Science.gov

Sample records for mir-143 regulate smooth

  1. miR-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension

    PubMed Central

    Stevens, Hannah; Lu, Ruifang; Caudrillier, Axelle; McBride, Martin; McClure, John D; Grant, Jenny; Thomas, Matthew; Frid, Maria; Stenmark, Kurt; White, Kevin; Seto, Anita G.; Morrell, Nicholas W.; Bradshaw, Angela C; MacLean, Margaret R.; Baker, Andrew H.

    2015-01-01

    Rationale The pathogenesis of PAH remains unclear. The four microRNAs representing the miR-143 and miR-145 stem loops are genomically clustered. Objective To elucidate the transcriptional regulation of the miR-143/145 cluster, and the role of miR-143 in PAH. Methods and Results We identified the promoter region that regulates miR-143/145 miRNA expression in pulmonary artery smooth muscle cells (PASMCs). We mapped PAH-related signalling pathways, including estrogens receptor (ER), liver X factor/retinoic X receptor (LXR/RXR), TGF-β (Smads), and hypoxia (HRE) that regulated levels of all pri-miR stem loop transcription and resulting miRNA expression. We observed that miR-143-3p is selectively upregulated compared to miR-143-5p during PASMC migration. Modulation of miR-143 in PASMCs significantly altered cell migration and apoptosis. In addition, we found high abundance of miR-143-3p in PASMCs-derived exosomes. Using assays with pulmonary arterial endothelial cells (PAECs) we demonstrated a paracrine pro-migratory and pro-angiogenic effect of miR-143-3p enriched exosomes from PASMC. Quantitative PCR and in situ hybridisation showed elevated expression of miR-143 in calf models of PAH as well as in samples from PAH patients. Moreover, in contrast to our previous findings that had not supported a therapeutic role in vivo, we now demonstrate a protective role for miR-143 in experimental PH in vivo in miR-143−/− and antimiR143-3p-treated mice exposed to chronic hypoxia in both preventative and reversal settings. Conclusions miR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while inhibition of miR-143-3p blocked experimental PH. Taken together these findings confirm an important role for the miR-143/145 cluster in PAH pathobiology. PMID:26311719

  2. Regulation signature of miR-143 and miR-26 in porcine Salmonella infection identified by binding site enrichment analysis.

    PubMed

    Yao, Min; Gao, Weihua; Tao, Hengxun; Yang, Jun; Liu, Guoping; Huang, Tinghua

    2016-04-01

    Salmonella infects many vertebrate species, and pigs colonized with Salmonella are typically Salmonella carriers. Transcriptomic analysis of the response to Salmonella infection in whole blood has been reported for the pig. The objective of this study is to identify the important miRNAs involved in Salmonella infection using binding site enrichment analysis. We predicted porcine microRNA (miRNA) binding sites in the 3' UTR of protein-coding genes for all miRNA families. Based on those predictions, we analyzed miRNA-binding sites for mRNAs expressed in peripheral blood to investigate the functional importance of miRNAs in Salmonella infection in pig. Enrichment analysis revealed that binding sites of five miRNAs (including miR-143, -9839, -26, -2483, and -4335) were significantly over represented for the differentially expressed gene sets. Real-time PCR results indicated that selected members of this miRNA group (miR-143, -26, and -4335) were differentially expressed in whole blood after Salmonella inoculation. The luciferase reporter assay showed that ATP6V1A and IL13RA1 were targets of miR-143 and that miR-26 regulates BINP3L and ARL6IP6. The results strongly suggest that miR-143 and miR-26 play important regulatory roles in the development of Salmonella infection in pig.

  3. RBM3 regulates temperature sensitive miR-142–5p and miR-143 (thermomiRs), which target immune genes and control fever

    PubMed Central

    Wong, Justin J.-L.; Au, Amy Y.M.; Gao, Dadi; Pinello, Natalia; Kwok, Chau-To; Thoeng, Annora; Lau, Katherine A.; Gordon, Jane E.A.; Schmitz, Ulf; Feng, Yue; Nguyen, Trung V.; Middleton, Robert; Bailey, Charles G.; Holst, Jeff; Rasko, John E.J.; Ritchie, William

    2016-01-01

    Fever is commonly used to diagnose disease and is consistently associated with increased mortality in critically ill patients. However, the molecular controls of elevated body temperature are poorly understood. We discovered that the expression of RNA-binding motif protein 3 (RBM3), known to respond to cold stress and to modulate microRNA (miRNA) expression, was reduced in 30 patients with fever, and in THP-1-derived macrophages maintained at a fever-like temperature (40°C). Notably, RBM3 expression is reduced during fever whether or not infection is demonstrable. Reduced RBM3 expression resulted in increased expression of RBM3-targeted temperature-sensitive miRNAs, we termed thermomiRs. ThermomiRs such as miR-142–5p and miR-143 in turn target endogenous pyrogens including IL-6, IL6ST, TLR2, PGE2 and TNF to complete a negative feedback mechanism, which may be crucial to prevent pathological hyperthermia. Using normal PBMCs that were exogenously exposed to fever-like temperature (40°C), we further demonstrate the trend by which decreased levels of RBM3 were associated with increased levels of miR-142–5p and miR-143 and vice versa over a 24 h time course. Collectively, our results indicate the existence of a negative feedback loop that regulates fever via reduced RBM3 levels and increased expression of miR-142–5p and miR-143. PMID:26825461

  4. RBM3 regulates temperature sensitive miR-142-5p and miR-143 (thermomiRs), which target immune genes and control fever.

    PubMed

    Wong, Justin J-L; Au, Amy Y M; Gao, Dadi; Pinello, Natalia; Kwok, Chau-To; Thoeng, Annora; Lau, Katherine A; Gordon, Jane E A; Schmitz, Ulf; Feng, Yue; Nguyen, Trung V; Middleton, Robert; Bailey, Charles G; Holst, Jeff; Rasko, John E J; Ritchie, William

    2016-04-01

    Fever is commonly used to diagnose disease and is consistently associated with increased mortality in critically ill patients. However, the molecular controls of elevated body temperature are poorly understood. We discovered that the expression of RNA-binding motif protein 3 (RBM3), known to respond to cold stress and to modulate microRNA (miRNA) expression, was reduced in 30 patients with fever, and in THP-1-derived macrophages maintained at a fever-like temperature (40 °C). Notably, RBM3 expression is reduced during fever whether or not infection is demonstrable. Reduced RBM3 expression resulted in increased expression of RBM3-targeted temperature-sensitive miRNAs, we termed thermomiRs. ThermomiRs such as miR-142-5p and miR-143 in turn target endogenous pyrogens including IL-6, IL6ST, TLR2, PGE2 and TNF to complete a negative feedback mechanism, which may be crucial to prevent pathological hyperthermia. Using normal PBMCs that were exogenously exposed to fever-like temperature (40 °C), we further demonstrate the trend by which decreased levels of RBM3 were associated with increased levels of miR-142-5p and miR-143 and vice versa over a 24 h time course. Collectively, our results indicate the existence of a negative feedback loop that regulates fever via reduced RBM3 levels and increased expression of miR-142-5p and miR-143. PMID:26825461

  5. Identification of target genes and pathways associated with chicken microRNA miR-143.

    PubMed

    Trakooljul, N; Hicks, J A; Liu, H-C

    2010-08-01

    MicroRNA (miRNA) is a family of small regulatory RNAs that post-transcriptionally regulate many biological functions including growth and development. Recently, the expression of chicken miRNA miR-143 was identified by using a deep sequencing approach. In other vertebrate species, miR-143 functions as a regulator of adipocyte differentiation and as a tumour suppressor. However, little is known about the biological function(s) of miR-143 in chickens. To study the functions of chicken miR-143, DNA microarray analysis and a dual luciferase reporter assay were employed to identify genes directly targeted by miR-143 as well as other biologically relevant genes. Microarray analysis indicated that 124 genes were differentially expressed upon in vitro anti-miR-143 treatment in embryonic chick splenocytes (P-value cutoff <0.01). Many of these genes are associated with cell proliferation, apoptosis and tumourigenesis. Six of the up-regulated genes possess at least one potential miR-143 binding site in their 3'UTRs, of these the binding sites of PYCR2, PSTPIP1 and PDCD5 were validated by an in vitro luciferase reporter assay. In addition, several potential targets with important biological functions were identified by the miRanda algorithm and experimentally confirmed. These targets include KLF5, MAP3K7, TARDBP and UBE2E3, which have conserved miR-143 binding sites across multiple vertebrate species. Potential chicken specific miR-143 target sites were also validated for LPIN1, PCK2, PYCR2, METTL14, SLC2A2 and TNFSF10. Overall, the current study suggests that miR-143 is ubiquitously expressed among tissues and is likely to be involved in the regulation of cell proliferation and apoptosis.

  6. MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/-mice.

    PubMed

    Sala, Federica; Aranda, Juan F; Rotllan, Noemi; Ramírez, Cristina M; Aryal, Binod; Elia, Leonardo; Condorelli, Gianluigi; Catapano, Alberico Luigi; Fernández-Hernando, Carlos; Norata, Giuseppe Danilo

    2014-10-01

    The miR-143/145 cluster regulates VSMC specific gene expression, thus controlling differentiation, plasticity and contractile function, and promoting the VSMC phenotypic switch from a contractile/non-proliferative to a migrating/proliferative state. More recently increased miR-145 expression was observed in human carotid atherosclerotic plaques from symptomatic patients. The goal of this study was to investigate the contribution of miR-143/145 during atherogenesis by generating mice lacking miR-143/145 on an Ldlr-deficient background. Ldlr-/- and Ldlr-/--miR-143/145-/- (DKO) were fed a Western diet (WD) for 16 weeks. At the end of the treatment, the lipid profile and the atherosclerotic lesions were assessed in both groups of mice. Absence of miR-143/145 significantly reduced atherosclerotic plaque size and macrophage infiltration. Plasma total cholesterol levels were lower in DKO and FLPC analysis showed decreased cholesterol content in VLDL and LDL fractions. Interestingly miR-143/145 deficiency per se resulted in increased hepatic and vascular ABCA1 expression. We further confirmed the direct regulation of miR-145 on ABCA1 expression by qRT-PCR, Western blotting and 3'UTR-luciferase reporter assays. In summary, miR-143/145 deficiency significantly reduces atherosclerosis in mice. Therapeutic inhibition of miR-145 might be useful for treating atherosclerotic vascular disease. PMID:25008143

  7. Histone deacetylase inhibitor prevents cell growth in Burkitt's lymphoma by regulating PI3K/Akt pathways and leads to upregulation of miR-143, miR-145, and miR-101.

    PubMed

    Ferreira, Ana Carolina dos Santos; Robaina, Marcela Cristina; Rezende, Lídia Maria Magalhães de; Severino, Patricia; Klumb, Claudete Esteves

    2014-06-01

    Burkitt lymphoma (BL) is an aggressive B-cell lymphoma more common in children comprising one third of pediatric non-Hodgkin lymphoma cases. The recent discovery in BL pathogenesis highlighted the activation of PI3K pathway in cooperation with Myc in the development of BL. In this study, we demonstrated that PI3K/Akt pathway is a target to histone deacetylase inhibitor (HDACi) in BL cells. The combination of HDACi (sodium butyrate, NaB) and chemotherapy (VP-16) inhibited 51 % of the proliferation and enhanced the blockage of the cell cycle progression at G2/M with a concurrent decrease in the S phase. Microarray profiling showed a synergistic action of NaB/VP-16 combination through the differential regulation of 1,413 genes. Comparing VP-16 treatment with the NaB/VP-16 combination, 318 genes were deregulated: 250 genes were downregulated, and 68 were upregulated when compared with untreated cells. Among these genes, six (CDKN1A, CCND1, FAS, CHEK2, MDM4, and SESN2) belong to the p53-signaling pathway. The activation of this signaling pathway is usually induced by stress signals and ultimately leads to cell cycle arrest. Besides, the inhibition of the cell growth was related to reduced Akt phosphorylation, and decrease of c-Myc protein expression by about 60 % (p ≤ 0.005). Moreover, HDACi enhanced miR-101, miR-143, and miR-145 levels in BL cell line, which were inversely associated with the levels of miR-101, miR-143, and miR-145 found to be extremely downregulated in the sample of BL patients. We highlight the fact that effective combinations of HDACis with other target drugs could improve BL therapy in the future. PMID:24577510

  8. miR-143 suppresses the proliferation of NSCLC cells by inhibiting the epidermal growth factor receptor

    PubMed Central

    Zhang, Hong-Bo; Sun, Li-Chao; Ling, Lan; Cong, Lu-Hong; Lian, Rui

    2016-01-01

    MicroRNAs (miRs) regulate the proliferation and metastasis of numerous cancer cell types. It was previously reported that miR-143 levels were downregulated in non-small cell lung cancer (NSCLC) tissues and cell lines, and that the migration and invasion of NSCLC cells was inhibited upon suppression of cell proliferation and colony formation by the upregulation of miR-143. Epidermal growth factor receptor (EGFR), which is a vital factor in the promotion of cancer cell proliferation and has been investigated as a potential focus in cancer therapy, has been reported to be a possible target of miR-143. The present study aimed to investigate the role of miR-143 in NSCLC using NSCLC cell lines and primary cells from NSCLC patients. NSCLC cells were co-transfected with EGFR and miR-143, and the mRNA and protein expression of EGFR were analyzed. Furthermore, the activity of the transfected cancer cells with regard to colony formation, migration, invasion and apoptosis were evaluated. The levels of miR-143 were decreased in the NSCLC cell lines and primary cells from patients with NSCLC compared with the controls. Following transfection with miR-143, the ability of NSCLC cells to proliferate, form colonies, migrate and invade was inhibited. Similarly, knockdown of EGFR led to the suppression of NSCLC cell proliferation. The mRNA and protein expression levels of EGFR were significantly reduced following miR-143 overexpression, and the level of miR-143 was inversely correlated with that of EGFR in NSCLC cells. The results of the present study demonstrated that miR-143 was able to suppress NSCLC cell proliferation and invasion by inhibiting the effects of EGFR, suggesting that EGFR may be considered a potential target for NSCLC therapy. PMID:27602093

  9. miR-143 suppresses the proliferation of NSCLC cells by inhibiting the epidermal growth factor receptor

    PubMed Central

    Zhang, Hong-Bo; Sun, Li-Chao; Ling, Lan; Cong, Lu-Hong; Lian, Rui

    2016-01-01

    MicroRNAs (miRs) regulate the proliferation and metastasis of numerous cancer cell types. It was previously reported that miR-143 levels were downregulated in non-small cell lung cancer (NSCLC) tissues and cell lines, and that the migration and invasion of NSCLC cells was inhibited upon suppression of cell proliferation and colony formation by the upregulation of miR-143. Epidermal growth factor receptor (EGFR), which is a vital factor in the promotion of cancer cell proliferation and has been investigated as a potential focus in cancer therapy, has been reported to be a possible target of miR-143. The present study aimed to investigate the role of miR-143 in NSCLC using NSCLC cell lines and primary cells from NSCLC patients. NSCLC cells were co-transfected with EGFR and miR-143, and the mRNA and protein expression of EGFR were analyzed. Furthermore, the activity of the transfected cancer cells with regard to colony formation, migration, invasion and apoptosis were evaluated. The levels of miR-143 were decreased in the NSCLC cell lines and primary cells from patients with NSCLC compared with the controls. Following transfection with miR-143, the ability of NSCLC cells to proliferate, form colonies, migrate and invade was inhibited. Similarly, knockdown of EGFR led to the suppression of NSCLC cell proliferation. The mRNA and protein expression levels of EGFR were significantly reduced following miR-143 overexpression, and the level of miR-143 was inversely correlated with that of EGFR in NSCLC cells. The results of the present study demonstrated that miR-143 was able to suppress NSCLC cell proliferation and invasion by inhibiting the effects of EGFR, suggesting that EGFR may be considered a potential target for NSCLC therapy.

  10. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity.

    PubMed

    Zhang, Yuan; Shen, Kai; Bai, Ying; Lv, Xuan; Huang, Rongrong; Zhang, Wei; Chao, Jie; Nguyen, Lan K; Hua, Jun; Gan, Guangming; Hu, Gang; Yao, Honghong

    2016-09-01

    BBC3 (BCL2 binding component 3) is a known apoptosis inducer; however, its role in microglial survival remains poorly understood. In addition to the classical transcription factor TRP53, Mir143 is involved in BBC3 expression at the post-transcriptional level. Here, we identify unique roles of Mir143-BBC3 in mediating microglial survival via the regulation of the interplay between apoptosis and autophagy. Autophagy inhibition accelerated methamphetamine-induced apoptosis, whereas autophagy induction attenuated the decrease in microglial survival. Moreover, anti-Mir143-dependent BBC3 upregulation reversed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-Mir143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous Mir143(+/-) mice. These findings provide new insight regarding the specific contributions of Mir143-BBC3 to microglial survival in the context of drug abuse. PMID:27464000

  11. Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration.

    PubMed

    Soriano-Arroquia, Ana; McCormick, Rachel; Molloy, Andrew P; McArdle, Anne; Goljanek-Whysall, Katarzyna

    2016-04-01

    A common characteristic of aging is defective regeneration of skeletal muscle. The molecular pathways underlying age-related decline in muscle regenerative potential remain elusive. microRNAs are novel gene regulators controlling development and homeostasis and the regeneration of most tissues, including skeletal muscle. Here, we use satellite cells and primary myoblasts from mice and humans and an in vitro regeneration model, to show that disrupted expression of microRNA-143-3p and its target gene, Igfbp5, plays an important role in muscle regeneration in vitro. We identified miR-143 as a regulator of the insulin growth factor-binding protein 5 (Igfbp5) in primary myoblasts and show that the expression of miR-143 and its target gene is disrupted in satellite cells from old mice. Moreover, we show that downregulation of miR-143 during aging may act as a compensatory mechanism aiming at improving myogenesis efficiency; however, concomitant upregulation of miR-143 target gene, Igfbp5, is associated with increased cell senescence, thus affecting myogenesis. Our data demonstrate that dysregulation of miR-143-3p:Igfbp5 interactions in satellite cells with age may be responsible for age-related changes in satellite cell function. PMID:26762731

  12. miR-143 is associated with proliferation and apoptosis involving ERK5 in HeLa cells

    PubMed Central

    Zheng, Fang; Zhang, Jiahe; Luo, Siyu; Yi, Jing; Wang, Ping; Zheng, Quanqing; Wen, Yurong

    2016-01-01

    Inappropriate expression of microRNA (miR) is strongly associated with carcinogenesis. miR-143 was reported to be one of the most prominent miRs implicated in the genesis and progression of human cancer. However, its correlation with cell proliferation and apoptosis in cervical cancer remains to be fully elucidated. In the present study, it was demonstrated that miR-143 is able to suppress the proliferation of cervical cancer HeLa cells and induce cell apoptosis in a time- and dose-dependent manner. The present study also investigated the potential targets of miR-143, extracellular-signal-regulated kinase 5 (ERK5) and its downstream substrate oncoprotein c-Fos, both of which are involved in cell proliferation and apoptosis. Upon increasing the miR-143 level, the ERK5 and c-Fos protein expression was significantly decreased without the effect of ERK5 transcription. Therefore, miR-143 is able to suppress cell proliferation and induce apoptosis in HeLa cells, potentially through negative regulation of ERK5 at its post-transcriptional stage. PMID:27698893

  13. miR-143 is associated with proliferation and apoptosis involving ERK5 in HeLa cells

    PubMed Central

    Zheng, Fang; Zhang, Jiahe; Luo, Siyu; Yi, Jing; Wang, Ping; Zheng, Quanqing; Wen, Yurong

    2016-01-01

    Inappropriate expression of microRNA (miR) is strongly associated with carcinogenesis. miR-143 was reported to be one of the most prominent miRs implicated in the genesis and progression of human cancer. However, its correlation with cell proliferation and apoptosis in cervical cancer remains to be fully elucidated. In the present study, it was demonstrated that miR-143 is able to suppress the proliferation of cervical cancer HeLa cells and induce cell apoptosis in a time- and dose-dependent manner. The present study also investigated the potential targets of miR-143, extracellular-signal-regulated kinase 5 (ERK5) and its downstream substrate oncoprotein c-Fos, both of which are involved in cell proliferation and apoptosis. Upon increasing the miR-143 level, the ERK5 and c-Fos protein expression was significantly decreased without the effect of ERK5 transcription. Therefore, miR-143 is able to suppress cell proliferation and induce apoptosis in HeLa cells, potentially through negative regulation of ERK5 at its post-transcriptional stage.

  14. MiR-143/145 deficiency protects against progression of atherosclerosis in Ldlr−/− mice

    PubMed Central

    Sala, Federica; Aranda, Juan F.; Rotllan, Noemi; Ramírez, Cristina M.; Aryal, Binod; Elia, Leonardo; Condorelli, Gianluigi; Catapano, Alberico Luigi; Fernández-Hernando, Carlos; Norata, Giuseppe Danilo

    2014-01-01

    Background and Objective The miR-143/145 cluster regulates VSMC specific gene expression, thus controlling differentiation, plasticity and contractile function, and promoting the VSMC phenotypic switch from a contractile/non-proliferative to a migrating/proliferative state. More recently increased miR-145 expression was observed in human carotid atherosclerotic plaques from symptomatic patients. The goal of this study was to investigate the contribution of miR-143/145 during atherogenesis by generating mice lacking miR-143/145 on an Ldlr-deficient background. Methods and Results Ldlr−/− and Ldlr−/−-miR-143/145−/− (DKO) were fed a Western diet (WD) for 16 weeks. At the end of the treatment, the lipid profile and the atherosclerotic lesions were assessed in both groups of mice. Absence of miR-143/145 significantly reduced atherosclerotic plaque size and macrophage infiltration. Plasma total cholesterol levels were lower in DKO and FLPC analysis showed decreased cholesterol content in VLDL and LDL fractions. Interestingly miR-143/145 deficiency per se resulted in increased hepatic and vascular ABCA1 expression. Experiments with the luciferase coding sequence fused to the ABCA1 3’UTR, Western blotting, qRT-PCR and mimicMiR confirmed the direct regulation of ABCA1 expression by miR-145. Conclusions miR-143/145 deficiency significantly reduces atherosclerosis in mice. Therapeutic inhibition of miR-145 might be useful for treating atherosclerotic vascular disease. PMID:25008143

  15. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells

    SciTech Connect

    Pham, Hung; Ekaterina Rodriguez, C.; Donald, Graham W.; Hertzer, Kathleen M.; Jung, Xiaoman S.; Chang, Hui-Hua; Moro, Aune; Reber, Howard A.; Hines, O. Joe; Eibl, Guido

    2013-09-13

    Highlights: •Pancreatic cancer cells express low miR-143 levels and elevated p-MEK, p-MAPK and RREB1. •MEK inhibitors U0126 and PD98059 increase miR-143 expression. •miR-143 decreases COX-2 mRNA stability and expression and PGE{sub 2}. •miR-143 decreases p-p38MAPK, p-MEK, p-MAPK and RREB1 expression. -- Abstract: Small non-coding RNAs, microRNAs (miRNA), inhibit the translation or accelerate the degradation of message RNA (mRNA) by targeting the 3′-untranslated region (3′-UTR) in regulating growth and survival through gene suppression. Deregulated miRNA expression contributes to disease progression in several cancers types, including pancreatic cancers (PaCa). PaCa tissues and cells exhibit decreased miRNA, elevated cyclooxygenase (COX)-2 and increased prostaglandin E{sub 2} (PGE{sub 2}) resulting in increased cancer growth and metastases. Human PaCa cell lines were used to demonstrate that restoration of miRNA-143 (miR-143) regulates COX-2 and inhibits cell proliferation. miR-143 were detected at fold levels of 0.41 ± 0.06 in AsPC-1, 0.20 ± 0.05 in Capan-2 and 0.10 ± 0.02 in MIA PaCa-2. miR-143 was not detected in BxPC-3, HPAF-II and Panc-1 which correlated with elevated mitogen-activated kinase (MAPK) and MAPK kinase (MEK) activation. Treatment with 10 μM of MEK inhibitor U0126 or PD98059 increased miR-143, respectively, by 187 ± 18 and 152 ± 26-fold in BxPC-3 and 182 ± 7 and 136 ± 9-fold in HPAF-II. miR-143 transfection diminished COX-2 mRNA stability at 60 min by 2.6 ± 0.3-fold in BxPC-3 and 2.5 ± 0.2-fold in HPAF-II. COX-2 expression and cellular proliferation in BxPC-3 and HPAF-II inversely correlated with increasing miR-143. PGE{sub 2} levels decreased by 39.3 ± 5.0% in BxPC-3 and 48.0 ± 3.0% in HPAF-II transfected with miR-143. Restoration of miR-143 in PaCa cells suppressed of COX-2, PGE{sub 2}, cellular proliferation and MEK/MAPK activation, implicating this pathway in regulating miR-143 expression.

  16. Mitochondrial function and glucose metabolism in the placenta with gestational diabetes mellitus: role of miR-143

    PubMed Central

    Muralimanoharan, Sribalasubashini; Maloyan, Alina; Myatt, Leslie

    2016-01-01

    A predisposing factor for development of the hyperglycaemic state of gestational diabetes mellitus (GDM) is obesity. We previously showed that increasing maternal obesity is associated with significant reductions in placental mitochondrial respiration. MicroRNA (miR)-143 has been previously shown to regulate the metabolic switch from oxidative phosphorylation to aerobic glycolysis in cancer tissues. We hypothesized that mitochondrial respiration is reduced and aerobic glycolysis is up-regulated via changes in miR-143 expression in the placenta of women with GDM. Placental tissue was collected at term from women with A1GDM (controlled by diet), A2GDM (controlled by medication) and body mass index (BMI)-matched controls (CTRL). miR-143 expression was measured by RT-PCR. Expression of mitochondrial complexes, transcription factors peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α) and peroxisome proliferator-activated receptor γ (PPARγ), components of mammalian target of rapamycin (mTOR) signalling, glucose transporter GLUT1 and glycolytic enzymes [hexokinase-2 (HK-2), phosphofructokinase (PFK) and lactate dehydrogenase (LDH)] were measured by Western blot. Trophoblast respiration was measured by XF24 Analyser. Expression of miR-143, mitochondrial complexes, and PPARγ and PGC1α, which act downstream of miR-143, were significantly decreased in A2GDM placentae compared with A1GDM and CTRL (P<0.01). Placental hPL (human placental lactogen) levels, expression of glycolytic enzymes, GLUT1 and mTOR signalling were also significantly increased by more than 2-fold in A2GDM compared with A1GDM and CTRL (P<0.05). There was a 50% reduction in mitochondrial respiration in trophoblast cells isolated from A2GDM placentae. Overexpression of miR-143 was able to increase mitochondrial respiration, increase protein expression of mitochondrial complexes and decrease expression of glycolytic enzymes by 40% compared with A2GDM. Down-regulation of miR-143 mediates

  17. miR-143 inhibits NSCLC cell growth and metastasis by targeting Limk1.

    PubMed

    Xia, Hui; Sun, Shengjie; Wang, Bo; Wang, Tao; Liang, Chaoyang; Li, Guo; Huang, Chongbiao; Qi, Daliang; Chu, Xiangyang

    2014-01-01

    MicroRNAs (miRNAs) have essential roles in carcinogenesis and tumor progression. Here, we investigated the roles and mechanisms of miR-143 in non-small cell lung cancer (NSCLC). miR-143 was significantly decreased in NSCLC tissues and cell lines. Overexpression of miR-143 suppressed NSCLC cell proliferation, induced apoptosis, and inhibited migration and invasion in vitro. Integrated analysis identified LIM domain kinase 1 (Limk1) as a direct and functional target of miR-143. Overexpression of Limk1 attenuated the tumor suppressive effects of miR-143 in NSCLC cells. Moreover, miR-143 was inversely correlated with Limk1 expression in NSCLC tissues. Together, our results highlight the significance of miR-143 and Limk1 in the development and progression of NSCLC.

  18. Staphylococcal LTA-Induced miR-143 Inhibits Propionibacterium acnes-Mediated Inflammatory Response in Skin.

    PubMed

    Xia, Xiaoli; Li, Zhiheng; Liu, Kewei; Wu, Yelin; Jiang, Deming; Lai, Yuping

    2016-03-01

    Staphylococcus epidermidis (S. epidermidis) plays a critical role in modulating cutaneous inflammatory responses in skin. Although S. epidermidis has been shown to co-colonize with Propionibacterium acnes (P. acnes) in acne lesions, it is unclear whether S. epidermidis is involved in the regulation of P. acnes-induced inflammatory responses. In this study, we demonstrated that S. epidermidis inhibited P. acnes-induced inflammation in skin. P. acnes induced the expression of interleukin-6 and tumor necrosis factor-α via the activation of toll-like receptor (TLR) 2 in both keratinocytes and mouse ears. Staphylococcal lipoteichoic acid activated TLR2 to induce miR-143 in keratinocytes, and miR-143, in turn, directly targeted 3' UTR of TLR2 to decrease the stability of TLR2 mRNA and then decreased TLR2 protein, thus inhibiting P. acnes-induced proinflammatory cytokines. The inhibitory effect of miR-143 was further confirmed in vivo as the administration of miR-143 antagomir into mouse ears abrogated the inhibitory effect of lipoteichoic acid on P. acnes-induced inflammation in skin. Taken together, these observations demonstrate that staphylococcal lipoteichoic acid inhibits P. acnes-induced inflammation via the induction of miR-143, and suggest that local modulation of inflammatory responses by S. epidermidis at the site of acne vulgaris might be a beneficial therapeutic strategy for management of P. acnes-induced inflammation.

  19. Staphylococcal LTA-Induced miR-143 Inhibits Propionibacterium acnes-Mediated Inflammatory Response in Skin.

    PubMed

    Xia, Xiaoli; Li, Zhiheng; Liu, Kewei; Wu, Yelin; Jiang, Deming; Lai, Yuping

    2016-03-01

    Staphylococcus epidermidis (S. epidermidis) plays a critical role in modulating cutaneous inflammatory responses in skin. Although S. epidermidis has been shown to co-colonize with Propionibacterium acnes (P. acnes) in acne lesions, it is unclear whether S. epidermidis is involved in the regulation of P. acnes-induced inflammatory responses. In this study, we demonstrated that S. epidermidis inhibited P. acnes-induced inflammation in skin. P. acnes induced the expression of interleukin-6 and tumor necrosis factor-α via the activation of toll-like receptor (TLR) 2 in both keratinocytes and mouse ears. Staphylococcal lipoteichoic acid activated TLR2 to induce miR-143 in keratinocytes, and miR-143, in turn, directly targeted 3' UTR of TLR2 to decrease the stability of TLR2 mRNA and then decreased TLR2 protein, thus inhibiting P. acnes-induced proinflammatory cytokines. The inhibitory effect of miR-143 was further confirmed in vivo as the administration of miR-143 antagomir into mouse ears abrogated the inhibitory effect of lipoteichoic acid on P. acnes-induced inflammation in skin. Taken together, these observations demonstrate that staphylococcal lipoteichoic acid inhibits P. acnes-induced inflammation via the induction of miR-143, and suggest that local modulation of inflammatory responses by S. epidermidis at the site of acne vulgaris might be a beneficial therapeutic strategy for management of P. acnes-induced inflammation. PMID:26739093

  20. MiR-143 targets CTGF and exerts tumor-suppressing functions in epithelial ovarian cancer.

    PubMed

    Wang, Lufei; He, Jin; Xu, Hongmei; Xu, Longjie; Li, Na

    2016-01-01

    A series of recent studies suggested that miR-143 might involve in the tumorigenesis and metastasis of various cancer types. However, the biological function and underlying mechanisms of miR-143 in human epithelial ovarian carcinoma (EOC) remain unknown. Therefore, this study aimed to investigate the miR-143 expression and its clinical diagnosis significance in patients suffering EOC and to analyze its role and underlying molecular mechanism in EOC. Our result showed that the expression levels of miR-143 were downregulated in EOC tissues and cell lines, was associated with International Federation of Gynaecology and Obstetrics (FIGO) stage, pathological grade and lymph node metastasis (all P < 0.01) . Overexpression of miR-143 significantly inhibited EOC cell proliferation, migration, and invasion. Furthermore, computational algorithm combined with luciferase reporter assays identified connective tissue growth factor (CTGF) as the direct target of miR-143 in EOC cells. The expression level of CTGF was significantly increased in EOC tissues, was inversely correlated with miR-143 expression in clinical EOC tissues. Knockdown of CTGF mimicked the suppression effect induced by miR-143 overexpression. Restoration of CTGF expression partially reversed the suppression effect induced by miR-143 overexpression. These results suggested that miR-143 inhibited EOC cell proliferation, migration, and invasion, at least in part, via suppressing CTGF expression. PMID:27398154

  1. MiR-143 targets CTGF and exerts tumor-suppressing functions in epithelial ovarian cancer

    PubMed Central

    Wang, Lufei; He, Jin; Xu, Hongmei; Xu, Longjie; Li, Na

    2016-01-01

    A series of recent studies suggested that miR-143 might involve in the tumorigenesis and metastasis of various cancer types. However, the biological function and underlying mechanisms of miR-143 in human epithelial ovarian carcinoma (EOC) remain unknown. Therefore, this study aimed to investigate the miR-143 expression and its clinical diagnosis significance in patients suffering EOC and to analyze its role and underlying molecular mechanism in EOC. Our result showed that the expression levels of miR-143 were downregulated in EOC tissues and cell lines, was associated with International Federation of Gynaecology and Obstetrics (FIGO) stage, pathological grade and lymph node metastasis (all P < 0.01) . Overexpression of miR-143 significantly inhibited EOC cell proliferation, migration, and invasion. Furthermore, computational algorithm combined with luciferase reporter assays identified connective tissue growth factor (CTGF) as the direct target of miR-143 in EOC cells. The expression level of CTGF was significantly increased in EOC tissues, was inversely correlated with miR-143 expression in clinical EOC tissues. Knockdown of CTGF mimicked the suppression effect induced by miR-143 overexpression. Restoration of CTGF expression partially reversed the suppression effect induced by miR-143 overexpression. These results suggested that miR-143 inhibited EOC cell proliferation, migration, and invasion, at least in part, via suppressing CTGF expression. PMID:27398154

  2. Stromal expression of miR-143/145 promotes neoangiogenesis in lung cancer development

    PubMed Central

    Dimitrova, Nadya; Gocheva, Vasilena; Bhutkar, Arjun; Resnick, Rebecca; Jong, Robyn M.; Miller, Kathryn M.; Bendor, Jordan; Jacks, Tyler

    2015-01-01

    The two unrelated miRNAs, miR-143 and miR-145, co-expressed from the miR-143/145 cluster have been proposed to act as tumor suppressors in human cancer and therapeutic benefits of delivering miR-143 and miR-145 to tumors have been reported. In contrast, we found that tumor-specific deletion of miR-143/145 in an autochthonous mouse model of lung adenocarcinoma did not affect tumor development. This was consistent with the lack of endogenous miR-143/145 expression in normal and transformed lung epithelium. Surprisingly, miR-143/145 in the tumor microenvironment dramatically promoted tumor growth by stimulating the proliferation of endothelial cells. Loss of miR-143/145 in vivo led to derepression of the miR-145 target Camk1d, an inhibitory kinase, which when overexpressed prevents mitotic entry of endothelial cells. As a consequence, tumors in miR-143/145-deficient animals exhibited diminished neoangiogenesis, increased apoptosis and their expansion was limited by the tumor’s ability to co-opt the alveolar vasculature. These findings demonstrate that stromal miR-143/145 promotes tumorigenesis and cautions against the use of these miRNAs as agents in cancer therapeutics. PMID:26586766

  3. miR-143 Overexpression Impairs Growth of Human Colon Carcinoma Xenografts in Mice with Induction of Apoptosis and Inhibition of Proliferation

    PubMed Central

    Borralho, Pedro M.; Simões, André E. S.; Gomes, Sofia E.; Lima, Raquel T.; Carvalho, Tânia; Ferreira, Duarte M. S.; Vasconcelos, Maria H.; Castro, Rui E.; Rodrigues, Cecília M. P.

    2011-01-01

    Background MicroRNAs (miRNAs) are aberrantly expressed in human cancer and involved in the (dys)regulation of cell survival, proliferation, differentiation and death. Specifically, miRNA-143 (miR-143) is down-regulated in human colon cancer. In the present study, we evaluated the role of miR-143 overexpression on the growth of human colon carcinoma cells xenografted in nude mice (immunodeficient mouse strain: N: NIH(s) II-nu/nu). Methodology/Principal Findings HCT116 cells with stable miR-143 overexpression (Over-143) and control (Empty) cells were subcutaneously injected into the flanks of nude mice, and tumor growth was evaluated over time. Tumors arose ∼ 14 days after tumor cell implantation, and the experiment was ended at 40 days after implantation. miR-143 was confirmed to be significantly overexpressed in Over-143 versus Empty xenografts, by TaqMan® Real-time PCR (p<0.05). Importantly, Over-143 xenografts displayed slower tumor growth compared to Empty xenografts from 23 until 40 days in vivo (p<0.05), with final volumes of 928±338 and 2512±387 mm3, respectively. Evaluation of apoptotic proteins showed that Over-143 versus Empty xenografts displayed reduced Bcl-2 levels, and increased caspase-3 activation and PARP cleavage (p<0.05). In addition, the incidence of apoptotic tumor cells, assessed by TUNEL, was increased in Over-143 versus Empty xenografts (p<0.01). Finally, Over-143 versus Empty xenografts displayed significantly reduced NF-κB activation and ERK5 levels and activation (p<0.05), as well as reduced proliferative index, evaluated by Ki-67 immunohistochemistry (p<0.01). Conclusions Our results suggest that reduced tumor volume in Over-143 versus Empty xenografts may result from increased apoptosis and decreased proliferation induced by miR-143. This reinforces the relevance of miR-143 in colon cancer, indicating an important role in the control of in vivo tumor progression, and suggesting that miR-143 may constitute a putative novel

  4. A Functional Polymorphism in the Promoter of MiR-143/145 Is Associated With the Risk of Cervical Squamous Cell Carcinoma in Chinese Women

    PubMed Central

    Liang, Yundan; Sun, Ruifen; Li, Lijuan; Yuan, Fang; Liang, Weibo; Wang, Li; Nie, Xinwen; Chen, Peng; Zhang, Lin; Gao, Linbo

    2015-01-01

    Abstract MiR-143/145 is down-regulated in cervical cancer, which may serve as a tumor suppressor by targeting KRAS and Ras-responsive element-binding protein (RREB1). Activated KRAS leads to down-regulation of miR-143/145 transcription in a RREB1-dependent manner, establishing a miR-143/145-KRAS-RREB1 feedback loop. A polymorphism rs4705343C/T in the promoter of miR-143/145 might influence the binding of TATA-binding protein. We hypothesized that the miR-143/145 rs4705343 and KRAS rs712 may be related to the occurrence of cervical squamous cell carcinoma (CSCC). In this study, we genotyped the 2 polymorphisms in 415 patients with CSCC and 504 controls using polymerase chain reaction–restriction fragment length polymorphism. The promoter activities were measured by the Dual-Luciferase Reporter Assay System. We found that the rs4705343TC genotype was associated with an increased risk of CSCC (adjusted odds ratio [OR] = 1.37; 95% confidence interval [CI], 1.05–1.80). The significantly increased association was also observed in a dominant genetic model (adjusted OR = 1.32; 95% CI, 1.01–1.72). Combined analysis showed that individuals carrying the genotypes of rs4705343 TC/CC and rs712GT/TT had a 1.47-fold increased risk of CSCC (adjusted OR = 1.47; 95% CI, 1.01–2.15). By using multifactor dimensionality reduction software method, we identified a significant interaction between the miR-143/145 rs4705343 and KRAS rs712. Dual-Luciferase Reporter Assay showed that the luciferase activity was significantly lower in cells transfected with the rs4705343C allele than that of the rs4705343T allele. These findings indicate that miR-143/145 rs4705343 and KRAS rs712 may contribute to the etiology of CSCC in Chinese women. PMID:26252302

  5. Honokiol inhibits bladder tumor growth by suppressing EZH2/miR-143 axis.

    PubMed

    Zhang, Qing; Zhao, Wei; Ye, Changxiao; Zhuang, Junlong; Chang, Cunjie; Li, Yuying; Huang, Xiaojing; Shen, Lan; Li, Yan; Cui, Yangyan; Song, Jiannan; Shen, Bing; Eliaz, Isaac; Huang, Ruimin; Ying, Hao; Guo, Hongqian; Yan, Jun

    2015-11-10

    The oncoprotein EZH2, as a histone H3K27 methyltransferase, is frequently overexpressed in various cancer types. However, the mechanisms underlying its role in urinary bladder cancer (UBC) cells have not yet fully understood. Herein, we reported that honokiol, a biologically active biphenolic compound isolated from the Magnolia officinalis inhibited human UBC cell proliferation, survival, cancer stemness, migration, and invasion, through downregulation of EZH2 expression level, along with the reductions of MMP9, CD44, Sox2 and the induction of tumor suppressor miR-143. Either EZH2 overexpression or miR-143 inhibition could partially reverse honokiol-induced cell growth arrest and impaired clonogenicity. Importantly, it was first revealed that EZH2 could directly bind to the transcriptional regulatory region of miR-143 and repress its expression. Furthermore, honokiol treatment on T24 tumor xenografts confirmed its anticancer effects in vivo, including suppression tumor growth and tumor stemness, accompanied by the dysregulation of EZH2 and miR-143 expressions. Our data suggest a promising therapeutic option to develop drugs targeting EZH2/miR-143 axis, such as honokiol, for bladder cancer treatment.

  6. Evaluation of miR-9 and miR-143 expression in urine specimens of sulfur mustard exposed patients

    PubMed Central

    Khafaei, Mostafa; Samie, Shahram; Mowla, Seyed Javad; Alvanegh, Akbar Ghorbani; Mirzaei, Behnaz; Chavoshei, Somaye; Dorraj, Ghamar Soltan; Esmailnejad, Mostafa; Nourani, Mohammadreza

    2015-01-01

    Sulfur mustard (SM) or mustard gas is a chemical alkylating agent that causes blisters in the skin (blister gas), burns the eyes and causes lung injury. Some major cellular pathways are involved in the damage caused by mustard gas such as NF-κb signaling, TGF-β signaling, WNT pathway, inflammation, DNA repair and apoptosis. MicroRNAs are non-coding small RNAs (19–25 nucleotides) that are involved in the regulation of gene expression and are found in two forms, extracellular and intracellular. Changes in the levels of extracellular microRNAs are directly associated with many diseases, it is thus common to study the level of extracellular microRNAs as a biomarker to determine the pathophysiologic status. In this study, 32 mustard gas injured patients and 32healthy subjects participated. Comparative evaluation of miR-9 and miR-143 expression in urine samples was performed by Real Time PCR and Graph Pad software. The Mann Whitney t-test analysis of data showed that the expression level of miR-143 and miR-9 had a significant decrease in sulfur mustard individuals with the respective p-value of 0.0480 and 0.0272 compared to normal samples, with an imbalance of several above mentioned pathways. It seems that reducing the expression level of these genes has a very important role in the pathogenicity of mustard gas injured patients. PMID:27486378

  7. Evaluation of miR-9 and miR-143 expression in urine specimens of sulfur mustard exposed patients.

    PubMed

    Khafaei, Mostafa; Samie, Shahram; Mowla, Seyed Javad; Alvanegh, Akbar Ghorbani; Mirzaei, Behnaz; Chavoshei, Somaye; Dorraj, Ghamar Soltan; Esmailnejad, Mostafa; Tavallaie, Mahmood; Nourani, Mohammadreza

    2015-12-01

    Sulfur mustard (SM) or mustard gas is a chemical alkylating agent that causes blisters in the skin (blister gas), burns the eyes and causes lung injury. Some major cellular pathways are involved in the damage caused by mustard gas such as NF-κb signaling, TGF-β signaling, WNT pathway, inflammation, DNA repair and apoptosis. MicroRNAs are non-coding small RNAs (19-25 nucleotides) that are involved in the regulation of gene expression and are found in two forms, extracellular and intracellular. Changes in the levels of extracellular microRNAs are directly associated with many diseases, it is thus common to study the level of extracellular microRNAs as a biomarker to determine the pathophysiologic status. In this study, 32 mustard gas injured patients and 32healthy subjects participated. Comparative evaluation of miR-9 and miR-143 expression in urine samples was performed by Real Time PCR and Graph Pad software. The Mann Whitney t-test analysis of data showed that the expression level of miR-143 and miR-9 had a significant decrease in sulfur mustard individuals with the respective p-value of 0.0480 and 0.0272 compared to normal samples, with an imbalance of several above mentioned pathways. It seems that reducing the expression level of these genes has a very important role in the pathogenicity of mustard gas injured patients. PMID:27486378

  8. Low miR-143/miR-145 Cluster Levels Induce Activin A Overexpression in Oral Squamous Cell Carcinomas, Which Contributes to Poor Prognosis

    PubMed Central

    Bufalino, Andreia; Cervigne, Nilva K.; de Oliveira, Carine Ervolino; Fonseca, Felipe Paiva; Rodrigues, Priscila Campioni; Macedo, Carolina Carneiro Soares; Sobral, Lays Martin; Miguel, Marcia Costa; Lopes, Marcio Ajudarte; Leme, Adriana Franco Paes; Lambert, Daniel W.; Salo, Tuula A.; Kowalski, Luiz Paulo; Graner, Edgard; Coletta, Ricardo D.

    2015-01-01

    Deregulated expression of activin A is reported in several tumors, but its biological functions in oral squamous cell carcinoma (OSCC) are unknown. Here, we investigate whether activin A can play a causal role in OSCCs. Activin A expression was assessed by qPCR and immunohistochemistry in OSCC tissues. Low activin A-expressing cells were treated with recombinant activin A and assessed for apoptosis, proliferation, adhesion, migration, invasion and epithelial-mesenchymal transition (EMT). Those phenotypes were also evaluated in high activin A-expressing cells treated with follistatin (an activin A antagonist) or stably expressing shRNA targeting activin A. Transfections of microRNA mimics were performed to determine whether the overexpression of activin A is regulated by miR-143/miR-145 cluster. Activin A was overexpressed in OSCCs in comparison with normal oral mucosa, and high activin A levels were significantly associated with lymph node metastasis, tumor differentiation and poor survival. High activin A levels promoted multiple properties associated with malignant transformation, including decreased apoptosis and increased proliferation, migration, invasion and EMT. Both miR-143 and miR-145 were markedly downregulated in OSCC cell lines and in clinical specimens, and inversely correlated to activin A levels. Forced expression of miR-143 and miR-145 in OSCC cells significantly decreased the expression of activin A. Overexpression of activin A in OSCCs, which is controlled by downregulation of miR-143/miR-145 cluster, regulates apoptosis, proliferation and invasiveness, and it is clinically correlated with lymph node metastasis and poor survival. PMID:26317418

  9. The expression of miR-21 and miR-143 is deregulated by the HPV16 E7 oncoprotein and 17β-estradiol.

    PubMed

    Gómez-Gómez, Yazmín; Organista-Nava, Jorge; Ocadiz-Delgado, Rodolfo; García-Villa, Enrique; Leyva-Vazquez, Marco Antonio; Illades-Aguiar, Berenice; Lambert, Paul F; García-Carrancá, Alejandro; Gariglio, Patricio

    2016-08-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs that negatively regulate their target mRNAs at a posttranscriptional level, thereby affecting crucial processes in cancer development. However, little is known about the molecular events that control expression of miRNAs in cervical cancer (CC). HPV16 E7 oncoprotein in conjunction with estrogen are sufficient to produce high grade cervical dysplasia and invasive cervical malignancies in a mouse model. In the present study, we determined the potential role that the E7 oncoprotein and 17β-estradiol (E2) play in the deregulation of miR-21 and miR-143 expression levels by these two risk factors. We found that, while the expression of miR-21 was upregulated and the expression of miR-143 was downregulated by the HPV16 E7 oncoprotein in vivo, and in vitro and that E2 treatment is also implicated in the deregulation of these important miRNAs in vivo. Sustained upregulation of miR-21 resulted in suppression of PTEN expression, and repression of miR-143 increased the mRNA and protein levels from Bcl-2. These results suggested that HPV type 16 E7 oncoprotein and E2 play an important role in regulating miR-21 and miR-143 expression. We have observed similar results in CC patients containing HPV16 sequences, suggesting that these miRNAs could serve as diagnostic biomarkers in CC. The present study highlights the roles of miRNAs in cervical tissue and implicates these important molecules in cervical carcinogenesis. PMID:27278606

  10. A functional variant rs353292 in the flanking region of miR-143/145 contributes to the risk of colorectal cancer

    PubMed Central

    Yuan, Fang; Sun, Ruifen; Li, Lijuan; Jin, Bo; Wang, Yanyun; Liang, Yundan; Che, Guanglu; Gao, Linbo; Zhang, Lin

    2016-01-01

    MicroRNA (miR)-143 and miR-145 have been identified as molecular regulators in cell proliferation, cell growth, clone formation, apoptosis, cell cycle, invasion, and migration. We previously found that rs353292 in the flanking region of miR-143/145 showed a high frequency in patients with colorectal cancer (CRC). To identify whether the rs353292 polymorphism is a risk factor for CRC, we conducted this study with larger samples. A total of 809 patients with CRC and 1005 gender matched controls were collected. The rs353292 polymorphism was genotyped by using TaqMan allelic discrimination. Dual luciferase reporter assay was carried out to measure the transcriptional activity. We found that the rs353292 polymorphism was associated with an increased risk for developing CRC in heterozygous comparison (adjusted OR = 1.70, 95% CI, 1.32–2.20, P < 0.001), dominant genetic model (adjusted OR = 1.62, 95% CI, 1.26–2.09, P < 0.001), and allele comparison (adjusted OR = 1.46, 95% CI, 1.16–1.84, P = 0.001). The rs353292 CT/TT carriers exhibited a lower expression of miR-143 compared to the CC carriers (P = 0.04). Moreover, the pGL3-rs353292T displayed a significantly lower luciferase activity than pGL3-rs353292C (P < 0.01). These findings indicate that the rs353292 polymorphism is functional and may be a risk factor for the development of CRC. PMID:27444415

  11. A functional variant rs353292 in the flanking region of miR-143/145 contributes to the risk of colorectal cancer.

    PubMed

    Yuan, Fang; Sun, Ruifen; Li, Lijuan; Jin, Bo; Wang, Yanyun; Liang, Yundan; Che, Guanglu; Gao, Linbo; Zhang, Lin

    2016-01-01

    MicroRNA (miR)-143 and miR-145 have been identified as molecular regulators in cell proliferation, cell growth, clone formation, apoptosis, cell cycle, invasion, and migration. We previously found that rs353292 in the flanking region of miR-143/145 showed a high frequency in patients with colorectal cancer (CRC). To identify whether the rs353292 polymorphism is a risk factor for CRC, we conducted this study with larger samples. A total of 809 patients with CRC and 1005 gender matched controls were collected. The rs353292 polymorphism was genotyped by using TaqMan allelic discrimination. Dual luciferase reporter assay was carried out to measure the transcriptional activity. We found that the rs353292 polymorphism was associated with an increased risk for developing CRC in heterozygous comparison (adjusted OR = 1.70, 95% CI, 1.32-2.20, P < 0.001), dominant genetic model (adjusted OR = 1.62, 95% CI, 1.26-2.09, P < 0.001), and allele comparison (adjusted OR = 1.46, 95% CI, 1.16-1.84, P = 0.001). The rs353292 CT/TT carriers exhibited a lower expression of miR-143 compared to the CC carriers (P = 0.04). Moreover, the pGL3-rs353292T displayed a significantly lower luciferase activity than pGL3-rs353292C (P < 0.01). These findings indicate that the rs353292 polymorphism is functional and may be a risk factor for the development of CRC. PMID:27444415

  12. An rs4705342 T>C polymorphism in the promoter of miR-143/145 is associated with a decreased risk of ischemic stroke

    PubMed Central

    Wei, Ye-Sheng; Xiang, Yang; Liao, Pin-Hu; Wang, Jun-Li; Peng, You-Fan

    2016-01-01

    The expression of miR-143/miR-145 was up-regulated in ischemic stroke (IS), which may be used as biomarkers and/or therapeutic targets for IS. We aimed to investigate the association of rs4705342 and rs4705343 polymorphisms in the promoter of miR-143/145 with risk of IS. The study population comprised 445 patients with IS and 518 controls. The rs4705342 genotype was analyzed by using a TaqMan Assay and the rs4705343 genotype was determined by using a polymerase chain reaction-restriction fragment length polymorphism assay. Relative expression of miR-143/miR-145 was measured by quantitative real-time PCR. We found that the rs4705342 was associated with a decreased risk of IS (TC vs. TT: adjusted OR = 0.74, 95% CI, 0.57–0.97; CC vs. TT: adjusted OR = 0.53, 95% CI, 0.34–0.83). Haplotype analysis showed that the TC haplotype was associated with an increased risk of IS risk (OR = 1.33, 95% CI, 1.01–1.75), whereas the CT haplotype was associated with a decreased risk of IS risk (OR = 0.68, 95% CI, 0.50–0.92). Importantly, patients carrying the rs4705342TC/CC genotypes had a lower level of miR-145 (P = 0.03). We found for the first time that the rs4705342 CC was a protective factor for IS, probably by reducing the level of miR-145. PMID:27708363

  13. MiR-143 acts as a tumor suppressor by targeting N-RAS and enhances temozolomide-induced apoptosis in glioma.

    PubMed

    Wang, Lin; Shi, Zhu-Mei; Jiang, Cheng-Fei; Liu, Xue; Chen, Qiu-Dan; Qian, Xu; Li, Dong-Mei; Ge, Xin; Wang, Xie-Feng; Liu, Ling-Zhi; You, Yong-Ping; Liu, Ning; Jiang, Bing-Hua

    2014-07-30

    Therapeutic applications of microRNAs (miRNAs) in RAS-driven glioma were valuable, but their specific roles and functions have yet to be fully elucidated. Here, we firstly report that miR-143 directly targets the neuroblastoma RAS viral oncogene homolog (N-RAS) and functions as a tumor-suppressor in glioma. Overexpression of miR-143 decreased the expression of N-RAS, inhibited PI3K/AKT, MAPK/ERK signaling, and attenuated the accumulation of p65 in nucleus of glioma cells. In human clinical specimens, miR-143 was downregulated where an adverse with N-RAS expression was observed. Furthermore, overexpression of miR-143 decreased glioma cell migration, invasion, tube formation and slowed tumor growth and angiogenesis in a manner associated with N-RAS downregulation in vitro and in vivo. Finally, miR-143 also sensitizes glioma cells to temozolomide (TMZ),the first-line drug for glioma treatment. Taken together, for the first time, our results demonstrate that miR-143 plays a significant role in inactivating the RAS signaling pathway through the inhibition of N-RAS, which may provide a novel therapeutic strategy for treatment of glioma and other RAS-driven cancers.

  14. Cisplatin and Paclitaxel Alter the Expression Pattern of miR-143/145 and miR-183/96/182 Clusters in T24 Bladder Cancer Cells.

    PubMed

    Papadopoulos, Emmanuel I; Scorilas, Andreas

    2015-12-01

    Although cisplatin-based chemotherapy is considered to be the treatment of choice for metastatic bladder cancer, its efficacy and tolerability has proven to be limited. MicroRNAs are small noncoding RNAs, whose genes are frequently organized in clusters. These molecules constitute posttranscriptional regulators of mRNA expression and are claimed to be deregulated in cancer. miR-143/145 and miR-183/96/182 clusters have been extensively studied in bladder cancer cells. Herein, we tried to add up to this knowledge by assessing the expression levels of the five mature microRNAs derived from the aforementioned clusters in T24 bladder cancer cells exposed to either cisplatin or paclitaxel. For both compounds, the viability of treated T24 cells was estimated via the MTT colorimetric assay and the Trypan Blue exclusion method, while a fraction of the cells was left to recover. The expression levels of all mature microRNAs were finally quantified both in treated and in recovered cells by performing real-time PCR. According to our data, cisplatin and paclitaxel strongly decreased T24 cells' viability, showing in parallel the ability to significantly down-regulate miR-143 levels, and up-regulate the expression levels of miR-145, miR-183, miR-96, and miR-182, which, in their total, demonstrated case-specific variations after recovery period.

  15. (18)F-FDG PET/CT for Monitoring the Response of Breast Cancer to miR-143-Based Therapeutics by Targeting Tumor Glycolysis.

    PubMed

    Miao, Ying; Zhang, Ling-Fei; Guo, Rui; Liang, Sheng; Zhang, Min; Shi, Shuo; Shang-Guan, Cheng-Fang; Liu, Mo-Fang; Li, Biao

    2016-01-01

    Increased glucose utilization is a hallmark of cancer, and tumor metabolism is emerging as anticancer target for therapeutic intervention. Triple-negative breast cancers TNBC are highly glycolytic and show poor clinical outcomes. We previously identified hexokinase 2, the major glycolytic enzyme, as a target gene of miR-143 in TNBC. Here, we developed a therapeutic formulation using cholesterol-modified miR-143 agomir encapsulated in a neutral lipid-based delivery agent that blocked tumor growth and glucose metabolism in TNBC tumor-bearing mice when administered systemically. The antioncogenic effects were accompanied by a reduction in the direct target hexokinase 2 and [(18)F]-fluorodeoxyglucose ((18)F-FDG) uptake based on positron emission tomography/computed tomography. Treatment with miR-143 formulation has minimal toxic effects and mice tolerated it well. Thus, we demonstrated that miR-143 is a robust inhibitor of the Warburg effect and an effective therapeutic target for TNBC. In addition, (18)F-FDG positron emission tomography/computed tomography can be used to specifically monitor the response of TNBC to miR-143-based therapeutics by targeting tumor glycolysis. PMID:27574783

  16. 18F-FDG PET/CT for Monitoring the Response of Breast Cancer to miR-143-Based Therapeutics by Targeting Tumor Glycolysis

    PubMed Central

    Miao, Ying; Zhang, Ling-fei; Guo, Rui; Liang, Sheng; Zhang, Min; Shi, Shuo; Shang-Guan, Cheng-fang; Liu, Mo-fang; Li, Biao

    2016-01-01

    Increased glucose utilization is a hallmark of cancer, and tumor metabolism is emerging as anticancer target for therapeutic intervention. Triple-negative breast cancers TNBC are highly glycolytic and show poor clinical outcomes. We previously identified hexokinase 2, the major glycolytic enzyme, as a target gene of miR-143 in TNBC. Here, we developed a therapeutic formulation using cholesterol-modified miR-143 agomir encapsulated in a neutral lipid-based delivery agent that blocked tumor growth and glucose metabolism in TNBC tumor-bearing mice when administered systemically. The antioncogenic effects were accompanied by a reduction in the direct target hexokinase 2 and [18F]-fluorodeoxyglucose (18F-FDG) uptake based on positron emission tomography/computed tomography. Treatment with miR-143 formulation has minimal toxic effects and mice tolerated it well. Thus, we demonstrated that miR-143 is a robust inhibitor of the Warburg effect and an effective therapeutic target for TNBC. In addition, 18F-FDG positron emission tomography/computed tomography can be used to specifically monitor the response of TNBC to miR-143-based therapeutics by targeting tumor glycolysis. PMID:27574783

  17. Identification of β-Dystrobrevin as a Direct Target of miR-143: Involvement in Early Stages of Neural Differentiation

    PubMed Central

    Quaranta, Maria Teresa; Spinello, Isabella; Paolillo, Rosa; Macchia, Gianfranco; Boe, Alessandra; Ceccarini, Marina

    2016-01-01

    Duchenne Muscular Dystrophy, a genetic disorder that results in a gradual breakdown of muscle, is associated to mild to severe cognitive impairment in about one-third of dystrophic patients. The brain dysfunction is independent of the muscular pathology, occurs early, and is most likely due to defects in the assembly of the Dystrophin-associated Protein Complex (DPC) during embryogenesis. We have recently described the interaction of the DPC component β-dystrobrevin with members of complexes that regulate chromatin dynamics, and suggested that β-dystrobrevin may play a role in the initiation of neuronal differentiation. Since oxygen concentrations and miRNAs appear as well to be involved in the cellular processes related to neuronal development, we have studied how these factors act on β-dystrobrevin and investigated the possibility of their functional interplay using the NTera-2 cell line, a well-established model for studying neurogenesis. We followed the pattern of expression and regulation of β-dystrobrevin during the early stages of neuronal differentiation induced by exposure to retinoic acid (RA) under hypoxia as compared with normoxia, and found that β-dystrobrevin expression is regulated during RA-induced differentiation of NTera-2 cells. We also found that β-dystrobrevin pattern is delayed under hypoxic conditions, together with a delay in the differentiation and an increase in the proliferation rate of cells. We identified miRNA-143 as a direct regulator of β-dystrobrevin expression, demonstrated that β-dystrobrevin is expressed in the nucleus and showed that, in line with our previous in vitro results, β-dystrobrevin is a repressor of synapsin I in live cells. Altogether the newly identified regulatory pathway miR-143/β-dystrobrevin/synapsin I provides novel insights into the functions of β-dystrobrevin and opens up new perspectives for elucidating the molecular mechanisms underlying the neuronal involvement in muscular dystrophy. PMID

  18. MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein

    PubMed Central

    Liu, Yihua; Xiao, Juan; Xu, Mei; Yu, Qinping; Xia, Minhao; He, Xiaojun; Zou, Shigeng; Tan, Huize; Feng, Dingyuan

    2015-01-01

    Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway. PMID:25915937

  19. Autophagic regulation of smooth muscle cell biology

    PubMed Central

    Salabei, Joshua K.; Hill, Bradford G.

