggest that cxcr5 is an important cue for ventricular cell proliferation and regenerative neurogenesis in the adult zebrafish telencephalon. Further studies on the role of cxcr5 in mediating neuronal replenishment have the potential to produce clinical ramifications in efforts for regenerative therapeutic applications for human neurological disorders or acute injuries. PMID:22824261

  19. Localization and regulation of PML bodies in the adult mouse brain.

    PubMed

    Hall, Małgorzata H; Magalska, Adriana; Malinowska, Monika; Ruszczycki, Błażej; Czaban, Iwona; Patel, Satyam; Ambrożek-Latecka, Magdalena; Zołocińska, Ewa; Broszkiewicz, Hanna; Parobczak, Kamil; Nair, Rajeevkumar R; Rylski, Marcin; Pawlak, Robert; Bramham, Clive R; Wilczyński, Grzegorz M

    2016-06-01

    PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons.

  20. Microvillar size and espin expression in principal cells of the adult rat epididymis are regulated by androgens.

    PubMed

    Primiani, Nadia; Gregory, Mary; Dufresne, Julie; Smith, Charles E; Liu, Ye Lauren; Bartles, James R; Cyr, Daniel G; Hermo, Louis

    2007-01-01

    Principal cells of the epididymis are the most prominent cell type and are noted for an apical cell surface studded with microvilli. The latter contain channel proteins that condition the microenvironment of epididymal lumen and promote sperm maturation; however, the regulation of the structure and integrity of microvilli is not well known. Espins are a family of proteins implicated in microvillar growth. The objectives of this study were to assess the regulation of espin in epididymal principal cells both in vitro and in vivo. Treatment of immortalized rat caput epididymal (RCE) cells with increasing doses of a homogenized testicular extract revealed a dose-dependent increase in the size of microvilli. Reverse transcriptase-polymerase chain reaction (RT-PCR) of adult rat epididymal RNA using espin-specific primers indicated the presence of a band at about 290 base pairs (bp) in all regions. Western blot analysis using affinity-purified espin antibody confirmed the presence of an approximately 110-kDa band in the epididymis, corresponding to espin isoform 1. In adult rats, immunocytochemistry revealed espin expression over principal cells. In orchidectomized rats, espin expression was significantly reduced, whereas ligation of the efferent ducts resulted in a decrease of espin expression but not to the extent of orchidectomy. The fact that espin expression was restored to control levels in orchidectomized rats supplemented with high levels of testosterone indicated that its expression was dependent on androgens and not on other lumicrine factors derived from the testis. Taken together, these data indicate that espin is expressed in the epididymis and is regulated by androgens.

  1. Purines regulate adult brain subventricular zone cell functions: contribution of reactive astrocytes.

    PubMed

    Boccazzi, Marta; Rolando, Chiara; Abbracchio, Maria P; Buffo, Annalisa; Ceruti, Stefania

    2014-03-01

    Brain injuries modulate activation of neural stem cells (NSCs) in the adult brain. In pathological conditions, the concentrations of extracellular nucleotides (eNTs) raise several folds, contribute to reactive gliosis, and possibly directly affect subventricular zone (SVZ) cell functioning. Among eNTs and derived metabolites, the P2Y1 receptor agonist ADP strongly promotes astrogliosis and might also influence SVZ progenitor activity. Here, we tested the ability of the stable P2Y1 agonist adenosine 5'-O-(2-thiodiphosphate) (ADPβS) to control adult NSC functions both in vitro and in vivo, with a focus on the possible effects exerted by reactive astrocytes. In the absence of growth factors, ADPβS promoted proliferation and differentiation of SVZ progenitors. Moreover, ADPβS-activated astrocytes markedly changed the pattern of released cytokines and chemokines, and strongly modulated neurosphere-forming capacity of SVZ progenitors. Notably, a significant enhancement in proliferation was observed when SVZ cells, initially grown in the supernatant of astrocytes exposed to ADPβS, were shifted to normal medium. In vivo, ADPβS administration in the lateral ventricle of adult mice by osmotic minipumps caused diffused reactive astrogliosis, and a strong response of SVZ progenitors. Indeed, proliferation of glial fibrillary acidic protein-positive NSCs increased and led to a significant expansion of SVZ transit-amplifying progenitors and neuroblasts. Lineage tracing experiments performed in the GLAST::CreERT2;Rosa-YFP transgenic mice further demonstrated that ADPβS promoted proliferation of glutamate/aspartate transporter-positive progenitors and sustained their progression toward the generation of rapidly dividing progenitors. Altogether, our results show that the purinergic system crucially affects SVZ progenitor activities both directly and through the involvement of reactive astrocytes.

  2. Presenilin-1 regulates neural progenitor cell differentiation in the adult brain

    PubMed Central

    Gadadhar, Archana; Marr, Robert; Lazarov, Orly

    2011-01-01

    Presenilin-1 (PS1) is the catalytic core of the aspartyl protease γ-secretase. Previous genetic studies using germ-line deletion of PS1 and conditional knockout mice demonstrated that PS1 plays an essential role in neuronal differentiation during neural development, but it remained unclear whether PS1 plays a similar role in neurogenesis in the adult brain. Here we show that neural progenitor cells infected with lentiviral vectors expressing short interfering RNA (siRNA) for the exclusive knockdown of PS1 in the neurogenic microenvironments, exhibit a dramatic enhancement of cell differentiation. Infected cells differentiated into neurons, astrocytes and oligodendrocytes, suggesting that multipotentiality of neural progenitor cells is not affected by reduced levels of PS1. Neurosphere cultures treated with γ-secretase inhibitors exhibit a similar phenotype of enhanced cell differentiation, suggesting that PS1 function in neural progenitor cells is γ-secretase-dependent. Neurospheres infected with lentiviral vectors expressing siRNA for the targeting of PS1 differentiated even in the presence of the proliferation factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), suggesting that PS1 dominates EFG and bFGF signaling pathways. Reduction of PS1 expression in neural progenitor cells was accompanied by a decrease in epidermal growth factor receptor (EGFR) and β-catenin expression level, suggesting that they are downstream essential transducers of PS1 signaling in adult neural progenitor cells. These findings suggest a physiological role for PS1 in adult neurogenesis, and a potential target for the manipulation of neural progenitor cell differentiation. PMID:21325529

  3. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning.

    PubMed

    Donato, Flavio; Rompani, Santiago Belluco; Caroni, Pico

    2013-12-12

    Learning and memory processes can be influenced by recent experience, but the mechanisms involved are poorly understood. Enhanced plasticity during critical periods of early life is linked to differentiating parvalbumin (PV)-interneuron networks, suggesting that recent experience may modulate learning by targeting the differentiation state of PV neurons in the adult. Here we show that environmental enrichment and Pavlovian contextual fear conditioning induce opposite, sustained and reversible hippocampal PV-network configurations in adult mice. Specifically, enrichment promotes the emergence of large fractions of low-differentiation (low PV and GAD67 expression) basket cells with low excitatory-to-inhibitory synaptic-density ratios, whereas fear conditioning leads to large fractions of high-differentiation (high PV and GAD67 expression) basket cells with high excitatory-to-inhibitory synaptic-density ratios. Pharmacogenetic inhibition or activation of PV neurons was sufficient to induce such opposite low-PV-network or high-PV-network configurations, respectively. The low-PV-network configuration enhanced structural synaptic plasticity, and memory consolidation and retrieval, whereas these were reduced by the high-PV-network configuration. We then show that maze navigation learning induces a hippocampal low-PV-network configuration paralleled by enhanced memory and structural synaptic plasticity throughout training, followed by a shift to a high-PV-network configuration after learning completion. The shift to a low-PV-network configuration specifically involved increased vasoactive intestinal polypeptide (VIP)-positive GABAergic boutons and synaptic transmission onto PV neurons. Closely comparable low- and high-PV-network configurations involving VIP boutons were specifically induced in primary motor cortex upon rotarod motor learning. These results uncover a network plasticity mechanism induced after learning through VIP-PV microcircuit modulation, and involving

  4. Changes in self-efficacy for exercise and improved nutrition fostered by increased self-regulation among adults with obesity.

    PubMed

    Annesi, James J; Johnson, Ping H; McEwen, Kristin L

    2015-10-01

    Behavioral theory suggests that treatments that increase participants' use of self-regulatory skills and/or their feelings of ability (self-efficacy) will improve exercise and nutrition behaviors. In addition, psychosocial factors associated with increased exercise may carry over to improved eating. Self-regulation might enhance self-efficacy through feelings of ability to manage barriers to maintaining weight-loss behaviors. Sedentary adults with severe or morbid obesity (M age = 43 years; M BMI = 40.1 kg/m(2)) participated in a 6-month study within a community-based YMCA center. We randomly assigned participants to one of the two groups that incorporated the same cognitive-behavioral support of exercise paired with methods for controlled, healthy eating emphasizing either (a) self-efficacy (n = 138), or (b) self-regulation (n = 136) methods. Mixed model repeated measures ANOVAs indicated significant improvements in exercise- and eating-related self-regulation over 3 months, and exercise- and eating-related self-efficacy over 6 months. The Self-Regulation Treatment Group demonstrated greater improvements in self-regulation for eating and fruit and vegetable intake than the Self-Efficacy Group. Regression analyses indicated that for both exercise and eating, self-regulation change significantly predicted self-efficacy change. In separate equations, changes in exercise and fruit and vegetable intake mediated those relationships, and change in self-efficacy and the corresponding behavioral changes demonstrated reciprocal, mutually reinforcing, relationships. There was evidence of carry-over, or generalization, of both self-regulation and self-efficacy changes from an exercise context to an eating context. We discussed findings in terms of leveraging self-regulation to improve self-efficacy, and provide a rationale for why exercise is the strongest predictor of success with weight loss. Results may be used to inform future behavioral weight

  5. Isolating Metamemory Deficits in the Self-Regulated Learning of Adults with ADHD

    ERIC Educational Resources Information Center

    Knouse, Laura E.; Anastopoulos, Arthur D.; Dunlosky, John

    2012-01-01

    ADHD in adulthood is associated with chronic academic impairments and problems with strategic memory encoding on standardized memory assessments, but little is known about self-regulated learning that might guide intervention. Objective: Examine the contribution of metamemory judgment accuracy and use of learning strategies to self-regulated…

  6. Self-Regulation and Milestones of Adult Development: Intimacy and Generativity

    ERIC Educational Resources Information Center

    Busch, Holger; Hofer, Jan

    2012-01-01

    In 2 separate studies, the idea is tested that the positive association between self-regulatory capacities and well-being is partly explained by the positive effect self-regulation has on the successful resolution of developmental crises in Eriksonian terms. In Study 1, attentional control, intimacy, and subjective well-being are assessed in 177…

  7. Induced multipotency in adult keratinocytes through down-regulation of ΔNp63 or DGCR8.

    PubMed

    Chakravarti, Deepavali; Su, Xiaohua; Cho, Min Soon; Bui, Ngoc Hoang Bao; Coarfa, Cristian; Venkatanarayan, Avinashnarayan; Benham, Ashley L; Flores González, Ramón E; Alana, Jennifer; Xiao, Weimin; Leung, Marco L; Vin, Harina; Chan, Io Long; Aquino, Arianexys; Müller, Nicole; Wang, Hongran; Cooney, Austin J; Parker-Thornburg, Jan; Tsai, Kenneth Y; Gunaratne, Preethi H; Flores, Elsa R

    2014-02-04

    The roles of microRNAs (miRNAs) and the miRNA processing machinery in the regulation of stem cell biology are not well understood. Here, we show that the p53 family member and p63 isoform, ΔNp63, is a transcriptional activator of a cofactor critical for miRNA processing (DGCR8). This regulation gives rise to a unique miRNA signature resulting in reprogramming cells to multipotency. Strikingly, ΔNp63(-/-) epidermal cells display profound defects in terminal differentiation and express a subset of markers and miRNAs present in embryonic stem cells and fibroblasts induced to pluripotency using Yamanaka factors. Moreover, ΔNp63(-/-) epidermal cells transduced with an inducible DGCR8 plasmid can differentiate into multiple cell fates in vitro and in vivo. We found that human primary keratinocytes depleted of ΔNp63 or DGCR8 can be reprogrammed in 6 d and express a unique miRNA and gene expression signature that is similar but not identical to human induced pluripotent stem cells. Our data reveal a role for ΔNp63 in the transcriptional regulation of DGCR8 to reprogram adult somatic cells into multipotent stem cells.

  8. Hs3st-A and Hs3st-B regulate intestinal homeostasis in Drosophila adult midgut.

    PubMed

    Guo, Yueqin; Li, Zhouhua; Lin, Xinhua

    2014-11-01

    Intrinsic and extrinsic signals as well as the extracellular matrix (ECM) tightly regulate stem cells for tissue homeostasis and regenerative capacity. Little is known about the regulation of tissue homeostasis by the ECM. Heparan sulfate proteoglycans (HSPGs), important components of the ECM, are involved in a variety of biological events. Two heparin sulfate 3-O sulfotransferase (Hs3st) genes, Hs3st-A and Hs3st-B, encode the modification enzymes in heparan sulfate (HS) biosynthesis. Here we demonstrate that Hs3st-A and Hs3st-B are required for adult midgut homeostasis. Depletion of Hs3st-A in enterocytes (ECs) results in increased intestinal stem cell (ISC) proliferation and tissue homeostasis loss. Moreover, increased ISC proliferation is also observed in Hs3st-B null mutant alone, or in combination with Hs3st-A RNAi. Hs3st-A depletion-induced ISC proliferation is effectively suppressed by simultaneous inhibition of the EGFR signaling pathway, suggesting that tissue homeostasis loss in Hs3st-A-deficient intestines is due to increased EGFR signaling. Furthermore, we find that Hs3st-A-depleted ECs are unhealthy and prone to death, while ectopic expression of the antiapoptotic p35 is able to greatly suppress tissue homeostasis loss in these intestines. Together, our data suggest that Drosophila Hs3st-A and Hs3st-B are involved in the regulation of ISC proliferation and midgut homeostasis maintenance.

  9. Regulation of proto-oncogene expression in adult and developing lungs.

    PubMed Central

    Molinar-Rode, R; Smeyne, R J; Curran, T; Morgan, J I

    1993-01-01

    Activation of immediate-early gene expression has been associated with mitogenesis, differentiation, nerve cell depolarization, and recently, terminal differentiation processes and programmed cell death. Previous evidence also suggested that immediate-early genes play a role in the physiology of the lungs (J. I. Morgan, D. R. Cohen, J. L. Hempstead, and T. Curran, Science 237:192-197, 1987). Therefore, we analyzed c-fos expression in adult and developing lung tissues. Seizures elicited by chemoconvulsants induced expression of mRNA for c-fos, c-jun, and junB and Fos-like immunoreactivity in lung tissue. The use of pharmacological antagonists and adrenalectomy indicated that this increased expression was neurogenic. Interestingly, by using a fos-lacZ transgenic mouse, it was shown that Fos-LacZ expression in response to seizure occurred preferentially in clusters of epithelial cells at the poles of the bronchioles. This was the same location of Fos-LacZ expression detected during early lung development. These data imply that pharmacological induction of immediate-early gene expression in adult mice recapitulates an embryological program of gene expression. Images PMID:8497249

  10. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling

    SciTech Connect

    Das, Ani V.; Zhao Xing; James, Jackson; Kim, Min; Cowan, Kenneth H.; Ahmad, Iqbal . E-mail: iahmad@unmc.edu

    2006-01-13

    The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP. The GFAP-expressing CE stem cells/progenitors form neurospheres in proliferating conditions and generate neurons when shifted to differentiating conditions. These cells express components of the canonical Wnt pathway and its activation promotes their proliferation. Furthermore, we demonstrate that the activation of the canonical Wnt pathway influences neuronal differentiation of CE stem cells/progenitors in a context dependent manner. Our observations suggest that CE stem cells/progenitors share phenotypic properties and regulatory mechanism(s) with neural stem cells elsewhere in the adult CNS.

  11. Reciprocal interaction between TRAF6 and notch signaling regulates adult myofiber regeneration upon injury.

    PubMed

    Hindi, Sajedah M; Paul, Pradyut K; Dahiya, Saurabh; Mishra, Vivek; Bhatnagar, Shephali; Kuang, Shihuan; Choi, Yongwon; Kumar, Ashok

    2012-12-01

    Skeletal muscle is a postmitotic tissue that repairs and regenerates through activation of a population of stem-cell-like satellite cells. However, signaling mechanisms governing adult skeletal muscle regeneration remain less understood. In the present study, we have investigated the role of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), an adaptor protein involved in receptor-mediated activation of multiple signaling pathways in regeneration of adult myofibers. Skeletal muscle-specific depletion of TRAF6 in mice (TRAF6(mko)) improved regeneration of myofibers upon injury with a concomitant increase in the number of satellite cells and activation of the Notch signaling pathway. Ex vivo cultures of TRAF6(mko) myofiber explants demonstrated an increase in the proliferative capacity of myofiber-associated satellite cells accompanied by an upregulation of Notch ligands. Deletion of TRAF6 also inhibited the activity of transcription factor NF-κB and the expression of inflammatory cytokines and augmented the M2c macrophage phenotype in injured muscle tissues. Collectively, our study demonstrates that specific inhibition of TRAF6 improves satellite cell activation and skeletal muscle regeneration through upregulation of Notch signaling and reducing the inflammatory repertoire.

  12. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages.

    PubMed

    Pearson, Bret J; Sánchez Alvarado, Alejandro

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal.

  13. The Nuclear Receptor REV-ERBα Regulates Fabp7 and Modulates Adult Hippocampal Neurogenesis

    PubMed Central

    Schnell, Anna; Chappuis, Sylvie; Schmutz, Isabelle; Brai, Emanuele; Ripperger, Jürgen A.; Schaad, Olivier; Welzl, Hans; Descombes, Patrick; Alberi, Lavinia; Albrecht, Urs

    2014-01-01

    The function of the nuclear receptor Rev-erbα (Nr1d1) in the brain is, apart from its role in the circadian clock mechanism, unknown. Therefore, we compared gene expression profiles in the brain between wild-type and Rev-erbα knock-out (KO) animals. We identified fatty acid binding protein 7 (Fabp7, Blbp) as a direct target of repression by REV-ERBα. Loss of Rev-erbα manifested in memory and mood related behavioral phenotypes and led to overexpression of Fabp7 in various brain areas including the subgranular zone (SGZ) of the hippocampus, where neuronal progenitor cells (NPCs) can initiate adult neurogenesis. We found increased proliferation of hippocampal neurons and loss of its diurnal pattern in Rev-erbα KO mice. In vitro, proliferation and migration of glioblastoma cells were affected by manipulating either Fabp7 expression or REV-ERBα activity. These results suggest an important role of Rev-erbα and Fabp7 in adult neurogenesis, which may open new avenues for treatment of gliomas as well as neurological diseases such as depression and Alzheimer. PMID:24932636

  14. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family

    PubMed Central

    Porrello, Enzo R.; Mahmoud, Ahmed I.; Simpson, Emma; Johnson, Brett A.; Grinsfelder, David; Canseco, Diana; Mammen, Pradeep P.; Rothermel, Beverly A.; Olson, Eric N.; Sadek, Hesham A.

    2013-01-01

    We recently identified a brief time period during postnatal development when the mammalian heart retains significant regenerative potential after amputation of the ventricular apex. However, one major unresolved question is whether the neonatal mouse heart can also regenerate in response to myocardial ischemia, the most common antecedent of heart failure in humans. Here, we induced ischemic myocardial infarction (MI) in 1-d-old mice and found that this results in extensive myocardial necrosis and systolic dysfunction. Remarkably, the neonatal heart mounted a robust regenerative response, through proliferation of preexisting cardiomyocytes, resulting in full functional recovery within 21 d. Moreover, we show that the miR-15 family of microRNAs modulates neonatal heart regeneration through inhibition of postnatal cardiomyocyte proliferation. Finally, we demonstrate that inhibition of the miR-15 family from an early postnatal age until adulthood increases myocyte proliferation in the adult heart and improves left ventricular systolic function after adult MI. We conclude that the neonatal mammalian heart can regenerate after myocardial infarction through proliferation of preexisting cardiomyocytes and that the miR-15 family contributes to postnatal loss of cardiac regenerative capacity. PMID:23248315

  15. Eating frequency and energy regulation in free-living adults consuming self-selected diets.

    PubMed

    McCrory, Megan A; Howarth, Nancy C; Roberts, Susan B; Huang, Terry T-K

    2011-01-01

    The relative importance of eating frequency to weight control is poorly understood. This review examines the evidence to date on the role of eating frequency in weight control in free-living adults. The majority of cross-sectional studies in free-living adults show an inverse relationship between eating frequency and adiposity; however, this is likely an artifact produced by the underreporting of eating frequency concurrent with underreporting of energy intake. When implausible energy intake reporting (which is mostly underreporting) is taken into account, the association between eating frequency and adiposity becomes positive. In studies in which eating frequency is prescribed and food intake is mostly self-selected, there is either no effect or a minor positive effect of eating frequency on energy intake. Most of those studies have been short-term and lack the necessary dietary biomarkers to validate reported energy intakes and eating frequencies. In conclusion, there is some suggestion from cross-sectional studies in which energy intake underreporting is taken into account and from experimental studies to date that greater eating frequency may promote positive energy balance. However, experimental studies of longer-term duration that include objective dietary biomarkers are necessary before firm conclusions about the relative importance of eating frequency in weight control can be made.

  16. MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity

    PubMed Central

    Moretti, Irene; Ciciliot, Stefano; Dyar, Kenneth A.; Abraham, Reimar; Murgia, Marta; Agatea, Lisa; Akimoto, Takayuki; Bicciato, Silvio; Forcato, Mattia; Pierre, Philippe; Uhlenhaut, N. Henriette; Rigby, Peter W. J.; Carvajal, Jaime J.; Blaauw, Bert; Calabria, Elisa; Schiaffino, Stefano

    2016-01-01

    The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia. PMID:27484840

  17. Regional expression and androgen regulation of carbonic anhydrase IV and II in the adult rat epididymis.

    PubMed

    Kaunisto, K; Fleming, R E; Kneer, J; Sly, W S; Rajaniemi, H

    1999-12-01

    Carbonic anhydrase (CA) is implicated in the acidification of epididymal fluid and thereby in the regulation of sperm maturation and motility. Among the CA isoenzymes, CA IV and II have been shown to be present in the rat epididymal duct epithelium. In the present study, we examined the expression and androgen regulation of CA IV and II mRNAs along the epididymal duct. Northern blot analysis revealed the presence of CA II mRNA in all regions of the epididymis with the strongest signal in the corpus region, while CA IV mRNA was expressed predominantly in the corpus epididymidis. Three days after bilateral castration, CA IV and II mRNAs were decreased by 80-90% in the corpus epididymidis. Testosterone (T) replacement maintained the expression of CA mRNAs at 50-60% of the control levels, indicating that circulating androgens alone are not sufficient to recover the CA expression in the corpus region. However, unilateral castration did not affect the mRNA levels of CA IV and II, suggesting that factors in testicular fluid do not play a major role in the regulation of CA expression in the corpus epididymidis. Immunoblot analysis showed that CA IV protein levels decreased 3 days after castration, while T administration maintained the protein expression virtually at the precastration levels. These data demonstrate that mRNAs for CA IV and II are predominantly expressed in the corpus region of the rat epididymis and can be regulated by androgens in that region. The present data suggest that the regulation of CA expression in the corpus epididymidis by androgens contributes to the known androgen effects on epididymal acidification.

  18. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change

    PubMed Central

    Solomon-Lane, Tessa K.; Crespi, Erica J.; Grober, Matthew S.

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis). Through actions of both corticotropin-releasing factor and glucocorticoids, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli), a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes. PMID:24265604

  19. [Mediating role of emotional regulation between impulsive behavior in gambling, Internet and videogame abuse, and dysfunctional symptomatology in young adults and adolescents].

    PubMed

    Estévez Gutiérrez, Ana; Herrero Fernández, David; Sarabia Gonzalvo, Izaskun; Jáuregui Bilbao, Paula

    2014-01-01

    The way emotions are regulated might affect the engagement on risk behaviors in adolescents and young adults. Therefore, studying the relationship between these variables could be of great importance. Some of the less studied risky behaviors are pathological gambling, and Internet and videogame abuse. This research aims to analyze the existing relationship between such risky behaviors, emotion regulation, and dysfunctional psychological symptomatology (depression, anxiety, phobic anxiety, somatization, obsessive-–compulsive behavior, interpersonal sensitivity, hostility, paranoid ideation, and psychoticism). In addition, it also looks to assess whether emotional regulation plays a mediating role between pathological gambling, and Internet and videogame abuse, and psychological symptomatology. The sample was composed of 1312 young adults and adolescents, aged between 12 and 30, recruited from scholar centers, universities and free time groups, and from associations and centers associated with FEJAR (Spanish Federation of Rehabilitated Gamblers). Participants completed measurements of impulsive behavior, emotion regulation, and dysfunctional symptomatology. Results showed that there is generally a positive and significant relation between these variables. Moreover, it has been pointed out that emotion regulation mediates the association between impulsive behavior and dysfunctional symptomatology among those young adults and adolescents who engage in these impulsive behaviors, except for the relation between videogame abuse and depressive symptomatology. Training in emotional regulation skills could be useful in dealing with and treating this type of behaviors in adolescents and young adults.

  20. MECP2 regulates cortical plasticity underlying a learned behaviour in adult female mice

    PubMed Central

    Krishnan, Keerthi; Lau, Billy Y. B.; Ewall, Gabrielle; Huang, Z. Josh; Shea, Stephen D.

    2017-01-01

    Neurodevelopmental disorders are marked by inappropriate synaptic connectivity early in life, but how disruption of experience-dependent plasticity contributes to cognitive and behavioural decline in adulthood is unclear. Here we show that pup gathering behaviour and associated auditory cortical plasticity are impaired in female Mecp2het mice, a model of Rett syndrome. In response to learned maternal experience, Mecp2het females exhibited transient changes to cortical inhibitory networks typically associated with limited plasticity. Averting these changes in Mecp2het through genetic or pharmacological manipulations targeting the GABAergic network restored gathering behaviour. We propose that pup gathering learning triggers a transient epoch of inhibitory plasticity in auditory cortex that is dysregulated in Mecp2het. In this window of heightened sensitivity to sensory and social cues, Mecp2 mutations suppress adult plasticity independently from their effects on early development. PMID:28098153

  1. Leptin signaling in GFAP-expressing adult glia cells regulates hypothalamic neuronal circuits and feeding

    PubMed Central

    Kim1, Jae Geun; Suyama, Shigetomo; Koch, Marco; Jin, Sungho; Argente-Arizon, Pilar; Argente, Jesus; Liu, Zhong-Wu; Zimmer, Marcelo R.; Jeong, Jin Kwon; Szigeti-Buck, Klara; Gao, Yuanqing; Garcia-Caceres, Cristina; Yi, Chun-Xia; Salmaso, Natalina; Vaccarino, Flora M.; Chowen, Julie; Diano, Sabrina; Dietrich, Marcelo O; Tschöp, Matthias H.; Horvath, Tamas L.

    2014-01-01

    We have shown that synaptic re-organization of hypothalamic feeding circuits in response to metabolic shifts involves astrocytes, cells that can directly respond to the metabolic hormone, leptin, in vitro. It is not known whether the role of glia cells in hypothalamic synaptic adaptions is active or passive. Here we show that leptin receptors are expressed in hypothalamic astrocytes and that conditional, adult deletion of leptin receptors in astrocytes leads to altered glial morphology, decreased glial coverage and elevated synaptic inputs onto pro-opiomelanocortin (POMC)- and Agouti-related protein (AgRP)-producing neurons. Leptin-induced suppression of feeding was diminished, while rebound feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data unmask an active role of glial cells in the initiation of hypothalamic synaptic plasticity and neuroendocrine control of feeding by leptin. PMID:24880214

  2. Regulating availability: how access to alcohol affects drinking and problems in youth and adults.

    PubMed

    Gruenewald, Paul J

    2011-01-01

    Regulations on the availability of alcohol have been used to moderate alcohol problems in communities throughout the world for thousands of years. In the latter half of the 20th century, quantitative studies of the effects of these regulations on drinking and related problems began in earnest as public health practitioners began to recognize the full extent of the harmful consequences related to drinking. This article briefly outlines the history of this work over four areas, focusing on the minimum legal drinking age, the privatization of alcohol control systems, outlet densities, and hours and days of sale. Some historical background is provided to emphasize the theoretical and empirical roots of this work and to highlight the substantial progress that has been made in each area. In general, this assessment suggests that higher minimum legal drinking ages, greater monopoly controls over alcohol sales, lower outlet numbers and reduced outlet densities, and limited hours and days of sale can effectively reduce alcohol sales, use, and problems. There are, however, substantial gaps in the research literature and a near absence of the quantitative theoretical work needed to direct alcohol-control efforts. Local community responses to alcohol policies are complex and heterogeneous, sometimes reinforcing and sometimes mitigating the effects of availability regulations. Quantitative models of policy effects are essential to accelerate progress toward the formulation and testing of optimal control strategies for the reduction of alcohol problems.

  3. Wnt Signaling Regulates Airway Epithelial Stem Cells in Adult Murine Submucosal Glands.

    PubMed

    Lynch, Thomas J; Anderson, Preston J; Xie, Weiliang; Crooke, Adrianne K; Liu, Xiaoming; Tyler, Scott R; Luo, Meihui; Kusner, David M; Zhang, Yulong; Neff, Traci; Burnette, Daniel C; Walters, Katherine S; Goodheart, Michael J; Parekh, Kalpaj R; Engelhardt, John F

    2016-06-24

    Wnt signaling is required for lineage commitment of glandular stem cells (SCs) during tracheal submucosal gland (SMG) morphogenesis from the surface airway epithelium (SAE). Whether similar Wnt-dependent processes coordinate SC expansion in adult SMGs following airway injury remains unknown. We found that two Wnt-reporters in mice (BAT-gal and TCF/Lef:H2B-GFP) are coexpressed in actively cycling SCs of primordial glandular placodes and in a small subset of adult SMG progenitor cells that enter the cell cycle 24 hours following airway injury. At homeostasis, these Wnt reporters showed nonoverlapping cellular patterns of expression in the SAE and SMGs. Following tracheal injury, proliferation was accompanied by dynamic changes in Wnt-reporter activity and the analysis of 56 Wnt-related signaling genes revealed unique temporal changes in expression within proximal (gland-containing) and distal (gland-free) portions of the trachea. Wnt stimulation in vivo and in vitro promoted epithelial proliferation in both SMGs and the SAE. Interestingly, slowly cycling nucleotide label-retaining cells (LRCs) of SMGs were spatially positioned near clusters of BAT-gal positive serous tubules. Isolation and culture of tet-inducible H2B-GFP LRCs demonstrated that SMG LRCs were more proliferative than SAE LRCs and culture expanded SMG-derived progenitor cells outcompeted SAE-derived progenitors in regeneration of tracheal xenograft epithelium using a clonal analysis competition assay. SMG-derived progenitors were also multipotent for cell types in the SAE and formed gland-like structures in xenografts. These studies demonstrate the importance of Wnt signals in modulating SC phenotypes within tracheal niches and provide new insight into phenotypic differences of SMG and SAE SCs. Stem Cells 2016.

  4. RB regulates the production and the survival of newborn neurons in the embryonic and adult dentate gyrus.

    PubMed

    Vandenbosch, Renaud; Clark, Alysen; Fong, Bensun C; Omais, Saad; Jaafar, Carine; Dugal-Tessier, Delphie; Dhaliwal, Jagroop; Lagace, Diane C; Park, David S; Ghanem, Noël; Slack, Ruth S

    2016-11-01

    In mammals, hippocampal dentate gyrus granule cells (DGCs) constitute a particular neuronal population produced both during embryogenesis and adult life, and play key roles in neural plasticity and memory. However, the molecular mechanisms regulating neurogenesis in the dentate lineage throughout development and adulthood are still not well understood. The Retinoblastoma protein (RB), a transcriptional repressor primarily involved in cell cycle control and cell death, plays crucial roles during cortical development but its function in the formation and maintenance of DGCs remains unknown. Here, we show that loss of RB during embryogenesis induces massive ectopic proliferation and delayed cell cycle exit of young DGCs specifically at late developmental stages but without affecting stem cells. This phenotype was partially counterbalanced by increased cell death. Similarly, during adulthood, loss of RB causes ectopic proliferation of newborn DGCs and dramatically impairs their survival. These results demonstrate a crucial role for RB in the generation and the survival of DGCs in the embryonic and the adult brain. © 2016 Wiley Periodicals, Inc.

  5. Age-Dependent Netrin-1 Signaling Regulates NG2+ Glial Cell Spatial Homeostasis in Normal Adult Gray Matter.

    PubMed

    Birey, Fikri; Aguirre, Adan

    2015-04-29

    Neuron-glial antigen 2-positive (NG2(+)) glial cells are the most proliferative glia type in the adult CNS, and their tile-like arrangement in adult gray matter is under tight regulation. However, little is known about the cues that govern this unique distribution. To this end, using a NG2(+) glial cell ablation model in mice, we examined the repopulation dynamics of NG2(+) glial cells in the mature and aged mice gray matter. We found that some resident NG2(+) glial cells that escaped depletion rapidly enter the cell cycle to repopulate the cortex with altered spatial distribution. We reveal that netrin-1 signaling is involved in the NG2(+) glial cell early proliferative, late repopulation, and distribution response after ablation in the gray matter. However, ablation of NG2(+) glial cell in older animals failed to stimulate a similar repopulation response, possibly because of a decrease in the sensitivity to netrin-1. Our findings indicate that endogenous netrin-1 plays a role in NG2(+) glial cell homeostasis that is distinct from its role in myelination.

  6. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    PubMed Central

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036

  7. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.

    PubMed

    Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y

    2016-03-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure.

  8. Gestational nicotine exposure regulates expression of AMPA and NMDA receptors and their signaling apparatus in developing and adult rat hippocampus

    PubMed Central

    Wang, Hong; Dávila-García, Martha I.; Yarl, Weonpo; Gondré-Lewis, Marjorie C.

    2011-01-01

    Untimely activation of nicotinic acetylcholine receptor (nAChR) by nicotine results in short- and long-term consequences on learning and behavior. In this study, the aim was to determine how prenatal nicotine exposure affects components of glutamatergic signaling in the hippocampus during postnatal development. We investigated regulation of both nAChRs and glutamate receptors for α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA), from postnatal day (P) 1 to P63 after a temporally restricted exposure to saline or nicotine for 14 days in utero. We analyzed postsynaptic density components associated with AMPAR and NMDAR signaling: Calcium/calmodulin-dependent protein kinase II α (CaMKIIα), Calmodulin (CaM), and postsynaptic density-95 (PSD95), as well as presynaptically localized synaptosomal-associated protein 25 (SNAP25). At P1, there was significantly heightened expression of AMPAR subunit GluR1 but not GluR2, and of NMDAR subunits NR1, NR2a and NR2d but not NR2b. NR2c was not detectable. At P1, the postsynaptic proteins CaMKIIα, CaM, and PSD95 were also significantly upregulated, together with presynaptic SNAP25. This enhanced expression of glutamate receptors and signaling proteins was concomitant with elevated levels of [3H] Epibatidine (EB) binding in prenatal nicotine-exposed hippocampus, indicating that α4β2 nAChR may influence glutamatergic function in the hippocampus at P1. By P14, neither [3H]EB binding nor the expression levels of subunits GluR1, GluR2, NR1, NR2a, NR2b, NR2c, or NR2d seemed changed with prenatal nicotine. However, CaMKIIα was significantly upregulated with nicotine treatment while CaM showed downregulation at P14. The effects of nicotine persisted in young adult brains at P63. They exhibited significantly downregulated GluR2, NR1, and NR2c expression levels in hippocampal homogenates and a considerably muted overall distribution of [3H]AMPA binding in areas CA1, CA2, CA3, and the dentate

  9. Phosphatase WIP1 regulates adult neurogenesis and WNT signaling during aging

    PubMed Central

    Zhu, Yunhua; Demidov, Oleg N.; Goh, Amanda M.; Virshup, David M.; Lane, David P.; Bulavin, Dmitry V.