    2014-01-01

    Autophagy regulates the metabolism, survival, and function of numerous cell types, including those comprising the cardiovascular system. In the vasculature, changes in autophagy have been documented in atherosclerotic and restenotic lesions and in hypertensive vessels. The biology of vascular smooth muscle cells appears particularly sensitive to changes in the autophagic program. Recent evidence indicates that stimuli or stressors evoked during the course of vascular disease can regulate autophagic activity, resulting in modulation of VSMC phenotype and viability. In particular, certain growth factors and cytokines, oxygen tension, and pharmacological drugs have been shown to trigger autophagy in smooth muscle cells. Importantly, each of these stimuli has a redox component, typically associated with changes in the abundance of reactive oxygen, nitrogen, or lipid species. Collective findings support the hypothesis that autophagy plays a critical role in vascular remodeling by regulating smooth muscle cell phenotype transitions and by influencing the cellular response to stress. In this graphical review, we summarize current knowledge on the role of autophagy in the biology of the smooth muscle cell in (patho)physiology. PMID:25544597

  20. Interstitial Cells: Regulators of Smooth Muscle Function

    PubMed Central

    Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don

    2014-01-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007

  1. Nox regulation of smooth muscle contraction.

    PubMed

    Ritsick, Darren R; Edens, William A; Finnerty, Victoria; Lambeth, J David

    2007-07-01

    The catalytic subunit gp91phox (Nox2) of the NADPH oxidase of mammalian phagocytes is activated by microbes and immune mediators to produce large amounts of reactive oxygen species (ROS) which participate in microbial killing. Homologs of gp91phox, the Nox and Duox enzymes, were recently described in a range of organisms, including plants, vertebrates, and invertebrates such as Drosophila melanogaster. While their enzymology and cell biology are being extensively studied in many laboratories, little is known about in vivo functions of Noxes. Here, we establish and use an inducible system for RNAi to discover functions of dNox, an ortholog of human Nox5 in Drosophila. We report here that depletion of dNox in musculature causes retention of mature eggs within ovaries, leading to female sterility. In dNox-depleted ovaries and ovaries treated with a Nox inhibitor, muscular contractions induced by the neuropeptide proctolin are markedly inhibited. This functional defect results from a requirement for dNox-for the proctolin-induced calcium flux in Drosophila ovaries. Thus, these studies demonstrate a novel biological role for Nox-generated ROS in mediating agonist-induced calcium flux and smooth muscle contraction.

  2. Elevated Glucose Levels Promote Contractile and Cytoskeletal Gene Expression in Vascular Smooth Muscle via Rho/Protein Kinase C and Actin Polymerization.

    PubMed

    Hien, Tran Thi; Turczyńska, Karolina M; Dahan, Diana; Ekman, Mari; Grossi, Mario; Sjögren, Johan; Nilsson, Johan; Braun, Thomas; Boettger, Thomas; Garcia-Vaz, Eliana; Stenkula, Karin; Swärd, Karl; Gomez, Maria F; Albinsson, Sebastian

    2016-02-12

    Both type 1 and type 2 diabetes are associated with increased risk of cardiovascular disease. This is in part attributed to the effects of hyperglycemia on vascular endothelial and smooth muscle cells, but the underlying mechanisms are not fully understood. In diabetic animal models, hyperglycemia results in hypercontractility of vascular smooth muscle possibly due to increased activation of Rho-kinase. The aim of the present study was to investigate the regulation of contractile smooth muscle markers by glucose and to determine the signaling pathways that are activated by hyperglycemia in smooth muscle cells. Microarray, quantitative PCR, and Western blot analyses revealed that both mRNA and protein expression of contractile smooth muscle markers were increased in isolated smooth muscle cells cultured under high compared with low glucose conditions. This effect was also observed in hyperglycemic Akita mice and in diabetic patients. Elevated glucose activated the protein kinase C and Rho/Rho-kinase signaling pathways and stimulated actin polymerization. Glucose-induced expression of contractile smooth muscle markers in cultured cells could be partially or completely repressed by inhibitors of advanced glycation end products, L-type calcium channels, protein kinase C, Rho-kinase, actin polymerization, and myocardin-related transcription factors. Furthermore, genetic ablation of the miR-143/145 cluster prevented the effects of glucose on smooth muscle marker expression. In conclusion, these data demonstrate a possible link between hyperglycemia and vascular disease states associated with smooth muscle contractility.

  3. IP3 receptors regulate vascular smooth muscle contractility and hypertension

    PubMed Central

    Lin, Qingsong; Zhao, Guiling; Fang, Xi; Peng, Xiaohong; Tang, Huayuan; Wang, Hong; Jing, Ran; Liu, Jie; Ouyang, Kunfu

    2016-01-01

    Inositol 1, 4, 5-trisphosphate receptor–mediated (IP3R-mediated) calcium (Ca2+) release has been proposed to play an important role in regulating vascular smooth muscle cell (VSMC) contraction for decades. However, whether and how IP3R regulates blood pressure in vivo remains unclear. To address these questions, we have generated a smooth muscle–specific IP3R triple-knockout (smTKO) mouse model using a tamoxifen-inducible system. In this study, the role of IP3R-mediated Ca2+ release in adult VSMCs on aortic vascular contractility and blood pressure was assessed following tamoxifen induction. We demonstrated that deletion of IP3Rs significantly reduced aortic contractile responses to vasoconstrictors, including phenylephrine, U46619, serotonin, and endothelin 1. Deletion of IP3Rs also dramatically reduced the phosphorylation of MLC20 and MYPT1 induced by U46619. Furthermore, although the basal blood pressure of smTKO mice remained similar to that of wild-type controls, the increase in systolic blood pressure upon chronic infusion of angiotensin II was significantly attenuated in smTKO mice. Taken together, our results demonstrate an important role for IP3R-mediated Ca2+ release in VSMCs in regulating vascular contractility and hypertension. PMID:27777977

  4. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease

    PubMed Central

    Ackers-Johnson, Matthew; Talasila, Amarnath; Sage, Andrew P; Long, Xiaochun; Bot, Ilze; Morrell, Nicholas W; Bennett, Martin R; Miano, Joseph M.; Sinha, Sanjay

    2015-01-01

    Objective Atherosclerosis, the cause of 50% of deaths in westernised societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local pro-inflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. Approach and Results We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic ApoE−/− mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. Conclusions We propose myocardin as a guardian of the contractile, non-inflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease. PMID:25614278

  5. Mechanisms of BDNF regulation in asthmatic airway smooth muscle.

    PubMed

    Aravamudan, Bharathi; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-08-01

    Brain-derived neurotrophic factor (BDNF), a neurotrophin produced by airway smooth muscle (ASM), enhances inflammation effects on airway contractility, supporting the idea that locally produced growth factors influence airway diseases such as asthma. We endeavored to dissect intrinsic mechanisms regulating endogenous, as well as inflammation (TNF-α)-induced BDNF secretion in ASM of nonasthmatic vs. asthmatic humans. We focused on specific Ca(2+) regulation- and inflammation-related signaling cascades and quantified BDNF secretion. We find that TNF-α enhances BDNF release by ASM cells, via several mechanisms relevant to asthma, including transient receptor potential channels TRPC3 and TRPC6 (but not TRPC1), ERK 1/2, PI3K, PLC, and PKC cascades, Rho kinase, and transcription factors cAMP response element binding protein and nuclear factor of activated T cells. Basal BDNF expression and secretion are elevated in asthmatic ASM and increase further with TNF-α exposure, involving many of these regulatory mechanisms. We conclude that airway BDNF secretion is regulated at multiple levels, providing a basis for autocrine effects of BDNF under conditions of inflammation and disease, with potential downstream influences on contractility and remodeling. PMID:27317689

  6. Superparamagnetic iron oxide nanoparticles regulate smooth muscle cell phenotype

    PubMed Central

    Angelopoulos, Ioannis; Southern, Paul; Pankhurst, Quentin A.

    2016-01-01

    Abstract Superparamagnetic iron oxide nanoparticles (SPION) are used for an increasing range of biomedical applications, from imaging to mechanical actuation of cells and tissue. The aim of this study was to investigate the loading of smooth muscle cells (SMC) with SPION and to explore what effect this has on the phenotype of the cells. Adherent human SMC were loaded with ∼17 pg of unconjugated, negatively charged, 50 nm SPION. Clusters of the internalized SPION particles were held in discrete cytoplasmic vesicles. Internalized SPION did not cause any change in cell morphology, proliferation, metabolic activity, or staining pattern of actin and calponin, two of the muscle contractile proteins involved in force generation. However, internalized SPION inhibited the increased gene expression of actin and calponin normally observed when cells are incubated under differentiation conditions. The observed change in the control of gene expression of muscle contractile apparatus by SPION has not previously been described. This finding could offer novel approaches for regulating the phenotype of SMC and warrants further investigation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2412–2419, 2016. PMID:27176658

  7. Transcriptional regulation of cytokine function in airway smooth muscle cells

    PubMed Central

    Clarke, Deborah; Damera, Gautam; Sukkar, Maria B.; Tliba, Omar

    2009-01-01

    The immuno-modulatory properties of airway smooth muscle have become of increasing importance in our understanding of the mechanisms underlying chronic inflammation and structural remodeling of the airway wall in asthma and chronic obstructive pulmonary disease (COPD). ASM cells respond to many cytokines, growth factors and lipid mediators to produce a wide array of immuno-modulatory molecules which may in turn orchestrate and perpetuate the disease process in asthma and COPD. Despite numerous studies of the cellular effects of cytokines on cultured ASM, few have identified intracellular signaling pathways by which cytokines modulate or induce these cellular responses. In this review we provide an overview of the transcriptional mechanisms as well as intracellular signaling pathways regulating cytokine functions in ASM cells. The recent discovery of toll-like receptors in ASM cells represents a significant development in our understanding of the immuno-modulatory capabilities of ASM cells. Thus, we also review emerging evidence of the inflammatory response to toll-like receptor activation in ASM cells. PMID:19393330

  8. Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation

    PubMed Central

    Ballantyne, Margaret D.; Pinel, Karine; Dakin, Rachel; Vesey, Alex T.; Diver, Louise; Mackenzie, Ruth; Garcia, Raquel; Welsh, Paul; Sattar, Naveed; Hamilton, Graham; Joshi, Nikhil; Dweck, Marc R.; Miano, Joseph M.; McBride, Martin W.; Newby, David E.; McDonald, Robert A.

    2016-01-01

    Background— Phenotypic switching of vascular smooth muscle cells from a contractile to a synthetic state is implicated in diverse vascular pathologies, including atherogenesis, plaque stabilization, and neointimal hyperplasia. However, very little is known about the role of long noncoding RNA (lncRNA) during this process. Here, we investigated a role for lncRNAs in vascular smooth muscle cell biology and pathology. Methods and Results— Using RNA sequencing, we identified >300 lncRNAs whose expression was altered in human saphenous vein vascular smooth muscle cells following stimulation with interleukin-1α and platelet-derived growth factor. We focused on a novel lncRNA (Ensembl: RP11-94A24.1), which we termed smooth muscle–induced lncRNA enhances replication (SMILR). Following stimulation, SMILR expression was increased in both the nucleus and cytoplasm, and was detected in conditioned media. Furthermore, knockdown of SMILR markedly reduced cell proliferation. Mechanistically, we noted that expression of genes proximal to SMILR was also altered by interleukin-1α/platelet-derived growth factor treatment, and HAS2 expression was reduced by SMILR knockdown. In human samples, we observed increased expression of SMILR in unstable atherosclerotic plaques and detected increased levels in plasma from patients with high plasma C-reactive protein. Conclusions— These results identify SMILR as a driver of vascular smooth muscle cell proliferation and suggest that modulation of SMILR may be a novel therapeutic strategy to reduce vascular pathologies. PMID:27052414

  9. Vascular smooth muscle cell spreading onto fibrinogen is regulated by calpains and phospholipase C.

    PubMed

    Paulhe, F; Bogyo, A; Chap, H; Perret, B; Racaud-Sultan, C

    2001-11-01

    Fibrinogen deposition and smooth muscle cell migration are important causes of atherosclerosis and angiogenesis. Involvement of calpains in vascular smooth muscle cell adhesion onto fibrinogen was investigated. Using calpain inhibitors, we showed that activation of calpains was required for smooth muscle cell spreading. An increase of (32)P-labeled phosphatidic acid and phosphatidylinositol-3,4-bisphosphate, respective products of phospholipase C and phosphoinositide 3-kinase activities, was measured in adherent cells. Addition of the calpain inhibitor calpeptin strongly decreased phosphatidic acid and phosphatidylinositol-3,4-bisphosphate. However, smooth muscle cell spreading was prevented by the phospholipase C inhibitor U-73122, but poorly modified by phosphoinositide 3-kinase inhibitors wortmannin and LY-294002. Moreover, PLC was found to act upstream of the PI 3-kinase IA isoform. Thus, our data provide the first evidence that calpains are required for smooth muscle cell spreading. Further, phospholipase C activation is pointed as a key step of cell-spreading regulation by calpains.

  10. Regulation of smooth muscle cell phenotype by glycosaminoglycan identity.

    PubMed

    Qu, Xin; Jimenez-Vergara, Andrea Carolina; Munoz-Pinto, Dany J; Ortiz, Diana; McMahon, Rebecca E; Cristancho, Deissy; Becerra-Bayona, Silvia; Guiza-Arguello, Viviana; Grande-Allen, K Jane; Hahn, Mariah S

    2011-03-01

    The retention of lipoproteins in the arterial intima is an initial event in early atherosclerosis and occurs, in part, through interactions between negatively charged glycosaminoglycans (GAGs) and the positively charged residues of apolipoproteins. Smooth muscle cells (SMCs) which infiltrate into the lipoprotein-enriched intima have been observed to transform into lipid-laden foam cells. This phenotypic switch is associated with SMC acquisition of a macrophage-like capacity to phagocytose lipoproteins and/or of an adipocyte-like capacity to synthesize fatty acids de novo. The aim of the present work was to explore the impact of GAG identity on SMC foam cell formation using a scaffold environment intended to be mimetic of early atherosclerosis. In these studies, we focused on chondroitin sulfate C (CSC), dermatan sulfate (DS), and an intermediate molecular weight hyaluronan (HAIMW, ∼400 kDa), the levels and/or distribution of each of which are significantly altered in atherosclerosis. DS hydrogels were associated with greater SMC phagocytosis of apolipoprotein B than HAIMW gels. Similarly, only SMCs in DS constructs maintained increased expression of the adipocyte marker A-FABP relative to HAIMW gels over 35 days of culture. The increased SMC foam cell phenotype in DS hydrogels was reflected in a corresponding decrease in SMC myosin heavy chain expression in these constructs relative to HAIMW gels at day 35. In addition, this DS-associated increase in foam cell formation was mirrored in an increased SMC synthetic phenotype, as evidenced by greater levels of collagen type I and glucose 6-phosphate dehydrogenase in DS gels than in HAIMW gels. Combined, these results support the increasing body of literature that suggests a critical role for DS-bearing proteoglycans in early atherosclerosis. PMID:21094702

  11. Calcium ion-regulated thin filaments from vascular smooth muscle.

    PubMed Central

    Marston, S B; Trevett, R M; Walters, M

    1980-01-01

    Myosin and actin competition tests indicated the presence of both thin-filament and myosin-linked Ca2+-regulatory systems in pig aorta and turkey gizzard smooth-muscle actomyosin. A thin-filament preparation was obtained from pig aortas. The thin filaments had no significant ATPase activity [1.1 +/- 2.6 nmol/mg per min (mean +/- S.D.)], but they activated skeletal-muscle myosin ATPase up to 25-fold [500 nmol/mg of myosin per min (mean +/- S.D.)] in the presence of 10(-4) M free Ca2+. At 10(-8) M-Ca2+ the thin filaments activated myosin ATPase activity only one-third as much. Thin-filament activation of myosin ATPase activity increased markedly in the range 10(-6)-10(-5) M-Ca2+ and was half maximal at 2.7 x 10(-6) M (pCa2+ 5.6). The skeletal myosin-aorta-thin-filament mixture gave a biphasic ATPase-rate-versus-ATP-concentration curve at 10(-8) M-Ca2+ similar to the curve obtained with skeletal-muscle thin filaments. Thin filaments bound up to 9.5 mumol of Ca2+/g in the presence of MgATP2-. In the range 0.06-27 microM-Ca2+ binding was hyperbolic with an estimated binding constant of (0.56 +/- 0.07) x 10(6) M-1 (mean +/- S.D.) and maximum binding of 8.0 +/- 0.8 mumol/g (mean +/- S.D.). Significantly less Ca2+ bound in the absence of ATP. The thin filaments contained actin, tropomyosin and several other unidentified proteins. 6 M-Urea/polyacrylamide-gel electrophoresis at pH 8.3 showed proteins that behaved like troponin I and troponin C. This was confirmed by forming interspecific complexes between radioactive skeletal-muscle troponin I and troponin C and the aorta thin-filament proteins. The thin filaments contained at least 1.4 mumol of a troponin C-like protein/g and at least 1.1 mumol of a troponin I-like protein/g. PMID:6446898

  12. Histone deacetylase 8 regulates cortactin deacetylation and contraction in smooth muscle tissues.

    PubMed

    Li, Jia; Chen, Shu; Cleary, Rachel A; Wang, Ruping; Gannon, Olivia J; Seto, Edward; Tang, Dale D

    2014-08-01

    Histone deacetylases (HDACs) are a family of enzymes that mediate nucleosomal histone deacetylation and gene expression. Some members of the HDAC family have also been implicated in nonhistone protein deacetylation, which modulates cell-cycle control, differentiation, and cell migration. However, the role of HDACs in smooth muscle contraction is largely unknown. Here, HDAC8 was localized both in the cytoplasm and the nucleus of mouse and human smooth muscle cells. Knockdown of HDAC8 by lentivirus-encoding HDAC8 shRNA inhibited force development in response to acetylcholine. Treatment of smooth muscle tissues with HDAC8 inhibitor XXIV (OSU-HDAC-44) induced relaxation of precontracted smooth muscle tissues. In addition, cortactin is an actin-regulatory protein that undergoes deacetylation during migration of NIH 3T3 cells. In this study, acetylcholine stimulation induced cortactin deacetylation in mouse and human smooth muscle tissues, as evidenced by immunoblot analysis using antibody against acetylated lysine. Knockdown of HDAC8 by RNAi or treatment with the inhibitor attenuated cortactin deacetylation and actin polymerization without affecting myosin activation. Furthermore, expression of a charge-neutralizing cortactin mutant inhibited contraction and actin dynamics during contractile activation. These results suggest a novel mechanism for the regulation of smooth muscle contraction. In response to contractile stimulation, HDAC8 may mediate cortactin deacetylation, which subsequently promotes actin filament polymerization and smooth muscle contraction.

  13. FosB regulates stretch-induced expression of extracellular matrix proteins in smooth muscle.

    PubMed

    Ramachandran, Aruna; Gong, Edward M; Pelton, Kristine; Ranpura, Sandeep A; Mulone, Michelle; Seth, Abhishek; Gomez, Pablo; Adam, Rosalyn M

    2011-12-01

    Fibroproliferative remodeling in smooth muscle-rich hollow organs is associated with aberrant extracellular matrix (ECM) production. Although mechanical stimuli regulate ECM protein expression, the transcriptional mediators of this process remain poorly defined. Previously, we implicated AP-1 as a mediator of smooth muscle cell (SMC) mechanotransduction; however, its role in stretch-induced ECM regulation has not been explored. Herein, we identify a novel role for the AP-1 subunit FosB in stretch-induced ECM expression in SMCs. The DNA-binding activity of AP-1 increased after stretch stimulation of SMCs in vitro. In contrast to c-Jun and c-fos, which are also activated by the SMC mitogen platelet-derived growth factor, FosB was only activated by stretch. FosB silencing attenuated the expression of the profibrotic factors tenascin C (TNC) and connective tissue growth factor (CTGF), whereas forced expression of Jun~FosB stimulated TNC and CTGF promoter activity. Chromatin immunoprecipitation revealed enrichment of AP-1 at the TNC and CTGF promoters. Bladder distension in vivo enhanced nuclear localization of c-jun and FosB. Finally, the distension-induced expression of TNC and CTGF in the detrusor smooth muscle of bladders from wild-type mice was significantly attenuated in FosB-null mice. Together, these findings identify FosB as a mechanosensitive regulator of ECM production in smooth muscle. PMID:21996678

  14. Role of SM22 in the differential regulation of phasic vs. tonic smooth muscle.

    PubMed

    Rattan, Satish; Ali, Mehboob

    2015-04-01

    Preliminary proteomics studies between tonic vs. phasic smooth muscles identified three distinct protein spots identified to be those of transgelin (SM22). The latter was found to be distinctly downregulated in the internal anal sphincter (IAS) vs. rectal smooth muscle (RSM) SMC. The major focus of the present studies was to examine the differential molecular control mechanisms by SM22 in the functionality of truly tonic smooth muscle of the IAS vs. the adjoining phasic smooth muscle of the RSM. We monitored SMC lengths before and after incubation with pFLAG-SM22 (for SM22 overexpression), and SM22 small-interfering RNA. pFLAG-SM22 caused concentration-dependent and significantly greater relaxation in the IAS vs. the RSM SMCs. Conversely, temporary silencing of SM22 caused contraction in both types of the SMCs. Further studies revealed a significant reverse relationship between the levels of SM22 phosphorylation and the amount of SM22-actin binding in the IAS and RSM SMC. Data showed higher phospho-SM22 levels and decreased SM22-actin binding in the IAS, and reverse to be the case in the RSM SMCs. Experiments determining the mechanism for SM22 phosphorylation in these smooth muscles revealed that Y-27632 (Rho kinase inhibitor) but not Gö-6850 (protein kinase C inhibitor) caused concentration-dependent decreased phosphorylation of SM22. We speculate that SM22 plays an important role in the regulation of basal tone via Rho kinase-induced phosphorylation of SM22.

  15. Regulation of collagen biosynthesis in cultured bovine aortic smooth muscle cells

    SciTech Connect

    Stepp, M.A.

    1986-01-01

    Aortic smooth muscles cells have been implicated in the etiology of lesions which occur in atherosclerosis and hypertension. Both diseases involve proliferation of smooth muscle cells and accumulation of excessive amounts of extracellular matrix proteins, including collagen type I and type III produced by the smooth muscle cells. To better understand the sites of regulation of collagen biosynthesis and to correlate these with the growth rate of the cells, cultured bovine aortic smooth muscle cells were studied as a function of the number of days (3 to 14) in second passage. Cells grew rapidly up to day 6 when confluence was reached. The total incorporation of (/sup 3/H)-proline into proteins was highest at day 3 and decreased to a constant level after the cultures reached confluence. In contrast, collagen protein production was lowest before confluence and continued to increase over the entire time course of the experiments. cDNA clones for the ..cap alpha..1 and ..cap alpha..2 chains of type I and the ..cap alpha..1 chain of type III collagen were used to quantitate the steady state level of collagen mRNAs. RNA was tested in a cell-free translation system. Changes in the translational activity of collagen mRNAs parallelled the observed increases in collagen protein production. Thus, at later time points, collagen mRNAs are more active in directing synthesis of preprocollagens, even though less collagen mRNA is present. The conclusion is that the site of regulation of the expression of collagen genes is a function of the growth rate of cultured smooth muscle cells.

  16. The role of K+ conductances in regulating membrane excitability in human gastric corpus smooth muscle

    PubMed Central

    Lee, Ji Yeon; Ko, Eun-ju; Ahn, Ki Duck; Kim, Sung

    2015-01-01

    Changes in resting membrane potential (RMP) regulate membrane excitability. K+ conductance(s) are one of the main factors in regulating RMP. The functional role of K+ conductances has not been studied the in human gastric corpus smooth muscles (HGCS). To examine the role of K+ channels in regulation of RMP in HGCS we employed microelectrode recordings, patch-clamp, and molecular approaches. Tetraethylammonium and charybdotoxin did not affect the RMP, suggesting that BK channels are not involved in regulating RMP. Apamin, a selective small conductance Ca2+-activated K+ channel (SK) blocker, did not show a significant effect on the membrane excitability. 4-Aminopyridine, a Kv channel blocker, caused depolarization and increased the duration of slow wave potentials. 4-Aminopyridine also inhibited a delayed rectifying K+ current in isolated smooth muscle cells. End-product RT-PCR gel detected Kv1.2 and Kv1.5 in human gastric corpus muscles. Glibenclamide, an ATP-sensitive K+ channel (KATP) blocker, did not induce depolarization, but nicorandil, a KATP opener, hyperpolarized HGCS, suggesting that KATP are expressed but not basally activated. Kir6.2 transcript, a pore-forming subunit of KATP was expressed in HGCS. A low concentration of Ba2+, a Kir blocker, induced strong depolarization. Interestingly, Ba2+-sensitive currents were minimally expressed in isolated smooth muscle cells under whole-cell patch configuration. KCNJ2 (Kir2.1) transcript was expressed in HGCS. Unique K+ conductances regulate the RMP in HGCS. Delayed and inwardly rectifying K+ channels are the main candidates in regulating membrane excitability in HGCS. With the development of cell dispersion techniques of interstitial cells, the cell-specific functional significance will require further analysis. PMID:25591864

  17. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding

    PubMed Central

    Qiu, Juhui; Zheng, Yiming; Hu, Jianjun; Liao, Donghua; Gregersen, Hans; Deng, Xiaoyan; Fan, Yubo; Wang, Guixue

    2014-01-01

    Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering. PMID:24152813

  18. Opiorphin is a master regulator of the hypoxic response in corporal smooth muscle cells

    PubMed Central

    Fu, Shibo; Tar, Moses Tarndie; Melman, Arnold; Davies, Kelvin Paul

    2014-01-01

    Men with sickle cell disease (SCD) risk developing priapism. Recognizing that SCD is a disease of hypoxia, we investigated the effect of hypoxia on gene expression in corporal smooth muscle (CSM) cells. Rat CSM cells in vitro were treated with CoCl2 or low oxygen tension to mimic hypoxia. Hypoxic conditions increased expression of genes previously associated with priapism in animal models. Variable coding sequence a1 (Vcsa1; the rat opiorphin homologue, sialorphin), hypoxia-inducible factor 1a (Hif-1a), and A2B adenosine receptor (a2br) were increased by 10-, 4-, and 6-fold, respectively, by treatment with CoCl2, whereas low oxygen tension caused increases in expression of 3-, 4-, and 1.5-fold, respectively. Sialorphin-treated CSM cells increased expression of Hif-1a and a2br by 4-fold, and vcsa1-siRNA treatment reduced expression by ∼50%. Using a Hif-1a inhibitor, we demonstrated up-regulation of a2br by sialorphin is dependent on Hif-1a, and knockdown of vcsa1 expression with vcsa1-siRNA demonstrated that hypoxic-up-regulation of Hif-1a is dependent on vcsa1. In CSM from a SCD mouse, there was 15-fold up-regulation of opiorphin at a life stage prior to priapism. We conclude that in CSM, opiorphins are master regulators of the hypoxic response. Opiorphin up-regulation in response to SCD-associated hypoxia activates CSM “relaxant” pathways; excessive activation of these pathways results in priapism.—Fu, S., Tar, M. T., Melman, A., Davies, K. P. Opiorphin is a master regulator of the hypoxic response in corporal smooth muscle cells. PMID:24803544

  19. Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation

    PubMed Central

    Lutter, Sophie; Xie, Sherry; Tatin, Florence

    2012-01-01

    Active lymph transport relies on smooth muscle cell (SMC) contractions around collecting lymphatic vessels, yet regulation of lymphatic vessel wall assembly and lymphatic pumping are poorly understood. Here, we identify Reelin, an extracellular matrix glycoprotein previously implicated in central nervous system development, as an important regulator of lymphatic vascular development. Reelin-deficient mice showed abnormal collecting lymphatic vessels, characterized by a reduced number of SMCs, abnormal expression of lymphatic capillary marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and impaired function. Furthermore, we show that SMC recruitment to lymphatic vessels stimulated release and proteolytic processing of endothelium-derived Reelin. Lymphatic endothelial cells in turn responded to Reelin by up-regulating monocyte chemotactic protein 1 (MCP1) expression, which suggests an autocrine mechanism for Reelin-mediated control of endothelial factor expression upstream of SMC recruitment. These results uncover a mechanism by which Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels—smooth muscle and endothelial cells—and highlight a hitherto unrecognized and important function for SMCs in lymphatic vessel morphogenesis and function. PMID:22665518

  20. Signaling and regulation of G protein-coupled receptors in airway smooth muscle

    PubMed Central

    Billington, Charlotte K; Penn, Raymond B

    2003-01-01

    Signaling through G protein-coupled receptors (GPCRs) mediates numerous airway smooth muscle (ASM) functions including contraction, growth, and "synthetic" functions that orchestrate airway inflammation and promote remodeling of airway architecture. In this review we provide a comprehensive overview of the GPCRs that have been identified in ASM cells, and discuss the extent to which signaling via these GPCRs has been characterized and linked to distinct ASM functions. In addition, we examine the role of GPCR signaling and its regulation in asthma and asthma treatment, and suggest an integrative model whereby an imbalance of GPCR-derived signals in ASM cells contributes to the asthmatic state. PMID:12648290

  1. Se Enhances MLCK Activation by Regulating Selenoprotein T (SelT) in the Gastric Smooth Muscle of Rats.

    PubMed

    Li, Jia-Ping; Zhou, Jing-Xuan; Wang, Qi; Gu, Gao-Qin; Yang, Shi-Jin; Li, Cheng-Ye; Qiu, Chang-Wei; Deng, Gan-Zhen; Guo, Meng-Yao

    2016-09-01

    Selenium (Se), a nutritionally essential trace element, is associated with health and disease. Selenoprotein T (SelT) was identified as a redoxin protein with a selenocystein, localizing in the endoplasmic reticulum. The myosin light chain kinase (MLCK) and myosin light chain (MLC) play key roles in the contraction process of smooth muscle. The present study was to detect the effect and mechanism of SelT on the contraction process of gastric smooth muscle. The WT rats were fed with different Se concentration diets, and Se and Ca(2+) concentrations were detected in the gastric smooth muscle. Western blot and qPCR were performed to determine SelT, CaM, MLCK, and MLC expressions. MLCK activity was measured by identifying the rates of [γ-32P]ATP incorporated into the MLC. The results showed Se and Ca(2+) concentrations were enhanced with Se intake in gastric smooth muscle tissues. With increasing Se, SelT, CaM, MLCK and MLC expressions increased, and MLCK and MLC activation improved in gastric smooth muscle tissue. The SelT RNA interference experiments showed that Ca(2+) release, MLCK activation, and MLC phosphorylation were regulated by SelT. Se affected the gastric smooth muscle constriction by regulating Ca(2+) release, MLCK activation, and MLC phosphorylation through SelT. Se plays a major role in regulating the contraction processes of gastric smooth muscle with the SelT.

  2. Perlecan up-regulation of FRNK suppresses smooth muscle cell proliferation via inhibition of FAK signaling.

    PubMed

    Walker, Heather A; Whitelock, John M; Garl, Pamela J; Nemenoff, Raphael A; Stenmark, Kurt R; Weiser-Evans, Mary C M

    2003-05-01

    We previously reported that fully assembled basement membranes are nonpermissive to smooth muscle cell (SMC) replication and that perlecan (PN), a basement membrane heparan sulfate proteoglycan, is a dominant effector of this response. We report here that SMC adhesion to basement membranes, and perlecan in particular, up-regulate the expression of focal adhesion kinase-related nonkinase (FRNK), a SMC-specific endogenous inhibitor of FAK, which subsequently suppresses FAK-mediated, ERK1/2-dependent growth signals. Up-regulation of FRNK by perlecan is actively and continuously regulated. Relative to the matrix proteins studied, the effects are unique to perlecan, because plating of SMCs on several other basement membrane proteins is associated with low levels of FRNK and corresponding high levels of FAK and ERK1/2 phosphorylation and SMC growth. Perlecan supports SMC adhesion, although there is reduced cell spreading compared with fibronectin (FN), laminin (LN), or collagen type IV (IV). Despite the reduction in cell spreading, we report that perlecan-induced up-regulation of FRNK is independent of cell shape changes. Growth inhibition by perlecan was rescued by overexpressing a constitutively active FAK construct, but overexpressing kinase-inactivated mutant FAK or FRNK attenuated fibronectin-stimulated growth. These data indicate that perlecan functions as an endogenously produced inhibitor of SMC growth at least in part through the active regulation of FRNK expression. FRNK, in turn, may control SMC growth by downregulating FAK-dependent signaling events.

  3. C/EBP transcription factors regulate NADPH oxidase in human aortic smooth muscle cells.

    PubMed

    Manea, Simona-Adriana; Todirita, Andra; Raicu, Monica; Manea, Adrian

    2014-07-01

    In atherosclerosis, oxidative stress-induced vascular smooth muscle cells (SMCs) dysfunction is partially mediated by up-regulated NADPH oxidase (Nox); the mechanisms of enzyme regulation are not entirely defined. CCAAT/enhancer-binding proteins (C/EBP) regulate cellular proliferation and differentiation, and the expression of many inflammatory and immune genes. We aimed at elucidating the role of C/EBP in the regulation of Nox in SMCs exposed to pro-inflammatory conditions. Human aortic SMCs were treated with interferon-γ (IFN-γ) for up to 24 hrs. Lucigenin-enhanced chemiluminescence, real-time PCR, Western blot, promoter-luciferase reporter analysis and chromatin immunoprecipitation assays were employed to investigate Nox regulation. IFN-γ dose-dependently induced Nox activity and expression, nuclear translocation and up-regulation of C/EBPα, C/EBPβ and C/EBPδ protein expression levels. Silencing of C/EBPα, C/EBPβ or C/EBPδ reduced significantly but differentially the IFN-γ-induced up-regulation of Nox activity, gene and protein expression. In silico analysis indicated the existence of typical C/EBP sites within Nox1, Nox4 and Nox5 promoters. Transient overexpression of C/EBPα, C/EBPβ or C/EBPδ enhanced the luciferase level directed by the promoters of the Nox subtypes. Chromatin immunoprecipitation demonstrated the physical interaction of C/EBPα, C/EBPβ and C/EBPδ proteins with the Nox1/4/5 promoters. C/EBP transcription factors are important regulators of Nox enzymes in IFN-γ-exposed SMCs. Activation of C/EBP may induce excessive Nox-derived reactive oxygen species formation, further contributing to SMCs dysfunction and atherosclerotic plaque development. Pharmacological targeting of C/EBP-related signalling pathways may be used to counteract the adverse effects of oxidative stress. PMID:24797079

  4. Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells.

    PubMed

    McClain, D A; Paterson, A J; Roos, M D; Wei, X; Kudlow, J E

    1992-09-01

    We have investigated the regulation of the expression of two growth factors found in vascular smooth muscle, transforming growth factor alpha (TGF alpha) and basic fibroblast growth factor (bFGF). Cells cultured in medium containing 30 mM glucose exhibited a 2-fold increase in TGF alpha mRNA and a 3-fold increase in bFGF mRNA compared with cells grown in normal (5.5 mM) glucose. Glucosamine was more potent than glucose, leading to a 6-fold increase in TGF alpha mRNA. TGF alpha protein levels were also increased by glucosamine treatment, and the predominant species present was the membrane-bound precursor form of TGF alpha. To examine further the regulation of growth factors by sugars, cultured rat aortic smooth muscle cells were transfected with a plasmid construct consisting of a 1.2-kilobase-pair fragment of the TGF alpha promoter linked to a luciferase reporter gene. Increasing the concentration of glucose in the culture medium from 5.5 mM to 30 mM led to a rapid, 1.7-fold increase in the activity of the TGF alpha promoter. Glucosamine was much more potent than glucose in this stimulation, with 2 mM glucosamine causing a 12-fold increase in TGF alpha promoter activity. Insulin had no effect on luciferase activity in either the presence or the absence of added sugars. The glucose response element of the TGF alpha gene maps to a 130-base-pair segment that includes three potential binding sites for the transcription factor Sp1. We conclude that high glucose concentrations such as are reached in diabetes mellitus can stimulate the transcription of the genes for growth factors in vascular smooth muscle cells. This signaling pathway apparently involves the metabolism of glucose to glucosamine. This effect could be representative of nutritional regulation of a family of genes and could contribute to the toxicity of hyperglycemia and the vascular complications of diabetes. PMID:1518840

  5. Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells.

    PubMed Central

    McClain, D A; Paterson, A J; Roos, M D; Wei, X; Kudlow, J E

    1992-01-01

    We have investigated the regulation of the expression of two growth factors found in vascular smooth muscle, transforming growth factor alpha (TGF alpha) and basic fibroblast growth factor (bFGF). Cells cultured in medium containing 30 mM glucose exhibited a 2-fold increase in TGF alpha mRNA and a 3-fold increase in bFGF mRNA compared with cells grown in normal (5.5 mM) glucose. Glucosamine was more potent than glucose, leading to a 6-fold increase in TGF alpha mRNA. TGF alpha protein levels were also increased by glucosamine treatment, and the predominant species present was the membrane-bound precursor form of TGF alpha. To examine further the regulation of growth factors by sugars, cultured rat aortic smooth muscle cells were transfected with a plasmid construct consisting of a 1.2-kilobase-pair fragment of the TGF alpha promoter linked to a luciferase reporter gene. Increasing the concentration of glucose in the culture medium from 5.5 mM to 30 mM led to a rapid, 1.7-fold increase in the activity of the TGF alpha promoter. Glucosamine was much more potent than glucose in this stimulation, with 2 mM glucosamine causing a 12-fold increase in TGF alpha promoter activity. Insulin had no effect on luciferase activity in either the presence or the absence of added sugars. The glucose response element of the TGF alpha gene maps to a 130-base-pair segment that includes three potential binding sites for the transcription factor Sp1. We conclude that high glucose concentrations such as are reached in diabetes mellitus can stimulate the transcription of the genes for growth factors in vascular smooth muscle cells. This signaling pathway apparently involves the metabolism of glucose to glucosamine. This effect could be representative of nutritional regulation of a family of genes and could contribute to the toxicity of hyperglycemia and the vascular complications of diabetes. Images PMID:1518840

  6. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction

    PubMed Central

    Koopmans, Tim; Kumawat, Kuldeep; Halayko, Andrew J; Gosens, Reinoud

    2016-01-01

    A defining feature of asthma is airway hyperresponsiveness (AHR), which underlies the exaggerated bronchoconstriction response of asthmatics. The role of the airway smooth muscle (ASM) in AHR has garnered increasing interest over the years, but how asthmatic ASM differs from healthy ASM is still an active topic of debate. WNT-5A is increasingly expressed in asthmatic ASM and has been linked with Th2-high asthma. Due to its link with calcium and cytoskeletal remodelling, we propose that WNT-5A may modulate ASM contractility. We demonstrated that WNT-5A can increase maximum isometric tension in bovine tracheal smooth muscle strips. In addition, we show that WNT-5A is preferentially expressed in contractile human airway myocytes compared to proliferative cells, suggesting an active role in maintaining contractility. Furthermore, WNT-5A treatment drives actin polymerisation, but has no effect on intracellular calcium flux. Next, we demonstrated that WNT-5A directly regulates TGF-β1-induced expression of α-SMA via ROCK-mediated actin polymerization. These findings suggest that WNT-5A modulates fundamental mechanisms that affect ASM contraction and thus may be of relevance for AHR in asthma. PMID:27468699

  7. A role of stretch-activated potassium currents in the regulation of uterine smooth muscle contraction.

    PubMed

    Buxton, Iain L O; Heyman, Nathanael; Wu, Yi-ying; Barnett, Scott; Ulrich, Craig

    2011-06-01

    Rates of premature birth are alarming and threaten societies and healthcare systems worldwide. Premature labor results in premature birth in over 50% of cases. Preterm birth accounts for three-quarters of infant morbidity and mortality. Children that survive birth before 34 weeks gestation often face life-long disability. Current treatments for preterm labor are wanting. No treatment has been found to be generally effective and none are systematically evaluated beyond 48 h. New approaches to the treatment of preterm labor are desperately needed. Recent studies from our laboratory suggest that the uterine muscle is a unique compartment with regulation of uterine relaxation unlike that of other smooth muscles. Here we discuss recent evidence that the mechanically activated 2-pore potassium channel, TREK-1, may contribute to contraction-relaxation signaling in uterine smooth muscle and that TREK-1 gene variants associated with human labor and preterm labor may lead to a better understanding of preterm labor and its possible prevention. PMID:21642947

  8. Nitric oxide from vascular smooth muscle cells: regulation of platelet reactivity and smooth muscle cell guanylate cyclase.

    PubMed Central

    Mollace, V.; Salvemini, D.; Anggard, E.; Vane, J.

    1991-01-01

    1. Incubation of smooth muscle cells (SMC) from bovine aorta for 3 min with human washed platelets treated with indomethacin (10 microM) promoted a cell number-related inhibition of platelet aggregation induced by thrombin (40 mu ml-1). This inhibition was not attributable to products of the cyclo-oxygenase pathway for the SMC were also treated with indomethacin (10 microM). 2. The inhibitory activity of the SMC on platelet aggregation was enhanced by incubating the SMC with E. coli lipopolysaccharide (LPS, 0.5 micrograms ml-1) for a period of 9 to 24 h. This effect was attenuated when cycloheximide (10 micrograms ml-1) was incubated together with LPS. Cycloheximide did not prevent the inhibitory activity of the non-treated cells. 3. The inhibition of platelet aggregation obtained with non-treated or LPS-treated SMC was potentiated by superoxide dismutase (SOD, 60 u ml-1) and ablated by oxyhaemoglobin (OxyHb, 10 microM). Preincubation of the SMC with NG-monomethyl-L-arginine (L-NMMA, 30-300 microM) for 60 min prevented their antiaggregatory activity. This effect was reversed by concurrent incubation with L-arginine (L-Arg, 100 microM) but not with D-arginine (D-Arg, 100 microM). 4. Exposure of the non-treated SMC (5 x 10(5) cells) to stirring (1000 r.p.m., 37 degrees C) for 10 min led to a significant increase in their levels of guanosine 3':5'-cyclic monophosphate (cyclic GMP) but not adenosine 3':5'-cyclic monophosphate (cyclic AMP). L-NMMA (300 microM) attenuated the increase in cyclic GMP induced by stirring but did not affect the basal levels of cyclic GMP in the cells.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1724627

  9. MicroRNA-143-3p inhibits hyperplastic scar formation by targeting connective tissue growth factor CTGF/CCN2 via the Akt/mTOR pathway.

    PubMed

    Mu, Shengzhi; Kang, Bei; Zeng, Weihui; Sun, Yaowen; Yang, Fan

    2016-05-01

    Post-traumatic hypertrophic scar (HS) is a fibrotic disease with excessive extracellular matrix (ECM) production, which is a response to tissue injury by fibroblasts. Although emerging evidence has indicated that miRNA contributes to hypertrophic scarring, the role of miRNA in HS formation remains unclear. In this study, we found that miR-143-3p was markedly downregulated in HS tissues and fibroblasts (HSFs) using qRT-PCR. The expression of connective tissue growth factor (CTGF/CCN2) was upregulated both in HS tissues and HSFs, which is proposed to play a key role in ECM deposition in HS. The protein expression of collagen I (Col I), collagen III (Col III), and α-smooth muscle actin (α-SMA) was obviously inhibited after treatment with miR-143-3p in HSFs. The CCK-8 assay showed that miR-143-3p transfection reduced the proliferation ability of HSFs, and flow cytometry showed that either early or late apoptosis of HSFs was upregulated by miR-143-3p. In addition, the activity of caspase 3 and caspase 9 was increased after miR-143-3p transfection. On the contrary, the miR-143-3p inhibitor was demonstrated to increase cell proliferation and inhibit apoptosis of HSFs. Moreover, miR-143-3p targeted the 3'-UTR of CTGF and caused a significant decrease of CTGF. Western blot demonstrated that Akt/mTOR phosphorylation and the expression of CTGF, Col I, Col III, and α-SMA were inhibited by miR-143-3p, but increased by CTGF overexpression. In conclusion, we found that miR-143-3p inhibits hypertrophic scarring by regulating the proliferation and apoptosis of human HSFs, inhibiting ECM production-associated protein expression by targeting CTGF, and restraining the Akt/mTOR pathway.

  10. MicroRNA-143-3p inhibits hyperplastic scar formation by targeting connective tissue growth factor CTGF/CCN2 via the Akt/mTOR pathway.

    PubMed

    Mu, Shengzhi; Kang, Bei; Zeng, Weihui; Sun, Yaowen; Yang, Fan

    2016-05-01

    Post-traumatic hypertrophic scar (HS) is a fibrotic disease with excessive extracellular matrix (ECM) production, which is a response to tissue injury by fibroblasts. Although emerging evidence has indicated that miRNA contributes to hypertrophic scarring, the role of miRNA in HS formation remains unclear. In this study, we found that miR-143-3p was markedly downregulated in HS tissues and fibroblasts (HSFs) using qRT-PCR. The expression of connective tissue growth factor (CTGF/CCN2) was upregulated both in HS tissues and HSFs, which is proposed to play a key role in ECM deposition in HS. The protein expression of collagen I (Col I), collagen III (Col III), and α-smooth muscle actin (α-SMA) was obviously inhibited after treatment with miR-143-3p in HSFs. The CCK-8 assay showed that miR-143-3p transfection reduced the proliferation ability of HSFs, and flow cytometry showed that either early or late apoptosis of HSFs was upregulated by miR-143-3p. In addition, the activity of caspase 3 and caspase 9 was increased after miR-143-3p transfection. On the contrary, the miR-143-3p inhibitor was demonstrated to increase cell proliferation and inhibit apoptosis of HSFs. Moreover, miR-143-3p targeted the 3'-UTR of CTGF and caused a significant decrease of CTGF. Western blot demonstrated that Akt/mTOR phosphorylation and the expression of CTGF, Col I, Col III, and α-SMA were inhibited by miR-143-3p, but increased by CTGF overexpression. In conclusion, we found that miR-143-3p inhibits hypertrophic scarring by regulating the proliferation and apoptosis of human HSFs, inhibiting ECM production-associated protein expression by targeting CTGF, and restraining the Akt/mTOR pathway. PMID:27075467

  11. Smoothing out transitions: how pedagogy influences medical students' achievement of self-regulated learning goals.

    PubMed

    White, Casey B

    2007-08-01

    Medical school is an academic and developmental path toward a professional life demanding self-regulation and self-education. Thus, many medical schools include in their goals for medical student education their graduates' ability to self-assess and self-regulate their education upon graduation and throughout their professional lives. This study explores links between medical students' use of self-regulated learning as it relates to motivation, autonomy, and control, and how these influenced their experiences in medical school. Subjects were medical students in two distinct medical school environments, "Problem-based learning" and "Traditional." PBL students described a rough transition into medical school, but once they felt comfortable with the autonomy and control PBL gave them, they embraced the independence and responsibility. They found themselves motivated to learning for learning's sake, and able to channel their motivation into effective transitions from the classrooms into the clerkships. Traditional students had a rougher transition from the classrooms to the clerkships. In the first two years they relied on faculty to direct and control learning, and they channeled their motivation toward achieving the highest grade. In the clerkships, they found faculty expected them to be more independent and self-directed than they felt prepared to be, and they struggled to assume responsibility for their learning. Self-regulated learning can help smooth out the transitions through medical school by preparing first and second year students for expectations in the third and fourth years, which can then maximize learning in the clinical milieu, and prepare medical students for a lifetime of learning.

  12. Airway smooth muscle inflammation is regulated by microRNA-145 in COPD.

    PubMed

    O'Leary, Lawrence; Sevinç, Kenan; Papazoglou, Ilektra M; Tildy, Bernadett; Detillieux, Karen; Halayko, Andrew J; Chung, Kian Fan; Perry, Mark M

    2016-05-01

    Chronic obstructive pulmonary disease (COPD) is a common, highly debilitating disease of the airways, primarily caused by smoking. Chronic inflammation and structural remodelling are key pathological features of this disease, in part caused by the aberrant function of airway smooth muscle (ASM) cells under the regulation of transforming growth factor (TGF)-β. miRNA are short, noncoding gene transcripts involved in the negative regulation of specific target genes, through their interactions with mRNA. Previous studies have proposed that mRNA-145 (miR-145) may interact with SMAD3, an important downstream signalling molecule of the TGF-β pathway. TGF-β was used to stimulate primary human ASM cells isolated from healthy nonsmokers, healthy smokers and COPD patients. This resulted in a TGF-β-dependent increase in CXCL8 and IL-6 release, most notably in the cells from COPD patients. TGF-β stimulation increased SMAD3 expression, only in cells from COPD patients, with a concurrent increased miR-145 expression. Regulation of miR-145 was found to be negatively controlled by pathways involving the MAP kinases, MEK-1/2 and p38 MAPK. Subsequent, overexpression of miR-145 (using synthetic mimics) in ASM cells from patients with COPD suppressed IL-6 and CXCL8 release, to levels comparable to the nonsmoker controls. Therefore, this study suggests that miR-145 negatively regulates pro-inflammatory cytokine release from ASM cells in COPD by targeting SMAD3. PMID:27060571

  13. Molecular Pathways Regulating Macrovascular Pathology and Vascular Smooth Muscle Cells Phenotype in Type 2 Diabetes

    PubMed Central

    Casella, Sara; Bielli, Alessandra; Mauriello, Alessandro; Orlandi, Augusto

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is a disease reaching a pandemic proportion in developed countries and a major risk factor for almost all cardiovascular diseases and their adverse clinical manifestations. T2DM leads to several macrovascular and microvascular alterations that influence the progression of cardiovascular diseases. Vascular smooth muscle cells (VSMCs) are fundamental players in macrovascular alterations of T2DM patients. VSMCs display phenotypic and functional alterations that reflect an altered intracellular biomolecular scenario of great vessels of T2DM patients. Hyperglycemia itself and through intraparietal accumulation of advanced glycation-end products (AGEs) activate different pathways, in particular nuclear factor-κB and MAPKs, while insulin and insulin growth-factor receptors (IGFR) are implicated in the activation of Akt and extracellular-signal-regulated kinases (ERK) 1/2. Nuclear factor-κB is also responsible of increased susceptibility of VSMCs to pro-apoptotic stimuli. Down-regulation of insulin growth-factor 1 receptors (IGFR-1R) activity in diabetic vessels also influences negatively miR-133a levels, so increasing apoptotic susceptibility of VSMCs. Alterations of those bimolecular pathways and related genes associate to the prevalence of a synthetic phenotype of VSMCs induces extracellular matrix alterations of great vessels. A better knowledge of those biomolecular pathways and related genes in VSMCs will help to understand the mechanisms leading to macrovascular alterations in T2DM patients and to suggest new targeted therapies. PMID:26473856

  14. Regulation of ERK5 by insulin and angiotensin-II in vascular smooth muscle cells

    SciTech Connect

    Sharma, Girish; Goalstone, Marc Lee; E-mail: Marc.Goalstone@uchsc.edu

    2007-03-23

    ERK5 is involved in proliferation of vascular smooth muscle cells (VSMC). The proliferative actions of insulin and angiotensin-II (A-II) in VSMC are mediated in part by ERK1/2. We hypothesized that insulin and A-II also regulate ERK5 activity in VSMC. Acute treatment (<60 min) with insulin or A-II increased phosphorylation of ERK1/2 at 15 min and ERK5 at 5 min. Chronic treatment ({<=}8 h) with insulin increased ERK1/2 phosphorylation by 4 h and ERK5 by 8 h. A-II-stimulated phosphorylation of ERK1/2 by 8 h and ERK5 by 4 h. The EC{sub 50} for insulin treatment effecting ERK1/2 and ERK5 phosphorylation was 1.5 and 0.1 nM, whereas the EC{sub 50} for A-II was 2 nM, each. Insulin plus A-II induced an additive effect only on ERK5 phosphorylation. Inhibition of insulin- and A-II-stimulated phosphorylation of ERK5 and ERK1/2 by PD98059 and Wortmannin exhibited differential and time-dependent effects. Taken together, these data indicate that insulin and A-II regulate the activity of ERK5, but different from that seen for ERK1/2.

  15. Down-regulation of endothelin binding sites in rat vascular smooth muscle cells

    SciTech Connect

    Roubert, P.; Gillard, V.; Plas, P.; Chabrier, P.E.; Braquet, P. )

    1990-04-01

    In cultured rat aortic smooth muscle cells, ({sup 125}I)endothelin (ET-1) bound to an apparent single class of high affinity recognition sites with a dissociation constant of 1.84 +/- 0.29 nmol/L and a maximum binding of 62 +/- 10.5 fmol/10(6) cells. The binding was not affected by calcium antagonists or vasoactive substances, including angiotensin II, arginine vasopressin, atrial natriuretic factor and bradykinin. Exposure of the cells to ET-1 (0.01 nmol/L to 10 nmol/L) resulted in an apparent dose-dependent reduction of the number of endothelin binding sites with no significant modification of its binding affinity. The time course of the down-regulation of ET-1 binding sites showed that this effect was present after 30 min incubation and persisted after 18 h. This indicates that down-regulation of ET-1 binding sites can modulate the activity of ET-1 and suggests a rapid internalization of ET-1 in vascular cells.

  16. A friction regulation hybrid driving method for backward motion restraint of the smooth impact drive mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Chen, Dong; Cheng, Tinghai; He, Pu; Lu, Xiaohui; Zhao, Hongwei

    2016-08-01

    The smooth impact drive mechanism (SIDM) is a type of piezoelectric actuator that has been developed for several decades. As a kind of driving method for the SIDM, the traditional sawtooth (TS) wave is always employed. The kinetic friction force during the rapid contraction stage usually results in the generation of a backward motion. A friction regulation hybrid (FRH) driving method realized by a composite waveform for the backward motion restraint of the SIDM is proposed in this paper. The composite waveform is composed of a sawtooth driving (SD) wave and a sinusoidal friction regulation (SFR) wave which is applied to the rapid deformation stage of the SD wave. A prototype of the SIDM was fabricated and its output performance under the excitation of the FRH driving method and the TS wave driving method was tested. The results indicate that the backward motion can be restrained obviously using the FRH driving method. Compared with the driving effect of the TS wave, the backward rates of the prototype in forward and reverse motions are decreased by 83% and 85%, respectively.

  17. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness.

    PubMed

    Anaparti, Vidyanand; Pascoe, Christopher D; Jha, Aruni; Mahood, Thomas H; Ilarraza, Ramses; Unruh, Helmut; Moqbel, Redwan; Halayko, Andrew J

    2016-08-01

    We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity.

  18. Regulation of contraction and thick filament assembly-disassembly in glycerinated vertebrate smooth muscle cells

    PubMed Central

    1983-01-01

    Isolated smooth muscle cells and cell fragments prepared by glycerination and subsequent homogenization will contract to one-third their normal length, provided Ca++ and ATP are present. Ca++- independent contraction was obtained by preincubation in Ca++ and ATP gamma S, or by addition of trypsin-treated myosin light chain kinase (MLCK) that no longer requires Ca++ for activation. In the absence of Ca++, myosin was rapidly lost from the cells upon addition of ATP. Glycerol-urea-PAGE gels showed that none of this myosin is phosphorylated. The extent of myosin loss was ATP- and pH-dependent and occurred under conditions similar to those previously reported for the in vitro disassembly of gizzard myosin filaments. Ca++-dependent contraction was restored to extracted cells by addition of gizzard myosin under rigor conditions (i.e., no ATP), followed by addition of MLCK, calmodulin, Ca++, and ATP. Function could also be restored by adding all these proteins in relaxing conditions (i.e., in EGTA and ATP) and then initiating contraction by Ca++ addition. Incubation with skeletal myosin will restore contraction, but this was not Ca++- dependent unless the cells were first incubated in troponin and tropomyosin. These results strengthen the idea that contraction in glycerinated cells and presumably also in intact cells is primarily thick filament regulated via MLCK, that the myosin filaments are unstable in relaxing conditions, and that the spatial information required for cell length change is present in the thin filament- intermediate filament organization. PMID:6688623

  19. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation

    PubMed Central

    Xie, Zhongwen; Su, Wen; Liu, Shu; Zhao, Guogang; Esser, Karyn; Schroder, Elizabeth A.; Lefta, Mellani; Stauss, Harald M.; Guo, Zhenheng; Gong, Ming Cui

    2014-01-01

    As the central pacemaker, the suprachiasmatic nucleus (SCN) has long been considered the primary regulator of blood pressure circadian rhythm; however, this dogma has been challenged by the discovery that each of the clock genes present in the SCN is also expressed and functions in peripheral tissues. The involvement and contribution of these peripheral clock genes in the circadian rhythm of blood pressure remains uncertain. Here, we demonstrate that selective deletion of the circadian clock transcriptional activator aryl hydrocarbon receptor nuclear translocator–like (Bmal1) from smooth muscle, but not from cardiomyocytes, compromised blood pressure circadian rhythm and decreased blood pressure without affecting SCN-controlled locomotor activity in murine models. In mesenteric arteries, BMAL1 bound to the promoter of and activated the transcription of Rho-kinase 2 (Rock2), and Bmal1 deletion abolished the time-of-day variations in response to agonist-induced vasoconstriction, myosin phosphorylation, and ROCK2 activation. Together, these data indicate that peripheral inputs contribute to the daily control of vasoconstriction and blood pressure and suggest that clock gene expression outside of the SCN should be further evaluated to elucidate pathogenic mechanisms of diseases involving blood pressure circadian rhythm disruption. PMID:25485682

  20. Glucose regulation of thrombospondin and its role in the modulation of smooth muscle cell proliferation.

    PubMed

    Maile, Laura A; Allen, Lee B; Hanzaker, Christopher F; Gollahon, Katherine A; Dunbar, Paul; Clemmons, David R

    2010-01-01

    Smooth muscle cells (SMC) maintained in high glucose are more responsive to IGF-I than those in normal glucose. There is significantly more thrombospondin-1 (TSP-1) in extracellular matrix surrounding SMC grown in 25 mM glucose. In this study we investigated 1) the mechanism by which glucose regulates TSP-1 levels and 2) the mechanism by which TS-1 enhances IGF-I signaling. The addition of TSP-1 to primary SMC was sufficient to enhance IGF-I responsiveness in normal glucose. Reducing TSP-1 protein levels inhibited IGF-I signaling in SMC maintained in high glucose. We determined that TSP-1 protected IAP/CD47 from cleavage and thereby facilitated its association with SHP substrate-1 (SHPS-1). We have shown previously that the hyperglycemia induced protection of IAP from cleavage is an important component of the ability of hyperglycemia to enhance IGF-I signaling. Furthermore we determined that TSP-1 also enhanced phosphorylation of the beta3 subunit of the alphaVbeta3 integrin, another molecular event that we have shown are critical for SMC response to IGF-I in high glucose. Our studies also revealed that the difference in the amount of TSP-1 in the two different glucose conditions was due, at least in part, to a difference in the cellular uptake and degradation of TSP-1.

  1. Aging impairs smooth muscle-mediated regulation of aortic stiffness: a defect in shock absorption function?

    PubMed Central

    Gao, Yuan Z.; Saphirstein, Robert J.; Yamin, Rina; Suki, Bela

    2014-01-01

    Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators. Using biomechanical methods designed for minimal perturbation of cellular function, we directly quantified changes with aging in aortic material stiffness. An alpha adrenoceptor agonist, in the presence of NG-nitro-l-arginine methyl ester (l-NAME) to remove interference of endothelial nitric oxide, increases stiffness by 90–200% from baseline in both young and old mice. Interestingly, increases are robustly suppressed by the Src kinase inhibitor PP2 in young but not old mice. Phosphotyrosine screening revealed, with aging, a biochemical signature of markedly impaired agonist-induced FA remodeling previously associated with Src signaling. Protein expression measurement confirmed a decrease in Src expression with aging. Thus we report here an additive model for the in vitro biomechanical components of the mouse aortic wall in which 1) VSMCs are a surprisingly large component of aortic stiffness at physiological lengths and 2) regulation of the VSMC component through FA signaling and hence plasticity is impaired with aging, diminishing the aorta's normal shock absorption function in response to stressors. PMID:25128168

  2. Vascular smooth muscle, endothelial regulation and effects of aspirin in hypertension.

    PubMed

    Rahmani, M A

    1998-04-27

    Dysfunction of vascular smooth muscle (VSM) is at the center of occlusive disorders of the cardiovascular system such as hypertension, atherosclerosis, coronary artery disease and hypoxia. In addition to circulating biogenic amines and various neurotransmitters originating from the central nervous system and endocrine system, various autocoids of arachidonic acid metabolism in the blood as well as in the endothelium play an important regulatory role in the maintenance of the tone and the contractile function of VSM. A monolayer of endothelial cells lining the heart and large blood vessels is responsible for producing and releasing both endocrine and paracrine substances such as endothelins, nitric oxide, prostaglandins and prostacyclins. Aspirin, (acetylsalicylic acid/ASA) an ancient remedy against fever and pain, is emerging as an effective drug not only against occlusive disorders but also against various cancers and the AIDs virus. During pregnancy induced hypertension (PIH) and in occlusive disorders, aspirin provides relief through inhibition of cyclooxygenase, an enzyme required for the metabolism of arachidonic acid to produce prostaglandins and prostacyclins in platelets and in endothelial cells. Because of its unique molecular constitution, synergistic ability and solubility in the lipidic environment, various mechanisms of aspirin's actions are being currently investigated. In this review, the effect of aspirin on the regulation of VSM in the presence and absence of endothelium are discussed.

  3. Prostanoid receptors EP2, EP4, and FP are regulated by estradiol in bovine oviductal smooth muscle.

    PubMed

    Huang, Na; Liu, Bo; Dong, Zhiheng; Mao, Wei; Zhang, Nan; Li, Changyou; Cao, Jinshan

    2015-09-01

    Gamete and embryo transport is an important function of the oviduct. This transport involves both smooth muscle contraction and epithelial cell secretions, the former of which is mediated by prostaglandins (PGs) and their receptors. Our aim was to study the regulation of prostaglandin E2 and prostaglandin F2α receptors (EP2, EP4, and FP receptor) by estradiol in bovine oviduct smooth muscle. EP2, EP4, and FP receptor mRNA and protein expression was investigated using real-time RT-PCR and Western blot analyses, respectively. To evaluate the contraction or relaxation of cultured bovine oviductal smooth muscle tissue, peristalsis was used to assess contractile activity. EP2, EP4, and FP receptor mRNA and protein expression was increased in oviductal smooth muscle tissue after treatment with different concentrations of estradiol for various durations. The expression of all receptors peaked at an estradiol concentration of 10(-11)mol/L after 8h of treatment, whereas no increase in expression was observed after fulvestrant (a selective antagonist of E2 receptor) treatment, indicating that E2 interacts with specific E2 nuclear receptors to regulate EP2, EP4, and FP receptor expression. Although PGF2α and PGE2 induced both contraction and relaxation, no significant differences were found in contractility between the estradiol-treated and control groups, with both groups of cultured smooth muscle strips showing similar vitality. In conclusion, estradiol increases EP2, EP4, and FP receptor mRNA and protein expression in bovine oviductal smooth muscle when added for different periods of time and at different concentrations. Additionally, E2 is transported intracellularly and interacts with specific E2 nuclear receptors to regulate their expression.

  4. TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function

    PubMed Central

    Lee, Guan-Lin; Wu, Jing-Yiing; Tsai, Chien-Sung; Lin, Chih-Yuan; Tsai, Yi-Ting; Lin, Chin-Sheng; Wang, Yi-Fu; Yet, Shaw-Fang; Hsu, Yu-Juei; Kuo, Cheng-Chin

    2016-01-01

    Migration of vascular smooth muscle cells (VSMCs) into the intima is considered to be a vital event in the pathophysiology of atherosclerosis. Despite substantial evidence supporting the pathogenic role of Toll-like receptor 4 (TLR4) in the progression of atherogenesis, its function in the regulation of VSMC migration remains unclear. The goal of the present study was to elucidate the mechanism by which TLR4 regulates VSMC migration. Inhibitor experiments revealed that TLR4-induced IL-6 secretion and VSMC migration were mediated via the concerted actions of MyD88 and TRIF on the activation of p38 MAPK and ERK1/2 signaling. Neutralizing anti-IL-6 antibodies abrogated TLR4-driven VSMC migration and F-actin polymerization. Blockade of p38 MAPK or ERK1/2 signaling cascade inhibited TLR4 agonist-mediated activation of cAMP response element binding protein (CREB). Moreover, siRNA-mediated suppression of CREB production repressed TLR4-induced IL-6 production and VSMC migration. Rac-1 inhibitor suppressed TLR4-driven VSMC migration but not IL-6 production. Importantly, the serum level of IL-6 and TLR4 endogenous ligand HMGB1 was significantly higher in patients with coronary artery diseases (CAD) than in healthy subjects. Serum HMGB1 level was positively correlated with serum IL-6 level in CAD patients. The expression of both HMGB1 and IL-6 was clearly detected in the atherosclerotic tissue of the CAD patients. Additionally, there was a positive association between p-CREB and HMGB1 in mouse atherosclerotic tissue. Based on our findings, we concluded that, upon ligand binding, TLR4 activates p38 MAPK and ERK1/2 signaling through MyD88 and TRIF in VSMCs. These signaling pathways subsequently coordinate an additive augmentation of CREB-driven IL-6 production, which in turn triggers Rac-1-mediated actin cytoskeleton to promote VSMC migration. PMID:27563891

  5. BKCa channel regulates calcium oscillations induced by alpha-2-macroglobulin in human myometrial smooth muscle cells.

    PubMed

    Wakle-Prabagaran, Monali; Lorca, Ramón A; Ma, Xiaofeng; Stamnes, Susan J; Amazu, Chinwendu; Hsiao, Jordy J; Karch, Celeste M; Hyrc, Krzysztof L; Wright, Michael E; England, Sarah K

    2016-04-19

    The large-conductance, voltage-gated, calcium (Ca(2+))-activated potassium channel (BKCa) plays an important role in regulating Ca(2+)signaling and is implicated in the maintenance of uterine quiescence during pregnancy. We used immunopurification and mass spectrometry to identify proteins that interact with BKCain myometrium samples from term pregnant (≥37 wk gestation) women. From this screen, we identified alpha-2-macroglobulin (α2M). We then used immunoprecipitation followed by immunoblot and the proximity ligation assay to confirm the interaction between BKCaand both α2M and its receptor, low-density lipoprotein receptor-related protein 1 (LRP1), in cultured primary human myometrial smooth muscle cells (hMSMCs). Single-channel electrophysiological recordings in the cell-attached configuration demonstrated that activated α2M (α2M*) increased the open probability of BKCain an oscillatory pattern in hMSMCs. Furthermore, α2M* caused intracellular levels of Ca(2+)to oscillate in oxytocin-primed hMSMCs. The initiation of oscillations required an interaction between α2M* and LRP1. By using Ca(2+)-free medium and inhibitors of various Ca(2+)signaling pathways, we demonstrated that the oscillations required entry of extracellular Ca(2+)through store-operated Ca(2+)channels. Finally, we found that the specific BKCablocker paxilline inhibited the oscillations, whereas the channel opener NS11021 increased the rate of these oscillations. These data demonstrate that α2M* and LRP1 modulate the BKCachannel in human myometrium and that BKCaand its immunomodulatory interacting partners regulate Ca(2+)dynamics in hMSMCs during pregnancy. PMID:27044074

  6. Gax regulates human vascular smooth muscle cell phenotypic modulation and vascular remodeling

    PubMed Central

    Zheng, Hui; Hu, Zhenlei; Zhai, Xinming; Wang, Yongyi; Liu, Jidong; Wang, Weijun; Xue, Song

    2016-01-01

    Abnormal phenotypic modulation of vascular smooth muscle cells (VSMCs) is a hallmark of cardiovascular diseases such as atherosclerosis, hypertension and restenosis after angioplasty. Transcription factors have emerged as critical regulators for VSMCs function, and recently we verified inhibiting transcription factor Gax was important for controlling VSMCs proliferation and migration. This study aimed to determine its role in phenotypic modulation of VSMCs. Western blot revealed that overexpression of Gax increased expression of VSMCs differentiation marker genes such as calponin and SM-MHC 11. Then, Gax overexpression potently suppressed proliferation and migration of VSMCs with or without platelet-derived growth factor-induced-BB (PDGF-BB) stimuli whereas Gax silencing inhibited these processes. Furthermore, cDNA array analysis indicated that Rap1A gene was the downstream target of Gax in human VSMCs. And overexpression of Gax significantly inhibited expression of Rap1A in VSMCs with or without PDGF-BB stimuli. Moreover, overexpression of Rap1A decreased expression of VSMCs differentiation marker genes and increased proliferation and migration of VSMCs with or without PDGF-BB stimuli. Finally, Gax overexpression significantly inhibited the neointimal formation in carotid artery injury of mouse models, specifically through maintaining VSMCs contractile phenotype by decreasing Rap1A expression. In conclusion, these results indicated that Gax was a regulator of human VSMCs phenotypic modulation by targeting Rap1A gene, which suggested that targeting Gax or its downstream targets in human VSMCs may provide an attractive approach for the prevention and treatment of cardiovascular diseases. PMID:27508012

  7. Essential Role of TGF-β/Smad Pathway on Statin Dependent Vascular Smooth Muscle Cell Regulation

    PubMed Central

    Rodríguez-Vita, Juan; Sánchez-Galán, Eva; Santamaría, Beatriz; Sánchez-López, Elsa; Rodrigues-Díez, Raquel; Blanco-Colio, Luís Miguel; Egido, Jesús; Ortiz, Alberto; Ruiz-Ortega, Marta

    2008-01-01

    Background The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins) exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-β (TGF-β) in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-β/Smad pathway in atherosclerosis and vascular cells. Methodology In cultured vascular smooth muscle cells (VSMCs) statins enhanced Smad pathway activation caused by TGF-β. In addition, statins upregulated TGF-β receptor type II (TRII), and increased TGF-β synthesis and TGF-β/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-β induced apoptosis and increased TGF-β-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-β/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. Conclusions Statins enhance TGF-β/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-β/Smad pathway is essential for statins-dependent actions in VSMCs. PMID:19088845

  8. TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function.

    PubMed

    Lee, Guan-Lin; Wu, Jing-Yiing; Tsai, Chien-Sung; Lin, Chih-Yuan; Tsai, Yi-Ting; Lin, Chin-Sheng; Wang, Yi-Fu; Yet, Shaw-Fang; Hsu, Yu-Juei; Kuo, Cheng-Chin

    2016-01-01

    Migration of vascular smooth muscle cells (VSMCs) into the intima is considered to be a vital event in the pathophysiology of atherosclerosis. Despite substantial evidence supporting the pathogenic role of Toll-like receptor 4 (TLR4) in the progression of atherogenesis, its function in the regulation of VSMC migration remains unclear. The goal of the present study was to elucidate the mechanism by which TLR4 regulates VSMC migration. Inhibitor experiments revealed that TLR4-induced IL-6 secretion and VSMC migration were mediated via the concerted actions of MyD88 and TRIF on the activation of p38 MAPK and ERK1/2 signaling. Neutralizing anti-IL-6 antibodies abrogated TLR4-driven VSMC migration and F-actin polymerization. Blockade of p38 MAPK or ERK1/2 signaling cascade inhibited TLR4 agonist-mediated activation of cAMP response element binding protein (CREB). Moreover, siRNA-mediated suppression of CREB production repressed TLR4-induced IL-6 production and VSMC migration. Rac-1 inhibitor suppressed TLR4-driven VSMC migration but not IL-6 production. Importantly, the serum level of IL-6 and TLR4 endogenous ligand HMGB1 was significantly higher in patients with coronary artery diseases (CAD) than in healthy subjects. Serum HMGB1 level was positively correlated with serum IL-6 level in CAD patients. The expression of both HMGB1 and IL-6 was clearly detected in the atherosclerotic tissue of the CAD patients. Additionally, there was a positive association between p-CREB and HMGB1 in mouse atherosclerotic tissue. Based on our findings, we concluded that, upon ligand binding, TLR4 activates p38 MAPK and ERK1/2 signaling through MyD88 and TRIF in VSMCs. These signaling pathways subsequently coordinate an additive augmentation of CREB-driven IL-6 production, which in turn triggers Rac-1-mediated actin cytoskeleton to promote VSMC migration. PMID:27563891

  9. CD36 Differently Regulates Macrophage Responses to Smooth and Rough Lipopolysaccharide

    PubMed Central

    Biedroń, Rafał; Peruń, Angelika; Józefowski, Szczepan

    2016-01-01

    Lipopolysaccharide (LPS) is the major pathogen-associated molecular pattern of Gram-negative bacterial infections, and includes smooth (S-LPS) and rough (R-LPS) chemotypes. Upon activation by LPS through CD14, TLR4/MD-2 heterodimers sequentially induce two waves of intracellular signaling for macrophage activation: the MyD88-dependent pathway from the plasma membrane and, following internalization, the TRIF-dependent pathway from endosomes. We sought to better define the role of scavenger receptors CD36 and CD204/SR-A as accessory LPS receptors that can contribute to pro-inflammatory and microbicidal activation of macrophages. We have found that CD36 differently regulates activation of mouse macrophages by S-LPS versus R-LPS. The ability of CD36 to substitute for CD14 in loading R-LPS, but not S-LPS onto TLR4/MD-2 allows CD14-independent macrophage responses to R-LPS. Conversely, S-LPS, but not R-LPS effectively stimulates CD14 binding to CD36, which favors S-LPS transfer from CD14 onto TLR4/MD-2 under conditions of low CD14 occupancy with S-LPS in serum-free medium. In contrast, in the presence of serum, CD36 reduces S-LPS binding to TLR4/MD-2 and the subsequent MyD88-dependent signaling, by mediating internalization of S-LPS/CD14 complexes. Additionally, CD36 positively regulates activation of TRIF-dependent signaling by both S-LPS and R-LPS, by promoting TLR4/MD-2 endocytosis. In contrast, we have found that SR-A does not function as a S-LPS receptor. Thus, by co-operating with CD14 in both R- and S-LPS loading onto TLR4/MD-2, CD36 can enhance the sensitivity of tissue-resident macrophages in detecting infections by Gram-negative bacteria. However, in later phases, following influx of serum to the infection site, the CD36-mediated negative regulation of MyD88-dependent branch of S-LPS-induced TLR4 signaling might constitute a mechanism to prevent an excessive inflammatory response, while preserving the adjuvant effect of S-LPS for adaptive immunity. PMID

  10. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis

    PubMed Central

    Connelly, Jessica J.; Cherepanova, Olga A.; Doss, Jennifer F.; Karaoli, Themistoclis; Lillard, Travis S.; Markunas, Christina A.; Nelson, Sarah; Wang, Tianyuan; Ellis, Peter D.; Langford, Cordelia F.; Haynes, Carol; Seo, David M.; Goldschmidt-Clermont, Pascal J.; Shah, Svati H.; Kraus, William E.; Hauser, Elizabeth R.; Gregory, Simon G.

    2013-01-01

    Smooth muscle cell (SMC) proliferation is a hallmark of vascular injury and disease. Global hypomethylation occurs during SMC proliferation in culture and in vivo during neointimal formation. Regardless of the programmed or stochastic nature of hypomethylation, identifying these changes is important in understanding vascular disease, as maintenance of a cells' epigenetic profile is essential for maintaining cellular phenotype. Global hypomethylation of proliferating aortic SMCs and concomitant decrease of DNMT1 expression were identified in culture during passage. An epigenome screen identified regions of the genome that were hypomethylated during proliferation and a region containing Collagen, type XV, alpha 1 (COL15A1) was selected by ‘genomic convergence’ for characterization. COL15A1 transcript and protein levels increased with passage-dependent decreases in DNA methylation and the transcript was sensitive to treatment with 5-Aza-2′-deoxycytidine, suggesting DNA methylation-mediated gene expression. Phenotypically, knockdown of COL15A1 increased SMC migration and decreased proliferation and Col15a1 expression was induced in an atherosclerotic lesion and localized to the atherosclerotic cap. A sequence variant in COL15A1 that is significantly associated with atherosclerosis (rs4142986, P = 0.017, OR = 1.434) was methylated and methylation of the risk allele correlated with decreased gene expression and increased atherosclerosis in human aorta. In summary, hypomethylation of COL15A1 occurs during SMC proliferation and the consequent increased gene expression may impact SMC phenotype and atherosclerosis formation. Hypomethylated genes, such as COL15A1, provide evidence for concomitant epigenetic regulation and genetic susceptibility, and define a class of causal targets that sit at the intersection of genetic and epigenetic predisposition in the etiology of complex disease. PMID:23912340

  11. Hsc70 regulates cell surface ASIC2 expression and vascular smooth muscle cell migration.

    PubMed

    Grifoni, Samira C; McKey, Susan E; Drummond, Heather A

    2008-05-01

    Recent studies suggest members of the degenerin (DEG)/epithelial Na(+) channel (ENaC)/acid-sensing ion channel (ASIC) protein family play an important role in vascular smooth muscle cell (VSMC) migration. In a previous investigation, we found suppression of a certain DEG/ENaC/ASIC member, ASIC2, increased VSMC chemotactic migration, raising the possibility that ASIC2 may play an inhibitory role. Because ASIC2 protein was retained in the cytoplasm, we reasoned increasing surface expression of ASIC2 might unmask the inhibitory role of ASIC2 in VSMC migration so we could test the hypothesis that ASIC2 inhibits VSMC migration. Therefore, we used the chemical chaperone glycerol to enhance ASIC2 expression. Glycerol 1) increased cytoplasm ASIC2 expression, 2) permitted detection of ASIC2 at the cell surface, and 3) inhibited platelet-derived growth factor (PDGF)-bb mediated VSMC migration. Furthermore, ASIC2 silencing completely abolished the inhibitory effect of glycerol on migration, suggesting upregulation of ASIC2 is responsible for glycerol-induced inhibition of VSMC migration. Because other investigators have shown that glycerol regulates ENaC/ASIC via interactions with a certain heat shock protein, heat shock protein 70 (Hsc70), we wanted to determine the importance of Hsc70 on ASIC2 expression in VSMCs. We found that Hsc70 silencing increases ASIC2 cell surface expression and inhibits VSMC migration, which is abolished by cosilencing ASIC2. These data demonstrate that Hsc70 inhibits ASIC2 expression, and, when the inhibitory effect of Hsc70 is removed, ASIC2 expression increases, resulting in reduced VSMC migration. Because VSMC migration contributes to vasculogenesis and remodeling following vascular injury, our findings raise the possibility that ASIC2-Hsc70 interactions may play a role in these processes. PMID:18310515

  12. Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications

    PubMed Central

    Burg, E D; Remillard, C V; Yuan, J X-J

    2008-01-01

    Maintaining the proper balance between cell apoptosis and proliferation is required for normal tissue homeostasis; when this balance is disrupted, disease such as pulmonary arterial hypertension (PAH) can result. Activity of K+ channels plays a major role in regulating the pulmonary artery smooth muscle cell (PASMC) population in the pulmonary vasculature, as they are involved in cell apoptosis, survival and proliferation. PASMCs from PAH patients demonstrate many cellular abnormalities linked to K+ channels, including decreased K+ current, downregulated expression of various K+ channels, and inhibited apoptosis. K+ is the major intracellular cation, and the K+ current is a major determinant of cell volume. Apoptotic volume decrease (AVD), an early hallmark and prerequisite of programmed cell death, is characterized by K+ and Cl− efflux. In addition to its role in AVD, cytosolic K+ can be inhibitory toward endogenous caspases and nucleases and can suppress mitochondrial cytochrome c release. In PASMC, K+ channel activation accelerates AVD and enhances apoptosis, while K+ channel inhibition decelerates AVD and inhibits apoptosis. Finally, inhibition of K+ channels, by increasing cytosolic [Ca2+] as a result of membrane depolarization-mediated opening of voltage-dependent Ca2+ channels, leads to PASMC contraction and proliferation. The goals of this review are twofold: (1) to elucidate the role of K+ ions and K+ channels in the proliferation and apoptosis of PASMC, with an emphasis on abnormal cell growth in human and animal models of PAH, and (2) to elaborate upon the targeting of K+ flux pathways for pharmacological treatment of pulmonary vascular disease. PMID:18084317

  13. UAP56 is a novel interacting partner of Bcr in regulating vascular smooth muscle cell DNA synthesis

    SciTech Connect

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey D.

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer UAP56 is an important regulator of DNA synthesis in vascular smooth muscle cells. Black-Right-Pointing-Pointer UAP56 binds to Bcr. Black-Right-Pointing-Pointer Interaction between Bcr and UAP56 is critical for Bcr induced DNA synthesis. -- Abstract: Bcr is a serine/threonine kinase that is a critical regulator of vascular smooth muscle cell inflammation and proliferation. We have previously demonstrated that Bcr acts in part via phosphorylation and inhibition of PPAR{gamma}. We have identified the RNA helicase UAP56 as another substrate of Bcr. In this report we demonstrate that knockdown of UAP56 blocks Bcr induced DNA synthesis in vascular smooth muscle cells (VSMC). We also found that over expression of Bcr increased the expression of cyclin E and decreased the expression of p27. Knockdown of UAP56 reversed the effect of Bcr on cyclin E and p27 expression. Furthermore, we found that Bcr binds to UAP56 and demonstrate that binding of UAP56 to Bcr is critical for Bcr induced DNA synthesis in VSMC. Our data identify UAP56 as an important binding partner of Bcr and a novel target for inhibiting vascular smooth muscle cell proliferation.

  14. Regulation of smooth muscle cell growth by endothelium-derived factors.

    PubMed Central

    Scott-Burden, T; Vanhoutte, P M

    1994-01-01

    The endothelium is a source of molecules that either stimulate or inhibit the proliferation of the underlying smooth muscle cells. In the normal, healthy vessel wall the smooth muscle cells are quiescent, but they proliferate when damage to the endothelium occurs. The implication of such observations is that although the endothelium provides a source of growth factors, their stimulatory activity on smooth muscle cells is countered by endothelium-derived growth inhibitors. The inhibitors appear to comprise at least 3 distinct types of molecules: heparin/heparan sulfate; transforming growth factor beta; and nitric oxide. Each molecule inhibits growth of cultured smooth muscle cells by mechanisms that remain to be elucidated and are discussed in this communication. Heparin/heparan sulfate is the most thoroughly characterized of the 3, and has been used for clinical intervention to prevent restenosis. Transforming growth factor beta exhibits bimodal activity on growth, acting as a stimulant at low levels and as an inhibitor at elevated concentrations. Nitric oxide mediated vasorelaxation is dependent upon activation of soluble guanylate cyclase. Because elevation of cyclic guanosine monophosphate in smooth muscle cells depresses their proliferation, nitric oxide would appear to possess the properties necessary to inhibit vascular smooth muscle cell proliferation. PMID:8180516

  15. E3 ubiquitin ligase isolated by differential display regulates cervical cancer growth in vitro and in vivo via microRNA-143

    PubMed Central

    Li, Jibin; Wang, Xinling; Zhang, Yanshang; Zhang, Yan

    2016-01-01

    Cervical cancer is one of the most common gynecological cancers worldwide. Aberrant expression of E3 ubiquitin ligase isolated by differential display (EDD) has been detected in various types of tumor and has been demonstrated to have an important role in carcinogenesis, tumor growth and drug resistance. However, the role of EDD in cervical cancer and its underlying molecular mechanisms remains unknown. The present study aimed to investigate the role of EDD in the tumorigenicity of cervical cancer. EDD expression levels were measured using reverse transcription-quantitative polymerase chain reaction and western blotting in SiHa, HeLa, CaSki, c-41 and c-33A cervical cancer cell lines and cervical cancer tissue specimens. A functional study was performed using cell proliferation, colony formation, cell apoptosis assays in vitro and tumor growth assays in vivo with EDD either overexpressed or silenced. In the present study, EDD expression levels were significantly upregulated in cervical cancer cell lines and tissue samples. EDD knockdown significantly inhibited colony formation, cell proliferation and tumor growth and accelerated cell apoptosis in the cervical cancer cell lines and tissue samples. Furthermore, microRNA (miR)-143 expression levels were low in cervical cancer tissue samples and were negatively correlated with EDD expression. miR-143 silencing eliminated the effect of EDD on cell proliferation, colony formation and cell apoptosis in the cervical cancer cells, which suggested that miR-143 is critical for EDD-mediated regulation of cervical cancer cell growth. The results of the present study indicated that EDD may promote cervical cancer growth in vivo and in vitro by targeting miR-143. In conclusion, EDD may have an oncogenic role in cervical cancer and may serve as a potential therapeutic target for the treatment of patients with cervical cancer. PMID:27446260

  16. MicroRNA-203 negatively regulates c-Abl, ERK1/2 phosphorylation, and proliferation in smooth muscle cells.

    PubMed

    Liao, Guoning; Panettieri, Reynold A; Tang, Dale D

    2015-09-01

    The nonreceptor tyrosine kinase c-Abl has a role in regulating smooth muscle cell proliferation, which contributes to the development of airway remodeling in chronic asthma. MicroRNAs (miRs) are small noncoding RNA molecules that regulate gene expression by binding to complementary sequences in the 3' untranslated regions (3' UTR) of target mRNAs. Previous analysis suggests that miR-203 is able to bind to the 3' UTR of human c-Abl mRNA. In this report, treatment with miR-203 attenuated the expression of c-Abl mRNA and protein in human airway smooth muscle (HASM) cells. Furthermore, transfection with an miR-203 inhibitor enhanced the expression of c-Abl at mRNA and protein levels in HASM cells. Treatment with platelet-derived growth factor (PDGF) induced the proliferation and ERK1/2 phosphorylation in HASM cells. Exposure to miR-203 attenuated the PDGF-stimulated proliferation and ERK1/2 phosphorylation in HASM cells. The expression of c-Abl at protein and mRNA levels was higher in asthmatic HASM cells, whereas the level of miR-203 was reduced in asthmatic HASM cells as compared to control HASM cells. Taken together, our present results suggest that miR-203 is a negative regulator of c-Abl expression in smooth muscle cells. miR-203 regulates smooth muscle cell proliferation by controlling c-Abl expression, which in turn modulates the activation of ERK1/2.

  17. The role of K⁺ conductances in regulating membrane excitability in human gastric corpus smooth muscle.

    PubMed

    Lee, Ji Yeon; Ko, Eun-Ju; Ahn, Ki Duck; Kim, Sung; Rhee, Poong-Lyul

    2015-04-01

    Changes in resting membrane potential (RMP) regulate membrane excitability. K(+) conductance(s) are one of the main factors in regulating RMP. The functional role of K(+) conductances has not been studied the in human gastric corpus smooth muscles (HGCS). To examine the role of K(+) channels in regulation of RMP in HGCS we employed microelectrode recordings, patch-clamp, and molecular approaches. Tetraethylammonium and charybdotoxin did not affect the RMP, suggesting that BK channels are not involved in regulating RMP. Apamin, a selective small conductance Ca(2+)-activated K(+) channel (SK) blocker, did not show a significant effect on the membrane excitability. 4-Aminopyridine, a Kv channel blocker, caused depolarization and increased the duration of slow wave potentials. 4-Aminopyridine also inhibited a delayed rectifying K(+) current in isolated smooth muscle cells. End-product RT-PCR gel detected Kv1.2 and Kv1.5 in human gastric corpus muscles. Glibenclamide, an ATP-sensitive K(+) channel (KATP) blocker, did not induce depolarization, but nicorandil, a KATP opener, hyperpolarized HGCS, suggesting that KATP are expressed but not basally activated. Kir6.2 transcript, a pore-forming subunit of KATP was expressed in HGCS. A low concentration of Ba(2+), a Kir blocker, induced strong depolarization. Interestingly, Ba(2+)-sensitive currents were minimally expressed in isolated smooth muscle cells under whole-cell patch configuration. KCNJ2 (Kir2.1) transcript was expressed in HGCS. Unique K(+) conductances regulate the RMP in HGCS. Delayed and inwardly rectifying K(+) channels are the main candidates in regulating membrane excitability in HGCS. With the development of cell dispersion techniques of interstitial cells, the cell-specific functional significance will require further analysis.

  18. Differentiation of Murine Bone Marrow-Derived Smooth Muscle Progenitor Cells Is Regulated by PDGF-BB and Collagen

    PubMed Central

    Lin, Clifford; Yuan, Yifan; Courtman, David W.

    2016-01-01

    Smooth muscle cells (SMCs) are key regulators of vascular disease and circulating smooth muscle progenitor cells may play important roles in vascular repair or remodelling. We developed enhanced protocols to derive smooth muscle progenitors from murine bone marrow and tested whether factors that are increased in atherosclerotic plaques, namely platelet-derived growth factor—BB (PDGF-BB) and monomeric collagen, can influence the smooth muscle specific differentiation, proliferation, and survival of mouse bone marrow-derived progenitor cells. During a 21 day period of culture, bone marrow cells underwent a marked increase in expression of the SMC markers α-SMA (1.93 ± 0.15 vs. 0.0008 ± 0.0003 (ng/ng GAPDH) at 0 d), SM22-α (1.50 ± 0.27 vs. 0.005 ± 0.001 (ng/ng GAPDH) at 0 d) and SM-MHC (0.017 ± 0.004 vs. 0.001 ± 0.001 (ng/ng GAPDH) at 0 d). Bromodeoxyuridine (BrdU) incorporation experiments showed that in early culture, the smooth muscle progenitor subpopulation could be identified by high proliferative rates prior to the expression of smooth muscle specific markers. Culture of fresh bone marrow or smooth muscle progenitor cells with PDGF-BB suppressed the expression of α-SMA and SM22-α, in a rapidly reversible manner requiring PDGF receptor kinase activity. Progenitors cultured on polymerized collagen gels demonstrated expression of SMC markers, rates of proliferation and apoptosis similar to that of cells on tissue culture plastic; in contrast, cells grown on monomeric collagen gels displayed lower SMC marker expression, lower growth rates (319 ± 36 vs. 635 ± 97 cells/mm2), and increased apoptosis (5.3 ± 1.6% vs. 1.0 ± 0.5% (Annexin 5 staining)). Our data shows that the differentiation and survival of smooth muscle progenitors are critically affected by PDGF-BB and as well as the substrate collagen structure. PMID:27258003

  19. Differentiation of Murine Bone Marrow-Derived Smooth Muscle Progenitor Cells Is Regulated by PDGF-BB and Collagen.

    PubMed

    Lin, Clifford; Yuan, Yifan; Courtman, David W

    2016-01-01

    Smooth muscle cells (SMCs) are key regulators of vascular disease and circulating smooth muscle progenitor cells may play important roles in vascular repair or remodelling. We developed enhanced protocols to derive smooth muscle progenitors from murine bone marrow and tested whether factors that are increased in atherosclerotic plaques, namely platelet-derived growth factor-BB (PDGF-BB) and monomeric collagen, can influence the smooth muscle specific differentiation, proliferation, and survival of mouse bone marrow-derived progenitor cells. During a 21 day period of culture, bone marrow cells underwent a marked increase in expression of the SMC markers α-SMA (1.93 ± 0.15 vs. 0.0008 ± 0.0003 (ng/ng GAPDH) at 0 d), SM22-α (1.50 ± 0.27 vs. 0.005 ± 0.001 (ng/ng GAPDH) at 0 d) and SM-MHC (0.017 ± 0.004 vs. 0.001 ± 0.001 (ng/ng GAPDH) at 0 d). Bromodeoxyuridine (BrdU) incorporation experiments showed that in early culture, the smooth muscle progenitor subpopulation could be identified by high proliferative rates prior to the expression of smooth muscle specific markers. Culture of fresh bone marrow or smooth muscle progenitor cells with PDGF-BB suppressed the expression of α-SMA and SM22-α, in a rapidly reversible manner requiring PDGF receptor kinase activity. Progenitors cultured on polymerized collagen gels demonstrated expression of SMC markers, rates of proliferation and apoptosis similar to that of cells on tissue culture plastic; in contrast, cells grown on monomeric collagen gels displayed lower SMC marker expression, lower growth rates (319 ± 36 vs. 635 ± 97 cells/mm2), and increased apoptosis (5.3 ± 1.6% vs. 1.0 ± 0.5% (Annexin 5 staining)). Our data shows that the differentiation and survival of smooth muscle progenitors are critically affected by PDGF-BB and as well as the substrate collagen structure.

  20. Cross-bridge regulation by Ca(2+)-dependent phosphorylation in amphibian smooth muscle.

    PubMed

    Wingard, C J; Nowocin, J M; Murphy, R A

    2001-12-01

    A covalent regulatory mechanism involving Ca(2+)-dependent cross-bridge phosphorylation determines both the number of cycling cross bridges and cycling kinetics in mammalian smooth muscle. Our objective was to determine whether a similar regulatory mechanism governed smooth muscle contraction from a poikilothermic amphibian in a test of the hypothesis that myosin regulatory light chain (MRLC) phosphorylation could modulate shortening velocity. We measured MRLC phosphorylation of Rana catesbiana urinary bladder strips at 25 degrees C in tonic contractions in response to K+ depolarization, field stimulation, or carbachol stimulation. The force-length relationship was characterized by a steep ascending limb and a shallow descending limb. There was a rapid rise in unloaded shortening velocity early in a contraction, which then fell and was maintained at low rates while high force was maintained. In support of the hypothesis, we found a positive correlation of the level of myosin phosphorylation and an estimate of tissue shortening velocity. These results suggest that MRLC phosphorylation in amphibian smooth muscle modulates both the number of attached cross bridges (force) and the cross-bridge cycling kinetics (shortening velocity) as in mammalian smooth muscle. PMID:11705760

  1. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    PubMed

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  2. Ca2+ regulation of the contractile apparatus in canine gastric smooth muscle.

    PubMed Central

    Ozaki, H; Gerthoffer, W T; Hori, M; Karaki, H; Sanders, K M; Publicover, N G

    1993-01-01

    1. The relationships between cytosolic Ca2+ ([Ca2+]cyt; expressed as a fluorescence ratio at 400 nm and 500 nm using Indo-1) and contractile force was examined in strips of circular smooth muscles of canine gastric antrum. Rhythmic increases in [Ca2+]cyt were observed and contractions were biphasic. 2. In most muscles (70%), the amplitude of the second phase of the Ca2+ transient was less than or equal to the first phase of the Ca2+ transient, but the second phase of the contraction was much smaller than the first phase, suggesting a decrease in Ca2+ sensitivity during the second contractile phase. In 30% of muscles, the amplitude of the second phase of the Ca2+ transient was 2- to 3-fold greater than the first phase. In these muscles, the second phase of contraction was 10-fold greater than the first phase of contraction. Thus, a non-linear relationship between [Ca2+]cyt and force greatly amplifies force development when [Ca2+]cyt exceeds a threshold level. 3. Acetylcholine (ACh, 0.3-1 microM) increased the amplitudes of Ca2+ transients and basal [Ca2+]cyt between phasic contractions. The increase in basal [Ca2+]cyt did not cause tone to develop. ACh increased the amplitude of Ca2+ transients 2- to 3-fold and this was associated with a 15 to 20-fold increase in the force of phasic contractions. Pentagastrin (0.5 nM) and cholecystokinin octapeptide (CCK, 40 nM) had similar effects on Ca2+ transients and phasic contractions. 4. Bay K 8644 (0.1 microM) and TEA (5 mM) also increased the amplitudes of Ca2+ transients by 2- to 3-fold and phasic contractions by 15- to 30-fold. There was no significant difference observed between the [Ca2+]cyt-force relationships in the presence of agonists (i.e. ACh, pentagastrin and CCK) or when [Ca2+]cyt was increased by Bay K 8644 or TEA. These data suggest that agonist-dependent increases in Ca2+ sensitivity may not significantly regulate the [Ca2+]cyt-force relationship in antral muscles. 5. D600 (5 microM), added during stimulation

  3. Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels.

    PubMed

    Goetz, Jacky G; Genty, Hélène; St-Pierre, Pascal; Dang, Thao; Joshi, Bharat; Sauvé, Rémy; Vogl, Wayne; Nabi, Ivan R

    2007-10-15

    The 3F3A monoclonal antibody to autocrine motility factor receptor (AMFR) labels mitochondria-associated smooth endoplasmic reticulum (ER) tubules. siRNA down-regulation of AMFR expression reduces mitochondria-associated 3F3A labelling. The 3F3A-labelled ER domain does not overlap with reticulon-labelled ER tubules, the nuclear membrane or perinuclear ER markers and only partially overlaps with the translocon component Sec61alpha. Upon overexpression of FLAG-tagged AMFR, 3F3A labelling is mitochondria associated, excluded from the perinuclear ER and co-distributes with reticulon. 3F3A labelling therefore defines a distinct mitochondria-associated ER domain. Elevation of free cytosolic Ca(2+) levels with ionomycin promotes dissociation of 3F3A-labelled tubules from mitochondria and, judged by electron microscopy, disrupts close contacts (<50 nm) between smooth ER tubules and mitochondria. The ER tubule-mitochondria association is similarly disrupted upon thapsigargin-induced release of ER Ca(2+) stores or purinergic receptor stimulation by ATP. The inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] receptor (IP3R) colocalises to 3F3A-labelled mitochondria-associated ER tubules, and conditions that induce ER tubule-mitochondria dissociation disrupt continuity between 3F3A- and IP3R-labelled ER domains. RAS-transformed NIH-3T3 cells have increased basal cytosolic Ca(2+) levels and show dissociation of the 3F3A-labelled, but not IP3R-labelled, ER from mitochondria. Our data indicate that regulation of the ER-mitochondria association by free cytosolic Ca(2+) is a characteristic of smooth ER domains and that multiple mechanisms regulate the interaction between these organelles.

  4. Tbx18 Regulates the Differentiation of Periductal Smooth Muscle Stroma and the Maintenance of Epithelial Integrity in the Prostate

    PubMed Central

    Guimarães-Camboa, Nuno; Zhang, Huimin; Troy, Joseph M.; Lu, Xiaochen; Kispert, Andreas; Evans, Sylvia M.; Stubbs, Lisa

    2016-01-01

    The T-box transcription factor TBX18 is essential to mesenchymal cell differentiation in several tissues and Tbx18 loss-of-function results in dramatic organ malformations and perinatal lethality. Here we demonstrate for the first time that Tbx18 is required for the normal development of periductal smooth muscle stromal cells in prostate, particularly in the anterior lobe, with a clear impact on prostate health in adult mice. Prostate abnormalities are only subtly apparent in Tbx18 mutants at birth; to examine postnatal prostate development we utilized a relatively long-lived hypomorphic mutant and a novel conditional Tbx18 allele. Similar to the ureter, cells that fail to express Tbx18 do not condense normally into smooth muscle cells of the periductal prostatic stroma. However, in contrast to ureter, the periductal stromal cells in mutant prostate assume a hypertrophic, myofibroblastic state and the adjacent epithelium becomes grossly disorganized. To identify molecular events preceding the onset of this pathology, we compared gene expression in the urogenital sinus (UGS), from which the prostate develops, in Tbx18-null and wild type littermates at two embryonic stages. Genes that regulate cell proliferation, smooth muscle differentiation, prostate epithelium development, and inflammatory response were significantly dysregulated in the mutant urogenital sinus around the time that Tbx18 is first expressed in the wild type UGS, suggesting a direct role in regulating those genes. Together, these results argue that Tbx18 is essential to the differentiation and maintenance of the prostate periurethral mesenchyme and that it indirectly regulates epithelial differentiation through control of stromal-epithelial signaling. PMID:27120339

  5. FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells.

    PubMed

    Wang, Yong-Xiao; Zheng, Yun-Min; Mei, Qi-Bing; Wang, Qinq-Song; Collier, Mei Lin; Fleischer, Sidney; Xin, Hong-Bo; Kotlikoff, Michael I

    2004-03-01

    Intracellular Ca2+ release through ryanodine receptors (RyRs) plays important roles in smooth muscle excitation-contraction coupling, but the underlying regulatory mechanisms are poorly understood. Here we show that FK506 binding protein of 12.6 kDa (FKBP12.6) associates with and regulates type 2 RyRs (RyR2) in tracheal smooth muscle. FKBP12.6 binds to RyR2 but not other RyR or inositol 1,4,5-trisphosphate receptors, and FKBP12, known to bind to and modulate skeletal RyRs, does not associate with RyR2. When dialyzed into tracheal myocytes, cyclic ADP-ribose (cADPR) alters spontaneous Ca2+ release at lower concentrations and produces macroscopic Ca2+ release at higher concentrations; neurotransmitter-evoked Ca2+ release is also augmented by cADPR. These actions are mediated through FKBP12.6 because they are inhibited by molar excess of recombinant FKBP12.6 and are not observed in myocytes from FKBP12.6-knockout mice. We also report that force development in FKBP12.6-null mice, observed as a decrease in the concentration/tension relationship of isolated trachealis segments, is impaired. Taken together, these findings point to an important role of the FKBP12.6/RyR2 complex in stochastic (spontaneous) and receptor-mediated Ca2+ release in smooth muscle.

  6. Hyperphosphatemia induces cellular senescence in human aorta smooth muscle cells through integrin linked kinase (ILK) up-regulation.

    PubMed

    Troyano, Nuria; Nogal, María Del; Mora, Inés; Diaz-Naves, Manuel; Lopez-Carrillo, Natalia; Sosa, Patricia; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruiz-Torres, María P

    2015-12-01

    Aging is conditioned by genetic and environmental factors. Hyperphosphatemia is related to some pathologies, affecting to vascular cells behavior. This work analyze whether high concentration of extracellular phosphate induces vascular smooth muscle cells senescence, exploring the intracellular mechanisms and highlighting the in vivo relevance of this phenomenon. Human aortic smooth muscle cells treated with β-Glycerophosphate (BGP, 10mM) suffered cellular senescence by increasing p53, p21 and p16 expression and the senescence associated β-galactosidase activity. In parallel, BGP induced ILK overexpression, dependent on the IGF-1 receptor activation, and oxidative stress. Down-regulating ILK expression prevented BGP-induced senescence and oxidative stress. Aortic rings from young rats treated with 10mM BGP for 48h, showed increased p53, p16 and ILK expression and SA-β-gal activity. Seven/eight nephrectomized rats feeding a hyperphosphatemic diet and fifteenth- month old mice showed hyperphosphatemia and aortic ILK, p53 and p16 expression. In conclusion, we demonstrated that high extracellular concentration of phosphate induced senescence in cultured smooth muscle through the activation of IGF-1 receptor and ILK overexpression and provided solid evidences for the in vivo relevance of these results since aged animals showed high levels of serum phosphate linked to increased expression of ILK and senescence genes.

  7. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  8. Curcumin Exerts its Anti-hypertensive Effect by Down-regulating the AT1 Receptor in Vascular Smooth Muscle Cells

    PubMed Central

    Yao, Yonggang; Wang, Wei; Li, Meixiang; Ren, Hongmei; Chen, Caiyu; Wang, Jialiang; Wang, Wei Eric; Yang, Jian; Zeng, Chunyu

    2016-01-01

    Curcumin exerts beneficial effects on cardiovascular diseases, including hypertension. However, its mechanisms are unknown. We propose that curcumin prevents the development of hypertension by regulating AT1 receptor (AT1R) expression in arteries. The present study examined how curcumin regulates AT1R expression in vascular smooth muscle cells and investigated the physiological significance of this regulation in angiotensin (Ang) II-induced hypertension. The results showed that curcumin decreased AT1R expression in a concentration- and time-dependent manner in vascular smooth muscle cells. Using luciferase reporters with an entire AT1 or a mutant AT1R in A10 cells, the AT1R promoter activity was inhibited by 10−6 M curcumin, and the proximal element (from −61 to +25 bp) of the AT1R promoter was crucial for curcumin-induced AT1R down-regulation. An electrophoretic mobility shift assay showed that curcumin decreased specificity protein 1 (SP1) binding with the AT1R promoter in A10 cells. Curcumin treatment reduced Ang II-induced hypertension in C57Bl/6J mice, which was accompanied by lower AT1R expression in the arteries and decreased Ang II-mediated vasoconstriction in the mesenteric artery. These findings indicate that curcumin down-regulates AT1R expression in A10 cells by affecting SP1/AT1R DNA binding, thus reducing AT1R-mediated vasoconstriction and subsequently prevents the development of hypertension in an Ang II-induced hypertensive model. PMID:27146402

  9. miR-128 regulates differentiation of hair follicle mesenchymal stem cells into smooth muscle cells by targeting SMAD2.

    PubMed

    Wang, Zhihao; Pang, Li; Zhao, Huiying; Song, Lei; Wang, Yuehui; Sun, Qi; Guo, Chunjie; Wang, Bin; Qin, Xiujiao; Pan, Aiqun

    2016-05-01

    Human hair follicle mesenchymal stem cells (hHFMSCs) are an important source of cardiovascular tissue engineering for their differentiation potential into smooth muscle cells (SMCs), yet the molecular pathways underlying such fate determination is unclear. MicroRNAs (miRNAs) are non-coding RNAs that play critical roles in cell differentiation. In present study, we found that miR-128 was remarkably decreased during the differentiation of hHFMSCs into SMCs induced by transforming growth factor-β1 (TGF-β1). Moreover, overexpression of miR-128 led to decreased expression of SMC cellular marker proteins, such as smooth muscle actin (SMA) and calponin, in TGF-β1-induced SMC differentiation. Further, we identified that miR-128 targeted the 3'-UTR of SMAD2 transcript for translational inhibition of SMAD2 protein, and knockdown of SMAD2 abrogated the promotional effect of antagomir-128 (miR-128 neutralizer) on SMC differentiation. These results suggest that miR-128 regulates the differentiation of hHFMSCs into SMCs via targeting SMAD2, a main transcription regulator in TGF-β signaling pathway involving SMC differentiation. The miR-128/SMAD2 axis could therefore be considered as a candidate target in tissue engineering and regenerative medicine for SMCs. PMID:27087048

  10. miR-128 regulates differentiation of hair follicle mesenchymal stem cells into smooth muscle cells by targeting SMAD2.

    PubMed

    Wang, Zhihao; Pang, Li; Zhao, Huiying; Song, Lei; Wang, Yuehui; Sun, Qi; Guo, Chunjie; Wang, Bin; Qin, Xiujiao; Pan, Aiqun

    2016-05-01

    Human hair follicle mesenchymal stem cells (hHFMSCs) are an important source of cardiovascular tissue engineering for their differentiation potential into smooth muscle cells (SMCs), yet the molecular pathways underlying such fate determination is unclear. MicroRNAs (miRNAs) are non-coding RNAs that play critical roles in cell differentiation. In present study, we found that miR-128 was remarkably decreased during the differentiation of hHFMSCs into SMCs induced by transforming growth factor-β1 (TGF-β1). Moreover, overexpression of miR-128 led to decreased expression of SMC cellular marker proteins, such as smooth muscle actin (SMA) and calponin, in TGF-β1-induced SMC differentiation. Further, we identified that miR-128 targeted the 3'-UTR of SMAD2 transcript for translational inhibition of SMAD2 protein, and knockdown of SMAD2 abrogated the promotional effect of antagomir-128 (miR-128 neutralizer) on SMC differentiation. These results suggest that miR-128 regulates the differentiation of hHFMSCs into SMCs via targeting SMAD2, a main transcription regulator in TGF-β signaling pathway involving SMC differentiation. The miR-128/SMAD2 axis could therefore be considered as a candidate target in tissue engineering and regenerative medicine for SMCs.

  11. [Regulation of the differentiation and proliferation of smooth muscle cells by the sex hormones].

    PubMed

    Guiochon-Mantel, A

    2000-06-01

    Steroids effects are mediated by their receptors. These proteins define the large family of steroid hormone receptors, characterized by the presence of 3 functional domains: a transactivation domain, a DNA-binding domain and a ligand-binding domain. Receptor activation induces the modulation of transcription of specific genes, and as a consequence, the modulation of production of specific proteins. Sex steroid receptors are located in the nucleus. This nuclear localization is in fact a dynamic situation, resulting from a continuous shuttling of the receptor between the cytoplasm and the nucleus. The recent discovery that an additional estrogen receptor is present in various tissues has advanced our understanding of the mechanism underlying estrogen signalling. Non genomic effects of steroids have also been described. Sex steroids inhibit proliferation of smooth muscle cells. On the contrary, they stimulate proliferation of tumoral muscle cells. The mechanisms of sex steroid effects on cellular proliferation are complex, and may involve transcriptional or non transcriptional phenomena. PMID:10939122

  12. DHEA attenuates PDGF-induced phenotypic proliferation of vascular smooth muscle A7r5 cells through redox regulation

    SciTech Connect

    Urata, Yoshishige; Goto, Shinji; Kawakatsu, Miho; Yodoi, Junji; Eto, Masato; Akishita, Masahiro; Kondo, Takahito

    2010-05-28

    It is known that dehydroepiandrosterone (DHEA) inhibits a phenotypic switch in vascular smooth muscle cells (VSMC) induced by platelet-derived growth factor (PDGF)-BB. However, the mechanism behind the effect of DHEA on VSMC is not clear. Previously we reported that low molecular weight-protein tyrosine phosphatase (LMW-PTP) dephosphorylates PDGF receptor (PDGFR)-{beta} via a redox-dependent mechanism involving glutathione (GSH)/glutaredoxin (GRX)1. Here we demonstrate that the redox regulation of PDGFR-{beta} is involved in the effect of DHEA on VSMC. DHEA suppressed the PDGF-BB-dependent phosphorylation of PDGFR-{beta}. As expected, DHEA increased the levels of GSH and GRX1, and the GSH/GRX1 system maintained the redox state of LMW-PTP. Down-regulation of the expression of LMW-PTP using siRNA restored the suppression of PDGFR-{beta}-phosphorylation by DHEA. A promoter analysis of GRX1 and {gamma}-glutamylcysteine synthetase ({gamma}-GCS), a rate-limiting enzyme of GSH synthesis, showed that DHEA up-regulated the transcriptional activity at the peroxisome proliferator-activated receptor (PPAR) response element, suggesting PPAR{alpha} plays a role in the induction of GRX1 and {gamma}-GCS expression by DHEA. In conclusion, the redox regulation of PDGFR-{beta} is involved in the suppressive effect of DHEA on VSMC proliferation through the up-regulation of GSH/GRX system.

  13. Regulation of vascular smooth muscle cell calcification by extracellular pyrophosphate homeostasis: synergistic modulation by cyclic AMP and hyperphosphatemia

    PubMed Central

    Prosdocimo, Domenick A.; Wyler, Steven C.; Romani, Andrea M.; O'Neill, W. Charles

    2010-01-01

    Vascular calcification is a multifaceted process involving gain of calcification inducers and loss of calcification inhibitors. One such inhibitor is inorganic pyrophosphate (PPi), and regulated generation and homeostasis of extracellular PPi is a critical determinant of soft-tissue mineralization. We recently described an autocrine mechanism of extracellular PPi generation in cultured rat aortic vascular smooth muscle cells (VSMC) that involves both ATP release coupled to the ectophosphodiesterase/pyrophosphatase ENPP1 and efflux of intracellular PPi mediated or regulated by the plasma membrane protein ANK. We now report that increased cAMP signaling and elevated extracellular inorganic phosphate (Pi) act synergistically to induce calcification of these VSMC that is correlated with progressive reduction in ability to accumulate extracellular PPi. Attenuated PPi accumulation was mediated in part by cAMP-dependent decrease in ANK expression coordinated with cAMP-dependent increase in expression of TNAP, the tissue nonselective alkaline phosphatase that degrades PPi. Stimulation of cAMP signaling did not alter ATP release or ENPP1 expression, and the cAMP-induced changes in ANK and TNAP expression were not sufficient to induce calcification. Elevated extracellular Pi alone elicited only minor calcification and no significant changes in ANK, TNAP, or ENPP1. In contrast, combined with a cAMP stimulus, elevated Pi induced decreases in the ATP release pathway(s) that supports ENPP1 activity; this resulted in markedly reduced rates of PPi accumulation that facilitated robust calcification. Calcified VSMC were characterized by maintained expression of multiple SMC differentiation marker proteins including smooth muscle (SM) α-actin, SM22α, and calponin. Notably, addition of exogenous ATP (or PPi per se) rescued cAMP + phosphate-treated VSMC cultures from progression to the calcified state. These observations support a model in which extracellular PPi generation mediated

  14. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism.

  15. Intracellular Na+ regulation of Na+ pump sites in cultured vascular smooth muscle cells

    SciTech Connect

    Allen, J.C.; Navran, S.S.; Seidel, C.L.; Dennison, D.K.; Amann, J.M.; Jemelka, S.K.

    1989-04-01

    Enzymatically dispersed cells from canine saphenous vein and femoral artery were grown in fetal calf serum and studied at day 0 (freshly dispersed) through confluence in primary culture. Intracellular Na levels (Nai), but not intracellular K (Ki), were increased after 24 h in culture and then decreased to a steady state by 4 days. Na+ pump site number (( /sup 3/H) ouabain binding) increased through day 3 and remained elevated. Nai was still elevated at 2 days when the Na+ pump site number began to increase. Total pump turnover (maximum ouabain-inhibited /sup 86/Rb uptake) reflected the increase in Na+ pump site number. These key events precede the observed increases in both protein production and cellular proliferation. If the same cells are maintained in defined medium, without fetal calf serum, Nai, Ki, and the number of (/sup 3/H)ouabain binding sites do not change with time. These data are consistent with the suggestion that the initial mitogenic response of vascular smooth muscle cells to fetal calf serum involves an increased Na+ influx, and a Nai accumulation, caused by low Na+ pump density. The synthesis of new pump sites effects a decrease in the accumulated Nai, which may be related to cell proliferation.

  16. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. PMID:26807480

  17. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators

    PubMed Central

    Llorian, Miriam; Gooding, Clare; Bellora, Nicolas; Hallegger, Martina; Buckroyd, Adrian; Wang, Xiao; Rajgor, Dipen; Kayikci, Melis; Feltham, Jack; Ule, Jernej; Eyras, Eduardo; Smith, Christopher W.J.

    2016-01-01

    Alternative splicing (AS) is a key component of gene expression programs that drive cellular differentiation. Smooth muscle cells (SMCs) are important in the function of a number of physiological systems; however, investigation of SMC AS has been restricted to a handful of events. We profiled transcriptome changes in mouse de-differentiating SMCs and observed changes in hundreds of AS events. Exons included in differentiated cells were characterized by particularly weak splice sites and by upstream binding sites for Polypyrimidine Tract Binding protein (PTBP1). Consistent with this, knockdown experiments showed that that PTBP1 represses many smooth muscle specific exons. We also observed coordinated splicing changes predicted to downregulate the expression of core components of U1 and U2 snRNPs, splicing regulators and other post-transcriptional factors in differentiated cells. The levels of cognate proteins were lower or similar in differentiated compared to undifferentiated cells. However, levels of snRNAs did not follow the expression of splicing proteins, and in the case of U1 snRNP we saw reciprocal changes in the levels of U1 snRNA and U1 snRNP proteins. Our results suggest that the AS program in differentiated SMCs is orchestrated by the combined influence of auxiliary RNA binding proteins, such as PTBP1, along with altered activity and stoichiometry of the core splicing machinery. PMID:27317697

  18. Bidirectional counter-regulation of human lung mast cell and airway smooth muscle β2-adrenoceptors

    PubMed Central

    Newby, Chris; Amrani, Yassine; Bradding, Peter

    2015-01-01

    Human lung mast cells (HLMCs) play a central role in asthma pathogenesis through their relocation to the airway smooth muscle (ASM) bundles. β2 adrenoceptor (β2-AR)-agonists are used to relieve bronchoconstriction in asthma, but may reduce asthma control, particularly when used as monotherapy. We hypothesised that HLMC and human ASM cell (HASMC) responsiveness to β2-AR agonists would be attenuated when HLMCs are in contact with HASMCs. Cells were cultured in the presence of the short-acting β2-agonist albuterol, and the long-acting β2-agonists formoterol and olodaterol. Constitutive and FcεRI-dependent HLMC histamine release, HASMC contraction, and β2-AR phosphorylation at tyrosine 350 (Tyr350) were assessed. Constitutive HLMC histamine release was increased in HLMC-HASMC co-culture and this was enhanced by β2-AR agonists. Inhibition of FcεRI-dependent HLMC mediator release by β2-agonists was greatly reduced in HLMC-HASMC co-culture. These effects were reversed by neutralisation of stem cell factor (SCF) or cell adhesion molecule 1 (CADM1). β2-AR agonists did not prevent HASMC contraction when HLMCs were present, but this was reversed by fluticasone. β2-AR phosphorylation at Tyr350 occurred within 5 minutes in both HLMCs and HASMCs when the cells were co-cultured, and was inhibited by neutralising SCF or CADM1. HLMC interactions with HASMCs via CADM1 and Kit inhibit the potentially beneficial effects of β2-AR agonists on these cells via phosphorylation of the β2-AR. These results may explain the potentially adverse effects of β2-ARs agonists when used for asthma therapy. Targeting SCF and CADM1 may enhance β2-AR efficacy, particularly in corticosteroid-resistant patients. PMID:26608913

  19. Role of integrin-linked kinase in vascular smooth muscle cells: Regulation by statins and angiotensin II

    SciTech Connect

    Friedrich, Erik B. . E-mail: efriedrich@med-in.uni-sb.de; Clever, Yvonne P.; Wassmann, Sven; Werner, Nikos; Boehm, Michael; Nickenig, Georg

    2006-10-27

    Our goal was to characterize the role of integrin-linked kinase (ILK) in vascular smooth muscle cells (VSMC), which play a crucial role in atherogenesis. Transfection of VSMC with wild-type and dominant-negative ILK cDNA constructs revealed that ILK mediates migration and proliferation of VSMC but has no effect on VSMC survival. The pro-atherogenic mediator angiotensin II increases ILK protein expression and kinase activity while statin treatment down-regulates ILK in VSMC. Functionally, ILK is necessary for angiotensin II-mediated VSMC migration and proliferation. In VSMC transduced with dominant-negative ILK, statins mediate an additive inhibition of VSMC migration and proliferation, while transfection with wild-type ILK is sufficient to overcome the inhibitory effects of statin treatment on VSMC migration and proliferation. In vivo, ILK is expressed in VSMC of aortic sections from wild-type mice where it is down-regulated following statin treatment and up-regulated following induction of atherosclerosis in apoE-/- mice. These data identify ILK as a novel target in VSMC for anti-atherosclerotic therapy.