    2014-01-01

    The number of newly formed neurons declines rapidly during aging, and this decrease in neurogenesis is associated with decreased function of neural stem/progenitor cells (NPCs). Here, we determined that a WIP1-dependent pathway regulates NPC differentiation and contributes to the age-associated decline of neurogenesis. Specifically, we found that WIP1 is expressed in NPCs of the mouse subventricular zone (SVZ) and aged animals with genetically enhanced WIP1 expression exhibited higher NPC numbers and neuronal differentiation compared with aged WT animals. Additionally, augmenting WIP1 expression in aged animals markedly improved neuron formation and rescued a functional defect in fine odor discrimination in aged mice. We identified the WNT signaling pathway inhibitor DKK3 as a key downstream target of WIP1 and found that expression of DKK3 in the SVZ is restricted to NPCs. Using murine reporter strains, we determined that DKK3 inhibits neuroblast formation by suppressing WNT signaling and Dkk3 deletion or pharmacological activation of the WNT pathway improved neuron formation and olfactory function in aged mice. We propose that WIP1 controls DKK3-dependent inhibition of neuronal differentiation during aging and suggest that regulating WIP1 levels could prevent certain aspects of functional decline of the aging brain. PMID:24911145

  10. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains.

    PubMed

    Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko

    2016-08-01

    Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases.

  11. Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis in adult and aged rats.

    PubMed

    Bachstetter, Adam D; Morganti, Josh M; Jernberg, Jennifer; Schlunk, Andrea; Mitchell, Staten H; Brewster, Kaelin W; Hudson, Charles E; Cole, Michael J; Harrison, Jeffrey K; Bickford, Paula C; Gemma, Carmelina

    2011-11-01

    Microglia have neuroprotective capacities, yet chronic activation can promote neurotoxic inflammation. Neuronal fractalkine (FKN), acting on CX(3)CR1, has been shown to suppress excessive microglia activation. We found that disruption in FKN/CX(3)CR1 signaling in young adult rodents decreased survival and proliferation of neural progenitor cells through IL-1β. Aged rats were found to have decreased levels of hippocampal FKN protein; moreover, interruption of CX(3)CR1 function in these animals did not affect neurogenesis. The age-related loss of FKN could be restored by exogenous FKN reversing the age-related decrease in hippocampal neurogenesis. There were no measureable changes in young animals by the addition of exogenous FKN. The results suggest that FKN/CX(3)CR1 signaling has a regulatory role in modulating hippocampal neurogenesis via mechanisms that involve indirect modification of the niche environment. As elevated neuroinflammation is associated with many age-related neurodegenerative diseases, enhancing FKN/CX(3)CR1 interactions could provide an alternative therapeutic approach to slow age-related neurodegeneration.

  12. Cadmium exposure disrupts GABA and taurine regulation of prolactin secretion in adult male rats.

    PubMed

    Caride, A; Fernández-Pérez, B; Cabaleiro, T; Esquifino, A I; Lafuente, A

    2009-03-28

    This work was undertaken to evaluate the possible effects of cadmium exposure on 24 h changes of gamma-aminobutyric acid (GABA) and taurine median eminence and pituitary contents. Also the possible alterations of the regulatory mechanisms of GABA and taurine on prolactin secretion were evaluated. Adult male rats were given cadmium at a dose of 25 mg/l of cadmium chloride in the drinking water for 30 days. Control age-matched rats received cadmium free water. Metal exposure induced the appearance of a maximal value of prolactin at 08:00 h. In median eminence, cadmium abolished the GABA and taurine maximal values and decreased GABA and taurine mean levels. In the anterior pituitary, cadmium treatment phase advanced 12 h the peak observed in controls at 00:00 h for both amino acids. There was a positive correlation between GABA and taurine contents in median eminence and the anterior pituitary in both control and cadmium-exposed animals. However, the correlation between GABA or/and taurine with prolactin levels disappeared in cadmium-exposed animals. These results suggest that cadmium exposure affects GABA and taurine daily pattern in the median eminence and anterior pituitary, and those changes explain, at least in part, the modification in the regulatory pattern of prolactin secretion.

  13. Visualizing Changes in Cdkn1c Expression Links Early-Life Adversity to Imprint Mis-regulation in Adults.

    PubMed

    Van de Pette, Mathew; Abbas, Allifia; Feytout, Amelie; McNamara, Gráinne; Bruno, Ludovica; To, Wilson K; Dimond, Andrew; Sardini, Alessandro; Webster, Zoe; McGinty, James; Paul, Eleanor J; Ungless, Mark A; French, Paul M W; Withers, Dominic J; Uren, Anthony; Ferguson-Smith, Anne C; Merkenschlager, Matthias; John, Rosalind M; Fisher, Amanda G

    2017-01-31

    Imprinted genes are regulated according to parental origin and can influence embryonic growth and metabolism and confer disease susceptibility. Here, we designed sensitive allele-specific reporters to non-invasively monitor imprinted Cdkn1c expression in mice and showed that expression was modulated by environmental factors encountered in utero. Acute exposure to chromatin-modifying drugs resulted in de-repression of paternally inherited (silent) Cdkn1c alleles in embryos that was temporary and resolved after birth. In contrast, deprivation of maternal dietary protein in utero provoked permanent de-repression of imprinted Cdkn1c expression that was sustained into adulthood and occurred through a folate-dependent mechanism of DNA methylation loss. Given the function of imprinted genes in regulating behavior and metabolic processes in adults, these results establish imprinting deregulation as a credible mechanism linking early-life adversity to later-life outcomes. Furthermore, Cdkn1c-luciferase mice offer non-invasive tools to identify factors that disrupt epigenetic processes and strategies to limit their long-term impact.

  14. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain.

    PubMed

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-02-24

    Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons.

  15. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    PubMed Central

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-01-01

    ABSTRACT Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons. PMID:26912775

  16. Serine-1321-independent regulation of the mu 1 adult skeletal muscle Na+ channel by protein kinase C.

    PubMed

    Bendahhou, S; Cummins, T R; Potts, J F; Tong, J; Agnew, W S

    1995-12-19

    The adult skeletal muscle Na+ channel mu1 possesses a highly conserved segment between subunit domains III and IV containing a consensus protein kinase C (PKC) phosphorylation site that, in the neuronal isoform, acts as a master control for "convergent" regulation by PKC and cAMP-dependent protein kinase. It lacks an approximately 200-aa segment between domains I and II though to modulate channel gating. We here demonstrate that mu1 is regulated by PKC (but not cAMP-dependent protein kinase) in a manner distinct from that observed for the neuronal isoforms, suggesting that under the same conditions muscle excitation could be uncoupled from motor neuron input. Maximal phosphorylation by PKC, in the presence of phosphatase inhibitors, reduced peak Na+ currents by approximately 90% by decreasing the maximal conductance, caused a -15 mV shift in the midpoint of steady-state inactivation, and caused a slight speeding of inactivation. Surprisingly, these effects were not affected by mutation of the conserved serine (serine-1321) in the interdomain III-IV loop. the pattern of current suppression and gating modification by PKC resembles the response of muscle Na+ channels to inhibitory factors present in the serum and cerebrospinal fluid of patients with Guillain-Barré syndrome, multiple sclerosis, and idiopathic demyelinating polyradiculoneuritis.

  17. Up-regulation of Vps4A promotes neuronal apoptosis after intracerebral hemorrhage in adult rats.

    PubMed

    Ren, Jianbing; Yuan, Debin; Xie, Lili; Tao, Xuelei; Duan, Chenwei; Bao, Yifeng; He, Yunfeng; Ge, Jianbin; Lu, Hongjian

    2017-04-01

    Vps4, vacuolar protein sorting 4, belongs to ATPases Associated with diverse cellular Activities (AAA) protein family which is made up of Vps4A and Vps4B. Previous studies demonstrated that Vps4A plays vital roles in diverse aspects such as virus budding, the efficient transport of H-Ras to the PM (plasma membrane) and the involvement in the MVB (multivesiculate bodies) pathway. Interestingly, Vps4A is also expressed in the brain. However, the distribution and function of Vps4A in ICH diseases remain unclear. In this study, we show that Vps4A may be involved in neuronal apoptosis during pathophysiological processes of intracerebral hemorrhage (ICH). Based on the results of Western blot and immunohistochemistry, we found a remarkable up-regulation of Vps4A expression surrounding the hematoma after ICH. Double labeled immunofluorescence showed that Vps4A was co-expressed with NeuN but rarely with astrocytes and microglia. Morever, we detected that neuronal apoptosis marker active caspase-3 had co-localizations with Vps4A. Additionaly, Vps4A knockdown in vitro specifically leads to decreasing neuronal apoptosis coupled with increased Akt phosphorylation. All datas suggested that Vps4A was involved in promoting neuronal apoptosis via inhibiting Akt phosphorylation after ICH.

  18. Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration.

    PubMed

    Münch, Juliane; González-Rajal, Alvaro; de la Pompa, José Luis

    2013-04-01

    Zebrafish have the capacity to regenerate several organs, including the heart and fins. Fin regeneration is epimorphic, involving the formation at the amputation plane of a mass of undifferentiated, proliferating mesenchymal progenitor-like cells, called blastema. This tissue provides all the cell types that form the fin, so that after damage or amputation the fin pattern and structure are fully restored. How blastema cells remain in this progenitor-like state is poorly understood. Here, we show that the Notch pathway plays an essential role during fin regeneration. Notch signalling is activated during blastema formation and remains active throughout the regeneration process. Chemical inhibition or morpholino-mediated knockdown of Notch signalling impairs fin regeneration via decreased proliferation accompanied by reduced expression of Notch target genes in the blastema. Conversely, overexpression of a constitutively active form of the Notch1 receptor (N1ICD) in the regenerating fin leads to increased proliferation and to the expansion of the blastema cell markers msxe and msxb, as well as increased expression of the proliferation regulator aldh1a2. This blastema expansion prevents regenerative fin outgrowth, as indicated by the reduction in differentiating osteoblasts and the inhibition of bone regeneration. We conclude that Notch signalling maintains blastema cells in a plastic, undifferentiated and proliferative state, an essential requirement for fin regeneration.

  19. Regulation of haematopoietic stem cell proliferation by stimulatory factors produced by murine fetal and adult liver.

    PubMed Central

    Dawood, K A; Briscoe, C V; Thomas, D B; Riches, A C

    1990-01-01

    Haematopoietic stem cells in murine fetal liver are in a proliferative state unlike those in normal bone marrow which are quiescent. A regulatory activity is produced by cells in the fetal liver which will switch quiescent normal bone marrow haematopoietic stem cells into cell cycle in vitro. This regulator from Day 15 fetal liver cells is produced by adherent cells and by cells fractionated on a Percoll gradient in the 1.064 and 1.076 g per cm3 density bands but not in the 1.123 g per cm3 band. Colony-stimulating factor cannot be detected in the supernatants containing the stem cell regulatory activity. The stimulator can be detected in supernatants produced from cell suspensions of liver cells at Day 15 and Day 17 of gestation and 24 hours and 72 hours after birth. However by 1 week after birth the production of the stimulator decreases and is undetectable 3 and 10 weeks after birth. The total numbers of haematopoietic stem cells (CFU-S) in fetal liver decrease from Day 15 of gestation and only small numbers are present 1 week after birth. Thus the decline in the production of haematopoietic stem cell proliferation stimulator correlates with the decrease in haematopoietic stem cell numbers in the liver through gestation and after birth. PMID:2323992

  20. The Effects of Self-Regulated Strategy Development on the Writing of Expository Essays for Adults with Written Expression Difficulties: Preparing for the GED

    ERIC Educational Resources Information Center

    Berry, Ann Bassett; Mason, Linda H.

    2012-01-01

    A multiple-probe, multiple-baseline, across-subjects design was used to examine the writing performance of four low-achieving adult students with and without disabilities enrolled in general equivalency diploma (GED) preparatory classes. Students' writing was evaluated before instruction and after self-regulated strategy development (SRSD)…

  1. Construct Validation of a Program to Increase Use of Self-Regulation for Physical Activity among Overweight and Obese Adults with Type 2 Diabetes Mellitus

    ERIC Educational Resources Information Center

    Petosa, R. Lingyak; Silfee, Valerie

    2016-01-01

    Background: Studies have revealed that overweight adults with type 2 diabetes have low rates of physical activity and are resistant to change. Purpose: The purpose of this study was to use construct validation of intervention methods to examine the impact of a 4-week behavioral intervention on the use of self-regulation skills for physical…

  2. Dual and opposing roles of microRNA-124 in epilepsy are mediated through inflammatory and NRSF-dependent gene networks

    PubMed Central

    Brennan, Gary P.; Dey, Deblina; Chen, Yuncai; Patterson, Katelin P.; Magnetta, Eric J.; Hall, Alicia M.; Dube, Celine M.; Mei, Yu-Tang; Baram, Tallie Z.

    2016-01-01

    Insult-provoked transformation of neuronal networks into epileptic ones involves multiple mechanisms. Intervention studies have identified both dysregulated inflammatory pathways and NRSF-mediated repression of crucial neuronal genes as contributors to epileptogenesis. However, it remains unclear how epilepsy-provoking insults (e.g., prolonged seizures) induce both inflammation and NRSF, and whether common mechanisms exist. We examined miR-124 as a candidate dual regulator of NRSF- and inflammatory-pathways. Status epilepticus (SE) led to reduced miR-124 expression via SIRT1, and in turn MiR-124 repression, via C/EBPα, upregulated NRSF. We tested whether augmenting miR-124 after SE would abort epileptogenesis by preventing inflammation and NRSF upregulation. SE-sustaining animals developed epilepsy but supplementing miR-124 did not modify epileptogenesis. Examining this result further, we found that synthetic miR-124 effectively blocked NRSF upregulation and rescued NRSF target genes, but also augmented microglia activation and inflammatory cytokines. Thus, miR-124 attenuates epileptogenesis via NRSF while promoting epilepsy via inflammation. PMID:26947066

  3. Fasting induced kisspeptin signaling suppression is regulated by glutamate mediated cues in adult male rhesus macaque (Macaca mulatta).

    PubMed

    Shamas, Shazia; Khan, Saeed-Ul-Hassan; Khan, Muhammad Yousaf; Shabbir, Nadia; Zubair, Hira; Shafqat, Saira; Wahab, Fazal; Shahab, Muhammad

    2015-08-01

    Kisspeptin signaling is suppressed by short term fasting. It has been reported that hypothalamic Kiss1 and Kiss1r mRNA expression decreased after 48h of fasting in male rhesus monkey. But the mechanism involved in the reduction of kisspeptin signaling after 48h of fasting is unknown. Recent studies have suggested the role of afferent excitatory and inhibitory pathways in the regulation of kisspeptin neurons. Therefore, this study was designed to observe the changes in the glutamate and GABA signaling during fed and 48h fasting states by performing immunofluorescence to examine the interaction of kisspeptin neurons with NR1 subunit of NMDA receptors and by performing SYBR green qRT-PCR to measure and quantify the levels of Kiss1, Kiss1r, NR1 and GAD67 mRNA in the POA and MBH of adult male rhesus macaque (Macaca mulatta) during 48h of fasting (n=2) and fed ad libitum (n=2). Plasma testosterone (p<0.05) and blood glucose levels were significantly (p<0.001) decreased after short term fasting. Our results clearly showed that expression of hypothalamic Kiss1, Kiss1r and NR1 mRNA was significantly (p<0.05) reduced in adult male rhesus monkeys which were fasted for 48h as compared to those which were fed ad libitum. There was no clear difference in the GAD67 mRNA contents between the two groups. Number of kisspeptin neurons and the interactions of kisspeptin neurons with NR1 were significantly (p<0.05) reduced after 48h fasting. These observations suggest that decreased kisspeptin signaling during fasting may occur due to reduction in glutamatergic inputs to kisspeptin neurons. Our results also suggest that fasting induced suppression of kisspeptin signaling is not mediated through GABAergic neurons.

  4. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms.

  5. Transcriptional regulation of the peripheral nervous system in Ciona intestinalis.

    PubMed

    Joyce Tang, W; Chen, Jerry S; Zeller, Robert W

    2013-06-15

    The formation of the sensory organs and cells that make up the peripheral nervous system (PNS) relies on the activity of transcription factors encoded by proneural genes (PNGs). Although PNGs have been identified in the nervous systems of both vertebrates and invertebrates, the complexity of their interactions has complicated efforts to understand their function in the context of their underlying regulatory networks. To gain insight into the regulatory network of PNG activity in chordates, we investigated the roles played by PNG homologs in regulating PNS development of the invertebrate chordate Ciona intestinalis. We discovered that in Ciona, MyT1, Pou4, Atonal, and NeuroD-like are expressed in a sequential regulatory cascade in the developing epidermal sensory neurons (ESNs) of the PNS and act downstream of Notch signaling, which negatively regulates these genes and the number of ESNs along the tail midlines. Transgenic embryos mis-expressing any of these proneural genes in the epidermis produced ectopic midline ESNs. In transgenic embryos mis-expressing Pou4, and MyT1 to a lesser extent, numerous ESNs were produced outside of the embryonic midlines. In addition we found that the microRNA miR-124, which inhibits Notch signaling in ESNs, is activated downstream of all the proneural factors we tested, suggesting that these genes operate collectively in a regulatory network. Interestingly, these factors are encoded by the same genes that have recently been demonstrated to convert fibroblasts into neurons. Our findings suggest the ascidian PNS can serve as an in vivo model to study the underlying regulatory mechanisms that enable the conversion of cells into sensory neurons.

  6. Epac activator critically regulates action potential duration by decreasing potassium current in rat adult ventricle.

    PubMed

    Brette, Fabien; Blandin, Erick; Simard, Christophe; Guinamard, Romain; Sallé, Laurent

    2013-04-01

    Sympathetic stimulation is an important modulator of cardiac function via the classic cAMP-dependent signaling pathway, PKA. Recently, this paradigm has been challenged by the discovery of a family of guanine nucleotide exchange proteins directly activated by cAMP (Epac), acting in parallel to the classic signaling pathway. In cardiac myocytes, Epac activation is known to modulate Ca(2+) cycling yet their actions on cardiac ionic currents remain poorly characterized. This study attempts to address this paucity of information using the patch clamp technique to record action potential (AP) and ionic currents on rat ventricular myocytes. Epac was selectively activated by 8-CPT-AM (acetoxymethyl ester form of 8-CPT). AP amplitude, maximum depolarization rate and resting membrane amplitude were unaltered by 8-CPT-AM, strongly suggesting that Na(+) current and inward rectifier K(+) current are not regulated by Epac. In contrast, AP duration was significantly increased by 8-CPT-AM (prolongation of duration at 50% and 90% of repolarization by 41±10% and 43±8% respectively, n=11). L-type Ca(2+) current density was unaltered by 8-CPT-AM (n=16) so this cannot explain the action potential lengthening. However, the steady state component of K(+) current was significantly inhibited by 8-CPT-AM (-38±6%, n=15), while the transient outward K(+) current was unaffected by 8-CPT-AM. These effects were PKA-independent since they were observed in the presence of PKA inhibitor KT5720. Isoprenaline (100nM) induced a significant prolongation of AP duration, even in the presence of KT5720. This study provides the first evidence that the cAMP-binding protein Epac critically modulates cardiac AP duration by decreasing steady state K(+) current. These observations may be relevant to diseases in which Epac is upregulated, like cardiac hypertrophy.

  7. High prevalence of abnormal circadian blood pressure regulation and impaired glucose tolerance in adults with hypopituitarism.

    PubMed

    Krzyzanowska, K; Schnack, C; Mittermayer, F; Kopp, H P; Hofer, M; Kann, T; Schernthaner, G

    2005-09-01

    Patients with hypopituitarism have an increased mortality from cardiovascular events. Reduced nocturnal blood pressure decline (non-dipping) and impaired glucose tolerance are considered as cardiovascular risk factors. To evaluate the role of these risk factors in patients with hypopituitarism we determined the 24-hour blood pressure regulation and glucose tolerance status in hypopituitary patients with and without growth hormone (GH) deficiency. Sixty-one hypopituitary subjects 5 +/- 3 years after brain surgery because of macroadenoma, 61 patients with type 2 diabetes mellitus (T2DM), and 20 healthy controls were included. Forty-four hypopituitary patients were GH deficient and 28 of these on GH treatment. Non-dipping was observed in 41 % (n = 7) of hypopituitary subjects with normal GH release, in 46 % (n = 13) of patients on GH therapy, and in 69 % (n = 11) of untreated GH deficient patients. Untreated GH deficient patients had a higher systolic night/day ratio (1.00 +/- 0.03) compared to non GH deficient (0.92 +/- 0.02; p < 0.02) and GH treated hypopituitary patients (0.93 +/- 0.01; p < 0.02). The rate of non-dipping in hypopituitarism was comparable to that in T2DM. Pathologic glucose tolerance was diagnosed in 30 % of the hypopituitary patients. The prevalence of non-dipping was independent of glucose metabolism in hypopituitary patients. All controls had normal night time blood pressure fall and glucose metabolism. The high prevalence of nocturnal non-dipping and glucose intolerance detected in this cohort might contribute to the increased cardiovascular risk of hypopituitary patients.

  8. Gastrin-releasing peptide contributes to the regulation of adult hippocampal neurogenesis and neuronal development.

    PubMed

    Walton, Noah M; de Koning, Anoek; Xie, Xiuyuan; Shin, Rick; Chen, Qian; Miyake, Shinichi; Tajinda, Katsunori; Gross, Adam K; Kogan, Jeffrey H; Heusner, Carrie L; Tamura, Kouichi; Matsumoto, Mitsuyuki

    2014-09-01

    In the postnatal hippocampus, newly generated neurons contribute to learning and memory. Disruptions in neurogenesis and neuronal development have been linked to cognitive impairment and are implicated in a broad variety of neurological and psychiatric disorders. To identify putative factors involved in this process, we examined hippocampal gene expression alterations in mice possessing a heterozygous knockout of the calcium/calmodulin-dependent protein kinase II alpha heterozygous knockout gene (CaMK2α-hKO), an established model of cognitive impairment that also displays altered neurogenesis and neuronal development. Using this approach, we identified gastrin-releasing peptide (GRP) as the most dysregulated gene. In wild-type mice, GRP labels NeuN-positive neurons, the lone exception being GRP-positive, NeuN-negative cells in the subgranular zone, suggesting GRP expression may be relevant to neurogenesis and/or neuronal development. Using a model of in vitro hippocampal neurogenesis, we determined that GRP signaling is essential for the continued survival and development of newborn neurons, both of which are blocked by transient knockdown of GRP's cognate receptor (GRPR). Furthermore, GRP appears to negatively regulate neurogenesis-associated proliferation in neural stem cells both in vitro and in vivo. Intracerebroventricular infusion of GRP resulted in a decrease in immature neuronal markers, increased cAMP response element-binding protein (CREB) phosphorylation, and decreased neurogenesis. Despite increased levels of GRP mRNA, CaMK2α-hKO mutant mice expressed reduced levels of GRP peptide. This lack of GRP may contribute to the elevated neurogenesis and impaired neuronal development, which are reversed following exogenous GRP infusion. Based on these findings, we hypothesize that GRP modulates neurogenesis and neuronal development and may contribute to hippocampus-associated cognitive impairment.

  9. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    PubMed

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  10. Early postnatal stress alters extracellular signal-regulated kinase signaling in the corticolimbic system modulating emotional circuitry in adult rats.

    PubMed

    Ishikawa, Shuhei; Saito, Yasuhiro; Yanagawa, Yoshiki; Otani, Satoru; Hiraide, Sachiko; Shimamura, Kei-ichi; Matsumoto, Machiko; Togashi, Hiroko

    2012-01-01

    The present study elucidated whether early life stress alters the extracellular signal-regulated kinase (ERK) pathway that underlies fear retrieval and fear extinction based on a contextual fear conditioning paradigm, using a juvenile stress model. Levels of phospho-ERK (pERK), the active form of ERK, increased after fear retrieval in the hippocampal CA1 region but not in the medial prefrontal cortex (mPFC). ERK activation in the CA1 following fear retrieval was not observed in adult rats who received aversive footshock (FS) stimuli during the second postnatal period (2wFS), which exhibited low levels of freezing. In fear extinction, pERK levels in the CA1 were increased by repeated extinction trials, but they were not altered after extinction retrieval. In contrast, pERK levels in the mPFC did not change during extinction training, but were enhanced after extinction retrieval. These findings were compatible in part with electrophysiological data showing that synaptic transmission in the CA1 field and mPFC was enhanced during extinction training and extinction retrieval, respectively. ERK activation in the CA1 and mPFC associated with extinction processes did not occur in rats that received FS stimuli during the third postnatal period (3wFS), which exhibited sustained freezing behavior. The repressed ERK signaling and extinction deficit observed in the 3wFS group were ameliorated by treatment with the partial N-methyl-D-aspartate receptor agonist D-cycloserine. These findings suggest that early postnatal stress induced the downregulation of ERK signaling in distinct brain regions through region-specific regulation, which may lead to increased behavioral abnormalities or emotional vulnerabilities in adulthood.

  11. Different regulation of adult hippocampal neurogenesis in Western house mice (Mus musculus domesticus) and C57BL/6 mice.

    PubMed

    Klaus, Fabienne; Hauser, Thomas; Lindholm, Anna K; Cameron, Heather A; Slomianka, Lutz; Lipp, Hans-Peter; Amrein, Irmgard

    2012-02-14

    Adult hippocampal neurogenesis (AHN) of laboratory rodents is enhanced by physical exercise in a running wheel. However, little is known about modulation of AHN in wild-living rodent species. The finding that AHN cannot be modulated by voluntary exercise in wild wood mice suggests that AHN may be regulated differently under natural conditions than in laboratory adapted animals. In order to minimize genetic influences, we aimed to investigate the genetically closest wild-living relatives of laboratory mice. Here, C57BL/6 mice and F1 offspring of wild house mice (Mus musculus domesticus) were tested in two different running paradigms: voluntary running and running-for-food--a condition in which mice had to run for their daily allowance of food. In house mice, we found a non-significant trend towards increased numbers of proliferating cells and doublecortin-positive immature neurons in both voluntary runners and runners-for-food. Voluntary running in C57BL/6 mice resulted in a 30% increase in cell proliferation and a pronounced 70% increase in doublecortin-positive cells. C57BL/6 runners-for-food ran as much as voluntary runners, but they showed no enhancement of cell proliferation, a small increase in the number of doublecortin-positive cells and more pyknotic cells compared to controls. Taken together, these findings suggest that motivational aspects of running are critical determinants of the increased cell proliferation in C57BL/6 mice. In contrast, running has smaller and context-independent effects in house mice. The findings imply a difference in the regulation of AHN in C57BL/6 mice and their wild-derived conspecifics.

  12. Interactions with the young down-regulate adult olfactory neurogenesis and enhance the maturation of olfactory neuroblasts in sheep mothers

    PubMed Central

    Brus, Maïna; Meurisse, Maryse; Keller, Matthieu; Lévy, Frédéric

    2014-01-01

    New neurons are continuously added in the dentate gyrus (DG) and the olfactory bulb of mammalian brain. While numerous environmental factors controlling survival of newborn neurons have been extensively studied, regulation by social interactions is less documented. We addressed this question by investigating the influence of parturition and interactions with the young on neurogenesis in sheep mothers. Using Bromodeoxyuridine, a marker of cell division, in combination with markers of neuronal maturation, the percentage of neuroblasts and new mature neurons in the olfactory bulb and the DG was compared between groups of parturient ewes which could interact or not with their lamb, and virgins. In addition, a morphological analysis was performed by measuring the dendritic arbor of neuroblasts in both structures. We showed that the postpartum period was associated with a decrease in olfactory and hippocampal adult neurogenesis. In the olfactory bulb, the suppressive effect on neuroblasts was dependent on interactions with the young whereas in the DG the decrease in new mature neurons was associated with parturition. In addition, dendritic length and number of nodes of neuroblasts were significantly enhanced by interactions with the lamb in the olfactory bulb but not in the DG. Because interactions with the young involved learning of the olfactory signature of the lamb, we hypothesize that this learning is associated with a down-regulation in olfactory neurogenesis and an enhancement of olfactory neuroblast maturation. Our assumption is that fewer new neurons decrease cell competition in the olfactory bulb and enhance maturation of those new neurons selected to participate in the learning of the young odor. PMID:24600367

  13. Duration of prepupal summer dormancy regulates synchronization of adult diapause with winter temperatures in bees of the genus Osmia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osmia (Osmia) bees are strictly univoltine and winter as diapausing adults. In these species, the timing of adult eclosion with the onset of wintering conditions is critical, because adults exposed to long pre-wintering periods show increased lipid loss and winter mortality. Populations from warm ar...

  14. N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo

    PubMed Central

    Nikitczuk, Jessica S.; Patil, Shekhar B.; Matikainen-Ankney, Bridget A.; Scarpa, Joseph; Shapiro, Matthew L.

    2016-01-01

    N-cadherin and β-catenin form a transsynaptic adhesion complex required for spine and synapse development. In adulthood, N-cadherin mediates persistent synaptic plasticity, but whether the role of N-cadherin at mature synapses is similar to that at developing synapses is unclear. To address this, we conditionally ablated N-cadherin from excitatory forebrain synapses in mice starting in late postnatal life and examined hippocampal structure and function in adulthood. In the absence of N-cadherin, β-catenin levels were reduced, but numbers of excitatory synapses were unchanged, and there was no impact on number or shape of dendrites or spines. However, the composition of synaptic molecules was altered. Levels of GluA1 and its scaffolding protein PSD95 were diminished and the density of immunolabeled puncta was decreased, without effects on other glutamate receptors and their scaffolding proteins. Additionally, loss of N-cadherin at excitatory synapses triggered increases in the density of markers for inhibitory synapses and decreased severity of hippocampal seizures. Finally, adult mutant mice were profoundly impaired in hippocampal-dependent memory for spatial episodes. These results demonstrate a novel function for the N-cadherin/β-catenin complex in regulating ionotropic receptor composition of excitatory synapses, an appropriate balance of excitatory and inhibitory synaptic proteins and the maintenance of neural circuitry necessary to generate flexible yet persistent cognitive and synaptic function. PMID:24753442

  15. Short-Term Regulation of Excitation-Contraction Coupling by the β1a Subunit in Adult Mouse Skeletal Muscle

    PubMed Central

    García, María C.; Carrillo, Elba; Galindo, José M.; Hernández, Ascensión; Copello, Julio A.; Fill, Michael; Sánchez, Jorge A.

    2005-01-01

    The β1a subunit of the skeletal muscle voltage-gated Ca2+ channel plays a fundamental role in the targeting of the channel to the tubular system as well as in channel function. To determine whether this cytosolic auxiliary subunit is also a regulatory protein of Ca2+ release from the sarcoplasmic reticulum in vivo, we pressure-injected the β1a subunit into intact adult mouse muscle fibers and recorded, with Fluo-3 AM, the intracellular Ca2+ signal induced by the action potential. We found that the β1a subunit significantly increased, within minutes, the amplitude of Ca2+ release without major changes in its time course. β1a subunits with the carboxy-terminus region deleted did not show an effect on Ca2+ release. The possibility that potentiation of Ca2+ release is due to a direct interaction between the β1a subunit and the ryanodine receptor was ruled out by bilayer experiments of RyR1 single-channel currents and also by Ca2+ flux experiments. Our data suggest that the β1a subunit is capable of regulating E-C coupling in the short term and that the integrity of the carboxy-terminus region is essential for its modulatory effect. PMID:16183888

  16. N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo.

    PubMed

    Nikitczuk, Jessica S; Patil, Shekhar B; Matikainen-Ankney, Bridget A; Scarpa, Joseph; Shapiro, Matthew L; Benson, Deanna L; Huntley, George W

    2014-08-01

    N-Cadherin and β-catenin form a transsynaptic adhesion complex required for spine and synapse development. In adulthood, N-cadherin mediates persistent synaptic plasticity, but whether the role of N-cadherin at mature synapses is similar to that at developing synapses is unclear. To address this, we conditionally ablated N-cadherin from excitatory forebrain synapses in mice starting in late postnatal life and examined hippocampal structure and function in adulthood. In the absence of N-cadherin, β-catenin levels were reduced, but numbers of excitatory synapses were unchanged, and there was no impact on number or shape of dendrites or spines. However, the composition of synaptic molecules was altered. Levels of GluA1 and its scaffolding protein PSD95 were diminished and the density of immunolabeled puncta was decreased, without effects on other glutamate receptors and their scaffolding proteins. Additionally, loss of N-cadherin at excitatory synapses triggered increases in the density of markers for inhibitory synapses and decreased severity of hippocampal seizures. Finally, adult mutant mice were profoundly impaired in hippocampal-dependent memory for spatial episodes. These results demonstrate a novel function for the N-cadherin/β-catenin complex in regulating ionotropic receptor composition of excitatory synapses, an appropriate balance of excitatory and inhibitory synaptic proteins and the maintenance of neural circuitry necessary to generate flexible yet persistent cognitive and synaptic function.

  17. The Drosophila Prosecretory Transcription Factor dimmed Is Dynamically Regulated in Adult Enteroendocrine Cells and Protects Against Gram-Negative Infection.

    PubMed

    Beebe, Katherine; Park, Dongkook; Taghert, Paul H; Micchelli, Craig A

    2015-05-20

    The endocrine system employs peptide hormone signals to translate environmental changes into physiological responses. The diffuse endocrine system embedded in the gastrointestinal barrier epithelium is one of the largest and most diverse endocrine tissues. Furthermore, it is the only endocrine tissue in direct physical contact with the microbial environment of the gut lumen. However, it remains unclear how this sensory epithelium responds to specific pathogenic challenges in a dynamic and regulated manner. We demonstrate that the enteroendocrine cells of the adult Drosophila melanogaster midgut display a transient, sensitive, and systemic induction of the prosecretory factor dimmed (dimm) in response to the Gram-negative pathogen Pseudomonas entomophila (Pe). In enteroendocrine cells, dimm controls the levels of the targets Phm, dcat-4, and the peptide hormone, Allatostatin A. Finally, we identify dimm as a host factor that protects against Pe infection and controls the expression of antimicrobial peptides. We propose that dimm provides "gain" in enteroendocrine output during the adaptive response to episodic pathogen exposure.

  18. Synthetic Cannabis Overdose and Withdrawal in a Young Adult: A Case Report, Commentary on Regulation, and Review of the Literature.

    PubMed

    Samaan, John; Ferrer, Gerardo F; Akinyemi, Boye; Junquera, Patricia; Oms, Juan; Dumenigo, Rhaisa

    2016-01-01

    Introduction. Marijuana has been used for its psychotropic effects including enhanced relaxation and perceptual alterations. However, the use of synthetic marijuana (SM) leads to more frequent and drastic side effects than the typical use of regular marijuana, owing to the fact that SM has a shorter duration and an earlier peak of action. Despite all the potential adverse health effects associated with SM use, current health policies on SM are very limited. It is believed that the popularity of SM has increased, due to its easy accessibility in the US and lack of detection in typical urine drug screens for THC. Case Report. One case presented is of a young adult patient, with histories of recurrent synthetic cannabis and recreational cannabis use, who had developed drastic physiological and psychiatric symptoms, including the development of acute-onset psychosis. Conclusion/Discussion. This case, as many others nationwide, exemplifies the impact of synthetic cannabinoid use and abuse in adolescents. Side effects and adverse health consequences of synthetic cannabinoid use warrant stricter regulations and policies in order to decrease psychiatric hospital admissions and associated healthcare costs.

  19. Synthetic Cannabis Overdose and Withdrawal in a Young Adult: A Case Report, Commentary on Regulation, and Review of the Literature

    PubMed Central

    Ferrer, Gerardo F.; Akinyemi, Boye; Junquera, Patricia; Oms, Juan; Dumenigo, Rhaisa

    2016-01-01

    Introduction. Marijuana has been used for its psychotropic effects including enhanced relaxation and perceptual alterations. However, the use of synthetic marijuana (SM) leads to more frequent and drastic side effects than the typical use of regular marijuana, owing to the fact that SM has a shorter duration and an earlier peak of action. Despite all the potential adverse health effects associated with SM use, current health policies on SM are very limited. It is believed that the popularity of SM has increased, due to its easy accessibility in the US and lack of detection in typical urine drug screens for THC. Case Report. One case presented is of a young adult patient, with histories of recurrent synthetic cannabis and recreational cannabis use, who had developed drastic physiological and psychiatric symptoms, including the development of acute-onset psychosis. Conclusion/Discussion. This case, as many others nationwide, exemplifies the impact of synthetic cannabinoid use and abuse in adolescents. Side effects and adverse health consequences of synthetic cannabinoid use warrant stricter regulations and policies in order to decrease psychiatric hospital admissions and associated healthcare costs. PMID:27777807

  20. p300/β-Catenin Interactions Regulate Adult Progenitor Cell Differentiation Downstream of WNT5a/Protein Kinase C (PKC)*

    PubMed Central

    Rieger, Megan E.; Zhou, Beiyun; Solomon, Nicola; Sunohara, Mitsuhiro; Li, Changgong; Nguyen, Cu; Liu, Yixin; Pan, Jie-hong; Minoo, Parviz; Crandall, Edward D.; Brody, Steven L.; Kahn, Michael; Borok, Zea

    2016-01-01

    Maintenance of stem/progenitor cell-progeny relationships is required for tissue homeostasis during normal turnover and repair. Wnt signaling is implicated in both maintenance and differentiation of adult stem/progenitor cells, yet how this pathway serves these dichotomous roles remains enigmatic. We previously proposed a model suggesting that specific interaction of β-catenin with either of the homologous Kat3 co-activators, p300 or CREB-binding protein, differentially regulates maintenance versus differentiation of embryonic stem cells. Limited knowledge of endogenous mechanisms driving differential β-catenin/co-activator interactions and their role in adult somatic stem/progenitor cell maintenance versus differentiation led us to explore this process in defined models of adult progenitor cell differentiation. We focused primarily on alveolar epithelial type II (AT2) cells, progenitors of distal lung epithelium, and identified a novel axis whereby WNT5a/protein kinase C (PKC) signaling regulates specific β-catenin/co-activator interactions to promote adult progenitor cell differentiation. p300/β-catenin but not CBP/β-catenin interaction increases as AT2 cells differentiate to a type I (AT1) cell-like phenotype. Additionally, p300 transcriptionally activates AT1 cell-specific gene Aqp-5. IQ-1, a specific inhibitor of p300/β-catenin interaction, prevents differentiation of not only primary AT2 cells, but also tracheal epithelial cells, and C2C12 myoblasts. p300 phosphorylation at Ser-89 enhances p300/β-catenin interaction, concurrent with alveolar epithelial cell differentiation. WNT5a, a traditionally non-canonical WNT ligand regulates Ser-89 phosphorylation and p300/β-catenin interactions in a PKC-dependent manner, likely involving PKCζ. These studies identify a novel intersection of canonical and non-canonical Wnt signaling in adult progenitor cell differentiation that has important implications for targeting β-catenin to modulate adult progenitor cell

  1. Susceptibility of juvenile and adult blood–brain barrier to endothelin-1: regulation of P-glycoprotein and breast cancer resistance protein expression and transport activity

    PubMed Central

    2012-01-01

    Background P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) play a critical role in keeping neurotoxic substances from entering the brain. We and others have previously reported an impact of inflammation on the regulation of adult blood–brain barrier (BBB) efflux transporters. However, studies in children have not been done. From the pediatric clinical perspective, it is important to understand how the central nervous system (CNS) and BBB drug efflux transporters differ in childhood from those of adults under normal and inflammatory conditions. Therefore, we examined and compared the regulation of P-gp and BCRP expression and transport activity in young and adult BBB and investigated the molecular mechanisms underlying inflammatory responses. Methods Rats at postnatal day (P) P21 and P84, corresponding to the juvenile and adult stages of human brain maturation, respectively, were treated with endothelin-1 (ET-1) given by the intracerebroventricular (icv) route. Twenty-four hours later, we measured P-gp and BCRP protein expression in isolated brain capillary by immunoblotting as well as by transport activity in vivo by measuring the unbound drug partitioning coefficient of the brain (Kp,uu,brain) of known efflux transporter substrates administered intravenously. Glial activation was measured by immunohistochemistry. The release of cytokines/chemokines (interleukins-1α, 1-β (IL-1β), -6 (IL-6), -10 (IL-10), monocyte chemoattractant protein (MCP-1/CCL2), fractalkine and tissue inhibitor of metalloproteinases-1 (TIMP-1)) were simultaneously measured in brain and serum samples using the Agilent Technology cytokine microarray. Results We found that juvenile and adult BBBs exhibited similar P-gp and BCRP transport activities in the normal physiological conditions. However, long-term exposure of the juvenile brain to low-dose of ET-1 did not change BBB P-gp transport activity but tended to decrease BCRP transport activity in the juvenile brain, while a

  2. A cognitive-behavioral intervention for emotion regulation in adults with high-functioning autism spectrum disorders: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Adults with high-functioning autism spectrum disorders (ASD) have difficulties in social communication; thus, these individuals have trouble understanding the mental states of others. Recent research also suggests that adults with ASD are unable to understand their own mental states, which could lead to difficulties in emotion-regulation. Some studies have reported the efficacy of cognitive-behavioral therapy (CBT) in improving emotion-regulation among children with ASD. The current study will investigate the efficacy of group-based CBT for adults with ASD. Methods/Design The study is a randomized, waitlist controlled, single-blinded trial. The participants will be 60 adults with ASD; 30 will be assigned to a CBT group and 30 to a waitlist control group. Primary outcome measures are the 20-item Toronto Alexithymia Scale, the Coping Inventory for Stressful Situations, the Motion Picture Mind-Reading task, and an ASD questionnaire. The secondary outcome measures are the Center for Epidemiological Studies Depression Scale, the World Health Organization Quality of Life Scale 26-item version, the Global Assessment of Functioning, State-trait Anxiety Inventory, Social Phobia and Anxiety Inventory, and Liebowitz Social Anxiety Scale. All will be administered during the pre- and post-intervention, and 12 week follow-up periods. The CBT group will receive group therapy over an 8 week period (one session per week) with each session lasting approximately 100 minutes. Group therapy will consist of four or five adults with ASD and two psychologists. We will be using visual materials for this program, mainly the Cognitive Affective Training kit. Discussion This trial will hopefully indicate the efficacy of group-based CBT for adults with high- functioning ASD. Trial registration This trial was registered in The University Hospital Medical Information Network Clinical Trials Registry No. UMIN000006236. PMID:23880333

  3. Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCγ

    PubMed Central

    Chan, Wai Si; Sideris, Alexandra; Sutachan, Jhon J.; Montoya G, Jose V.; Blanck, Thomas J. J.; Recio-Pinto, Esperanza

    2013-01-01

    Proliferation of endogenous neural stem/progenitor cells (NSPCs) has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2). We observed an increase in the number of cells expressing the microtubule-associated protein 2 (MAP2) over time, indicating neuronal differentiation in the culture. Inhibition of the mitogen-activated protein kinase or extracellular signal-regulated kinase (ERK) kinase 1 and 2/ERK 1 and 2 (MEK/ERK1/2) or the phosphoinositide 3-kinase (PI3K)/Akt pathways suppressed active proliferation in adult spinal cord NSPC cultures; whereas neuronal differentiation was negatively affected only when the ERK1/2 pathway was inhibited. Inhibition of the phospholipase Cγ (PLCγ) pathway did not affect proliferation or neuronal differentiation. Finally, we demonstrated that the blockade of either the ERK1/2 or PLCγ signaling pathways reduced neurite branching of MAP2+ cells derived from the NSPC cultures. Many of the MAP2+ cells expressed synaptophysin and had a glutamatergic phenotype, indicating that over time adult spinal cord NSPCs had differentiated into mostly glutamatergic neurons. Our work provides new information regarding the contribution of these pathways to the proliferation and neuronal differentiation of NSPCs derived from adult spinal cord cultures, and emphasizes that the contribution of these pathways is dependent on the origin of the NSPCs. PMID:23986655

  4. Impact of a brief intervention on self-regulation, self-efficacy and physical activity in older adults with type 2 diabetes.

    PubMed

    Olson, Erin A; McAuley, Edward

    2015-12-01

    Despite evidence of the benefits of physical activity, most individuals with type 2 diabetes do not meet physical activity recommendations. The purpose of this study was to test the efficacy of a brief intervention targeting self-efficacy and self-regulation to increase physical activity in older adults with type 2 diabetes. Older adults (Mage = 61.8 ± 6.4) with type 2 diabetes or metabolic syndrome were randomized into a titrated physical activity intervention (n = 58) or an online health education course (n = 58). The intervention included walking exercise and theory-based group workshops. Self-efficacy, self-regulation and physical activity were assessed at baseline, post-intervention, and a follow-up. Results indicated a group by time effect for self-regulation [F(2,88) = 14.021, p < .001, η (2) = .24] and self-efficacy [F(12,77) = 2.322, p < .05, η (2) = .266] with increases in the intervention group. The intervention resulted in short-term increases in physical activity (d = .76, p < .01), which were partially maintained at the 6-month follow-up (d = .35, p < .01). The intervention increased short-term physical activity but was not successful at maintaining increases in physical activity. Similar intervention effects were observed in self-efficacy and self-regulation. Future research warrants adjusting intervention strategies to increase long-term change.

  5. The heterodimeric glycoprotein hormone, GPA2/GPB5, regulates ion transport across the hindgut of the adult mosquito, Aedes aegypti.

    PubMed

    Paluzzi, Jean-Paul; Vanderveken, Mark; O'Donnell, Michael J

    2014-01-01

    A family of evolutionarily old hormones is the glycoprotein cysteine knot-forming heterodimers consisting of alpha- (GPA) and beta-subunits (GPB), which assemble by noncovalent bonds. In mammals, a common glycoprotein hormone alpha-subunit (GPA1) pairs with unique beta-subunits that establish receptor specificity, forming thyroid stimulating hormone (GPA1/TSHβ) and the gonadotropins luteinizing hormone (GPA1/LHβ), follicle stimulating hormone (GPA1/FSHβ), choriogonadotropin (GPA1/CGβ). A novel glycoprotein heterodimer was identified in vertebrates by genome analysis, called thyrostimulin, composed of two novel subunits, GPA2 and GPB5, and homologs occur in arthropods, nematodes and cnidarians, implying that this neurohormone system existed prior to the emergence of bilateral metazoans. In order to discern possible physiological roles of this hormonal signaling system in mosquitoes, we have isolated the glycoprotein hormone genes producing the alpha- and beta-subunits (AedaeGPA2 and AedaeGPB5) and assessed their temporal expression profiles in the yellow and dengue-fever vector, Aedes aegypti. We have also isolated a putative receptor for this novel mosquito hormone, AedaeLGR1, which contains features conserved with other glycoprotein leucine-rich repeating containing G protein-coupled receptors. AedaeLGR1 is expressed in tissues of the alimentary canal such as the midgut, Malpighian tubules and hindgut, suggesting that this novel mosquito glycoprotein hormone may regulate ionic and osmotic balance. Focusing on the hindgut in adult stage A. aegypti, where AedaeLGR1 was highly enriched, we utilized the Scanning Ion-selective Electrode Technique (SIET) to determine if AedaeGPA2/GPB5 modulated cation transport across this epithelial tissue. Our results suggest that AedaeGPA2/GPB5 does indeed participate in ionic and osmotic balance, since it appears to inhibit natriuresis and promote kaliuresis. Taken together, our findings imply this hormone may play an important

  6. Curbing craving: behavioral and brain evidence that children regulate craving when instructed to do so but have higher baseline craving than adults.

    PubMed

    Silvers, Jennifer A; Insel, Catherine; Powers, Alisa; Franz, Peter; Weber, Jochen; Mischel, Walter; Casey, B J; Ochsner, Kevin N

    2014-10-01

    Although one third of children and adolescents are overweight or obese, developmental changes in food craving and the ability to regulate craving remain poorly understood. We addressed this knowledge gap by examining behavioral and neural responses to images of appetizing unhealthy foods in individuals ages 6 through 23 years. On close trials (assessing unregulated craving), participants focused on a pictured food's appetitive features. On far trials (assessing effortful regulation), participants focused on a food's visual features and imagined that it was farther away. Across conditions, older age predicted less craving, less striatal recruitment, greater prefrontal activity, and stronger frontostriatal coupling. When effortfully regulating their responses to the images, all participants reported less craving and exhibited greater recruitment of lateral prefrontal cortex and less recruitment of ventromedial prefrontal cortex. Greater body mass predicted less regulation-related prefrontal activity, particularly among children. These results suggest that children experience stronger craving than adults but can also effectively regulate craving. Moreover, the mechanisms underlying regulation may differ for heavy and lean children.

  7. miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma

    PubMed Central

    Khalil, Susanna; Fabbri, Enrica; Santangelo, Alessandra; Bezzerri, Valentino; Cantù, Cinzia; Gennaro, Gianfranco Di; Finotti, Alessia; Ghimenton, Claudio; Eccher, Albino; Dechecchi, Maria; Scarpa, Aldo; Hirshman, Brian; Chen, Clark; Ferracin, Manuela; Negrini, Massimo; Gambari, Roberto; Cabrini, Giulio

    2016-01-01

    The levels of expression of O6-methylguanine-DNA methyltransferase (MGMT) are relevant in predicting the response to the alkylating chemotherapy in patients affected by glioblastoma. MGMT promoter methylation and the published MGMT regulating microRNAs (miRNAs) do not completely explain the expression pattern of MGMT in clinical glioblastoma specimens. Here we used a genome-wide microarray-based approach to identify MGMT regulating miRNAs. Our screen unveiled three novel MGMT regulating miRNAs, miR-127-3p, miR-409-3p, and miR-124-3p, in addition to the previously identified miR-181d-5p. Transfection of these three novel miRNAs into the T98G glioblastoma cell line suppressed MGMT mRNA and protein expression. However, their MGMT- suppressive effects are 30–50% relative that seen with miR-181d-5p transfection. In silico analyses of The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) revealed that miR-181d-5p is the only miRNA that consistently exhibited inverse correlation with MGMT mRNA expression. However, statistical models incorporating both miR-181d-5p and miR-409-3p expression better predict MGMT expression relative to models involving either miRNA alone. Our results confirmed miR-181d-5p as the key MGMT-regulating miRNA. Other MGMT regulating miRNAs, including the miR-409-3p identified in this report, modify the effect of miR-181d-5p on MGMT expression. MGMT expression is, thus, regulated by cooperative interaction between key MGMT-regulating miRNAs. PMID:27057640

  8. miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma.

    PubMed

    Khalil, Susanna; Fabbri, Enrica; Santangelo, Alessandra; Bezzerri, Valentino; Cantù, Cinzia; Di Gennaro, Gianfranco; Finotti, Alessia; Ghimenton, Claudio; Eccher, Albino; Dechecchi, Maria; Scarpa, Aldo; Hirshman, Brian; Chen, Clark; Ferracin, Manuela; Negrini, Massimo; Gambari, Roberto; Cabrini, Giulio

    2016-05-10

    The levels of expression of O6-methylguanine-DNA methyltransferase (MGMT) are relevant in predicting the response to the alkylating chemotherapy in patients affected by glioblastoma. MGMT promoter methylation and the published MGMT regulating microRNAs (miRNAs) do not completely explain the expression pattern of MGMT in clinical glioblastoma specimens. Here we used a genome-wide microarray-based approach to identify MGMT regulating miRNAs. Our screen unveiled three novel MGMT regulating miRNAs, miR-127-3p, miR-409-3p, and miR-124-3p, in addition to the previously identified miR-181d-5p. Transfection of these three novel miRNAs into the T98G glioblastoma cell line suppressed MGMT mRNA and protein expression. However, their MGMT- suppressive effects are 30-50% relative that seen with miR-181d-5p transfection. In silico analyses of The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) revealed that miR-181d-5p is the only miRNA that consistently exhibited inverse correlation with MGMT mRNA expression. However, statistical models incorporating both miR-181d-5p and miR-409-3p expression better predict MGMT expression relative to models involving either miRNA alone. Our results confirmed miR-181d-5p as the key MGMT-regulating miRNA. Other MGMT regulating miRNAs, including the miR-409-3p identified in this report, modify the effect of miR-181d-5p on MGMT expression. MGMT expression is, thus, regulated by cooperative interaction between key MGMT-regulating miRNAs.

  9. RE1 silencing transcription factor/neuron-restrictive silencing factor regulates expansion of adult mouse subventricular zone-derived neural stem/progenitor cells in vitro.

    PubMed

    Soldati, Chiara; Caramanica, Pasquale; Burney, Matthew J; Toselli, Camilla; Bithell, Angela; Augusti-Tocco, Gabriella; Stanton, Lawrence W; Biagioni, Stefano; Buckley, Noel J; Cacci, Emanuele

    2015-08-01

    Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate.

  10. Regulation of Stem Cell Proliferation and Cell Fate Specification by Wingless/Wnt Signaling Gradients Enriched at Adult Intestinal Compartment Boundaries

    PubMed Central

    Tian, Ai; Benchabane, Hassina; Wang, Zhenghan; Ahmed, Yashi

    2016-01-01

    Intestinal stem cell (ISC) self-renewal and proliferation are directed by Wnt/β-catenin signaling in mammals, whereas aberrant Wnt pathway activation in ISCs triggers the development of human colorectal carcinoma. Herein, we have utilized the Drosophila midgut, a powerful model for ISC regulation, to elucidate the mechanisms by which Wingless (Wg)/Wnt regulates intestinal homeostasis and development. We provide evidence that the Wg signaling pathway, activation of which peaks at each of the major compartment boundaries of the adult intestine, has essential functions. Wg pathway activation in the intestinal epithelium is required not only to specify cell fate near compartment boundaries during development, but also to control ISC proliferation within compartments during homeostasis. Further, in contrast with the previous focus on Wg pathway activation within ISCs, we demonstrate that the primary mechanism by which Wg signaling regulates ISC proliferation during homeostasis is non-autonomous. Activation of the Wg pathway in absorptive enterocytes is required to suppress JAK-STAT signaling in neighboring ISCs, and thereby their proliferation. We conclude that Wg signaling gradients have essential roles during homeostasis and development of the adult intestine, non-autonomously controlling stem cell proliferation inside compartments, and autonomously specifying cell fate near compartment boundaries. PMID:26845150

  11. Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion.

    PubMed

    Brunetti, Tonya M; Fremin, Brayon J; Cripps, Richard M

    2015-05-15

    In Drosophila, myoblast fusion is a conserved process in which founder cells (FCs) and fusion competent myoblasts (FCMs) fuse to form a syncytial muscle fiber. Mutants for the myogenic regulator Myocyte enhancer factor-2 (MEF2) show a failure of myoblast fusion, indicating that MEF2 regulates the fusion process. Indeed, chromatin immunoprecipitation studies show that several genes involved in myoblast fusion are bound by MEF2 during embryogenesis. Of these, the MARVEL domain gene singles bar (sing), is down-regulated in MEF2 knockdown pupae, and has five consensus MEF2 binding sites within a 9000-bp region. To determine if MEF2 is an essential and direct regulator of sing during pupal muscle development, we identified a 315-bp myoblast enhancer of sing. This enhancer was active during myoblast fusion, and mutation of two MEF2 sites significantly decreased enhancer activity. We show that lack of sing expression resulted in adult lethality and muscle loss, due to a failure of fusion during the pupal stage. Additionally, we sought to determine if sing was required in either FCs or FCMs to support fusion. Interestingly, knockdown of sing in either population did not significantly affect fusion, however, knockdown in both FCs and FCMs resulted in muscles with significantly reduced nuclei numbers, provisionally indicating that sing function is required in either cell type, but not both. Finally, we found that MEF2 regulated sing expression at the embryonic stage through the same 315-bp enhancer, indicating that sing is a MEF2 target at both critical stages of myoblast fusion. Our studies define for the first time how MEF2 directly controls fusion at multiple stages of the life cycle, and provide further evidence that the mechanisms of fusion characterized in Drosophila embryos is also used in the formation of the more complex adult muscles.

  12. Flow management and fish density regulate salmonid recruitment and adult size in tailwaters across western North America

    USGS Publications Warehouse

    Dibble, Kimberly L.; Yackulic, Charles B.; Kennedy, Theodore A.; Budy, Phaedra E.

    2015-01-01

    The mean lengths of adult rainbow and brown trout were influenced by similar flow and catch metrics. Length in both species was positively correlated with high annual flow but declined in tailwaters with high daily fluctuations in flow, high catch rates of conspecifics, and when large cohorts recruited to adult size. Whereas brown trout did not respond to the proportion of water allocated between seasons, rainbow trout length increased in rivers that released more water during winter than in spring. Rainbow trout length was primarily related to high catch rates of conspecifics, whereas brown trout length was mainly related to large cohorts recruiting to the adult size class. Species-specific responses to flow management are likely attributable to differences in seasonal timing of key life history events such as spawning, egg hatching, and fry emergence.

  13. A MATHEMATICAL MODEL FOR THE ANDROGENIC REGULATION OF THE PROSTATE IN INTACT AND CASTRATE ADULT MALE RATS

    EPA Science Inventory

    An abstract that provides understanding for a mathematical model by Barton and Anderson, for the dynamics of androgenic synthesis, transport, metabolism, and regulation of the rodent ventral prostate.

  14. PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact

    PubMed Central

    Lee, Byung-Chul; Kim, Hyung-Sik; Shin, Tae-Hoon; Kang, Insung; Lee, Jin Young; Kim, Jae-Jun; Kang, Hyun Kyoung; Seo, Yoojin; Lee, Seunghee; Yu, Kyung-Rok; Choi, Soon Won; Kang, Kyung-Sun

    2016-01-01

    Mesenchymal stem cells (MSCs) possess unique immunomodulatory abilities. Many studies have elucidated the clinical efficacy and underlying mechanisms of MSCs in immune disorders. Although immunoregulatory factors, such as Prostaglandin E2 (PGE2), and their mechanisms of action on immune cells have been revealed, their effects on MSCs and regulation of their production by the culture environment are less clear. Therefore, we investigated the autocrine effect of PGE2 on human adult stem cells from cord blood or adipose tissue, and the regulation of its production by cell-to-cell contact, followed by the determination of its immunomodulatory properties. MSCs were treated with specific inhibitors to suppress PGE2 secretion, and proliferation was assessed. PGE2 exerted an autocrine regulatory function in MSCs by triggering E-Prostanoid (EP) 2 receptor. Inhibiting PGE2 production led to growth arrest, whereas addition of MSC-derived PGE2 restored proliferation. The level of PGE2 production from an equivalent number of MSCs was down-regulated via gap junctional intercellular communication. This cell contact-mediated decrease in PGE2 secretion down-regulated the suppressive effect of MSCs on immune cells. In conclusion, PGE2 produced by MSCs contributes to maintenance of self-renewal capacity through EP2 in an autocrine manner, and PGE2 secretion is down-regulated by cell-to-cell contact, attenuating its immunomodulatory potency. PMID:27230257

  15. Oppositional Effects of Serotonin Receptors 5-HT1a, 2, and 2c in the Regulation of Adult Hippocampal Neurogenesis

    PubMed Central

    Klempin, Friederike; Babu, Harish; Tonelli, Davide De Pietri; Alarcon, Edson; Fabel, Klaus; Kempermann, Gerd

    2009-01-01

    Serotonin (5-HT) appears to play a major role in controlling adult hippocampal neurogenesis and thereby it is relevant for theories linking failing adult neurogenesis to the pathogenesis of major depression and the mechanisms of action of antidepressants. Serotonergic drugs lacked acute effects on adult neurogenesis in many studies, which suggested a surprisingly long latency phase. Here we report that the selective serotonin reuptake inhibitor fluoxetine, which has no acute effect on precursor cell proliferation, causes the well-described increase in net neurogenesis upon prolonged treatment partly by promoting the survival and maturation of new postmitotic neurons. We hypothesized that this result is the cumulative effect of several 5-HT-dependent events in the course of adult neurogenesis. Thus, we used specific agonists and antagonists to 5-HT1a, 2, and 2c receptor subtypes to analyze their impact on different developmental stages. We found that 5-HT exerts acute and opposing effects on proliferation and survival or differentiation of precursor cells by activating the diverse receptor subtypes on different stages within the neuronal lineage in vivo. This was confirmed in vitro by demonstrating that 5-HT1a receptors are involved in self-renewal of precursor cells, whereas 5-HT2 receptors effect both proliferation and promote neuronal differentiation. We propose that under acute conditions 5-HT2 effects counteract the positive proliferative effect of 5-HT1a receptor activation. However, prolonged 5-HT2c receptor activation fosters an increase in late-stage progenitor cells and early postmitotic neurons, leading to a net increase in adult neurogenesis. Our data indicate that serotonin does not show effect latency in the adult dentate gyrus. Rather, the delayed response to serotonergic drugs with respect to endpoints downstream of the immediate receptor activity is largely due to the initially antagonistic and un-balanced action of different 5-HT receptors. PMID

  16. Cav2-type calcium channels encoded by cac regulate AP-independent neurotransmitter release at cholinergic synapses in adult Drosophila brain.

    PubMed

    Gu, Huaiyu; Jiang, Shaojuan Amy; Campusano, Jorge M; Iniguez, Jorge; Su, Hailing; Hoang, Andy An; Lavian, Monica; Sun, Xicui; O'Dowd, Diane K

    2009-01-01

    Voltage-gated calcium channels containing alpha1 subunits encoded by Ca(v)2 family genes are critical in regulating release of neurotransmitter at chemical synapses. In Drosophila, cac is the only Ca(v)2-type gene. Cacophony (CAC) channels are localized in motor neuron terminals where they have been shown to mediate evoked, but not AP-independent, release of glutamate at the larval neuromuscular junction (NMJ). Cultured embryonic neurons also express CAC channels, but there is no information about the properties of CAC-mediated currents in adult brain nor how these channels regulate transmission in central neural circuits where fast excitatory synaptic transmission is predominantly cholinergic. Here we report that wild-type neurons cultured from late stage pupal brains and antennal lobe projection neurons (PNs) examined in adult brains, express calcium currents with two components: a slow-inactivating current sensitive to the spider toxin Plectreurys toxin II (PLTXII) and a fast-inactivating PLTXII-resistant component. CAC channels are the major contributors to the slow-inactivating PLTXII-sensitive current based on selective reduction of this component in hypomorphic cac mutants (NT27 and TS3). Another characteristic of cac mutant neurons both in culture and in whole brain recordings is a reduced cholinergic miniature excitatory postsynaptic current frequency that is mimicked in wild-type neurons by acute application of PLTXII. These data demonstrate that cac encoded Ca(v)2-type calcium channels regulate action potential (AP)-independent release of neurotransmitter at excitatory cholinergic synapses in the adult brain, a function not predicted from studies at the larval NMJ.

  17. Migration depths of adult steelhead Oncorhynchus mykiss in relation to dissolved gas supersaturation in a regulated river system

    SciTech Connect

    Johnson, Eric L.; Clabough, Tami S.; Caudill, Christopher C.; keefer, matthew L.; Peery, Christopher A.; Richmond, Marshall C.

    2010-04-01

    Adult steelhead tagged with archival transmitters primarily migrated through a large river corridor at depths > 2 m, interspersed with frequent but short (< 5 min) periods closer to the surface. The recorded swimming depths and behaviours probably provided adequate hydrostatic compensation for the encountered supersaturated dissolved gas conditions and probably limited development of gas bubble disease (GBD). Results parallel those from a concurrent adult Chinook salmon study, except steelhead experienced greater seasonal variability and were more likely to have depth-uncompensated supersaturation exposure in some dam tailraces, perhaps explaining the higher incidence of GBD in this species.

  18. Intrahippocampal injection of Aβ1-42 inhibits neurogenesis and down-regulates IFN-γ and NF-κB expression in hippocampus of adult mouse brain.

    PubMed

    Zheng, Meige; Liu, Jing; Ruan, Zhigang; Tian, Sumin; Ma, Yuxin; Zhu, Jiayong; Li, Guoying

    2013-03-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by accumulation of amyloid plaques and neurofibrillary tangles. Amyloid-β (Aβ) is widely recognized as a key factor in the pathogenesis of AD. Aβ1-42 a major component of amyloid plaques, has shown synaptotoxicity associated with impaired long-term potentiation and cognitive deficits. Alteration of neurogenesis in AD patients has been reported, while little is known about how Aβ1-42 affects hippocampal neurogenesis in the adult brain. In this study, we injected human Aβ1-42 peptide into hippocampal CA1 area of adult mouse brain bilaterally and evaluated histological change and neurogenesis in the hippocampus. Hematoxylin and eosin (HE) stain showed that Aβ1-42-injection resulted in an extensive neurodegeneration in the Aβ-accumulated area and CA3 in hippocampus. Immunostaining showed that intrahippocampal Aβ1-42-injection dramatically decreased the number of bromodeoxyuridine (BrdU)-positive cells in the dentate gyrus (DG) compared to the vehicle injection. Moreover, a significant decrease in the number of BrdU/double-cortin double-positive cells in Aβ1-42-injected hippocampus was observed, suggesting that Aβ1-42-injection inhibited progenitor cell proliferation and neurogenesis in subgranular zone of the DG in the adult brain. We also found that the Aβ1-42-mediated decline of neurogenesis was associated with decreased protein levels of cytokines interferon-γ (IFN-γ) and transcription factor nuclear factor-kappa B (NF-κB) in the hippocampus. These results suggest that Aβ1-42 inhibits hippocampal neurogenesis in the adult brain possibly through down-regulation of INF-γ and NF-κB signaling pathway. This study provides a new insight into Aβ1-42-mediated decrease in hippocampal neurogenesis in the adult central nervous system.

  19. Association of Self-Efficacy and Self-Regulation with Nutrition and Exercise Behaviors in a Community Sample of Adults.

    PubMed

    Shieh, Carol; Weaver, Michael T; Hanna, Kathleen M; Newsome, Kathleen; Mogos, Mulubrhan

    2015-01-01

    This study examined the association of self-efficacy and self-regulation with nutrition and exercise behaviors. The study used a cross-sectional design and included 108 participants (54 men, 54 women). Nutrition behaviors (fruit/vegetable consumption, dinner cooking, and restaurant eating) and exercise were measured using total days in last week a behavior was reported. Instruments measuring self-efficacy and self-regulation demonstrated excellent Cronbach's alphas (.93-.95). Path analysis indicated only fruit/vegetable consumption and exercise were associated with self-efficacy and self-regulation. Self-regulation showed direct association with fruit/vegetable consumption and exercise, but self-efficacy had direct association only with exercise. Self-efficacy and self-regulation should be strategically used to promote health behaviors.

  20. The Impact of Feedback on Self-Rated Driving Ability and Driving Self-Regulation among Older Adults

    ERIC Educational Resources Information Center

    Ackerman, Michelle L.; Crowe, Michael; Vance, David E.; Wadley, Virginia G.; Owsley, Cynthia; Ball, Karlene K.

    2011-01-01

    In 129 community-dwelling older adults, feedback regarding qualification for an insurance discount (based on a visual speed of processing test; Useful Field of View) was examined as a prospective predictor of change in self-reported driving ability, driving avoidance, and driving exposure over 3 months, along with physical, visual, health, and…

  1. Up-regulation of exploratory tendencies does not enhance general learning abilities in juvenile or young-adult outbred mice.

    PubMed

    Light, Kenneth R; Kolata, Stefan; Hale, Gregory; Grossman, Henya; Matzel, Louis D

    2008-09-01

    "General cognitive ability" describes a trait that transcends specific learning domains and impacts a wide range of cognitive skills. Individual animals (including humans) exhibit wide variations in their expression of this trait. We have previously determined that the propensity for exploration is highly correlated with the general cognitive abilities of individual outbred mice. Here, we asked if inducing an increase in exploratory behaviors would causally promote an increase in animals' general learning abilities. In three experiments, juvenile and young-adult male CD-1 outbred mice were exposed to 12 novel environments starting at post-natal days 39 (juvenile) and 61 (young adult), after which they underwent a series of cognitive and exploratory tests as adults (beginning at post-natal day 79). Exposure to novel environments promoted increases in exploration (across multiple measures) on two different tasks, including an elevated plus maze. However, a subsequent test of general learning abilities (aggregate performance across five distinct learning tasks) determined that exposure to novel environments as juveniles or young-adults had no effect on general learning abilities in adulthood. Therefore, while exposure to novel environments promotes long-lasting increases in mice's exploratory tendencies, these increases in exploration do not appear to causally impact general learning abilities.

  2. The Influence of the Openness of an E-Learning Situation on Adult Students' Self-Regulation

    ERIC Educational Resources Information Center

    Jezegou, Annie

    2013-01-01

    This article presents empirical research conducted with French speaking adults studying for a diploma. Their training took place mainly in e-learning. The goal of this research was to identify and explain the processes of influence existing between two specific dimensions: the degree of openness of the components of the e-learning situation and…

  3. Duration of prepupal summer dormancy regulates synchronization of adult diapause with winter temperatures in bees of the genus Osmia.

    PubMed

    Sgolastra, Fabio; Kemp, William P; Maini, Stefano; Bosch, Jordi

    2012-07-01

    Osmia (Osmia) bees are strictly univoltine and winter as diapausing adults. In these species, the timing of adult eclosion with the onset of wintering conditions is critical, because adults exposed to long pre-wintering periods show increased lipid loss and winter mortality. Populations from warm areas fly in February-March and are exposed to longer growth seasons than populations from colder areas, which fly in April-May. Given their inability to produce an extra generation, early-flying populations should develop more slowly than late-flying populations and thus avoid the negative consequences of long pre-wintering periods. In this study we compare the development under natural and laboratory conditions of phenologically-distinct populations in two Osmia species. Early-flying populations took ∼2 months longer to develop than late-flying populations. Differences between populations in larval and pupal period duration were very small, whereas the prepupal period was much longer in early-flying populations. In contrast to the larval and pupal stages, the prepupal stage showed a non-linear response to temperature, was strongly affected by thermoperiod, and exhibited minimum respiration rates. Coupled with other lines of evidence, these results suggest that the prepupal period in Osmia corresponds to a summer diapause, and its duration may be under local selection to synchronize adult eclosion with the onset of winter temperatures. We discuss the implications of our results relative to current expectations of global warming.

  4. MicroRNA deep sequencing in two adult stem cell populations identifies miR-501 as a novel regulator of myosin heavy chain during muscle regeneration

    PubMed Central

    Mizbani, Amir; Luca, Edlira; Rushing, Elisabeth J.