  20. Maturational regulation of inositol 1,4,5-trisphosphate metabolism in rabbit airway smooth muscle.

    PubMed Central

    Rosenberg, S M; Berry, G T; Yandrasitz, J R; Grunstein, M M

    1991-01-01

    Airway reactivity has been shown to vary with age; however, the mechanism(s) underlying this process remain unidentified. To elucidate the role of ontogenetic changes in phosphoinositide-linked signal transduction, we examined whether age-related differences in tracheal smooth muscle (TSM) contractility to carbachol (CCh) are associated with developmental changes in the production and metabolism of the second messenger, inositol 1,4,5-trisphosphate (Ins (1,4,5)P3). In TSM segments isolated from 2-wk-old and adult rabbits, both the maximal isometric contractile force and sensitivity (i.e., -logED50) to CCh (10(-10)-10(-4) M) were significantly greater in the immature vs. adult tissues (P less than 0.001). Similarly, Ins(1,4,5)P3 accumulation elicited by either receptor-coupled stimulation with CCh (10(-10)-10(-4) M) or post-receptor-mediated guanine nucleotide binding protein activation of permeabilized TSM with GTP gamma S (100 microM) was also significantly enhanced in 2-wk-old vs. adult TSM. Measurement of the activities of the degradative enzymes for Ins(1,4,5)P3 demonstrated that: (a) mean +/- SE maximal Ins(1,4,5)P3 3'-kinase activity was significantly reduced in the immature vs. adult TSM (i.e., approximately 71.7 +/- 6.0 vs. 137.8 +/- 10.0 pmol/min per mg protein, respectively; P less than 0.005); (b) by contrast, maximal Ins(1,4,5)P3 5'-phosphatase activity was significantly increased in the immature vs. adult TSM (i.e., 27.9 +/- 1.2 vs. 15.6 +/- 1.5 nmol/min per mg protein, respectively; P less than 0.001); and (c) the Km values for Ins(1,4,5)P3 5'-phosphatase were 14- and 19-fold greater than those for Ins(1,4,5)P3 3'-kinase in the 2-wk-old and adult TSM, respectively. Collectively, the findings suggest that the age-related decrease in agonist-induced rabbit TSM contractility is associated with a diminution in Ins(1,4,5)P3 accumulation which is attributed, at least in part, to ontogenetic changes in the relative activities of the degradative enzymes for

  1. Twitchin as a regulator of catch contraction in molluscan smooth muscle

    PubMed Central

    FUNABARA, DAISUKE; KANOH, SATOSHI; SIEGMAN, MARION J.; BUTLER, THOMAS M.; HARTSHORNE, DAVID J.; WATABE, SHUGO

    2006-01-01

    Molluscan catch muscle can maintain tension for a long time with little energy consumption. This unique phenomenon is regulated by phosphorylation and dephosphorylation of twitchin, a member of the titin/connectin family. The catch state is induced by a decrease of intracellular Ca2+ after the active contraction and is terminated by the phosphorylation of twitchin by the cAMP-dependent protein kinase (PKA). Twitchin, from the well-known catch muscle, the anterior byssus retractor muscle (ABRM) of the mollusc Mytilus, incorporates three phosphates into two major sites D1 and D2, and some minor sites. Dephosphorylation is required for re-entering the catch state. Myosin, actin and twitchin are essential players in the mechanism responsible for catch during which force is maintained while myosin cross-bridge cycling is very slow. Dephosphorylation of twitchin allows it to bind to Factin, whereas phosphorylation decreases the affinity of the two proteins. Twitchin has been also been shown to be a thick filament-binding protein. These findings raise the possibility that twitchin regulates the myosin cross-bridge cycle and force output by interacting with both actin and myosin resulting in a structure that connects thick and thin filaments in a phosphorylation-dependent manner. PMID:16453161

  2. Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1

    SciTech Connect

    Ha, Jung Min; Yun, Sung Ji; Kim, Young Whan; Jin, Seo Yeon; Lee, Hye Sun; Song, Sang Heon; Shin, Hwa Kyoung; Bae, Sun Sik

    2015-08-14

    Mammalian target of rapamycin complex (mTORC) regulates various cellular processes including proliferation, growth, migration and differentiation. In this study, we showed that mTORC1 regulates platelet-derived growth factor (PDGF)-induced phenotypic conversion of vascular smooth muscle cells (VSMCs). Stimulation of contractile VSMCs with PDGF significantly reduced the expression of contractile marker proteins in a time- and dose-dependent manner. In addition, angiotensin II (AngII)-induced contraction of VSMCs was completely blocked by the stimulation of VSMCs with PDGF. PDGF-dependent suppression of VSMC marker gene expression was significantly blocked by inhibition of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and mTOR whereas inhibition of p38 MAPK had no effect. In particular, inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked the PDGF-dependent phenotypic change of VSMCs whereas silencing of Rictor had no effect. In addition, loss of AngII-dependent contraction by PDGF was significantly retained by silencing of Raptor. Inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked PDGF-induced proliferation of VSMCs. Taken together, we suggest that mTORC1 plays an essential role in PDGF-dependent phenotypic changes of VSMCs. - Graphical abstract: Regulation of VSMC phenotype by PDGF-dependent activation of mTORC1. - Highlights: • The expression of contractile marker proteins was reduced by PDGF stimulation. • PDGF-dependent phenotypic conversion of VSMCs was blocked by inhibition of mTOR. • PDGF-induced proliferation of VSMCs was attenuated by inhibition of mTORC1. • mTORC1 plays a critical role in PDGF-dependent phenotypic conversion of VSMCs.

  3. Positive regulation of NADPH oxidase 5 by proinflammatory-related mechanisms in human aortic smooth muscle cells.

    PubMed

    Manea, Adrian; Manea, Simona A; Florea, Irina C; Luca, Catalina M; Raicu, Monica

    2012-05-01

    NADPH oxidase Nox5 subtype expression is significantly increased in vascular smooth muscle cells (SMCs) underlying fibro-lipid atherosclerotic lesions. The mechanisms that up-regulate Nox5 are not understood. Consequently, we characterized the promoter of the human Nox5 gene and investigated the role of various proinflammatory transcription factors in the regulation of Nox5 in human aortic SMCs. The Nox5 promoter was cloned in the pGL3 basic reporter vector. Functional analysis was done employing 5' deletion mutants to identify the sequences necessary to effect high levels of expression in SMCs. Transcriptional initiation site was detected by rapid amplification of the 5'-cDNA ends. In silico analysis indicated the existence of typical NF-kB, AP-1, and STAT1/STAT3 sites. Transient overexpression of p65/NF-kB, c-Jun/AP-1, or STAT1/STAT3 increased significantly the Nox5 promoter activity. Chromatin immunoprecipitation demonstrated the physical interaction of c-Jun/AP-1 and STAT1/STAT3 proteins with the Nox5 promoter. Lucigenin-enhanced chemiluminescence, real-time PCR, and Western blot assays showed that pharmacological inhibition and the silencing of p65/NF-kB, c-Jun/AP-1, or STAT1/STAT3 reduced significantly the interferon γ-induced Ca(2+)-dependent Nox activity and Nox5 expression. Up-regulated Nox5 correlated with increases in intracellular Ca(2+), an essential condition for Nox5 activity. NF-kB, AP-1, and STAT1/STAT3 are important regulators of Nox5 in SMCs by either direct or indirect mechanisms. Overexpressed Nox5 may generate free radicals in excess, further contributing to SMCs dysfunction in atherosclerosis. PMID:22348975

  4. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation.

    PubMed

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-01-01

    Smooth muscle cells (SMCs) in normal blood vessels exist in a highly differentiate state characterized by expression of SMC-specific contractile proteins ("contractile phenotype"). Following blood vessel injury in vivo or when cultured in vitro in the presence of multiple growth factors, SMC undergo a phenotype switch characterized by the loss of contractile markers and appearance of expression of non-muscle proteins ("proliferative phenotype"). While a number of factors have been reported to modulate this process, its regulation remains uncertain. Here we show that induction of SMC FGF signaling inhibits TGFβ signaling and converts contractile SMCs to the proliferative phenotype. Conversely, inhibition of SMC FGF signaling induces TGFβ signaling converting proliferating SMCs to the contractile phenotype, even in the presence of various growth factors in vitro or vascular injury in vivo. The importance of this signaling cross-talk is supported by in vivo data that show that an SMC deletion of a pan-FGF receptor adaptor Frs2α (fibroblast growth factor receptor substrate 2 alpha) in mice profoundly reduces neointima formation and vascular remodelling following carotid artery ligation. These results demonstrate that FGF-TGFβ signaling antagonism is the primary regulator of the SMC phenotype switch. Manipulation of this cross-talk may be an effective strategy for treatment of SMC-proliferation related diseases. PMID:27634335

  5. Cinnamon and its Components Suppress Vascular Smooth Muscle Cell Proliferation by Up-Regulating Cyclin-Dependent Kinase Inhibitors.

    PubMed

    Kwon, Hyeeun; Lee, Jung-Jin; Lee, Ji-Hye; Cho, Won-Kyung; Gu, Min Jung; Lee, Kwang Jin; Ma, Jin Yeul

    2015-01-01

    Cinnamomum cassia bark has been used in traditional herbal medicine to treat a variety of cardiovascular diseases. However, the antiproliferative effect of cinnamon extract on vascular smooth muscle cells (VSMCs) and the corresponding restenosis has not been explored. Hence, after examining the effect of cinnamon extract on VSMC proliferation, we investigated the possible involvement of signal transduction pathways associated with early signal and cell cycle analysis, including regulatory proteins. Besides, to identify the active components, we investigated the components of cinnamon extract on VSMC proliferation. Cinnamon extract inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation and suppressed the PDGF-stimulated early signal transduction. In addition, cinnamon extract arrested the cell cycle and inhibited positive regulatory proteins. Correspondingly, the protein levels of p21 and p27 not only were increased in the presence of cinnamon extract, also the expression of proliferating cell nuclear antigen (PCNA) was inhibited by cinnamon extract. Besides, among the components of cinnamon extract, cinnamic acid (CA), eugenol (EG) and cinnamyl alcohol significantly inhibited the VSMC proliferation. Overall, the present study demonstrates that cinnamon extract inhibited the PDGF-BB-induced proliferation of VSMCs through a G0/G1 arrest, which down-regulated the expression of cell cycle positive regulatory proteins by up-regulating p21 and p27 expression.

  6. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation

    PubMed Central

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-01-01

    Smooth muscle cells (SMCs) in normal blood vessels exist in a highly differentiate state characterized by expression of SMC-specific contractile proteins (“contractile phenotype”). Following blood vessel injury in vivo or when cultured in vitro in the presence of multiple growth factors, SMC undergo a phenotype switch characterized by the loss of contractile markers and appearance of expression of non-muscle proteins (“proliferative phenotype”). While a number of factors have been reported to modulate this process, its regulation remains uncertain. Here we show that induction of SMC FGF signaling inhibits TGFβ signaling and converts contractile SMCs to the proliferative phenotype. Conversely, inhibition of SMC FGF signaling induces TGFβ signaling converting proliferating SMCs to the contractile phenotype, even in the presence of various growth factors in vitro or vascular injury in vivo. The importance of this signaling cross-talk is supported by in vivo data that show that an SMC deletion of a pan-FGF receptor adaptor Frs2α (fibroblast growth factor receptor substrate 2 alpha) in mice profoundly reduces neointima formation and vascular remodelling following carotid artery ligation. These results demonstrate that FGF-TGFβ signaling antagonism is the primary regulator of the SMC phenotype switch. Manipulation of this cross-talk may be an effective strategy for treatment of SMC-proliferation related diseases. PMID:27634335

  7. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation.

    PubMed

    González-Ramos, Marta; Calleros, Laura; López-Ongil, Susana; Raoch, Viviana; Griera, Mercedes; Rodríguez-Puyol, Manuel; de Frutos, Sergio; Rodríguez-Puyol, Diego

    2013-02-01

    The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases.

  8. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation.

    PubMed

    González-Ramos, Marta; Calleros, Laura; López-Ongil, Susana; Raoch, Viviana; Griera, Mercedes; Rodríguez-Puyol, Manuel; de Frutos, Sergio; Rodríguez-Puyol, Diego

    2013-02-01

    The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases. PMID:23084979

  9. MicroRNAs 29b, 133b, and 211 Regulate Vascular Smooth Muscle Calcification Mediated by High Phosphorus.

    PubMed

    Panizo, Sara; Naves-Díaz, Manuel; Carrillo-López, Natalia; Martínez-Arias, Laura; Fernández-Martín, José Luis; Ruiz-Torres, María Piedad; Cannata-Andía, Jorge B; Rodríguez, Isabel

    2016-03-01

    Vascular calcification is a frequent cause of morbidity and mortality in patients with CKD and the general population. The common association between vascular calcification and osteoporosis suggests a link between bone and vascular disorders. Because microRNAs (miRs) are involved in the transdifferentiation of vascular smooth muscle cells into osteoblast-like cells, we investigated whether miRs implicated in osteoblast differentiation and bone formation are involved in vascular calcification. Different levels of uremia, hyperphosphatemia, and aortic calcification were induced by feeding nephrectomized rats a normal or high-phosphorus diet for 12 or 20 weeks, at which times the levels of eight miRs (miR-29b, miR-125, miR-133b, miR-135, miR-141, miR-200a, miR-204, and miR-211) in the aorta were analyzed. Compared with controls and uremic rats fed a normal diet, uremic rats fed a high-phosphorous diet had lower levels of miR-133b and miR-211 and higher levels of miR-29b that correlated respectively with greater expression of osteogenic RUNX2 and with lower expression of several inhibitors of osteoblastic differentiation. Uremia per se mildly reduced miR-133b levels only. Similar results were obtained in two in vitro models of vascular calcification (uremic serum and high-calcium and -phosphorus medium), and experiments using antagomirs and mimics to modify miR-29b, miR-133b, and miR-211 expression levels in these models confirmed that these miRs regulate the calcification process. We conclude that miR-29b, miR-133b, and miR-211 have direct roles in the vascular smooth muscle calcification induced by high phosphorus and may be new therapeutic targets in the management of vascular calcification.

  10. NR6A1 couples with cAMP response element binding protein and regulates vascular smooth muscle cell migration.

    PubMed

    Wang, Yinfang; Zhang, Yahui; Dai, Xiuqin; Liu, Zongjun; Yin, Peihao; Wang, Nanping; Zhang, Peng

    2015-12-01

    Vascular smooth muscle cell (VSMC) migration is implicated in atherosclerosis and restenosis. Nuclear receptor subfamily 6, group A, member 1 (NR6A1) is involved in regulating embryonic stem cell differentiation, reproduction, neuronal differentiation. Functional cooperation between cAMP response element modulator tau (CREMtau) and NR6A1 can direct gene expression in cells. cAMP response element binding protein (CREB) plays a key role in VSMC migration. In this study, we sought to determine whether CREB involved in NR6A1-modulated VSMC migration. VSMCs treated with platelet-derived growth factor-BB (PDGF-BB) displayed reduced mRNA and protein levels of NR6A1. Adenovirus-mediated expression of NR6A1 (Ad-NR6A1) could inhibit PDGF-BB- and serum-induced VSMC migration. The mRNA and protein expressions of secreted phosphoprotein 1 (SPP1) were down-regulated by NR6A1 overexpression. SPP1 promoter reporter activity was repressed by NR6A1. NR6A1 was found to physically couple with nuclear actin and the large subunit of RNA polymerase II. Furthermore, we showed that CREB interacted with NR6A1 in VSMCs. NR6A1 overexpression repressed cAMP response element (CRE) activity. ChIP assay revealed that NR6A1 bind to SPP1 promoter. Luciferase reporter assay showed that NR6A1 regulated SPP1 promoter activity via a putative CRE site. Adenovirus mediated local NR6A1 gene transfer attenuated stenosis after balloon-induced arterial injury in Sprague-Dawley rats. Taken together, this study provided experimental evidence that NR6A1 modulated SPP1 expression via its binding with CREB protein in VSMCs. We also revealed a NR6A1-CREB-SPP1 axis that serves as a regulatory mechanism for atherosclerosis and restenosis. PMID:26546462

  11. CXCL8 histone H3 acetylation is dysfunctional in airway smooth muscle in asthma: regulation by BET.

    PubMed

    Clifford, Rachel L; Patel, Jamie K; John, Alison E; Tatler, Amanda L; Mazengarb, Lisa; Brightling, Christopher E; Knox, Alan J

    2015-05-01

    Asthma is characterized by airway inflammation and remodeling and CXCL8 is a CXC chemokine that drives steroid-resistant neutrophilic airway inflammation. We have shown that airway smooth muscle (ASM) cells isolated from asthmatic individuals secrete more CXCL8 than cells from nonasthmatic individuals. Here we investigated chromatin modifications at the CXCL8 promoter in ASM cells from nonasthmatic and asthmatic donors to further understand how CXCL8 is dysregulated in asthma. ASM cells from asthmatic donors had increased histone H3 acetylation, specifically histone H3K18 acetylation, and increased binding of histone acetyltransferase p300 compared with nonasthmatic donors but no differences in CXCL8 DNA methylation. The acetylation reader proteins Brd3 and Brd4 were bound to the CXCL8 promoter and Brd inhibitors inhibited CXCL8 secretion from ASM cells by disrupting Brd4 and RNA polymerase II binding to the CXCL8 promoter. Our results show a novel dysregulation of CXCL8 transcriptional regulation in asthma characterized by a promoter complex that is abnormal in ASM cells isolated from asthmatic donors and can be modulated by Brd inhibitors. Brd inhibitors may provide a new therapeutic strategy for steroid-resistant inflammation.

  12. Erk1/2 MAPK and Caldesmon Differentially Regulate Podosome Dynamics in A7r5 Vascular Smooth Muscle Cells

    PubMed Central

    Gu, Zhizhan; Kordowska, Jolanta; Williams, Geoffrey L.; Wang, C.-L. Albert; Hai, Chi-Ming

    2007-01-01

    We tested the hypothesis that the MEK/Erk/caldesmon phosphorylation cascade regulates PKC-mediated podosome dynamics in A7r5 cells. We observed the phosphorylation of MEK, Erk and caldesmon, and their translocation to the podosomes upon phorbol dibutyrate (PDBu) stimulation, together with the nuclear translocation of phospho-MEK and phospho-Erk. After MEK inhibition by U0126, Erk translocated to the interconnected actin-rich columns but failed to translocate to the nucleus, suggesting that podosomes served as a site for Erk phosphorylation. The interconnected actin-rich columns in U0126-treated, PDBu-stimulated cells contained α-actinin, caldesmon, vinculin, and metalloproteinase-2. Caldesmon and vinculin became integrated with F-actin at the columns, in contrast to their typical location at the ring of podosomes. Live-imaging experiments suggested the growth of these columns from podosomes that were slow to disassemble. The observed modulation of podosome size and life time in A7r5 cells overexpressing wild-type and phosphorylation-deficient caldesmon-GFP mutants in comparison to untransfected cells suggests that caldesmon and caldesmon phosphorylation modulate podosome dynamics in A7r5 cells. These results suggest that Erk1/2 and caldesmon differentially modulate PKC-mediated formation and/or dynamics of podosomes in A7r5 vascular smooth muscle cells. PMID:17239373

  13. Erk1/2 MAPK and caldesmon differentially regulate podosome dynamics in A7r5 vascular smooth muscle cells

    SciTech Connect

    Gu Zhizhan; Kordowska, Jolanta; Williams, Geoffrey L.; Wang, C.-L. Albert; Hai, C.-M. . E-mail: Chi-Ming_Hai@brown.edu

    2007-03-10

    We tested the hypothesis that the MEK/Erk/caldesmon phosphorylation cascade regulates PKC-mediated podosome dynamics in A7r5 cells. We observed the phosphorylation of MEK, Erk and caldesmon, and their translocation to the podosomes upon phorbol dibutyrate (PDBu) stimulation, together with the nuclear translocation of phospho-MEK and phospho-Erk. After MEK inhibition by U0126, Erk translocated to the interconnected actin-rich columns but failed to translocate to the nucleus, suggesting that podosomes served as a site for Erk phosphorylation. The interconnected actin-rich columns in U0126-treated, PDBu-stimulated cells contained {alpha}-actinin, caldesmon, vinculin, and metalloproteinase-2. Caldesmon and vinculin became integrated with F-actin at the columns, in contrast to their typical location at the ring of podosomes. Live-imaging experiments suggested the growth of these columns from podosomes that were slow to disassemble. The observed modulation of podosome size and life time in A7r5 cells overexpressing wild-type and phosphorylation-deficient caldesmon-GFP mutants in comparison to untransfected cells suggests that caldesmon and caldesmon phosphorylation modulate podosome dynamics in A7r5 cells. These results suggest that Erk1/2 and caldesmon differentially modulate PKC-mediated formation and/or dynamics of podosomes in A7r5 vascular smooth muscle cells.

  14. Cadherin-11 regulates both mesenchymal stem cell differentiation into smooth muscle cells and the development of contractile function in vivo

    PubMed Central

    Alimperti, Stella; You, Hui; George, Teresa; Agarwal, Sandeep K.; Andreadis, Stelios T.

    2014-01-01

    ABSTRACT Although soluble factors, such as transforming growth factor β1 (TGF-β1), induce mesenchymal stem cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage, the role of adherens junctions in this process is not well understood. In this study, we found that cadherin-11 but not cadherin-2 was necessary for MSC differentiation into SMCs. Cadherin-11 regulated the expression of TGF-β1 and affected SMC differentiation through a pathway that was dependent on TGF-β receptor II (TGFβRII) but independent of SMAD2 or SMAD3. In addition, cadherin-11 activated the expression of serum response factor (SRF) and SMC proteins through the Rho-associated protein kinase (ROCK) pathway. Engagement of cadherin-11 increased its own expression through SRF, indicative of the presence of an autoregulatory feedback loop that committed MSCs to the SMC fate. Notably, SMC-containing tissues (such as aorta and bladder) from cadherin-11-null (Cdh11−/−) mice showed significantly reduced levels of SMC proteins and exhibited diminished contractility compared with controls. This is the first report implicating cadherin-11 in SMC differentiation and contractile function in vitro as well as in vivo. PMID:24741067

  15. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts

    SciTech Connect

    Wang Zhirong; Chen Yan; Labinskyy, Nazar; Hsieh Tzechen; Ungvari, Zoltan; Wu, Joseph M. . E-mail: Joseph_Wu@nymc.edu

    2006-07-21

    Epidemiologic studies suggest that low to moderate consumption of red wine is inversely associated with the risk of coronary heart disease; the protection is in part attributed to grape-derived polyphenols, notably trans-resveratrol, present in red wine. It is not clear whether the cardioprotective effects of resveratrol can be reproduced by standardized grape extracts (SGE). In the present studies, we determined, using cultured human aortic smooth muscle cells (HASMC), growth and specific gene responses to resveratrol and SGE provided by the California Table Grape Commission. Suppression of HASMC proliferation by resveratrol was accompanied by a dose-dependent increase in the expression of tumor suppressor gene p53 and heat shock protein HSP27. Using resveratrol affinity chromatography and biochemical fractionation procedures, we showed by immunoblot analysis that treatment of HASMC with resveratrol increased the expression of quinone reductase I and II, and also altered their subcellular distribution. Growth of HASMC was significantly inhibited by 70% ethanolic SGE; however, gene expression patterns in various cellular compartments elicited in response to SGE were substantially different from those observed in resveratrol-treated cells. Further, SGE also differed from resveratrol in not being able to induce relaxation of rat carotid arterial rings. These results indicate that distinct mechanisms are involved in the regulation of HASMC growth and gene expression by SGE and resveratrol.

  16. Vasodilator-stimulated phosphoprotein (VASP) regulates actin polymerization and contraction in airway smooth muscle by a vinculin-dependent mechanism.

    PubMed

    Wu, Yidi; Gunst, Susan J

    2015-05-01

    Vasodilator-stimulated phosphoprotein (VASP) can catalyze actin polymerization by elongating actin filaments. The elongation mechanism involves VASP oligomerization and its binding to profilin, a G-actin chaperone. Actin polymerization is required for tension generation during the contraction of airway smooth muscle (ASM); however, the role of VASP in regulating actin dynamics in ASM is not known. We stimulated ASM cells and tissues with the contractile agonist acetylcholine (ACh) or the adenylyl cyclase activator, forskolin (FSK), a dilatory agent. ACh and FSK stimulated VASP Ser(157) phosphorylation by different kinases. Inhibition of VASP Ser(157) phosphorylation by expression of the mutant VASP S157A in ASM tissues suppressed VASP phosphorylation and membrane localization in response to ACh, and also inhibited contraction and actin polymerization. ACh but not FSK triggered the formation of VASP-VASP complexes as well as VASP-vinculin and VASP-profilin complexes at membrane sites. VASP-VASP complex formation and the interaction of VASP with vinculin and profilin were inhibited by expression of the inactive vinculin mutant, vinculin Y1065F, but VASP phosphorylation and membrane localization were unaffected. We conclude that VASP phosphorylation at Ser(157) mediates its localization at the membrane, but that VASP Ser(157) phosphorylation and membrane localization are not sufficient to activate its actin catalytic activity. The interaction of VASP with activated vinculin at membrane adhesion sites is a necessary prerequisite for VASP-mediated molecular processes necessary for actin polymerization. Our results show that VASP is a critical regulator of actin dynamics and tension generation during the contractile activation of ASM.

  17. Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment

    PubMed Central

    Kavurma, Mary M.; Figg, Nichola; Bennett, Martin R.; Mercer, John; Khachigian, Levon M.; Littlewood, Trevor D.

    2007-01-01

    Apoptosis of VSMCs (vascular smooth-muscle cells) leads to features of atherosclerotic plaque instability. We have demonstrated previously that plaque-derived VSMCs have reduced IGF1 (insulin-like growth factor 1) signalling, resulting from a decrease in the expression of IGF1R (IGF1 receptor) compared with normal aortic VSMCs [Patel, Zhang, Siddle, Soos, Goddard, Weissberg and Bennett (2001) Circ. Res. 88, 895–902]. In the present study, we show that apoptosis induced by oxidative stress is inhibited by ectopic expression of IGF1R. Oxidative stress repressed IGF1R expression at multiple levels, and this was also blocked by mutant p53. Oxidative stress also induced p53 phosphorylation and apoptosis in VSMCs. p53 negatively regulated IGF1R promoter activity and expression and, consistent with this, p53−/− VSMCs demonstrated increased IGF1R expression, both in vitro and in advanced atherosclerotic plaques in vivo. Oxidative-stress-induced interaction of endogenous p53 with TBP (TATA-box-binding protein) was dependent on p53 phosphorylation. Oxidative stress also increased the association of p53 with HDAC1 (histone deacetylase 1). Trichostatin A, a specific HDAC inhibitor, or p300 overexpression relieved the repression of IGF1R following oxidative stress. Furthermore, acetylated histone-4 association with the IGF1R promoter was reduced in cells subjected to oxidative stress. These results suggest that oxidative-stress-induced repression of IGF1R is mediated by the association of phosphorylated p53 with the IGF1R promoter via TBP, and by the subsequent recruitment of chromatin-modifying proteins, such as HDAC1, to the IGF1R promoter–TBP–p53 complex. PMID:17600529

  18. Soluble epoxide hydrolase is involved in the development of atherosclerosis and arterial neointima formation by regulating smooth muscle cell migration.

    PubMed

    Wang, Qingjie; Huo, Leijun; He, Jinlong; Ding, Wenshuang; Su, Hang; Tian, Dongping; Welch, Carrie; Hammock, Bruce D; Ai, Ding; Zhu, Yi

    2015-12-01

    Epoxyeicosatrienoic acids (EETs) have beneficial effects on cardiovascular disease. Soluble epoxide hydrolase (sEH) metabolizes EETs to less active diols, thus diminishing their biological activity. sEH inhibitors can suppress the progression of atherosclerotic lesions in animal models. However, the regulation of sEH in vascular smooth muscle cells (VSMCs) and role of sEH in patients with atherosclerosis have not been evaluated. We hypothesize that sEH in VSMCs plays a pivotal role in atherosclerosis and injury-induced neointima formation. In this study, sEH expression in human autopsy atherosclerotic plaque was determined by immunohistochemistry. In cultured rat and human VSMCs, the phenotypic switching marker and sEH expression induced by platelet-derived growth factor-BB (PDGF-BB) were examined by Western blot analysis. Carotid-artery balloon injury was performed after adenovirus-mediated overexpression of sEH or oral administration of a potent sEH inhibitor in Sprague-Dawley rats. sEH was highly expressed in VSMCs of the intima and media within human atherosclerotic plaque. In vitro, PDGF-BB upregulated the expression in VSMCs after transcription and promoted cell proliferation and migration; the latter effect could be largely attenuated by an sEH inhibitor. Adenovirus-mediated overexpression of sEH could mimic the effect of PDGF-BB and induce VSMC proliferation and migration. In vivo, the sEH inhibitor led to a significant decrease in injury-induced neointima formation in a rat carotid-artery injury model. These data establish the effect of sEH expression on atherosclerotic progression and vascular remodeling after injury, thus identifying a novel integrative role for sEH in VSMC phenotypic modulation and migration. Blocking sEH activity may be a potential therapeutic approach for ameliorating vascular occlusive disease.

  19. Role of EGFR transactivation in angiotensin II signaling to extracellular regulated kinase in preglomerular smooth muscle cells.

    PubMed

    Andresen, Bradley T; Linnoila, Jenny J; Jackson, Edwin K; Romero, Guillermo G

    2003-03-01

    Angiotensin (Ang) II promotes the phosphorylation of extracellular regulated kinase (ERK); however, the mechanisms leading to Ang II-induced ERK phosphorylation are debated. The currently accepted theory involves transactivation of epidermal growth factor receptor (EGFR). We have shown that generation of phosphatidic acid (PA) is required for the recruitment of Raf to membranes and the activation of ERK by multiple agonists, including Ang II. In the present report, we confirm that phospholipase D-dependent generation of PA is required for Ang II-mediated phosphorylation of ERK in Wistar-Kyoto and spontaneously hypertensive rat preglomerular smooth muscle cells (PGSMCs). However, EGF stimulation does not activate phospholipase D or generate PA. These observations indicate that EGF recruits Raf to membranes via a mechanism that does not involve PA, and thus, Ang II-mediated phosphorylation of ERK is partially independent of EGFR-mediated signaling cascades. We hypothesized that phosphoinositide-3-kinase (PI3K) can also act to recruit Raf to membranes; therefore, inhibition of PI3K should inhibit EGF signaling to ERK. Wortmannin, a PI3K inhibitor, inhibited EGF-mediated phosphorylation of ERK (IC50, approximately 14 nmol/L). To examine the role of the EGFR in Ang II-mediated phosphorylation of ERK we utilized 100 nmol/L wortmannin to inhibit EGFR signaling to ERK and T19N RhoA to block Ang II-mediated ERK phosphorylation. Wortmannin treatment inhibited EGF-mediated but not Ang II-mediated phosphorylation of ERK. Furthermore, T19N RhoA inhibited Ang II-mediated ERK phosphorylation, whereas T19N RhoA had significantly less effect on EGF-mediated ERK phosphorylation. We conclude that transactivation of the EGFR is not primarily responsible for Ang II-mediated activation of ERK in PGSMCs.

  20. Glycogen synthase kinase 3 beta positively regulates Notch signaling in vascular smooth muscle cells: role in cell proliferation and survival.

    PubMed

    Guha, Shaunta; Cullen, John P; Morrow, David; Colombo, Alberto; Lally, Caitríona; Walls, Dermot; Redmond, Eileen M; Cahill, Paul A

    2011-09-01

    The role of glycogen synthase kinase 3 beta (GSK-3β) in modulating Notch control of vascular smooth muscle cell (vSMC) growth (proliferation and apoptosis) was examined in vitro under varying conditions of cyclic strain and validated in vivo following changes in medial tension and stress. Modulation of GSK-3β in vSMC following ectopic expression of constitutively active GSK-3β, siRNA knockdown and pharmacological inhibition with SB-216763 demonstrated that GSK-3β positively regulates Notch intracellular domain expression, CBF-1/RBP-Jκ transactivation and downstream target gene mRNA levels, while concomitantly promoting vSMC proliferation and inhibiting apoptosis. In contrast, inhibition of GSK-3β attenuated Notch signaling and decreased vSMC proliferation and survival. Exposure of vSMC to cyclic strain environments in vitro using both a Flexercell™ Tension system and a novel Sylgard™ phantom vessel following bare metal stent implantation revealed that cyclic strain inhibits GSK-3β activity independent of p42/p44 MAPK and p38 activation concomitant with reduced Notch signaling and decreased vSMC proliferation and survival. Exposure of vSMC to changes in medial strain microenvironments in vivo following carotid artery ligation revealed that enhanced GSK-3β activity was predominantly localized to medial and neointimal vSMC concomitant with increased Notch signaling, proliferating nuclear antigen and decreased Bax expression, respectively, as vascular remodeling progressed. GSK-3β is an important modulator of Notch signaling leading to altered vSMC cell growth where low strain/tension microenvironments prevail.

  1. MicroRNA MiR-199a-5p regulates smooth muscle cell proliferation and morphology by targeting WNT2 signaling pathway.

    PubMed

    Hashemi Gheinani, Ali; Burkhard, Fiona C; Rehrauer, Hubert; Aquino Fournier, Catharine; Monastyrskaya, Katia

    2015-03-13

    MicroRNA miR-199a-5p impairs tight junction formation, leading to increased urothelial permeability in bladder pain syndrome. Now, using transcriptome analysis in urothelial TEU-2 cells, we implicate it in the regulation of cell cycle, cytoskeleton remodeling, TGF, and WNT signaling pathways. MiR-199a-5p is highly expressed in the smooth muscle layer of the bladder, and we altered its levels in bladder smooth muscle cells (SMCs) to validate the pathway analysis. Inhibition of miR-199a-5p with antimiR increased SMC proliferation, reduced cell size, and up-regulated miR-199a-5p targets, including WNT2. Overexpression of WNT2 protein or treating SMCs with recombinant WNT2 closely mimicked the miR-199a-5p inhibition, whereas down-regulation of WNT2 in antimiR-expressing SMCs with shRNA restored cell phenotype and proliferation rates. Overexpression of miR-199a-5p in the bladder SMCs significantly increased cell size and up-regulated SM22, SM α-actin, and SM myosin heavy chain mRNA and protein levels. These changes as well as increased expression of ACTG2, TGFB1I1, and CDKN1A were mediated by up-regulation of the smooth muscle-specific transcriptional activator myocardin at mRNA and protein levels. Myocardin-related transcription factor A downstream targets Id3 and MYL9 were also induced. Up-regulation of myocardin was accompanied by down-regulation of WNT-dependent inhibitory Krüppel-like transcription factor 4 in miR-199a-5p-overexpressing cells. In contrast, Krüppel-like transcription factor 4 was induced in antimiR-expressing cells following the activation of WNT2 signaling, leading to repression of myocardin-dependent genes. MiR-199a-5p plays a critical role in the WNT2-mediated regulation of proliferative and differentiation processes in the smooth muscle and may behave as a key modulator of smooth muscle hypertrophy, which is relevant for organ remodeling.

  2. Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides.

    PubMed

    Wooldridge, Anne A; MacDonald, Justin A; Erdodi, Ferenc; Ma, Chaoyu; Borman, Meredith A; Hartshorne, David J; Haystead, Timothy A J

    2004-08-13

    Regulation of smooth muscle myosin phosphatase (SMPP-1M) is thought to be a primary mechanism for explaining Ca(2+) sensitization/desensitization in smooth muscle. Ca(2+) sensitization induced by activation of G protein-coupled receptors acting through RhoA involves phosphorylation of Thr-696 (of the human isoform) of the myosin targeting subunit (MYPT1) of SMPP-1M inhibiting activity. In contrast, agonists that elevate intracellular cGMP and cAMP promote Ca(2+) desensitization in smooth muscle through apparent activation of SMPP-1M. We show that cGMP-dependent protein kinase (PKG)/cAMP-dependent protein kinase (PKA) efficiently phosphorylates MYPT1 in vitro at Ser-692, Ser-695, and Ser-852 (numbering for human isoform). Although phosphorylation of MYPT1 by PKA/PKG has no direct effect on SMPP-1M activity, a primary site of phosphorylation is Ser-695, which is immediately adjacent to the inactivating Thr-696. In vitro, phosphorylation of Ser-695 by PKA/PKG appeared to prevent phosphorylation of Thr-696 by MYPT1K. In ileum smooth muscle, Ser-695 showed a 3-fold increase in phosphorylation in response to 8-bromo-cGMP. Addition of constitutively active recombinant MYPT1K to permeabilized smooth muscles caused phosphorylation of Thr-696 and Ca(2+) sensitization; however, this phosphorylation was blocked by preincubation with 8-bromo-cGMP. These findings suggest a mechanism of Ca(2+) desensitization in smooth muscle that involves mutual exclusion of phosphorylation, whereby phosphorylation of Ser-695 prevents phosphorylation of Thr-696 and therefore inhibition of SMPP-1M.

  3. 3-Hydroxymethyl coenzyme A reductase inhibition attenuates spontaneous smooth muscle tone via RhoA/ROCK pathway regulated by RhoA prenylation.

    PubMed

    Rattan, Satish

    2010-06-01

    RhoA prenylation may play an important step in the translocation of RhoA in the basal internal anal sphincter (IAS) smooth muscle tone. Statins inhibit downstream posttranslational RhoA prenylation by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibition (HMGCRI). The role of statins in relation to RhoA prenylation in the pathophysiology of the spontaneously tonic smooth muscle has not been investigated. In the present studies, we determined the effect of classical HMGCRI simvastatin on the basal IAS tone and RhoA prenylation and in the levels of RhoA/Rho kinase (ROCK) in the cytosolic vs. membrane fractions of the smooth muscle. Simvastatin produced concentration-dependent decrease in the IAS tone (via direct actions at the smooth muscle cells). The decrease in the IAS tone by simvastatin was associated with the decrease in the prenylation of RhoA, as well as RhoA/ROCK in the membrane fractions of the IAS, in the basal state. The inhibitory effects of the HMGCRI were completely reversible by geranylgeranyltransferase substrate geranylgeranyl pyrophosphate. Relaxation of the IAS smooth muscle via HMGCRI simvastatin is mediated via the downstream decrease in the levels of RhoA prenylation and ROCK activity. Studies support the concept that RhoA prenylation leading to RhoA/ROCK translocation followed by activation is important for the basal tone in the IAS. Data suggest that the role of HMG-CoA reductase may go beyond cholesterol biosynthesis, such as the regulation of the smooth muscle tone. The studies have important implications in the pathophysiological mechanisms and in the novel therapeutic approaches for anorectal motility disorders.

  4. Binding of the P2Y2 Nucleotide Receptor to Filamin A Regulates Migration of Vascular Smooth Muscle Cells

    PubMed Central

    Yu, Ningpu; Erb, Laurie; Shivaji, Rikka; Weisman, Gary A.; Seye, Cheikh I.

    2013-01-01

    The functional expression of the G protein– coupled P2Y2 nucleotide receptor (P2Y2R) has been associated with proliferation and migration of vascular smooth muscle cells (SMCs), 2 processes involved in atherosclerosis and restenosis. Activation of the P2Y2R causes dynamic reorganization of the actin cytoskeleton, which transmits biochemical signals and forces necessary for cell locomotion, suggesting that P2Y2Rs may be linked to the actin cytoskeleton. Here, we identified filamin A (FLNa) as a P2Y2R-interacting protein using a yeast 2-hybrid system screen with the C-terminal region of the P2Y2R as bait. The FLNa binding site in the P2Y2R is localized between amino acids 322 and 333. Deletion of this region led to selective loss of FLNa binding to the P2Y2R and abolished Tyr phosphorylation of FLNa induced by the P2Y2R agonist UTP. Using both time-lapse microscopy and the Transwell cell migration assay, we showed that UTP significantly increased SMC spreading on collagen I (6.8 fold; P≤0.01) and migration (3.6 fold; P≤0.01) of aortic SMCs isolated from wild-type mice, as compared with unstimulated SMCs. UTP-induced spreading and migration of aortic SMCs did not occur with cells isolated from P2Y2R knockout mice. Expression of the full-length P2Y2R in SMCs isolated from P2Y2R knockout mice restored both UTP-induced spreading and migration. In contrast, UTP-induced spreading and migration did not occur in SMCs isolated from P2Y2R knockout mice transfected with a mutant P2Y2R that does not bind FLNa. Furthermore, ex vivo studies showed that both ATP and UTP (10 µmol/L) promoted migration of SMCs out of aortic explants isolated from wild-type but not P2Y2R knockout mice. Thus, this study demonstrates that P2Y2R/FLNa interaction selectively regulates spreading and migration of vascular SMCs. PMID:18202316

  5. Differential regulation of phosphoinositide metabolism by alphaVbeta3 and alphaVbeta5 integrins upon smooth muscle cell migration.

    PubMed

    Paulhe, F; Racaud-Sultan, C; Ragab, A; Albiges-Rizo, C; Chap, H; Iberg, N; Morand, O; Perret, B

    2001-11-01

    Smooth muscle cell migration is a key step of atherosclerosis and angiogenesis. We demonstrate that alpha(V)beta(3) and alpha(V)beta(5) integrins synergistically regulate smooth muscle cell migration onto vitronectin. Using an original haptotactic cell migration assay, we measured a strong stimulation of phosphoinositide metabolism in migrating vascular smooth muscle cells. Phosphatidic acid production and phosphoinositide 3-kinase IA activation were triggered only upon alpha(V)beta(3) engagement. Blockade of alpha(V)beta(3) engagement or phospholipase C activity resulted in a strong inhibition of smooth muscle cell spreading on vitronectin. By contrast, blockade of alpha(V)beta(5) reinforced elongation and polarization of cell shape. Moreover, Pyk2-associated tyrosine kinase and phosphoinositide 4-kinase activities measured in Pyk2 immunoprecipitates were stimulated upon cell migration. Blockade of either alpha(V)beta(3) or alpha(V)beta(5) function, as well as inhibition of phospholipase C activity, decreased both Pyk2-associated activities. We demonstrated that the Pyk2-associated phosphoinositide 4-kinase corresponded to the beta isoform. Our data point to the metabolism of phosphoinositides as a regulatory pathway for the differential roles played by alpha(V)beta(3) and alpha(V)beta(5) upon cell migration and identify the Pyk2-associated phosphoinositide 4-kinase beta as a common target for both integrins.

  6. Sexual Dimorphism in the Regulation of Estrogen, Progesterone, and Androgen Receptors by Sex Steroids in the Rat Airway Smooth Muscle Cells.

    PubMed

    Zarazúa, Abraham; González-Arenas, Aliesha; Ramírez-Vélez, Gabriela; Bazán-Perkins, Blanca; Guerra-Araiza, Christian; Campos-Lara, María G

    2016-01-01

    The role of sex hormones in lung is known. The three main sex steroid receptors, estrogen, progesterone, and androgen, have not been sufficiently studied in airway smooth muscle cells (ASMC), and the sex hormone regulation on these receptors is unknown. We examined the presence and regulation of sex hormone receptors in female and male rat ASMC by Western blotting and flow cytometry. Gonadectomized rats were treated with 17β-estradiol, progesterone, 17β-estradiol + progesterone, or testosterone. ASMC were enzymatically isolated from tracheas and bronchi. The experiments were performed with double staining flow cytometry (anti-α-actin smooth muscle and antibodies to each hormone receptor). ERα, ERβ, tPR, and AR were detected in females or males. ERα was upregulated by E2 and T and downregulated by P4 in females; in males, ERα was downregulated by P4, E + P, and T. ERβ was downregulated by each treatment in females, and only by E + P and T in males. tPR was downregulated by P4, E + P, and T in females. No hormonal regulation was observed in male receptors. AR was downregulated in males treated with E + P and T. We have shown the occurrence of sex hormone receptors in ASMC and their regulation by the sex hormones in female and male rats. PMID:27110242

  7. Sexual Dimorphism in the Regulation of Estrogen, Progesterone, and Androgen Receptors by Sex Steroids in the Rat Airway Smooth Muscle Cells

    PubMed Central

    Zarazúa, Abraham; González-Arenas, Aliesha; Ramírez-Vélez, Gabriela; Bazán-Perkins, Blanca; Guerra-Araiza, Christian; Campos-Lara, María G.

    2016-01-01

    The role of sex hormones in lung is known. The three main sex steroid receptors, estrogen, progesterone, and androgen, have not been sufficiently studied in airway smooth muscle cells (ASMC), and the sex hormone regulation on these receptors is unknown. We examined the presence and regulation of sex hormone receptors in female and male rat ASMC by Western blotting and flow cytometry. Gonadectomized rats were treated with 17β-estradiol, progesterone, 17β-estradiol + progesterone, or testosterone. ASMC were enzymatically isolated from tracheas and bronchi. The experiments were performed with double staining flow cytometry (anti-α-actin smooth muscle and antibodies to each hormone receptor). ERα, ERβ, tPR, and AR were detected in females or males. ERα was upregulated by E2 and T and downregulated by P4 in females; in males, ERα was downregulated by P4, E + P, and T. ERβ was downregulated by each treatment in females, and only by E + P and T in males. tPR was downregulated by P4, E + P, and T in females. No hormonal regulation was observed in male receptors. AR was downregulated in males treated with E + P and T. We have shown the occurrence of sex hormone receptors in ASMC and their regulation by the sex hormones in female and male rats. PMID:27110242

  8. The smooth muscle-selective RhoGAP GRAF3 is a critical regulator of vascular tone and hypertension

    PubMed Central

    Bai, Xue; Lenhart, Kaitlin C.; Bird, Kim E.; Suen, Alisa A.; Rojas, Mauricio; Kakoki, Masao; Li, Feng; Smithies, Oliver; Mack, Christopher P.; Taylor, Joan M.

    2014-01-01

    Although hypertension is a worldwide health issue, an incomplete understanding of its etiology has hindered our ability to treat this complex disease. Here we identify arhgap42 (also known as GRAF3) as a Rho-specific GAP expressed specifically in smooth muscle cells in mice and humans. We show that GRAF3-deficient mice exhibit significant hypertension and increased pressor responses to angiotensin II and endothelin-1; these effects are prevented by treatment with the Rho-kinase inhibitor, Y-27632. RhoA activity and myosin light chain phosphorylation are elevated in GRAF3-depleted smooth muscle cells in vitro and in vivo, and isolated vessel segments from GRAF3-deficient mice show increased contractility. Taken together our data indicate that GRAF3-mediated inhibition of RhoA activity in vascular smooth muscle cells is necessary for maintaining normal blood pressure homeostasis. Moreover, these findings provide a potential mechanism for a hypertensive locus recently identified within arhgap42 and provide a foundation for the future development of innovative hypertension therapies. PMID:24335996

  9. 7 CFR 51.636 - Smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Smooth texture. 51.636 Section 51.636 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...) Definitions § 51.636 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety...

  10. 7 CFR 51.1159 - Smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Smooth texture. 51.1159 Section 51.1159 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.1159 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety...

  11. 7 CFR 51.698 - Smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Smooth texture. 51.698 Section 51.698 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.698 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and...

  12. 7 CFR 51.698 - Smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Smooth texture. 51.698 Section 51.698 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.698 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and...

  13. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Smooth texture. 51.768 Section 51.768 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of...

  14. 7 CFR 51.698 - Smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Smooth texture. 51.698 Section 51.698 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.698 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and...

  15. 7 CFR 51.636 - Smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Smooth texture. 51.636 Section 51.636 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...) Definitions § 51.636 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety...

  16. 7 CFR 51.636 - Smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Smooth texture. 51.636 Section 51.636 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...) Definitions § 51.636 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety...

  17. 7 CFR 51.1159 - Smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Smooth texture. 51.1159 Section 51.1159 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.1159 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety...

  18. Rare Copy Number Variants Disrupt Genes Regulating Vascular Smooth Muscle Cell Adhesion and Contractility in Sporadic Thoracic Aortic Aneurysms and Dissections

    PubMed Central

    Prakash, Siddharth K.; LeMaire, Scott A.; Guo, Dong-Chuan; Russell, Ludivine; Regalado, Ellen S.; Golabbakhsh, Hossein; Johnson, Ralph J.; Safi, Hazim J.; Estrera, Anthony L.; Coselli, Joseph S.; Bray, Molly S.; Leal, Suzanne M.; Milewicz, Dianna M.; Belmont, John W.

    2010-01-01

    Thoracic aortic aneurysms and dissections (TAAD) cause significant morbidity and mortality, but the genetic origins of TAAD remain largely unknown. In a genome-wide analysis of 418 sporadic TAAD cases, we identified 47 copy number variant (CNV) regions that were enriched in or unique to TAAD patients compared to population controls. Gene ontology, expression profiling, and network analysis showed that genes within TAAD CNVs regulate smooth muscle cell adhesion or contractility and interact with the smooth muscle-specific isoforms of α-actin and β-myosin, which are known to cause familial TAAD when altered. Enrichment of these gene functions in rare CNVs was replicated in independent cohorts with sporadic TAAD (STAAD, n = 387) and inherited TAAD (FTAAD, n = 88). The overall prevalence of rare CNVs (23%) was significantly increased in FTAAD compared with STAAD patients (Fisher's exact test, p = 0.03). Our findings suggest that rare CNVs disrupting smooth muscle adhesion or contraction contribute to both sporadic and familial disease. PMID:21092924

  19. An Egr-1-specific DNAzyme regulates Egr-1 and proliferating cell nuclear antigen expression in rat vascular smooth muscle cells

    PubMed Central

    ZHANG, JUNBIAO; GUO, CHANGLEI; WANG, RAN; HUANG, LULI; LIANG, WANQIAN; LIU, RUNNAN; SUN, BING

    2013-01-01

    The aim of the present study was to transfect rat aortic smooth muscle cells with an early growth response factor-1 (Egr-1)-specific DNAzyme (ED5), to observe its effect on Egr-1 and proliferating cell nuclear antigen (PCNA) expression and to elucidate the mechanism of ED5-mediated inhibition of vascular smooth muscle cell (VSMC) proliferation. VSMCs in primary culture obtained by tissue block adhesion were identified by morphological observation and α smooth muscle actin (α-SM-actin) immunocytochemistry. The cells were then transfected with ED5 or scrambled ED5 (ED5SCR). The three groups of cells used in the present study were the control group, ED5 group and ED5SCR group. The expression levels of Egr-1 and PCNA protein were detected following transfection by analyzing and calculating the integral optical density value in each group. Primary culture of VSMCs and transfection of ED5 and ED5SCR were successfully accomplished. Following stimulation with 10% fetal calf serum, the Egr-1 protein was expressed most strongly at 1 h and demonstrated a declining trend over time; the expression of PCNA protein began at 4 h, peaked at 24 h and then demonstrated a slightly declining trend over time. Compared with the control group and the ED5SCR group, ED5 inhibited the expression of Egr-1 and PCNA (P<0.05). ED5 was able to inhibit the expression of Egr-1 and PCNA proteins in VSMCs to a certain extent and VSMC proliferation in vitro. DNAzyme gene therapy may be useful as a new method for treating vascular proliferative diseases, including atherosclerosis and restenosis. PMID:23737882

  20. Smooth Sailing.

    ERIC Educational Resources Information Center

    Price, Beverley; Pincott, Maxine; Rebman, Ashley; Northcutt, Jen; Barsanti, Amy; Silkunas, Betty; Brighton, Susan K.; Reitz, David; Winkler, Maureen

    1999-01-01

    Presents discipline tips from several teachers to keep classrooms running smoothly all year. Some of the suggestions include the following: a bear-cave warning system, peer mediation, a motivational mystery, problem students acting as the teacher's assistant, a positive-behavior-reward chain, a hallway scavenger hunt (to ensure quiet passage…

  1. Leptin stimulates endothelin-1 expression via extracellular signal-regulated kinase by epidermal growth factor receptor transactivation in rat aortic smooth muscle cells.

    PubMed

    Chao, Hung-Hsing; Hong, Hong-Jye; Liu, Ju-Chi; Lin, Jia-Wei; Chen, Yen-Ling; Chiu, Wen-Ta; Wu, Chieh-Hsi; Shyu, Kou-Gi; Cheng, Tzu-Hurng

    2007-11-14

    Obesity is a major risk factor for the development of hypertension. Recent studies have suggested that leptin, a 167-amino acid peptide hormone produced by white adipose tissue, is related to the pathogenesis of obesity-related hypertension. However, the signaling mechanisms underlying the effects of leptin remain to be extensively examined. In this study, we found that leptin induced extracellular signal-regulated kinase phosphorylation and endothelin-1 expression in rat aortic smooth muscle cells. Both PD98059 and U0126, inhibitors of the upstream activator of mitogen-activated protein kinase kinase, inhibited augmentation of endothelin-1 expression stimulated with leptin. Leptin induced significant tyrosine phosphorylation of epidermal growth factor receptor, which was significantly attenuated by two inhibitors, an epidermal growth factor receptor tyrosine kinase inhibitor, AG1478, and a broad-spectrum matrix metalloproteinase inhibitor, GM6001. This indicates that the pathway of epidermal growth factor receptor transactivation induced by leptin is dependent on proteolytically released epidermal growth factor receptor ligands. Pretreatment of cells with AG1478 significantly reduced the degree of phosphorylation of extracellular signal-regulated kinase and endothelin-1 expression. Our results reveal that epidermal growth factor receptor transactivation is involved in the leptin signaling pathway in vascular smooth muscle cells, which may be related to the increased risk of hypertension and other cardiovascular diseases in obese subjects. PMID:17678888

  2. Regulation of vascular smooth muscle cell autophagy by DNA nanotube-conjugated mTOR siRNA.

    PubMed

    You, Zaichun; Qian, Hang; Wang, Changzheng; He, Binfeng; Yan, Jiawei; Mao, Chengde; Wang, Guansong

    2015-10-01

    The efficient delivery of short interfering RNA (siRNA) is an enormous challenge in the field of gene therapy. Herein, we report a delivery nanosystem based on programmed DNA self-assembly mammalian target of rapamycin (mTOR) siRNA-loaded DNA nanotubes (DNA-NTs). We demonstrate that these siRNA-DNA-NTs can be effectively transfected into pulmonary arterial smooth muscle cells (PASMCs) via endocytosis; and that the loaded mTOR siRNA can induce obvious autophagy and inhibit cell growth under both normal and hypoxic conditions. Moreover, we found that mTOR siRNA can control the autophagy and proliferation of PASMCs under hypoxic condition, suggesting a potential therapeutic application for mTOR siRNA in diseases involving abnormal autophagy in PASMCs.

  3. Calcium regulation in aortic smooth muscle cells during the initial phase of tunicamycin-induced endo/sarcoplasmic reticulum stress.

    PubMed

    Ziomek, Gabriela; Cheraghi Zanjani, Parisa; Arman, Darian; van Breemen, Cornelis; Esfandiarei, Mitra

    2014-07-15

    Endo/sarcoplasmic reticulum stress and the unfolded protein response have been implicated as underlying mechanisms of cell death in many pathological conditions. We have confirmed that long-term exposure to 10µM tunicamycin induced the endo/sarcoplasmic reticulum stress in cultured vascular smooth muscle cells. Since tunicamycin is reported to induce the stress response by inhibiting protein glycosylation, we attempted to investigate a causal link between accumulation of unfolded proteins and dysregulation of cellular calcium transport. However, we found that tunicamycin caused an immediate release of calcium from the endo/sarcoplasmic reticulum, which was sensitive to thapsigargin, and an influx of calcium through the plasma membrane, resulting in a significant increase in cytoplasmic calcium and depletion of endo/sarcoplasmic reticulum calcium. Furthermore, we observed that tunicamycin also induced contraction in intact vascular smooth muscle. By applying established procedures and antagonists, we established that tunicamycin did not directly activate physiological calcium channels, such as store-operated channels, voltage gated calcium channels, ryanodine receptors or inositol trisphosphate receptors. Instead, we found that its effects on cellular calcium fluxes closely resembled those of the known calcium ionophore, ionomycin. We have concluded that tunicamycin directly permeabilizes the plasma membrane and endo/sarcoplasmic reticulum to calcium, and is, therefore, inappropriate for studying the relationship between accumulation of unfolded proteins and endo/sarcoplasmic reticulum calcium dysregulation during the endo/sarcoplasmic reticulum stress response. In contrast, we also report that two other well-known endo/sarcoplasmic reticulum stress inducers, brefeldin A and dithiothreitol, did not exhibit similar increases in calcium permeability.

  4. Cross-talk between p(38)MAPK and G iα in regulating cPLA 2 activity by ET-1 in pulmonary smooth muscle cells.

    PubMed

    Chakraborti, Sajal; Chowdhury, Animesh; Chakraborti, Tapati

    2015-02-01

    Endothelin-1 (ET-1) is known as the most potent vasoconstrictor yet described. Infusion of ET-1 into isolated rabbit lung has been shown to cause pulmonary vasoconstriction with the involvement of arachidonic acid metabolites. Given the potency of arachidonic acid metabolites, the activity of phospholipase A2 must be tightly regulated. Herein, we determined the mechanisms by which ET-1 stimulates cPLA2 activity during ET-1 stimulation of bovine pulmonary artery smooth muscle cells. We demonstrated that (i) treatment of bovine pulmonary artery smooth muscle cells with ET-1 stimulates cPLA2 activity in the cell membrane; (ii) ET-1 caused increase in O 2 (·-) production occurs via NADPH oxidase-dependent mechanism; (iii) ET-1-stimulated NADPH oxidase activity is markedly prevented upon pretreatment with PKC-ζ inhibitor, indicating that PKC-ζ plays a prominent role in this scenario; (iv) ET-1-induced NADPH oxidase-derived O 2 (·-) stimulates an aprotinin sensitive protease activity due to prominent increase in [Ca(2+)]i; (v) the aprotinin sensitive protease plays a pivotal role in activating PKC-α, which in turn phosphorylates p(38)MAPK and subsequently Giα leading to the activation of cPLA2. Taken together, we suggest that cross-talk between p(38)MAPK and Giα with the involvement of PKC-ζ, NADPH oxidase-derived O 2 (·-) , [Ca(2+)]i, aprotinin-sensitive protease and PKC-α play a pivotal role for full activation of cPLA2 during ET-1 stimulation of pulmonary artery smooth muscle cells.

  5. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    SciTech Connect

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  6. Regulation of vascular smooth muscle cells on poly(ethylene terephthalate) film by O-carboxymethylchitosan surface immobilization.

    PubMed

    Zhu, Ai-Ping; Zhao, Feng; Fang, Ning

    2008-08-01

    Specifying the chemical environment of cells is a well-established method of controlling cellular behaviors. In this study, poly(ethylene terephthalate) (PET) film was selected as a typical biomaterial to detect the effects of chemical modifications on material surface in controlling cell behaviors. Natural biopolymer chitosan and its biocompatible derivative, O-carboxymethylchitosan (OCMCS) were surface immobilized on PET, respectively, via argon plasma followed by graft copolymerization with acrylic acid (AAc), which was exploited to covalently couple PET with chitosan (CS) and OCMCS molecules. Smooth muscle cells (SMCs) displayed a surface-dependent cell spreading and cytoskeletal organization. The cells spread with a more pronounced elongated spindle shape, smaller cell area, and lower cell shape index (CSI) on OCMCS-modified PET surface than on PET, or the PAA and chitosan-immobilized PET surfaces after 24 h of culture. Cell-culture viability after 5 days showed that all the modified materials possessed good cell proliferation. Our results suggest that cell adhesion, morphology, and growth can be mediated not only by varying the functional groups, electric charge, and wettability of PET surface but also by the specific biological recognition elicited from the biomaterials. These findings strongly support the concept that the microenvironment significantly influences cell behavior, highlighting the importance of environmental material biochemistry in cell-based tissue engineering schemes. PMID:17975820

  7. Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNF{alpha}-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

    SciTech Connect

    Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu; Potts, Jay D.; Tang, Dong-Qi; Li, Dong-Sheng; Cui, Taixing

    2010-01-01

    Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNF{alpha})-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNF{alpha}-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNF{alpha} hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.

  8. A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells.

    PubMed

    Mughal, W; Nguyen, L; Pustylnik, S; da Silva Rosa, S C; Piotrowski, S; Chapman, D; Du, M; Alli, N S; Grigull, J; Halayko, A J; Aliani, M; Topham, M K; Epand, R M; Hatch, G M; Pereira, T J; Kereliuk, S; McDermott, J C; Rampitsch, C; Dolinsky, V W; Gordon, J W

    2015-01-01

    Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify cooperating partners of the myocyte enhancer factor-2 (MEF2) family of transcription factors, known regulators of muscle differentiation and metabolic function. We demonstrate that MEF2 and the serum response factor (SRF) collaboratively regulate the expression of numerous muscle-specific genes, including microRNA-133a (miR-133a). Using tandem mass spectrometry techniques, we identify a conserved phosphorylation motif within the MEF2 and SRF Mcm1 Agamous Deficiens SRF (MADS)-box that regulates miR-133a expression and mitochondrial function in response to a lipotoxic signal. Furthermore, reconstitution of MEF2 function by expression of a neutralizing mutation in this identified phosphorylation motif restores miR-133a expression and mitochondrial membrane potential during lipotoxicity. Mechanistically, we demonstrate that miR-133a regulates mitochondrial function through translational inhibition of a mitophagy and cell death modulating protein, called Nix. Finally, we show that rodents exposed to gestational diabetes during fetal development display muscle diacylglycerol accumulation, concurrent with insulin resistance, reduced miR-133a, and elevated Nix expression, as young adult rats. Given the diverse roles of miR-133a and Nix in regulating mitochondrial function, and proliferation in certain cancers, dysregulation of this genetic pathway may have broad implications involving insulin resistance, cardiovascular disease, and cancer biology. PMID:26512955

  9. MMP-1 and MMP-9 regulate epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells.

    PubMed

    Rao, Velidi H; Kansal, Vikash; Stoupa, Samantha; Agrawal, Devendra K

    2014-02-01

    Mechanisms underlying the rupture of atherosclerotic plaque, a crucial factor in the development of myocardial infarction and stroke, are not well defined. Here, we examined the role of epidermal growth factor (EGF)-mediated matrix metalloproteinases (MMP) on the stability of interstitial collagens in vascular smooth muscle cells (VSMCs) isolated from carotid endarterectomy tissues of symptomatic and asymptomatic patients with carotid stenosis. VSMCs isolated from the carotid plaques of both asymptomatic and symptomatic patients were treated with EGF. The MMP-9 activity was quantified by gelatin zymography and the analysis of mRNA transcripts and protein for MMP-9, MMP-1, EGFR and collagen types I, Col I(α1) and collagen type III, Col III(α1) were analyzed by qPCR and immunofluorescence, respectively. The effect of EGF treatment to increase MMP-9 activity and mRNA transcripts for MMP-9, MMP-1, and EGFR and to decrease mRNA transcripts for Col I(α1) and Col III(α1) was threefold to fourfold greater in VSMCs isolated from the carotid plaques of symptomatic than asymptomatic patients. Inhibitors of EGFR (AG1478) and a small molecule inhibitor of MMP-9 decreased the MMP9 expression and upregulated Col I(α1) and Col III(α1) in EGF-treated VSMCs of both groups. Additionally, the magnitude in decreased MMP-9 mRNA and increased Col I(α1) and Col III(α1) due to knockdown of MMP-9 gene with siRNA in EGF-treated VSMCs was significantly greater in the symptomatic group than the asymptomatic group. Thus, a selective blockade of both EGFR and MMP-9 may be a novel strategy and a promising target for stabilizing vulnerable plaques in patients with carotid stenosis.

  10. Plasminogen Activator Inhibitor-1 and Vitronectin Expression Level and Stoichiometry Regulate Vascular Smooth Muscle Cell Migration through Physiological Collagen Matrices

    PubMed Central

    Garg, N.; Goyal, N.; Strawn, T. L.; Wu, J.; Mann, K. M.; Lawrence, D. A.; Fay, W. P.

    2010-01-01

    Summary Background Vascular smooth muscle cell (VSMC) migration is a critical process in arterial remodeling. Purified plasminogen activator inhibitor-1 (PAI-1) is reported to both promote and inhibit VSMC migration on 2-dimensional (D) surfaces. Objective To determine the effects of PAI-1 and vitronectin (VN) expressed by VSMC themselves on migration through physiological collagen matrices. Methods We studied migration of wild-type (WT), PAI-1-deficient, VN-deficient, PAI-1/VN doubly-deficient (DKO), and PAI-1-transgenic (Tg) VSMC through 3-D collagen gels. Results WT VSMC migrated significantly slower than PAI-1- and VN-deficient VSMC, but significantly faster than DKO VSMC. Experiments with recombinant PAI-1 suggested that basal VSMC PAI-1 expression inhibits migration by binding VN, which is secreted by VSMC and binds collagen. However, PAI-1-over-expressing Tg VSMC migrated faster than WT VSMC. Reconstitution experiments with recombinant PAI-1 mutants suggested that the pro-migratory effect of PAI-1 over-expression required its anti-plasminogen activator (PA) and LDL receptor-related protein (LRP) binding functions, but not VN binding. While promoting VSMC migration in the absence of PAI-1, VN inhibited the pro-migratory effect of active PAI-1. Conclusions In isolation, VN and PAI-1 are each pro-migratory. However, via formation of a high-affinity, non-motogenic complex, PAI-1 and VN each buffers the other's pro-migratory effect. The level of PAI-1 expression by VSMC and the concentration of VN in extracellular matrix are critical determinants of whether PAI-1 and VN promote or inhibit migration. These findings help to rectify previously conflicting reports and suggest that PAI-1/VN stoichiometry plays an important role in VSMC migration and vascular remodeling. PMID:20492459

  11. BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway.

    PubMed

    Zhu, Dongxing; Mackenzie, Neil Charles Wallace; Shanahan, Catherine M; Shroff, Rukshana C; Farquharson, Colin; MacRae, Vicky Elizabeth

    2015-01-01

    The process of vascular calcification shares many similarities with that of physiological skeletal mineralization, and involves the deposition of hydroxyapatite crystals in arteries. However, the cellular mechanisms responsible have yet to be fully explained. Bone morphogenetic protein (BMP-9) has been shown to exert direct effects on both bone development and vascular function. In the present study, we have investigated the role of BMP-9 in vascular smooth muscle cell (VSMC) calcification. Vessel calcification in chronic kidney disease (CKD) begins pre-dialysis, with factors specific to the dialysis milieu triggering accelerated calcification. Intriguingly, BMP-9 was markedly elevated in serum from CKD children on dialysis. Furthermore, in vitro studies revealed that BMP-9 treatment causes a significant increase in VSMC calcium content, alkaline phosphatase (ALP) activity and mRNA expression of osteogenic markers. BMP-9-induced calcium deposition was significantly reduced following treatment with the ALP inhibitor 2,5-Dimethoxy-N-(quinolin-3-yl) benzenesulfonamide confirming the mediatory role of ALP in this process. The inhibition of ALK1 signalling using a soluble chimeric protein significantly reduced calcium deposition and ALP activity, confirming that BMP-9 is a physiological ALK1 ligand. Signal transduction studies revealed that BMP-9 induced Smad2, Smad3 and Smad1/5/8 phosphorylation. As these Smad proteins directly bind to Smad4 to activate target genes, siRNA studies were subsequently undertaken to examine the functional role of Smad4 in VSMC calcification. Smad4-siRNA transfection induced a significant reduction in ALP activity and calcium deposition. These novel data demonstrate that BMP-9 induces VSMC osteogenic differentiation and calcification via ALK1, Smad and ALP dependent mechanisms. This may identify new potential therapeutic strategies for clinical intervention.

  12. Role of cAMP-Phosphodiesterase 1C Signaling in Regulating Growth Factor Receptor Stability, Vascular Smooth Muscle Cell Growth, Migration, and Neointimal Hyperplasia

    PubMed Central

    Cai, Yujun; Nagel, David J.; Zhou, Qian; Cygnar, Katherine D.; Zhao, Haiqing; Li, Faqian; Pi, Xinchun; Knight, Peter A.; Yan, Chen

    2015-01-01

    Objective Neointimal hyperplasia characterized by abnormal accumulation of vascular smooth muscle cells (SMCs) is a hallmark of occlusive disorders such as atherosclerosis, post-angioplasty restenosis, vein graft stenosis, and allograft vasculopathy. Cyclic nucleotides are vital in SMC proliferation and migration, which are regulated by cyclic nucleotide phosphodiesterases (PDEs). Our goal is to understand the regulation and function of PDEs in SMC pathogenesis of vascular diseases. Methods & Results We performed screening for genes differentially expressed in normal contractile versus proliferating synthetic SMCs. We observed that PDE1C expression was low in contractile SMCs but drastically elevated in synthetic SMCs in vitro and in various mouse vascular injury models in vivo. Additionally, PDE1C was highly induced in neointimal SMCs of human coronary arteries. More importantly, injury-induced neointimal formation was significantly attenuated by PDE1C deficiency or PDE1 inhibition in vivo. PDE1 inhibition suppressed vascular remodeling of human saphenous vein explants ex vivo. In cultured SMCs, PDE1C deficiency or PDE1 inhibition attenuated SMC proliferation and migration. Mechanistic studies revealed that PDE1C plays a critical role in regulating the stability of growth factor receptors, such as PDGF-receptor-beta (PDGFRβ) known to be important in pathological vascular remodeling. PDE1C interacts with LDL-receptor-related-protein-1 (LRP1) and PDGFRβ, thus regulating PDGFRβ endocytosis and lysosome-dependent degradation in an LRP1-dependent manner. A transmembrane-adenylyl-cyclase (tmAC)-cAMP-PKA cascade modulated by PDE1C is critical in regulating PDGFRβ degradation. Conclusion These findings demonstrated that PDE1C is an important regulator of SMC proliferation, migration, and neointimal hyperplasia, in part through modulating endosome/lysosome dependent PDGFRβ protein degradation via LRP1. PMID:25608528

  13. MiR-138 promotes smooth muscle cells proliferation and migration in db/db mice through down-regulation of SIRT1

    SciTech Connect

    Xu, Juan; Li, Li; Yun, Hui-fang; Han, Ye-shan

    2015-08-07

    Background: Diabetic vascular smooth muscle cells (VSMCs) exhibit significantly increased rates of proliferation and migration, which was the most common pathological change in atherosclerosis. In addition, the study about the role for miRNAs in the regulation of VSMC proliferation is just beginning to emerge and additional miRNAs involved in VSMC proliferation modulation should be identified. Methods: The expression of miR-138 and SIRT1 were examined in SMCs separated from db/db mice and in SMC lines C-12511 exposed to high glucose with qRT-PCR and western blot. The regulation of miR-138 on the expression of SMCs was detected with luciferase report assay. VSMCs proliferation and migration assays were performed to examine the effect of miR-138 inhibitor on VSMCs proliferation and migration. Results: We discovered that higher mRNA level of miR-138 and reduced expression of SIRT1 were observed in SMCs separated from db/db mice and in SMC lines C-12511. Moreover, luciferase report assay showed that the activity of SIRT1 3′-UTR was highly increased by miR-138 inhibitor and reduced by miR-138 mimic. In addition, we examined that the up-regulation of NF-κB induced by high glucose in SMCs was reversed by resveratrol and miR-138 inhibitor. MTT and migration assays showed that miR-138 inhibitor attenuated the proliferation and migration of smooth muscle cells. Conclusion: In this study, we revealed that miR-138 might promote proliferation and migration of SMC in db/db mice through suppressing the expression of SIRT1. - Highlights: • Higher mRNA level of miR-138 was observed in SMCs from db/db mice. • The mRNA and protein level of SIRT1 in SMCs from db/db mice were greatly reduced. • miR-138 could regulate the expression of SIRT1 in SMCs. • SIRT1 overexpression reversed the up-regulation of acetylized p65 and NF-κB induced by high glucose. • MiR-138 inhibitor reversed VSMCs proliferation and migration induced by high glucose.

  14. Endothelial Cells Can Regulate Smooth Muscle Cells in Contractile Phenotype through the miR-206/ARF6&NCX1/Exosome Axis.

    PubMed

    Lin, Xiao; He, Yu; Hou, Xue; Zhang, Zhenming; Wang, Rui; Wu, Qiong

    2016-01-01

    Active interactions between endothelial cells and smooth muscle cells (SMCs) are critical to maintaining the SMC phenotype. Exosomes play an important role in intercellular communication. However, little is known about the mechanisms that regulate endothelial cells and SMCs crosstalk. We aimed to determine the mechanisms underlying the regulation of the SMC phenotype by human umbilical vein endothelial cells (HUVECs) through exosomes. We found that HUVECs overexpressing miR-206 upregulated contractile marker (α-SMA, Smoothelin and Calponin) mRNA expression in SMCs. We also found that the expression of miR-206 by HUVECs reduced exosome production by regulating ADP-Ribosylation Factor 6 (ARF6) and sodium/calcium exchanger 1 (NCX1). Using real-time PCR and western blot analysis, we showed that HUVEC-derived exosomes decreased the expression of contractile phenotype marker genes (α-SMA, Smoothelin and Calponin) in SMCs. Furthermore, a reduction of the miR-26a-containing exosomes secreted from HUVECs affects the SMC phenotype. We propose a novel mechanism in which miR-206 expression in HUVECs maintains the contractile phenotype of SMCs by suppressing exosome secretion from HUVECs, particularly miR-26a in exosomes, through targeting ARF6 and NCX1. PMID:27031991

  15. Positive regulation of the Egr-1/osteopontin positive feedback loop in rat vascular smooth muscle cells by TGF-{beta}, ERK, JNK, and p38 MAPK signaling

    SciTech Connect

    Yu, Hong-Wei; Liu, Qi-Feng; Liu, Gui-Nan

    2010-05-28

    Previous studies identified a positive feedback loop in rat vascular smooth muscle cells (VSMCs) in which early growth response factor-1 (Egr-1) binds to the osteopontin (OPN) promoter and upregulates OPN expression, and OPN upregulates Egr-1 expression via the extracellular signal-regulated protein kinase (ERK) signaling pathway. The current study examined whether transforming growth factor-{beta} (TGF-{beta}) activity contributes to Egr-1 binding to the OPN promoter, and whether other signaling pathways act downstream of OPN to regulate Egr-1 expression. ChIP assays using an anti-Egr-1 antibody showed that amplification of the OPN promoter sequence decreased in TGF-{beta} DNA enzyme-transfected VSMCs relative to control VSMCs. Treatment of VSMCs with PD98059 (ERK inhibitor), SP600125 (JNK inhibitor), or SB203580 (p38 MAPK inhibitor) significantly inhibited OPN-induced Egr-1 expression, and PD98059 treatment was associated with the most significant decrease in Egr-1 expression. OPN-stimulated VSMC cell migration was inhibited by SP600125 or SB203580, but not by PD98059. Furthermore, MTT assays showed that OPN-mediated cell proliferation was inhibited by PD98059, but not by SP600125 or SB203580. Taken together, the results of the current study show that Egr-1 binding to the OPN promoter is positively regulated by TGF-{beta}, and that the p38 MAPK, JNK, and ERK pathways are involved in OPN-mediated Egr-1 upregulation.

  16. Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries.

    PubMed

    Krishnamoorthy, Gayathri; Sonkusare, Swapnil K; Heppner, Thomas J; Nelson, Mark T

    2014-04-01

    In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine receptors (RyRs) generate "Ca2+ sparks" that activate large-conductance, Ca2+ -, and voltage-sensitive potassium (BK) channels to oppose pressure-induced (myogenic) constriction. Here, we show that BK channels and RyRs have opposing roles in the regulation of arterial tone in response to sympathetic nerve activation by electrical field stimulation. Inhibition of BK channels with paxilline increased both myogenic and nerve-induced constrictions of pressurized, resistance-sized mesenteric arteries from mice. Inhibition of RyRs with ryanodine increased myogenic constriction, but it decreased nerve-evoked constriction along with a reduction in the amplitude of nerve-evoked increases in global intracellular Ca2+. In the presence of L-type voltage-dependent Ca2+ channel (VDCC) antagonists, nerve stimulation failed to evoke a change in arterial diameter, and BK channel and RyR inhibitors were without effect, suggesting that nerve- induced constriction is dependent on activation of VDCCs. Collectively, these results indicate that BK channels and RyRs have different roles in the regulation of myogenic versus neurogenic tone: whereas BK channels and RyRs act in concert to oppose myogenic vasoconstriction, BK channels oppose neurogenic vasoconstriction and RyRs augment it. A scheme for neurogenic vasoregulation is proposed in which RyRs act in conjunction with VDCCs to regulate nerve-evoked constriction in mesenteric resistance arteries.

  17. Divergent signaling pathways cooperatively regulate TGFβ induction of cysteine-rich protein 2 in vascular smooth muscle cells

    PubMed Central

    2014-01-01

    Background Vascular smooth muscle cells (VSMCs) of the arterial wall play a critical role in the development of occlusive vascular diseases. Cysteine-rich protein 2 (CRP2) is a VSMC-expressed LIM-only protein, which functionally limits VSMC migration and protects against pathological vascular remodeling. The multifunctional cytokine TGFβ has been implicated to play a role in the pathogenesis of atherosclerosis through numerous downstream signaling pathways. We showed previously that TGFβ upregulates CRP2 expression; however, the detailed signaling mechanisms remain unclear. Results TGFβ treatment of VSMCs activated both Smad2/3 and ATF2 phosphorylation. Individually knocking down Smad2/3 or ATF2 pathways with siRNA impaired the TGFβ induction of CRP2, indicating that both contribute to CRP2 expression. Inhibiting TβRI kinase activity by SB431542 or TβRI knockdown abolished Smad2/3 phosphorylation but did not alter ATF2 phosphorylation, indicating while Smad2/3 phosphorylation was TβRI-dependent ATF2 phosphorylation was independent of TβRI. Inhibiting Src kinase activity by SU6656 suppressed TGFβ-induced RhoA and ATF2 activation but not Smad2 phosphorylation. Blocking ROCK activity, the major downstream target of RhoA, abolished ATF2 phosphorylation and CRP2 induction but not Smad2 phosphorylation. Furthermore, JNK inhibition with SP600125 reduced TGFβ-induced ATF2 (but not Smad2) phosphorylation and CRP2 protein expression while ROCK inhibition blocked JNK activation. These results indicate that downstream of TβRII, Src family kinase-RhoA-ROCK-JNK signaling pathway mediates TβRI-independent ATF2 activation. Promoter analysis revealed that the TGFβ induction of CRP2 was mediated through the CRE and SBE promoter elements that were located in close proximity. Conclusions Our results demonstrate that two signaling pathways downstream of TGFβ converge on the CRE and SBE sites of the Csrp2 promoter to cooperatively control CRP2 induction in VSMCs, which

  18. 7 CFR 51.1870 - Fairly smooth.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth. 51.1870 Section 51.1870 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Fresh Tomatoes 1 Definitions § 51.1870 Fairly smooth. Fairly smooth means that the tomato...

  19. 7 CFR 51.1910 - Fairly smooth.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth. 51.1910 Section 51.1910 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Consumer Standards for Fresh Tomatoes Definitions § 51.1910 Fairly smooth. Fairly smooth means that...

  20. 7 CFR 51.1870 - Fairly smooth.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth. 51.1870 Section 51.1870 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Fresh Tomatoes 1 Definitions § 51.1870 Fairly smooth. Fairly smooth means that the tomato...

  1. 7 CFR 51.1870 - Fairly smooth.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly smooth. 51.1870 Section 51.1870 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Fresh Tomatoes 1 Definitions § 51.1870 Fairly smooth. Fairly smooth means that the tomato...

  2. 7 CFR 51.1910 - Fairly smooth.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth. 51.1910 Section 51.1910 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Consumer Standards for Fresh Tomatoes Definitions § 51.1910 Fairly smooth. Fairly smooth means that...

  3. 7 CFR 51.1910 - Fairly smooth.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly smooth. 51.1910 Section 51.1910 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... smooth. Fairly smooth means that the tomato is not conspicuously ridged or rough....

  4. 7 CFR 51.1910 - Fairly smooth.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly smooth. 51.1910 Section 51.1910 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... smooth. Fairly smooth means that the tomato is not conspicuously ridged or rough....

  5. 7 CFR 51.1910 - Fairly smooth.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly smooth. 51.1910 Section 51.1910 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Consumer Standards for Fresh Tomatoes Definitions § 51.1910 Fairly smooth. Fairly smooth means that...

  6. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-{kappa}B in human aortic smooth muscle cells

    SciTech Connect

    Manea, Adrian; Tanase, Laurentia I.; Raicu, Monica; Simionescu, Maya

    2010-06-11

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-{kappa}B (NF-{kappa}B) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-{kappa}B signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-{alpha} (TNF{alpha}), a potent inducer of both Nox and NF-{kappa}B, up to 24 h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysis showed that inhibition of NF-{kappa}B pathway reduced significantly the TNF{alpha}-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-{kappa}B elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-{kappa}B significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-{kappa}B proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-{kappa}B is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-{kappa}B and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.

  7. Upregulated miR-17 Regulates Hypoxia-Mediated Human Pulmonary Artery Smooth Muscle Cell Proliferation and Apoptosis by Targeting Mitofusin 2

    PubMed Central

    Lu, Zheng; Li, Sujun; Zhao, Shunxin; Fa, Xianen

    2016-01-01

    Background Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary artery vascular growth and remodeling. Aberrant expression of miR-17 has been shown to be involved in the pathogenesis of PAH, but its underlying molecular mechanism has not been elucidated. Material/Methods Mitofusin 2 (MFN2) expression was determined by qRT-PCR. The protein expression levels of MFN2, proliferating cell nuclear antigen (PCNA), and pro-apoptotic protein cleaved Caspase-3 were measured using Western blot analysis. Cell proliferation and apoptosis were assessed by CellTiter-Glo reagent and flow cytometry, respectively. Caspase-3/7 activity was measured using an Apo-ONE Homogeneous Caspase-3/7 assay kit. The regulation of miR-17 on MFN2 expression was assessed using luciferase reporter assay system. Results miR-17 expression was upregulated in human pulmonary artery smooth muscle cells (hPASMCs) treated with hypoxia and lung tissues of PAH patients. Inhibition of miR-17 suppressed hypoxia-induced proliferation and promoted apoptosis in hPASMCs. miR-17 inhibited MFN2 expression by binding to its 3′-UTR. Decreased cell viability and increased apoptosis and Caspase-3 activity were observed in the anti-miR-17 + siNC group compared with the anti-miR-NC + siNC group. The expression of cleaved Caspase-3 was upregulated and the expression of PCNA was downregulated in the anti-miR-17 + siNC group. Moreover, these alterations were attenuated by knockdown of MFN2. Conclusions miR-17 regulates proliferation and apoptosis in hPASMCs through MFN2 modulation. We found that miR-17 acts as a potential regulator of proliferation and apoptosis of hPASMCs, and that it might be developed as a promising new strategy for the treatment of PAH. PMID:27640178

  8. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells.

    PubMed

    Manea, Adrian; Tanase, Laurentia I; Raicu, Monica; Simionescu, Maya

    2010-06-11

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-kappaB (NF-kappaB) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-kappaB signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-alpha (TNFalpha), a potent inducer of both Nox and NF-kappaB, up to 24h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysis showed that inhibition of NF-kappaB pathway reduced significantly the TNFalpha-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-kappaB elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-kappaB significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-kappaB proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-kappaB is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-kappaB and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications. PMID:20457132

  9. Large-conductance voltage- and Ca2+-activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle.

    PubMed

    Hristov, Kiril L; Smith, Amy C; Parajuli, Shankar P; Malysz, John; Petkov, Georgi V

    2014-03-01

    Large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca(2+) imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca(2+) sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca(2+) levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca(2+)-dependent mechanism, thus increasing DSM contractility.

  10. Upregulated miR-17 Regulates Hypoxia-Mediated Human Pulmonary Artery Smooth Muscle Cell Proliferation and Apoptosis by Targeting Mitofusin 2.

    PubMed

    Lu, Zheng; Li, Sujun; Zhao, Shunxin; Fa, Xianen

    2016-01-01

    BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary artery vascular growth and remodeling. Aberrant expression of miR-17 has been shown to be involved in the pathogenesis of PAH, but its underlying molecular mechanism has not been elucidated. MATERIAL AND METHODS Mitofusin 2 (MFN2) expression was determined by qRT-PCR. The protein expression levels of MFN2, proliferating cell nuclear antigen (PCNA), and pro-apoptotic protein cleaved Caspase-3 were measured using Western blot analysis. Cell proliferation and apoptosis were assessed by CellTiter-Glo reagent and flow cytometry, respectively. Caspase-3/7 activity was measured using an Apo-ONE Homogeneous Caspase-3/7 assay kit. The regulation of miR-17 on MFN2 expression was assessed using luciferase reporter assay system. RESULTS miR-17 expression was upregulated in human pulmonary artery smooth muscle cells (hPASMCs) treated with hypoxia and lung tissues of PAH patients. Inhibition of miR-17 suppressed hypoxia-induced proliferation and promoted apoptosis in hPASMCs. miR-17 inhibited MFN2 expression by binding to its 3'-UTR. Decreased cell viability and increased apoptosis and Caspase-3 activity were observed in the anti-miR-17 + siNC group compared with the anti-miR-NC + siNC group. The expression of cleaved Caspase-3 was upregulated and the expression of PCNA was downregulated in the anti-miR-17 + siNC group. Moreover, these alterations were attenuated by knockdown of MFN2. CONCLUSIONS miR-17 regulates proliferation and apoptosis in hPASMCs through MFN2 modulation. We found that miR-17 acts as a potential regulator of proliferation and apoptosis of hPASMCs, and that it might be developed as a promising new strategy for the treatment of PAH. PMID:27640178

  11. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes

    SciTech Connect

    Wang, Jie; Yan, Cheng-Hui; Li, Yang; Xu, Kai; Tian, Xiao-Xiang; Peng, Cheng-Fei; Tao, Jie; Sun, Ming-Yu; Han, Ya-Ling

    2013-05-01

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. The cellular repressor of E1A-stimulated genes (CREG) has been shown to play an important role in phenotypic modulation of VSMCs. However, the mechanism regulating CREG upstream signaling remains unclear. MicroRNAs (miRNAs) have recently been found to play a critical role in cell differentiation via target-gene regulation. This study aimed to identify a miRNA that binds directly to CREG, and may thus be involved in CREG-mediated VSMC phenotypic modulation. Computational analysis indicated that miR-31 bound to the CREG mRNA 3′ untranslated region (3′-UTR). miR-31 was upregulated in quiescent differentiated VSMCs and downregulated in proliferative cells stimulated by platelet-derived growth factor and serum starvation, demonstrating a negative relationship with the VSMC differentiation marker genes, smooth muscle α-actin, calponin and CREG. Using gain-of-function and loss-of-function approaches, CREG and VSMC differentiation marker gene expression levels were shown to be suppressed by a miR-31 mimic, but increased by a miR-31 inhibitor at both protein and mRNA levels. Notably, miR-31 overexpression or inhibition affected luciferase expression driven by the CREG 3′-UTR containing the miR-31 binding site. Furthermore, miR-31-mediated VSMC phenotypic modulation was inhibited in CREG-knockdown human VSMCs. We also determined miR-31 levels in the serum of patients with coronary artery disease (CAD), with or without in stent restenosis and in healthy controls. miR-31 levels were higher in the serum of CAD patients with restenosis compared to CAD patients without restenosis and in healthy controls. In summary, these data demonstrate that miR-31 not only directly binds to its target gene CREG and modulates the VSMC phenotype through this interaction, but also can be an important biomarker in diseases involving VSMC

  12. In vitro expression of the alpha-smooth muscle actin isoform by rat lung mesenchymal cells: regulation by culture condition and transforming growth factor-beta.

    PubMed

    Mitchell, J J; Woodcock-Mitchell, J L; Perry, L; Zhao, J; Low, R B; Baldor, L; Absher, P M

    1993-07-01

    alpha-Smooth muscle actin (alpha SM actin)-containing cells recently have been demonstrated in intraalveolar lesions in both rat and human tissues following lung injury. In order to develop model systems for the study of such cells, we examined cultured lung cell lines for this phenotype. The adult rat lung fibroblast-like "RL" cell lines were found to express alpha SM actin mRNA and protein and to organize this actin into stress fiber-like structures. Immunocytochemical staining of subclones of the RL87 line demonstrated the presence in the cultures of at least four cell phenotypes, one that fails to express alpha SM actin and three distinct morphologic types that do express alpha SM actin. The proportion of cellular actin that is the alpha-isoform was modulated by the culture conditions. RL cells growing at low density expressed minimal alpha SM actin. On reaching confluent densities, however, alpha SM actin increased to at least 20% of the total actin content. This effect, combined with the observation that the most immunoreactive cells were those that displayed overlapping cell processes in culture, suggests that cell-cell contact may be involved in actin isoform regulation in these cells. Similar to the response of some smooth muscle cell lines, alpha SM actin expression in RL cells also was promoted by conditions, e.g., maintenance in low serum medium, which minimize cell division. alpha SM actin expression was modulated in RL cells by the growth factor transforming growth factor-beta. Addition of this cytokine to growing cells substantially elevated the proportion of alpha SM actin protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. P2Y2 Receptor-mediated Lymphotoxin-α Secretion Regulates Intercellular Cell Adhesion Molecule-1 Expression in Vascular Smooth Muscle Cells*

    PubMed Central

    Seye, Cheikh I.; Agca, Yuksel; Agca, Cansu; Derbigny, Wilbert

    2012-01-01

    The proinflammatory cytokine lymphotoxin-α (LTA) is thought to contribute to the pathogenesis of atherosclerosis. However, the mechanisms that regulate its expression in vascular smooth muscle cells (VSMC) are poorly understood. The ability of exogenous nucleotides to stimulate LTA production was evaluated in VSMC by ELISA. The P2Y2 nucleotide receptor (P2Y2R) agonist UTP stimulates a strong and sustained release of LTA from WT but not P2Y2R−/− SMC. Assessment of LTA gene transcription by LTA promoter-luciferase construct indicated that LTA levels are controlled at the level of transcription. We show using RNAi techniques that knockdown of the actin-binding protein filamin-A (FLNa) severely impaired nucleotide-induced Rho activation and consequent Rho-mediated LTA secretion. Reintroduction of FLNa in FLNa RNAi SMC rescued UTP-induced LTA expression. In addition, we found that UTP-stimulated LTA secretion is not sensitive to brefeldin A, which blocks the formation of vesicles involved in protein transport from the endoplasmic reticulum to the Golgi apparatus, suggesting that P2Y2R/filamin-mediated secretion of LTA is independent of the endoplasmic reticulum/Golgi secretory vesicle route. Furthermore, UTP selectively induces ICAM-1 expression in WT but not SMC expressing a truncated P2Y2R deficient in LTA secretion. These data suggest that P2Y2R recruits FLNa to provide a cytoskeletal scaffold necessary for Rho signaling pathway upstream of LTA release and subsequent stimulation of ICAM-1 expression on vascular smooth muscle cells. PMID:22298782

  14. Effect of Flow on Gene Regulation in Smooth Muscle Cells and Macromolecular Transport Across Endothelial Cell Monolayers

    NASA Technical Reports Server (NTRS)

    McIntire, Larry V.; Wagner, John E.; Papadaki, Maria; Whitson, Peggy A.; Eskin, Suzanne G.

    1996-01-01

    Endothelial cells line all of the vessels of the circulatory system, providing a non-thrombogenic conduit for blood flow; they regulate many complex functions in the vasculature, such as coagulation, fibrinolysis, platelet aggregation, vessel tone and growth, and leukocyte traffic; and they form the principal barrier to transport of substances between the blood and the surrounding tissue space. The permeability of endothelial cell changes with environmental stimuli; shear stress, in particular, applied either in vivo, or in vitro, induces changes in protein expression and secretion of vasoactive factors by endothelial cells. The ability to study the effects of shear on the macromolecular permeability of the cerebral vasculature is particularly important, since in no other place is the barrier function of the endothelium more important than in the brain. The endothelial cells of this organ have developed special barrier properties that keep the cerebral system from experiencing any drastic change in composition; together with glial cells, they form the blood brain barrier (BBB). We have studied the effect of flow on bovine BBB using flow chambers and tissue culture systems.

  15. MicroRNA-145 regulates platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration by targeting CD40

    PubMed Central

    Li, Yumei; Huang, Jiangnan; Jiang, Zhiyuan; Zhong, Yuanli; Xia, Mingjie; Wang, Hui; Jiao, Yang

    2016-01-01

    The objective of this study is to investigate the expression of microRNA (miR)-145 in human aortic vascular smooth muscle cells (VSMCs) and the effect of miR-145 in the biological behavior and expression of CD40 in VSMCs. Cells were treated with either miR-145 or miR-145 inhibitor. Cell proliferation was analyzed by a colony formation assay and a methyl thiazolyl tetrazolium assay. Cell migration and invasion were assessed using a transwell assay, an invasion assay, and a wound healing assay. A luciferase reporter assay was used to detect the interaction between miR-145 and CD40. Expression of α-SMA, calponin, osteopontin (OPN), epiregulin, activator protein-1 (AP-1) and CD40 was measured using real-time RT-PCR for mRNA levels and Western blotting for protein levels. Overexpression of miR-145 significantly inhibited VSMC proliferation, invasion and migration. Furthermore, OPN, epiregulin, AP-1 and CD40 expression at the mRNA and protein levels was down-regulated by overexpression of miR-145. However, α-SMA and calponin expression at the mRNA and protein levels was up-regulated by overexpression of miR-145. In addition, the luciferase reporter assay showed that CD40 may be a direct target gene of miR-145 in VSMC initiation and development. Moreover, these data demonstrate that the up-regulation of CD40 is critical for miR-145-mediated inhibitory effects on platelet-derived growth factor-induced cell proliferation and migration in human VSMCs. In summary, CD40, a direct target of miR-145, reverses the inhibitory effects of miR-145. These results suggest that the specific modulation of miR-145 in human VSMCs may be an attractive approach for the treatment of proliferative vascular diseases. PMID:27186305

  16. Transcriptional up-regulation of antioxidant genes by PPAR{delta} inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells

    SciTech Connect

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin; Hwang, Jung Seok; Jung, Si Young; Kim, Min Young; Jin, Hanna; Kang, Eun Sil; Woo, Im Sun; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Han, Chang Woo; Seo, Han Geuk

    2011-03-25

    Research highlights: {yields} Activation of PPAR{delta} by GW501516 significantly inhibited Ang II-induced premature senescence in hVSMCs. {yields} Agonist-activated PPAR{delta} suppressed generation of Ang II-triggered ROS with a concomitant reduction in DNA damage. {yields} GW501516 up-regulated expression of antioxidant genes, such as GPx1, Trx1, Mn-SOD and HO-1. {yields} Knock-down of these antioxidant genes abolished the effects of GW501516 on ROS production and premature senescence. -- Abstract: This study evaluated peroxisome proliferator-activated receptor (PPAR) {delta} as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPAR{delta} by GW501516, a specific agonist of PPAR{delta}, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPAR{delta} suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPAR{delta}-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.

  17. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury

    PubMed Central

    Ashino, Takashi; Yamamoto, Masayuki; Numazawa, Satoshi

    2016-01-01

    Abnormal increases in vascular smooth muscle cells (VSMCs) in the intimal region after a vascular injury is a key event in developing neointimal hyperplasia. To maintain vascular function, proliferation and apoptosis of VSMCs is tightly controlled during vascular remodeling. NF-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system, a key component of the oxidative stress response that acts in maintaining homeostasis, plays an important role in neointimal hyperplasia after a vascular injury; however, the role of Nrf2/Keap1 in VSMC apoptosis has not been clarified. Here we report that 14 days after arterial injury in mice, TUNEL-positive VSMCs are detected in both the neointimal and medial layers. These layers contain cells expressing high levels of Nrf2 but low Keap1 expression. In VSMCs, Keap1 depletion induces features of apoptosis, such as positive TUNEL staining and annexin V binding. These changes are associated with an increased expression of nuclear Nrf2. Simultaneous Nrf2 depletion inhibits Keap1 depletion-induced apoptosis. At 14 days after the vascular injury, Nrf2-deficient mice demonstrated fewer TUNEL-positive cells and increased neointimal formation in the neointimal and medial areas. The results suggest that the Nrf2/Keap1 system regulates VSMC apoptosis during neointimal formation, thereby inhibiting neointimal hyperplasia after a vascular injury. PMID:27198574

  18. Comparative studies on troponin, a Ca²⁺-dependent regulator of muscle contraction, in striated and smooth muscles of protochordates.

    PubMed

    Obinata, Takashi; Sato, Naruki

    2012-01-01

    Troponin is well known as a Ca(2+)-dependent regulator of striated muscle contraction and it has been generally accepted that troponin functions as an inhibitor of muscle contraction or actin-myosin interaction at low Ca(2+) concentrations, and Ca(2+) at higher concentrations removes the inhibitory action of troponin. Recently, however, troponin became detectable in non-striated muscles of several invertebrates and in addition, unique troponin that functions as a Ca(2+)-dependent activator of muscle contraction has been detected in protochordate animals, although troponin in vertebrate striated muscle is known as an inhibitor of the contraction in the absence of a Ca(2+). Further studies on troponin in invertebrate muscle, especially in non-striated muscle, would provide new insight into the evolution of regulatory systems for muscle contraction and diverse function of troponin and related proteins. The methodology used for preparation and characterization of functional properties of protochordate striated and smooth muscles will be helpful for further studies of troponin in other invertebrate animals.

  19. Regulation on RhoA in vascular smooth muscle cells under inflammatory stimulation proposes a novel mechanism mediating the multiple-beneficial action of acetylsalicylic acid.

    PubMed

    Li, Dong-Bo; Yang, Guo-Jie; Xu, Hong-Wei; Fu, Zhi-Xuan; Wang, Shan-Wei; Hu, Shen-Jiang

    2013-12-01

    Recent studies have revealed the additional beneficial effects of acetylsalicylic acid (aspirin) in the medication of cardiovascular diseases. The small GTPase RhoA as an important signaling factor is implicated in a wide range of cell functions. This study aimed to investigate the regulatory effect of acetylsalicylic acid on RhoA in vascular smooth muscle cells (VSMCs). We found that aspirin at 300 μM suppressed VSMCs proliferation stimulated by LPS, and this inhibitory effect was partially mediated by inhibiting the iNOS/NO pathway. RhoA overexpression was downregulated by aspirin (both 30 and 300 μM) because of enhanced degradation of RhoA protein. The effect of LPS on increasing active RhoA level was significantly attenuated by aspirin (300 μM), which exerted no effect on RhoA translocation. The promoted RhoA phosphorylation under LPS stimulation, coupled with RhoA protein expression, was greatly decreased by aspirin treatment. No effect of aspirin was found on the expression, activation, and phosphorylation of RhoA in VSMCs devoid of inflammatory stimulation. Our investigation indicates that the regulation of RhoA by aspirin in VSMCs under inflammatory stimulus could be a novel mechanism via which aspirin, apart from the COX-dependent action, exerted the multiple beneficial effects.

  20. Glycogen synthase kinase 3{beta} regulation of nuclear factor of activated T-cells isoform c1 in the vascular smooth muscle cell response to injury

    SciTech Connect

    Chow Winsion; Hou Guangpei; Bendeck, Michelle P.

    2008-10-01

    The migration and proliferation of vascular smooth muscle cells (vSMCs) are critical events in neointima formation during atherosclerosis and restenosis. The transcription factor nuclear factor of activated T-cells-isoform c1 (NFATc1) is regulated by atherogenic cytokines, and has been implicated in the migratory and proliferative responses of vSMCs through the regulation of gene expression. In T-cells, calcineurin de-phosphorylates NFATc1, leading to its nuclear import, while glycogen synthase kinase 3 {beta} (GSK3{beta}) phosphorylates NFATc1 and promotes its nuclear export. However, the relationship between NFATc1 and GSK3{beta} has not been studied during SMC migration and proliferation. We investigated this by scrape wounding vSMCs in vitro, and studying wound repair. NFATc1 protein was transiently increased, reaching a peak at 8 h after wounding. Cell fractionation and immunocytochemistry revealed that NFATc1 accumulation in the nucleus was maximal at 4 h after injury, and this was coincident with a significant 9 fold increase in transcriptional activity. Silencing NFATc1 expression with siRNA or inhibition of NFAT with cyclosporin A (CsA) attenuated wound closure by vSMCs. Phospho-GSK3{beta} (inactive) increased to a peak at 30 min after injury, preceding the nuclear accumulation of NFATc1. Overexpression of a constitutively active mutant of GSK3{beta} delayed the nuclear accumulation of NFATc1, caused a 50% decrease in NFAT transcriptional activity, and attenuated vSMC wound repair. We conclude that NFATc1 promotes the vSMC response to injury, and that inhibition of GSK3{beta} is required for the activation of NFAT during wound repair.

  1. The Intermediate Conductance Calcium-activated Potassium Channel KCa3.1 Regulates Vascular Smooth Muscle Cell Proliferation via Controlling Calcium-dependent Signaling*

    PubMed Central

    Bi, Dan; Toyama, Kazuyoshi; Lemaître, Vincent; Takai, Jun; Fan, Fan; Jenkins, David P.; Wulff, Heike; Gutterman, David D.; Park, Frank; Miura, Hiroto

    2013-01-01

    The intermediate conductance calcium-activated potassium channel KCa3.1 contributes to a variety of cell activation processes in pathologies such as inflammation, carcinogenesis, and vascular remodeling. We examined the electrophysiological and transcriptional mechanisms by which KCa3.1 regulates vascular smooth muscle cell (VSMC) proliferation. Platelet-derived growth factor-BB (PDGF)-induced proliferation of human coronary artery VSMCs was attenuated by lowering intracellular Ca2+ concentration ([Ca2+]i) and was enhanced by elevating [Ca2+]i. KCa3.1 blockade or knockdown inhibited proliferation by suppressing the rise in [Ca2+]i and attenuating the expression of phosphorylated cAMP-response element-binding protein (CREB), c-Fos, and neuron-derived orphan receptor-1 (NOR-1). This antiproliferative effect was abolished by elevating [Ca2+]i. KCa3.1 overexpression induced VSMC proliferation, and potentiated PDGF-induced proliferation, by inducing CREB phosphorylation, c-Fos, and NOR-1. Pharmacological stimulation of KCa3.1 unexpectedly suppressed proliferation by abolishing the expression and activity of KCa3.1 and PDGF β-receptors and inhibiting the rise in [Ca2+]i. The stimulation also attenuated the levels of phosphorylated CREB, c-Fos, and cyclin expression. After KCa3.1 blockade, the characteristic round shape of VSMCs expressing high l-caldesmon and low calponin-1 (dedifferentiation state) was maintained, whereas KCa3.1 stimulation induced a spindle-shaped cellular appearance, with low l-caldesmon and high calponin-1. In conclusion, KCa3.1 plays an important role in VSMC proliferation via controlling Ca2+-dependent signaling pathways, and its modulation may therefore constitute a new therapeutic target for cell proliferative diseases such as atherosclerosis. PMID:23609438

  2. Kinetic analysis of internalization, recycling and redistribution of atrial natriuretic factor-receptor complex in cultured vascular smooth-muscle cells. Ligand-dependent receptor down-regulation.

    PubMed Central

    Pandey, K N

    1992-01-01

    The kinetics of internalization, sequestration and metabolic degradation of atrial natriuretic factor (ANF)-receptor complex were studied in rat thoracic aortic smooth-muscle (RTASM) cells. These parameters were directly determined by measuring 125I-ANF binding to total, intracellular and cell-surface receptors. Pretreatment of cells with the lysosomotropic agent chloroquine and the energy depleter dinitrophenol led to an increase in the intracellular 125I-ANF radioactivity. After 60 min incubation at 37 degrees C, cell-associated 125I-ANF radioactivity fell rapidly in chloroquine-treated cells (> 85%) compared with the controls (< 45%). 125I-ANF radioactivity increased to a peak of 65% of the initial level within 15 min in chloroquine-treated cells compared with only 22% in the control cells. During the initial incubation period at 37 degrees C, chloroquine inhibited the release of both intact and degraded 125I-ANF in a time-dependent manner. However, at later incubation times, the effect of chloroquine was diminished and release of both degraded and intact ligand was resumed. Extracellular unlabelled ANF did not affect the release of degraded 125I-ANF but it accelerated the release of intact ANF by a retroendocytotic mechanism. After the endocytosis, about 30-40% of ANF receptors were restored to the cell surface from the internalized pool of receptors. The restoration was blocked by chloroquine or dinitrophenol but not by cycloheximide. Exposure of RTASM cells to unlabelled ANF resulted in a time- and concentration-dependent loss of ANF receptors. Unlabelled ANF (10 nM) induced a loss of more than 52% of 125I-ANF binding, and a complete loss occurred at micromolar concentrations. It is inferred that ANF-induced down-regulation of its receptor resulted primarily from an increased rate in internalization and metabolic degradation of ligand-receptor complex by receptor-mediated endocytotic mechanisms. PMID:1445281

  3. Microarray analysis of ox-LDL (oxidized low-density lipoprotein)-regulated genes in human coronary artery smooth muscle cells.

    PubMed

    Minta, Joe; Jungwon Yun, James; St Bernard, Rosanne

    2010-01-01

    Recent studies suggest that circulating LDL (low-density lipoproteins) play a central role in the pathogenesis of atherosclerosis, and the oxidized form (ox-LDL) is highly atherogenic. Deposits of ox-LDL have been found in atherosclerotic plaques, and ox-LDL has been shown to promote monocyte recruitment, foam cell formation and the transition of quiescent and contractile vascular SMCs (smooth muscle cells) to the migratory and proliferative phenotype. SMC phenotype transition and hyperplasia are the pivotal events in the pathogenesis of atherosclerosis. To comprehend the complex molecular mechanisms involved in ox-LDL-mediated SMC phenotype transition, we have compared the differential gene expression profiles of cultured quiescent human coronary artery SMCs with cells induced with ox-LDL for 3 and 21 h using Affymetrix HG-133UA cDNA microarray chips. Assignment of the regulated genes into functional groups indicated that several genes involved in metabolism, membrane transport, cell-cell interactions, signal transduction, transcription, translation, cell migration, proliferation and apoptosis were differentially expressed. Our data suggests that the interaction of ox-LDL with its cognate receptors on SMCs modulates the induction of several growth factors and cytokines, which activate a variety of intracellular signalling mechanisms (including PI3K, MAPK, Jak/STAT, sphingosine, Rho kinase pathways) that contribute to SMC transition from the quiescent and contractile phenotype to the proliferative and migratory phenotype. Our study has also identified several genes (including CDC27, cyclin A1, cyclin G2, glypican 1, MINOR, p15 and apolipoprotein) not previously implicated in ox-LDL-induced SMC phenotype transition and substantially extends the list of potential candidate genes involved in atherogenesis.

  4. Acetylsalicylic acid regulates overexpressed small GTPase RhoA in vascular smooth muscle cells through prevention of new synthesis and enhancement of protein degradation.

    PubMed

    Li, Dong-Bo; Fu, Zhi-Xuan; Ruan, Shu-Qin; Hu, Shen-Jiang; Li, Xia

    2012-04-01

    RhoA has been shown to play a major role in vascular processes and acetylsalicylic acid (aspirin) is known to exert a cytoprotective effect via multiple mechanisms. In the present study, we aimed at investigating the effect of aspirin on RhoA expression under a stress state in rat VSMCs (vascular smooth muscle cells) and the underlying mechanisms. The expression of iNOS (inducible nitric oxide synthase) and iNOS activity as well as NO concentration was significantly promoted by LPS (lipopolysaccharide) accompanying the elevation of RhoA expression, which was blocked by the addition of the iNOS inhibitor L-NIL [L-N6-(1-iminoethyl)lysine dihydrochloride]. Aspirin (30 μM) significantly attenuated the elevation of RhoA, while indomethacin and salicylate had no similar effect. The sGC (soluble guanylate cyclase) inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) showed the same effect as aspirin in down-regulating RhoA but was reversed by the addition of the cGMP analogue 8-Br-PET-cGMP (β-phenyl-1,N2-ethano-8-bromoguanosine 3',5'-cyclic monophosphorothioate). 8-Br-PET-cGMP solely enhanced the RhoA expression that was abrogated by preincubation with aspirin. Degradation analysis indicated that aspirin enhanced the protein degradation rate of RhoA and GDP-bound RhoA seemed to be more susceptible to aspirin-enhanced degradation compared with the GTP-bound form. Our results indicate that aspirin attenuates the LPS-induced overexpression of RhoA both by inhibiting new synthesis and accelerating protein degradation, which may help elucidate the multiple beneficial effects of aspirin.

  5. Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation.

    PubMed

    Ogbozor, Uchenna D; Opene, Michael; Renteria, Lissette S; McBride, Shaemion; Ibe, Basil O

    2015-09-01

    Platelet activating factor (PAF) modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR) in pulmonary vascular smooth muscle cells (PVSMC) to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-dependent translation initiation arrest to study a mechanism by which NF-kB p65 regulates PAF stimulation of PVSMC proliferation. Our hypotheses are: (a) PAF induces NF-kB p65 DNA binding and (b) NF-kB p65 siRNA attenuates PAF stimulation of PVSMC proliferation. For DNA binding, cells were fed 10 nM PAF with and without PAFR antagonists WEB 2170, CV 3988 or BN 52021 and incubated for 12 h. DNA binding was measured by specific ELISA. For NF-kB p65 siRNA effect, starved cells transfected with the siRNA were incubated for 24 h with and without 10 nM PAF. Cell proliferation was measured by DNA synthesis while expression of NF-kB p65 and PAFR protein was measured by Western blotting. In both studies, the effect of 10% FBS alone was used as the positive control. In general, PAF stimulated DNA binding which was inhibited by PAFR antagonists. siRNAs to NF-kB p65 and PAFR significantly attenuated cell proliferation compared to 10% FBS and PAF effect. Inclusion of PAF in siRNA-treated cells did not reverse inhibitory effect of NF-kB p65 siRNA on DNA synthesis. PAFR expression was inhibited in siRNA-treated cells. These data show that PAF-stimulation of PVSMC proliferation occurs via a PAFR-NF-kB p65 linked pathway.

  6. Glucose regulation of integrin-associated protein cleavage controls the response of vascular smooth muscle cells to insulin-like growth factor-I.

    PubMed

    Maile, Laura A; Capps, Byron E; Miller, Emily C; Allen, Lee B; Veluvolu, Umadevi; Aday, Ariel W; Clemmons, David R

    2008-05-01

    Vascular smooth muscle cells (SMC) maintained in high glucose are more responsive to IGF-I than SMC maintained in normal glucose due to a difference in the Shc phosphorylation response. In this study we aimed to determine the mechanism by which glucose regulates the sensitivity of SMC to IGF-I. For Shc to be phosphorylated in response to IGF-I it must be recruited to tyrosine-phosphorylated sites on Src homology 2 domain-containing phosphatase (SHP) substrate-1 (SHPS-1). The association of integrin-associated protein (IAP) with SHPS-1 is required for SHPS-1 tyrosine phosphorylation. When SMC were grown in 5 mm glucose, the amount of intact IAP was reduced, compared with SMC grown in 25 mm glucose. This reduction was due to proteolytic cleavage of IAP. Proteolysis of IAP resulted in loss of its SHPS-1 binding site, which led to loss of SHPS-1 phosphorylation. Analysis of the conditioned medium showed that there was more protease activity in the medium from SMC cultured in 5 mm glucose as compared with 25 mm. Inhibition of matrix metalloprotease-2 synthesis using RNA interference or its activity using a specific protease inhibitor protected IAP from cleavage. This protection was associated with an increase in IAP-SHPS-1 association, increased recruitment and phosphorylation of Shc, and increased cell growth in response to IGF-I. Our results show that the enhanced response of SMC in 25 mm glucose to IGF-I is due to the protection of IAP from proteolytic degradation, thereby increasing its association with SHPS-1 and allowing the formation of the SHPS-1-Shc signaling complex.

  7. Aspirin-induced AMP-activated protein kinase activation regulates the proliferation of vascular smooth muscle cells from spontaneously hypertensive rats

    SciTech Connect

    Sung, Jin Young; Choi, Hyoung Chul

    2011-05-06

    Highlights: {yields} Aspirin-induced AMPK phosphorylation was greater in VSMC from SHR than WKY. {yields} Aspirin-induced AMPK phosphorylation inhibited proliferation of VSMC from SHR. {yields} Low basal AMPK phosphorylation in SHR elicits increased VSMC proliferation. {yields} Inhibition of AMPK restored decreased VSMC proliferation by aspirin in SHR. {yields} Aspirin exerts anti-proliferative effect through AMPK activation in VSMC from SHR. -- Abstract: Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.

  8. Opiorphin-dependent up-regulation of CD73 (a key enzyme in the adenosine signaling pathway) in corporal smooth muscle cells exposed to hypoxic conditions and in corporal tissue in pre-priapic sickle cell mice

    PubMed Central

    Fu, Shibo; Davies, Kelvin P.

    2015-01-01

    The precise molecular mechanisms underlying priapism associated with sickle cell disease remain to be defined. However, there is increasing evidence that up-regulated activity of the opiorphin and adenosine pathways in corporal tissue, resulting in heighted relaxation of smooth muscle, play an important role in development of priapism. A key enzyme in the adenosine pathway is CD73, an ecto-5-prime-nucleotidase (5-prime-ribonucleotide phosphohydrolase; EC 3.1.3.5) which catalyzes the conversion of adenosine mononucleotides to adenosine. In the present study we investigated how sickle cell disease and hypoxia regulate the interplay between opiorphin and CD73. In the corpora of sickle cell mice we observed significantly elevated expression of both the mouse opiorphin homologue mSmr3a (14-fold) and CD73 (2.2-fold) relative to non-sickle cell controls at a life-stage prior to the exhibition of priapism. Sickle cell disease has a pronounced hypoxic component, therefore we determined if CD73 was also modulated in in vitro corporal smooth muscle (CSM) models of hypoxia. Hypoxia significantly increased CD73 protein and mRNA expression by 1.5-fold and 2-fold, respectively. We previously demonstrated that expression of another component of the adenosine signaling pathway, the adensosine 2B receptor, can be regulated by sialorphin (the rat opiorphin homolologue), and we demonstrate that sialorphin also regulates CD73 expression in a dose and time dependent fashion. Using siRNA to knock-down sialorphin mRNA expression in CSM cells in vitro, we demonstrate that the hypoxic up-regulation of CD73 is dependent on the up-regulation of sialorphin. Overall our data provides further evidence to support a role for opiorphin in CSM in regulating the cellular response regulating response to hypoxia or sickle cell disease by activating smooth muscle relaxant pathways. PMID:25833166

  9. Characterization of the activation of latent TGF-beta by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self- regulating system

    PubMed Central

    1990-01-01

    The conversion of latent transforming growth factor beta (LTGF-beta) to the active species, transforming growth factor beta (TGF-beta), has been characterized in heterotypic cultures of bovine aortic endothelial (BAE) cells and bovine smooth muscle cells (SMCs). The formation of TGF- beta in co-cultures of BAE cells and SMCs was documented by a specific radioreceptor competition assay, while medium from homotypic cultures of BAE cells or SMCs contained no active TGF-beta as determined by this assay. The concentration of TGF-beta in the conditioned medium of heterotypic co-cultures was estimated to be 400-1,200 pg/ml using the inhibition of BAE cell migration as an assay. Northern blotting of poly A+ RNA extracted from both homotypic and heterotypic cultures of BAE cells and SMCs revealed that BAE cells produced both TGF-beta 1 and TGF- beta 2, while SMCs produced primarily TGF-beta 1. No change in the expression of these two forms of TGF-beta was apparent after 24 h in heterotypic cultures. Time course studies on the appearance of TGF-beta indicated that most of the active TGF-beta was generated within the first 12 h after the establishment of co-cultures. The generation of TGF-beta in co-cultures stimulated the production of the protease inhibitor plasminogen activator inhibitor-1 (PAI-1). The inclusion of neutralizing antibodies to TGF-beta in the co-culture medium blocked the observed increase in PAI-1 levels. The increased expression of PAI- 1 subsequent to TGF-beta formation blocked the activation of the protease required for conversion of LTGF-beta to TGF-beta as the inclusion of neutralizing antibodies to PAI-1 in the co-culture medium resulted in prolonged production of TGF-beta. This effect was lost upon removal of the PAI-1 antibodies. Thus, the activation of LTGF-beta appears to be a self-regulating system. PMID:1696270

  10. Sulfur Dioxide Inhibits Extracellular Signal-regulated Kinase Signaling to Attenuate Vascular Smooth Muscle Cell Proliferation in Angiotensin II-induced Hypertensive Mice

    PubMed Central

    Wu, Hui-Juan; Huang, Ya-Qian; Chen, Qing-Hua; Tian, Xiao-Yu; Liu, Jia; Tang, Chao-Shu; Jin, Hong-Fang; Du, Jun-Bao

    2016-01-01

    Background: Clarifying the mechanisms underlying vascular smooth muscle cell (VSMC) proliferation is important for the prevention and treatment of vascular remodeling and the reverse of hyperplastic lesions. Previous research has shown that the gaseous signaling molecule sulfur dioxide (SO2) inhibits VSMC proliferation, but the mechanism for the inhibition of the angiotensin II (AngII)-induced VSMC proliferation by SO2 has not been fully elucidated. This study was designed to investigate if SO2 inhibited VSMC proliferation in mice with hypertension induced by AngII. Methods: Thirty-six male C57 mice were randomly divided into control, AngII, and AngII + SO2 groups. Mice in AngII group and AngII + SO2 group received a capsule-type AngII pump implanted under the skin of the back at a slow-release dose of 1000 ng·kg−1·min−1. In addition, mice in AngII + SO2 received intraperitoneal injections of SO2 donor. Arterial blood pressure of tail artery was determined. The thickness of the aorta was measured by elastic fiber staining, and proliferating cell nuclear antigen (PCNA) and phosphorylated-extracellular signal-regulated kinase (P-ERK) were detected in aortic tissues. The concentration of SO2 in serum and aortic tissue homogenate supernatant was measured using high-performance liquid chromatography with fluorescence determination. In the in vitro study, VSMC of A7R5 cell lines was divided into six groups: control, AngII, AngII + SO2, PD98059 (an inhibitor of ERK phosphorylation), AngII + PD98059, and AngII + SO2 + PD98059. Expression of PCNA, ERK, and P-ERK was determined by Western blotting. Results: In animal experiment, compared with the control group, AngII markedly increased blood pressure (P < 0.01) and thickened the aortic wall in mice (P < 0.05) with an increase in the expression of PCNA (P < 0.05). SO2, however, reduced the systemic hypertension and the wall thickness induced by AngII (P < 0.05). It inhibited the increased expression of PCNA and P

  11. Vascular smooth muscle cells synthesize two forms of insulin-like growth factor binding proteins which are regulated differently by the insulin-like growth factors.