    2016-01-01

    MicroRNAs (miRNAs) are important regulators of skeletal muscle regeneration, but the underlying mechanisms are still incompletely understood. Here, comparative miRNA sequencing analysis of myogenic progenitor cells (MPs) and non-myogenic fibroblast-adipocyte progenitors (FAPs) during cardiotoxin (CTX)-induced muscle injury uncovered miR-501 as a novel muscle-specific miRNA. miR-501 is an intronic miRNA and its expression levels in MPs correlated with its host gene, chloride channel, voltage-sensitive 5 (Clcn5). Pharmacological inhibition of miR-501 dramatically blunted the induction of embryonic myosin heavy chain (MYH3) and, to a lesser extent, adult myosin isoforms during muscle regeneration, and promoted small-diameter neofibers. An unbiased target identification approach in primary myoblasts validated gigaxonin as a target of miR-501 that mimicked the effect of miR-501 inhibition on MYH3 expression. In the mdx mouse model, which models a pathological disease state, not only was miR-501 induced in regenerating skeletal muscle, but also its serum levels were increased, which correlated with the disease state of the animals. Our results suggest that miR-501 plays a key role in adult muscle regeneration and might serve as a novel serum biomarker for the activation of adult muscle stem cells. PMID:27707793

  5. Questionnaires for outcome expectancy, self-regulation, and behavioral expectation for resistance training among young-old adults: development and preliminary validity.

    PubMed

    Williams, David M; Savla, Jyoti; Davy, Brenda M; Kelleher, Sarah A; Marinik, Elaina L; Winett, Richard A

    2015-04-01

    The purpose of the present research was to develop questionnaires to assess outcome expectancy for resistance training (RT), behavioral expectation in the context of perceived barriers to RT, and self-regulation strategies for RT among young-old adults (50-69 years). Measurement development included (a) item generation through elicitation interviews (N = 14) and open-ended questionnaires (N = 56), (b) expert feedback on a preliminary draft of the questionnaires (N = 4), and (c) a quantitative longitudinal study for item-reduction and psychometric analyses (N = 94). Elicitation procedures, expert feedback, and item reduction yielded four questionnaires with a total of 33 items. Positive outcome expectancy (α = .809), negative outcome expectancy (α = .729), behavioral expectation (α = .925), and self-regulation (α = .761) had-with one exception-moderate bivariate associations with two different indicators of self-reported RT behavior at one-month follow-up (r = .298 to .506). The present research provides preliminary support for newly developed questionnaires to facilitate understanding of the psychosocial determinants of RT among young-old adults.

  6. Mcidas and GemC1 are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche.

    PubMed

    Kyrousi, Christina; Arbi, Marina; Pilz, Gregor-Alexander; Pefani, Dafni-Eleftheria; Lalioti, Maria-Eleni; Ninkovic, Jovica; Götz, Magdalena; Lygerou, Zoi; Taraviras, Stavros

    2015-11-01

    Multiciliated cells are abundant in the epithelial surface of different tissues, including cells lining the walls of the lateral ventricles in the brain and the airway epithelium. Their main role is to control fluid flow and defects in their differentiation are implicated in many human disorders, such as hydrocephalus, accompanied by defects in adult neurogenesis and mucociliary disorder in the airway system. Here we show that Mcidas, which is mutated in human mucociliary clearance disorder, and GemC1 (Gmnc or Lynkeas), previously implicated in cell cycle progression, are key regulators of multiciliated ependymal cell generation in the mouse brain. Overexpression and knockdown experiments show that Mcidas and GemC1 are sufficient and necessary for cell fate commitment and differentiation of radial glial cells to multiciliated ependymal cells. Furthermore, we show that GemC1 and Mcidas operate in hierarchical order, upstream of Foxj1 and c-Myb transcription factors, which are known regulators of ependymal cell generation, and that Notch signaling inhibits GemC1 and Mcidas function. Our results suggest that Mcidas and GemC1 are key players in the generation of multiciliated ependymal cells of the adult neurogenic niche.

  7. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    PubMed

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival.

  8. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation.

    PubMed

    Zhao, Zhenze; Ma, Xiuye; Hsiao, Tzu-Hung; Lin, Gregory; Kosti, Adam; Yu, Xiaojie; Suresh, Uthra; Chen, Yidong; Tomlinson, Gail E; Pertsemlidis, Alexander; Du, Liqin

    2014-05-15

    Neuroblastoma, the most common extracranial solid tumor of childhood, arises from neural crest cell precursors that fail to differentiate. Inducing cell differentiation is an important therapeutic strategy for neuroblastoma. We developed a direct functional high-content screen to identify differentiation-inducing microRNAs, in order to develop microRNA-based differentiation therapy for neuroblastoma. We discovered novel microRNAs, and more strikingly, three microRNA seed families that induce neuroblastoma cell differentiation. In addition, we showed that microRNA seed families were overrepresented in the identified group of fourteen differentiation-inducing microRNAs, suggesting that microRNA seed families are functionally more important in neuroblastoma differentiation than microRNAs with unique sequences. We further investigated the differentiation-inducing function of the microRNA-506-3p/microRNA-124-3p seed family, which was the most potent inducer of differentiation. We showed that the differentiation-inducing function of microRNA-506-3p/microRNA-124-3p is mediated, at least partially, by down-regulating expression of their targets CDK4 and STAT3. We further showed that expression of miR-506-3p, but not miR-124-3p, is dramatically upregulated in differentiated neuroblastoma cells, suggesting the important role of endogenous miR-506-3p in differentiation and tumorigenesis. Overall, our functional screen on microRNAs provided the first comprehensive analysis on the involvements of microRNA species in neuroblastoma cell differentiation and identified novel differentiation-inducing microRNAs. Further investigations are certainly warranted to fully characterize the function of the identified microRNAs in order to eventually benefit neuroblastoma therapy.

  9. Insulin-like and testis ecdysiotropin neuropeptides are regulated by the circadian timing system in the brain during larval-adult development in the insect Rhodnius prolixus (Hemiptera).

    PubMed

    Vafopoulou, Xanthe; Steel, Colin G H

    2012-11-01

    Insulin-like peptides (ILPs) regulate numerous functions in insects including growth, development, carbohydrate metabolism and female reproduction. This paper reports the immunohistochemical localization of ILPs in brain neurons of Rhodnius prolixus and their intimate associations with the brain circadian clock system. In larvae, three groups of neurons in the protocerebrum are ILP-positive, and testis ecdysiotropin (TE) is co-localized in two of them. During adult development, the number of ILP groups increased to four. A blood meal initiates transport and release of ILPs, indicating that release is nutrient dependent. Both production and axonal transport of ILPs continue during adult development with clear cytological evidence of a daily rhythm that closely correlates with the daily rhythm of ILPs release from brains in vitro. The same phenomena were observed with TE previously. Double labeling for ILPs and pigment dispersing factor (PDF) (contained in the brain lateral clock cells, LNs) revealed intimate associations between axons of the ILP/TE cells and PDF-positive axons in both central brain and retrocerebral complex, revealing potential neuronal pathways for circadian regulation of ILPs and TE. Similar close associations were found previously between LN axons and axons of the brain neurons producing the neuropeptide prothoracicotropic hormone. Thus, the brain clock system controls rhythmicity in multiple brain neurohormones. It is suggested that rhythms in circulating ILPs and TE act in concert with known rhythms of circulating ecdysteroids in both larvae and adults to orchestrate the timing of cellular responses in diverse tissues of the animal, thereby generating internal temporal order within it.

  10. Flow management and fish density regulate salmonid recruitment and adult size in tailwaters across western North America.

    PubMed

    Dibble, Kimberly L; Yackulic, Charles B; Kennedy, Theodore A; Budy, Phaedra

    2015-12-01

    Rainbow and brown trout have been intentionally introduced into tailwaters downriver of dams globally and provide billions of dollars in economic benefits. At the same time, recruitment and maximum length of trout populations in tailwaters often fluctuate erratically, which negatively affects the value of fisheries. Large recruitment events may increase dispersal downriver where other fish species may be a priority (e.g., endangered species). There is an urgent need to understand the drivers of trout population dynamics in tailwaters, in particular the role of flow management. Here, we evaluate how flow, fish density, and other physical factors of the river influence recruitment and mean adult length in tailwaters across western North America, using data from 29 dams spanning 1-19 years. Rainbow trout recruitment was negatively correlated with high annual, summer, and spring flow and dam latitude, and positively correlated with high winter flow, subadult brown trout catch, and reservoir storage capacity. Brown trout recruitment was negatively correlated with high water velocity and daily fluctuations in flow (i.e., hydropeaking) and positively correlated with adult rainbow trout catch. Among these many drivers, rainbow trout recruitment was primarily correlated with high winter flow combined with low spring flow, whereas brown trout recruitment was most related to high water velocity. The mean lengths of adult rainbow and brown trout were influenced by similar flow and catch metrics. Length in both species was positively correlated with high annual flow but declined in tailwaters with high daily fluctuations in flow, high catch rates of conspecifics, and when large cohorts recruited to adult size. Whereas brown trout did not respond to the proportion of water allocated between seasons, rainbow trout length increased in rivers that released more water during winter than in spring. Rainbow trout length was primarily related to high catch rates of conspecifics

  11. MK-801 (Dizocilpine) Regulates Multiple Steps of Adult Hippocampal Neurogenesis and Alters Psychological Symptoms via Wnt/β-Catenin Signaling in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Shubha

    2017-03-15

    Adult hippocampal neurogenesis is directly involved in regulation of stress, anxiety, and depression that are commonly observed nonmotor symptoms in Parkinson's disease (PD). These symptoms do not respond to pharmacological dopamine replacement therapy. Excitotoxic damage to neuronal cells by N-methyl-d-aspartate (NMDA) receptor activation is also a major contributing factor in PD development, but whether it regulates hippocampal neurogenesis and nonmotor symptoms in PD is yet unexplored. Herein, for the first time, we studied the effect of MK-801, an NMDA receptor antagonist, on adult hippocampal neurogenesis and behavioral functions in 6-OHDA (6-hydroxydopamine) induced rat model of PD. MK-801 treatment (0.2 mg/kg, ip) increased neural stem cell (NSC) proliferation, self-renewal capacity, long-term survival, and neuronal differentiation in the hippocampus of rat model of PD. MK-801 potentially enhanced long-term survival, improved dendritic arborization of immature neurons, and reduced 6-OHDA induced neurodegeneration via maintaining the NSC pool in hippocampus, leading to decreased anxiety and depression-like phenotypes in the PD model. MK-801 inhibited glycogen synthase kinase-3β (GSK-3β) through up-regulation of Wnt-3a, which resulted in the activation of Wnt/β-catenin signaling leading to enhanced hippocampal neurogenesis in PD model. Additionally, MK-801 treatment protected the dopaminergic (DAergic) neurons in the nigrostriatal pathway and improved motor functions by increasing the expression of Nurr-1 and Pitx-3 in the PD model. Therefore, MK-801 treatment serves as a valuable tool to enhance hippocampal neurogenesis in PD, but further studies are needed to revisit the role of MK-801 in the neurodegenerative disorder before proposing a potential therapeutic candidate.

  12. Linking an Anxiety-Related Personality Trait to Cardiac Autonomic Regulation in Well-Defined Healthy Adults: Harm Avoidance and Resting Heart Rate Variability

    PubMed Central

    Kao, Lien-Cheng; Liu, Yu-Wen; Tzeng, Nian-Sheng; Kuo, Terry B. J.; Huang, San-Yuan

    2016-01-01

    Objective Anxiety trait, anxiety and depression states have all been reported to increase risks for cardiovascular disease (CVD), possibly through altering cardiac autonomic regulation. Our aim was to investigate whether the relationship between harm avoidance (HA, an anxiety-related personality trait) and cardiac autonomic regulation is independent of anxiety and depression states in healthy adults. Methods We recruited 535 physically and mentally healthy volunteers. Participants completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI) and Tri-dimensional Personality Questionnaire. Participants were divided into high or low HA groups as discriminated by the quartile value. Cardiac autonomic function was evaluated by measuring heart rate variability (HRV). We obtained the time and frequency-domain indices of HRV including variance (total HRV), the low-frequency power (LF; 0.05–0.15 Hz), which may reflect baroreflex function, the high-frequency power (HF; 0.15–0.40 Hz), which reflects cardiac parasympathetic activity, as well as the LF/HF ratio. Results The BDI and HA scores showed associations with HRV parameters. After adjustment for the BDI scores and other control variables, HA is still associated with reduced variance, LF and HF power. Compared with the participants with low HA, those with high HA displayed significant reductions in variance, LF and HF power and a significant increase in their LF/HF ratio. Conclusion This study highlights the independent role of HA in contributing to decreased autonomic cardiac regulation in healthy adults and provides a potential underlying mechanism for anxiety trait to confer increased risk for CVD. PMID:27482240

  13. Adult-onset deficiency in growth hormone and insulin-like growth factor-I decreases survival of dentate granule neurons: insights into the regulation of adult hippocampal neurogenesis.

    PubMed

    Lichtenwalner, Robin J; Forbes, M Elizabeth; Sonntag, William E; Riddle, David R

    2006-02-01

    Insulin-like growth factor-I (IGF-I), long thought to provide critical trophic support during development, also has emerged as a candidate for regulating ongoing neuronal production in adulthood. Whether and how IGF-I influences each phase of neurogenesis, however, remains unclear. In the current study, we used a selective model of growth hormone (GH) and plasma IGF-I deficiency to evaluate the role of GH and IGF-I in regulating cell proliferation, survival, and neuronal differentiation in the adult dentate gyrus. GH/IGF-I-deficient dwarf rats of the Lewis strain were made GH/IGF-I replete throughout development via twice daily injections of GH, and then GH/IGF-I deficiency was initiated in adulthood by removing animals from GH treatment. Bromodeoxyuridine (BrdU) labeling revealed no effect of GH/IGF-I deficiency on cell proliferation, but adult-onset depletion of GH and plasma IGF-I significantly reduced the survival of newly generated cells in the dentate gyrus. Colabeling for BrdU and markers of immature and mature neurons revealed a selective effect of GH/IGF-I deficiency on the survival of more mature new neurons. The number of BrdU-labeled cells expressing the immature neuronal marker TUC-4 did not differ between GH/IGF-I-deficient and -replete animals, but the number expressing only the marker of maturity NeuN was lower in depleted animals. Taken together, results from the present study suggest that, under conditions of short-term GH/IGF-I deficiency during adulthood, dentate granule cells continue to be produced, to commit to a neuronal fate, and to begin the process of neuronal maturation, whereas survival of the new neurons is impaired.

  14. Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults.

    PubMed

    Calderón-Garcidueñas, Lilian; Kavanaugh, Michael; Block, Michelle; D'Angiulli, Amedeo; Delgado-Chávez, Ricardo; Torres-Jardón, Ricardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Osnaya, Norma; Villarreal-Calderon, Rodolfo; Guo, Ruixin; Hua, Zhaowei; Zhu, Hongtu; Perry, George; Diaz, Philippe

    2012-01-01

    Air pollution exposures have been linked to neuroinflammation and neuropathology. Autopsy samples of the frontal cortex from control (n = 8) and pollution-exposed (n = 35) children and young adults were analyzed by RT-PCR (n = 43) and microarray analysis (n = 12) for gene expression changes in oxidative stress, DNA damage signaling, NFκB signaling, inflammation, and neurodegeneration pathways. The effect of apolipoprotein E (APOE) genotype on the presence of protein aggregates associated with Alzheimer's disease (AD) pathology was also explored. Exposed urbanites displayed differential (>2-fold) regulation of 134 genes. Forty percent exhibited tau hyperphosphorylation with pre-tangle material and 51% had amyloid-β (Aβ) diffuse plaques compared with 0% in controls. APOE4 carriers had greater hyperphosphorylated tau and diffuse Aβ plaques versus E3 carriers (Q = 7.82, p = 0.005). Upregulated gene network clusters included IL1, NFκB, TNF, IFN, and TLRs. A 15-fold frontal down-regulation of the prion-related protein (PrP(C)) was seen in highly exposed subjects. The down-regulation of the PrP(C) is critical given its important roles for neuroprotection, neurodegeneration, and mood disorder states. Elevation of indices of neuroinflammation and oxidative stress, down-regulation of the PrP(C) and AD-associated pathology are present in young megacity residents. The inducible regulation of gene expression suggests they are evolving different mechanisms in an attempt to cope with the constant state of inflammation and oxidative stress related to their environmental exposures. Together, these data support a role for air pollution in CNS damage and its impact upon the developing brain and the potential etiology of AD and mood disorders.

  15. Age Shall Not Weary Us: Deleterious Effects of Self-Regulation Depletion Are Specific to Younger Adults

    PubMed Central

    Dahm, Theresa; Neshat-Doost, Hamid Taher; Golden, Ann-Marie; Horn, Elizabeth; Hagger, Martin; Dalgleish, Tim

    2011-01-01

    Self-regulation depletion (SRD), or ego-depletion, refers to decrements in self-regulation performance immediately following a different self-regulation-demanding activity. There are now over a hundred studies reporting SRD across a broad range of tasks and conditions. However, most studies have used young student samples. Because prefrontal brain regions thought to subserve self-regulation do not fully mature until 25 years of age, it is possible that SRD effects are confined to younger populations and are attenuated or disappear in older samples. We investigated this using the Stroop color task as an SRD induction and an autobiographical memory task as the outcome measure. We found that younger participants (<25 years) were susceptible to depletion effects, but found no support for such effects in an older group (40–65 years). This suggests that the widely-reported phenomenon of SRD has important developmental boundary conditions casting doubt on claims that it represents a general feature of human cognition. PMID:22039469

  16. Gap Junctions Contribute to the Regulation of Walking-Like Activity in the Adult Mudpuppy (Necturus Maculatus)

    PubMed Central

    Lavrov, Igor; Fox, Lyle; Shen, Jun; Han, Yingchun; Cheng, Jianguo

    2016-01-01

    Although gap junctions are widely expressed in the developing central nervous system, the role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in adults is largely unknown. We investigated whether gap junctions are expressed in the mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker on the walking-like activity induced by NMDA or glutamate in an in vitro mudpuppy preparation. We found that glial and neural cells in the mudpuppy spinal cord expressed different types of connexins that include connexin 32 (Cx32), connexin 36 (Cx36), connexin 37 (Cx37), and connexin 43 (Cx43). Application of a battery of gap junction blockers from three different structural classes (carbenexolone, flufenamic acid, and long chain alcohols) substantially and consistently altered the locomotor-like activity in a dose-dependent manner. In contrast, these blockers did not significantly change the amplitude of the dorsal root reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselectively in the spinal cord. Taken together, these results suggest that gap junctions play a significant modulatory role in the spinal neural networks responsible for the generation of walking-like activity in the adult mudpuppy. PMID:27023006

  17. Gap Junctions Contribute to the Regulation of Walking-Like Activity in the Adult Mudpuppy (Necturus Maculatus).

    PubMed

    Lavrov, Igor; Fox, Lyle; Shen, Jun; Han, Yingchun; Cheng, Jianguo

    2016-01-01

    Although gap junctions are widely expressed in the developing central nervous system, the role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in adults is largely unknown. We investigated whether gap junctions are expressed in the mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker on the walking-like activity induced by NMDA or glutamate in an in vitro mudpuppy preparation. We found that glial and neural cells in the mudpuppy spinal cord expressed different types of connexins that include connexin 32 (Cx32), connexin 36 (Cx36), connexin 37 (Cx37), and connexin 43 (Cx43). Application of a battery of gap junction blockers from three different structural classes (carbenexolone, flufenamic acid, and long chain alcohols) substantially and consistently altered the locomotor-like activity in a dose-dependent manner. In contrast, these blockers did not significantly change the amplitude of the dorsal root reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselectively in the spinal cord. Taken together, these results suggest that gap junctions play a significant modulatory role in the spinal neural networks responsible for the generation of walking-like activity in the adult mudpuppy.

  18. Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons

    PubMed Central

    Doucet-Beaupré, Hélène; Gilbert, Catherine; Profes, Marcos Schaan; Chabrat, Audrey; Pacelli, Consiglia; Giguère, Nicolas; Rioux, Véronique; Deng, Qiaolin; Laguna, Ariadna; Ericson, Johan; Perlmann, Thomas; Ang, Siew-Lan; Cicchetti, Francesca; Parent, Martin; Trudeau, Louis-Eric; Lévesque, Martin

    2016-01-01

    The LIM-homeodomain transcription factors Lmx1a and Lmx1b play critical roles during the development of midbrain dopaminergic progenitors, but their functions in the adult brain remain poorly understood. We show here that sustained expression of Lmx1a and Lmx1b is required for the survival of adult midbrain dopaminergic neurons. Strikingly, inactivation of Lmx1a and Lmx1b recreates cellular features observed in Parkinson’s disease. We found that Lmx1a/b control the expression of key genes involved in mitochondrial functions, and their ablation results in impaired respiratory chain activity, increased oxidative stress, and mitochondrial DNA damage. Lmx1a/b deficiency caused axonal pathology characterized by α-synuclein+ inclusions, followed by a progressive loss of dopaminergic neurons. These results reveal the key role of these transcription factors beyond the early developmental stages and provide mechanistic links between mitochondrial dysfunctions, α-synuclein aggregation, and the survival of dopaminergic neurons. PMID:27407143

  19. Ecdysone Receptor-based Singular Gene Switches for Regulated Transgene Expression in Cells and Adult Rodent Tissues

    PubMed Central

    Lee, Seoghyun; Sohn, Kyung-Cheol; Choi, Dae-Kyoung; Won, Minho; Park, Kyeong Ah; Ju, Sung-Kyu; Kang, Kidong; Bae, Young-Ki; Hur, Gang Min; Ro, Hyunju

    2016-01-01

    Controlled gene expression is an indispensable technique in biomedical research. Here, we report a convenient, straightforward, and reliable way to induce expression of a gene of interest with negligible background expression compared to the most widely used tetracycline (Tet)-regulated system. Exploiting a Drosophila ecdysone receptor (EcR)-based gene regulatory system, we generated nonviral and adenoviral singular vectors designated as pEUI(+) and pENTR-EUI, respectively, which contain all the required elements to guarantee regulated transgene expression (GAL4-miniVP16-EcR, termed GvEcR hereafter, and 10 tandem repeats of an upstream activation sequence promoter followed by a multiple cloning site). Through the transient and stable transfection of mammalian cell lines with reporter genes, we validated that tebufenozide, an ecdysone agonist, reversibly induced gene expression, in a dose- and time-dependent manner, with negligible background expression. In addition, we created an adenovirus derived from the pENTR-EUI vector that readily infected not only cultured cells but also rodent tissues and was sensitive to tebufenozide treatment for regulated transgene expression. These results suggest that EcR-based singular gene regulatory switches would be convenient tools for the induction of gene expression in cells and tissues in a tightly controlled fashion. PMID:27673563

  20. Cre recombinase-regulated Endothelin1 transgenic mouse lines: novel tools for analysis of embryonic and adult disorders

    PubMed Central

    Tavares, Andre L.P.; Clouthier, David E.

    2015-01-01

    Endothelin-1 (EDN1) influences both craniofacial and cardiovascular development and a number of adult physiological conditions by binding to one or both of the known endothelin receptors, thus initiating multiple signaling cascades. Animal models containing both conventional and conditional loss of the Edn1 gene have been used to dissect EDN1 function in both embryos and adults. However, while transgenic Edn1 over-expression or targeted genomic insertion of Edn1 has been performed to understand how elevated levels of Edn1 result in or exacerbate disease states, an animal model in which Edn1 over-expression can be achieved in a spatiotemporal-specific manner has not been reported. Here we describe the creation of Edn1 conditional over-expression transgenic mouse lines in which the chicken β-actin promoter and an Edn1 cDNA are separated by a strong stop sequence flanked by loxP sites. In the presence of Cre, the stop cassette is removed, leading to Edn1 expression. Using the Wnt1-Cre strain, in which Cre expression is targeted to the Wnt1-expressing domain of the central nervous system (CNS) from which neural crest cells (NCCs) arise, we show that stable CBA-Edn1 transgenic lines with varying EDN1 protein levels develop defects in NCC-derived tissues of the face, though the severity differs between lines. We also show that Edn1 expression can be achieved in other embryonic tissues utilizing other Cre strains, with this expression also resulting in developmental defects. CBA-Edn1 transgenic mice will be useful in investigating diverse aspects of EDN1-mediated-development and disease, including understanding how NCCs achieve and maintain a positional and functional identity and how aberrant EDN1 levels can lead to multiple physiological changes and diseases. PMID:25725491

  1. Gestational protein restriction impairs insulin-regulated glucose transport mechanisms in gastrocnemius muscles of adult male offspring.

    PubMed

    Blesson, Chellakkan S; Sathishkumar, Kunju; Chinnathambi, Vijayakumar; Yallampalli, Chandrasekhar

    2014-08-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet-exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet-fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  2. Chronic MDMA induces neurochemical changes in the hippocampus of adolescent and young adult rats: Down-regulation of apoptotic markers.

    PubMed

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2015-07-01

    While hippocampus is a brain region particularly susceptible to the effects of MDMA, the cellular and molecular changes induced by MDMA are still to be fully elucidated, being the dosage regimen, the species and the developmental stage under study great variables. This study compared the effects of one and four days of MDMA administration following a binge paradigm (3×5 mg/kg, i.p., every 2 h) on inducing hippocampal neurochemical changes in adolescent (PND 37) and young adult (PND 58) rats. The results showed that chronic MDMA caused hippocampal protein deficits in adolescent and young adult rats at different levels: (1) impaired serotonergic (5-HT2A and 5-HT2C post-synaptic receptors) and GABAergic (GAD2 enzyme) signaling, and (2) decreased structural cytoskeletal neurofilament proteins (NF-H, NF-M and NF-L). Interestingly, these effects were not accompanied by an increase in apoptotic markers. In fact, chronic MDMA inhibited proteins of the apoptotic pathway (i.e., pro-apoptotic FADD, Bax and cytochrome c) leading to an inhibition of cell death markers (i.e., p-JNK1/2, cleavage of PARP-1) and suggesting regulatory mechanisms in response to the neurochemical changes caused by the drug. The data, together with the observed lack of GFAP activation, support the view that chronic MDMA effects, regardless of the rat developmental age, extends beyond neurotransmitter systems to impair other hippocampal structural cell markers. Interestingly, inhibitory changes in proteins from the apoptotic pathway might be taking place to overcome the protein deficits caused by MDMA.

  3. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats.

    PubMed

    Palacios-García, Ismael; Lara-Vásquez, Ariel; Montiel, Juan F; Díaz-Véliz, Gabriela F; Sepúlveda, Hugo; Utreras, Elías; Montecino, Martín; González-Billault, Christian; Aboitiz, Francisco

    2015-01-01

    Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that can yield new

  4. Prenatal Stress Down-Regulates Reelin Expression by Methylation of Its Promoter and Induces Adult Behavioral Impairments in Rats

    PubMed Central

    Palacios-García, Ismael; Lara-Vásquez, Ariel; Montiel, Juan F.; Díaz-Véliz, Gabriela F.; Sepúlveda, Hugo; Utreras, Elías; Montecino, Martín; González-Billault, Christian; Aboitiz, Francisco

    2015-01-01

    Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that can yield new

  5. Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice.

    PubMed

    Al-Massadi, Omar; Porteiro, Begoña; Kuhlow, Doreen; Köhler, Markus; Gonzalez-Rellan, María J; Garcia-Lavandeira, Montserrat; Díaz-Rodríguez, Esther; Quiñones, Mar; Senra, Ana; Alvarez, Clara V; López, Miguel; Diéguez, Carlos; Schulz, Tim J; Nogueiras, Rubén

    2016-07-01

    p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage.

  6. Developmentally regulated availability of RANKL and CD40 ligand reveals distinct mechanisms of fetal and adult cross-talk in the thymus medulla.

    PubMed

    Desanti, Guillaume E; Cowan, Jennifer E; Baik, Song; Parnell, Sonia M; White, Andrea J; Penninger, Josef M; Lane, Peter J L; Jenkinson, Eric J; Jenkinson, William E; Anderson, Graham

    2012-12-15

    T cell tolerance in the thymus is a key step in shaping the developing T cell repertoire. Thymic medullary epithelial cells play multiple roles in this process, including negative selection of autoreactive thymocytes, influencing thymic dendritic cell positioning, and the generation of Foxp3(+) regulatory T cells. Previous studies show that medullary thymic epithelial cell (mTEC) development involves hemopoietic cross-talk, and numerous TNFR superfamily members have been implicated in this process. Whereas CD40 and RANK represent key examples, interplay between these receptors, and the individual cell types providing their ligands at both fetal and adult stages of thymus development, remain unclear. In this study, by analysis of the cellular sources of receptor activator for NF-κB ligand (RANKL) and CD40L during fetal and adult cross-talk in the mouse, we show that the innate immune cell system drives initial fetal mTEC development via expression of RANKL, but not CD40L. In contrast, cross-talk involving the adaptive immune system involves both RANKL and CD40L, with analysis of distinct subsets of intrathymic CD4(+) T cells revealing a differential contribution of CD40L by conventional, but not Foxp3(+) regulatory, T cells. We also provide evidence for a stepwise involvement of TNFRs in mTEC development, with CD40 upregulation induced by initial RANK signaling subsequently controlling proliferation within the mTEC compartment. Collectively, our findings show how multiple hemopoietic cell types regulate mTEC development through differential provision of RANKL/CD40L during ontogeny, revealing molecular differences in fetal and adult hemopoietic cross-talk. They also suggest a stepwise process of mTEC development, in which RANK is a master player in controlling the availability of other TNFR family members.

  7. Identification of a sustained neurogenic zone at the dorsal surface of the adult mouse hippocampus and its regulation by the chemokine SDF-1.

    PubMed

    Belmadani, Abdelhak; Ren, Dongjun; Bhattacharyya, Bula J; Rothwangl, Katharina B; Hope, Thomas J; Perlman, Harris; Miller, Richard J

    2015-11-01

    We identified a previously unknown neurogenic region at the dorsal surface of the hippocampus; (the "subhippocampal zone," SHZ) in the adult brain. Using a reporter mouse in which SHZ cells and their progeny could be traced through the expression of EGFP under the control of the CXCR4 chemokine receptor promoter we observed the presence of a pool of EGFP expressing cells migrating in direction of the dentate gyrus (DG), which is maintained throughout adulthood. This population appeared to originate from the SHZ where cells entered a caudal migratory stream (aCMS) that included the fimbria, the meninges and the DG. Deletion of CXCR4 from neural stem cells (NSCs) or neuroinflammation resulted in the appearance of neurons in the DG, which were the result of migration of NSCs from the SHZ. Some of these neurons were ectopically placed. Our observations indicate that the SHZ is a neurogenic zone in the adult brain through migration of NSCs in the aCMS. Regulation of CXCR4 signaling in these cells may be involved in repair of the DG and may also give rise to ectopic granule cells in the DG in the context of neuropathology.

  8. The alpha1 isoform of the Na+/K+ ATPase is up-regulated in dedifferentiated progenitor cells that mediate lens and retina regeneration in adult newts.

    PubMed

    Vergara, M Natalia; Smiley, Laura K; Del Rio-Tsonis, Katia; Tsonis, Panagiotis A

    2009-02-01

    Adult newts are able to regenerate their retina and lens after injury or complete removal through transdifferentiation of the pigmented epithelial tissues of the eye. This process needs to be tightly controlled, and several different mechanisms are likely to be recruited for this function. The Na(+)/K(+) ATPase is a transmembrane protein that establishes electrochemical gradients through the transport of Na(+) and K(+) and has been implicated in the modulation of key cellular processes such as cell division, migration and adhesion. Even though it is expressed in all cells, its isoform composition varies with cell type and is tightly controlled during development and regeneration. In the present study we characterize the expression pattern of Na(+)/K(+) ATPase alpha1 in the adult newt eye and during the process of lens and retina regeneration. We show that this isoform is up-regulated in undifferentiated cells during transdifferentiation. Such change in composition could be one of the mechanisms that newt cells utilize to modulate this process.

  9. Identification of a Sustained Neurogenic Zone at the Dorsal Surface of the Adult Mouse Hippocampus and Its Regulation by the Chemokine SDF-1

    PubMed Central

    Belmadani, Abdelhak; Ren, Dongjun; Bhattacharyya, Bula J.; Rothwangl, Katharina B.; Hope, Thomas J.; Perlman, Harris; Miller, Richard J.

    2015-01-01

    We identified a previously unknown neurogenic region at the dorsal surface of the hippocampus; (the “subhippocampal zone,” SHZ) in the adult brain. Using a reporter mouse in which SHZ cells and their progeny could be traced through the expression of EGFP under the control of the CXCR4 chemokine receptor promoter we observed the presence of a pool of EGFP expressing cells migrating in direction of the dentate gyrus (DG), which is maintained throughout adulthood. This population appeared to originate from the SHZ where cells entered a caudal migratory stream (aCMS) that included the fimbria, the meninges and the DG. Deletion of CXCR4 from neural stem cells (NSCs) or neuroinflammation resulted in the appearance of neurons in the DG, which were the result of migration of NSCs from the SHZ. Some of these neurons were ectopically placed. Our observations indicate that the SHZ is a neurogenic zone in the adult brain through migration of NSCs in the aCMS. Regulation of CXCR4 signaling in these cells may be involved in repair of the DG and may also give rise to ectopic granule cells in the DG in the context of neuropathology. PMID:25656357

  10. Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease.

    PubMed

    Mirochnic, Sebastian; Wolf, Susanne; Staufenbiel, Matthias; Kempermann, Gerd

    2009-10-01

    An active lifestyle is to some degree protective against Alzheimer's disease (AD), but the biological basis for this benefit is still far from clear. We hypothesize that physical and cognitive activity increase a reserve for plasticity by increasing adult neurogenesis in the hippocampal dentate gyrus (DG). We thus assessed how age affects the response to activity in the murine APP23 model of AD compared with wild type (WT) controls and studied the effects of physical exercise (RUN) and environmental enrichment (ENR) in comparison with standard housing (CTR) at two different ages (6 months and 18 months) and in both genotypes. At 18 months, both activity paradigms reduced the hippocampal human Abeta1-42/Abeta1-40 ratio when compared with CTR, despite a stable plaque load in the hippocampus. At this age, both RUN and ENR increased the number of newborn granule cells in the DG of APP23 mice when compared with CTR, whereas the levels of regulation were equivalent to those in WT mice under the same housing conditions. At 6 months, however, neurogenesis in ENR but not RUN mice responded like the WT. Quantifying the number of cells at the doublecortin-positive stage in relation to the number of cells on postmitotic stages we found that ENR overproportionally increased the number of the DCX-positive "late" progenitor cells, indicative of an increased potential to recruit even more new neurons. In summary, the biological substrates for activity-dependent regulation of adult hippocampal neurogenesis were preserved in the APP23 mice. We thus propose that in this model, ENR even more than RUN might contribute to a "neurogenic reserve" despite a stable plaque load and that age affects the outcome of an interaction based on "activity."

  11. Maternal gestational betaine supplementation-mediated suppression of hepatic cyclin D2 and presenilin1 gene in newborn piglets is associated with epigenetic regulation of the STAT3-dependent pathway.

    PubMed

    Cai, Demin; Yuan, Mengjie; Jia, Yimin; Liu, Haoyu; Hu, Yun; Zhao, Ruqian

    2015-12-01

    Betaine, which donates methyl groups through methionine metabolism for DNA and protein methylation, is critical for epigenetic gene regulation, especially during fetal development. Here we fed gestational sows with control or betaine supplemented diets (3 g/kg) throughout the pregnancy to explore the effects of maternal betaine on hepatic cell proliferation in neonatal piglets. Neonatal piglets born to betaine-supplemented sows demonstrated a reduction of cell number and DNA content in the liver, which was associated with significantly down-regulated hepatic expression of cell cycle regulatory genes, cyclin D2 (CCND2) and presenilin1 (PSEN1). Moreover, STAT3 binding to the promoter of CCND2 and PSEN1 was also lower in betaine-exposed piglets, accompanied by strong reduction of STAT3 mRNA and protein expression, along with its phosphorylation at Tyr705 and Ser727 residues. Also, prenatal betaine exposure significantly attenuated upstream kinases of STAT3 signaling pathway (phospho-ERK1/2, phospho-SRC and phospho-JAK2) in the livers of neonates. Furthermore, the repressed STAT3 expression in the liver of betaine-exposed piglets was associated with DNA hypermethylation and more enriched repression histone mark H3K27me3 on its promoter, together with significantly up-regulated expression of H3K27me3 and enhancer of zeste homolog 2 (EZH2) proteins, as well as miR-124a, which targets STAT3. Taken together, our results suggest that maternal dietary betaine supplementation during gestation inhibits hepatic cell proliferation in neonatal piglets, at least partly, through epigenetic regulation of hepatic CCND2 and PSEN1 genes via a STAT3-dependent pathway. These neonatal changes in cell cycle and proliferation regulation may lead to lower liver weight and hepatic DNA content at weaning.