    PubMed

    Cohick, W S; Gockerman, A; Clemmons, D R

    1993-10-01

    Vascular smooth muscle cells (SMC) synthesize insulin-like growth factor-I (IGF-I), which is a mitogen for this cell type in vitro. Since IGF binding proteins (IGFBP) modulate IGF bioactivity, we determined which IGFBPs were secreted by porcine SMC. Porcine SMC secreted 34,000 and 24,000 M(r) forms of IGFBPs which were identified as IGFBP-2 and IGFBP-4, respectively, by immunoblotting. Northern blot analysis showed single transcripts of 1.6 kb and 2.4 kb for IGFBP-2 and IGFBP-4, respectively. Secretion of IGFBP-2 was not regulated to a significant degree, with insulin, IGF-II, IGF-I, forskolin, and dibutyryl cyclic adenosine monophosphate (cAMP) inducing minimal changes in IGFBP-2 secretion of less than 30% by radioimmunoassay (RIA). Insulin increased (2.8 +/- 0.1-fold) the abundance of IGFBP-4 protein in conditioned media (CM) and increased IGFBP-4 mRNA levels. Growth factors for SMC such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor beta-1 (TGF beta-1) were without effect on either IGFBP-2 or -4. IGF-I treatment decreased the amount of IGFBP-4 present in CM, but a corresponding decrease in IGFBP-4 mRNA levels was not observed. In order to determine if IGFBP-4 could modulate IGF-I bioactivity, IGFBP-4 was added to pSMCs with and without IGF-I. IGF-I alone (20 ng/ml) induced a 1.6 to threefold increase in 3H-thymidine incorporation. Addition of IGFBP-4 (between 50 and 250 ng/ml) to cultures containing IGF-I (20 ng/ml) had no effect on DNA synthesis compared to that observed with IGF-I alone, while 500 ng/ml consistently caused a small decrease (15 +/- 5%; mean +/- SE). Immunoblotting of the CM obtained at the end of the 3H-thymidine assay showed a loss of intact IGFBP-4 in the cultures containing IGF-I. This corresponded with an increase in the abundance of a 16,000 M(r) immunoreactive fragment that did not bind IGF-I. Coincubation with insulin had no effect on the amount of

  12. Enhancer of zeste homolog-2 (EZH2) methyltransferase regulates transgelin/smooth muscle-22α expression in endothelial cells in response to interleukin-1β and transforming growth factor-β2.

    PubMed

    Maleszewska, Monika; Gjaltema, Rutger A F; Krenning, Guido; Harmsen, Martin C

    2015-08-01

    Smooth muscle-22α (SM22α), encoded by transgelin (TAGLN), is expressed in mesenchymal lineage cells, including myofibroblasts and smooth muscle cells. It is an F-actin binding protein that regulates the organization of actin cytoskeleton, cellular contractility and motility. SM22α is crucial for the maintenance of smooth muscle cell phenotype and its function. SM22α is also expressed in the processes of mesenchymal transition of epithelial (EMT) or endothelial cells (EndMT). The expression of TAGLN/SM22α is induced by transforming growth factor-β (TGFβ) signaling and enhanced by concomitant interleukin-1β (IL-1β) signaling. We investigated the epigenetic regulation of TAGLN expression by enhancer of zeste homolog-2 (EZH2), the methyltransferase of Polycomb, in the context of TGFβ and IL-1β signaling in endothelial cells. We demonstrate that the expression of EZH2 in endothelial cells was regulated by the inflammatory cytokine IL-1β. A decrease in both expression and activity of EZH2 led to an increase in TAGLN expression. Inhibition of EZH2 augmented TGFβ2-induced SM22α expression. The decrease of EZH2 levels in endothelial cells co-stimulated with IL-1β and TGFβ2 correlated with decreased H3K27me3 levels at the TAGLN proximal promoter. Moreover, the SM22α expression increased. Taken together, this suggests that EZH2 regulates the chromatin structure at the TAGLN promoter through tri-methylation of H3K27. EZH2 therefore acts as an epigenetic integrator of IL-1β and TGFβ2 signaling, providing an example of how cellular signaling can be resolved at the level of epigenetic regulation. Since IL-1β and TGFβ2 represent the pro-inflammatory and pro-fibrotic conditions during vascular fibroproliferative disease, we surmise that EZH2, as the molecule that integrates their signaling, could also be a promising target for development of future therapy.

  13. Developmentally regulated changes in extracellular matrix in endothelial and smooth muscle cells in the ductus arteriosus may be related to intimal proliferation

    SciTech Connect

    Boudreau, N.; Rabinovitch, M. )

    1991-02-01

    In the late gestation fetal lamb ductus arteriosus (DA), intimal proliferation is observed, characterized by smooth muscle migration and proliferation in the subendothelium. The nature of changes in the endothelial and smooth muscle extracellular matrix associated with the development of this feature are not known. We assessed the production of glycoproteins (fibronectin, laminin, and type IV collagen) and glycosaminoglycans (GAGs) (hyaluronic acid, heparan sulfate, and chondroitin sulfate) in endothelial and smooth muscle cells harvested from the DA, aorta (Ao), and pulmonary artery of fetal lambs at 100 days gestation, before the appearance of DA intimal proliferation, and at 138 days, when well-developed intimal cushions are seen. In passage 3 cells, glycoprotein synthesis was measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after 48 hours incubation with (35S)methionine, and GAGs were assessed by labeling with (3H) glucosamine and separation on DEAE ion-exchange high performance liquid chromatography. Analyses were carried out on culture medium, cell layer, and solubilized matrix. Fibronectin secretion by DA smooth muscle cells from 100-day lambs was found to be twice that of Ao or pulmonary artery cells. No significant differences were seen in smooth muscle cells from 138-day lambs or when comparing endothelial cells from each of the vascular sites at both gestational ages. As well, there were no DA-specific differences in laminin or type IV collagen. No significant differences in endothelial GAG secretion were observed comparing each vascular site at both gestational ages. Analysis of endothelial-derived matrices, however, revealed increased incorporation of hyaluronic acid in the DA from 100-day lambs, 10-fold that of the pulmonary artery and Ao, and increased heparan sulfate.

  14. Role of protein kinase C in phospholemman mediated regulation of α₂β₁ isozyme of Na⁺/K⁺-ATPase in caveolae of pulmonary artery smooth muscle cells.

    PubMed

    Dey, Kuntal; Roy, Soumitra; Ghosh, Biswarup; Chakraborti, Sajal

    2012-04-01

    We have recently reported that α(2)β(1) and α(1)β(1) isozymes of Na(+)/K(+)-ATPase (NKA) are localized in the caveolae whereas only the α(1)β(1) isozyme of NKA is localized in the non-caveolae fraction of pulmonary artery smooth muscle cell membrane. It is well known that different isoforms of NKA are regulated differentially by PKA and PKC, but the mechanism is not known in the caveolae of pulmonary artery smooth muscle cells. Herein, we examined whether this regulation occurs through phospholemman (PLM) in the caveolae. Our results suggest that PKC mediated phosphorylation of PLM occurs only when it is associated with the α(2) isoform of NKA, whereas phosphorylation of PLM by PKA occurs when it is associated with the α(1) isoform of NKA. To investigate the mechanism of regulation of α(2) isoform of NKA by PKC-mediated phosphorylation of PLM, we have purified PLM from the caveolae and reconstituted into the liposomes. Our result revealed that (i) in the reconstituted liposomes phosphorylated PLM (PKC mediated) stimulate NKA activity, which appears to be due to an increase in the turnover number of the enzyme; (ii) phosphorylated PLM did not change the affinity of the pump for Na(+); and (iii) even after phosphorylation by PKC, PLM still remains associated with the α(2) isoform of NKA.

  15. Small Heat Shock Proteins in Smooth Muscle

    PubMed Central

    Salinthone, Sonemany; Tyagi, Manoj; Gerthoffer, William T.

    2008-01-01

    The small heat shock proteins (HSPs) HSP20, HSP27 and αB-crystallin are chaperone proteins that are abundantly expressed in smooth muscles are important modulators of muscle contraction, cell migration and cell survival. This review focuses on factors regulating expression of small HSPs in smooth muscle, signaling pathways that regulate macromolecular structure and the biochemical and cellular functions of small HSPs. Cellular processes regulated by small HSPs include chaperoning denatured proteins, maintaining cellular redox state and modifying filamentous actin polymerization. These processes influence smooth muscle proliferation, cell migration, cell survival, muscle contraction and synthesis of signaling proteins. Understanding functions of small heat shock proteins is relevant to mechanisms of disease in which dysfunctional smooth muscle causes symptoms, or is a target of drug therapy. One example is that secreted HSP27 may be a useful marker of inflammation during atherogenesis. Another is that phosphorylated HSP20 which relaxes smooth muscle may prove to be highly relevant to treatment of hypertension, vasospasm, asthma, premature labor and overactive bladder. Because small HSPs also modulate smooth muscle proliferation and cell migration they may prove to be targets for developing effective, novel treatments of clinical problems arising from remodeling of smooth muscle in vascular, respiratory and urogenital systems. PMID:18579210

  16. 7 CFR 51.1162 - Fairly smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly smooth texture. 51.1162 Section 51.1162 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the...

  17. 7 CFR 51.1162 - Fairly smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly smooth texture. 51.1162 Section 51.1162 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Definitions § 51.1162 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and...

  18. 7 CFR 51.1162 - Fairly smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth texture. 51.1162 Section 51.1162 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the...

  19. 7 CFR 51.641 - Fairly smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth texture. 51.641 Section 51.641 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards..., and Arizona) Definitions § 51.641 Fairly smooth texture. Fairly smooth texture means that the skin...

  20. 7 CFR 51.641 - Fairly smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth texture. 51.641 Section 51.641 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards..., and Arizona) Definitions § 51.641 Fairly smooth texture. Fairly smooth texture means that the skin...

  1. 7 CFR 51.1008 - Fairly smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly smooth texture. 51.1008 Section 51.1008 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards....1008 Fairly smooth texture. Fairly smooth texture means that the fruit is comparatively free...

  2. 7 CFR 51.1162 - Fairly smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth texture. 51.1162 Section 51.1162 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the...

  3. 7 CFR 51.701 - Fairly smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth texture. 51.701 Section 51.701 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards..., and Arizona) Definitions § 51.701 Fairly smooth texture. Fairly smooth texture means that the skin...

  4. 7 CFR 51.641 - Fairly smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly smooth texture. 51.641 Section 51.641 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards..., and Arizona) Definitions § 51.641 Fairly smooth texture. Fairly smooth texture means that the skin...

  5. 7 CFR 51.1162 - Fairly smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly smooth texture. 51.1162 Section 51.1162 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Definitions § 51.1162 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and...

  6. 7 CFR 51.701 - Fairly smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth texture. 51.701 Section 51.701 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards..., and Arizona) Definitions § 51.701 Fairly smooth texture. Fairly smooth texture means that the skin...

  7. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly smooth texture. 51.772 Section 51.772 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Definitions § 51.772 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and...

  8. 7 CFR 51.1008 - Fairly smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly smooth texture. 51.1008 Section 51.1008 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards....1008 Fairly smooth texture. Fairly smooth texture means that the fruit is comparatively free...

  9. 7 CFR 51.701 - Fairly smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly smooth texture. 51.701 Section 51.701 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards..., and Arizona) Definitions § 51.701 Fairly smooth texture. Fairly smooth texture means that the skin...

  10. Generalized smooth models

    SciTech Connect

    Glosup, J.

    1992-07-23

    The class of gene linear models is extended to develop a class of nonparametric regression models known as generalized smooth models. The technique of local scoring is used to estimate a generalized smooth model and the estimation procedure based on locally weighted regression is shown to produce local likelihood estimates. The asymptotically correct distribution of the deviance difference is derived and its use in comparing the fits of generalized linear models and generalized smooth models is illustrated. The relationship between generalized smooth models and generalized additive models is discussed, also.

  11. Cell density and growth-dependent down-regulation of both intracellular calcium responses to agonist stimuli and expression of smooth-surfaced endoplasmic reticulum in MC3T3-E1 osteoblast-like cells.

    PubMed

    Koizumi, Toshiyuki; Hikiji, Hisako; Shin, Wee Soo; Takato, Tsuyoshi; Fukuda, Satoru; Abe, Takahiro; Koshikiya, Noboru; Iwasawa, Kuniaki; Toyo-oka, Teruhiko

    2003-02-21

    A two-dimensional intracellular Ca(2+) ([Ca(2+)](i)) imaging system was used to examine the relationship between [Ca(2+)](i) handling and the proliferation of MC3T3-E1 osteoblast-like cells. The resting [Ca(2+)](i) level in densely cultured cells was 1.5 times higher than the [Ca(2+)](i) level in sparsely cultured cells or in other cell types (mouse fibroblasts, rat vascular smooth muscle cells, and bovine endothelial cells). A high resting [Ca(2+)](i) level may be specific for MC3T3-E1 cells. MC3T3-E1 cells were stimulated with ATP (10 microM), caffeine (10 mM), thapsigargin (1 microM), or ionomycin (10 microM), and the effect on the [Ca(2+)](i) level of MC3T3-E1 cells was studied. The percentage of responding cells and the degree of [Ca(2+)](i) elevation were high in the sparsely cultured cells and low in densely cultured cells. The rank order for the percentage of responding cells and magnitude of the Ca(2+) response to the stimuli was ionomycin > thapsigargin = ATP > caffeine and suggests the existence of differences among the various [Ca(2+)](i) channels. All Ca(2+) responses in the sparsely cultured MC3T3-E1 cells, unlike in other cell types, disappeared after the cells reached confluence. Heptanol treatment of densely cultured cells restored the Ca(2+) response, suggesting that cell-cell contact is involved with the confluence-dependent disappearance of the Ca(2+) response. Immunohistological analysis of type 1 inositol trisphosphate receptors and electron microscopy showed distinct expression of inositol trisphosphate receptor proteins and smooth-surfaced endoplasmic reticulum in sparsely cultured cells but reduced levels in densely cultured cells. These results indicate that the underlying basis of confluence-dependent [Ca(2+)](i) regulation is down-regulation of smooth-surfaced endoplasmic reticulum by cell-cell contacts.

  12. SMOOTH MUSCLE STEM CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  13. Leiomodin and tropomodulin in smooth muscle

    NASA Technical Reports Server (NTRS)

    Conley, C. A.

    2001-01-01

    Evidence is accumulating to suggest that actin filament remodeling is critical for smooth muscle contraction, which implicates actin filament ends as important sites for regulation of contraction. Tropomodulin (Tmod) and smooth muscle leiomodin (SM-Lmod) have been found in many tissues containing smooth muscle by protein immunoblot and immunofluorescence microscopy. Both proteins cofractionate with tropomyosin in the Triton-insoluble cytoskeleton of rabbit stomach smooth muscle and are solubilized by high salt. SM-Lmod binds muscle tropomyosin, a biochemical activity characteristic of Tmod proteins. SM-Lmod staining is present along the length of actin filaments in rat intestinal smooth muscle, while Tmod stains in a punctate pattern distinct from that of actin filaments or the dense body marker alpha-actinin. After smooth muscle is hypercontracted by treatment with 10 mM Ca(2+), both SM-Lmod and Tmod are found near alpha-actinin at the periphery of actin-rich contraction bands. These data suggest that SM-Lmod is a novel component of the smooth muscle actin cytoskeleton and, furthermore, that the pointed ends of actin filaments in smooth muscle may be capped by Tmod in localized clusters.

  14. Diamond Smoothing Tools

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.

  15. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    PubMed

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth

  16. Insulin-like growth factor-I signaling in smooth muscle cells is regulated by ligand binding to the 177CYDMKTTC184 sequence of the beta3-subunit of alphaVbeta3.

    PubMed

    Maile, Laura A; Busby, Walker H; Sitko, Kevin; Capps, Byron E; Sergent, Tiffany; Badley-Clarke, Jane; Clemmons, David R

    2006-02-01

    The response of smooth muscle cells to IGF-I requires ligand occupancy of the alphaVbeta3 integrin. We have shown that vitronectin (Vn) is required for IGF-I-stimulated migration or proliferation, whereas the anti-alphaVbeta3 monoclonal antibody, LM609, which inhibits ligand binding, blocks responsiveness of these cells to IGF-I. The amino acids 177-184 ((177)CYDMKTTC(184)) within the extracellular domain of beta3 have been proposed to confer the ligand specificity of alphaVbeta3; therefore, we hypothesized that ligand binding to the 177-184 cysteine loop of beta3 may be an important regulator of the cross talk between alphaVbeta3 and IGF-I in SMCs. Here we demonstrate that blocking ligand binding to a specific amino acid sequence within the beta3 subunit of alphaVbeta3 (i.e. amino acids 177-184) blocked Vn binding to the beta3 subunit of alphaVbeta3 and correspondingly beta3 phosphorylation was decreased. In the presence of this antibody, IGF-I-stimulated Shc phosphorylation and ERK 1/2 activation were impaired, and this was associated with an inhibition in the ability of IGF-I to stimulate an increase in migration or proliferation. Furthermore, in cells expressing a mutated form of beta3 in which three critical residues within the 177-184 sequence were altered beta3 phosphorylation was decreased. This was associated with a loss of IGF-I-stimulated Shc phosphorylation and impaired smooth muscle cell proliferation in response to IGF-I. In conclusion, we have demonstrated that the 177-184 sequence of beta3 is necessary for Vn binding to alphaVbeta3 and that ligand occupancy of this site is necessary for an optimal response of smooth muscle cells to IGF-I.

  17. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    PubMed

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  18. The inhibitory effect of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1{alpha} expression

    SciTech Connect

    Xu, Wei; Guo, Ting; Zhang, Yan; Jiang, Xiaohong; Zhang, Yongxian; Zen, Ke; Yu, Bo; Zhang, Chen-Yu

    2011-05-01

    Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPAR{gamma}) coactivator-1 alpha (PGC-1{alpha}) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1{alpha} in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1{alpha} expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1{alpha} mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1{alpha} expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1{alpha} by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1{alpha} had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1{alpha} decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPAR{gamma} activation by a PPAR{gamma} antagonist GW9662 abolished the suppressive effects of PGC-1{alpha} on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1{alpha} were enhanced by a PPAR{gamma} agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1{alpha} expression. PGC-1{alpha} suppresses PDGF-induced VSMC migration through PPAR{gamma} coactivation and, consequently, p38 MAPK inhibition.

  19. Gingipains from the Periodontal Pathogen Porphyromonas gingivalis Play a Significant Role in Regulation of Angiopoietin 1 and Angiopoietin 2 in Human Aortic Smooth Muscle Cells

    PubMed Central

    Khalaf, Hazem; Sirsjö, Allan; Bengtsson, Torbjörn

    2015-01-01

    Angiopoietin 1 (Angpt1) and angiopoietin 2 (Angpt2) are the ligands of tyrosine kinase (Tie) receptors, and they play important roles in vessel formation and the development of inflammatory diseases, such as atherosclerosis. Porphyromonas gingivalis is a Gram-negative periodontal bacterium that is thought to contribute to the progression of cardiovascular disease. The aim of this study was to investigate the role of P. gingivalis infection in the modulation of Angpt1 and Angpt2 in human aortic smooth muscle cells (AoSMCs). We exposed AoSMCs to wild-type (W50 and 381), gingipain mutant (E8 and K1A), and fimbrial mutant (DPG-3 and KRX-178) P. gingivalis strains and to different concentrations of tumor necrosis factor (TNF). The atherosclerosis risk factor TNF was used as a positive control in this study. We found that P. gingivalis (wild type, K1A, DPG3, and KRX178) and TNF upregulated the expression of Angpt2 and its transcription factor ETS1, respectively, in AoSMCs. In contrast, Angpt1 was inhibited by P. gingivalis and TNF. However, the RgpAB mutant E8 had no effect on the expression of Angpt1, Angpt2, or ETS1 in AoSMCs. The results also showed that ETS1 is critical for P. gingivalis induction of Angpt2. Exposure to Angpt2 protein enhanced the migration of AoSMCs but had no effect on proliferation. This study demonstrates that gingipains are crucial to the ability of P. gingivalis to markedly increase the expressed Angpt2/Angpt1 ratio in AoSMCs, which determines the regulatory role of angiopoietins in angiogenesis and their involvement in the development of atherosclerosis. These findings further support the association between periodontitis and cardiovascular disease. PMID:26283334

  20. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells.

    PubMed

    Sudo, Ryo; Sato, Fumiaki; Azechi, Takuya; Wachi, Hiroshi

    2015-12-01

    Vascular calcification increases the risk of cardiovascular mortality. We previously reported that expression of elastin decreases with progression of inorganic phosphorus (Pi)-induced vascular smooth muscle cell (VSMC) calcification. However, the regulatory mechanisms of elastin mRNA expression during vascular calcification remain unclear. MicroRNA-29 family members (miR-29a, b and c) are reported to mediate elastin mRNA expression. Therefore, we aimed to determine the effect of miR-29 on elastin expression and Pi-induced vascular calcification. Calcification of human VSMCs was induced by Pi and evaluated measuring calcium deposition. Pi stimulation promoted Ca deposition and suppressed elastin expression in VSMCs. Knockdown of elastin expression by shRNA also promoted Pi-induced VSMC calcification. Elastin pre-mRNA measurements indicated that Pi stimulation suppressed elastin expression without changing transcriptional activity. Conversely, Pi stimulation increased miR-29a and miR-29b expression. Inhibition of miR-29 recovered elastin expression and suppressed calcification in Pi-treated VSMCs. Furthermore, over-expression of miR-29b promoted Pi-induced VSMC calcification. RT-qPCR analysis showed knockdown of elastin expression in VSMCs induced expression of osteoblast-related genes, similar to Pi stimulation, and recovery of elastin expression by miR-29 inhibition reduced their expression. Our study shows that miR-29-mediated suppression of elastin expression in VSMCs plays a pivotal role in osteoblastic differentiation leading to vascular calcification. PMID:26610870

  1. Discrete square root smoothing.

    NASA Technical Reports Server (NTRS)

    Kaminski, P. G.; Bryson, A. E., Jr.

    1972-01-01

    The basic techniques applied in the square root least squares and square root filtering solutions are applied to the smoothing problem. Both conventional and square root solutions are obtained by computing the filtered solutions, then modifying the results to include the effect of all measurements. A comparison of computation requirements indicates that the square root information smoother (SRIS) is more efficient than conventional solutions in a large class of fixed interval smoothing problems.

  2. Intracellular pH in human arterial smooth muscle. Regulation by Na+/H+ exchange and a novel 5-(N-ethyl-N-isopropyl)amiloride-sensitive Na(+)- and HCO3(-)-dependent mechanism

    SciTech Connect

    Neylon, C.B.; Little, P.J.; Cragoe, E.J. Jr.; Bobik, A. )

    1990-10-01

    We investigated in a physiological salt solution (PSS) containing HCO3- the intracellular pH (pHi) regulating mechanisms in smooth muscle cells cultured from human internal mammary arteries, using the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and 22Na+ influx rates. The recovery of pHi from an equivalent intracellular acidosis was more rapid when the cells were incubated in CO2/HCO3(-)-buffered PSS than in HEPES-buffered PSS. Recovery of pHi was dependent on extracellular Na+ (Km, 13.1 mM); however, it was not attenuated by 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), indicating the absence of SITS-sensitive HCO3(-)-dependent mechanisms. Recovery instead appeared mostly dependent on processes sensitive to 5-(N-ethyl-N-isopropyl)amiloride (EIPA), indicating the involvement of Na+/H+ exchange and a previously undescribed EIPA-sensitive Na(+)- and HCO3(-)-dependent mechanism. Differentiation between this HCO3(-)-dependent mechanism and Na+/H+ exchange was achieved after depletion of cellular ATP. Under these conditions, the NH4Cl-induced 22Na+ influx rate stimulated by intracellular acidosis was markedly attenuated in HEPES-buffered PSS but not in CO2/HCO3(-)-buffered PSS. EIPA also appeared to inhibit the two mechanisms differentially. In HEPES-buffered PSS containing 20 mM Na+, the EIPA inhibition curve for the intracellular acidosis-induced 22Na+ influx was monophasic (IC50, 39 nM), whereas in an identical CO2/HCO3(-)-buffered PSS, the inhibition curve exhibited biphasic characteristics (IC50, 37.3 nM and 312 microM). Taken together, the results indicate that Na+/H+ exchange and a previously undescribed EIPA-sensitive Na(+)- and HCO3(-)-dependent mechanism play an important role in regulating the pHi of human vascular smooth muscle.

  3. Extra-Nuclear Signaling Pathway Involved in Progesterone-Induced Up-Regulations of p21cip1 and p27kip1 in Male Rat Aortic Smooth Muscle Cells

    PubMed Central

    Wang, Hui-Chen; Hsu, Sung-Po; Lee, Wen-Sen

    2015-01-01

    Previously, we demonstrated that progesterone (P4) at physiologic levels (5-500 nM) inhibited proliferation in cultured rat aortic smooth muscle cells (RASMCs) through a P4 receptor (PR)-dependent pathway. We also showed that P4-induced cell cycle arrest in RASMCs occurs when the cyclin-CDK2 system is inhibited just as p21cip1 and p27kip1 protein levels are augmented. In the present study, we further investigated the molecular mechanism underlying P4-induced up-regulations of p21cip1 and p27kip1 in RASMCs. We used pharmacological inhibitors as well as dominant negative constructs and conducted Western blot analyses to delineate the signaling pathway involved. Our data suggest that P4 up-regulated the expression of p21cip1 and p27kip1 in RASMCs through increasing the level of p53 protein mediated by activating the cSrc/Kras/Raf-1/AKT/ERK/p38/IκBα/NFκB pathway. The findings of the present study highlight the molecular mechanism underlying P4-induced up-regulations in p21cip1 and p27kip1 in RASMCs. PMID:25932965

  4. Effects of the inflammatory cytokines TNF-α and IL-13 on stromal interaction molecule-1 aggregation in human airway smooth muscle intracellular Ca(2+) regulation.

    PubMed

    Jia, Li; Delmotte, Philippe; Aravamudan, Bharathi; Pabelick, Christina M; Prakash, Y S; Sieck, Gary C

    2013-10-01

    Inflammation elevates intracellular Ca(2+) ([Ca(2+)]i) concentrations in airway smooth muscle (ASM). Store-operated Ca(2+) entry (SOCE) is an important source of [Ca(2+)]i mediated by stromal interaction molecule-1 (STIM1), a sarcoplasmic reticulum (SR) protein. In transducing SR Ca(2+) depletion, STIM1 aggregates to form puncta, thereby activating SOCE via interactions with a Ca(2+) release-activated Ca(2+) channel protein (Orai1) in the plasma membrane. We hypothesized that STIM1 aggregation is enhanced by inflammatory cytokines, thereby augmenting SOCE in human ASM cells. We used real-time fluorescence microscopic imaging to assess the dynamics of STIM1 aggregation and SOCE after exposure to TNF-α or IL-13 in ASM cells overexpressing yellow fluorescent protein-tagged wild-type STIM1 (WT-STIM1) and STIM1 mutants lacking the Ca(2+)-sensing EF-hand (STIM1-D76A), or lacking the cytoplasmic membrane binding site (STIM1ΔK). STIM1 aggregation was analyzed by monitoring puncta size during the SR Ca(2+) depletion induced by cyclopiazonic acid (CPA). We found that puncta size was increased in cells expressing WT-STIM1 after CPA. However, STIM1-D76A constitutively formed puncta, whereas STIM1ΔK failed to form puncta. Furthermore, cytokines increased basal WT-STIM1 puncta size, and the SOCE triggered by SR Ca(2+) depletion was increased in cells expressing WT-STIM1 or STIM1-D76A. Meanwhile, SOCE in cells expressing STIM1ΔK and STIM1 short, interfering RNA (siRNA) was decreased. Similarly, in cells overexpressing STIM1, the siRNA knockdown of Orai1 blunted SOCE. However, exposure to cytokines increased SOCE in all cells, increased basal [Ca(2+)]i, and decreased SR Ca(2+) content. These data suggest that cytokines induce a constitutive increase in STIM1 aggregation that contributes to enhanced SOCE in human ASM after inflammation. Such effects of inflammation on STIM1 aggregations may contribute to airway hyperresponsiveness. PMID:23713409

  5. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    SciTech Connect

    Zhang, Shuai; Zou, Lihui; Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo; Xiao, Fei; Wang, Chen

    2015-03-15

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.

  6. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    PubMed

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  7. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders

    PubMed Central

    Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.

    2016-01-01

    The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223

  8. MicroRNA-143 is a critical regulator of cell cycle activity in stem cells with co-overexpression of Akt and angiopoietin-1 via transcriptional regulation of Erk5/cyclin D1 signaling

    PubMed Central

    Lai, Vien Khach; Ashraf, Muhammad; Jiang, Shujia

    2012-01-01

    We report that simultaneous expression of Akt and angiopoietin-1 (Ang-1) transgenes supported mitogenesis in stem cells with a critical role for microRNA-143 (miR-143) downstream of FoxO1 transcription factor. Mesenchymal stem cells (MSC) from young male rats were transduced with Ad-vectors encoding for Akt (AktMSC) and Ang-1 (Ang-1MSC) transgenes for their individual or simultaneous overexpression (AAMSC; > 5-fold gene level and > 4-fold Akt and Ang-1 protein expression in AAMSC vs. Ad-Empty transduced MSC; EmpMSC). AAMSC had higher phosphorylation of FoxO1, which activated Erk5, a distinct mitogen-induced MAPK that drove transcriptional activation of cyclin D1 and Cdk4. Flow cytometry showed > 10% higher S-phase cell population that was confirmed by BrdU assay (15%) and immunohistology for Ki67 (11%) in AAMSC using EmpMSC as controls. miR array supported by real-time PCR showed induction of miR-143 in AAMSC (4.73-fold vs. EmpMSC). Luciferase assay indicated a dependent relationship between miR-143 and Erk5 in AAMSC. FoxO1-specific siRNA upregulated miR-143, whereas inhibition of miR-143 did not change FoxO1 activation. However, miR-143 inhibition repressed phosphorylation of Erk5 and abrogated cyclin D1 with concomitant reduction in cells entering cell cycle. During in vivo studies, male GFP+ AAMSC transplanted into wild-type female infarcted rat hearts showed significantly higher numbers of Ki67-expressing cells (p < 0.05 vs. EmpMSC) 7 d after engraftment (n = 4 animals/group). In conclusion, co-overexpression of Akt and Ang-1 in MSC activated cell cycle progression by upregulation of miR-143 and stimulation of FoxO1 and Erk5 signaling. PMID:22374674

  9. cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells.

    PubMed Central

    Graves, L M; Bornfeldt, K E; Argast, G M; Krebs, E G; Kong, X; Lin, T A; Lawrence, J C

    1995-01-01

    Incubating rat aortic smooth muscle cells with either platelet-derived growth factor BB (PDGF) or insulin-like growth factor I (IGF-I) increased the phosphorylation of PHAS-I, an inhibitor of the mRNA cap binding protein, eukaryotic initiation factor (eIF) 4E. Phosphorylation of PHAS-I promoted dissociation of the PHAS-I-eIF-4E complex, an effect that could partly explain the stimulation of protein synthesis by the two growth factors. Increasing cAMP with forskolin decreased PHAS-I phosphorylation and markedly increased the amount of eIF-4E bound to PHAS-I, effects consistent with an action of cAMP to inhibit protein synthesis. Both PDGF and IGF-I activated p70S6K, but only PDGF increased mitogen-activated protein kinase activity. Forskolin decreased by 50% the effect of PDGF on increasing p70S6K, and forskolin abolished the effect of IGF-I on the kinase. The effects of PDGF and IGF-I on increasing PHAS-I phosphorylation, on dissociating the PHAS-I-eIF-4E complex, and on increasing p70S6K were abolished by rapamycin. The results indicate that IGF-I and PDGF increase PHAS-I phosphorylation in smooth muscle cells by the same rapamycin-sensitive pathway that leads to activation of p70S6K. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7638171

  10. A novel E1B55kDa-deleted oncolytic adenovirus carrying microRNA-143 exerts specific antitumor efficacy on colorectal cancer cells

    PubMed Central

    Luo, Qifeng; Basnet, Shiva; Dai, Zhenling; Li, Shuping; Zhang, Zhenyu; Ge, Haiyan

    2016-01-01

    The KRAS is an important and frequently mutated gene during colorectal carcinogenesis. The expression of miR-143 is often down-regulated and it might play an important role by targeting KRAS in colorectal cancer (CRC). The purpose of this study was to investigate the antitumor effects of miR-143 with an intermediate oncolytic adenovirus (Ad) in CRC. We constructed the recombinant virus Ad-ZD55-miR-143 and verified its expression by qPCR and western blot assays. Oncolytic potency of Ad-ZD55-miR-143 was determined by cytopathic effect assays using human SW480 CRC cells and L-02 normal liver cells. MTT and cell apoptosis assays were applied to explore the biological functions of Ad-ZD55-miR-143 within SW480 cells. Dual-luciferase reporter assays were performed to validate whether KRAS was regulated by miR-143. The expression level of KRAS was measured by qPCR and western blot assays. Results showed that infection of SW480 cells with Ad-ZD55-miR-143 induced high level expression of miR-143. Furthermore, Ad-ZD55-miR-143 significantly suppressed the viability of SW480 cells in a dose-dependent pattern, but did not influence L-02 cells. Ad-ZD55-miR-143 also inhibited cell growth and induced cell apoptosis in SW480 cells. Dual-luciferase assays indicated that KRAS was a direct target of miR-143, as subsequently demonstrated by qPCR and western blot analysis showing that infection of SW480 cells with Ad-ZD55-miR-143 resulted in the down-regulation of KRAS at both mRNA and protein levels. Taken together, the recombinant virus Ad-ZD55-miR-143 exhibited specific antitumor effects by targeting KRAS, and might be a promising agent for the treatment of CRC. PMID:27725862

  11. 7 CFR 51.701 - Fairly smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly smooth texture. 51.701 Section 51.701 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Other Than Florida, California, and Arizona) Definitions § 51.701 Fairly smooth texture. Fairly...

  12. 7 CFR 51.641 - Fairly smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly smooth texture. 51.641 Section 51.641 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Other Than Florida, California, and Arizona) Definitions § 51.641 Fairly smooth texture. Fairly...

  13. 7 CFR 51.701 - Fairly smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly smooth texture. 51.701 Section 51.701 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Other Than Florida, California, and Arizona) Definitions § 51.701 Fairly smooth texture. Fairly...

  14. 7 CFR 51.641 - Fairly smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly smooth texture. 51.641 Section 51.641 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Other Than Florida, California, and Arizona) Definitions § 51.641 Fairly smooth texture. Fairly...

  15. PKC-dependent extracellular signal-regulated kinase 1/2 pathway is involved in the inhibition of Ib on AngiotensinII-induced proliferation of vascular smooth muscle cells

    SciTech Connect

    Wang Yu; Yan Tianhua; Wang Qiujuan Wang Wei; Xu Jinyi; Wu Xiaoming; Ji Hui

    2008-10-10

    AngiotensinII (AngII) induces vascular smooth muscle cell (VSMC) proliferation, which plays an important role in the development and progression of hypertension. AngII-induced cellular events have been implicated, in part, in the activation of protein kinase C (PKC) and extracellular signal-regulated kinases 1/2 (ERK1/2). In the present study, we investigated the effect of Ib, a novel nonpeptide AngII receptor type 1 (AT{sub 1}) antagonist, on the activation of PKC and ERK1/2 in VSMC proliferation induced by AngII. MTT, and [{sup 3}H]thymidine incorporation assay showed that AngII-induced VSMC proliferation was inhibited significantly by Ib. The specific binding of [{sup 125}I]AngII to AT{sub 1} receptors was blocked by Ib in a concentration-dependent manner with IC{sub 50} value of 0.96 nM. PKC activity assay and Western blot analysis demonstrated that Ib significantly inhibited the activation of PKC and phosphorylation of ERK1/2 induced by AngII, respectively. Furthermore, AngII-induced ERK1/2 activation was obviously blocked by GF109203X, a PKC inhibitor. These findings suggest that the suppression of Ib on AngII-induced VSMC proliferation may be attributed to its inhibitory effect on PKC-dependent ERK1/2 pathway.

  16. Icariin inhibits oxidized low-density lipoprotein-induced proliferation of vascular smooth muscle cells by suppressing activation of extracellular signal-regulated kinase 1/2 and expression of proliferating cell nuclear antigen.

    PubMed

    Hu, Yanwu; Liu, Kai; Yan, Mengtong; Zhang, Yang; Wang, Yadi; Ren, Liqun

    2016-03-01

    Icariin, a flavonoid isolated from the traditional Chinese herbal medicine Epimedium brevicornum Maxim, has been shown to possess anti-inflammatory, anti‑oxidant and anti-atherosclerotic activities in vivo and in vitro. The aim of the present study was to investigate the effects of icariin on oxidized low‑density lipoprotein (ox-LDL)-induced proliferation of vascular smooth muscle cells (VSMCs) and the possible underlying mechanism. VSMCs were cultured and pre‑treated with various concentrations of icariin (0, 10, 20 or 40 µm) prior to stimulation by ox‑LDL (50 µg/ml). Cell proliferation was evaluated by an MTT assay. Flow cytometry was used to study the influence of icariin on the cell cycle. Proliferating cell nuclear antigen (PCNA) expression and phosphorylation levels of extracellular signal-regulated kinase (ERK)1/2 were detected by western blot analysis. The results indicated that icariin significantly inhibited ox‑LDL‑induced proliferation of VSMCs and phosphorylation of ERK1/2. Furthermore, icariin also blocked the ox‑LDL‑induced cell‑cycle progression at G1/S‑interphase and downregulated the expression of PCNA in VSMCs. In conclusion, the present study indicated for the first time that icariin reduced the amount of ox‑LDL‑induced proliferation of VSMCs through suppression of PCNA expression and inactivation of ERK1/2.

  17. Anti-smooth muscle antibody

    MedlinePlus

    ... medlineplus.gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the ...

  18. MicroRNA-143 acts as a tumor suppressor by targeting hexokinase 2 in human prostate cancer

    PubMed Central

    Zhou, Peng; Chen, Wei-Guo; Li, Xiao-Wei

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in cancer progression through regulating gene expression. Down-regulation of miR-143 has been reported in a number of cancers. However, the biological functions of miR-143 in prostate cancer remain largely unexplored. In this study, we showed that miR-143 expression was reduced in approximately 62.5% of the specimens examined. By loss-of-function and gain-of-function studies in human prostate cancer PC-3 cells, we demonstrated that miR-143 has an inhibitory effect on cell proliferation as evidenced by decreased cell viability, increased cell apoptosis and cell cycle arrest at the G1/S transition. Furthermore, we identified hexokinase 2 (HK2), a metabolic enzyme that executes the first step of aerobic glycolysis, as a target of miR-143 in prostate cancer. Knockdown of HK2 recapitulated the effects of miR-143 and accompanied with decreased glucose metabolism. Taken together, these data indicate that miR-143/HK2 axis plays an important role in the development of prostate cancer and represents a potential therapeutic target for prostate cancer. PMID:26269764

  19. Calcium Sensitization Mechanisms in Gastrointestinal Smooth Muscles

    PubMed Central

    Perrino, Brian A

    2016-01-01

    An increase in intracellular Ca2+ is the primary trigger of contraction of gastrointestinal (GI) smooth muscles. However, increasing the Ca2+ sensitivity of the myofilaments by elevating myosin light chain phosphorylation also plays an essential role. Inhibiting myosin light chain phosphatase activity with protein kinase C-potentiated phosphatase inhibitor protein-17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation is considered to be the primary mechanism underlying myofilament Ca2+ sensitization. The relative importance of Ca2+ sensitization mechanisms to the diverse patterns of GI motility is likely related to the varied functional roles of GI smooth muscles. Increases in CPI-17 and MYPT1 phosphorylation in response to agonist stimulation regulate myosin light chain phosphatase activity in phasic, tonic, and sphincteric GI smooth muscles. Recent evidence suggests that MYPT1 phosphorylation may also contribute to force generation by reorganization of the actin cytoskeleton. The mechanisms responsible for maintaining constitutive CPI-17 and MYPT1 phosphorylation in GI smooth muscles are still largely unknown. The characteristics of the cell-types comprising the neuroeffector junction lead to fundamental differences between the effects of exogenous agonists and endogenous neurotransmitters on Ca2+ sensitization mechanisms. The contribution of various cell-types within the tunica muscularis to the motor responses of GI organs to neurotransmission must be considered when determining the mechanisms by which Ca2+ sensitization pathways are activated. The signaling pathways regulating Ca2+ sensitization may provide novel therapeutic strategies for controlling GI motility. This article will provide an overview of the current understanding of the biochemical basis for the regulation of Ca2+ sensitization, while also discussing the functional importance to different smooth muscles of the GI tract. PMID:26701920

  20. Localization of phospholamban in smooth muscle using immunogold electron microscopy

    PubMed Central

    1988-01-01

    Phospholamban, the putative regulator of the Ca2+-ATPase in cardiac sarcoplasmic reticulum, was immunolocalized in canine visceral and vascular smooth muscle. Gently disrupted tissues were labeled with an affinity-purified phospholamban polyclonal antibody and indirect immunogold, using preembedding techniques. The sarcoplasmic reticulum of smooth muscle cells was specifically labeled with patches of immunogold distributed in a nonuniform fashion, while the sarcolemma did not appear to contain any phospholamban. The outer nuclear envelopes were also observed to be heavily labeled with the affinity- purified phospholamban polyclonal antibody. These findings suggest that phospholamban may play a role in the regulation of cytoplasmic and intranuclear calcium levels in smooth muscle cells. PMID:3417762

  1. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics

    PubMed Central

    Deiuliis, J A

    2016-01-01

    The prevalence of overweight and obesity in developed and developing countries has greatly increased the risk of insulin resistance and type 2 diabetes mellitus. It is evident from human and animal studies that obesity alters microRNA (miRNA) expression in metabolically important organs, and that miRNAs are involved in changes to normal physiology, acting as mediators of disease. miRNAs regulate multiple pathways including insulin signaling, immune-mediated inflammation, adipokine expression, adipogenesis, lipid metabolism, and food intake regulation. Thus, miRNA-based therapeutics represent an innovative and attractive treatment modality, with non-human primate studies showing great promise. In addition, miRNA measures in plasma or bodily fluids may be used as disease biomarkers and predictors of metabolic disease in humans. This review analyzes the role of miRNAs in obesity and insulin resistance, focusing on the miR-17/92, miR-143-145, miR-130, let-7, miR-221/222, miR-200, miR-223, miR-29 and miR-375 families, as well as miRNA changes by relevant tissue (adipose, liver and skeletal muscle). Further, the current and future applications of miRNA-based therapeutics and diagnostics in metabolic disease are discussed. PMID:26311337

  2. Silencing microRNA-143 protects the integrity of the blood-brain barrier: implications for methamphetamine abuse

    PubMed Central

    Bai, Ying; Zhang, Yuan; Hua, Jun; Yang, Xiangyu; Zhang, Xiaotian; Duan, Ming; Zhu, Xinjian; Huang, Wenhui; Chao, Jie; Zhou, Rongbin; Hu, Gang; Yao, Honghong

    2016-01-01

    MicroRNA-143 (miR-143) plays a critical role in various cellular processes; however, the role of miR-143 in the maintenance of blood-brain barrier (BBB) integrity remains poorly defined. Silencing miR-143 in a genetic animal model or via an anti-miR-143 lentivirus prevented the BBB damage induced by methamphetamine. miR-143, which targets p53 unregulated modulator of apoptosis (PUMA), increased the permeability of human brain endothelial cells and concomitantly decreased the expression of tight junction proteins (TJPs). Silencing miR-143 increased the expression of TJPs and protected the BBB integrity against the effects of methamphetamine treatment. PUMA overexpression increased the TJP expression through a mechanism that involved the NF-κB and p53 transcription factor pathways. Mechanistically, methamphetamine mediated up-regulation of miR-143 via sigma-1 receptor with sequential activation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3′ kinase (PI3K)/Akt and STAT3 pathways. These results indicated that silencing miR-143 could provide a novel therapeutic strategy for BBB damage-related vascular dysfunction. PMID:27767041

  3. Smooth eigenvalue correction

    NASA Astrophysics Data System (ADS)

    Hendrikse, Anne; Veldhuis, Raymond; Spreeuwers, Luuk

    2013-12-01

    Second-order statistics play an important role in data modeling. Nowadays, there is a tendency toward measuring more signals with higher resolution (e.g., high-resolution video), causing a rapid increase of dimensionality of the measured samples, while the number of samples remains more or less the same. As a result the eigenvalue estimates are significantly biased as described by the Marčenko Pastur equation for the limit of both the number of samples and their dimensionality going to infinity. By introducing a smoothness factor, we show that the Marčenko Pastur equation can be used in practical situations where both the number of samples and their dimensionality remain finite. Based on this result we derive methods, one already known and one new to our knowledge, to estimate the sample eigenvalues when the population eigenvalues are known. However, usually the sample eigenvalues are known and the population eigenvalues are required. We therefore applied one of the these methods in a feedback loop, resulting in an eigenvalue bias correction method. We compare this eigenvalue correction method with the state-of-the-art methods and show that our method outperforms other methods particularly in real-life situations often encountered in biometrics: underdetermined configurations, high-dimensional configurations, and configurations where the eigenvalues are exponentially distributed.

  4. New smooth hybrid inflation

    SciTech Connect

    Lazarides, George; Vamvasakis, Achilleas

    2007-10-15

    We consider the extension of the supersymmetric Pati-Salam model which solves the b-quark mass problem of supersymmetric grand unified models with exact Yukawa unification and universal boundary conditions and leads to the so-called new shifted hybrid inflationary scenario. We show that this model can also lead to a new version of smooth hybrid inflation based only on renormalizable interactions provided that a particular parameter of its superpotential is somewhat small. The potential possesses valleys of minima with classical inclination, which can be used as inflationary paths. The model is consistent with the fitting of the three-year Wilkinson microwave anisotropy probe data by the standard power-law cosmological model with cold dark matter and a cosmological constant. In particular, the spectral index turns out to be adequately small so that it is compatible with the data. Moreover, the Pati-Salam gauge group is broken to the standard model gauge group during inflation and, thus, no monopoles are formed at the end of inflation. Supergravity corrections based on a nonminimal Kaehler potential with a convenient choice of a sign keep the spectral index comfortably within the allowed range without generating maxima and minima of the potential on the inflationary path. So, unnatural restrictions on the initial conditions for inflation can be avoided.

  5. Ceramic coatings on smooth surfaces

    NASA Technical Reports Server (NTRS)

    Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)

    1991-01-01

    A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.

  6. Conservative smoothing versus artificial viscosity

    SciTech Connect

    Guenther, C.; Hicks, D.L.; Swegle, J.W.

    1994-08-01

    This report was stimulated by some recent investigations of S.P.H. (Smoothed Particle Hydrodynamics method). Solid dynamics computations with S.P.H. show symptoms of instabilities which are not eliminated by artificial viscosities. Both analysis and experiment indicate that conservative smoothing eliminates the instabilities in S.P.H. computations which artificial viscosities cannot. Questions were raised as to whether conservative smoothing might smear solutions more than artificial viscosity. Conservative smoothing, properly used, can produce more accurate solutions than the von Neumann-Richtmyer-Landshoff artificial viscosity which has been the standard for many years. The authors illustrate this using the vNR scheme on a test problem with known exact solution involving a shock collision in an ideal gas. They show that the norms of the errors with conservative smoothing are significantly smaller than the norms of the errors with artificial viscosity.

  7. Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis.

    PubMed

    Huang, Yan; Di Lorenzo, Annarita; Jiang, Weidong; Cantalupo, Anna; Sessa, William C; Giordano, Frank J

    2013-09-01

    Hypertension is a major worldwide health issue for which only a small proportion of cases have a known mechanistic pathogenesis. Of the defined causes, none have been directly linked to heightened vasoconstrictor responsiveness, despite the fact that vasomotor tone in resistance vessels is a fundamental determinant of blood pressure. Here, we reported a previously undescribed role for smooth muscle hypoxia-inducible factor-1α (HIF-1α) in controlling blood pressure homeostasis. The lack of HIF-1α in smooth muscle caused hypertension in vivo and hyperresponsiveness of resistance vessels to angiotensin II stimulation ex vivo. These data correlated with an increased expression of angiotensin II receptor type I in the vasculature. Specifically, we show that HIF-1α, through peroxisome proliferator-activated receptor-γ, reciprocally defined angiotensin II receptor type I levels in the vessel wall. Indeed, pharmacological blockade of angiotensin II receptor type I by telmisartan abolished the hypertensive phenotype in smooth muscle cell-HIF-1α-KO mice. These data revealed a determinant role of a smooth muscle HIF-1α/peroxisome proliferator-activated receptor-γ/angiotensin II receptor type I axis in controlling vasomotor responsiveness and highlighted an important pathway, the alterations of which may be critical in a variety of hypertensive-based clinical settings. PMID:23918749

  8. Smooth Muscle Strips for Intestinal Tissue Engineering

    PubMed Central

    Walthers, Christopher M.; Lee, Min; Wu, Benjamin M.; Dunn, James C. Y.

    2014-01-01

    Functionally contracting smooth muscle is an essential part of the engineered intestine that has not been replicated in vitro. The purpose of this study is to produce contracting smooth muscle in culture by maintaining the native smooth muscle organization. We employed intact smooth muscle strips and compared them to dissociated smooth muscle cells in culture for 14 days. Cells isolated by enzymatic digestion quickly lost maturity markers for smooth muscle cells and contained few enteric neural and glial cells. Cultured smooth muscle strips exhibited periodic contraction and maintained neural and glial markers. Smooth muscle strips cultured for 14 days also exhibited regular fluctuation of intracellular calcium, whereas cultured smooth muscle cells did not. After implantation in omentum for 14 days on polycaprolactone scaffolds, smooth muscle strip constructs expressed high levels of smooth muscle maturity markers as well as enteric neural and glial cells. Intact smooth muscle strips may be a useful component for engineered intestinal smooth muscle. PMID:25486279

  9. Smooth Sailing with Contract Services.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2001-01-01

    Discusses how to make the contract services relationship work smoothly for educational facilities. Covers topics of food, child care, and transportation services, along with a brief explanation of the benefits of outsourcing on-campus amenities. (GR)

  10. Active controls for ride smoothing

    NASA Technical Reports Server (NTRS)

    Conner, D. W.; Thompson, G. O.

    1976-01-01

    Active controls technology offers great promise for significantly smoothing the ride, and thus improving public and air carrier acceptance, of certain types of transport aircraft. Recent findings which support this promise are presented in the following three pertinent areas: (1) Ride quality versus degree of traveler satisfaction; (2) significant findings from a feasibility study of a ride smoothing system; and (3) potential ride problems identified for several advanced transport concepts.

  11. Radar data smoothing filter study

    NASA Technical Reports Server (NTRS)

    White, J. V.

    1984-01-01

    The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.

  12. Smooth electrode and method of fabricating same

    DOEpatents

    Weaver, Stanton Earl; Kennerly, Stacey Joy; Aimi, Marco Francesco

    2012-08-14

    A smooth electrode is provided. The smooth electrode includes at least one metal layer having thickness greater than about 1 micron; wherein an average surface roughness of the smooth electrode is less than about 10 nm.

  13. Exotic smoothness and quantum gravity

    NASA Astrophysics Data System (ADS)

    Asselmeyer-Maluga, T.

    2010-08-01

    Since the first work on exotic smoothness in physics, it was folklore to assume a direct influence of exotic smoothness to quantum gravity. Thus, the negative result of Duston (2009 arXiv:0911.4068) was a surprise. A closer look into the semi-classical approach uncovered the implicit assumption of a close connection between geometry and smoothness structure. But both structures, geometry and smoothness, are independent of each other. In this paper we calculate the 'smoothness structure' part of the path integral in quantum gravity assuming that the 'sum over geometries' is already given. For that purpose we use the knot surgery of Fintushel and Stern applied to the class E(n) of elliptic surfaces. We mainly focus our attention to the K3 surfaces E(2). Then we assume that every exotic smoothness structure of the K3 surface can be generated by knot or link surgery in the manner of Fintushel and Stern. The results are applied to the calculation of expectation values. Here we discuss the two observables, volume and Wilson loop, for the construction of an exotic 4-manifold using the knot 52 and the Whitehead link Wh. By using Mostow rigidity, we obtain a topological contribution to the expectation value of the volume. Furthermore, we obtain a justification of area quantization.

  14. An invertebrate smooth muscle with striated muscle myosin filaments

    PubMed Central

    Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger

    2015-01-01

    Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components. PMID:26443857

  15. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Smooth texture. 51.768 Section 51.768 Agriculture... Standards for Grades of Florida Grapefruit Definitions § 51.768 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the...

  16. 7 CFR 51.698 - Smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Smooth texture. 51.698 Section 51.698 Agriculture..., California, and Arizona) Definitions § 51.698 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  17. 7 CFR 51.1159 - Smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Smooth texture. 51.1159 Section 51.1159 Agriculture... Standards for Grades of Florida Oranges and Tangelos Definitions § 51.1159 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  18. 7 CFR 51.636 - Smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Smooth texture. 51.636 Section 51.636 Agriculture... Florida, California, and Arizona) Definitions § 51.636 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  19. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Smooth texture. 51.768 Section 51.768 Agriculture... Standards for Grades of Florida Grapefruit Definitions § 51.768 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the...

  20. 7 CFR 51.1159 - Smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Smooth texture. 51.1159 Section 51.1159 Agriculture... Standards for Grades of Florida Oranges and Tangelos Definitions § 51.1159 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  1. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Smooth texture. 51.768 Section 51.768 Agriculture... Standards for Grades of Florida Grapefruit Definitions § 51.768 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the...

  2. 7 CFR 51.698 - Smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Smooth texture. 51.698 Section 51.698 Agriculture..., California, and Arizona) Definitions § 51.698 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  3. 7 CFR 51.1159 - Smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Smooth texture. 51.1159 Section 51.1159 Agriculture... Standards for Grades of Florida Oranges and Tangelos Definitions § 51.1159 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  4. 7 CFR 51.636 - Smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Smooth texture. 51.636 Section 51.636 Agriculture... Florida, California, and Arizona) Definitions § 51.636 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  5. Registration of 'Newell' Smooth Bromegrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Newell’ (Reg. No. CV-xxxx, PI 671851) smooth bromegrass (Bromus inermis Leyss.) is a steppe or southern type cultivar that is primarily adapted in the USA to areas north of 40o N lat. and east of 100o W long. that have 500 mm or more annual precipitation or in areas that have similar climate cond...

  6. Surface antigens of smooth brucellae.

    PubMed

    Diaz, R; Jones, L M; Leong, D; Wilson, J B

    1968-10-01

    Surface antigens of smooth brucellae were extracted by ether-water, phenol-water, trichloroacetic acid, and saline and examined by immunoelectrophoresis and gel diffusion with antisera from infected and immunized rabbits. Ether-water extracts of Brucella melitensis contained a lipopolysaccharide protein component, which was specific for the surface of smooth brucellae and was correlated with the M agglutinogen of Wilson and Miles, a polysaccharide protein component devoid of lipid which was not restricted to the surface of smooth brucellae and was not correlated with the smooth agglutinogen (component 1), and several protein components which were associated with internal antigens of rough and smooth brucellae. Immunoelectrophoretic analysis of ether-water extracts of B. abortus revealed only two components, a lipopolysaccharide protein component, which was correlated with the A agglutinogen, and component 1. Component 1 from B. melitensis and B. abortus showed identity in gel diffusion tests, whereas component M from B. melitensis and component A from B. abortus showed partial identity with unabsorbed antisera and no cross-reactions with monospecific sera. Attempts to prepare monospecific sera directly by immunization of rabbits with cell walls or ether-water extracts were unsuccessful. Absorption of antisera with heavy fraction of ether-water extracts did not always result in monospecific sera. It was concluded (as has been described before) that the A and M antigens are present on a single antigenic complex, in different proportions depending upon the species and biotype, and that this component is a lipopolysaccharide protein complex of high molecular weight that diffuses poorly through agar gel. Components 1, A, and M were also demonstrated in trichloroacetic acid and phenol-water extracts. With all extracts, B. melitensis antigen showed greater diffusibility in agar than B. abortus antigens. After mild acid hydrolysis, B. abortus ether-water extract was able

  7. Smoothed particle hydrodynamics with smoothed pseudo-density

    NASA Astrophysics Data System (ADS)

    Yamamoto, Satoko; Saitoh, Takayuki R.; Makino, Junichiro

    2015-06-01

    In this paper, we present a new formulation of smoothed particle hydrodynamics (SPH), which, unlike the standard SPH (SSPH), is well behaved at the contact discontinuity. The SSPH scheme cannot handle discontinuities in density (e.g., the contact discontinuity and the free surface), because it requires that the density of fluid is positive and continuous everywhere. Thus there is inconsistency in the formulation of the SSPH scheme at discontinuities of the fluid density. To solve this problem, we introduce a new quantity associated with particles and the "density" of that quantity. This "density" evolves through the usual continuity equation with an additional artificial diffusion term, in order to guarantee the continuity of the "density." We use this "density," or pseudo-density, instead of the mass density, to formulate our SPH scheme. We call our new method SPH with smoothed pseudo-density, and we show that it is physically consistent and can handle discontinuities quite well.

  8. Young Craters on Smooth Plains

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Young craters (the largest of which is about 100 kilometers in diameter) superposed on smooth plains. Larger young craters have central peaks, flat floors, terraced walls, radial ejecta deposits, and surrounding fields of secondary craters. Smooth plains have well-developed ridges extending NW and NE. This image (FDS 167), acquired during the spacecraft's first encounter with Mercury, is located approximately 60 degrees N, 175 degrees W.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  9. Smoothing of mixed complementarity problems

    SciTech Connect

    Gabriel, S.A.; More, J.J.

    1995-09-01

    The authors introduce a smoothing approach to the mixed complementarity problem, and study the limiting behavior of a path defined by approximate minimizers of a nonlinear least squares problem. The main result guarantees that, under a mild regularity condition, limit points of the iterates are solutions to the mixed complementarity problem. The analysis is applicable to a wide variety of algorithms suitable for large-scale mixed complementarity problems.

  10. Emodin Inhibits Homocysteine-Induced C-Reactive Protein Generation in Vascular Smooth Muscle Cells by Regulating PPARγ Expression and ROS-ERK1/2/p38 Signal Pathway.