  12. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    SciTech Connect

    Samaras, Susan E.; Chen, Billy; Koch, Stephen R.; Sawyer, Douglas B.; Lim, Chee Chew; Davidson, Jeffrey M.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. Black-Right-Pointing-Pointer Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. Black-Right-Pointing-Pointer Differential degradation appears related to nuclear vs. sarcolemmal localization. Black-Right-Pointing-Pointer Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  13. Planarians: a versatile and powerful model system for molecular studies of regeneration, adult stem cell regulation, aging, and behavior.

    PubMed

    Oviedo, Néstor J; Nicolas, Cindy L; Adams, Dany S; Levin, Michael

    2008-10-01

    INTRODUCTIONIn recent years, planarians have been increasingly recognized as an emerging model organism amenable to molecular genetic techniques aimed at understanding complex biological tasks commonly observed among metazoans. Growing evidence suggests that this model organism is uniquely poised to inform us about the mechanisms of tissue regeneration, stem cell regulation, tissue turnover, pharmacological action of diverse drugs, cancer, and aging. This article provides an overview of the planarian model system with special attention to the species Schmidtea mediterranea. Additionally, information is provided about the most popular use of this organism, together with modern genomic resources and technical approaches.

  14. RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription.

    PubMed

    Gerald, Damien; Adini, Irit; Shechter, Sharon; Perruzzi, Carole; Varnau, Joseph; Hopkins, Benjamin; Kazerounian, Shiva; Kurschat, Peter; Blachon, Stephanie; Khedkar, Santosh; Bagchi, Mandrita; Sherris, David; Prendergast, George C; Klagsbrun, Michael; Stuhlmann, Heidi; Rigby, Alan C; Nagy, Janice A; Benjamin, Laura E

    2013-01-01

    Mechanisms governing the distinct temporal dynamics that characterize post-natal angiogenesis and lymphangiogenesis elicited by cutaneous wounds and inflammation remain unclear. RhoB, a stress-induced small GTPase, modulates cellular responses to growth factors, genotoxic stress and neoplastic transformation. Here we show, using RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge. We link these unique and opposing roles of RhoB in blood versus lymphatic vasculatures to the RhoB-mediated differential regulation of sprouting and proliferation in primary human blood versus lymphatic endothelial cells. We demonstrate that nuclear RhoB-GTP controls expression of distinct gene sets in each endothelial lineage by regulating VEZF1-mediated transcription. Finally, we identify a small-molecule inhibitor of VEZF1-DNA interaction that recapitulates RhoB loss in ischaemic retinopathy. Our findings establish the first intra-endothelial molecular pathway governing the phased response of angiogenesis and lymphangiogenesis following injury.

  15. RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription

    PubMed Central

    Gerald, Damien; Adini, Irit; Shechter, Sharon; Perruzzi, Carole; Varnau, Joseph; Hopkins, Benjamin; Kazerounian, Shiva; Kurschat, Peter; Blachon, Stephanie; Khedkar, Santosh; Bagchi, Mandrita; Sherris, David; Prendergast, George C.; Klagsbrun, Michael; Stuhlmann, Heidi; Rigby, Alan C.; Nagy, Janice A.; Benjamin, Laura E.

    2013-01-01

    Mechanisms governing the distinct temporal dynamics that characterize post-natal angiogenesis and lymphangiogenesis elicited by cutaneous wounds and inflammation remain unclear. RhoB, a stress-induced small GTPase, modulates cellular responses to growth factors, genotoxic stress and neoplastic transformation. Here we show, using RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge. We link these unique and opposing roles of RhoB in blood versus lymphatic vasculatures to the RhoB-mediated differential regulation of sprouting and proliferation in primary human blood versus lymphatic endothelial cells. We demonstrate that nuclear RhoB-GTP controls expression of distinct gene sets in each endothelial lineage by regulating VEZF1-mediated transcription. Finally, we identify a small-molecule inhibitor of VEZF1–DNA interaction that recapitulates RhoB loss in ischaemic retinopathy. Our findings establish the first intra-endothelial molecular pathway governing the phased response of angiogenesis and lymphangiogenesis following injury. PMID:24280686

  16. Photoperiodic regulation of melatonin membrane receptor (MT1R) expression and steroidogenesis in testis of adult golden hamster, Mesocricetus auratus.

    PubMed

    Mukherjee, Arun; Haldar, Chandana

    2014-11-01

    Photoperiodic modulation of melatonin membrane receptor (MT1R) expression in testis has never been reported for any seasonal breeder. Thus, the aim of the present study was to investigate the expression dynamics of MT1R in testis and its interaction with testicular steroidogenesis in a long-day breeder, Mesocricetus auratus. Hamsters were exposed to different photoperiodic conditions i.e. critical- (CP; 12.5L:11.5D); short-day- (SD; 8L:16D) and long-day- (LD; 16L:8D) for 10 weeks wherein testicular steroidogenesis, local melatonin synthesis and the expression of MT1R were analyzed. SD induced melatonin suppressed testicular steroidogenesis as evident from regressed testicular histoarchitecture, decreased expression of AR, StAR, LH-R, P₄₅₀SCC and enzyme activities of 3β- and 17β-HSD. Differential photoperiodic regulation of MT1R expression in testis suggests its involvement in photoperiodic signal transduction for seasonal adjustment of reproduction. Increased S-NAT (Serotonin N-acetyl transferase) activity and local testicular melatonin under SD condition suggest an inhibitory effect of the local melatonergic system on testicular steroidogenesis. Completely opposite responses were recorded for all the parameters analyzed when hamsters were exposed to CP or LD conditions. In conclusion, we may suggest that photoperiod via regulating circulatory and local melatonin level as well as MT1R expression in testes fine tunes the steroidogenesis and thereby, the reproductive status of male golden hamster.

  17. Development of Adult Worms and Granulomatous Pathology Are Collectively Regulated by T- and B-Cells in Mice Infected with Schistosoma japonicum

    PubMed Central

    Tang, Hongbin; Ming, Zhenping; Liu, Rong; Xiong, Tao; Grevelding, Christoph G.; Dong, Huifeng; Jiang, Mingsen

    2013-01-01

    Schistosoma blood flukes, which cause schistosomiasis affecting 200 million people in the world, are dependent on signals from host CD4+ T cells to facilitate parasite growth and development in the mammalian host and to induce Th2-biased inflammatory granulomas. B cells, however, are reported to down-regulate granulomatous pathology in schistosomiasis, but not to affect the development of blood flukes together with CD4+ T lymphocytes. Thus it is not clear whether B cells mediate parasite development, reproduction and egg granuloma formation of schistosomes without the help of CD4+ T lymphocytes. Using mice that have severe combined immunodeficiency (scid) and mice lacking T cells (nude), we found that the absence of B cells can more seriously hamper the development and paring of adult worms, but granuloma formation of Schistosoma japonicum in scid mice was not down-regulated comparing with that in nude mice. The level of IL-10 in the sera of nude mice was significantly higher than of scid mice at 43 days post infection (p.i.). Thus multiple mechanisms of immune modulation seem to be involved in parasite development and reproduction by helminth-induced regulatory B cells. Our findings have significance for understanding the molecular connections between schistosomes and T- and B-cells, indicating that more research is needed to develop efficient vaccine-based therapies for schistosomiasis. PMID:23349889

  18. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer.

    PubMed

    Yu, T; Chen, X; Zhang, W; Liu, J; Avdiushko, R; Napier, D L; Liu, A X; Neltner, J M; Wang, C; Cohen, D; Liu, C

    2016-02-01

    Lung cancer is the leading cause of cancer-related mortality in both men and women worldwide. To identify novel factors that contribute to lung cancer pathogenesis, we analyzed a lung cancer database from The Cancer Genome Atlas and found that Krüppel-like Factor 4 (KLF4) expression is significantly lower in patients' lung cancer tissue than in normal lung tissue. In addition, we identified seven missense mutations in the KLF4 gene. KLF4 is a transcription factor that regulates cell proliferation and differentiation as well as the self-renewal of stem cells. To understand the role of KLF4 in the lung, we generated a tamoxifen-induced Klf4 knockout mouse model. We found that KLF4 inhibits lung cancer cell growth and that depletion of Klf4 altered the differentiation pattern in the developing lung. To understand how KLF4 functions during lung tumorigenesis, we generated the K-ras(LSL-G12D/+);Klf4(fl/fl) mouse model, and we used adenovirus-expressed Cre to induce K-ras activation and Klf4 depletion in the lung. Although Klf4 deletion alone or K-ras mutation alone can trigger lung tumor formation, Klf4 deletion combined with K-ras mutation significantly enhanced lung tumor formation. We also found that Klf4 deletion in conjunction with K-ras activation caused lung inflammation. To understand the mechanism whereby KLF4 is regulated during lung tumorigenesis, we analyzed KLF4 promoter methylation and the profiles of epigenetic factors. We found that Class I histone deacetylases (HDACs) are overexpressed in lung cancer and that HDAC inhibitors induced expression of KLF4 and inhibited proliferation of lung cancer cells, suggesting that KLF4 is probably repressed by histone acetylation and that HDACs are valuable drug targets for lung cancer treatment.

  19. Theophylline Regulates Inflammatory and Neurotrophic factor Signals in Functional Recovery after C2-Hemisection in Adult Rats

    PubMed Central

    Singh, LP; Devi, TS; Nantwi, KD

    2012-01-01

    Recovery of respiratory activity in an upper cervical hemisection model (C2H) of spinal cord injury (SCI) can be induced by systemic theophylline administration 24–48 h after injury. The objectives in the present study are (1) to identify pro-inflammatory and neurotrophic factors expressed after C2H and (2) molecular signals involved in functional recovery. Four groups of adult female rats classified as (i) sham (SH) controls, (ii) subjected to a left C2 hemisection (C2H) only, (iii) C2H rats administered theophylline for 3 consecutive days 2 days after C2H (C2H-T Day 5) and (iv) C2H rats treated with theophylline for 3 consecutive days 2 days after C2H and then weaned for 12 days (C2H-T Day 17) prior to assessment of respiratory function and molecular analysis were employed. Corresponding Sham controls, C2H untreated (vehicle only controls) and C2H treated (theophylline) rats were sacrificed, C3-C6 spinal cord segments quickly dissected and left (ipsilateral) hemi spinal cord and right (contralateral) hemi spinal cord were separately harvested 2 days post surgery. SHAM operated and C2H untreated-controls corresponding to C2H-T Day 5 and C2H-T Day 17 rats, respectively, were prepared similarly. Messenger RNA levels for pro-inflammatory genes (TXNIP, IL-1β, TNF-α and iNOS) and neurotrophic and survival factors (BDNF, GDNF, and Bcl2) were analyzed by real time quantitative PCR. Gene expression pattern was unaltered in SH rats. TXNIP, iNOS, BDNF, GDNF and Bcl2 mRNA levels were significantly increased in the ipsilateral hemi spinal cord in C2H rats. BDNF, GDNF and Bcl2 levels remained elevated in the ipsilateral hemi spinal cord in C2H-T Day 5 rats. In this same group, there was further enhancement in TXNIP and IL-1β while iNOS returned to basal levels. Theophylline increased DNA binding activity of transcription factors - cyclic AMP responsive element (CRE) binding protein (CREB) and pro-inflammatory NF-κB. Messenger RNA levels for all genes returned to basal

  20. High-Fat Diet During Mouse Pregnancy and Lactation Targets GIP-Regulated Metabolic Pathways in Adult Male Offspring.

    PubMed

    Kruse, Michael; Keyhani-Nejad, Farnaz; Isken, Frank; Nitz, Barbara; Kretschmer, Anja; Reischl, Eva; de las Heras Gala, Tonia; Osterhoff, Martin A; Grallert, Harald; Pfeiffer, Andreas F H

    2016-03-01

    Maternal obesity is a worldwide problem associated with increased risk of metabolic diseases in the offspring. Genetic deletion of the gastric inhibitory polypeptide (GIP) receptor (GIPR) prevents high-fat diet (HFD)-induced obesity in mice due to specific changes in energy and fat cell metabolism. We investigated whether GIP-associated pathways may be targeted by fetal programming and mimicked the situation by exposing pregnant mice to control or HFD during pregnancy (intrauterine [IU]) and lactation (L). Male wild-type (WT) and Gipr(-/-) offspring received control chow until 25 weeks of age followed by 20 weeks of HFD. Gipr(-/-) offspring of mice exposed to HFD during IU/L became insulin resistant and obese and exhibited increased adipose tissue inflammation and decreased peripheral tissue substrate utilization after being reintroduced to HFD, similar to WT mice on regular chow during IU/L. They showed decreased hypothalamic insulin sensitivity compared with Gipr(-/-) mice on control diet during IU/L. DNA methylation analysis revealed increased methylation of CpG dinucleotides and differential transcription factor binding of promoter regions of genes involved in lipid oxidation in the muscle of Gipr(-/-) offspring on HFD during IU/L, which were inversely correlated with gene expression levels. Our data identify GIP-regulated metabolic pathways that are targeted by fetal programming.

  1. Octopamine and tyramine regulate the activity of reproductive visceral muscles in the adult female blood-feeding bug, Rhodnius prolixus.

    PubMed

    Hana, Sam; Lange, Angela B

    2017-02-24

    The role of octopamine and tyramine in regulating spontaneous contractions of reproductive tissues was examined in the female Rhodnius prolixus Octopamine decreased the amplitude of spontaneous contractions of the oviducts and reduced RhoprFIRFa-induced contractions in a dose-dependent manner, whereas tyramine only reduced the RhoprFIRFa-induced contractions. Both octopamine and tyramine decreased the frequency of spontaneous bursal contractions and completely abolished the contractions at 5×10(-7) M and above. Phentolamine, an octopamine receptor antagonist, attenuated the inhibition induced by octopamine on the oviducts and the bursa. Octopamine also increased the levels of cAMP in the oviducts, and this effect was blocked by phentolamine. Dibutyryl cyclic AMP mimicked the effects of octopamine by reducing the frequency of bursal contractions suggesting that the octopamine receptor may act by an Octβ-receptor. The tyramine receptor antagonist yohimbine failed to block the inhibition of contractions induced by tyramine on the bursa suggesting that tyramine may be acting on the Octβ-R in the bursa.

  2. Effectiveness of the Self-Regulation eHealth Intervention "MyPlan1.0." on Physical Activity Levels of Recently Retired Belgian Adults: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Van Dyck, Delfien; Plaete, Jolien; Cardon, Greet; Crombez, Geert; De Bourdeaudhuij, Ilse

    2016-01-01

    The study purpose was to test the effectiveness of the self-regulation eHealth intervention "MyPlan1.0." to increase physical activity (PA) in recently retired Belgian adults. This study was a randomized controlled trial with three points of follow-up/modules (baseline to 1-week to 1-month follow-up). In total, 240 recently retired…

  3. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord.

    PubMed

    Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari

    2016-07-01

    We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.

  4. Cobalt chloride induces neuronal differentiation of human mesenchymal stem cells through upregulation of microRNA-124a.

    PubMed

    Jeon, Eun Su; Shin, Jin Hee; Hwang, Su Jin; Moon, Gyeong Joon; Bang, Oh Young; Kim, Hyeon Ho

    2014-02-21

    Human mesenchymal stem cells (hMSCs) are known to have the capacity to differentiate into various cell types, including neurons. To examine our hypothesis that miRNA was involved in neuronal differentiation of hMSCs, CoCl2, a hypoxia-mimicking agent was used to induce neuronal differentiation, which was assessed by determining the expression of neuronal markers such as nestin and Tuj1. Treatment of hMSCs with CoCl2 led to increased expression of miR-124a, a neuron-specific miRNA. HIF-1α silencing and JNK inhibition abolished CoCl2-induced miR-124a expression, suggesting that JNK and HIF-1α signals were required for the miR-124a expression induced by CoCl2 in hMSCs. Overexpression of miR-124a or CoCl2 treatment suppressed the expression of anti-neural proteins such as SCP1 and SOX9. Silencing of both SCP1 and SOX9 induced neuronal differentiation of hMSCs, indicating that suppression of miR-124a targets is important for CoCl2-induced neuronal differentiation of hMSCs. Knockdown of HIF-1α or inhibition of JNK restored the expression of SCP1 and SOX9 in CoCl2-treated cells. Inhibition of miR-124a blocked CoCl2-induced suppression of SCP1 and SOX9 and abolished CoCl2-induced neuronal differentiation of hMSCs. Taken together, we demonstrate that miR-124a is critically regulates CoCl2-induced neuronal differentiation of hMSCs by suppressing the expression of SCP1 and SOX9.

  5. MicroRNA-124 promotes hepatic triglyceride accumulation through targeting tribbles homolog 3

    PubMed Central

    Liu, Xing; Zhao, Jiejie; Liu, Qi; Xiong, Xuelian; Zhang, Zhijian; Jiao, Yang; Li, Xiaoying; Liu, Bin; Li, Yao; Lu, Yan

    2016-01-01

    An increase in hepatic triglyceride (TG) contents usually results in non-alcoholic fatty liver disease (NAFLD) and related metabolic diseases. However, the mechanisms underlying perturbations of hepatic TG homeostasis remain largely unknown. Here, we showed that MicroRNA-124 was up-regulated in the livers of C57BL/6 mice fed a short-term high-fat-diet (HFD). Adenoviral overexpression of miR-124 in C57BL/6 mice led to accumulation of excessive triglycerides and up-regulation of lipogenic genes in the liver. We further identified tribbles homolog 3 (TRB3) as a direct target of miR-124. AKT signaling, which is negatively regulated by TRB3, was enhanced by miR-124 overexpression. Moreover, restoration of TRB3 expression markedly abolished the effect of miR-124 on hepatic TG metabolism. Therefore, our findings revealed that miR-124 played a role in mediating high-fat-diet induced TG accumulation in the liver. PMID:27845424

  6. Differential regulation of the mitogen-activated protein and stress-activated protein kinase cascades by adrenergic agonists in quiescent and regenerating adult rat hepatocytes.

    PubMed Central

    Spector, M S; Auer, K L; Jarvis, W D; Ishac, E J; Gao, B; Kunos, G; Dent, P

    1997-01-01

    To study the mechanisms by which catecholamines regulate hepatocyte proliferation after partial hepatectomy (PHX), hepatocytes were isolated from adult male rats 24 h after sham operation or two-thirds PHX and treated with catecholamines and other agonists. In freshly isolated sham cells, p42 mitogen-activated protein (MAP) kinase activity was stimulated by the alpha1-adrenergic agonist phenylephrine (PHE). Activation of p42 MAP kinase by growth factors was blunted by pretreatment of sham hepatocytes with glucagon but not by that with the beta2-adrenergic agonist isoproterenol (ISO). In PHX cells, the ability of PHE to activate p42 MAP kinase was dramatically reduced, whereas ISO became competent to inhibit p42 MAP kinase activation. PHE treatment of sham but not PHX and ISO treatment of PHX but not sham hepatocytes also activated the stress-activated protein (SAP) kinases p46/54 SAP kinase and p38 SAP kinase. These data demonstrate that an alpha1- to beta2-adrenergic receptor switch occurs upon PHX and results in an increase in SAP kinase versus MAP kinase signaling by catecholamines. In primary cultures of hepatocytes, ISO treatment of PHX but not sham cells inhibited [3H]thymidine incorporation. In contrast, PHE treatment of sham but not PHX cells stimulated [3H]thymidine incorporation, which was reduced by approximately 25 and approximately 95% with specific inhibitors of p42 MAP kinase and p38 SAP kinase function, respectively. Inhibition of the p38 SAP kinase also dramatically reduced basal [3H]thymidine incorporation. These data suggest that p38 SAP kinase plays a permissive role in liver regeneration. Alterations in the abilities of catecholamines to modulate the activities of protein kinase A and the MAP and SAP kinase pathways may represent one physiological mechanism by which these agonists can regulate hepatocyte proliferation after PHX. PMID:9199291

  7. Molecular regulation of the hypothalamic-pituitary-adrenal axis in adult male guinea pigs after prenatal stress at different stages of gestation.

    PubMed

    Kapoor, Amita; Leen, Jason; Matthews, Stephen G

    2008-09-01

    Studies in humans and animals have demonstrated that maternal stress during fetal development can lead to altered hypothalamic-pituitary-adrenal (HPA) axis function and behaviour postnatally. We have previously shown adult male guinea pigs that were born to mothers exposed to a stressor during the phase of rapid fetal brain growth (gestational days (GD) 50, 51 and 52; prenatal stress (PS)50) exhibit significantly increased basal plasma cortisol levels. In contrast, male guinea pig offspring whose mothers were exposed to stress later in gestation (GD60, 61 and 62; PS60) exhibited a significantly higher plasma cortisol response to activation of the HPA axis. In the present study, we hypothesized that the endocrine changes in HPA axis function observed in male guinea pig offspring would be reflected by altered molecular regulation of the HPA axis. Corticosteroid receptors in the hippocampus, hypothalamus and pituitary were measured, as well as corticotropin-releasing hormone (CRH), pro-opiomelanocortin (POMC) and adrenal enzymes in the paraventricular nucleus, pituitary and adrenal cortex, respectively, by in situ hybridization and Western blot. PS50 male offspring exhibited a significant reduction in glucocorticoid receptor (GR) mRNA (P <0.01) in the CA3 region of the hippocampus and significantly increased POMC mRNA (P <0.05) in the pituitary, consistent with the increase in basal HPA axis activity observed. In line with elevated activity of the HPA axis, both PS50 and PS60 male offspring exhibited significantly higher steroidogenic factor (SF)-1 (P <0.001) and melanocortin 2 receptor (MC2-R) mRNA (P <0.001) in the adrenal cortex. This study demonstrates that short periods of prenatal stress during critical windows of neuroendocrine development affect the expression of key regulators of HPA axis activity leading to the changes in endocrine function observed in prenatally stressed male offspring. Further, these changes are dependent on the timing of the maternal

  8. The neuro-glial properties of adipose-derived adult stromal (ADAS) cells are not regulated by Notch 1 and are not derived from neural crest lineage.

    PubMed

    Wrage, Philip C; Tran, Thi; To, Khai; Keefer, Edward W; Ruhn, Kelly A; Hong, John; Hattangadi, Supriya; Treviño, Isaac; Tansey, Malú G

    2008-01-16

    We investigated whether adipose-derived adult stromal (ADAS) are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC) displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC) media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca(2+) transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD) did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH); and lineage tracing analyses using Wnt1-Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be a key

  9. Spontaneous Cannabinoid Receptor 2 (CB2) Expression in the Cochlea of Adult Albino Rat and Its Up-Regulation after Cisplatin Treatment

    PubMed Central

    Trinidad, Almudena; Ramil, Elvira; Sánchez-López, Antonio J.; Coronado, Maria José; Martínez-Martínez, Esther; García, José Miguel; García-Berrocal, José Ramón; Ramírez-Camacho, Rafael

    2016-01-01

    We provide evidence for the presence of cannabinoid CB2 receptors in some cellular types of the cochlea of the adult albino rat. Cannabinoids and their receptors are increasingly being studied because of their high potential for clinical use. As a hyperspecialized portion of the peripheral nervous system, study of the expression and function of cannabinoid receptors in the hearing organ is of high interest. Stria vascularis and inner hair cells express CB2 receptor, as well as neurites and cell bodies of the spiral ganglion. Cellular types such as supporting cells and outer hair cells, in which the expression of other types of functional receptors has been reported, do not significantly express CB2 receptors in this study. An up-regulation of CB2 gene expression was detected after an ototoxic event such as cisplatin treatment, probably due to pro-inflammatory events triggered by the drug. That fact suggests promising potential of CB2 receptor as a therapeutic target for new treatments to palliate cisplatin-induced hearing loss and other ototoxic events which triggers inflammatory pathways. PMID:27564061

  10. TGF-β1, released by myofibroblasts, differentially regulates transcription and function of sodium and potassium channels in adult rat ventricular myocytes.

    PubMed

    Kaur, Kuljeet; Zarzoso, Manuel; Ponce-Balbuena, Daniela; Guerrero-Serna, Guadalupe; Hou, Luqia; Musa, Hassan; Jalife, José

    2013-01-01

    Cardiac injury promotes fibroblasts activation and differentiation into myofibroblasts, which are hypersecretory of multiple cytokines. It is unknown whether any of such cytokines are involved in the electrophysiological remodeling of adult cardiomyocytes. We cultured adult cardiomyocytes for 3 days in cardiac fibroblast conditioned medium (FCM) from adult rats. In whole-cell voltage-clamp experiments, FCM-treated myocytes had 41% more peak inward sodium current (I(Na)) density at -40 mV than myocytes in control medium (p<0.01). In contrast, peak transient outward current (I(to)) was decreased by ∼55% at 60 mV (p<0.001). Protein analysis of FCM demonstrated that the concentration of TGF-β1 was >3 fold greater in FCM than control, which suggested that FCM effects could be mediated by TGF-β1. This was confirmed by pre-treatment with TGF-β1 neutralizing antibody, which abolished the FCM-induced changes in both I(Na) and I(to). In current-clamp experiments TGF-β1 (10 ng/ml) prolonged the action potential duration at 30, 50, and 90 repolarization (p<0.05); at 50 ng/ml it gave rise to early afterdepolarizations. In voltage-clamp experiments, TGF-β1 increased I(Na) density in a dose-dependent manner without affecting voltage dependence of activation or inactivation. I(Na) density was -36.25±2.8 pA/pF in control, -59.17±6.2 pA/pF at 0.1 ng/ml (p<0.01), and -58.22±6.6 pA/pF at 1 ng/ml (p<0.01). In sharp contrast, I(to) density decreased from 22.2±1.2 pA/pF to 12.7±0.98 pA/pF (p<0.001) at 10 ng/ml. At 1 ng/ml TGF-β1 significantly increased SCN5A (Na(V)1.5) (+73%; p<0.01), while reducing KCNIP2 (Kchip2; -77%; p<0.01) and KCND2 (K(V)4.2; -50% p<0.05) mRNA levels. Further, the TGF-β1-induced increase in I(Na) was mediated through activation of the PI3K-AKT pathway via phosphorylation of FOXO1 (a negative regulator of SCN5A). TGF-β1 released by myofibroblasts differentially regulates transcription and function of the main cardiac sodium channel and of the channel

  11. Magnetic resonance beacon to detect intracellular microRNA during neurogenesis.

    PubMed

    Lee, Jonghwan; Jin, Yeon A; Ko, Hae Young; Lee, Yong Seung; Heo, Hyejung; Cho, Sujeong; Kim, Soonhag

    2015-02-01

    Magnetic resonance imaging (MRI) offers great spatial resolution for viewing deep tissues and anatomy. We developed a self-assembling signal-on magnetic fluorescence nanoparticle to visualize intracellular microRNAs (miRNAs or miRs) during neurogenesis using MRI. The self-assembling nanoparticle (miR124a MR beacon) was aggregated by the incubation of three different oligonucleotides: a 3' adaptor, a 5' adaptor, and a linker containing miR124a-binding sequences. The T2-weighted magnetic resonance (MR) signal of the self-assembled nanoparticle was quenched when miR124a was absent from test tubes or was minimally expressed in cells and tissues. When miR124a was present in test tubes or highly expressed in vitro and in vivo during P19 cell neurogenesis, it hybridized with the miR124a MR beacon, causing the linker to detach, resulting in increased signal-on MRI intensity. This MR beacon can be used as a new imaging probe to monitor the miRNA-mediated regulation of cellular processes.

  12. Correlated 5-Hydroxymethylcytosine (5hmC) and Gene Expression Profiles Underpin Gene and Organ-Specific Epigenetic Regulation in Adult Mouse Brain and Liver

    PubMed Central

    Lin, I-Hsuan; Chen, Yi-Fan; Hsu, Ming-Ta

    2017-01-01

    Background DNA methylation is an epigenetic mechanism essential for gene regulation and vital for mammalian development. 5-hydroxymethylcytosine (5hmC) is the first oxidative product of the TET-mediated 5-methylcytosine (5mC) demethylation pathway. Aside from being a key intermediate in cytosine demethylation, 5hmC may have potential regulatory functions with emerging importance in mammalian biology. Methods Here, we investigate the global 5hmC enrichment in five brain structures, including cerebellum, cerebral cortex, hippocampus, hypothalamus and thalamus, as well as liver tissues from female and male adult mice by using chemical capture-based technique coupled with next-generation sequencing. At the same time, we carried out total RNA sequencing (RNA-seq) to analyze the transcriptomes of brain regions and liver tissues. Results Our results reveal preferential 5hmC enrichment in the gene bodies of expressed genes, and 5hmC levels of many protein-coding genes are positively correlated with RNA expression intensity. However, more than 75% of genes with low or no 5hmC enrichment are genes encode for mitochondrial proteins and ribosomal proteins despite being actively transcribed, implying different transcriptional regulation mechanisms of these housekeeping genes. Brain regions developed from the same embryonic structures have more similar 5hmC profiles. Also, the genic 5hmC enrichment pattern is highly tissue-specific, and 5hmC marks genes involving in tissue-specific biological processes. Sex chromosomes are mostly depleted of 5hmC, and the X inactive specific transcript (Xist) gene located on the X chromosome is the only gene to show sex-specific 5hmC enrichment. Conclusions This is the first report of the whole-genome 5hmC methylome of five major brain structures and liver tissues in mice of both sexes. This study offers a comprehensive resource for future work of mammalian cytosine methylation dynamics. Our findings offer additional evidence that suggests 5hm

  13. Akt is an essential player in regulating cell/organ growth at the adult stage in the hard tick Haemaphysalis longicornis.

    PubMed

    Umemiya-Shirafuji, Rika; Tanaka, Toru; Boldbaatar, Damdinsuren; Tanaka, Tetsuya; Fujisaki, Kozo

    2012-03-01

    Ticks grow rapidly during blood feeding, and their body weight may ultimately increase 100-fold more than that before feeding. The molecular mechanisms controlling growth during blood feeding in ticks remain largely unknown. The conserved insulin/PI3K/Akt signaling pathway regulates growth and metabolism in eukaryotes. Here, we show evidence for the involvement of Akt in growth during blood feeding in the parthenogenetic strain of the hard tick Haemaphysalis longicornis. We identified a homolog of the Ser/Thr kinase Akt (HlAkt) from the EST database of the H. longicornis embryo. HlAkt cDNA had a 1,590 bp ORF that encodes 529 amino acids with a predicted molecular weight of 60 kDa. HlAkt possesses a PH domain, a Ser/Thr kinase domain, a hydrophobic motif, and dual phosphorylation residues (Thr 338 and Ser 503) that are essential for kinase activation. Knockdown of HlAkt by RNA interference caused inhibition of blood feeding in female ticks. Histological observation demonstrated that HlAkt knockdown led to the arrest of growth in internal organs. HlAkt knockdown also affected the expressions of blood meal-induced genes that are essential for blood digestion, development, and reproduction in the female tick. These results strongly indicate that HlAkt is essential to complete the blood feeding process accompanied by the growth of internal organs in adult ticks. This is the first report of identification and characterization of Akt in Chelicerata, including ticks.

  14. Transcriptional regulation of parathyroid hormone-related protein promoter P3 by ETS-1 in adult T-cell leukemia/lymphoma.

    PubMed

    Richard, V; Nadella, M V P; Green, P L; Lairmore, M D; Feuer, G; Foley, J G; Rosol, T J

    2005-07-01

    Parathyroid hormone-related protein (PTHrP) plays a primary role in the development of humoral hypercalcemia of malignancy seen in the majority of adult T-cell leukemia/lymphoma (ATLL) patients with human T-cell lymphotropic virus type-1 (HTLV-1) infection. HTLV-1 Tax has been shown to complex with ETS-1 and SP1 to transactivate the PTHrP P3 promoter. Previously, we established a SCID/bg mouse model of human ATL with RV-ATL cells and showed that PTHrP expression was independent of Tax. In this study, we report an inverse correlation of PTHrP with tax/rex mRNA in multiple HTLV-1-positive cell lines and RV-ATL cells. Stimulation of Jurkat T cells with PMA/ionomycin upregulated the PTHrP P3 promoter by a previously characterized Ets binding site and also induced protein/DNA complex formation identical to that observed in RV-ATL cells. Further, we provide evidence that cotransfection with Ets-1 and constitutively active Mek-1 in HTLV-1-negative transformed T cells with stimulation by PMA/ionomycin not only resulted in a robust induction of PTHrP P3 but also formed a complex with ETS-1/P3 EBS similar to that in ATLL cells. Our data demonstrate that transcriptional regulation of PTHrP in ATLL cells can be controlled by T-cell receptor signaling and the ETS and MAPK ERK pathway in a Tax-independent manner.

  15. Surface expression of hippocampal NMDA GluN2B receptors regulated by fear conditioning determines its contribution to memory consolidation in adult rats

    PubMed Central

    Sun, Yan-Yan; Cai, Wei; Yu, Jie; Liu, Shu-Su; Zhuo, Min; Li, Bao-Ming; Zhang, Xue-Han

    2016-01-01

    The number and subtype composition of N-methyl-d-aspartate receptor (NMDAR) at synapses determines their functional properties and role in learning and memory. Genetically increased or decreased amount of GluN2B affects hippocampus-dependent memory in the adult brain. But in some experimental conditions (e.g., memory elicited by a single conditioning trial (1 CS-US)), GluN2B is not a necessary factor, which indicates that the precise role of GluN2B in memory formation requires further exploration. Here, we examined the role of GluN2B in the consolidation of fear memory using two training paradigms. We found that GluN2B was only required for the consolidation of memory elicited by five conditioning trials (5 CS-US), not by 1 CS-US. Strikingly, the expression of membrane GluN2B in CA1was training-strength-dependently increased after conditioning, and that the amount of membrane GluN2B determined its involvement in memory consolidation. Additionally, we demonstrated the increases in the activities of cAMP, ERK, and CREB in the CA1 after conditioning, as well as the enhanced intrinsic excitability and synaptic efficacy in CA1 neurons. Up-regulation of membrane GluN2B contributed to these enhancements. These studies uncover a novel mechanism for the involvement of GluN2B in memory consolidation by its accumulation at the cell surface in response to behavioral training. PMID:27487820

  16. On the Regulation of Consonant Duration in the Speech Perception and Production of Adults and 5 to 7 Year Old Children.

    ERIC Educational Resources Information Center

    Hawkins, Sarah; Tatham, M. A. A.