    PubMed

    Pang, Xiaoming; Liu, Juntian; Li, Yuxia; Zhao, Jingjing; Zhang, Xiaolu

    2015-01-01

    Atherosclerosis is an inflammatory disease. As an inflammatory molecule, C-reactive protein (CRP) plays a direct role in atherogenesis. It is known that the elevated plasma homocysteine (Hcy) level is an independent risk factor for atherosclerosis. We previously reported that Hcy produces a pro-inflammatory effect by inducing CRP expression in vascular smooth muscle cells (VSMCs). In the present study, we observed effect of emodin on Hcy-induced CRP expression in rat VSMCs and molecular mechanisms. The in vitro results showed that pretreatment of VSMCs with emodin inhibited Hcy-induced mRNA and protein expression of CRP in a concentration-dependent manner. The in vivo experiments displayed that emodin not only inhibited CRP expression in the vessel walls in mRNA and protein levels, but also reduced the circulating CRP level in hyperhomocysteinemic rats. Further study revealed that emodin diminished Hcy-stimulated generation of reactive oxygen species (ROS), attenuated Hcy-activated phosphorylation of ERK1/2 and p38, and upregulated Hcy-inhibited expression of peroxisome proliferator-activated receptor gamma (PPARγ) in VSMCs. These demonstrate that emodin is able to inhibit Hcy-induced CRP generation in VSMCs, which is related to interfering with ROS-ERK1/2/p38 signal pathway and upregulating PPARγ expression. The present study provides new evidence for the anti-inflammatory and anti-atherosclerotic effects of emodin.

  11. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the skin thickness does not average more than 3/8 inch (9.5 mm), on a...

  12. 7 CFR 51.1870 - Fairly smooth.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly smooth. 51.1870 Section 51.1870 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Fresh Tomatoes 1 Definitions § 51.1870 Fairly smooth. Fairly smooth means that the tomato is not conspicuously ridged or rough....

  13. 7 CFR 51.1870 - Fairly smooth.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly smooth. 51.1870 Section 51.1870 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Fresh Tomatoes 1 Definitions § 51.1870 Fairly smooth. Fairly smooth means that the tomato is not conspicuously ridged or rough....

  14. A SAS IML Macro for Loglinear Smoothing

    ERIC Educational Resources Information Center

    Moses, Tim; von Davier, Alina

    2011-01-01

    Polynomial loglinear models for one-, two-, and higher-way contingency tables have important applications to measurement and assessment. They are essentially regarded as a smoothing technique, which is commonly referred to as loglinear smoothing. A SAS IML (SAS Institute, 2002a) macro was created to implement loglinear smoothing according to…

  15. Beamline smoothing of the Advanced Photon Source

    SciTech Connect

    Friedsam, H.; Penicka, M.; Zhao, S.

    1995-06-01

    This paper outlines a general beamline smoothing concept based on the use of First Principle Component analysis. Bean-dine smoothing is commonly used for the detection of blunders in the positioning of beam elements and to provide a smooth particle beam path with the fewest adjustments to individual beam components. It also provides the data for assessment of the achieved positioning quality.

  16. Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.

    PubMed

    Haick, Jennifer M; Byron, Kenneth L

    2016-09-01

    Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body.

  17. Smooth metrics for snapping strings

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth; Hindmarsh, Mark

    1995-11-01

    We construct two possible metrics for Abelian Higgs vortices with ends on black holes. We show how the detail of the vortex fields smooths out the nodal singularities which exist in the idealized metrics. A corollary is that apparently topologically stable strings might be able to split by black hole pair production. We estimate the rate per unit length by reference to related Ernst and C-metric instantons, concluding that it is completely negligible for GUT-scale strings. The estimated rate for macroscopic superstrings is much higher, although still extremely small, unless there is an early phase of strong coupling.

  18. Regulation of Gβγi-dependent PLC-β3 activity in smooth muscle: inhibitory phosphorylation of PLC-β3 by PKA and PKG and stimulatory phosphorylation of Gαi-GTPase-activating protein RGS2 by PKG.

    PubMed

    Nalli, Ancy D; Kumar, Divya P; Al-Shboul, Othman; Mahavadi, Sunila; Kuemmerle, John F; Grider, John R; Murthy, Karnam S

    2014-11-01

    In gastrointestinal smooth muscle, agonists that bind to Gi-coupled receptors activate preferentially PLC-β3 via Gβγ to stimulate phosphoinositide (PI) hydrolysis and generate inositol 1,4,5-trisphosphate (IP3) leading to IP3-dependent Ca(2+) release and muscle contraction. In the present study, we identified the mechanism of inhibition of PLC-β3-dependent PI hydrolysis by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG). Cyclopentyl adenosine (CPA), an adenosine A1 receptor agonist, caused an increase in PI hydrolysis in a concentration-dependent fashion; stimulation was blocked by expression of the carboxyl-terminal sequence of GRK2(495-689), a Gβγ-scavenging peptide, or Gαi minigene but not Gαq minigene. Isoproterenol and S-nitrosoglutathione (GSNO) induced phosphorylation of PLC-β3 and inhibited CPA-induced PI hydrolysis, Ca(2+) release, and muscle contraction. The effect of isoproterenol on all three responses was inhibited by PKA inhibitor, myristoylated PKI, or AKAP inhibitor, Ht-31, whereas the effect of GSNO was selectively inhibited by PKG inhibitor, Rp-cGMPS. GSNO, but not isoproterenol, also phosphorylated Gαi-GTPase-activating protein, RGS2, and enhanced association of Gαi3-GTP and RGS2. The effect of GSNO on PI hydrolysis was partly reversed in cells (i) expressing constitutively active GTPase-resistant Gαi mutant (Q204L), (ii) phosphorylation-site-deficient RGS2 mutant (S46A/S64A), or (iii) siRNA for RGS2. We conclude that PKA and PKG inhibit Gβγi-dependent PLC-β3 activity by direct phosphorylation of PLC-β3. PKG, but not PKA, also inhibits PI hydrolysis indirectly by a mechanism involving phosphorylation of RGS2 and its association with Gαi-GTP. This allows RGS2 to accelerate Gαi-GTPase activity, enhance Gαβγi trimer formation, and inhibit Gβγi-dependent PLC-β3 activity.

  19. Smooth halos in the cosmic web

    NASA Astrophysics Data System (ADS)

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ``smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  20. Smooth halos in the cosmic web

    SciTech Connect

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  1. Standard-smooth hybrid inflation

    SciTech Connect

    Lazarides, George; Vamvasakis, Achilleas

    2007-12-15

    We consider the extended supersymmetric Pati-Salam model which, for {mu}>0 and universal boundary conditions, succeeds to yield experimentally acceptable b-quark masses by moderately violating Yukawa unification. It is known that this model can lead to new shifted or new smooth hybrid inflation. We show that a successful two-stage inflationary scenario can be realized within this model based only on renormalizable superpotential interactions. The cosmological scales exit the horizon during the first stage of inflation, which is of the standard hybrid type and takes place along the trivial flat direction with the inflaton driven by radiative corrections. Spectral indices compatible with the recent data can be achieved in global supersymmetry or minimal supergravity by restricting the number of e-foldings of our present horizon during the first inflationary stage. The additional e-foldings needed for solving the horizon and flatness problems are naturally provided by a second stage of inflation, which occurs mainly along the built-in new smooth hybrid inflationary path appearing right after the destabilization of the trivial flat direction at its critical point. Monopoles are formed at the end of the first stage of inflation and are, subsequently, diluted by the second stage of inflation to become utterly negligible in the present universe for almost all (for all) the allowed values of the parameters in the case of global supersymmetry (minimal supergravity)

  2. Smoothing and the second law

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1987-01-01

    The technique of obtaining second-order oscillation-free total -variation-diminishing (TVD), scalar difference schemes by adding a limited diffusive flux ('smoothing') to a second-order centered scheme is explored. It is shown that such schemes do not always converge to the correct physical answer. The approach presented here is to construct schemes that numerically satisfy the second law of thermodynamics on a cell-by-cell basis. Such schemes can only converge to the correct physical solution and in some cases can be shown to be TVD. An explicit scheme with this property and second-order spatial accuracy was found to have extremely restrictive time-step limitation. Switching to an implicit scheme removed the time-step limitation.

  3. Smoothing and the second law

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1986-01-01

    The technique of obtaining second order, oscillation free, total variation diminishing (TVD), scalar difference schemes by adding a limited diffusion flux (smoothing) to a second order centered scheme is explored. It is shown that such schemes do not always converge to the correct physical answer. The approach presented here is to construct schemes that numerically satisfy the second law of thermodynamics on a cell by cell basis. Such schemes can only converge to the correct physical solution and in some cases can be shown to be TVD. An explicit scheme with this property and second order spatial accuracy was found to have an extremely restrictive time step limitation (Delta t less than Delta x squared). Switching to an implicit scheme removed the time step limitation.

  4. An adaptive data-smoothing routine

    NASA Technical Reports Server (NTRS)

    Taylor, Clayborne D.; Nicolas, David P.

    1989-01-01

    An adaptive noise reduction algorithm that can be implemented on a microcomputer is developed. Smoothing polynomials are used where the polynomial coefficients are chosen such that the mean-square-error between the noisy and smoothed data is minimized. This approach is equivalent to the implementation of a low-pass finite impulse response filter. The noise reduction depends on the order of the smoothing polynomial. A whiteness test on the error sequence is incorporated to search for the optimal smoothing. Expansion coefficients may be computed via the fast Fourier transform, and the resulting smoothing process is the equivalent of the implementation of an adaptive ideal low-pass filter. Results are obtained for an analytical signal with added white Gaussian noise. The routine may be applied to any smooth signal with additive random noise.

  5. Altered microRNA Expression Profiles and Regulation of INK4A/CDKN2A Tumor Suppressor Genes in Canine Breast Cancer Models.

    PubMed

    Lutful Kabir, Farruk Mohammad; DeInnocentes, Patricia; Bird, Richard Curtis

    2015-12-01

    microRNA (miRNA) expression profiling of cancer versus normal cells may reveal the characteristic regulatory features that can be correlated to altered gene expression in both human and animal models of cancers. In this study, the comprehensive expression profiles of the 277 highly characterized miRNAs from the canine genome were evaluated in spontaneous canine mammary tumor (CMT) models harboring defects in a group of cell cycle regulatory and potent tumor suppressor genes of INK4/CDKN2 family including p16/INK4A, p14ARF, and p15/INK4B. A large number of differentially expressed miRNAs were identified in three CMT cell lines to potentially target oncogenes, tumor suppressor genes and cancer biomarkers. A group of the altered miRNAs were identified by miRNA target prediction tools for regulation of the INK4/CDKN2 family tumor suppressor genes. miRNA-141 was experimentally validated for INK4A 3'-UTR target binding in the CMT cell lines providing an essential mechanism for the post-transcriptional regulation of the INK4A tumor suppressor gene in CMT models. A well-recognized group of miRNAs including miR-21, miR-155, miR-9, miR-34a, miR-143/145, and miR-31 were found to be altered in both CMTs and human breast cancer. These altered miRNAs might serve as potential targets for advancing the development of future therapeutic reagents. These findings further strengthen the validity and use of canine breast cancers as appropriate models for the study of human breast cancers. PMID:26095675

  6. Smooth Crossed Products of Rieffel's Deformations

    NASA Astrophysics Data System (ADS)

    Neshveyev, Sergey

    2014-03-01

    Assume is a Fréchet algebra equipped with a smooth isometric action of a vector group V, and consider Rieffel's deformation of . We construct an explicit isomorphism between the smooth crossed products and . When combined with the Elliott-Natsume-Nest isomorphism, this immediately implies that the periodic cyclic cohomology is invariant under deformation. Specializing to the case of smooth subalgebras of C*-algebras, we also get a simple proof of equivalence of Rieffel's and Kasprzak's approaches to deformation.

  7. Smooth GERBS, orthogonal systems and energy minimization

    SciTech Connect

    Dechevsky, Lubomir T. E-mail: pza@hin.no; Zanaty, Peter E-mail: pza@hin.no

    2013-12-18

    New results are obtained in three mutually related directions of the rapidly developing theory of generalized expo-rational B-splines (GERBS) [7, 6]: closed-form computability of C{sup ∞}-smooth GERBS in terms of elementary and special functions, Hermite interpolation and least-squares best approximation via smooth GERBS, energy minimizing properties of smooth GERBS similar to those of the classical cubic polynomial B-splines.

  8. On a smooth quintic 4-fold

    SciTech Connect

    Cheltsov, I A

    2000-10-31

    The birational geometry of an arbitrary smooth quintic 4-fold is studied using the properties of log pairs. As a result, a new proof of its birational rigidity is given and all birational maps of a smooth quintic 4-fold into fibrations with general fibre of Kodaira dimension zero are described. In the Addendum similar results are obtained for all smooth hypersurfaces of degree n in P{sup n} in the case of n equal to 6, 7, or 8.

  9. Polarization smoothing for the National Ignition Facility

    SciTech Connect

    Rothenberg, J F

    1998-08-13

    Polarization smoothing (PS) is the illumination of the target with two distinct and orthogonally polarized speckle patterns. Since these two polarizations do not interfere, the intensity patterns add incoherently and thus the contrast of the intensity nonuniformity can be reduced by a factor of {radical}2 in addition to any reduction achieved by temporal smoothing techniques. Smoothing by PS is completely effective on an instantaneous basis and is therefore of particular interest for the suppression of laser plasma instabilities, which have a very rapid response time. The various implementations of PS are considered and their impact, in conjunction with temporal smoothing methods, on the spatial spectrum of the target illumination is analyzed.

  10. Immune/Inflammatory Response and Hypocontractility of Rabbit Colonic Smooth Muscle After TNBS-Induced Colitis

    PubMed Central

    Zhang, Yonggang; Li, Fang; Wang, Hong; Yin, Chaoran; Huang, JieAn; Mahavadi, Sunila; Murthy, Karnam S.

    2016-01-01

    Background The contractility of colonic smooth muscle is dysregulated due to immune/inflammatory responses in inflammatory bowel diseases. Inflammation in vitro induces up-regulation of regulator of G-protein signaling 4 (RGS4) expression in colonic smooth muscle cells. Aims To characterize the immune/inflammatory responses and RGS4 expression pattern in colonic smooth muscle after induction of colitis. Methods Colitis was induced in rabbits by intrarectal instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Innate/adaptive immune response RT-qPCR array was performed using colonic circular muscle strips. At 1–9 weeks after colonic intramuscular microinjection of lentivirus, the distal and proximal colons were collected, and muscle strips and dispersed muscle cells were prepared from circular muscle layer. Expression levels of RGS4 and NFκB signaling components were determined by Western blot analysis. The biological consequences of RGS4 knockdown were assessed by measurement of muscle contraction and phospholipase C (PLC)-β activity in response to acetylcholine (ACh). Results Contraction in response to ACh was significantly inhibited in the inflamed colonic circular smooth muscle cells. RGS4, IL-1, IL-6, IL-8, CCL3, CD1D, and ITGB2 were significantly up-regulated, while IL-18, CXCR4, CD86, and C3 were significantly down-regulated in the inflamed muscle strips. RGS4 protein expression in the inflamed smooth muscles was dramatically increased. RGS4 stable knockdown in vivo augmented ACh-stimulated PLC-β activity and contraction in colonic smooth muscle cells. Conclusion Inflamed smooth muscle exhibits up-regulation of IL-1-related signaling components, Th1 cytokines and RGS4, and inhibition of contraction. Stable knockdown of endogenous RGS4 in colonic smooth muscle increases PLC-β activity and contractile responses. PMID:26879904

  11. Vascular Smooth Muscle Cells in Atherosclerosis.

    PubMed

    Bennett, Martin R; Sinha, Sanjay; Owens, Gary K

    2016-02-19

    The historical view of vascular smooth muscle cells (VSMCs) in atherosclerosis is that aberrant proliferation of VSMCs promotes plaque formation, but that VSMCs in advanced plaques are entirely beneficial, for example preventing rupture of the fibrous cap. However, this view has been based on ideas that there is a homogenous population of VSMCs within the plaque, that can be identified separate from other plaque cells (particularly macrophages) using standard VSMC and macrophage immunohistochemical markers. More recent genetic lineage tracing studies have shown that VSMC phenotypic switching results in less-differentiated forms that lack VSMC markers including macrophage-like cells, and this switching directly promotes atherosclerosis. In addition, VSMC proliferation may be beneficial throughout atherogenesis, and not just in advanced lesions, whereas VSMC apoptosis, cell senescence, and VSMC-derived macrophage-like cells may promote inflammation. We review the effect of embryological origin on VSMC behavior in atherosclerosis, the role, regulation and consequences of phenotypic switching, the evidence for different origins of VSMCs, and the role of individual processes that VSMCs undergo in atherosclerosis in regard to plaque formation and the structure of advanced lesions. We think there is now compelling evidence that a full understanding of VSMC behavior in atherosclerosis is critical to identify therapeutic targets to both prevent and treat atherosclerosis.

  12. Smooth Passage For The Jetfoil

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Flying Princess is a Boeing Jetfoil, one of a family of commercial waterjets built by Boeing Marine Systems, a division of The Boeing Company, Seattle, Washington. The new Jetfoil offers a number of advantages over earlier hydrofoils, a major one being a smooth ride in rough waters. NASA technology contributed to jolt-free passenger comfort. Hydrofoils skim the surface at speeds considerably greater than those of conventional ships because there is little friction between hull and water. Hulls are raised above the water by the lift of the foils, which resemble and function like an airplane wing. The foils are attached to the hull by rigid struts, which ordinarily cause a vessel operating in coastal seas to follow the contour of the waves. In wind-whipped waters, this makes for a rough ride. Seeking to increase passenger acceptance, Boeing Marine System engineers looked for ways to improve rough-water ride quality. Langley Research Center conducts continuing ride quality research. Initially, it was aimed at improving aircraft ride; it was later expanded to include all modes of transportation. Research includes studies of vibration, acceleration, temperature, humidity, passenger seats and posture, and the psychological aspects of passenger reaction to vehicle ride. As part of the program, Langley developed instrumentation, ride quality models and methods of data analysis.

  13. Smooth horizons and quantum ripples

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey

    2015-05-01

    Black holes are unique objects which allow for meaningful theoretical studies of strong gravity and even quantum gravity effects. An infalling and a distant observer would have very different views on the structure of the world. However, a careful analysis has shown that it entails no genuine contradictions for physics, and the paradigm of observer complementarity has been coined. Recently this picture was put into doubt. In particular, it was argued that in old black holes a firewall must form in order to protect the basic principles of quantum mechanics. This AMPS paradox has already been discussed in a vast number of papers with different attitudes and conclusions. Here we want to argue that a possible source of confusion is the neglect of quantum gravity effects. Contrary to widespread perception, it does not necessarily mean that effective field theory is inapplicable in rather smooth neighbourhoods of large black hole horizons. The real offender might be an attempt to consistently use it over the huge distances from the near-horizon zone of old black holes to the early radiation. We give simple estimates to support this viewpoint and show how the Page time and (somewhat more speculative) scrambling time do appear.

  14. Thermal smoothing of rough surfaces in vacuo

    NASA Technical Reports Server (NTRS)

    Wahl, G.

    1986-01-01

    The derivation of equations governing the smoothing of rough surfaces, based on Mullins' (1957, 1960, and 1963) theories of thermal grooving and of capillarity-governed solid surface morphology is presented. As an example, the smoothing of a one-dimensional sine-shaped surface is discussed.

  15. contbin: Contour binning and accumulative smoothing

    NASA Astrophysics Data System (ADS)

    Sanders, Jeremy S.

    2016-09-01

    Contbin bins X-ray data using contours on an adaptively smoothed map. The generated bins closely follow the surface brightness, and are ideal where the surface brightness distribution is not smooth, or the spectral properties are expected to follow surface brightness. Color maps can be used instead of surface brightness maps.

  16. Lunar Smooth Plains Identification and Classification

    NASA Astrophysics Data System (ADS)

    Boyd, A. K.; Robinson, M. S.; Mahanti, P.; Lawrence, S. J.; Spudis, P.; Jolliff, B. L.

    2012-12-01

    Smooth plains are widespread on the Moon and have diverse origins. The maria comprise the majority of the smooth plains and are volcanic in origin. Highland smooth plains are patchy, and tend to fill large craters and basins; their origins have eluded unambiguous classification. Prior to the Apollo 16 mission, many workers thought that highland plains were volcanic, possibly more silicic than the maria. However, as the Apollo 16 samples are mostly impact breccias, the highland smooth plains were re-interpreted basin impact ejecta, most likely from the Imbrium and possibly Orientale basins. Conversely, some known non-mare volcanic units, such as the Apennine Bench Formation, contain light plains. These interpretations do not rule out alternate origins for a subset of highland smooth plains, including impact melt or volcanic origins (effusive or pyroclastic). We developed an algorithm to identify smooth plains using topographic parameters from the WAC Global Lunar Digital Terrain Model (DTM) (GLD100), sampled at 333 m/pixel. We classify the smooth plains using the Clementine UVVIS FeO map and photometrically corrected Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images. Terrain with slopes less than 2° (1 km baseline) and standard deviation of slope less than 0.75° (1 km x 1 km box, n=9) are defined as smooth plains. Highland smooth plains are distinguished from basaltic smooth plains using the following criteria: LROC WAC 643 nm normalized reflectance > 0.056, LROC WAC 321 nm / 415 nm ratio < 0.74, and Clementine FeO < 12 wt.% (excluding Clementine non-coverage areas). The remaining smooth plains are classified as maria and are subdivided into two classes: LROC WAC 321 nm / 415 nm ratio > 0.77 is termed blue maria and a ratio ≤ 0.77 is termed red maria. The automatic classification was limited to the 87% of the Moon covered by photometrically normalized WAC data (60°S to 60°N). The differences between the maria and highland smooth plains

  17. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification.

    PubMed

    Leopold, Jane A

    2015-05-01

    Vascular calcification is highly prevalent and, when present, is associated with major adverse cardiovascular events. Vascular smooth muscle cells play an integral role in mediating vessel calcification by undergoing differentiation to osteoblast-like cells and generating matrix vesicles that serve as a nidus for calcium-phosphate deposition in the vessel wall. Once believed to be a passive process, it is now recognized that vascular calcification is a complex and highly regulated process that involves activation of cellular signaling pathways, circulating inhibitors of calcification, genetic factors, and hormones. This review will examine several of the key mechanisms linking vascular smooth muscle cells to vessel calcification that may be targeted to reduce vessel wall mineralization and, thereby, reduce cardiovascular risk.

  18. SMACK - SMOOTHING FOR AIRCRAFT KINEMATICS

    NASA Technical Reports Server (NTRS)

    Bach, R.

    1994-01-01

    The computer program SMACK (SMoothing for AirCraft Kinematics) is designed to provide flightpath reconstruction of aircraft forces and motions from measurements that are noisy or incomplete. Additionally, SMACK provides a check on instrument accuracy and data consistency. The program can be used to analyze data from flight-test experiments prior to their use in performance, stability and control, or aerodynamic modeling calculations. It can also be used in the analysis of aircraft accidents, where the actual forces and motions may have to be determined from a very limited data set. Application of a state-estimation method for flightpath reconstruction is possible because aircraft forces and motions are related by well-known equations of motion. The task of postflight state estimation is known as a nonlinear, fixed-interval smoothing problem. SMACK utilizes a backward-filter, forward-smoother algorithm to solve the problem. The equations of motion are used to produce estimates that are compared with their corresponding measurement time histories. The procedure is iterative, providing improved state estimates until a minimum squared-error measure is achieved. In the SMACK program, the state and measurement models together represent a finite-difference approximation for the six-degree-of-freedom dynamics of a rigid body. The models are used to generate time histories which are likely to be found in a flight-test measurement set. These include onboard variables such as Euler angles, angular rates, and linear accelerations as well as tracking variables such as slant range, bearing, and elevation. Any bias or scale-factor errors associated with the state or measurement models are appended to the state vector and treated as constant but unknown parameters. The SMACK documentation covers the derivation of the solution algorithm, describes the state and measurement models, and presents several application examples that should help the analyst recognize the potential

  19. AFSMO/AFSCL- AIRFOIL SMOOTHING AND SCALING

    NASA Technical Reports Server (NTRS)

    Morgan, H. L

    1994-01-01

    Since its early beginnings, NASA has been actively involved in the design and testing of airfoil sections for a wide variety of applications. Recently a set of programs has been developed to smooth and scale arbitrary airfoil coordinates. The smoothing program, AFSMO, utilizes both least-squares polynomial and least-squares cubic-spline techniques to iteratively smooth the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. The camber and thickness distribution of the smooth airfoil are also computed. The scaling program, AFSCL, may then be used to scale the thickness distribution generated by the smoothing program to a specified maximum thickness. Once the thickness distribution has been scaled, it is combined with the camber distribution to obtain the final scaled airfoil contour. The airfoil smoothing and scaling programs are written in FORTRAN IV for batch execution and have been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 70K (octal) of 60 bit words. Both programs generate plotted output via CALCOMP type plotting calls. These programs were developed in 1983.

  20. Numerical Convergence In Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Hernquist, Lars; Li, Yuexing

    2015-02-01

    We study the convergence properties of smoothed particle hydrodynamics (SPH) using numerical tests and simple analytic considerations. Our analysis shows that formal numerical convergence is possible in SPH only in the joint limit N → ∞, h → 0, and Nnb → ∞, where N is the total number of particles, h is the smoothing length, and Nnb is the number of neighbor particles within the smoothing volume used to compute smoothed estimates. Previous work has generally assumed that the conditions N → ∞ and h → 0 are sufficient to achieve convergence, while holding Nnb fixed. We demonstrate that if Nnb is held fixed as the resolution is increased, there will be a residual source of error that does not vanish as N → ∞ and h → 0. Formal numerical convergence in SPH is possible only if Nnb is increased systematically as the resolution is improved. Using analytic arguments, we derive an optimal compromise scaling for Nnb by requiring that this source of error balance that present in the smoothing procedure. For typical choices of the smoothing kernel, we find Nnb vpropN 0.5. This means that if SPH is to be used as a numerically convergent method, the required computational cost does not scale with particle number as O(N), but rather as O(N 1 + δ), where δ ≈ 0.5, with a weak dependence on the form of the smoothing kernel.

  1. Progress in smooth particle hydrodynamics

    SciTech Connect

    Wingate, C.A.; Dilts, G.A.; Mandell, D.A.; Crotzer, L.A.; Knapp, C.E.

    1998-07-01

    Smooth Particle Hydrodynamics (SPH) is a meshless, Lagrangian numerical method for hydrodynamics calculations where calculational elements are fuzzy particles which move according to the hydrodynamic equations of motion. Each particle carries local values of density, temperature, pressure and other hydrodynamic parameters. A major advantage of SPH is that it is meshless, thus large deformation calculations can be easily done with no connectivity complications. Interface positions are known and there are no problems with advecting quantities through a mesh that typical Eulerian codes have. These underlying SPH features make fracture physics easy and natural and in fact, much of the applications work revolves around simulating fracture. Debris particles from impacts can be easily transported across large voids with SPH. While SPH has considerable promise, there are some problems inherent in the technique that have so far limited its usefulness. The most serious problem is the well known instability in tension leading to particle clumping and numerical fracture. Another problem is that the SPH interpolation is only correct when particles are uniformly spaced a half particle apart leading to incorrect strain rates, accelerations and other quantities for general particle distributions. SPH calculations are also sensitive to particle locations. The standard artificial viscosity treatment in SPH leads to spurious viscosity in shear flows. This paper will demonstrate solutions for these problems that they and others have been developing. The most promising is to replace the SPH interpolant with the moving least squares (MLS) interpolant invented by Lancaster and Salkauskas in 1981. SPH and MLS are closely related with MLS being essentially SPH with corrected particle volumes. When formulated correctly, JLS is conservative, stable in both compression and tension, does not have the SPH boundary problems and is not sensitive to particle placement. The other approach to

  2. Backward smoothing for precise GNSS applications

    NASA Astrophysics Data System (ADS)

    Vaclavovic, Pavel; Dousa, Jan

    2015-10-01

    The Extended Kalman filter is widely used for its robustness and simple implementation. Parameters estimated for solving dynamical systems usually require certain time to converge and need to be smoothed by a dedicated algorithms. The purpose of our study was to implement smoothing algorithms for processing both code and carrier phase observations with Precise Point Positioning method. We implemented and used the well known Rauch-Tung-Striebel smoother (RTS). It has been found out that the RTS suffer from significant numerical instability in smoothed state covariance matrix determination. We improved the processing with algorithms based on Singular Value Decomposition, which was more robust. Observations from many permanent stations have been processed with final orbits and clocks provided by the International GNSS service (IGS), and the smoothing improved stability and precision in every cases. Moreover, (re)convergence of the parameters were always successfully eliminated.

  3. Refractory thermal insulation for smooth metal surfaces

    NASA Technical Reports Server (NTRS)

    1964-01-01

    To protect rocket metal surfaces from engine exhaust heat, a refractory thermal insulation mixture, which adheres to smooth metals, has been developed. Insulation protection over a wide temperature range can be controlled by thickness of the applied mixture.

  4. Lunar Smooth Plains Identification and Classification

    NASA Astrophysics Data System (ADS)

    Boyd, A. K.; Mahanti, P.; Robinson, M. S.; Lawrence, S. J.; Spudis, P. D.; Jolliff, B. L.

    2012-09-01

    Smooth plains are widespread on the Moon and appear to have diverse origins. The maria comprise the majority of the smooth plains on the Moon and are volcanic in origin. Highland smooth plains are patchy and tend to fill large craters and basins; their origins have eluded unambiguous classification. Prior to the Apollo 16 mission, many workers thought that smooth highland plains were volcanic, possibly more silicic than the basaltic maria [e.g., 1]. However, as the Apollo 16 samples are mostly impact breccias, the highland smooth plains were re-interpreted as being deposits generated by impact events, most likely ejecta from the youngest and largest multi-ring basins, e.g., Imbrium and Orientale [1]. Spectral interpretations by Pieters [2] showed that the highland light plains are not mare basalt, but are composed of significantly more feldspathic, nonmare material [2]. Conversely, some known non-mare volcanic units, such as the Apennine Bench Formation (a deposit of post-Imbrium KREEP basalt [3,4]), contain light plains. These interpretations do not rule out alternate origins for a subset of highland smooth plains, including impact melt or volcanic origins (effusive or pyroclastic). We have developed an algorithm to identify smooth plains using topographic parameters from the WAC Global Lunar Digital Terrain Model (DTM) (GLD100) [5], sampled at 333 m/pixel. We classify the identified smooth plains using the Clementine UVVIS FeO map and photometrically corrected Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images [6]. In this abstract, we do not address formation mechanisms for the nonmare deposits.

  5. Beam-smoothing investigation on Heaven I

    NASA Astrophysics Data System (ADS)

    Xiang, Yi-huai; Gao, Zhi-xing; Tong, Xiao-hui; Dai, Hui; Tang, Xiu-zhang; Shan, Yu-sheng

    2007-01-01

    Directly driven targets for inertial confinement fusion (ICF) require laser beams with extremely smooth irradiance profiles to prevent hydrodynamic instabilities that destroy the spherical symmetry of the target during implosion. Such instabilities can break up and mix together the target's wall and fuel material, preventing it from reaching the density and temperature required for fusion ignition. 1,2 Measurements in the equation of state (EOS) experiments require laser beams with flat-roofed profiles to generate uniform shockwave 3. Some method for beam smooth, is thus needed. A technique called echelon-free induced spatial incoherence (EFISI) is proposed for producing smooth target beam profiles with large KrF lasers. The idea is basically an image projection technique that projects the desired time-averaged spatial profile onto the target via the laser system, using partially coherent broadband lighe. Utilize the technique, we developing beam- smoothing investigation on "Heaven I". At China Institute of Atomic Energy , a new angular multiplexing providing with beam-smoothing function has been developed, the total energy is 158J, the stability of energy is 4%, the pulse duration is 25ns, the effective diameter of focusing spot is 400um, and the ununiformity is about 1.6%, the power density on the target is about 3.7×10 12W/cm2. At present, the system have provided steady and smooth laser irradiation for EOS experiments.

  6. Nonequilibrium flows with smooth particle applied mechanics

    SciTech Connect

    Kum, O.

    1995-07-01

    Smooth particle methods are relatively new methods for simulating solid and fluid flows through they have a 20-year history of solving complex hydrodynamic problems in astrophysics, such as colliding planets and stars, for which correct answers are unknown. The results presented in this thesis evaluate the adaptability or fitness of the method for typical hydrocode production problems. For finite hydrodynamic systems, boundary conditions are important. A reflective boundary condition with image particles is a good way to prevent a density anomaly at the boundary and to keep the fluxes continuous there. Boundary values of temperature and velocity can be separately controlled. The gradient algorithm, based on differentiating the smooth particle expression for (u{rho}) and (T{rho}), does not show numerical instabilities for the stress tensor and heat flux vector quantities which require second derivatives in space when Fourier`s heat-flow law and Newton`s viscous force law are used. Smooth particle methods show an interesting parallel linking to them to molecular dynamics. For the inviscid Euler equation, with an isentropic ideal gas equation of state, the smooth particle algorithm generates trajectories isomorphic to those generated by molecular dynamics. The shear moduli were evaluated based on molecular dynamics calculations for the three weighting functions, B spline, Lucy, and Cusp functions. The accuracy and applicability of the methods were estimated by comparing a set of smooth particle Rayleigh-Benard problems, all in the laminar regime, to corresponding highly-accurate grid-based numerical solutions of continuum equations. Both transient and stationary smooth particle solutions reproduce the grid-based data with velocity errors on the order of 5%. The smooth particle method still provides robust solutions at high Rayleigh number where grid-based methods fails.

  7. Effects of hydrogen sulphide in smooth muscle.

    PubMed

    Dunn, William R; Alexander, Stephen P H; Ralevic, Vera; Roberts, Richard E

    2016-02-01

    In recent years, it has become apparent that the gaseous pollutant, hydrogen sulphide (H2S) can be synthesised in the body and has a multitude of biological actions. This review summarizes some of the actions of this 'gasotransmitter' in influencing the smooth muscle that is responsible for controlling muscular activity of hollow organs. In the vasculature, while H2S can cause vasoconstriction by complex interactions with other biologically important gases, such as nitric oxide, the prevailing response is vasorelaxation. While most vasorelaxation responses occur by a direct action of H2S on smooth muscle cells, it has recently been proposed to be an endothelium-derived hyperpolarizing factor. H2S also promotes relaxation in other smooth muscle preparations including bronchioles, the bladder, gastrointestinal tract and myometrium, opening up the opportunity of exploiting the pharmacology of H2S in the treatment of conditions where smooth muscle tone is excessive. The original concept, that H2S caused smooth muscle relaxation by activating ATP-sensitive K(+) channels, has been supplemented with observations that H2S can also modify the activity of other potassium channels, intracellular pH, phosphodiesterase activity and transient receptor potential channels on sensory nerves. While the enzymes responsible for generating endogenous H2S are widely expressed in smooth muscle preparations, it is much less clear what the physiological role of H2S is in determining smooth muscle contractility. Clarification of this requires the development of potent and selective inhibitors of H2S-generating enzymes.

  8. Turbulent flow in smooth and rough pipes.

    PubMed

    Allen, J J; Shockling, M A; Kunkel, G J; Smits, A J

    2007-03-15

    Recent experiments at Princeton University have revealed aspects of smooth pipe flow behaviour that suggest a more complex scaling than previously noted. In particular, the pressure gradient results yield a new friction factor relationship for smooth pipes, and the velocity profiles indicate the presence of a power-law region near the wall and, for Reynolds numbers greater than about 400x103 (R+>9x103), a logarithmic region further out. New experiments on a rough pipe with a honed surface finish with krms/D=19.4x10-6, over a Reynolds number range of 57x103-21x106, show that in the transitionally rough regime this surface follows an inflectional friction factor relationship rather than the monotonic relationship given in the Moody diagram. Outer-layer scaling of the mean velocity data and streamwise turbulence intensities for the rough pipe show excellent collapse and provide strong support for Townsend's outer-layer similarity hypothesis for rough-walled flows. The streamwise rough-wall spectra also agree well with the corresponding smooth-wall data. The pipe exhibited smooth behaviour for ks+ < or =3.5, which supports the suggestion that the original smooth pipe was indeed hydraulically smooth for ReD< or =24x106. The relationship between the velocity shift, DeltaU/utau, and the roughness Reynolds number, ks+, has been used to generalize the form of the transition from smooth to fully rough flow for an arbitrary relative roughness krms/D. These predictions apply for honed pipes when the separation of pipe diameter to roughness height is large, and they differ significantly from the traditional Moody curves.

  9. Improved metabolite profile smoothing for flux estimation.

    PubMed

    Dromms, Robert A; Styczynski, Mark P

    2015-09-01

    As genome-scale metabolic models become more sophisticated and dynamic, one significant challenge in using these models is to effectively integrate increasingly prevalent systems-scale metabolite profiling data into them. One common data processing step when integrating metabolite data is to smooth experimental time course measurements: the smoothed profiles can be used to estimate metabolite accumulation (derivatives), and thus the flux distribution of the metabolic model. However, this smoothing step is susceptible to the (often significant) noise in experimental measurements, limiting the accuracy of downstream model predictions. Here, we present several improvements to current approaches for smoothing metabolite time course data using defined functions. First, we use a biologically-inspired mathematical model function taken from transcriptional profiling and clustering literature that captures the dynamics of many biologically relevant transient processes. We demonstrate that it is competitive with, and often superior to, previously described fitting schemas, and may serve as an effective single option for data smoothing in metabolic flux applications. We also implement a resampling-based approach to buffer out sensitivity to specific data sets and allow for more accurate fitting of noisy data. We found that this method, as well as the addition of parameter space constraints, yielded improved estimates of concentrations and derivatives (fluxes) in previously described fitting functions. These methods have the potential to improve the accuracy of existing and future dynamic metabolic models by allowing for the more effective integration of metabolite profiling data.

  10. Migration of Airway Smooth Muscle Cells

    PubMed Central

    Gerthoffer, William T.

    2008-01-01

    Migration of smooth muscle cells is a process fundamental to development of hollow organs, including blood vessels and the airways. Migration is also thought to be part of the response to tissue injury. It has also been suggested to contribute to airways remodeling triggered by chronic inflammation. In both nonmuscle and smooth muscle cells numerous external signaling molecules and internal signal transduction pathways contribute to cell migration. The review includes evidence for the functional significance of airway smooth muscle migration, a summary of promigratory and antimigratory agents, and summaries of important signaling pathways mediating migration. Important signaling pathways and effector proteins described include small G proteins, phosphatidylinositol 3-kinases (PI3-K), Rho activated protein kinase (ROCK), p21-activated protein kinases (PAK), Src family tyrosine kinases, and mitogen-activated protein kinases (MAPK). These signaling modules control multiple critical effector proteins including actin nucleating, capping and severing proteins, myosin motors, and proteins that remodel microtubules. Actin filament remodeling, focal contact remodeling and propulsive force of molecular motors are all coordinated to move cells along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. Airway smooth muscle cell migration can be modulated in vitro by drugs commonly used in pulmonary medicine including β-adrenergic agonists and corticosteroids. Future studies of airway smooth muscle cell migration may uncover novel targets for drugs aimed at modifying airway remodeling. PMID:18094091

  11. Manual tracking enhances smooth pursuit eye movements

    PubMed Central

    Niehorster, Diederick C.; Siu, Wilfred W. F.; Li, Li

    2015-01-01

    Previous studies have reported that concurrent manual tracking enhances smooth pursuit eye movements only when tracking a self-driven or a predictable moving target. Here, we used a control-theoretic approach to examine whether concurrent manual tracking enhances smooth pursuit of an unpredictable moving target. In the eye-hand tracking condition, participants used their eyes to track a Gaussian target that moved randomly along a horizontal axis. In the meantime, they used their dominant hand to move a mouse to control the horizontal movement of a Gaussian cursor to vertically align it with the target. In the eye-alone tracking condition, the target and cursor positions recorded in the eye-hand tracking condition were replayed, and participants only performed eye tracking of the target. Catch-up saccades were identified and removed from the recorded eye movements, allowing for a frequency-response analysis of the smooth pursuit response to unpredictable target motion. We found that the overall smooth pursuit gain was higher and the number of catch-up saccades made was less when eye tracking was accompanied by manual tracking than when not. We conclude that concurrent manual tracking enhances smooth pursuit. This enhancement is a fundamental property of eye-hand coordination that occurs regardless of the predictability of the target motion. PMID:26605840

  12. MURC deficiency in smooth muscle attenuates pulmonary hypertension

    PubMed Central

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-01-01

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. PMID:27546070

  13. Interaction of the smooth endoplasmic reticulum and mitochondria.

    PubMed

    Goetz, J G; Nabi, I R

    2006-06-01

    The ER (endoplasmic reticulum) is composed of multiple domains including the nuclear envelope, ribosome-studded rough ER and the SER (smooth ER). The SER can also be functionally segregated into domains that regulate ER-Golgi traffic (transitional ER), ERAD (ER-associated degradation), sterol and lipid biosynthesis and calcium sequestration. The last two, as well as apoptosis, are critically regulated by the close association of the SER with mitochondria. Studies with AMFR (autocrine motility factor receptor) have defined an SER domain whose integrity and mitochondrial association can be modulated by ilimaquinone as well as by free cytosolic calcium levels in the normal physiological range. AMFR is an E3 ubiquitin ligase that targets its ligand directly to the SER via a caveolae/raft-dependent pathway. In the present review, we will address the relationship between the calcium-dependent morphology and mitochondrial association of the SER and its various functional roles in the cell.

  14. Interaction of the smooth endoplasmic reticulum and mitochondria.

    PubMed

    Goetz, J G; Nabi, I R

    2006-06-01

    The ER (endoplasmic reticulum) is composed of multiple domains including the nuclear envelope, ribosome-studded rough ER and the SER (smooth ER). The SER can also be functionally segregated into domains that regulate ER-Golgi traffic (transitional ER), ERAD (ER-associated degradation), sterol and lipid biosynthesis and calcium sequestration. The last two, as well as apoptosis, are critically regulated by the close association of the SER with mitochondria. Studies with AMFR (autocrine motility factor receptor) have defined an SER domain whose integrity and mitochondrial association can be modulated by ilimaquinone as well as by free cytosolic calcium levels in the normal physiological range. AMFR is an E3 ubiquitin ligase that targets its ligand directly to the SER via a caveolae/raft-dependent pathway. In the present review, we will address the relationship between the calcium-dependent morphology and mitochondrial association of the SER and its various functional roles in the cell. PMID:16709164

  15. Local, Optimization-based Simplicial Mesh Smoothing

    1999-12-09

    OPT-MS is a C software package for the improvement and untangling of simplicial meshes (triangles in 2D, tetrahedra in 3D). Overall mesh quality is improved by iterating over the mesh vertices and adjusting their position to optimize some measure of mesh quality, such as element angle or aspect ratio. Several solution techniques (including Laplacian smoothing, "Smart" Laplacian smoothing, optimization-based smoothing and several combinations thereof) and objective functions (for example, element angle, sin (angle), and aspectmore » ratio) are available to the user for both two and three-dimensional meshes. If the mesh contains invalid elements (those with negative area) a different optimization algorithm for mesh untangling is provided.« less

  16. Multiple predictor smoothing methods for sensitivity analysis.

    SciTech Connect

    Helton, Jon Craig; Storlie, Curtis B.

    2006-08-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present.

  17. ibr: Iterative bias reduction multivariate smoothing

    SciTech Connect

    Hengartner, Nicholas W; Cornillon, Pierre-andre; Matzner - Lober, Eric

    2009-01-01

    Regression is a fundamental data analysis tool for relating a univariate response variable Y to a multivariate predictor X {element_of} E R{sup d} from the observations (X{sub i}, Y{sub i}), i = 1,...,n. Traditional nonparametric regression use the assumption that the regression function varies smoothly in the independent variable x to locally estimate the conditional expectation m(x) = E[Y|X = x]. The resulting vector of predicted values {cflx Y}{sub i} at the observed covariates X{sub i} is called a regression smoother, or simply a smoother, because the predicted values {cflx Y}{sub i} are less variable than the original observations Y{sub i}. Linear smoothers are linear in the response variable Y and are operationally written as {cflx m} = X{sub {lambda}}Y, where S{sub {lambda}} is a n x n smoothing matrix. The smoothing matrix S{sub {lambda}} typically depends on a tuning parameter which we denote by {lambda}, and that governs the tradeoff between the smoothness of the estimate and the goodness-of-fit of the smoother to the data by controlling the effective size of the local neighborhood over which the responses are averaged. We parameterize the smoothing matrix such that large values of {lambda} are associated to smoothers that averages over larger neighborhood and produce very smooth curves, while small {lambda} are associated to smoothers that average over smaller neighborhood to produce a more wiggly curve that wants to interpolate the data. The parameter {lambda} is the bandwidth for kernel smoother, the span size for running-mean smoother, bin smoother, and the penalty factor {lambda} for spline smoother.

  18. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation

    PubMed Central

    1986-01-01

    A monoclonal antibody (anti-alpha sm-1) recognizing exclusively alpha- smooth muscle actin was selected and characterized after immunization of BALB/c mice with the NH2-terminal synthetic decapeptide of alpha- smooth muscle actin coupled to keyhole limpet hemocyanin. Anti-alpha sm- 1 helped in distinguishing smooth muscle cells from fibroblasts in mixed cultures such as rat dermal fibroblasts and chicken embryo fibroblasts. In the aortic media, it recognized a hitherto unknown population of cells negative for alpha-smooth muscle actin and for desmin. In 5-d-old rats, this population is about half of the medial cells and becomes only 8 +/- 5% in 6-wk-old animals. In cultures of rat aortic media SMCs, there is a progressive increase of this cell population together with a progressive decrease in the number of alpha- smooth muscle actin-containing stress fibers per cell. Double immunofluorescent studies carried out with anti-alpha sm-1 and anti- desmin antibodies in several organs revealed a heterogeneity of stromal cells. Desmin-negative, alpha-smooth muscle actin-positive cells were found in the rat intestinal muscularis mucosae and in the dermis around hair follicles. Moreover, desmin-positive, alpha-smooth muscle actin- negative cells were identified in the intestinal submucosa, rat testis interstitium, and uterine stroma. alpha-Smooth muscle actin was also found in myoepithelial cells of mammary and salivary glands, which are known to express cytokeratins. Finally, alpha-smooth muscle actin is present in stromal cells of mammary carcinomas, previously considered fibroblastic in nature. Thus, anti-alpha sm-1 antibody appears to be a powerful probe in the study of smooth muscle differentiation in normal and pathological conditions. PMID:3539945

  19. Production of super-smooth articles

    SciTech Connect

    Duchane, D.V.

    1981-05-29

    Super-smooth rounded or formed articles made of thermoplastic materials including various poly(methyl methacrylate) or acrylonitrile-butadiene-styrene copolymers are produced by immersing the articles into a bath, the composition of which is slowly changed with time. The starting composition of the bath is made up of at least one solvent for the polymer and a diluent made up of at least one nonsolvent for the polymer and optional materials which are soluble in the bath. The resulting extremely smooth articles are useful as mandrels for laser fusion and should be useful for a wide variety of other purposes, for example lenses.

  20. Production of super-smooth articles

    DOEpatents

    Duchane, David V.

    1983-01-01

    Super-smooth rounded or formed articles made of thermoplastic materials including various poly(methyl methacrylate) or acrylonitrile-butadiene-styrene copolymers are produced by immersing the articles into a bath, the composition of which is slowly changed with time. The starting composition of the bath is made up of at least one solvent for the polymer and a diluent made up of at least one nonsolvent for the polymer and optional materials which are soluble in the bath. The resulting extremely smooth articles are useful as mandrels for laser fusion and should be useful for a wide variety of other purposes, for example lenses.

  1. Some cautionary remarks about smoothed particle hydrodynamics

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars

    1993-01-01

    Potential difficulties with smoothed particle hydrodynamics are discussed. In particular, empirical tests are used to demonstrate that the errors resulting from the use of variable smoothing can be much larger than commonly believed. Fortunately, however, these errors, which are normally small, do not appear to promote instability on small scales, such as fragmentation in self-gravitating fluids. Still, while SPH remains a useful tool for many problems of astrophysical interest, a rigorous formulation of it, which is adaptive but still satisfies conservation properties, is clearly wanting.

  2. Geometrical Wake of a Smooth Flat Collimator

    SciTech Connect

    Stupakov, G.V.; /SLAC

    2011-09-09

    A transverse geometrical wake generated by a beam passing through a smooth flat collimator with a gradually varying gap between the upper and lower walls is considered. Based on generalization of the approach recently developed for a smooth circular taper we reduce the electromagnetic problem of the impedance calculation to the solution of two much simpler static problems - a magnetostatic and an electrostatic ones. The solution shows that in the limit of not very large frequencies, the impedance increases with the ratio h/d where h is the width and d is the distance between the collimating jaws. Numerical results are presented for the NLC Post Linac collimator.

  3. Length adaptation of smooth muscle contractile filaments in response to sustained activation.

    PubMed

    Stålhand, Jonas; Holzapfel, Gerhard A

    2016-05-21

    Airway and bladder smooth muscles are known to undergo length adaptation under sustained contraction. This adaptation process entails a remodelling of the intracellular actin and myosin filaments which shifts the peak of the active force-length curve towards the current length. Smooth muscles are therefore able to generate the maximum force over a wide range of lengths. In contrast, length adaptation of vascular smooth muscle has attracted very little attention and only a handful of studies have been reported. Although their results are conflicting on the existence of a length adaptation process in vascular smooth muscle, it seems that, at least, peripheral arteries and arterioles undergo such adaptation. This is of interest since peripheral vessels are responsible for pressure regulation, and a length adaptation will affect the function of the cardiovascular system. It has, e.g., been suggested that the inward remodelling of resistance vessels associated with hypertension disorders may be related to smooth muscle adaptation. In this study we develop a continuum mechanical model for vascular smooth muscle length adaptation by assuming that the muscle cells remodel the actomyosin network such that the peak of the active stress-stretch curve is shifted towards the operating point. The model is specialised to hamster cheek pouch arterioles and the simulated response to stepwise length changes under contraction. The results show that the model is able to recover the salient features of length adaptation reported in the literature.

  4. Recruitment of β-catenin to N-cadherin is necessary for smooth muscle contraction.

    PubMed

    Wang, Tao; Wang, Ruping; Cleary, Rachel A; Gannon, Olivia J; Tang, Dale D

    2015-04-01

    β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation.

  5. Smooth PARAFAC Decomposition for Tensor Completion

    NASA Astrophysics Data System (ADS)

    Yokota, Tatsuya; Zhao, Qibin; Cichocki, Andrzej

    2016-10-01

    In recent years, low-rank based tensor completion, which is a higher-order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, where the ratio of missing data is extremely high. In this paper, we consider "smoothness" constraints as well as low-rank approximations, and propose an efficient algorithm for performing tensor completion that is particularly powerful regarding visual data. The proposed method admits significant advantages, owing to the integration of smooth PARAFAC decomposition for incomplete tensors and the efficient selection of models in order to minimize the tensor rank. Thus, our proposed method is termed as "smooth PARAFAC tensor completion (SPC)." In order to impose the smoothness constraints, we employ two strategies, total variation (SPC-TV) and quadratic variation (SPC-QV), and invoke the corresponding algorithms for model learning. Extensive experimental evaluations on both synthetic and real-world visual data illustrate the significant improvements of our method, in terms of both prediction performance and efficiency, compared with many state-of-the-art tensor completion methods.

  6. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  7. Smoothing Methods for Estimating Test Score Distributions.

    ERIC Educational Resources Information Center

    Kolen, Michael J.

    1991-01-01

    Estimation/smoothing methods that are flexible enough to fit a wide variety of test score distributions are reviewed: kernel method, strong true-score model-based method, and method that uses polynomial log-linear models. Applications of these methods include describing/comparing test score distributions, estimating norms, and estimating…

  8. Smoothness and Striation in Digital Learning Spaces

    ERIC Educational Resources Information Center

    Bayne, Sian

    2004-01-01

    It is Deleuze & Guattari's description of smooth and striated cultural spaces (Deleuze & Guattari, 1988) which informs this exploration of pedagogical alternatives within the learning environments of cyberspace. Digital spaces work to constitute subject and text in ways which are distinct, and it is awareness of this distinctiveness which must…

  9. Previously differentiated medial vascular smooth muscle cells contribute to neointima formation following vascular injury

    PubMed Central

    2014-01-01

    Background The origins of neointimal smooth muscle cells that arise following vascular injury remains controversial. Studies have suggested that these cells may arise from previously differentiated medial vascular smooth muscle cells, resident stem cells or blood born progenitors. In the current study we examined the contribution of the previously differentiated vascular smooth muscle cells to the neointima that forms following carotid artery ligation. Methods We utilized transgenic mice harboring a cre recombinase-dependent reporter gene (mTmG). These mice express membrane targeted tandem dimer Tomato (mTomato) prior to cre-mediated excision and membrane targeted EGFP (mEGFP) following excision. The mTmG mice were crossed with transgenic mice expressing either smooth muscle myosin heavy chain (Myh11) or smooth muscle α-actin (Acta2) driven tamoxifen regulated cre recombinase. Following treatment of adult mice with tamoxifen these mice express mEGFP exclusively in differentiated smooth muscle cells. Subsequently vascular injury was induced in the mice by carotid artery ligation and the contribution of mEGFP positive cells to the neointima determined. Results Analysis of the cellular composition of the neointima that forms following injury revealed that mEGFP positive cells derived from either Mhy11 or Acta2 tagged medial vascular smooth muscle cells contribute to the majority of neointima formation (79 ± 17% and 81 ± 12%, respectively). Conclusion These data demonstrate that the majority of the neointima that forms following carotid ligation is derived from previously differentiated medial vascular smooth muscle cells. PMID:25309723

  10. Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress

    NASA Technical Reports Server (NTRS)

    Seidel, Charles L.

    1998-01-01

    The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure

  11. The induction of YAP expression following arterial injury is crucial for smooth muscle phenotypic modulation and neointima formation

    PubMed Central

    Wang, Xiaobo; Hu, Guoqing; Gao, Xiangwei; Wang, Yong; Zhang, Wei; Harmon, Erin Yund; Zhi, Xu; Xu, Zhengping; Lennartz, Michelle R.; Barroso, Margarida; Trebak, Mohamed; Chen, Ceshi; Zhou, Jiliang

    2012-01-01

    Objective Abnormal proliferation and migration of vascular smooth muscle cells (SMCs) are the key events in the progression of neointima formation in response to vascular injury. The goal of this study is to investigate the functional role of a potent oncogene YAP in smooth muscle phenotypic modulation in vitro and in vivo. Methods and Results In vitro in cell culture and in vivo in both mouse and rat arterial injury models YAP expression is significantly induced and correlated with the vascular SMC synthetic phenotype. Over-expression of YAP promotes SMC migration and proliferation while attenuating smooth muscle contractile gene expression. Conversely, knocking-down endogenous YAP in SMCs up-regulates smooth muscle gene expression but attenuates SMC proliferation and migration. Consistent with this, knocking-down YAP expression in a rat carotid balloon injury model and genetic deletion of YAP specifically in vascular SMCs in mouse after carotid artery ligation injury attenuates injury-induced smooth muscle phenotypic switch and neointima formation. Conclusions YAP plays a novel integrative role in smooth muscle phenotypic modulation by inhibiting smooth muscle-specific gene expression while promoting smooth muscle proliferation and migration in vitro and in vivo. Blocking the induction of YAP would be a potential therapeutic approach for ameliorating vascular occlusive diseases. PMID:22922963

  12. Immunolocalization of BMP-6, a novel TGF-beta-related cytokine, in normal and atherosclerotic smooth muscle cells.

    PubMed

    Schluesener, H J; Meyermann, R

    1995-03-01

    We have analyzed expression of a novel transforming growth factor type beta (TGF-beta)-related cytokine, bone morphogenetic protein-6 (BMP-6) in normal and atherosclerotic brain arteries. BMP-6 immunoreactivity was detected in smooth muscle cells of normal cerebral blood vessels. It is also expressed by smooth muscle cells of intimal plaques in atherosclerotically changed blood vessels. The BMPs regulate tissue modeling and remodeling and aberrant expression of BMPs might contribute to smooth muscle cell migration, proliferation, tissue reorganization and macrophage attraction, which are known mechanisms of atherosclerotic plaque formation. PMID:7605353

  13. Magnesium Attenuates Phosphate-Induced Deregulation of a MicroRNA Signature and Prevents Modulation of Smad1 and Osterix during the Course of Vascular Calcification

    PubMed Central

    Louvet, Loïc; Metzinger, Laurent; Büchel, Janine; Steppan, Sonja; Massy, Ziad A.

    2016-01-01

    Vascular calcification (VC) is prevalent in patients suffering from chronic kidney disease (CKD). High phosphate levels promote VC by inducing abnormalities in mineral and bone metabolism. Previously, we demonstrated that magnesium (Mg2+) prevents inorganic phosphate- (Pi-) induced VC in human aortic vascular smooth muscle cells (HAVSMC). As microRNAs (miR) modulate gene expression, we investigated the role of miR-29b, -30b, -125b, -133a, -143, and -204 in the protective effect of Mg2+ on VC. HAVSMC were cultured in the presence of 3 mM Pi with or without 2 mM Mg2+ chloride. Total RNA was extracted after 4 h, 24 h, day 3, day 7, and day 10. miR-30b, -133a, and -143 were downregulated during the time course of Pi-induced VC, whereas the addition of Mg2+ restored (miR-30b) or improved (miR-133a, miR-143) their expression. The expression of specific targets Smad1 and Osterix was significantly increased in the presence of Pi and restored by coincubation with Mg2+. As miR-30b, miR-133a, and miR-143 are negatively regulated by Pi and restored by Mg2+ with a congruent modulation of their known targets Runx2, Smad1, and Osterix, our results provide a potential mechanistic explanation of the observed upregulation of these master switches of osteogenesis during the course of VC. PMID:27419135

  14. A Generalized Eigensolver based on Smoothed Aggregation (GES-SA) for Initializing Smoothed Aggregation Multigrid (SA)

    SciTech Connect

    Brezina, M; Manteuffel, T; McCormick, S; Ruge, J; Sanders, G; Vassilevski, P S

    2007-05-31

    Consider the linear system Ax = b, where A is a large, sparse, real, symmetric, and positive definite matrix and b is a known vector. Solving this system for unknown vector x using a smoothed aggregation multigrid (SA) algorithm requires a characterization of the algebraically smooth error, meaning error that is poorly attenuated by the algorithm's relaxation process. For relaxation processes that are typically used in practice, algebraically smooth error corresponds to the near-nullspace of A. Therefore, having a good approximation to a minimal eigenvector is useful to characterize the algebraically smooth error when forming a linear SA solver. This paper discusses the details of a generalized eigensolver based on smoothed aggregation (GES-SA) that is designed to produce an approximation to a minimal eigenvector of A. GES-SA might be very useful as a standalone eigensolver for applications that desire an approximate minimal eigenvector, but the primary aim here is for GES-SA to produce an initial algebraically smooth component that may be used to either create a black-box SA solver or initiate the adaptive SA ({alpha}SA) process.

  15. Compensating for estimation smoothing in kriging

    USGS Publications Warehouse

    Olea, R.A.; Pawlowsky, Vera

    1996-01-01

    Smoothing is a characteristic inherent to all minimum mean-square-error spatial estimators such as kriging. Cross-validation can be used to detect and model such smoothing. Inversion of the model produces a new estimator-compensated kriging. A numerical comparison based on an exhaustive permeability sampling of a 4-fr2 slab of Berea Sandstone shows that the estimation surface generated by compensated kriging has properties intermediate between those generated by ordinary kriging and stochastic realizations resulting from simulated annealing and sequential Gaussian simulation. The frequency distribution is well reproduced by the compensated kriging surface, which also approximates the experimental semivariogram well - better than ordinary kriging, but not as well as stochastic realizations. Compensated kriging produces surfaces that are more accurate than stochastic realizations, but not as accurate as ordinary kriging. ?? 1996 International Association for Mathematical Geology.