    The perception of duration in consonant segments is compared with their produced durations, and adults' and children's performance in this respect are compared. The temporal organization imposed by adults on initial consonant clusters was often not imposed by children from four to eight years of age, even though the cluster was produced…

  17. Downregulated expression of microRNA-124 in pediatric intestinal failure patients modulates macrophages activation by inhibiting STAT3 and AChE

    PubMed Central

    Xiao, Yong-Tao; Wang, Jun; Lu, Wei; Cao, Yi; Cai, Wei

    2016-01-01

    Intestinal inflammation plays a critical role in the pathogenesis of intestinal failure (IF). The macrophages are essential to maintain the intestinal homeostasis. However, the underlying mechanisms of intestinal macrophages activation remain poorly understood. Since microRNAs (miRNAs) have pivotal roles in regulation of immune responses, here we aimed to investigate the role of miR-124 in the activation of intestinal macrophages. In this study, we showed that the intestinal macrophages increased in pediatric IF patients and resulted in the induction of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The miRNA fluorescence in situ hybridization analysis showed that the expression of miR-124 significantly reduced in intestinal macrophages in IF patients. Overexpression of miR-124 was sufficient to inhibit intestinal macrophages activation by attenuating production of IL-6 and TNF-α. Further studies showed that miR-124 could directly target the 3′-untranslated region of both signal transducer and activator of transcription 3 (STAT3) and acetylcholinesterase (AChE) mRNAs, and suppress their protein expressions. The AChE potentially negates the cholinergic anti-inflammatory signal by hydrolyzing the acetylcholine. We here showed that intestinal macrophages increasingly expressed the AChE and STAT3 in IF patients when compared with controls. The inhibitors against to STAT3 and AChE significantly suppressed the lipopolysaccharides-induced IL-6 and TNF-α production in macrophages. Taken together, these findings highlight an important role for miR-124 in the regulation of intestinal macrophages activation, and suggest a potential application of miR-124 in pediatric IF treatment regarding as suppressing intestinal inflammation. PMID:27977009

  18. The influence of age-related health difficulties and attitudes toward driving on driving self-regulation in the baby boomer and older adult generations.

    PubMed

    Conlon, Elizabeth G; Rahaley, Nicole; Davis, Jessica

    2017-02-26

    Our study aimed to determine how age- and disease-related difficulties were associated with attitudes and beliefs about driving self-regulation in men and women in the baby boomer and older generations. Three hundred and ninety-nine men (n=204) and women (n=195) aged between 48 and 91 years participated in a cross-sectional study of Australian drivers. Demographic characteristics and measures of driving confidence, driving difficulty and driving self-regulation; perceptions of visual, physical and cognitive capacity; and attitudes and beliefs about driving were obtained. Driving self-regulation in men and women was explained by different mechanisms. For men, self-report of visual and cognitive difficulties and poor driving confidence predicted driving self-regulation. For women, negative attitudes toward driving mediated the associations found between health-related difficulties and driving self-regulation. Barriers to driving self-regulation were not associated with the driving self-regulatory practices of men or women. Regardless of generation, women reported poorer driving confidence, greater driving difficulty and more driving self-regulation than men. We concluded that age- and disease-related difficulties are related to increasing driving self-regulation in mature men and women. These results indicate that different pathways are needed in models of driving self-regulation for men and women regardless of generational cohort.

  19. A FEEDBACK MODEL FOR TESTICULAR-PITUITARY AXIS HORMONE KINETICS AND THEIR EFFECTS ON THE REGULATION OF THE PROSTATE IN ADULT MALE RATS

    EPA Science Inventory

    The testicular-hypothalamic-pituitary axis regulates male reproductive system functions. A model describing the kinetics and dynamics of testosterone (T), dihydrotestosterone (DHT) and luteinizing hormone (LH) was developed based on a model by Barton and Anderson (1997). The mode...

  20. Ethanol Exposure Induces Neonatal Neurodegeneration by Enhancing CB1R Exon1 Histone H4K8 Acetylation and Up-regulating CB1R Function causing Neurobehavioral Abnormalities in Adult Mice

    PubMed Central

    Subbanna, Shivakumar; Nagre, Nagaraja N.; Umapathy, Nagavedi S.; Pace, Betty S.

    2015-01-01

    Background: Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood. Methods: In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder. Results: We found that ethanol treatment of P7 mice enhances acetylation of H4 on lysine 8 (H4K8ace) at CB1R exon1, CB1R binding as well as the CB1R agonist-stimulated GTPγS binding in the hippocampus and neocortex, two brain regions that are vulnerable to ethanol at P7 and are important for memory formation and storage, respectively. We also found that ethanol inhibits cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation and activity-regulated cytoskeleton-associated protein (Arc) expression in neonatal and adult mice. The blockade or genetic deletion of CB1Rs prior to ethanol treatment at P7 rescued CREB phosphorylation and Arc expression. CB1R knockout mice exhibited neither ethanol-induced neurodegeneration nor inhibition of CREB phosphorylation or Arc expression. However, both neonatal and adult mice did exhibit enhanced CREB phosphorylation and Arc protein expression. P7 ethanol-treated adult mice exhibited impaired spatial and social recognition memory, which were prevented by the pharmacological blockade or deletion of CB1Rs at P7. Conclusions: Together, these findings suggest that P7 ethanol treatment induces CB1R expression through epigenetic modification of the CB1R gene, and that the enhanced CB1R function induces pCREB, Arc, spatial, and social memory deficits in adult mice. PMID:25609594

  1. Policy Review on Adult Learning: The Adult Non-Formal Education Policy of Mali, West Africa

    ERIC Educational Resources Information Center

    Gadio, Moussa

    2011-01-01

    This article focuses on the issue of policy development for adult learning in Mali, West Africa. On January 2007, the Malian government adopted the "Adult Non-formal Education Policy Document," which was intended to regulate the adult learning sector and federate the actions of policy makers, adult education providers, and adult…

  2. Expression, synaptic localization, and developmental regulation of Ack1/Pyk1, a cytoplasmic tyrosine kinase highly expressed in the developing and adult brain.

    PubMed

    Ureña, Jesús Mariano; La Torre, Anna; Martínez, Albert; Lowenstein, Eve; Franco, Neus; Winsky-Sommerer, Raphaelle; Fontana, Xavier; Casaroli-Marano, Ricardo; Ibáñez-Sabio, Miguel Angel; Pascual, Marta; Del Rio, José Antonio; de Lecea, Luis; Soriano, Eduardo

    2005-09-19

    Cytosolic tyrosine kinases play a critical role both in neural development and in adult brain function and plasticity. Here we isolated a cDNA with high homology to human Ack1 and mouse Tnk2. This cDNA directs the expression of a 125-kD protein that can be autophosphorylated in tyrosines. Initially, this clone was named Pyk1 for proline-rich tyrosine kinase (Lev et al., 1995); however, since it corresponds to the mouse homolog of Ack1, here we called it Ack1/Pyk1. In this study we show that Ack1/Pyk1 mRNA and protein is highly expressed in the developing and adult brain. The highest levels of Ack1/Pyk1 expression were detected in the hippocampus, neocortex, and cerebellum. Electron microscopy studies showed that Ack1/Pyk1 protein is expressed in these regions both at dendritic spines and presynaptic axon terminals, indicating a role in synaptic function. Furthermore, we demonstrate that Ack1/Pyk1 mRNA levels are strongly upregulated by increased neural activity, produced by intraperitoneal kainate injections. During development, Ack1/Pyk1 was also expressed in the proliferative ventricular zones and in postmitotic maturing neurons. In neuronal cultures, Ack1/Pyk1 was detected in developing dendrites and axons, including dendritic tips and growth cones. Moreover, Ack1/Pyk1 colocalized with Cdc42 GTPase in neuronal cultures and coimmunoprecipitated with Cdc42 in HEK 293T cells. Altogether, our findings indicate that Ack1/Pyk1 tyrosine kinase may be involved both in adult synaptic function and plasticity and in brain development.

  3. Estrogen Regulation of Cell Proliferation and Distribution of Estrogen Receptor-α in the Brains of Adult Female Prairie and Meadow Voles

    PubMed Central

    FOWLER, CHRISTIE D.; JOHNSON, FRANK; WANG, ZUOXIN

    2014-01-01

    Adult female prairie (Microtus ochrogaster) and meadow (M. pennsylvanicus) voles were compared to examine neural cell proliferation and the effects of estrogen manipulation on cell proliferation in the amygdala, ventromedial hypothalamus (VMH), and dentate gyrus of the hippocampus (DG). Unlike prior studies, our study focused on the amygdala and VMH, because they are involved in social behaviors and may underlie behavioral differences between the species. Meadow voles had a higher density of cells labeled with the cell proliferation marker 5-bromo-2′-deoxyuridine (BrdU) in the amygdala and DG than did prairie voles. Treatment with estradiol benzoate (EB) for 3 days increased the density of BrdU-labeled cells in the amygdala, particularly in the posterior cortical (pCorA) and medial (pMeA) nuclei, in meadow, but not prairie, voles. Furthermore, the majority of the BrdU-labeled cells in the pCorA and pMeA displayed either a neuronal or a glial progenitor phenotype, but no species or treatment differences were found in the percentage of neuronal or glial progenitor cells. To understand better estrogen’s effects on adult neurogenesis, we also examined estrogen receptor-α (ERα) distribution. Meadow voles had more ERα-labeled cells in the pCorA and VMH, but not in the pMeA or DG, than did prairie voles. In addition, more than one-half of the BrdU-labeled cells in the amygdala of both species coexpressed ERα labeling. Together, these data indicate that estrogen alters cell proliferation in a species- and region-specific manner, and some of these effects may lie in the specific localization of estrogen receptors in the adult vole brain. PMID:15984004

  4. Cocaine exposure prior to pregnancy alters the psychomotor response to cocaine and transcriptional regulation of the dopamine D1 receptor in adult male offspring.

    PubMed

    Sasaki, Aya; Constantinof, Andrea; Pan, Pauline; Kupferschmidt, Dave A; McGowan, Patrick O; Erb, Suzanne

    2014-05-15

    There is evidence that maternal experience prior to pregnancy can play an important role in behavioral, physiological, and genetic programming of offspring. Likewise, exposure to cocaine in utero can result in marked changes in central nervous system function of offspring. In this study, we examined whether exposure of rat dams to cocaine prior to pregnancy subsequently alters indices of behavior, physiology, and gene expression in offspring. Multiple outcome measures were examined in adult male offspring: (1) behavioral expression of cocaine-induced psychomotor activation; (2) levels of corticosterone in response to immobilization stress; and (3) expression of multiple genes, including dopamine receptor D1 (DRD1) and D2 (DRD2), glucocorticoid receptor (GR), and corticotropin-releasing factor (CRF), in functionally relevant brain regions. Adult Sprague-Dawley females were exposed to cocaine (15-30 mg/kg, i.p.) or saline for 10 days, and were then mated to drug naïve males of the same strain. Separate groups of adult male offspring were tested for their acute psychomotor response to cocaine (0, 15, 30 mg/kg, i.p.), corticosterone responsivity to 20 min of immobilization stress, and expression of multiple genes using quantitative PCR. Offspring of dams exposed to cocaine prior to conception exhibited increased psychomotor sensitivity to cocaine, and upregulated gene expression of DRD1 in the medial prefrontal cortex (mPFC). Neither stress-induced corticosterone levels nor gene expression of GR or CRF genes were altered. These data suggest that cocaine exposure before pregnancy can serve to enhance psychomotor sensitivity to cocaine in offspring, possibly via alterations in dopamine function that include upregulation of the DRD1.

  5. Estrogen regulation of cell proliferation and distribution of estrogen receptor-alpha in the brains of adult female prairie and meadow voles.

    PubMed

    Fowler, Christie D; Johnson, Frank; Wang, Zuoxin

    2005-08-22

    Adult female prairie (Microtus ochrogaster) and meadow (M. pennsylvanicus) voles were compared to examine neural cell proliferation and the effects of estrogen manipulation on cell proliferation in the amygdala, ventromedial hypothalamus (VMH), and dentate gyrus of the hippocampus (DG). Unlike prior studies, our study focused on the amygdala and VMH, because they are involved in social behaviors and may underlie behavioral differences between the species. Meadow voles had a higher density of cells labeled with the cell proliferation marker 5-bromo-2'-deoxyuridine (BrdU) in the amygdala and DG than did prairie voles. Treatment with estradiol benzoate (EB) for 3 days increased the density of BrdU-labeled cells in the amygdala, particularly in the posterior cortical (pCorA) and medial (pMeA) nuclei, in meadow, but not prairie, voles. Furthermore, the majority of the BrdU-labeled cells in the pCorA and pMeA displayed either a neuronal or a glial progenitor phenotype, but no species or treatment differences were found in the percentage of neuronal or glial progenitor cells. To understand better estrogen's effects on adult neurogenesis, we also examined estrogen receptor-alpha (ERalpha) distribution. Meadow voles had more ERalpha-labeled cells in the pCorA and VMH, but not in the pMeA or DG, than did prairie voles. In addition, more than one-half of the BrdU-labeled cells in the amygdala of both species coexpressed ERalpha labeling. Together, these data indicate that estrogen alters cell proliferation in a species- and region-specific manner, and some of these effects may lie in the specific localization of estrogen receptors in the adult vole brain.

  6. Vibrio parahaemolyticus ToxRS regulator is required for stress tolerance and colonization in a novel orogastric streptomycin-induced adult murine model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus, a marine bacterium, is the causative agent of gastroenteritis associated with the consumption of seafood. It contains a homologue of the toxRS operon that in V. cholerae is the key regulator of virulence gene expression. We examined a non-polar mutation in toxRS to determi...

  7. Polymyositis - adult

    MedlinePlus

    ... rash is a sign of a similar condition, dermatomyositis . Common symptoms include: Muscle weakness in the shoulders ... in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo-phase trial. ...

  8. Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus.

    PubMed

    Haan, Niels; Goodman, Timothy; Najdi-Samiei, Alaleh; Stratford, Christina M; Rice, Ritva; El Agha, Elie; Bellusci, Saverio; Hajihosseini, Mohammad K

    2013-04-03

    Increasing evidence suggests that neurogenesis occurs in the postnatal and adult mammalian hypothalamus. However, the identity and location of the putative progenitor cells is under much debate, and little is known about the dynamics of neurogenesis in unchallenged brain. Previously, we postulated that Fibroblast growth factor 10-expressing (Fgf10(+)) tanycytes constitute a population of progenitor cells in the mouse hypothalamus. Here, we show that Fgf10(+) tanycytes express markers of neural stem/progenitor cells, divide late into postnatal life, and can generate both neurons and astrocytes in vivo. Stage-specific lineage-tracing of Fgf10(+) tanycytes using Fgf10-creERT2 mice, reveals robust neurogenesis at postnatal day 28 (P28), lasting as late as P60. Furthermore, we present evidence for amplification of Fgf10-lineage traced neural cells within the hypothalamic parenchyma itself. The neuronal descendants of Fgf10(+) tanycytes predominantly populate the arcuate nucleus, a subset of which express the orexigenic neuronal marker, Neuropeptide-Y, and respond to fasting and leptin-induced signaling. These studies provide direct evidence in support of hypothalamic neurogenesis during late postnatal and adult life, and identify Fgf10(+) tanycytes as a source of parenchymal neurons with putative roles in appetite and energy balance.

  9. Regulating Pornography: A Public Dilemma.

    ERIC Educational Resources Information Center

    Thompson, Margaret E.; And Others

    1990-01-01

    Examines attitudes toward sex and pornography by means of a telephone survey of Dane County, Wisconsin, adults. Describes survey questions about sexual attitudes, perceived effects of pornography, and pornography regulation. Concludes that adults who feel more strongly that pornography has negative effects are more opposed to its regulation. (SG)

  10. LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants

    PubMed Central

    2014-01-01

    Background Arabidopsis ZBF1/MYC2bHLH transcription factor is a repressor of photomorphogenesis, and acts as a point of cross talk in light, abscisic acid (ABA) and jasmonic acid (JA) signaling pathways. MYC2 also functions as a positive regulator of lateral root development and flowering time under long day conditions. However, the function of MYC2 in growth and development remains unknown in crop plants. Results Here, we report the functional analyses of LeMYC2 in tomato (Lycopersicon esculentum). The amino acid sequence of LeMYC2 showed extensive homology with Arabidopsis MYC2, containing the conserved bHLH domain. To study the function of LeMYC2 in tomato, overexpression and RNA interference (RNAi) LeMYC2 tomato transgenic plants were generated. Examination of seedling morphology, physiological responses and light regulated gene expression has revealed that LeMYC2 works as a negative regulator of blue light mediated photomorphogenesis. Furthermore, LeMYC2 specifically binds to the G-box of LeRBCS-3A promoter. Overexpression of LeMYC2 has led to increased root length with more number of lateral roots. The tomato plants overexpressing LeMYC2 have reduced internode distance with more branches, and display the opposite morphology to RNAi transgenic lines. Furthermore, this study shows that LeMYC2 promotes ABA and JA responsiveness. Conclusions Collectively, this study highlights that working in light, ABA and JA signaling pathways LeMYC2 works as an important regulator for growth and development in tomato plants. PMID:24483714

  11. Neonatal treatment with capsaicin influences hormonal regulation of blood pressure in adult, water-deprived Long-Evans but not Brattleboro rats.

    PubMed

    Bennett, T; Gardiner, S M

    1986-01-16

    Conscious, adult, water-deprived Brattleboro rats treated neonatally with capsaicin or vehicle showed similar hypotensive responses to sequential inhibition of the renin-angiotensin system (with captopril) and antagonism of ganglionic transmission (with pentolinium). Following a comparable experimental protocol, Long-Evans rats treated neonatally with capsaicin showed a more marked hypotensive response to captopril administration than did vehicle-injected animals. Furthermore, following administration of captopril and pentolinium, the capsaicin-treated animals showed marked impairment of the vasopressin-dependent recovery of blood pressure. These results indicate that the greater hypotensive response to captopril in water-deprived. Long-Evans rats treated neonatally with capsaicin may be due to less effective compensation for inhibition of the renin-angiotensin system when vasopressin release is impaired.

  12. Regulation of the nuclear export of the transcription factor NFATc1 by protein kinases after slow fibre type electrical stimulation of adult mouse skeletal muscle fibres.

    PubMed

    Shen, Tiansheng; Cseresnyés, Zoltán; Liu, Yewei; Randall, William R; Schneider, Martin F

    2007-03-01

    The transcription factor nuclear factor of activated T cells (NFAT)c1 has been shown to be involved in turning on slow skeletal muscle fibre gene expression. Previous studies from our laboratory have characterized the stimulation pattern-dependent nuclear import and resting shuttling of NFATc1-green fluorescent protein (GFP) in flexor digitorum brevis (FDB) muscle fibres from adult mouse. In this study, we use viral expression of the transcription factor NFATc1-GFP fusion protein to investigate the mechanisms underlying the nuclear export of the NFATc1-GFP that accumulated in the nuclei of cultured dissociated adult mouse FDB muscle fibres during slow-twitch fibre type electrical stimulation. In these studies, we found that inhibition of either glycogen synthase kinase 3beta (GSK3beta) or casein kinase 1 or 2 (CK1/2) markedly slowed the decay of nuclear NFATc1-GFP after cessation of muscle fibre electrical stimulation, whereas inhibition of casein kinase 1delta, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase and protein kinase A had little effect. Simultaneous inhibition of GSK3beta and CK1/2 completely blocked the nuclear export of NFATc1-GFP after muscle activity. We also developed a simplified model of NFATc1 phosphorylation/dephosphorylation and nuclear fluxes, and used this model to simulate the observed time courses of nuclear NFATc1-GFP with and without NFATc1 kinase inhibition. Our results suggest that GSK3beta and CK1/2 are the major protein kinases that contribute to the removal of NFATc1 that accumulates in muscle fibre nuclei during muscle activity, and that GSK3beta and CK1/2 are responsible for phosphorylating NFATc1 in muscle nuclei in a complementary or synergistic fashion.

  13. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF).

    PubMed

    Wang, Tao; Wang, Shi-Wei; Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU)-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP.

  14. Effectiveness of the self-regulation eHealth intervention 'MyPlan1.0.' on physical activity levels of recently retired Belgian adults: a randomized controlled trial.

    PubMed

    Van Dyck, Delfien; Plaete, Jolien; Cardon, Greet; Crombez, Geert; De Bourdeaudhuij, Ilse

    2016-10-01

    The study purpose was to test the effectiveness of the self-regulation eHealth intervention 'MyPlan1.0.' to increase physical activity (PA) in recently retired Belgian adults. This study was a randomized controlled trial with three points of follow-up/modules (baseline to 1-week to 1-month follow-up). In total, 240 recently retired adults (intervention group [IG]: n = 89; control group [CG]: n = 151) completed all three modules. The IG filled in evaluation questionnaires and received 'MyPlan1.0.', an intervention focusing on both pre- and post-intentional processes for behavioural change. The CG only filled in evaluation questionnaires. Self-reported PA was assessed using the long International Physical Activity Questionnaire, usual week version. Repeated-measures multivariate analysis of variances were conducted in SPSS 22.0. On the short-term (baseline to 1 week), the intervention significantly increased walking for transport (IG: +11 min/week, CG: -6 min/week; P < 0.01). On the intermediate-term (baseline to 1 month), the intervention increased transport-related walking (IG: +14 min/week, CG: +6 min/week; P < 0.01), leisure-time walking (IG: +26 min/week, CG: -14 min/week; P < 0.10), leisure-time vigorous PA (IG: +16 min/week, CG: -4 min/week; P < 0.01), moderate-intensity gardening (IG: +4 min/week, CG: -34 min/week; P < 0.10) and voluntary work-related vigorous PA (IG: +28 min/week, CG: +13 min/week; P < 0.10). Results show that our eHealth intervention is effective in recently retired adults. Future studies should include long-term follow-up to examine whether the effects persist over a longer period.

  15. Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels

    PubMed Central

    Kasten, Michael R; Rudy, Bernardo; Anderson, Matthew P

    2007-01-01

    Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating thalamic firing rates. We hypothesized that different K+ and Ca2+ channel subtypes control different stimulus–response curve properties. To define the channels, we measured firing rate while pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K+ channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with α-dendrotoxin or maurotoxin strongly increased firing rates to threshold stimuli by reducing the membrane potential where action potentials fire (Vth). Inhibiting SK Ca2+-activated K+ channels with apamin robustly increased gain (slope of the stimulus–response curve) and maximum firing rate, with minimum effects on threshold responses. Inhibiting N-type Ca2+ channels with ω-conotoxin GVIA or ω-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca2+ channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission and that each channel subtype controls a different stimulus–response curve property. Differential regulation of threshold, gain and maximum firing rate may help vary the stimulus–response properties across and within thalamic nuclei, normalize responses to diverse sensory inputs, and underlie sensory perception disorders. PMID:17761775

  16. Buttressing a balanced brain: Target-derived FGF signaling regulates excitatory/inhibitory tone and adult neurogenesis within the maturating hippocampal network.

    PubMed

    Dabrowski, Ania; Umemori, Hisashi

    2016-01-01

    Brain development involves multiple levels of molecular coordination in forming a functional nervous system. The hippocampus is a brain area that is important for memory formation and spatial reasoning. During early postnatal development of the hippocampal circuit, Fibroblast growth factor 22 (FGF22) and FGF7 act to establish a balance of excitatory and inhibitory tone. Both FGFs are secreted from CA3 dendrites, acting on excitatory or inhibitory axon terminals formed onto CA3 dendrites, respectively. Mechanistically, FGF22 utilizes FGFR2b and FGFR1b to induce synaptic vesicle recruitment within axons of dentate granule cells (DGCs), and FGF7 utilizes FGFR2b to induce synaptic vesicle recruitment within interneuron axons. FGF signaling eventually induces gene expression in the presynaptic neurons; however, the effects of FGF22-induced gene expression within DGCs and FGF7-induced gene expression within interneurons in the context of a developing hippocampal circuit have yet to be explored. Here, we propose one hypothetical mechanism of FGF22-induced gene expression in controlling adult neurogenesis.

  17. DNA-methylation dependent regulation of embryo-specific 5S ribosomal DNA cluster transcription in adult tissues of sea urchin Paracentrotus lividus.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Naselli, Flores; Caradonna, Fabio

    2013-10-01

    We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus and recently, demonstrated the presence of high heterogeneity in functional 5S rRNA. In this paper, we show some important distinctive data on 5S rRNA transcription for this organism. Using single strand conformation polymorphism (SSCP) analysis, we demonstrate the existence of two classes of 5S rRNA, one which is embryo-specific and encoded by the smallest (700 bp) cluster and the other which is expressed at every stage and encoded by longer clusters (900 and 950 bp). We also demonstrate that the embryo-specific class of 5S rRNA is expressed in oocytes and embryonic stages and is silenced in adult tissue and that this phenomenon appears to be due exclusively to DNA methylation, as indicated by sensitivity to 5-azacytidine, unlike Xenopus where this mechanism is necessary but not sufficient to maintain the silenced status.

  18. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  19. Low-Resolution Electromagnetic Tomography (LORETA) of changed Brain Function Provoked by Pro-Dopamine Regulator (KB220z) in one Adult ADHD case

    PubMed Central

    Steinberg, Bruce; Blum, Kenneth; McLaughlin, Thomas; Lubar, Joel; Febo, Marcelo; Braverman, Eric R.; Badgaiyan, Rajendra D

    2016-01-01

    Attention Deficit-Hyperactivity Disorder (ADHD) often continues into adulthood. Recent neuroimaging studies found lowered baseline dopamine tone in the brains of affected individuals that may place them at risk for Substance Use Disorder (SUD). This is an observational case study of the potential for novel management of Adult ADHD with a non-addictive glutaminergic-dopaminergic optimization complex KB200z. Low-resolution electromagnetic tomography (LORETA) was used to evaluate the effects of KB220z on a 72-year-old male with ADHD, at baseline and one hour following administration. The resultant z-scores, averaged across Eyes Closed, Eyes Open and Working Memory conditions, increased for each frequency band, in the anterior, dorsal and posterior cingulate regions, as well as the right dorsolateral prefrontal cortex during Working Memory, with KB220z. These scores are consistent with other human and animal neuroimaging studies that demonstrated increased connectivity volumes in reward circuitry and may offer a new approach to ADHD treatment. However, larger randomized trials to confirm these results are required. PMID:27610420

  20. Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C

    PubMed Central

    Liu, Xi-yu

    2017-01-01

    Aims. Latent autoimmune diabetes in adults (LADA) is an autoimmune disease of which the mechanism is not clear. Emerging evidence suggests that histone methylation contributes to autoimmunity. Methods. Blood CD4+ T lymphocytes from 26 LADA patients and 26 healthy controls were isolated to detect histone H3 lysine 4 and H3 lysine 9 methylation status. Results. Reduced global H3 lysine 9 methylation was observed in LADA patients' CD4+ T lymphocytes, compared to healthy controls (P < 0.05). H3 lysine 4 methylation was not statistically different. The reduced H3 lysine 9 methylation was associated with GADA titer but not correlated with glycosylated hemoglobin (HbA1c). When the LADA patient group was divided into those with complication and those without, relatively reduced global H3 lysine 9 methylation was observed in LADA patients with complication (P < 0.05). The expression of histone methyltransferase SUV39H2 for H3 lysine 9 methylation was downregulated in LADA patients, and the expression of histone demethylase KDM4C which made H3 lysine 9 demethylation was upregulated. Conclusion. The reduction of histone H3 lysine 9 methylation which may due to the downregulation of methyltransferase SUV39H2 and the upregulation of demethylase KDM4C was found in CD4+ T lymphocytes of LADA patients.

  1. Synchronicity of frequently sampled thyrotropin (TSH) and leptin concentrations in healthy adults and leptin-deficient subjects: evidence for possible partial TSH regulation by leptin in humans.

    PubMed

    Mantzoros, C S; Ozata, M; Negrao, A B; Suchard, M A; Ziotopoulou, M; Caglayan, S; Elashoff, R M; Cogswell, R J; Negro, P; Liberty, V; Wong, M L; Veldhuis, J; Ozdemir, I C; Gold, P W; Flier, J S; Licinio, J

    2001-07-01

    Leptin signals the status of energy reserves to the brain. Leptin stimulates biosynthesis of TRH in vitro and influences the activity of the hypothalamic-pituitary-thyroid axis in vivo in rodents. Because blood levels of both leptin and TSH display diurnal variation with a distinct nocturnal rise, we sought to determine whether a relationship exists between fluctuations in circulating leptin and TSH. We measured serum leptin and TSH levels every 7 min for 24 h in five healthy men and found that both leptin and TSH levels are highly organized and pulsatile. A similar pattern of leptin and TSH rhythms was observed, with TSH and leptin levels reaching a nadir in late morning and a peak in the early morning hours. Importantly, cosinor analysis on the absolute leptin and TSH levels revealed a statistically significant fit for a 24-h period and the two hormones showed similar probabilities of rhythm and superimposable peak values. Furthermore, this study shows a strong positive Pearson correlation between the 24-h patterns of variability of leptin and TSH in healthy subjects. Finally, the ultradian fluctuations in leptin levels showed pattern synchrony with those of TSH as determined by cross-correlation analysis, by cross-approximate enthropy and Bayessian analysis applied independently. To further explore whether these associations could reflect an underlying regulation of TSH secretion by leptin, we also studied frequently sampled leptin and TSH levels in four brothers, members of a family with leptin deficiency (one normal homozygote, two heterozygotes, and one leptin-deficient homozygote). Leptin levels of the homozygous leptin-deficient subject are detectable but bioinactive, and the rhythm of his TSH is disorganized. 24-h pattern of leptin and TSH variability in the heterozygous subjects, although significantly correlated, showed a weaker correlation compared with the strong correlation in the normal subjects. These data are consistent with the possibility that

  2. Expression of Extracellular Signal-regulated Kinase 5 and Ankyrin Repeat Domain 1 in Composite Pheochromocytoma and Ganglioneuroblastoma Detected Incidentally in the Adult Adrenal Gland.

    PubMed

    Suenaga, Shinta; Ichiyanagi, Osamu; Ito, Hiromi; Naito, Sei; Kato, Tomoyuki; Nagaoka, Akira; Kato, Tomoya; Yamakawa, Mitsunori; Obara, Yutaro; Tsuchiya, Norihiko

    Composite pheochromocytoma (cPC) is extremely rare, arising in the adrenal medulla as a mixture of PC and other tumors of neural origin. We herein report on a case of adrenal incidentaloma post-operatively diagnosed as cPC with ganglioneuroblastoma (GNBL). The PC component had 7 points on the PASS, a Ki-67 index of 5.1%, a focal absence of sustentacular cells, and no genetic aberrations in succinate dehydrogenase subunit B. The GNBL component exhibited no N-myc amplification. Tumor cells of both components were stained positively for extracellular signal-regulated kinase 5 and ankyrin repeat domain 1. The aberrant activation of growth signaling may play a role in the marginal malignancy of cPC.

  3. Expression of Extracellular Signal-regulated Kinase 5 and Ankyrin Repeat Domain 1 in Composite Pheochromocytoma and Ganglioneuroblastoma Detected Incidentally in the Adult Adrenal Gland

    PubMed Central

    Suenaga, Shinta; Ichiyanagi, Osamu; Ito, Hiromi; Naito, Sei; Kato, Tomoyuki; Nagaoka, Akira; Kato, Tomoya; Yamakawa, Mitsunori; Obara, Yutaro; Tsuchiya, Norihiko

    2016-01-01

    Composite pheochromocytoma (cPC) is extremely rare, arising in the adrenal medulla as a mixture of PC and other tumors of neural origin. We herein report on a case of adrenal incidentaloma post-operatively diagnosed as cPC with ganglioneuroblastoma (GNBL). The PC component had 7 points on the PASS, a Ki-67 index of 5.1%, a focal absence of sustentacular cells, and no genetic aberrations in succinate dehydrogenase subunit B. The GNBL component exhibited no N-myc amplification. Tumor cells of both components were stained positively for extracellular signal-regulated kinase 5 and ankyrin repeat domain 1. The aberrant activation of growth signaling may play a role in the marginal malignancy of cPC. PMID:27980262

  4. 34 CFR 491.4 - What regulations apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF EDUCATION ADULT EDUCATION FOR THE HOMELESS PROGRAM General § 491.4 What regulations apply? The following regulations apply to the Adult Education for the Homeless Program: (a) The Education...

  5. 34 CFR 491.4 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF EDUCATION ADULT EDUCATION FOR THE HOMELESS PROGRAM General § 491.4 What regulations apply? The following regulations apply to the Adult Education for the Homeless Program: (a) The Education...

  6. 34 CFR 491.4 - What regulations apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF EDUCATION ADULT EDUCATION FOR THE HOMELESS PROGRAM General § 491.4 What regulations apply? The following regulations apply to the Adult Education for the Homeless Program: (a) The Education...

  7. 34 CFR 491.4 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF EDUCATION ADULT EDUCATION FOR THE HOMELESS PROGRAM General § 491.4 What regulations apply? The following regulations apply to the Adult Education for the Homeless Program: (a) The Education...

  8. 34 CFR 491.4 - What regulations apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF EDUCATION ADULT EDUCATION FOR THE HOMELESS PROGRAM General § 491.4 What regulations apply? The following regulations apply to the Adult Education for the Homeless Program: (a) The Education...

  9. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain

    PubMed Central

    Mullier, Amandine; Bouret, Sébastien G.; Prevot, Vincent; Dehouck, Bénédicte

    2010-01-01

    The median eminence is one of the seven so-called circumventricular organs. It is located in the basal hypothalamus, ventral to the third ventricle and adjacent to the arcuate nucleus. This structure characteristically contains a rich capillary plexus and features a fenestrated endothelium, making it a direct target of blood-borne molecules. The median eminence also contains highly specialized ependymal cells called tanycytes which line the floor of the third ventricle. It has been hypothesized that one of the functions of these cells is to create a barrier that prevents substances in the portal capillary spaces from entering the brain. In this paper, we report on our use of immunohistochemistry to study the expression of tight junction proteins in the cells that compose the median eminence in adult mice. Our results indicate that tanycytes of the median eminence express occludin, ZO-1, and claudin 1 and 5, but not claudin 3. Remarkably, these molecules are organized as a continuous belt around the cell bodies of the tanycytes that line the ventral part of the third ventricle. In contrast, the tanycytes at the periphery of the arcuate nucleus do not express claudin 1 and instead exhibit a disorganized expression pattern of occludin, ZO-1 and claudin 5. Consistent with these observations, permeability studies using peripheral or central injections of Evans blue dye show that only the tanycytes of the median eminence are joined at their apices by functional tight junctions, whereas tanycytes located at the level of the arcuate nucleus form a permeable layer. In conclusion, this study reveals a unique expression pattern of tight junction proteins in hypothalamic tanycytes, which yields new insights into their barrier properties. PMID:20127760

  10. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain.

    PubMed

    Mullier, Amandine; Bouret, Sebastien G; Prevot, Vincent; Dehouck, Bénédicte

    2010-04-01

    The median eminence is one of the seven so-called circumventricular organs. It is located in the basal hypothalamus, ventral to the third ventricle and adjacent to the arcuate nucleus. This structure characteristically contains a rich capillary plexus and features a fenestrated endothelium, making it a direct target of blood-borne molecules. The median eminence also contains highly specialized ependymal cells called tanycytes, which line the floor of the third ventricle. It has been hypothesized that one of the functions of these cells is to create a barrier that prevents substances in the portal capillary spaces from entering the brain. In this paper, we utilize immunohistochemistry to study the expression of tight junction proteins in the cells that compose the median eminence in adult mice. Our results indicate that tanycytes of the median eminence express occludin, ZO-1, and claudin 1 and 5, but not claudin 3. Remarkably, these molecules are organized as a continuous belt around the cell bodies of the tanycytes that line the ventral part of the third ventricle. In contrast, the tanycytes at the periphery of the arcuate nucleus do not express claudin 1 and instead exhibit a disorganized expression pattern of occludin, ZO-1, and claudin 5. Consistent with these observations, permeability studies using peripheral or central injections of Evans blue dye show that only the tanycytes of the median eminence are joined at their apices by functional tight junctions, whereas tanycytes located at the level of the arcuate nucleus form a permeable layer. In conclusion, this study reveals a unique expression pattern of tight junction proteins in hypothalamic tanycytes, which yields new insights into their barrier properties.

  11. Identification of MicroRNA-124-3p as a Putative Epigenetic Signature of Major Depressive Disorder.

    PubMed

    Roy, Bhaskar; Dunbar, Michael; Shelton, Richard C; Dwivedi, Yogesh

    2017-03-01

    Major depressive disorder (MDD) is predicted to be the second leading cause of global disease burden by 2030. A large number of MDD patients do not respond to the currently available medication because of its poorly understood etiology. Recently, studies of microRNAs (miRNAs), which act as a molecular switch of gene expression, have shown promise in identifying a molecular network that could provide significant clues to various psychiatric illnesses. Using an in vitro system, a rodent depression model, and a human postmortem brain, we investigated the role of a brain-enriched, neuron-specific miRNA, miR-124-3p, whose expression is highly dysregulated in stressed rodents, and identified a set of target genes involved in stress response and neural plasticity. We also found that miR-124-3p is epigenetically regulated and its interaction with the RNA-induced silencing complex (RISC) is compromised in MDD. Using blood serum, we found similar dysregulation of miR-124-3p in antidepressant-free MDD subjects. Altogether, our study demonstrates potential contribution of miR-124-3p in the pathophysiology of MDD and suggests that this miRNA may serve as a novel target for drug development and a biomarker for MDD pathogenesis.

  12. Combustion smoke exposure induces up-regulated expression of vascular endothelial growth factor, aquaporin 4, nitric oxide synthases and vascular permeability in the retina of adult rats.

    PubMed

    Zou, Y Y; Lu, J; Poon, D J F; Kaur, C; Cao, Q; Teo, A L; Ling, E A

    2009-05-19

    Retinal cells respond to various experimental stimuli including hypoxia, yet it remains to be investigated whether they react to smoke inhalation. We show here that retinal cells in rats, notably the ganglion cells, Müller cells, astrocytes and blood vessels responded vigorously to a smoke challenge. The major changes included up-regulated expression of vascular endothelial growth factor (VEGF), aquaporin 4 (AQP4) and nitric oxide synthase (NOS). VEGF expression was localized in the ganglion cells, Müller cells, astrocytes and associated blood vessels. AQP4 was markedly enhanced in both astrocytes and Müller cells. Increase in vascular permeability after smoke exposure was evidenced by extravasation of serum derived rhodamine isothiocyanate which was internalized by Müller cells and ganglion cells. The tracer leakage was attenuated by aminoguanidine and N(G)-nitro-L-arginine methyl ester (L-NAME) treatment which suppressed retinal tissue NOS and nitric oxide (NO) levels concomitantly. It is suggested that VEGF, AQP4 and NO are involved in increased vascular permeability following acute smoke exposure in which hypoxia was ultimately implicated as shown by blood gases analysis. NOS inhibitors effectively reduced the vascular leakage and hence may ameliorate possible retinal edema in smoke inhalation.

  13. Associations of lipid profiles with insulin resistance and β cell function in adults with normal glucose tolerance and different categories of impaired glucose regulation

    PubMed Central

    Ren, Xingxing; Han, Tingting; Chen, Yawen; Qiu, Huiying; Wu, Peihong; Zheng, Jun; Wang, Lihua; Liu, Wei; Hu, Yaomin

    2017-01-01

    Aims To investigate the associations of dyslipidemia with insulin resistance and β cell function in individuals with normal glucose tolerance (NGT) and different categories of impaired glucose regulation (IGR). Methods 544 subjects (365 with dyslipidemia and/or IGR and 179 with normal lipid and glucose tolerance) were enrolled in the study. All subjects underwent oral glucose tolerance test (OGTT). HOMA-IR was used to evaluate insulin sensitivity. Disposition index (DI) was used to evaluate β cell function. Multiple linear regression analysis was performed to assess correlations among lipid profiles, insulin resistance and β cell function. Results Among subjects with NGT, those with dyslipidemia had higher level of HOMA-IR but lower level of DI. While among subjects with different categories of IGR, those with dyslipidemia and CGI had significantly decreased DI. No obvious differences of insulin resistance or β cell function were found in IFG or IGT subjects with or without dyslipidemia. TG and HDL-C were correlated with HOMA-IR (β = 0.79, p <0.001; β = -0.38, p = 0.027, respectively, compared with subjects in the low level groups). Moreover, TG and TC were negatively correlated with DI (β = -2.17, p = 0.013; β = -2.01, p = 0.034 respectively, compared with subjects in the low level groups) after adjusting for confounding parameters. Conclusions Dyslipidemia induces insulin resistance and impaired β cell response to insulin resistance in individuals with NGT. Furthermore, dyslipidemia diminishes β cell function in subjects with CGI. TG and HDL-C were correlated with insulin resistance, and TG, TC were negatively correlated with β cell response to insulin resistance in non-diabetic individuals. PMID:28199386

  14. Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera).

    PubMed

    Mello, Tathyana R P; Aleixo, Aline C; Pinheiro, Daniel G; Nunes, Francis M F; Bitondi, Márcia M G; Hartfelder, Klaus; Barchuk, Angel R; Simões, Zilá L P

    2014-01-01

    Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH), control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E) application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD) of both EcR transcript variants we detected the differential expression of 234 poly-A(+) transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1). EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g., miR-133 and miR-375), as well honeybee-specific ones (e.g., miR-3745 and miR-3761). Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect.

  15. Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera)

    PubMed Central

    Mello, Tathyana R. P.; Aleixo, Aline C.; Pinheiro, Daniel G.; Nunes, Francis M. F.; Bitondi, Márcia M. G.; Hartfelder, Klaus; Barchuk, Angel R.; Simões, Zilá L. P.

    2014-01-01

    Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH), control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E) application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD) of both EcR transcript variants we detected the differential expression of 234 poly-A+ transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1). EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g., miR-133 and miR-375), as well honeybee-specific ones (e.g., miR-3745 and miR-3761). Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect. PMID:25566327

  16. CPR: Adult

    MedlinePlus

    Refresher Center Home FIRST AID, CPR and AED LIFEGUARDING Refresher Putting It All Together: CPR—Adult (2:03) Refresher videos only utilize this player QUICK LINKS Home RedCross.org Purchase Course ...

  17. Adult Psychology.

    ERIC Educational Resources Information Center

    Bischof, Ledford J.

    This volume comprehensively reviews the research on the psychology of the middle aged (ages 40-65). Topics include the concept of maturity and maturation models, the measurement and influences of adult self image; marriage and sexual patterns; intergenerational relationships between and children; vocations and avocations (work, retirement, play,…

  18. Handbook for Volunteers: Adult Education Program.

    ERIC Educational Resources Information Center

    Koehler, C. Russell

    Designed for volunteers in Olympic College's Adult Education Volunteer Classroom Assistant Project, this handbook discusses volunteer tutors' roles, characteristics of Adult Basic Education (ABE) and English as a Second Language (ESL) students, suggested teaching techniques, tips for working with instructors, and college policies and regulations.…

  19. ADULT EDUCATION OF MIGRANT ADULTS.

    ERIC Educational Resources Information Center

    BEAL, CATHERINE; AND OTHERS

    UNITS ON MIGRANT ADULT EDUCATION, AND A UNIT ON ORGANIZING INFORMAL GROUPS OF MIGRANT WOMEN TO DISCUSS MAINTAINING AND IMPROVING THEIR TEMPORARY HOMES, ARE PRESENTED. THE GOALS OF THE UNIT ON EDUCATION FOR MIGRANT MEN ARE ECONOMIC INDEPENDENCE, BETTER HEALTH AND WELL-BEING, AND BETTER HANDLING OF RESPONSIBILITIES. THE MAIN DIVISIONS OF THE…

  20. Panic Disorder among Adults

    MedlinePlus

    ... Autism Spectrum Disorder (ASD) Eating Disorders Among Adults - Anorexia Nervosa Eating Disorders Among Adults - Binge Eating Disorder ... Autism Spectrum Disorder (ASD) Eating Disorders Among Adults - Anorexia Nervosa Eating Disorders Among Adults - Binge Eating Disorder ...

  1. Obstructive sleep apnea - adults

    MedlinePlus

    Sleep apnea - obstructive - adults; Apnea - obstructive sleep apnea syndrome - adults; Sleep-disordered breathing - adults; OSA - adults ... When you sleep, all of the muscles in your body become more relaxed. This includes the muscles that help keep your ...

  2. Adult Development and Learning of Older Adults

    ERIC Educational Resources Information Center

    Roberson, Donald N., Jr.

    2005-01-01

    This summary of adult development covers a wide range of authors. Adult development is one way of understanding how the internal and external changes in our lives have an impact on learning. Of particular importance in this work are the developmental issues of older adults. I present various theories of adult development such as linear and…

  3. RB: An essential player in adult neurogenesis.

    PubMed

    Fong, Bensun C; Slack, Ruth S

    2017-01-01

    The fundamental mechanisms underlying adult neurogenesis remain to be fully clarified. Members of the cell cycle machinery have demonstrated key roles in regulating adult neural stem cell (NSC) quiescence and the size of the adult-born neuronal population. The retinoblastoma protein, Rb, is known to possess CNS-specific requirements that are independent from its classical role as a tumor suppressor. The recent study by Vandenbosch et al. has clarified distinct requirements for Rb during adult neurogenesis, in the restriction of proliferation, as well as long-term adult-born neuronal survival. However, Rb is no longer believed to be the main cell cycle regulator maintaining the quiescence of adult NSCs. Future studies must consider Rb as part of a larger network of regulatory effectors, including the other members of the Rb family, p107 and p130. This will help elucidate the contribution of Rb and other pocket proteins in the context of adult neurogenesis, and define its crucial role in regulating the size and fate of the neurogenic niche.

  4. Reading Comprehension Strategies for Adult Literacy Outcomes.

    PubMed

    Hock, Mike; Mellard, Daryl

    2005-11-01

    Although research on improving child literacy is converging, no such body of research exists for adult literacy. Yet the need is no less significant. This study extends the knowledge garnered with younger populations by determining the reading comprehension strategies most important to adults' success on adult literacy outcome measures and aligning them with previously researched interventions. According to an analysis of key adult literacy outcome measures (i.e., competency-based, standardized tests of literacy commonly accepted as reasonable proxies for the global construct of adult literacy: Comprehensive Adult Student Assessment System [CASAS], General Educational Development [GED], and National Assessment of Educational Progress [NAEP]), adults should benefit from strategies that teach looking for clues in or generating questions about a text. Additionally, adults need to learn how to summarize and draw inferences in order to address higher-level literacy demands. Adult learners also need a metacognitive strategy to self-regulate reading behavior (e.g., choose a strategy to use, evaluate its effectiveness, and abandon and choose another strategy if necessary.) Furthermore, when using a competency-based standardized test, adult learners need to be coincidentally taught test-taking skills to reduce the test-related task demands and produce a better index of a learner's reading comprehension skills.

  5. Preparing Educators of Adults.

    ERIC Educational Resources Information Center

    Grabowski, Stanley M.; And Others

    Model programs are described for two areas of adult education--the preparation of adult educators and the training conducted by adult educators. In Chapter One, Phyllis Caldwell reviews the literature concerning the preservice training of adult educators, concentrating on the competencies of adult education administrators and teachers. In Chapter…

  6. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides.

    PubMed

    Deo, Monika; Yu, Jenn-Yah; Chung, Kwan-Ho; Tippens, Melissa; Turner, David L

    2006-09-01

    We have developed an in situ hybridization procedure for the detection of microRNAs (miRNAs) in tissue sections from mouse embryos and adult organs. The method uses highly specific washing conditions for RNA oligonucleotide probes conjugated to a fluorescein hapten. We show that this method detects predominantly mature miRNAs rather than the miRNA precursors or primary transcripts. We have determined expression patterns for several miRNAs expressed in the developing and adult nervous system, including miR-124a, miR-9, miR-92, and miR-204. Whereas miR-124a is expressed in neurons, miR-9 is expressed in neural progenitors and some neurons, and miR-204 is expressed in the choroid plexus, retinal pigment epithelium, and ciliary body. miR-204 is located in an intron of the TRPM3 gene, and the TRPM3 mRNA is coexpressed with miR-204 in the choroid plexus. We also find that primary transcripts for miR-124a and miR-9 genes are expressed in patterns similar to their respective mature miRNAs. The ability to visualize expression of specific miRNAs in embryos and tissues should aid studies on miRNA function.

  7. Adults Need Vaccines, Too!

    MedlinePlus

    ... turn JavaScript on. Feature: Adult Vaccinations Adults Need Vaccines, Too! Past Issues / Summer 2015 Table of Contents ... of the millions of adults not receiving the vaccines you need? What vaccines do you need? All ...

  8. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  9. Adult Day Care

    MedlinePlus

    ... Page Resize Text Printer Friendly Online Chat Adult Day Care Adult Day Care Centers are designed to provide care and ... adults who need assistance or supervision during the day. Programs offer relief to family members and caregivers, ...

  10. Adult Still's disease

    MedlinePlus

    Still's disease - adult; AOSD ... than 1 out of 100,000 people develop adult-onset Still's disease each year. It affects women more often than men. The cause of adult Still's disease is unknown. No risk factors for ...

  11. Testing Solutions for Adult Film Performers.

    PubMed

    Bergman, Zachary R

    2014-01-01

    The majority of the nation's adult films are produced in California, and within California, most production occurs in Los Angeles. In order to regulate that content, the County of Los Angeles passed the Safer Sex in the Adult Film Industry Act (Measure B) by way of referendum in November 2012. Measure B requires that adult film producers wishing to film in Los Angeles County obtain permits from the Los Angeles County Department of Public Health, and it also mandates that adult film performers use condoms while filming and "engaging in anal or vaginal sexual intercourse." Nevertheless, between August 2013 and January 2014, several adult film performers in California tested positive for HIV, and the threat of infection remains. Although Measure B is not the best way forward for Los Angeles County, elements of the ordinance should be incorporated into future legislative efforts. Given the economic ramifications of industry flight due to more localized regulations, this Note concludes that California should pass statewide comprehensive reform. Any such new legislation must treat "independent contractors," the classification generally used for adult film performs, as if they were regular employees. Legislation should also couple mandatory testing mechanisms with provisions granting performers the right to choose whether they use condoms. Finally, legislation must include mechanisms that ensure performers' preferences are not improperly tainted by outside forces and pressures. While there will always be risks associated with the production of adult content, if undertaken, these reforms could significantly mitigate those hazards.

  12. Adult Recruitment Practices.

    ERIC Educational Resources Information Center

    Kaufman, Juliet, Ed.; And Others

    Findings of an American College Testing Program 1981 survey on college recruitment of adult students are summarized, and 12 articles on adult recruitment are presented. Titles and authors are as follows: "Adult Recruitment Practices: A Report of a National Survey" (Patricia Spratt, Juliet Kaufmann, Lee Noel); "Three Programs for Adults in Shopping…

  13. VOLTAGE REGULATOR

    DOEpatents

    Von Eschen, R.L.; Scheele, P.F.

    1962-04-24

    A transistorized voltage regulator which provides very close voitage regulation up to about 180 deg F is described. A diode in the positive line provides a constant voltage drop from the input to a regulating transistor emitter. An amplifier is coupled to the positive line through a resistor and is connected between a difference circuit and the regulating transistor base which is negative due to the difference in voltage drop across thc diode and the resistor so that a change in the regulator output causes the amplifier to increase or decrease the base voltage and current and incrcase or decrease the transistor impedance to return the regulator output to normal. (AEC)

  14. Rapid Emotion Regulation After Mood Induction: Age and Individual Differences

    PubMed Central

    Larcom, Mary Jo

    2009-01-01

    Previous research has suggested that emotion regulation improves with age. This study examined both age and individual differences in online emotion regulation after a negative mood induction. We found evidence that older adults were more likely to rapidly regulate their emotions than were younger adults. Moreover, older adults who rapidly regulated had lower trait anxiety and depressive symptoms and higher levels of optimism than their same-age peers who did not rapidly regulate. Measuring mood change over an extended time revealed that older rapid regulators still reported increased levels of positive affect over 20 min later, whereas young adult rapid regulators’ moods had declined. These results highlight the importance of considering individual differences when examining age differences in online emotion regulation. PMID:19808810

  15. 34 CFR 402.4 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 402.4 Section 402.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... regulations in 34 CFR part 400. (b) The regulations in this part 402. (Authority: 20 U.S.C. 2313(c))...

  16. 34 CFR 402.4 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply? 402.4 Section 402.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... regulations in 34 CFR part 400. (b) The regulations in this part 402. (Authority: 20 U.S.C. 2313(c))...

  17. 34 CFR 403.3 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply? 403.3 Section 403.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... Program: (a) The regulations in 34 CFR part 400. (b) The regulations in this part 403. (Authority: 20...

  18. 34 CFR 403.3 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 403.3 Section 403.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... Program: (a) The regulations in 34 CFR part 400. (b) The regulations in this part 403. (Authority: 20...

  19. 34 CFR 462.2 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 462.2 Section 462.2 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION MEASURING EDUCATIONAL GAIN IN THE NATIONAL REPORTING SYSTEM FOR ADULT...

  20. 34 CFR 461.4 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply? 461.4 Section 461.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION STATE-ADMINISTERED BASIC GRANT PROGRAM General § 461.4...

  1. 34 CFR 461.4 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 461.4 Section 461.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION STATE-ADMINISTERED BASIC GRANT PROGRAM General § 461.4...

  2. Detrimental role of prolonged sleep deprivation on adult neurogenesis

    PubMed Central

    Fernandes, Carina; Rocha, Nuno Barbosa F.; Rocha, Susana; Herrera-Solís, Andrea; Salas-Pacheco, José; García-García, Fabio; Murillo-Rodríguez, Eric; Yuan, Ti-Fei; Machado, Sergio; Arias-Carrión, Oscar

    2015-01-01

    Adult mammalian brains continuously generate new neurons, a phenomenon called adult neurogenesis. Both environmental stimuli and endogenous factors are important regulators of adult neurogenesis. Sleep has an important role in normal brain physiology and its disturbance causes very stressful conditions, which disrupt normal brain physiology. Recently, an influence of sleep in adult neurogenesis has been established, mainly based on sleep deprivation studies. This review provides an overview on how rhythms and sleep cycles regulate hippocampal and subventricular zone neurogenesis, discussing some potential underlying mechanisms. In addition, our review highlights some interacting points between sleep and adult neurogenesis in brain function, such as learning, memory, and mood states, and provides some insights on the effects of antidepressants and hypnotic drugs on adult neurogenesis. PMID:25926773

  3. [Sleep: regulation and phenomenology].

    PubMed

    Vecchierini, M-F

    2013-12-01

    This article describes the two-process model of sleep regulation. The 24-hour sleep-wake cycle is regulated by a homeostatic process and an endogenous, 2 oscillators, circadian process, under the influence of external synchronisers. These two processes are partially independent but influence each other, as shown in the two-sleep-process auto-regulation model. A reciprocal inhibition model of two interconnected neuronal groups, "SP on" and "SP off", explains the regular recurrence of paradoxical sleep. Sleep studies have primarily depended on observation of the subject and have determined the optimal conditions for sleep (position, external conditions, sleep duration and need) and have studied the consequences of sleep deprivation or modifications of sleep schedules. Then, electrophysiological recordings permitted the classification of sleep stages according to the observed EEG patterns. The course of a night's sleep is reported on a "hypnogram". The adult subject falls asleep in non-REM sleep (N1), then sleep deepens progressively to stages N2 and N3 with the appearance of spindles and slow waves (N2). Slow waves become more numerous in stage N3. Every 90minutes REM sleep recurs, with muscle atonia and rapid eye movements. These adult sleep patterns develop progressively during the 2 first years of life as total sleep duration decreases, with the reduction of diurnal sleep and of REM sleep. Around 2 to 4 months, spindles and K complexes appear on the EEG, with the differentiation of light and deep sleep with, however, a predominance of slow wave sleep.

  4. Isolation of diapause-regulated transcripts by differential display from the Colorado potato beetle, and their expression in prediapausing and nondiapausing adults. GenBank. Accessions: FG591137-FG591192

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using differential display, 56 putatively diapause regulated transcripts were isolated from the Colorado potato beetle, Leptinotarsa decemlineata. The clones insert sizes range from 114 to 795 bp with mean length of 392 ± SD of 191 bp. Fourteen of the transcripts were confirmed by northern blot anal...

  5. Distinct cognitive effects and underlying transcriptome changes upon inhibition of individual miRNAs in hippocampal neurons

    PubMed Central

    Malmevik, Josephine; Petri, Rebecca; Knauff, Pina; Brattås, Per Ludvik; Åkerblom, Malin; Jakobsson, Johan

    2016-01-01

    MicroRNAs (miRNA) are small, non-coding RNAs mediating post-transcriptional regulation of gene expression. miRNAs have recently been implicated in hippocampus-dependent functions such as learning and memory, although the roles of individual miRNAs in these processes remain largely unknown. Here, we achieved stable inhibition using AAV-delivered miRNA sponges of individual, highly expressed and brain-enriched miRNAs; miR-124, miR-9 and miR-34, in hippocampal neurons. Molecular and cognitive studies revealed a role for miR-124 in learning and memory. Inhibition of miR-124 resulted in an enhanced spatial learning and working memory capacity, potentially through altered levels of genes linked to synaptic plasticity and neuronal transmission. In contrast, inhibition of miR-9 or miR-34 led to a decreased capacity of spatial learning and of reference memory, respectively. On a molecular level, miR-9 inhibition resulted in altered expression of genes related to cell adhesion, endocytosis and cell death, while miR-34 inhibition caused transcriptome changes linked to neuroactive ligand-receptor transduction and cell communication. In summary, this study establishes distinct roles for individual miRNAs in hippocampal function. PMID:26813637

  6. Outside the brain: an inside view on transgenic animal and stem cell-based models to examine neuronal serotonin-dependent regulation of HPA axis-controlled events during development and adult stages

    PubMed Central

    Waider, Jonas; Ziegler, Janina

    2016-01-01

    Recently, Trista North and colleagues showed that neuronal synthesis of serotonin is an essential key process for embryonic hematopoietic stem (HPS) cell production in zebrafish. Using their experimental design, they were able to show that neuronal serotonin activates the stress-responsive hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid receptor activity which in turn induces HPS cell formation. In our perspective, we give a short overview on established experimental approaches for serotonergic neurotransmission in vivo and in vitro and their potential to address putative contributions of serotonergic neurotransmission to physiological processes beyond the central nervous systems (CNS). We briefly introduce common features of brain serotonin-depleted, tryptophan hydroxylase-2 knockout mice, which can be applied to investigate the contribution of brain-derived serotonin to developmental and adult physiological processes outside the CNS. These models allow to analyzing gender-specific, HPA axis-dependent processes in female and male knockout mice during developmental and adult stages. We also highlight the application of human and mouse stem cell-derived serotonergic neurons as an independent research model as well as complementary experimental approach to transgenic animal models. In case of human serotonergic neurotransmission, human in vitro-generated neurons present a very promising and highly valuable experimental approach to address characteristics of human neuronal serotonin signaling on a molecular and cellular level. The combination of transgenic animal models and newly established stem cell technologies will provide powerful research platforms, which will help to answer yet unsolved mysteries of serotonergic neurotransmission. PMID:28078274

  7. Outside the brain: an inside view on transgenic animal and stem cell-based models to examine neuronal serotonin-dependent regulation of HPA axis-controlled events during development and adult stages.

    PubMed

    Waider, Jonas; Ziegler, Janina; Lau, Thorsten

    2016-01-01

    Recently, Trista North and colleagues showed that neuronal synthesis of serotonin is an essential key process for embryonic hematopoietic stem (HPS) cell production in zebrafish. Using their experimental design, they were able to show that neuronal serotonin activates the stress-responsive hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid receptor activity which in turn induces HPS cell formation. In our perspective, we give a short overview on established experimental approaches for serotonergic neurotransmission in vivo and in vitro and their potential to address putative contributions of serotonergic neurotransmission to physiological processes beyond the central nervous systems (CNS). We briefly introduce common features of brain serotonin-depleted, tryptophan hydroxylase-2 knockout mice, which can be applied to investigate the contribution of brain-derived serotonin to developmental and adult physiological processes outside the CNS. These models allow to analyzing gender-specific, HPA axis-dependent processes in female and male knockout mice during developmental and adult stages. We also highlight the application of human and mouse stem cell-derived serotonergic neurons as an independent research model as well as complementary experimental approach to transgenic animal models. In case of human serotonergic neurotransmission, human in vitro-generated neurons present a very promising and highly valuable experimental approach to address characteristics of human neuronal serotonin signaling on a molecular and cellular level. The combination of transgenic animal models and newly established stem cell technologies will provide powerful research platforms, which will help to answer yet unsolved mysteries of serotonergic neurotransmission.

  8. Clueless? Adult Mysteries with Young Adult Appeal.

    ERIC Educational Resources Information Center

    Charles, John; Morrison, Joanna

    1997-01-01

    Presents a list of adult mystery titles for young adult readers. Includes first titles in a series (for reading in order); new and lesser-known mystery authors' works are the focus. Annotations include plot summary. The rest of each annotation is for professional use (includes date and name of award bestowed). (AEF)

  9. Young Adult Literature for Young Adult Males.

    ERIC Educational Resources Information Center

    Gill, Sam D.

    1999-01-01

    Argues that young adult literature can play a significant role in the emotional and mental health of an adolescent as well as help young males become more literate. Offers a 19-item annotated list of young adult novels with male protagonists, sorted by themes: nature and adventure stories, sports stories, genre stories, historical stories, and…

  10. Metacomprehension and Comprehension Performance in Younger and Older Adults.

    ERIC Educational Resources Information Center

    Moore, DeWayne; And Others

    1997-01-01

    The Metacomprehension Scale was completed by 30 younger and 30 older adults. Younger adults reported greater use of strategies to resolve comprehension failures and valued good comprehension more. The regulation dimension of metacomprehension was a reliable predictor of comprehension performance. (SK)

  11. Adult myelination: wrapping up neuronal plasticity

    PubMed Central

    O’Rourke, Megan; Gasperini, Robert; Young, Kaylene M.

    2014-01-01

    In this review, we outline the major neural plasticity mechanisms that have been identified in the adult central nervous system (CNS), and offer a perspective on how they regulate CNS function. In particular we examine how myelin plasticity can operate alongside neurogenesis and synaptic plasticity to influence information processing and transfer in the mature CNS. PMID:25221576

  12. Depression in Older Adults

    ERIC Educational Resources Information Center

    Stickle, Fred; Onedera, Jill D.

    2006-01-01

    The purpose of this article is to address selected aspects of depression in older adults. Specifically, symptoms, risk factors, diagnosis, and interventions for depression in older adults are reviewed.

  13. Immunization Schedules for Adults

    MedlinePlus

    ... ACIP Vaccination Recommendations Why Immunize? Vaccines: The Basics Immunization Schedules for Adults in Easy-to-read Formats ... previous immunizations. View or Print a Schedule Recommended Immunizations for Adults (19 Years and Older) by Age ...

  14. Adult Education Update

    ERIC Educational Resources Information Center

    Hall, Clyde W.

    1975-01-01

    Summarized are speeches dealing with adult education's stiff-necked adherence to middle-class values; the need for upgraded management skills; and a report of a study of adult education in area vocational schools in Georgia. (Author/AJ)

  15. TAM receptor deficiency affects adult hippocampal neurogenesis

    PubMed Central

    Ji, Rui; Meng, Lingbin; Li, Qiutang; Lu, Qingxian

    2014-01-01

    The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus. PMID:25487541

  16. 34 CFR 472.33 - How must projects that serve adults with limited English proficiency provide for the needs of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... English proficiency provide for the needs of those adults? 472.33 Section 472.33 Education Regulations of....33 How must projects that serve adults with limited English proficiency provide for the needs of those adults? (a) Projects serving adults with limited English proficiency or no English...

  17. 34 CFR 472.33 - How must projects that serve adults with limited English proficiency provide for the needs of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... English proficiency provide for the needs of those adults? 472.33 Section 472.33 Education Regulations of....33 How must projects that serve adults with limited English proficiency provide for the needs of those adults? (a) Projects serving adults with limited English proficiency or no English...

  18. 34 CFR 472.33 - How must projects that serve adults with limited English proficiency provide for the needs of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... English proficiency provide for the needs of those adults? 472.33 Section 472.33 Education Regulations of....33 How must projects that serve adults with limited English proficiency provide for the needs of those adults? (a) Projects serving adults with limited English proficiency or no English...

  19. 34 CFR 472.33 - How must projects that serve adults with limited English proficiency provide for the needs of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... English proficiency provide for the needs of those adults? 472.33 Section 472.33 Education Regulations of....33 How must projects that serve adults with limited English proficiency provide for the needs of those adults? (a) Projects serving adults with limited English proficiency or no English...

  20. 34 CFR 472.33 - How must projects that serve adults with limited English proficiency provide for the needs of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... English proficiency provide for the needs of those adults? 472.33 Section 472.33 Education Regulations of....33 How must projects that serve adults with limited English proficiency provide for the needs of those adults? (a) Projects serving adults with limited English proficiency or no English...

  1. 7 CFR 240.4 - Cash in lieu of donated foods for nonresidential child and adult care institutions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and adult care institutions. 240.4 Section 240.4 Agriculture Regulations of the Department of... LIEU OF DONATED FOODS § 240.4 Cash in lieu of donated foods for nonresidential child and adult care... or adult care institutions participating in the Child and Adult Care Food Program. FNS shall pay...

  2. 7 CFR 240.4 - Cash in lieu of donated foods for nonresidential child and adult care institutions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and adult care institutions. 240.4 Section 240.4 Agriculture Regulations of the Department of... LIEU OF DONATED FOODS § 240.4 Cash in lieu of donated foods for nonresidential child and adult care... or adult care institutions participating in the Child and Adult Care Food Program. FNS shall pay...

  3. 7 CFR 240.4 - Cash in lieu of donated foods for nonresidential child and adult care institutions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and adult care institutions. 240.4 Section 240.4 Agriculture Regulations of the Department of... LIEU OF DONATED FOODS § 240.4 Cash in lieu of donated foods for nonresidential child and adult care... or adult care institutions participating in the Child and Adult Care Food Program. FNS shall pay...

  4. The Social Environment and Neurogenesis in the Adult Mammalian Brain

    PubMed Central

    Lieberwirth, Claudia; Wang, Zuoxin

    2012-01-01

    Adult neurogenesis – the formation of new neurons in adulthood – has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones) as well as exogenous (e.g., physical activity and environmental complexity) factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. More recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult–adult (e.g., mating and chemosensory interactions) and adult–offspring (e.g., gestation, parenthood, and exposure to offspring) interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant–subordinate interactions) on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed. PMID:22586385

  5. Adult Education in Sweden.

    ERIC Educational Resources Information Center

    Miller, Harry; And Others

    Folk high schools, study circles, labor market training, union education, and municipal adult schools are the major providers of adult education in Sweden. For the most part, these programs are financed by the government and are tuition free. Folk high schools, which are the oldest type, were founded to provide young adults with a general civic…

  6. The Adult Experience.

    ERIC Educational Resources Information Center

    Belsky, Janet

    The 14 chapters of this textbook chronicle adult development from youth through old age, emphasizing both research and interviews with adults at various stages in their lives. Topics covered include the following: (1) the academic field of adult development; (2) theories and research methods; (3) aging and disease prevention; (4) sexuality and…

  7. Adult Survival Skills Assessment.

    ERIC Educational Resources Information Center

    Walsko, Gregory M.

    The purpose of this instrument is to supplement data from the Adult Basic Learning Examination in assessing the functional level of adults in daily situations. It may also be used as a teaching tool for adults requesting tutoring in specific concepts and skills presented in the instrument. This instrument is an informal assessment instrument and…

  8. Kids Who Outwit Adults.

    ERIC Educational Resources Information Center

    Seita, John R.; Brendtro, Larry K.

    Kids who distrust adults are highly skilled at hiding their real nature and resisting change. Most adults shun such youths or get mired in conflict with them. Punitive get tough practices as well as traditional flaw-fixing treatment are reactive strategies that often drive these youths further from adult bonds and reinforce oppositional and…

  9. Urbanization and Adult Education

    ERIC Educational Resources Information Center

    Short, W. Fisher

    1974-01-01

    The impact of urbanization, the main tasks facing the adult educator in an urban context, identifying the casualties of urbanization, recognizing and dealing with social deprivation, and the various agencies involved in adult education are relevant considerations for adult educators. (MW)

  10. Dimensions of Adult Learning

    ERIC Educational Resources Information Center

    Foley, Griff, Ed.

    2004-01-01

    This broad introduction to adult and postcompulsory education offers an overview of the field for students, adult educators and workplace trainers. The book establishes an analytical framework to emphasize the nature of learning and agency of learners; examines the core knowledge and skills that adult educators need; discusses policy, research and…

  11. Adult Learning: A Reader.

    ERIC Educational Resources Information Center

    Sutherland, Peter, Ed.

    This book on adult learning is divided into six sections. Section 1, Cognitive Processes, includes the following chapters: "Cognitive Processes: Contemporary Paradigms of Learning" (Jack Mezirow); "Information Processing, Memory, Age and Adult Learning" (Gillian Boulton-Lewis); "Adult Learners' Metacognitive Behaviour in Higher Education" (Barry…

  12. Adult Education in Israel.

    ERIC Educational Resources Information Center

    Kirmayer, Paul, Ed.; And Others

    This volume contains 13 articles that reflect the development of adult education in Israel during recent years. The material relates to the principal areas with which the Division of Adult Education deals: formal and nonformal education for adults, language and cultural absorption of new immigrants, and training of facilitators for parental…

  13. Adults Role in Bullying

    ERIC Educational Resources Information Center

    Notar, Charles E.; Padgett, Sharon

    2013-01-01

    Do adults play a role in bullying? Do parents, teachers, school staff, and community adult leaders influence bullying behavior in children and teenagers? This article will focus on research regarding all adults who have almost daily contact with children and teens and their part in how bullying is identified, addressed, and prevented. This article…

  14. Adult Education in Greece

    ERIC Educational Resources Information Center

    Kokkos, Alexios

    2008-01-01

    The central aim of this article is to analyse the current situation of adult education in Greece. The article focuses on the following points: (a) the degree of participation in programmes of continuing professional training and general adult education courses, (b) the quality and the outcomes of the adult education provision in Greece, and (c)…

  15. Adult Competency Education Profile.

    ERIC Educational Resources Information Center

    Bureau of Occupational and Adult Education (DHEW/OE), Washington, DC. Div. of Adult Education.

    A compilation of abstracts of 120 current Adult Performance Level (APL) and Adult Competency Education (ACE) federally supported projects being conducted in 34 States and the District of Columbia, this project profile was developed for adult and secondary education administrators, teachers, and program developers who are beginning or are currently…

  16. Adult Competency Education Resources.

    ERIC Educational Resources Information Center

    Bureau of Occupational and Adult Education (DHEW/OE), Washington, DC. Div. of Adult Education.

    A compilation of brief descriptions of 20 current resources for Adult Performance Level (APL) and Adult Competency Education (ACE) programs, this guide was developed for adult and secondary education administrators, teachers, and program developers who are beginning or are already involved with APL/ACE programs. Each citation contains information…

  17. Adult Academy Volunteer Manual.

    ERIC Educational Resources Information Center

    Cora, Marie T., Ed.; Wood, Nicole R., Ed.

    This handbook was written specifically for volunteer tutors but is appropriate for teachers, student interns, coordinators, and others working with Adult Basic Education (ABE) and English-as-a-Second-Language (ESL) adult learners. It presents an overview of adult and non-traditional education models, some principles of reading and writing, a…

  18. Canadian Adult Basic Education.

    ERIC Educational Resources Information Center

    Brooke, W. Michael, Comp.

    "Trends," a publication of the Canadian Association for Adult Education, is a collection of abstracts on selected subjects affecting adult education; this issue is on adult basic education (ABE). It covers teachers and teacher training, psychological factors relating to the ABE teacher and students, manuals for teachers, instructional…

  19. Young Adult Services Manual.

    ERIC Educational Resources Information Center

    Boegen, Anne, Ed.

    Designed to offer guidelines, ideas and help to those who provide library service to young adults, this manual includes information about the provision of young adult (YA) services in six sections. The first section, which addresses planning and administration, includes a definition of a young adult and a checklist for determining community needs…

  20. Adult Educators' Core Competences

    ERIC Educational Resources Information Center

    Wahlgren, Bjarne

    2016-01-01

    Which competences do professional adult educators need? This research note discusses the topic from a comparative perspective, finding that adult educators' required competences are wide-ranging, heterogeneous and complex. They are subject to context in terms of national and cultural environment as well as the kind of adult education concerned…

  1. An Adult ESL Curriculum.

    ERIC Educational Resources Information Center

    South Carolina Literacy Resource Center, Columbia.

    This curriculum framework for adult literacy was written by 21 South Carolina adult English-as-a-Second-Language (ESL) instructors, as submitted to the South Carolina Literacy Resource Center. It is based on current theories in the fields of adult education and second language acquisition and is designed to be flexible so that it may be adapted to…

  2. Epigenetic choreographers of neurogenesis in the adult mammalian brain

    PubMed Central

    Ma, Dengke K; Marchetto, Maria Carolina; Guo, Junjie U; Ming, Guo-li; Gage, Fred H; Song, Hongjun

    2012-01-01

    Epigenetic mechanisms regulate cell differentiation during embryonic development and also serve as important interfaces between genes and the environment in adulthood. Neurogenesis in adults, which generates functional neural cell types from adult neural stem cells, is dynamically regulated by both intrinsic state-specific cell differentiation cues and extrinsic neural niche signals. Epigenetic regulation by DNA and histone modifiers, non-coding RNAs and other self-sustained mechanisms can lead to relatively long-lasting biological effects and maintain functional neurogenesis throughout life in discrete regions of the mammalian brain. Here, we review recent evidence that epigenetic mechanisms carry out diverse roles in regulating specific aspects of adult neurogenesis and highlight the implications of such epigenetic regulation for neural plasticity and disorders. PMID:20975758

  3. Obsessive Compulsive Disorder among Adults

    MedlinePlus

    ... Autism Spectrum Disorder (ASD) Eating Disorders Among Adults - Anorexia Nervosa Eating Disorders Among Adults - Binge Eating Disorder ... Autism Spectrum Disorder (ASD) Eating Disorders Among Adults - Anorexia Nervosa Eating Disorders Among Adults - Binge Eating Disorder ...

  4. Why Do Adults Learn? Developing a Motivational Typology across 12 European Countries

    ERIC Educational Resources Information Center

    Boeren, Ellen; Holford, John; Nicaise, Ides; Baert, Herman

    2012-01-01

    Participation in adult education is today generally considered an individual responsibility. However, participation is the result of a complex bounded agency between individuals, educational institutions and regulating governments. This paper explores the motives of 12,000 European adult learners in formal adult education in 12 European countries.…

  5. G-Protein-Coupled Receptors in Adult Neurogenesis

    PubMed Central

    Doze, Van A.

    2012-01-01

    The importance of adult neurogenesis has only recently been accepted, resulting in a completely new field of investigation within stem cell biology. The regulation and functional significance of adult neurogenesis is currently an area of highly active research. G-protein-coupled receptors (GPCRs) have emerged as potential modulators of adult neurogenesis. GPCRs represent a class of proteins with significant clinical importance, because approximately 30% of all modern therapeutic treatments target these receptors. GPCRs bind to a large class of neurotransmitters and neuromodulators such as norepinephrine, dopamine, and serotonin. Besides their typical role in cellular communication, GPCRs are expressed on adult neural stem cells and their progenitors that relay specific signals to regulate the neurogenic process. This review summarizes the field of adult neurogenesis and its methods and specifies the roles of various GPCRs and their signal transduction pathways that are involved in the regulation of adult neural stem cells and their progenitors. Current evidence supporting adult neurogenesis as a model for self-repair in neuropathologic conditions, adult neural stem cell therapeutic strategies, and potential avenues for GPCR-based therapeutics are also discussed. PMID:22611178

  6. Autonomic cardiac innervation: development and adult plasticity.

    PubMed

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these "non-classical" cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory

  7. 34 CFR 464.4 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply? 464.4 Section 464.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION STATE LITERACY RESOURCE CENTERS PROGRAM General § 464.4 What regulations apply?...

  8. 34 CFR 464.4 - What regulations apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What regulations apply? 464.4 Section 464.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION STATE LITERACY RESOURCE CENTERS PROGRAM General § 464.4 What regulations apply?...

  9. 34 CFR 464.4 - What regulations apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What regulations apply? 464.4 Section 464.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION STATE LITERACY RESOURCE CENTERS PROGRAM General § 464.4 What regulations apply?...

  10. 34 CFR 464.4 - What regulations apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What regulations apply? 464.4 Section 464.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION STATE LITERACY RESOURCE CENTERS PROGRAM General § 464.4 What regulations apply?...

  11. 34 CFR 464.4 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 464.4 Section 464.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION STATE LITERACY RESOURCE CENTERS PROGRAM General § 464.4 What regulations apply?...

  12. Vagal Regulation and Observed Social Behavior in Infancy.

    ERIC Educational Resources Information Center

    Stifter, Cynthia A.; Corey, Janet M.

    2001-01-01

    Examined the relationship between vagal regulation and infant social behavior. Assessed 1-year-olds' social responses toward an unfamiliar adult, then measured their regulation of cardiac vagal tone during a later test of mental development. Results suggest that infants capable of regulating vagal tone have a greater capacity for social…

  13. Childhood poverty and recruitment of adult emotion regulatory neurocircuitry.

    PubMed

    Liberzon, Israel; Ma, Sean T; Okada, Go; Ho, S Shaun; Swain, James E; Evans, Gary W

    2015-11-01

    One in five American children grows up in poverty. Childhood poverty has far-reaching adverse impacts on cognitive, social and emotional development. Altered development of neurocircuits, subserving emotion regulation, is one possible pathway for childhood poverty's ill effects. Children exposed to poverty were followed into young adulthood and then studied using functional brain imaging with an implicit emotion regulation task focused. Implicit emotion regulation involved attention shifting and appraisal components. Early poverty reduced left dorsolateral prefrontal cortex recruitment in the context of emotional regulation. Furthermore, this emotion regulation associated brain activation mediated the effects of poverty on adult task performance. Moreover, childhood poverty also predicted enhanced insula and reduced hippocampal activation, following exposure to acute stress. These results demonstrate that childhood poverty can alter adult emotion regulation neurocircuitry, revealing specific brain mechanisms that may underlie long-term effects of social inequalities on health. The role of poverty-related emotion regulatory neurocircuitry appears to be particularly salient during stressful conditions.

  14. Expression of brain derived neurotrophic factor, activity-regulated cytoskeleton protein mRNA, and enhancement of adult hippocampal neurogenesis in rats after sub-chronic and chronic treatment with the triple monoamine re-uptake inhibitor tesofensine.

    PubMed

    Larsen, Marianne H; Rosenbrock, Holger; Sams-Dodd, Frank; Mikkelsen, Jens D

    2007-01-26

    The changes of gene expression resulting from long-term exposure to monoamine antidepressant drugs in experimental animals are key to understanding the mechanisms of action of this class of drugs in man. Many of these genes and their products are either relevant biomarkers or directly involved in structural changes that are perhaps necessary for the antidepressant effect. Tesofensine is a novel triple monoamine reuptake inhibitor that acts to increase noradrenaline, serotonin, and dopamine neurotransmission. This study was undertaken to examine the effect of sub-chronic (5 days) and chronic (14 days) administration of Tesofensine on the expression of brain derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton protein (Arc) in the rat hippocampus. Furthermore, hippocampi from the same animals were used to investigate the effect on cell proliferation by means of Ki-67- and NeuroD-immunoreactivity. We find that chronic, but not sub-chronic treatment with Tesofensine increases BDNF mRNA in the CA3 region of the hippocampus (35%), and Arc mRNA in the CA1 of the hippocampus (65%). Furthermore, the number of Ki-67- and neuroD-positive cells increased after chronic, but not sub-chronic treatment. This study shows that Tesofensine enhances hippocampal gene expression and new cell formation indicative for an antidepressant potential of this novel drug substance.

  15. pH regulation in adult rat carotid body glomus cells. Importance of extracellular pH, sodium, and potassium [published erratum appears in J Gen Physiol 1993 Jan;101(1):following 144

    PubMed Central

    1992-01-01

    The course of intracellular pH (pHi) was followed in superfused (36 degrees C) single glomus (type I) cells of the freshly dissociated adult rat carotid body. The cells had been loaded with the pH-sensitive fluorescent dye 2',7'-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein. The high K(+)-nigericin method was used for calibration. The pHi of the glomus cell at pHo 7.40, without CO2, was 7.23 +/- 0.02 (n = 70); in 5% CO2/25 mM HCO3-, pHi was 7.18 +/- 0.08 (n = 9). The pHi was very sensitive to changes in pHo. Without CO2, delta pHi/delta pHo was 0.85 (pHo 6.20-8.00; 32 cells), while in CO2/HCO3- this ratio was 0.82 irrespective of whether pHo (6.80-7.40; 14 cells) was changed at constant PCO2 or at constant [HCO3-]o. The great pHi sensitivity of the glomus cell to pHo is matched only by that of the human red cell. An active Na+/H+ exchanger (apparent Km = 58 +/- 6 mM) is present in glomus cells: Na+ removal or addition of the amiloride derivative 5- (N,N-hexamethylene)-amiloride induced pHi to fall by as much as 0.9. The membrane of these cells also contains a K+/H+ exchanger. Raising [K+]o from 4.7 to 25, 50, or 140 mM reversibly raised pHi by 0.2, 0.3, and 0.6, respectively. Rb+ had no effect, but in corresponding concentrations of Tl+ alkalinization was much faster than in K+. Reducing [K+]o to 1.5 mM lowered pHi by 0.1. These pHi changes were shown not to be due to changes in membrane voltage, and were even more striking in the absence of Na+. Intrinsic buffering power (amount of strong base required to produce, in the nominal absence of CO2, a small pHi rise) increased from 3 to approximately 21 mM as pHi was lowered, but remained nearly unchanged below pHi 6.60. The fitted expression assumed the presence of one "equivalent" intracellular buffer (pK 6.41, 41 mM). The exceptional pHi sensitivity to pHo suggests that the pHi of the glomus cell is a link in the chemoreceptor's response to external acidity. PMID:1294152

  16. NORM regulations

    SciTech Connect

    Gray, P.

    1997-02-01

    The author reviews the question of regulation for naturally occuring radioactive material (NORM), and the factors that have made this a more prominent concern today. Past practices have been very relaxed, and have often involved very poor records, the involvment of contractors, and the disposition of contaminated equipment back into commercial service. The rationale behind the establishment of regulations is to provide worker protection, to exempt low risk materials, to aid in scrap recycling, to provide direction for remediation and to examine disposal options. The author reviews existing regulations at federal and state levels, impending legislation, and touches on the issue of site remediation and potential liabilities affecting the release of sites contaminated by NORM.

  17. Light therapy for insomnia in older adults.

    PubMed

    Gammack, Julie K

    2008-02-01

    Exposure to bright light suppresses the production of melatonin and contributes to the regulation of the circadian rhythm. Because of environmental and medical conditions, older adults are less likely than younger adults to receive the prolonged, high intensity, daily bright light needed to promote a satisfactory sleep-wake cycle. The best available evidence for bright light therapy is in the management of seasonal affective disorder, which is relatively infrequent in the elderly population. For older adults with chronic insomnia, dementia, and nonseasonal depression, there is no consensus on the optimum treatment protocol for bright light therapy. However, in addition to sleep improvement, bright light therapy may be used to reduce unwanted behavioral and cognitive symptoms associated with dementia and depression in the elderly.

  18. BDNF control of adult SVZ neurogenesis.

    PubMed

    Bath, Kevin G; Akins, Michael R; Lee, Francis S

    2012-09-01

    The sensory processing of odorants is a dynamic process that requires plasticity at multiple levels. In the olfactory bulb (OB), inhibitory interneurons undergo lifelong replacement through a process known as adult neurogenesis. These newly born cells are incorporated in a learning-dependent fashion, a process which has led some to suggest this as a primary mechanism through which the OB retains a high degree of plasticity throughout life. A continued focus of researchers in this field has been to understand the molecular mechanisms controlling adult subventricular zone (SVZ) neurogenesis and the innate functional role of these cells. Brain-derived neurotrophic factor (BDNF) has been identified as a strong candidate molecule regulating adult OB neurogenesis. We review what is known regarding the functional role of newly born cells, highlight the role of BDNF in this process, and describe preliminary findings from our lab implicating BDNF in the process of selecting of newly born cells for survival.

  19. Stress, stress hormones, and adult neurogenesis.

    PubMed

    Schoenfeld, Timothy J; Gould, Elizabeth

    2012-01-01

    The dentate gyrus of the hippocampus continues to produce new neurons throughout adulthood. Adult neurogenesis has been linked to hippocampal function, including learning and memory, anxiety regulation and feedback of the stress response. It is thus not surprising that stress, which affects hippocampal function, also alters the production and survival of new neurons. Glucocorticoids, along with other neurochemicals, have been implicated in stress-induced impairment of adult neurogenesis. Paradoxically, increases in corticosterone levels are sometimes associated with enhanced adult neurogenesis in the dentate gyrus. In these circumstances, the factors that buffer against the suppressive influence of elevated glucocorticoids remain unknown; their discovery may provide clues to reversing pathological processes arising from chronic exposure to aversive stress.

  20. Adult Education Regional Planning

    ERIC Educational Resources Information Center

    California Community Colleges, Chancellor's Office, 2015

    2015-01-01

    For more than one hundred and fifty years, until 2008, California was an undisputed national leader in its commitment to adult education. The state's investment in adult learners topped $750 million, a sum greater than the combined total of every other state in the nation. However, for the past several years recession and fiscal crisis have left…

  1. Young Adult Library Services.

    ERIC Educational Resources Information Center

    The Bookmark, 1985

    1985-01-01

    Eight articles in this Spring 1985 issue of The Bookmark focus on young adult library services. In addition to these thematic articles, an introduction and three reports are presented. The issue contains: (1) "In Perspective" (E. J. Josey); (2) "Young Adult Literature in the 1980's--Awesome!" (Ellin Chu); (3) "Young Adult…

  2. Toward Transpersonal Adult Development

    ERIC Educational Resources Information Center

    Boucouvalas, Marcie

    2016-01-01

    As a foundation for discussing transpersonal adult development, the author traces her trajectory, involvement in, and contribution to the modern transpersonal movement and her introduction of it to the adult learning literature, beginning during the early 1980s. Highlighted are the transpersonal domain and a differentiation between transpersonal…

  3. Adult Day Services

    MedlinePlus

    A Smart Choice Adult Day Services Comparison At-a-Glance 1 Adult Day Services Assisted Living Home Care Nursing Homes Live at home with family ... supervision Nursing care available as needed during the day Flexibility to receive care only on days when ...

  4. Adult Tech Prep.

    ERIC Educational Resources Information Center

    Schaad, Donna

    For over 2 years, Blak Hawk College (Illinois) has provided high school equivalency (GED) candidates and recipients, older returning students, and underprepared high school graduates with a Tech Prep curriculum to give them the skills to make the transition from adult basic education to college or work. The Adult Tech Prep (ATP) core curriculum…

  5. Authenticity in Adult Learning

    ERIC Educational Resources Information Center

    Ashton, Sam

    2010-01-01

    This paper is concerned with the relationship between authenticity and adult learning and prompted by some studies in which adult "authentic learning" is a central concept. The implication revealed by them is that real-worldness of learning contexts, learning content and learning tasks is perceived as conferring authenticity on learning. Here,…

  6. Adult Learning and Education

    ERIC Educational Resources Information Center

    Rubenson, Kjell, Ed.

    2011-01-01

    As individuals and societies try to respond to fundamental economic and social transformation, the field of adult learning and education is rapidly getting increased attention and new topics for research on adult learning have emerged. This collection of articles from the International Encyclopedia of Education 3e offers practitioners and…

  7. Today's Adult Students

    ERIC Educational Resources Information Center

    Reese, Susan

    2012-01-01

    Who are the adult students in career and technical education (CTE) today? There is not one simple answer to that question. Some are young with little life experience, while others are returning to the workforce and learning new skills to reinvent themselves. Whatever the case, educating adult students is an integral part of ACTE's mission, and the…

  8. Adult Literacy in Zanzibar.

    ERIC Educational Resources Information Center

    Saadat, Ahmed H.

    The philosophy behind adult literacy in Zanzibar is that adult literacy is a process whereby the illiterate is empowered to become aware of his or her potential. Literacy activities emphasize a relation to work, sometimes known as functional literacy. Specific objectives of literacy programs are to improve living conditions, impart self-reliant…

  9. Adult Vocational Trajectory.

    ERIC Educational Resources Information Center

    Riverin-Simard, Danielle

    1990-01-01

    Proposes a "spatial-temporal" model conceiving adult vocational development as a complex and constant readjustment in always changing perception of personal space-time, based on interviews of 786 adults. Presents two propositions of this model: the continuous alternation between states of instability and interaction of influences.…

  10. Counseling Adult Adoptees

    ERIC Educational Resources Information Center

    Corder, Kate

    2012-01-01

    This review presents various resources about working with adult adoptees in order to inform counselors in their practice. Topics covered include basics of adoption, including types of adoption and adoption statistics; possible issues adult adoptees may face; and suggestions and implications for counselors. The article addresses some of the serious…

  11. Alternative Programming for Adults.

    ERIC Educational Resources Information Center

    Flint, Thomas A.; Frey, Ruth

    2003-01-01

    The Council for Adult and Experiential Learning is currently cataloguing alternative programming features that are most effective with adult students in a best practices inventory organized around a framework of high-level descriptive principles of effectiveness. This chapter identifies a few interesting features from a quick survey of this…

  12. Adult Education and Development.

    ERIC Educational Resources Information Center

    Hinzen, Heribert, Ed.

    2002-01-01

    This document contains 19 papers on adult education and development worldwide. The following papers are included: "Editorial" (Heribert Hinzen); "Lifelong Learning in Europe: Moving towards EFA (Dakar Framework for Action on Education for All) Goals and the CONFINTEA V Agenda" (Sofia Conference on Adult Education);…

  13. Adult Education in Finland

    ERIC Educational Resources Information Center

    Szekely, Radu

    2006-01-01

    Ever since the first ideas of national independence appeared in Finland, adult education has played an essential role in shaping the destiny of the Finns. With a history of almost 130 years, during which it has continuously increased in quality and quantity, the Finnish adult education system has ensured that Finland stays among the most…

  14. Financing of Adult Education

    ERIC Educational Resources Information Center

    Archer, David

    2007-01-01

    The 2008 EFA Global Monitoring Report recognises adult literacy as the most neglected of the EFA goals. It is neglected most obviously in respect of the financial allocations made by governments and donors. This shortage of financing creates a dangerous situation in which adult educators seek to convince politicians to invest, based on false…

  15. Gender Dysphoria in Adults.

    PubMed

    Zucker, Kenneth J; Lawrence, Anne A; Kreukels, Baudewijntje P C

    2016-01-01

    Gender dysphoria (GD), a term that denotes persistent discomfort with one's biologic sex or assigned gender, replaced the diagnosis of gender identity disorder in the Diagnostic and Statistical Manual of Mental Disorders in 2013. Subtypes of GD in adults, defined by sexual orientation and age of onset, have been described; these display different developmental trajectories and prognoses. Prevalence studies conclude that fewer than 1 in 10,000 adult natal males and 1 in 30,000 adult natal females experience GD, but such estimates vary widely. GD in adults is associated with an elevated prevalence of comorbid psychopathology, especially mood disorders, anxiety disorders, and suicidality. Causal mechanisms in GD are incompletely understood, but genetic, neurodevelopmental, and psychosocial factors probably all contribute. Treatment of GD in adults, although largely standardized, is likely to evolve in response to the increasing diversity of persons seeking treatment, demands for greater client autonomy, and improved understanding of the benefits and limitations of current treatment modalities.

  16. Mutational spectrum of adult T-ALL

    PubMed Central

    Neumann, Martin; Vosberg, Sebastian; Schlee, Cornelia; Heesch, Sandra; Schwartz, Stefan; Gökbuget, Nicola; Hoelzer, Dieter; Graf, Alexander; Krebs, Stefan; Bartram, Isabelle; Blum, Helmut; Brüggemann, Monika; Hecht, Jochen; Bohlander, Stefan K.

    2015-01-01

    Novel target discovery is warranted to improve treatment in adult T-cell acute lymphoblastic leukemia (T-ALL) patients. We provide a comprehensive study on mutations to enhance the understanding of therapeutic targets and studied 81 adult T-ALL patients. NOTCH1 exhibitedthe highest mutation rate (53%). Mutation frequencies of FBXW7 (10%), WT1 (10%), JAK3 (12%), PHF6 (11%), and BCL11B (10%) were in line with previous reports. We identified recurrent alterations in transcription factors DNM2, and RELN, the WNT pathway associated cadherin FAT1, and in epigenetic regulators (MLL2, EZH2). Interestingly, we discovered novel recurrent mutations in the DNA repair complex member HERC1, in NOTCH2, and in the splicing factor ZRSR2. A frequently affected pathway was the JAK/STAT pathway (18%) and a significant proportion of T-ALL patients harboured mutations in epigenetic regulators (33%), both predominantly found in the unfavourable subgroup of early T-ALL. Importantly, adult T-ALL patients not only showed a highly heterogeneous mutational spectrum, but also variable subclonal allele frequencies implicated in therapy resistance and evolution of relapse. In conclusion, we provide novel insights in genetic alterations of signalling pathways (e.g. druggable by γ-secretase inhibitors, JAK inhibitors or EZH2 inhibitors), present in over 80% of all adult T-ALL patients, that could guide novel therapeutic approaches. PMID:25595890

  17. Pubertal development and regulation

    PubMed Central

    Abreu, Ana Paula; Kaiser, Ursula B

    2016-01-01

    Puberty marks the end of childhood and is a period when individuals undergo physiological and psychological changes to achieve sexual maturation and fertility. The hypothalamic-pituitary-gonadal axis controls puberty and reproduction and is tightly regulated by a complex network of excitatory and inhibitory factors. This axis is active in the embryonic and early postnatal stages of life and is subsequently restrained during childhood, and its reactivation culminates in puberty initiation. The mechanisms underlying this reactivation are not completely known. The age of puberty onset varies between individuals and the timing of puberty initiation is associated with several health outcomes in adult life. In this Series paper, we discuss pubertal markers, epidemiological trends of puberty initiation over time, and the mechanisms whereby genetic, metabolic, and other factors control secretion of gonadotropin-releasing hormone to determine initiation of puberty. PMID:26852256

  18. Pubertal development and regulation.

    PubMed

    Abreu, Ana Paula; Kaiser, Ursula B

    2016-03-01

    Puberty marks the end of childhood and is a period when individuals undergo physiological and psychological changes to achieve sexual maturation and fertility. The hypothalamic-pituitary-gonadal axis controls puberty and reproduction and is tightly regulated by a complex network of excitatory and inhibitory factors. This axis is active in the embryonic and early postnatal stages of life and is subsequently restrained during childhood, and its reactivation culminates in puberty initiation. The mechanisms underlying this reactivation are not completely known. The age of puberty onset varies between individuals and the timing of puberty initiation is associated with several health outcomes in adult life. In this Series paper, we discuss pubertal markers, epidemiological trends of puberty initiation over time, and the mechanisms whereby genetic, metabolic, and other factors control secretion of gonadotropin-releasing hormone to determine initiation of puberty.

  19. Depression in Older Adults

    PubMed Central

    Fiske, Amy; Wetherell, Julie Loebach; Gatz, Margaret

    2010-01-01

    Depression is less prevalent among older adults than among younger adults but can have serious consequences. Over half of cases represent a first onset in later life. Although suicide rates in the elderly are declining, they are still higher than in younger adults and more closely associated with depression. Depressed older adults are less likely to endorse affective symptoms and more likely to display cognitive changes, somatic symptoms, and loss of interest than are younger adults. Risk factors leading to the development of late life depression likely comprise complex interactions among genetic vulnerabilities, cognitive diathesis, age-associated neurobiological changes, and stressful events. Insomnia is an often overlooked risk factor for late life depression. We suggest that a common pathway to depression in older adults, regardless of which predisposing risks are most prominent, may be curtailment of daily activities. Accompanying self-critical thinking may exacerbate and maintain a depressed state. Offsetting the increasing prevalence of certain risk factors in late life are age-related increases in psychological resilience. Other protective factors include higher education and socioeconomic status, engagement in valued activities, and religious or spiritual involvement. Treatments including behavioral therapy, cognitive behavioral therapy, cognitive bibliotherapy, problem-solving therapy, brief psychodynamic therapy, and life review/reminiscence therapy are effective but too infrequently used with older adults. Preventive interventions including education for individuals with chronic illness, behavioral activation, cognitive restructuring, problem-solving skills training, group support, and life review have also received support. PMID:19327033

  20. Self-Regulated Learning in Doctor of Physical Therapy Students

    ERIC Educational Resources Information Center

    Heath, Amy E.

    2013-01-01

    There is a paucity of adult professional education literature, yet there are multiple theories and models from which to extrapolate information regarding learning in this population, including self-regulated learning theory and adult learning models. The first aim of this study was to explore these bodies of literature and provide a compelling…

  1. Adult neurogenesis in serotonin transporter deficient mice.

    PubMed

    Schmitt, A; Benninghoff, J; Moessner, R; Rizzi, M; Paizanis, E; Doenitz, C; Gross, S; Hermann, M; Gritti, A; Lanfumey, L; Fritzen, S; Reif, A; Hamon, M; Murphy, D L; Vescovi, A; Lesch, K-P

    2007-09-01

    Serotonin (5-HT) is a regulator of morphogenetic activities during early brain development and neurogenesis, including cell proliferation, migration, differentiation, and synaptogenesis. The 5-HT transporter (5-HTT, SLC6A4) mediates high-affinity reuptake of 5-HT into presynaptic terminals and thereby fine-tunes serotonergic neurotransmission. Inactivation of the 5-HTT gene in mice reduces 5-HT clearance resulting in persistently increased concentrations of synaptic 5-HT. In the present study, we investigated the effects of elevated 5-HT levels on adult neurogenesis in the hippocampus of 5-HTT deficient mice, including stem cell proliferation, survival, and differentiation. Using an in vivo approach, we showed an increase in proliferative capacity of hippocampal adult neural stem cells in aged 5-HTT knockout mice (approximately 14.5 months) compared to wildtype controls. In contrast, in vivo and additional in vitro analyses of younger adult 5-HTT knockout mice (approximately 7 weeks and approximately 3.0 months) did not reveal significant changes in proliferation of neural stem cells or survival of newborn cells. We showed that the cellular fate of newly generated cells in 5-HTT knockout mice is not different with respect to the total number and percentage of neurons or glial cells from wildtype controls. Our findings indicate that elevated synaptic 5-HT concentration throughout early development and later life of 5-HTT deficient mice does not induce adult neurogenesis in adult mice, but that elevated 5-HT levels in aged mice influence stem cell proliferation.

  2. Regulation of cellular chromatin state

    PubMed Central

    Mishra, Rakesh K; Dhawan, Jyotsna

    2010-01-01

    The identity and functionality of eukaryotic cells is defined not just by their genomic sequence which remains constant between cell types, but by their gene expression profiles governed by epigenetic mechanisms. Epigenetic controls maintain and change the chromatin state throughout development, as exemplified by the setting up of cellular memory for the regulation and maintenance of homeotic genes in proliferating progenitors during embryonic development. Higher order chromatin structure in reversibly arrested adult stem cells also involves epigenetic regulation and in this review we highlight common trends governing chromatin states, focusing on quiescence and differentiation during myogenesis. Together, these diverse developmental modules reveal the dynamic nature of chromatin regulation providing fresh insights into the role of epigenetic mechanisms in potentiating development and differentiation. PMID:20592864

  3. Nonrenal regulation of EPO synthesis.

    PubMed

    Weidemann, Alexander; Johnson, Randall S

    2009-04-01

    Erythropoietin (EPO) is a circulating glycoprotein hormone whose principal function is thought to be red blood cell production. It is a classic example of a hypoxia-inducible gene, and studies of the induction of EPO synthesis by low oxygen led to the discovery of a widespread system of hypoxia-inducible transcription factors. Tissue-specific expression of the EPO gene is tightly controlled, and in the adult organism the kidney produces around 90% of systemic EPO. Before birth, the liver is the main site of EPO production; factors contributing to the liver-to-kidney switch are still elusive, but may provide clues to the tissue-specificity of EPO gene expression. EPO has also been detected in non-erythropoietic tissues such as the brain, where it is suggested to exert local protective effects. Apart from classical ways of regulating renal EPO during hypoxia and anemia, novel pathways have been discovered that demonstrate that other organ systems in the adult might not only be important for the production of EPO but also for modulating the hypoxic EPO response. Knowledge of the molecular bases of these non-renal pathways will eventually help to develop pharmacological strategies to induce endogenous EPO production when the main source, the kidney, is significantly impaired. This review will provide an overview of the molecular aspects of EPO gene regulation by hypoxia-inducible transcription factors and of the tissue-specific regulation of EPO production in adult mammals. Insights into the biology of EPO production in genetically modified animals, with an emphasis on recent advances in the understanding of non-renal EPO regulation, will be discussed.

  4. Emotion in younger and older adults: retrospective and prospective associations with sleep and physical activity.

    PubMed

    Ready, Rebecca E; Marquez, David X; Akerstedt, Anna

    2009-01-01

    Older adults may have superior emotion regulation skills than younger adults and the authors suggest that as emotion regulation capacities increase with age, emotions may be less swayed by external events or even by internal traits. The current retrospective and prospective study further tested this hypothesis by determining if the emotions of younger adults were more reactive to two behaviors (i.e., physical activity, sleep) than for older adults. Results supported predictions. Specifically, retrospective self-reports and prospective diary data about physical activity and sleep exhibited stronger associations with emotion for younger than older persons. Implications for emotional well-being across the life span are discussed.

  5. Mosquito, adult (image)

    MedlinePlus

    This illustration shows an adult southern house mosquito. This mosquito feeds on blood and is the carrier of many diseases, such as encephalitis, West Nile, dengue fever, yellow fever, and others. ( ...

  6. Older Adults and Alcohol

    MedlinePlus

    ... Alcohol Exposure Support & Treatment Alcohol Policy Special Populations & Co-occurring Disorders Publications & Multimedia Brochures & Fact Sheets NIAAA ... are here Home » Alcohol & Your Health » Special Populations & Co-occurring Disorders » Older Adults In this Section Underage ...

  7. Speech impairment (adult)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003204.htm Speech impairment (adult) To use the sharing features on ... 2017, A.D.A.M., Inc. Duplication for commercial use must be authorized in writing by ADAM ...

  8. Motivation and Adult Education

    ERIC Educational Resources Information Center

    Veeraraghavan, J.

    1974-01-01

    The paper examines the role of adult education and the contribution it can make to the solution of current problems in developing countries, particularly the problems of economic under-development and over-population. (Author/AG)

  9. Motivation and Adult Education.

    ERIC Educational Resources Information Center

    Taylor, J. Rodney

    1982-01-01

    The author reviews theories of human motivation: Lewin's force field analysis, Skinner's operant reinforcement theory, and Maslow's hierarchy of needs. He then extracts the implications of these theories for adult learning. SK)

  10. Older Adults and Depression

    MedlinePlus

    ... find more information? Reprints Share Older Adults and Depression Download PDF Download ePub Order a free hardcopy ... depression need treatment to feel better. Types of Depression There are several types of depression. The most ...

  11. Young Adult Books.

    ERIC Educational Resources Information Center

    Epstein, Connie C.

    1987-01-01

    Considers the similarities between science fiction writing and young adult literature, and points out that several well-known authors, such as Robert Heinlein and Jane Yolen, write in both genres. (NKA)

  12. Cardiac imaging in adults

    SciTech Connect

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  13. Adult educators' core competences

    NASA Astrophysics Data System (ADS)

    Wahlgren, Bjarne

    2016-06-01

    Which competences do professional adult educators need? This research note discusses the topic from a comparative perspective, finding that adult educators' required competences are wide-ranging, heterogeneous and complex. They are subject to context in terms of national and cultural environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or "core" requirements, organising them into four thematic subcategories: (1) communicating subject knowledge; (2) taking students' prior learning into account; (3) supporting a learning environment; and (4) the adult educator's reflection on his or her own performance. At the end of his analysis of different competence profiles, the author notes that adult educators' ability to train adult learners in a way which then enables them to apply and use what they have learned in practice (thus performing knowledge transfer) still seems to be overlooked.

  14. [Orthodontic treatment for adults].

    PubMed

    Kuitert, R B

    2000-04-01

    The number of adults undergoing orthodontic treatment has increased strongly and the average age that adult patients undergo orthodontic treatment increased steadily although 3/4 is still younger than 27 years. In adults the facial skeletal pattern can only be changed in a very confined way, consequently in case of an abnormal skeletal pattern one has to choose between a combined orthodontic-surgical approach (which is the case in 18% of the patients) and a compromised orthodontic treatment, if necessary combined with other disciplines. It is still controversial whether tooth movement in adults is slower and more difficult than in adolescents. The same holds true for the risk for loss of periodontal support, for root resorption, for gnathologic problems and for relapse. As related to these variables there appears to be a large individual variation. Many adults show one or more problems in their dentition that may influence their orthodontic treatment. About 60% of the adult patients need a multidisciplinary approach. The development of implantology and of bone regeneration and bone grafting has lead to more combined treatments. The risks of such complex treatment plans are generally larger than those for more simple kinds of treatment. A very careful treatment planning and good communication between the different specialists is essential. Moreover the treatment plan with all its (dis)advantages has to be extensively discussed with the patient.

  15. 34 CFR 403.116 - How does a State allocate funds under the Postsecondary and Adult Vocational Education Programs?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Adult Vocational Education Programs? 403.116 Section 403.116 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF... Secretary Assist Under the Basic Programs? Secondary, Postsecondary, and Adult Vocational Education...

  16. 34 CFR 461.32 - What are programs for corrections education and education for other institutionalized adults?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... education for other institutionalized adults? 461.32 Section 461.32 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION STATE-ADMINISTERED BASIC GRANT PROGRAM How Does a State Make an Award to...

  17. 34 CFR 403.116 - How does a State allocate funds under the Postsecondary and Adult Vocational Education Programs?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Adult Vocational Education Programs? 403.116 Section 403.116 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF... Secretary Assist Under the Basic Programs? Secondary, Postsecondary, and Adult Vocational Education...

  18. 34 CFR 461.50 - What are a State's responsibilities regarding a State advisory council on adult education and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... advisory council on adult education and literacy? 461.50 Section 461.50 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION STATE-ADMINISTERED BASIC GRANT PROGRAM What are the...

  19. 34 CFR 461.50 - What are a State's responsibilities regarding a State advisory council on adult education and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... advisory council on adult education and literacy? 461.50 Section 461.50 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION STATE-ADMINISTERED BASIC GRANT PROGRAM What are the...

  20. 34 CFR 461.32 - What are programs for corrections education and education for other institutionalized adults?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... education for other institutionalized adults? 461.32 Section 461.32 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION STATE-ADMINISTERED BASIC GRANT PROGRAM How Does a State Make an Award to...