  16. Tribological properties of smooth diamond films

    NASA Astrophysics Data System (ADS)

    Pimenov, S. M.; Smolin, A. A.; Obraztsova, E. D.; Konov, V. I.; Bögli, U.; Blatter, A.; Loubnin, E. N.; Maillat, M.; Leijala, A.; Burger, J.; Hintermann, H. E.

    1996-02-01

    The friction and wear properties of smooth diamond coatings sliding against a monocrystalline ruby ball were studied using a pin-on-disk tribometer. The smooth diamond film surface was prepared either by (i) deposition of ultrathin nanocrystalline films in the thickness range from 0.2 to 2 μm or by (ii) postgrowth polishing. Excimer laser surface ablation, microwave plasma etching and mechanical lapping with diamond grit were used for postgrowth polishing. A correlation of film surface properties examined with different techniques (atomic force microscopy, Auger electron spectroscopy, Raman spectroscopy, stylus profilometry) and the tribological properties of the diamond films tested was established. The influence of laser-induced surface graphitization on the friction coefficient of laser-polished films was investigated.

  17. SPHGR: Smoothed-Particle Hydrodynamics Galaxy Reduction

    NASA Astrophysics Data System (ADS)

    Thompson, Robert

    2015-02-01

    SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access. SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).

  18. Variational algorithms for nonlinear smoothing applications

    NASA Technical Reports Server (NTRS)

    Bach, R. E., Jr.

    1977-01-01

    A variational approach is presented for solving a nonlinear, fixed-interval smoothing problem with application to offline processing of noisy data for trajectory reconstruction and parameter estimation. The nonlinear problem is solved as a sequence of linear two-point boundary value problems. Second-order convergence properties are demonstrated. Algorithms for both continuous and discrete versions of the problem are given, and example solutions are provided.

  19. Structure-Preserving Smoothing of Biomedical Images

    NASA Astrophysics Data System (ADS)

    Gil, Debora; Hernàndez-Sabaté, Aura; Burnat, Mireia; Jansen, Steven; Martínez-Villalta, Jordi

    Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood.

  20. On the thermodynamics of smooth muscle contraction

    NASA Astrophysics Data System (ADS)

    Stålhand, Jonas; McMeeking, Robert M.; Holzapfel, Gerhard A.

    2016-09-01

    Cell function is based on many dynamically complex networks of interacting biochemical reactions. Enzymes may increase the rate of only those reactions that are thermodynamically consistent. In this paper we specifically treat the contraction of smooth muscle cells from the continuum thermodynamics point of view by considering them as an open system where matter passes through the cell membrane. We systematically set up a well-known four-state kinetic model for the cross-bridge interaction of actin and myosin in smooth muscle, where the transition between each state is driven by forward and reverse reactions. Chemical, mechanical and energy balance laws are provided in local forms, while energy balance is also formulated in the more convenient temperature form. We derive the local (non-negative) production of entropy from which we deduce the reduced entropy inequality and the constitutive equations for the first Piola-Kirchhoff stress tensor, the heat flux, the ion and molecular flux and the entropy. One example for smooth muscle contraction is analyzed in more detail in order to provide orientation within the established general thermodynamic framework. In particular the stress evolution, heat generation, muscle shorting rate and a condition for muscle cooling are derived.

  1. Smooth muscle tumours of the alimentary tract.

    PubMed Central

    Diamond, T.; Danton, M. H.; Parks, T. G.

    1990-01-01

    Neoplasms arising from smooth muscle of the gastrointestinal (GI) tract are uncommon, comprising only 1% of gastrointestinal tumours. A total of 51 cases of smooth muscle tumour of the GI tract were analysed; 44 leiomyomas and 7 leiomyosarcomas. Lesions occurred in all areas from the oesophagus to the rectum, the stomach being the commonest site. Thirty-six patients had clinical features referable to the tumour. The tumour was detected during investigation or management of an unrelated disease process in 15 patients. The clinical presentation varied depending on tumour location, but abdominal pain and GI bleeding were the commonest presenting symptoms. The lesion was demonstrated preoperatively, mainly by endoscopy and barium studies, in 27 patients. Surgical excision was the treatment of choice, where possible. There was no recurrence in the leiomyoma group but four patients died in the leiomyosarcoma group. Although rare, smooth muscle tumours should be considered in situations where clinical presentation and investigations are not suggestive of any common GI disorder. The preoperative assessment and diagnosis is difficult because of the variability in clinical features and their inaccessibility to routine GI investigation. It is recommended that, where possible, the lesion, whether symptomatic or discovered incidentally, should be excised completely to achieve a cure and prevent future complications. Images Figure 3 Figure 4 PMID:2221768

  2. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Definitions § 51.772 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and size of the fruit. “Fairly thin” means that the skin thickness does...

  3. Upregulation of decorin by FXR in vascular smooth muscle cells

    SciTech Connect

    He Fengtian; Zhang Qiuhong; Kuruba, Ramalinga; Gao Xiang; Li Jiang; Li Yong; Gong Wei; Jiang, Yu; Xie Wen; Li Song

    2008-08-08

    Decorin is a member of the family of small leucine-rich proteoglycans that are present in blood vessels and synthesized by vascular smooth muscle cells (VSMCs). Decorin plays complex roles in both normal vascular physiology and the pathogenesis of various types of vascular disorders. However, the mechanisms of regulation of decorin expression in vasculature are not clearly understood. Particularly little information is available about a role of nuclear receptors in the regulation of decorin expression. In the present study, we report that activation of vascular FXR by a specific ligand resulted in upregulation of decorin at the levels of both mRNA and protein. FXR appears to induce decorin expression at a transcriptional level because (1) upregulation of decorin mRNA expression was abolished by the treatment of a transcription inhibitor, actinomycin D; and (2) decorin promoter activity was significantly increased by activation of FXR. Functional analysis of human decorin promoter identified an imperfect inverted repeat DNA motif, IR8 (-2313TGGTCAtagtgtcaTGACCT-2294), as a likely FXR-responsive element that is involved in decorin regulation.

  4. Caveolin-3 Promotes a Vascular Smooth Muscle Contractile Phenotype

    PubMed Central

    Gutierrez-Pajares, Jorge L.; Iturrieta, Jeannette; Dulam, Vipin; Wang, Yu; Pavlides, Stephanos; Malacari, Gabriella; Lisanti, Michael P.; Frank, Philippe G.

    2015-01-01

    Epidemiological studies have demonstrated the importance of cardiovascular diseases in Western countries. Among the cell types associated with a dysfunctional vasculature, smooth muscle (SM) cells are believed to play an essential role in the development of these illnesses. Vascular SM cells are key regulators of the vascular tone and also have an important function in the development of atherosclerosis and restenosis. While in the normal vasculature, contractile SM cells are predominant, in atherosclerotic vascular lesions, synthetic cells migrate toward the neointima, proliferate, and synthetize extracellular matrix proteins. In the present study, we have examined the role of caveolin-3 in the regulation of SM cell phenotype. Caveolin-3 is expressed in vivo in normal arterial SM cells, but its expression appears to be lost in cultured SM cells. Our data show that caveolin-3 expression in the A7r5 SM cell line is associated with increased expression of contractility markers such as SM α-actin, SM myosin heavy chain but decreased expression of the synthetic phenotype markers such as p-Elk and Klf4. Moreover, we also show that caveolin-3 expression can reduce proliferation upon treatment with LDL or PDGF. Finally, we show that caveolin-3-expressing SM cells are less sensitive to apoptosis than control cells upon treatment with oxidized LDL. Taken together, our data suggest that caveolin-3 can regulate the phenotypic switch between contractile and synthetic SM cells. A better understanding of the factors regulating caveolin-3 expression and function in this cell type will permit the development of a better comprehension of the factors regulating SM function in atherosclerosis and restenosis. PMID:26664898

  5. Axl modulates immune activation of smooth muscle cells in vein graft remodeling.

    PubMed

    Batchu, Sri N; Xia, Jixiang; Ko, Kyung Ae; Doyley, Marvin M; Abe, Jun-Ichi; Morrell, Craig N; Korshunov, Vyacheslav A

    2015-09-15

    The pathophysiological mechanisms of the immune activation of smooth muscle cells are not well understood. Increased expression of Axl, a receptor tyrosine kinase, was recently found in arteries from patients after coronary bypass grafts. In the present study, we hypothesized that Axl-dependent immune activation of smooth muscle cells regulates vein graft remodeling. We observed a twofold decrease in intimal thickening after vascular and systemic depletion of Axl in vein grafts. Local depletion of Axl had the greatest effect on immune activation, whereas systemic deletion of Axl reduced intima due to an increase in apoptosis in vein grafts. Primary smooth muscle cells isolated from Axl knockout mice had reduced proinflammatory responses by prevention of the STAT1 pathway. The absence of Axl increased suppressor of cytokine signaling (SOCS)1 expression in smooth muscle cells, a major inhibitory protein for STAT1. Ultrasound imaging suggested that vascular depletion of Axl reduced vein graft stiffness. Axl expression determined the STAT1-SOCS1 balance in vein graft intima and progression of the remodeling. The results of this investigation demonstrate that Axl promotes STAT1 signaling via inhibition of SOCS1 in activated smooth muscle cells in vein graft remodeling.

  6. Infant Attention and the Development of Smooth Pursuit Tracking.

    ERIC Educational Resources Information Center

    Richards, John E.; Holley, Felecia B.

    1999-01-01

    Studied effect of attention on smooth pursuit and saccadic tracking in infants at 8, 14, 20, and 26 weeks old. Found an increase across age in overall tracking, gain of smooth-pursuit eye movements, and increased amplitude of compensatory saccades at faster tracking speeds. Findings show that development of smooth pursuit, targeted saccadic eye…

  7. 7 CFR 51.1008 - Fairly smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth texture. 51.1008 Section 51.1008... STANDARDS) United States Standards for Persian (Tahiti) Limes Definitions § 51.1008 Fairly smooth texture. Fairly smooth texture means that the fruit is comparatively free from lumpiness and that pebbling is...

  8. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth texture. 51.772 Section 51.772... STANDARDS) United States Standards for Grades of Florida Grapefruit Definitions § 51.772 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and...

  9. 7 CFR 51.1008 - Fairly smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly smooth texture. 51.1008 Section 51.1008... STANDARDS) United States Standards for Persian (Tahiti) Limes Definitions § 51.1008 Fairly smooth texture. Fairly smooth texture means that the fruit is comparatively free from lumpiness and that pebbling is...

  10. Neurophysiology and Neuroanatomy of Smooth Pursuit in Humans

    ERIC Educational Resources Information Center

    Lencer, Rebekka; Trillenberg, Peter

    2008-01-01

    Smooth pursuit eye movements enable us to focus our eyes on moving objects by utilizing well-established mechanisms of visual motion processing, sensorimotor transformation and cognition. Novel smooth pursuit tasks and quantitative measurement techniques can help unravel the different smooth pursuit components and complex neural systems involved…

  11. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth texture. 51.772 Section 51.772... STANDARDS) United States Standards for Grades of Florida Grapefruit Definitions § 51.772 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and...

  12. 7 CFR 51.1008 - Fairly smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth texture. 51.1008 Section 51.1008... STANDARDS) United States Standards for Persian (Tahiti) Limes Definitions § 51.1008 Fairly smooth texture. Fairly smooth texture means that the fruit is comparatively free from lumpiness and that pebbling is...

  13. Visual Short-Term Memory During Smooth Pursuit Eye Movements

    ERIC Educational Resources Information Center

    Kerzel, Dirk; Ziegler, Nathalie E.

    2005-01-01

    Visual short-term memory (VSTM) was probed while observers performed smooth pursuit eye movements. Smooth pursuit keeps a moving object stabilized in the fovea. VSTM capacity for position was reduced during smooth pursuit compared with a condition with eye fixation. There was no difference between a condition in which the items were approximately…

  14. Alternative Smoothing and Scaling Strategies for Weighted Composite Scores

    ERIC Educational Resources Information Center

    Moses, Tim

    2014-01-01

    In this study, smoothing and scaling approaches are compared for estimating subscore-to-composite scaling results involving composites computed as rounded and weighted combinations of subscores. The considered smoothing and scaling approaches included those based on raw data, on smoothing the bivariate distribution of the subscores, on smoothing…

  15. MicroRNA-145 Is Downregulated in Glial Tumors and Regulates Glioma Cell Migration by Targeting Connective Tissue Growth Factor

    PubMed Central

    Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M.; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A.; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3′-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3′-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors. PMID:23390502

  16. A Novel System for Studying Mechanical Strain Waveform-Dependent Responses in Vascular Smooth Muscle Cells

    PubMed Central

    Lee, Jason; Wong, Mitchell; Smith, Quentin; Baker, Aaron B.

    2013-01-01

    While many studies have examined the effects mechanical forces on vSMCs, there is a limited understanding of how the different arterial strain waveforms that occur in disease and different vascular beds alter vSMC mechanotransduction and phenotype. Here, we present a novel system for applying complex, time-varying strain waveforms to cultured cells and use this system to understand how these waveforms can alter vSMC phenotype and signaling. We have developed a highly adaptable cell culture system that allows the application of mechanical strain to cells in culture and can reproduce the complex dynamic mechanical environment experienced by arterial cells in the body. Using this system, we examined whether the type of applied strain waveform altered phenotypic modulation of vSMCs by mechanical forces. Cells exposed to the brachial waveform had increased phosphorylation of AKT, EGR-1, c-Fos expression and cytoskeletal remodeling in comparison to cells treated with the aortic waveform. In addition, vSMCs exposed to physiological waveforms had adopted a more differentiated phenotype in comparison to those treated with static or sinusoidal cyclic strain, with increased expression of vSMC markers desmin, calponin and SM-22 as well as increased expression of regulatory miRNAs including miR-143, -145 and -221. Taken together, our studies demonstrate the development of a novel system for applying complex, timevarying mechanical forces to cells in culture. In addition, we have shown that physiological strain waveforms have powerful effects on vSMC phenotype. PMID:24096612

  17. Compressive Sensing via Nonlocal Smoothed Rank Function.

    PubMed

    Fan, Ya-Ru; Huang, Ting-Zhu; Liu, Jun; Zhao, Xi-Le

    2016-01-01

    Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction. PMID:27583683

  18. Method for producing smooth inner surfaces

    DOEpatents

    Cooper, Charles A.

    2016-05-17

    The invention provides a method for preparing superconducting cavities, the method comprising causing polishing media to tumble by centrifugal barrel polishing within the cavities for a time sufficient to attain a surface smoothness of less than 15 nm root mean square roughness over approximately a 1 mm.sup.2 scan area. The method also provides for a method for preparing superconducting cavities, the method comprising causing polishing media bound to a carrier to tumble within the cavities. The method also provides for a method for preparing superconducting cavities, the method comprising causing polishing media in a slurry to tumble within the cavities.

  19. On spaces of functions of smoothness zero

    SciTech Connect

    Besov, Oleg V

    2012-08-31

    The paper is concerned with the new spaces B-bar{sub p,q}{sup 0} of functions of smoothness zero defined on the n-dimensional Euclidean space R{sup n} or on a subdomain G of R{sup n}. These spaces are compared with the spaces B{sub p,q}{sup 0}(R{sup n}) and bmo(R{sup n}). The embedding theorems for Sobolev spaces are refined in terms of the space B-bar{sub p,q}{sup 0} with the limiting exponent. Bibliography: 8 titles.

  20. Impact modeling with Smooth Particle Hydrodynamics

    SciTech Connect

    Stellingwerf, R.F.; Wingate, C.A.

    1993-07-01

    Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.

  1. Workshop on advances in smooth particle hydrodynamics

    SciTech Connect

    Wingate, C.A.; Miller, W.A.

    1993-12-31

    This proceedings contains viewgraphs presented at the 1993 workshop held at Los Alamos National Laboratory. Discussed topics include: negative stress, reactive flow calculations, interface problems, boundaries and interfaces, energy conservation in viscous flows, linked penetration calculations, stability and consistency of the SPH method, instabilities, wall heating and conservative smoothing, tensors, tidal disruption of stars, breaking the 10,000,000 particle limit, modelling relativistic collapse, SPH without H, relativistic KSPH avoidance of velocity based kernels, tidal compression and disruption of stars near a supermassive rotation black hole, and finally relativistic SPH viscosity and energy.

  2. Mutator Dynamics on a Smooth Evolutionary Landscape

    NASA Astrophysics Data System (ADS)

    Kessler, David A.; Levine, Herbert

    1998-03-01

    We investigate a model of evolutionary dynamics on a smooth landscape which features a ``mutator'' allele which increases the mutation rate. We show that when the fitness is far from its equilibrium value the expected proportion of mutators approaches a value governed solely by the transition rates into and out of the mutator state, resulting in a much faster fitness increase than would be the case without the mutator allele. Near the fitness equilibrium, the mutators are severely suppressed, due to the detrimental effects of a large mutation rate near the fitness maximum. We discuss the results of a recent experiment on natural selection of E. coli in the light of our model.

  3. Accurate statistical tests for smooth classification images.

    PubMed

    Chauvin, Alan; Worsley, Keith J; Schyns, Philippe G; Arguin, Martin; Gosselin, Frédéric

    2005-10-05

    Despite an obvious demand for a variety of statistical tests adapted to classification images, few have been proposed. We argue that two statistical tests based on random field theory (RFT) satisfy this need for smooth classification images. We illustrate these tests on classification images representative of the literature from F. Gosselin and P. G. Schyns (2001) and from A. B. Sekuler, C. M. Gaspar, J. M. Gold, and P. J. Bennett (2004). The necessary computations are performed using the Stat4Ci Matlab toolbox.

  4. Compressive Sensing via Nonlocal Smoothed Rank Function

    PubMed Central

    Fan, Ya-Ru; Liu, Jun; Zhao, Xi-Le

    2016-01-01

    Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction. PMID:27583683

  5. Compressive Sensing via Nonlocal Smoothed Rank Function.

    PubMed

    Fan, Ya-Ru; Huang, Ting-Zhu; Liu, Jun; Zhao, Xi-Le

    2016-01-01

    Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction.

  6. Phorbol 12,13-Dibutyrate-Induced, Protein Kinase C-Mediated Contraction of Rabbit Bladder Smooth Muscle

    PubMed Central

    Wang, Tanchun; Kendig, Derek M.; Trappanese, Danielle M.; Smolock, Elaine M.; Moreland, Robert S.

    2012-01-01

    Contraction of bladder smooth muscle is predominantly initiated by M3 muscarinic receptor-mediated activation of the Gq/11-phospholipase C β-protein kinase C (PKC) and the G12/13-RhoGEF-Rho kinase (ROCK) pathways. However, these pathways and their downstream effectors are not well understood in bladder smooth muscle. We used phorbol 12,13-dibutyrate (PDBu), and 1,2-dioctanoyl-sn-glycerol (DOG), activators of PKC, in this investigation. We were interested in dissecting the role(s) of PKC and to clarify the signaling pathways in bladder smooth muscle contraction, especially the potential cross-talk with ROCK and their downstream effectors in regulating myosin light chain phosphatase activity and force. To achieve this goal, the study was performed in the presence or absence of the PKC inhibitor bisindolylmaleimide-1 (Bis) or the ROCK inhibitor H-1152. Phosphorylation levels of Thr38-CPI-17 and Thr696/Thr850 myosin phosphatase target subunit (MYPT1) were measured during PDBu or DOG stimulation using site specific antibodies. PDBu-induced contraction in bladder smooth muscle involved both activation of PKC and PKC-dependent activation of ROCK. CPI-17 as a major downstream effector, is phosphorylated by PKC and ROCK during PDBu and DOG stimulation. Our results suggest that Thr696 and Thr850-MYPT1 phosphorylation are not involved in the regulation of a PDBu-induced contraction. The results also demonstrate that bladder smooth muscle contains a constitutively active isoform of ROCK that may play an important role in the regulation of bladder smooth muscle basal tone. Together with the results from our previous study, we developed a working model to describe the complex signaling pathways that regulate contraction of bladder smooth muscle. PMID:22232602

  7. Cholesterol and steroid synthesizing smooth endoplasmic reticulum of adrenocortical cells contains high levels of proteins associated with the translocation channel.

    PubMed

    Black, Virginia H; Sanjay, Archana; van Leyen, Klaus; Lauring, Brett; Kreibich, Gert

    2005-10-01

    Steroid-secreting cells are characterized by abundant smooth endoplasmic reticulum whose membranes contain many enzymes involved in sterol and steroid synthesis. Yet they have relatively little morphologically identifiable rough endoplasmic reticulum, presumably required for synthesis and maintenance of the smooth membranes. In this study, we demonstrate that adrenal smooth microsomal subfractions enriched in smooth endoplasmic reticulum membranes contain high levels of translocation apparatus and oligosaccharyltransferase complex proteins, previously thought confined to rough endoplasmic reticulum. We further demonstrate that these smooth microsomal subfractions are capable of effecting cotranslational translocation, signal peptide cleavage, and N-glycosylation of newly synthesized polypeptides. This shifts the paradigm for distinction between smooth and rough endoplasmic reticulum. Confocal microscopy revealed the proteins to be distributed throughout the abundant tubular endoplasmic reticulum in these cells, which is predominantly smooth surfaced. We hypothesize that the broadly distributed translocon and oligosaccharyltransferase proteins participate in local synthesis and/or quality control of membrane proteins involved in cholesterol and steroid metabolism in a sterol-dependent and hormonally regulated manner.

  8. Improved beam smoothing with SSD using generalized phase modulation

    SciTech Connect

    Rothenberg, J.E.

    1997-01-01

    The smoothing of the spatial illumination of an inertial confinement fusion target is examined by its spatial frequency content. It is found that the smoothing by spectral dispersion method, although efficient for glass lasers, can yield poor smoothing at low spatial frequency. The dependence of the smoothed spatial spectrum on the characteristics of phase modulation and dispersion is examined for both sinusoidal and more general phase modulation. It is shown that smoothing with non-sinusoidal phase modulation can result in spatial spectra which are substantially identical to that obtained with the induced spatial incoherence or similar method where random phase plates are present in both methods and identical beam divergence is assumed.

  9. Role played by Prx1-dependent extracellular matrix properties in vascular smooth muscle development in embryonic lungs

    PubMed Central

    Ames, Juliana; Chokshi, Mithil; Aiad, Norman; Sanyal, Sonali; Kawabata, Kimihito C.; Levental, Ilya; Sundararaghavan, Harini G.; Burdick, Jason A.; Janmey, Paul; Miyazono, Kohei; Wells, Rebecca G.; Jones, Peter L.

    2015-01-01

    Abstract Although there are many studies focusing on the molecular pathways underlying lung vascular morphogenesis, the extracellular matrix (ECM)–dependent regulation of mesenchymal cell differentiation in vascular smooth muscle development needs better understanding. In this study, we demonstrate that the paired related homeobox gene transcription factor Prx1 maintains the elastic ECM properties, which are essential for vascular smooth muscle precursor cell differentiation. We have found that Prx1null mouse lungs exhibit defective vascular smooth muscle development, downregulated elastic ECM expression, and compromised transforming growth factor (TGF)–β localization and signaling. Further characterization of ECM properties using decellularized lung ECM scaffolds derived from Prx1 mice demonstrated that Prx1 is required to maintain lung ECM stiffness. The results of cell culture using stiffness-controlled 2-D and 3-D synthetic substrates confirmed that Prx1-dependent ECM stiffness is essential for promotion of smooth muscle precursor differentiation for effective TGF-β stimulation. Supporting these results, both decellularized Prx1null lung ECM and Prx1WT (wild type) ECM scaffolds with blocked TGF-β failed to support mesenchymal cell to 3-D smooth muscle cell differentiation. These results suggest a novel ECM-dependent regulatory pathway of lung vascular development wherein Prx1 regulates lung vascular smooth muscle precursor development by coordinating the ECM biophysical and biochemical properties. PMID:26064466

  10. Cortex phellodendri Extract Relaxes Airway Smooth Muscle

    PubMed Central

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K+- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm. PMID:27239213

  11. Cortex phellodendri Extract Relaxes Airway Smooth Muscle.

    PubMed

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K(+)- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K(+) was also blocked by nifedipine, a selective blocker of L-type Ca(2+) channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca(2+) channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm.

  12. Isotropic Growth of Graphene toward Smoothing Stitching.

    PubMed

    Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei

    2016-07-26

    The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect. PMID:27403842

  13. Smooth blasting with the electronic delay detonator

    SciTech Connect

    Yamamoto, Masaaki; Ichijo, Toshiyuki; Tanaka, Yoshiharu

    1995-12-31

    The authors utilized electronic detonators (EDs) to investigate the effect of high detonator delay accuracy on overbreak, remaining rock damage, and surface smoothness, in comparison with that of long-period delay detonators (0.25 sec interval) PDs. The experiments were conducted in a deep mine, in a test site region composed of very hard granodiorite with a seismic wave velocity of about 6.0 km/sec and a uniaxial compressive strength, uniaxial tensile strength, and Young`s modulus of 300 MPa, 12 MPa, and 73 GPa, respectively. The blasting design was for a test tunnel excavation of 8 m{sup 2} in cross section, with an advance per round of 2.5 m. Five rounds were performed, each with a large-hole cut and perimeter holes in a 0.4-m spacing charged with 20-mm-diameter water gel explosive to obtain low charge concentration. EDs were used in the holes on the perimeter of the right half, and PDs were used in all other holes. Following each shot, the cross section was measured by laser to determine amount of overbreak and surface smoothness. In situ seismic prospecting was used to estimate the depth of damage in the remaining rock, and the damage was further investigated by boring into both side walls.

  14. Smooth Tubercle Bacilli: Neglected Opportunistic Tropical Pathogens

    PubMed Central

    Aboubaker Osman, Djaltou; Bouzid, Feriel; Canaan, Stéphane; Drancourt, Michel

    2016-01-01

    Smooth tubercle bacilli (STB) including “Mycobacterium canettii” are members of the Mycobacterium tuberculosis complex (MTBC), which cause non-contagious tuberculosis in human. This group comprises <100 isolates characterized by smooth colonies and cordless organisms. Most STB isolates have been obtained from patients exposed to the Republic of Djibouti but seven isolates, including the three seminal ones obtained by Georges Canetti between 1968 and 1970, were recovered from patients in France, Madagascar, Sub-Sahara East Africa, and French Polynesia. STB form a genetically heterogeneous group of MTBC organisms with large 4.48 ± 0.05 Mb genomes, which may link Mycobacterium kansasii to MTBC organisms. Lack of inter-human transmission suggested a yet unknown environmental reservoir. Clinical data indicate a respiratory tract route of contamination and the digestive tract as an alternative route of contamination. Further epidemiological and clinical studies are warranted to elucidate areas of uncertainty regarding these unusual mycobacteria and the tuberculosis they cause. PMID:26793699

  15. Cortex phellodendri Extract Relaxes Airway Smooth Muscle.

    PubMed

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K(+)- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K(+) was also blocked by nifedipine, a selective blocker of L-type Ca(2+) channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca(2+) channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm. PMID:27239213

  16. Isotropic Growth of Graphene toward Smoothing Stitching.

    PubMed

    Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei

    2016-07-26

    The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect.

  17. Smooth Tubercle Bacilli: Neglected Opportunistic Tropical Pathogens.

    PubMed

    Aboubaker Osman, Djaltou; Bouzid, Feriel; Canaan, Stéphane; Drancourt, Michel

    2015-01-01

    Smooth tubercle bacilli (STB) including "Mycobacterium canettii" are members of the Mycobacterium tuberculosis complex (MTBC), which cause non-contagious tuberculosis in human. This group comprises <100 isolates characterized by smooth colonies and cordless organisms. Most STB isolates have been obtained from patients exposed to the Republic of Djibouti but seven isolates, including the three seminal ones obtained by Georges Canetti between 1968 and 1970, were recovered from patients in France, Madagascar, Sub-Sahara East Africa, and French Polynesia. STB form a genetically heterogeneous group of MTBC organisms with large 4.48 ± 0.05 Mb genomes, which may link Mycobacterium kansasii to MTBC organisms. Lack of inter-human transmission suggested a yet unknown environmental reservoir. Clinical data indicate a respiratory tract route of contamination and the digestive tract as an alternative route of contamination. Further epidemiological and clinical studies are warranted to elucidate areas of uncertainty regarding these unusual mycobacteria and the tuberculosis they cause. PMID:26793699

  18. Traction in smooth muscle cells varies with cell spreading

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Wang, Ning

    2005-01-01

    Changes in cell shape regulate cell growth, differentiation, and apoptosis. It has been suggested that the regulation of cell function by the cell shape is a result of the tension in the cytoskeleton and the distortion of the cell. Here we explore the association between cell-generated mechanical forces and the cell morphology. We hypothesized that the cell contractile force is associated with the degree of cell spreading, in particular with the cell length. We measured traction fields of single human airway smooth muscle cells plated on a polyacrylamide gel, in which fluorescent microbeads were embedded to serve as markers of gel deformation. The traction exerted by the cells at the cell-substrate interface was determined from the measured deformation of the gel. The traction was measured before and after treatment with the contractile agonist histamine, or the relaxing agonist isoproterenol. The relative increase in traction induced by histamine was negatively correlated with the baseline traction. On the contrary, the relative decrease in traction due to isoproterenol was independent of the baseline traction, but it was associated with cell shape: traction decreased more in elongated than in round cells. Maximum cell width, mean cell width, and projected area of the cell were the parameters most tightly coupled to both baseline and histamine-induced traction in this study. Wide and well-spread cells exerted larger traction than slim cells. These results suggest that cell contractility is controlled by cell spreading.

  19. SREBP inhibits VEGF expression in human smooth muscle cells

    SciTech Connect

    Motoyama, Koka; Fukumoto, Shinya . E-mail: sfukumoto@med.osaka-cu.ac.jp; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  20. TRA2β controls Mypt1 exon 24 splicing in the developmental maturation of mouse mesenteric artery smooth muscle.

    PubMed

    Zheng, Xiaoxu; Reho, John J; Wirth, Brunhilde; Fisher, Steven A

    2015-02-15

    Diversity of smooth muscle within the vascular system is generated by alternative splicing of exons, yet there is limited understanding of its timing or control mechanisms. We examined splicing of myosin phosphatase regulatory subunit (Mypt1) exon 24 (E24) in relation to smooth muscle myosin heavy chain (Smmhc) and smoothelin (Smtn) alternative exons (Smmhc E6 and Smtn E20) during maturation of mouse mesenteric artery (MA) smooth muscle. The role of transformer 2β (Tra2β), a master regulator of splicing in flies, in maturation of arterial smooth muscle was tested through gene inactivation. Splicing of alternative exons in bladder smooth muscle was examined for comparative purposes. MA smooth muscle maturation began after postnatal week 2 and was complete at maturity, as indicated by switching to Mypt1 E24+ and Smtn E20- splice variants and 11-fold induction of Smmhc. Similar changes in bladder were complete by postnatal day 3. Splicing of Smmhc E6 was temporally dissociated from Mypt1 E24 and Smtn E20 and discordant between arteries and bladder. Tamoxifen-induced smooth muscle-specific inactivation of Tra2β within the first week of life but not in maturity reduced splicing of Mypt1 E24 in MAs. Inactivation of Tra2β causing a switch to the isoform of MYPT1 containing the COOH-terminal leucine zipper motif (E24-) increased arterial sensitivity to cGMP-mediated relaxation. In conclusion, maturation of mouse MA smooth muscle begins postnatally and continues until sexual maturity. TRA2β is required for specification during this period of maturation, and its inactivation alters the contractile properties of mature arterial smooth muscle.

  1. Graded effects of unregulated smooth muscle myosin on intestinal architecture, intestinal motility and vascular function in zebrafish.

    PubMed

    Abrams, Joshua; Einhorn, Zev; Seiler, Christoph; Zong, Alan B; Sweeney, H Lee; Pack, Michael

    2016-05-01

    Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11). Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt), which converts a highly conserved tryptophan to arginine (W512R) in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y) and coil-coiled (L1287M) domains of Myh11 that fail to complement mlt Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress. PMID:26893369

  2. Correlation-based smoothing model for optical polishing.

    PubMed

    Shu, Yong; Kim, Dae Wook; Martin, Hubert M; Burge, James H

    2013-11-18

    A generalized model is developed to quantitatively describe the smoothing effects from different polishing tools used for optical surfaces. The smoothing effect naturally corrects mid-to-high spatial frequency errors that have features small compared to the size of the polishing lap. The original parametric smoothing model provided a convenient way to compare smoothing efficiency of different polishing tools for the case of sinusoidal surface irregularity, providing the ratio of surface improvement via smoothing to the bulk material removal. A new correlation-based smoothing model expands the capability to quantify smoothing using general surface data with complex irregularity. For this case, we define smoothing as a band-limited correlated component of the change in the surface and original surface. Various concepts and methods, such as correlation screening, have been developed and verified to manipulate the data for the calculation of smoothing factor. Data from two actual polishing runs from the Giant Magellan Telescope off-axis segment and the Large Synoptic Survey Telescope monolithic primary-tertiary mirror were processed, and a quantitative evaluation for the smoothing efficiency of a large pitch lap and a conformal lap with polishing pads is provided.

  3. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes

    PubMed Central

    Hill, Robert A; Tong, Lei; Yuan, Peng; Murikinati, Sasidhar; Gupta, Shobhana; Grutzendler, Jaime

    2015-01-01

    Summary The precise regulation of cerebral blood flow is critical for normal brain function and its disruption underlies many neuropathologies. The extent to which smooth muscle-covered arterioles or pericyte-covered capillaries control vasomotion during neurovascular coupling remains controversial. We found that capillary pericytes in mice and humans do not express smooth muscle actin and are morphologically and functionally distinct from adjacent precapillary smooth muscle cells (SMCs). Using optical imaging we investigated blood flow regulation at various sites on the vascular tree in living mice. Optogenetic, whisker stimulation or cortical spreading depolarization caused microvascular diameter or flow changes in SMC but not pericyte-covered microvessels. During early stages of brain ischemia, transient SMC but not pericyte constrictions were a major cause of hypoperfusion leading to thrombosis and distal microvascular occlusions. Thus, capillary pericytes are not contractile and regulation of cerebral blood flow in physiological and pathological conditions is mediated by arteriolar smooth muscle cells. PMID:26119027

  4. Electrical properties of purinergic transmission in smooth muscle of the guinea-pig prostate.

    PubMed

    Lam, Michelle; Mitsui, Retsu; Hashitani, Hikaru

    2016-01-01

    Prostatic smooth muscle develops spontaneous myogenic tone which is modulated by autonomic neuromuscular transmission. This study aimed to investigate the role of purinergic transmission in regulating electrical activity of prostate smooth muscle and whether its contribution may be altered with age. Intracellular recordings were simultaneously made with isometric tension recordings in smooth muscle preparations of the guinea-pig prostate. Immunostaining for P2X1 receptors on whole mount preparations was also performed. In prostate preparations which generated spontaneous slow waves, electrical field stimulation (EFS)-evoked excitatory junction potentials (EJPs) which were abolished by guanethidine (10 μM), α-β-methylene ATP (10 μM) or pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (PPADS, 10 μM) but not phentolamine (1 μM). Consistently, immunostaining revealed the expression of P2X1 receptors on prostatic smooth muscle. EJPs themselves did not cause contractions, but EJPs could sum to trigger a slow wave and associated contraction. Yohimbine (1 μM) and 3,7-dimethyl-1-propargylxanthine (DMPX, 10 μM) but not propranolol (1 μM) potentiated EJPs. Although properties of EJPs were not different between young and aging guinea-pig prostates, ectoATPase inhibitor ARL 67156 (100 μM) augmented EJP amplitudes by 64.2 ± 29.6% in aging animals, compared to 22.1 ± 19.9% in young animals. These results suggest that ATP released from sympathetic nerves acts on P2X1 purinoceptors located on prostate smooth muscle to evoke EJPs, while pre-junctional α2-adrenergic and adenosine A2 receptors may play a role in preventing excessive transmitter release. Age-related up-regulation of enzymatic ATP breakdown may be a compensatory mechanism for the enhanced purinergic transmission which would cause hypercontractility arising from increased ATP release in older animals.

  5. Segregation of striated and smooth muscle lineages by a Notch-dependent regulatory network

    PubMed Central

    2014-01-01

    Background Lineage segregation from multipotent epithelia is a central theme in development and in adult stem cell plasticity. Previously, we demonstrated that striated and smooth muscle cells share a common progenitor within their epithelium of origin, the lateral domain of the somite-derived dermomyotome. However, what controls the segregation of these muscle subtypes remains unknown. We use this in vivo bifurcation of fates as an experimental model to uncover the underlying mechanisms of lineage diversification from bipotent progenitors. Results Using the strength of spatio-temporally controlled gene missexpression in avian embryos, we report that Notch harbors distinct pro-smooth muscle activities depending on the duration of the signal; short periods prevent striated muscle development and extended periods, through Snail1, promote cell emigration from the dermomyotome towards a smooth muscle fate. Furthermore, we define a Muscle Regulatory Network, consisting of Id2, Id3, FoxC2 and Snail1, which acts in concert to promote smooth muscle by antagonizing the pro-myogenic activities of Myf5 and Pax7, which induce striated muscle fate. Notch and BMP closely regulate the network and reciprocally reinforce each other’s signal. In turn, components of the network strengthen Notch signaling, while Pax7 silences this signaling. These feedbacks augment the robustness and flexibility of the network regulating muscle subtype segregation. Conclusions Our results demarcate the details of the Muscle Regulatory Network, underlying the segregation of muscle sublineages from the lateral dermomyotome, and exhibit how factors within the network promote the smooth muscle at the expense of the striated muscle fate. This network acts as an exemplar demonstrating how lineage segregation occurs within epithelial primordia by integrating inputs from competing factors. PMID:25015411

  6. The formation of the smooth halo component

    NASA Astrophysics Data System (ADS)

    Peñarrubia, Jorge

    2016-08-01

    The detection and characterization of debris in the integral-of-motion space is a promising avenue to uncover the hierarchical formation of the Milky Way. Yet, the fact that the integrals do not remain constant during the assembly process adds considerable complexity to this approach. Indeed, in time-dependent potentials tidal substructures tend to be effaced from the integral-of-motion space through an orbital diffusion process, which naturally leads to the formation of a `smooth' stellar halo. In this talk I will introduce a new probability theory that describes the evolution of collisionless systems subject to a time-dependent potential. The new theory can be used to reconstruct the hierarchical assembly of our Galaxy through modelling the observed distribution of accreted stars in the integral-of-motion space.

  7. PV output smoothing with energy storage.

    SciTech Connect

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  8. An analysis of smoothed particle hydrodynamics

    SciTech Connect

    Swegle, J.W.; Attaway, S.W.; Heinstein, M.W.; Mello, F.J.; Hicks, D.L.

    1994-03-01

    SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. In the present study, the SPH algorithm has been subjected to detailed testing and analysis to determine its applicability in the field of solid dynamics. An important result of the work is a rigorous von Neumann stability analysis which provides a simple criterion for the stability or instability of the method in terms of the stress state and the second derivative of the kernel function. Instability, which typically occurs only for solids in tension, results not from the numerical time integration algorithm, but because the SPH algorithm creates an effective stress with a negative modulus. The analysis provides insight into possible methods for removing the instability. Also, SPH has been coupled into the transient dynamics finite element code PRONTO, and a weighted residual derivation of the SPH equations has been obtained.

  9. Action of acetylcholine on smooth muscle.

    PubMed

    Bolton, T B; Lim, S P

    1991-01-01

    Contraction of smooth muscle by acetylcholine is mediated by activation of muscarinic receptors of which M2 and M3 subtypes are present in longitudinal muscle of guinea pig intestine. In single cells, muscarinic receptor activation evokes calcium release from stores which raises the internal free calcium concentration and causes opening of calcium-activated potassium channels. The rise in internal calcium suppresses the voltage-dependent inward calcium current. A third important effect is the opening of channels which cause depolarization of the membrane and so increase action potential discharge and contraction in the whole muscle. These channels were studied by voltage-clamp of single cells from longitudinal muscle of rabbit small intestine. They were found to be permeable to Na and K but not detectably permeable to Cl. They can pass Ca but the amount entering the cell is not sufficient to raise the internal calcium concentration appreciably.

  10. Smoothness monitors for compressible flow computation

    SciTech Connect

    Sjogreen, B; Yee, H C

    2008-09-02

    In [SY04, YS07] and references cited therein, the authors introduced the concept of employing multiresolution wavelet decomposition of computed flow data as smoothness monitors (flow sensors) to indicate the amount and location of built-in numerical dissipation that can be eliminated or further reduced in shock-capturing schemes. Studies indicated that this approach is able to limit the use of numerical dissipation with improved accuracy compared with standard shock-capturing methods. The studies in [SY04, YS07] were limited to low order multiresolution redundant wavelets with low level supports and low order vanishing moments. The objective of this paper is to expand the previous investigation to include higher order redundant wavelets with larger support and higher order vanishing moments for a wider spectrum of flow type and flow speed applications.

  11. Conduction Modelling Using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleary, Paul W.; Monaghan, Joseph J.

    1999-01-01

    Heat transfer is very important in many industrial and geophysical problems. Because these problems often have complicated fluid dynamics, there are advantages in solving them using Lagrangian methods like smoothed particle hydrodynamics (SPH). Since SPH particles become disordered, the second derivative terms may be estimated poorly, especially when materials with different properties are adjacent. In this paper we show how a simple alteration to the standard SPH formulation ensures continuity of heat flux across discontinuities in material properties. A set of rules is formulated for the construction of isothermal boundaries leading to accurate conduction solutions. A method for accurate prediction of heat fluxes through isothermal boundaries is also given. The accuracy of the SPH conduction solutions is demonstrated through a sequence of test problems of increasing complexity.

  12. Smooth Teeth: Why Multipoles Are Perfect Gears

    NASA Astrophysics Data System (ADS)

    Schönke, Johannes

    2015-12-01

    A type of gear is proposed based on the interaction of individual multipoles. The underlying principle relies on previously unknown continuous degenerate ground states for pairs of interacting multipoles which are free to rotate around specific axes. These special rotation axes, in turn, form a one-parameter family of possible configurations. This allows for the construction of magnetic bevel gears with any desired inclination angle between the in- and output axes. Further, the design of gear systems with more than two multipoles is possible and facilitates tailored applications. Ultimately, an analogy between multipoles and mechanical gears is revealed. In contrast to the mechanical case, the multipole "teeth" mesh smoothly. As an illustrative application, the example of a quadrupole-dipole interaction is then used to construct a 1 ∶2 gear ratio.

  13. Computational brittle fracture using smooth particle hydrodynamics

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.; Schwalbe, L.A.

    1996-10-01

    We are developing statistically based, brittle-fracture models and are implementing them into hydrocodes that can be used for designing systems with components of ceramics, glass, and/or other brittle materials. Because of the advantages it has simulating fracture, we are working primarily with the smooth particle hydrodynamics code SPBM. We describe a new brittle fracture model that we have implemented into SPBM. To illustrate the code`s current capability, we have simulated a number of experiments. We discuss three of these simulations in this paper. The first experiment consists of a brittle steel sphere impacting a plate. The experimental sphere fragment patterns are compared to the calculations. The second experiment is a steel flyer plate in which the recovered steel target crack patterns are compared to the calculated crack patterns. We also briefly describe a simulation of a tungsten rod impacting a heavily confined alumina target, which has been recently reported on in detail.

  14. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest

    PubMed Central

    Manderfield, Lauren J.; Aghajanian, Haig; Engleka, Kurt A.; Lim, Lillian Y.; Liu, Feiyan; Jain, Rajan; Li, Li; Olson, Eric N.; Epstein, Jonathan A.

    2015-01-01

    Notch signaling has well-defined roles in the assembly of arterial walls and in the development of the endothelium and smooth muscle of the vasculature. Hippo signaling regulates cellular growth in many tissues, and contributes to regulation of organ size, in addition to other functions. Here, we show that the Notch and Hippo pathways converge to regulate smooth muscle differentiation of the neural crest, which is crucial for normal development of the aortic arch arteries and cranial vasculature during embryonic development. Neural crest-specific deletion of the Hippo effectors Yap and Taz produces neural crest precursors that migrate normally, but fail to produce vascular smooth muscle, and Notch target genes such as Jagged1 fail to activate normally. We show that Yap is normally recruited to a tissue-specific Jagged1 enhancer by directly interacting with the Notch intracellular domain (NICD). The Yap-NICD complex is recruited to chromatin by the DNA-binding protein Rbp-J in a Tead-independent fashion. Thus, Hippo signaling can modulate Notch signaling outputs, and components of the Hippo and Notch pathways physically interact. Convergence of Hippo and Notch pathways by the mechanisms described here might be relevant for the function of these signaling cascades in many tissues and in diseases such as cancer. PMID:26253400

  15. Smooth muscle BK channel activity influences blood pressure independent of vascular tone in mice

    PubMed Central

    Sachse, Gregor; Faulhaber, Jörg; Seniuk, Anika; Ehmke, Heimo; Pongs, Olaf

    2014-01-01

    The large conductance voltage- and Ca2+-activated K+ (BK) channel is an important determinant of vascular tone and contributes to blood pressure regulation. Both activities depend on the ancillary BKβ1 subunit. To determine the significance of smooth muscle BK channel activity for blood pressure regulation, we investigated the potential link between changes in arterial tone and altered blood pressure in BKβ1 knockout (BKβ1−/−) mice from three different genetically defined strains. While vascular tone was consistently increased in all BKβ1−/− mice independent of genetic background, BKβ1−/− strains exhibited increased (strain A), unaltered (strain B) or decreased (strain C) mean arterial blood pressures compared to their corresponding BKβ1+/+ controls. In agreement with previous data on aldosterone regulation by renal/adrenal BK channel function, BKβ1−/− strain A mice have increased plasma aldosterone and increased blood pressure. Consistently, blockade of mineralocorticoid receptors by spironolactone treatment reversibly restored the elevated blood pressure to the BKβ1+/+ strain A level. In contrast, loss of BKβ1 did not affect plasma aldosterone in strain C mice. Smooth muscle-restricted restoration of BKβ1 expression increased blood pressure in BKβ1−/− strain C mice, implying that impaired smooth muscle BK channel activity lowers blood pressure in these animals. We conclude that BK channel activity directly affects vascular tone but influences blood pressure independent of this effect via different pathways. PMID:24687584

  16. Smooth Pursuit of Flicker-Defined Motion

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stevenson, Scott B.

    2014-01-01

    We examined the pursuit response to stimuli defined by space-variant flicker of a dense random dot carrier pattern. On each frame, every element of the pattern could change polarity, with a probability given by a two-dimensional Gaussian distribution. A normal distribution produces a circular region of twinkle, while inverting the distribution results in a spot of static texture in a twinkling surround. In this latter case, the carrier texture could be stationary, or could move with the twinkle modulator, thereby producing first-order motion in the region of the spot. While the twinkle-defined spot produces a strong sensation of motion, the complementary stimulus defined by the absence of twinkle does not, when viewed peripherally, it appears to move in steps even when the generating distribution moves smoothly. We examined pursuit responses to these stimuli using two techniques: 1) the eye movement correlogram, obtained by cross-correlating eye velocity with the velocity of a randomly-moving stimulus; and 2) delayed visual feedback, where transient stabilization of a target can produce spontaneous oscillations of the eye, with a period empirically observed to vary linearly with the applied delay. Both techniques provide an estimate of the internal processing time, which can be as short as 100 milliseconds for a first-order target. Assessed by the correlogram method, the response to flicker-defined motion is delayed by more than 100 milliseconds, and significantly weaker (especially in the vertical dimension). When initially presented in the delayed feedback condition, purely saccadic oscillation is observed. One subject eventually developed smooth oscillations (albeit with significant saccadic intrusions), showing a period-versus-delay slope similar to that observed for first-order targets. This result is somewhat surprising, given that we interpret the slope of the period-versus-delay-function as reflecting the balance between position- and velocity

  17. Local, smooth, and consistent Jacobi set simplification

    SciTech Connect

    Bhatia, Harsh; Wang, Bei; Norgard, Gregory; Pascucci, Valerio; Bremer, Peer -Timo

    2014-10-31

    The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lack fine-grained control over the process, and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi set in two dimensions. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some user-defined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth–death points (a birth–death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).

  18. Local, smooth, and consistent Jacobi set simplification

    DOE PAGES

    Bhatia, Harsh; Wang, Bei; Norgard, Gregory; Pascucci, Valerio; Bremer, Peer -Timo

    2014-10-31

    The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lackmore » fine-grained control over the process, and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi set in two dimensions. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some user-defined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth–death points (a birth–death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).« less

  19. Diffusion tensor smoothing through weighted Karcher means.

    PubMed

    Carmichael, Owen; Chen, Jun; Paul, Debashis; Peng, Jie

    2013-01-01

    Diffusion tensor magnetic resonance imaging (MRI) quantifies the spatial distribution of water Diffusion at each voxel on a regular grid of locations in a biological specimen by Diffusion tensors- 3 × 3 positive definite matrices. Removal of noise from DTI is an important problem due to the high scientific relevance of DTI and relatively low signal to noise ratio it provides. Leading approaches to this problem amount to estimation of weighted Karcher means of Diffusion tensors within spatial neighborhoods, under various metrics imposed on the space of tensors. However, it is unclear how the behavior of these estimators varies with the magnitude of DTI sensor noise (the noise resulting from the thermal e!ects of MRI scanning) as well as the geometric structure of the underlying Diffusion tensor neighborhoods. In this paper, we combine theoretical analysis, empirical analysis of simulated DTI data, and empirical analysis of real DTI scans to compare the noise removal performance of three kernel-based DTI smoothers that are based on Euclidean, log-Euclidean, and affine-invariant metrics. The results suggest, contrary to conventional wisdom, that imposing a simplistic Euclidean metric may in fact provide comparable or superior noise removal, especially in relatively unstructured regions and/or in the presence of moderate to high levels of sensor noise. On the contrary, log-Euclidean and affine-invariant metrics may lead to better noise removal in highly structured anatomical regions, especially when the sensor noise is of low magnitude. These findings emphasize the importance of considering the interplay of sensor noise magnitude and tensor field geometric structure when assessing Diffusion tensor smoothing options. They also point to the necessity for continued development of smoothing methods that perform well across a large range of scenarios. PMID:25419264

  20. Anisotropic Smoothing Improves DT-MRI-Based Muscle Fiber Tractography

    PubMed Central

    Buck, Amanda K. W.; Ding, Zhaohua; Elder, Christopher P.; Towse, Theodore F.; Damon, Bruce M.

    2015-01-01

    Purpose To assess the effect of anisotropic smoothing on fiber tracking measures, including pennation angle, fiber tract length, and fiber tract number in the medial gastrocnemius (MG) muscle in healthy subjects using diffusion-weighted magnetic resonance imaging (DW-MRI). Materials and Methods 3T DW-MRI data were used for muscle fiber tractography in the MG of healthy subjects. Anisotropic smoothing was applied at three levels (5%, 10%, 15%), and pennation angle, tract length, fiber tract number, fractional anisotropy, and principal eigenvector orientation were quantified for each smoothing level. Results Fiber tract length increased with pre-fiber tracking smoothing, and local heterogeneities in fiber direction were reduced. However, pennation angle was not affected by smoothing. Conclusion Modest anisotropic smoothing (10%) improved fiber-tracking results, while preserving structural features. PMID:26010830

  1. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle.

    PubMed

    Calkovska, A; Uhliarova, B; Joskova, M; Franova, S; Kolomaznik, M; Calkovsky, V; Smolarova, S

    2015-04-01

    Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction.

  2. Characterization of vascular smooth muscle cell phenotype in long-term culture.

    PubMed

    Absher, M; Woodcock-Mitchell, J; Mitchell, J; Baldor, L; Low, R; Warshaw, D

    1989-02-01

    Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavior, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concomitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression.

  3. Comparison of smoothing methods for the development of a smoothed seismicity model for Alaska and the implications for seismic hazard

    NASA Astrophysics Data System (ADS)

    Moschetti, M. P.; Mueller, C. S.; Boyd, O. S.; Petersen, M. D.

    2013-12-01

    In anticipation of the update of the Alaska seismic hazard maps (ASHMs) by the U. S. Geological Survey, we report progress on the comparison of smoothed seismicity models developed using fixed and adaptive smoothing algorithms, and investigate the sensitivity of seismic hazard to the models. While fault-based sources, such as those for great earthquakes in the Alaska-Aleutian subduction zone and for the ~10 shallow crustal faults within Alaska, dominate the seismic hazard estimates for locations near to the sources, smoothed seismicity rates make important contributions to seismic hazard away from fault-based sources and where knowledge of recurrence and magnitude is not sufficient for use in hazard studies. Recent developments in adaptive smoothing methods and statistical tests for evaluating and comparing rate models prompt us to investigate the appropriateness of adaptive smoothing for the ASHMs. We develop smoothed seismicity models for Alaska using fixed and adaptive smoothing methods and compare the resulting models by calculating and evaluating the joint likelihood test. We use the earthquake catalog, and associated completeness levels, developed for the 2007 ASHM to produce fixed-bandwidth-smoothed models with smoothing distances varying from 10 to 100 km and adaptively smoothed models. Adaptive smoothing follows the method of Helmstetter et al. and defines a unique smoothing distance for each earthquake epicenter from the distance to the nth nearest neighbor. The consequence of the adaptive smoothing methods is to reduce smoothing distances, causing locally increased seismicity rates, where seismicity rates are high and to increase smoothing distances where seismicity is sparse. We follow guidance from previous studies to optimize the neighbor number (n-value) by comparing model likelihood values, which estimate the likelihood that the observed earthquake epicenters from the recent catalog are derived from the smoothed rate models. We compare likelihood

  4. Comparison of smoothing methods for the development of a smoothed seismicity model for Alaska and the implications for seismic hazard

    USGS Publications Warehouse

    Moschetti, Morgan P.; Mueller, Charles S.; Boyd, Oliver S.; Petersen, Mark D.

    2014-01-01

    In anticipation of the update of the Alaska seismic hazard maps (ASHMs) by the U. S. Geological Survey, we report progress on the comparison of smoothed seismicity models developed using fixed and adaptive smoothing algorithms, and investigate the sensitivity of seismic hazard to the models. While fault-based sources, such as those for great earthquakes in the Alaska-Aleutian subduction zone and for the ~10 shallow crustal faults within Alaska, dominate the seismic hazard estimates for locations near to the sources, smoothed seismicity rates make important contributions to seismic hazard away from fault-based sources and where knowledge of recurrence and magnitude is not sufficient for use in hazard studies. Recent developments in adaptive smoothing methods and statistical tests for evaluating and comparing rate models prompt us to investigate the appropriateness of adaptive smoothing for the ASHMs. We develop smoothed seismicity models for Alaska using fixed and adaptive smoothing methods and compare the resulting models by calculating and evaluating the joint likelihood test. We use the earthquake catalog, and associated completeness levels, developed for the 2007 ASHM to produce fixed-bandwidth-smoothed models with smoothing distances varying from 10 to 100 km and adaptively smoothed models. Adaptive smoothing follows the method of Helmstetter et al. and defines a unique smoothing distance for each earthquake epicenter from the distance to the nth nearest neighbor. The consequence of the adaptive smoothing methods is to reduce smoothing distances, causing locally increased seismicity rates, where seismicity rates are high and to increase smoothing distances where seismicity is sparse. We follow guidance from previous studies to optimize the neighbor number (n-value) by comparing model likelihood values, which estimate the likelihood that the observed earthquake epicenters from the recent catalog are derived from the smoothed rate models. We compare likelihood

  5. The Modulation of Potassium Channels in the Smooth Muscle as a Therapeutic Strategy for Disorders of the Gastrointestinal Tract.

    PubMed

    Currò, Diego

    2016-01-01

    Alterations of smooth muscle contractility contribute to the pathophysiology of important functional gastrointestinal disorders (FGIDs) such as functional dyspepsia and irritable bowel syndrome. Consequently, drugs that decrease smooth muscle contractility are effective treatments for these diseases. Smooth muscle contraction is mainly triggered by Ca(2+) influx through voltage-dependent channels located in the plasma membrane. Thus, the modulation of the membrane potential results in the regulation of Ca(2+) influx and cytosolic levels. K(+) channels play fundamental roles in these processes. The open probability of K(+) channels increases in response to various stimuli, including membrane depolarization (voltage-gated K(+) [K(V)] channels) and the increase in cytosolic Ca(2+) levels (Ca(2+)-dependent K(+) [K(Ca)] channels). K(+) channel activation is mostly associated with outward K(+) currents that hyperpolarize the membrane and reduce cell excitability and contractility. In addition, some K(+) channels are open at the resting membrane potential values of the smooth muscle cells in some gut segments and contribute to set the resting membrane potential itself. The closure of these channels induces membrane depolarization and smooth muscle contraction. K(V)1.2, 1.5, 2.2, 4.3, 7.4 and 11.1, K(Ca)1.1 and 2.3, and inwardly rectifying type 6K(+) (K(ir)6) channels play the most important functional roles in the gastrointestinal smooth muscle. Activators of all these channels may theoretically relax the gastrointestinal smooth muscle and could therefore be promising new therapeutic options for FGID. The challenge of future drug research and development in this area will be to synthesize molecules selective for the channel assemblies expressed in the gastrointestinal smooth muscle.

  6. Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds

    PubMed Central

    Morris, G. E.; Bridge, J. C.; Eltboli, O. M. I.; Lewis, M. P.; Knox, A. J.; Aylott, J. W.; Brightling, C. E.; Ghaemmaghami, A. M.

    2014-01-01

    Human airway smooth muscle (HASM) contraction plays a central role in regulating airway resistance in both healthy and asthmatic bronchioles. In vitro studies that investigate the intricate mechanisms that regulate this contractile process are predominantly conducted on tissue culture plastic, a rigid, 2D geometry, unlike the 3D microenvironment smooth muscle cells are exposed to in situ. It is increasingly apparent that cellular characteristics and responses are altered between cells cultured on 2D substrates compared with 3D topographies. Electrospinning is an attractive method to produce 3D topographies for cell culturing as the fibers produced have dimensions within the nanometer range, similar to cells' natural environment. We have developed an electrospun scaffold using the nondegradable, nontoxic, polymer polyethylene terephthalate (PET) composed of uniaxially orientated nanofibers and have evaluated this topography's effect on HASM cell adhesion, alignment, and morphology. The fibers orientation provided contact guidance enabling the formation of fully aligned sheets of smooth muscle. Moreover, smooth muscle cells cultured on the scaffold present an elongated cell phenotype with altered contractile protein levels and distribution. HASM cells cultured on this scaffold responded to the bronchoconstrictor bradykinin. The platform presented provides a novel in vitro model that promotes airway smooth muscle cell development toward a more in vivo-like phenotype while providing topological cues to ensure full cell alignment. PMID:24793171

  7. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    PubMed

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion.

  8. SIMS: computation of a smooth invariant molecular surface.

    PubMed Central

    Vorobjev, Y N; Hermans, J

    1997-01-01

    SIMS, a new method of calculating a smooth invariant molecular dot surface, is presented. The SIMS method generates the smooth molecular surface by rolling two probe spheres. A solvent probe sphere is rolled over the molecule and produces a Richards-Connolly molecular surface (MS), which envelops the solvent-excluded volume of the molecule. In deep crevices, Connolly's method of calculating the MS has two deficiencies. First, it produces self-intersecting parts of the molecular surface, which must be removed to obtain the correct MS. Second, the correct MS is not smooth, i.e., the direction of the normal vector of the MS is not continuous, and some points of the MS are singular. We present an exact method for removing self-intersecting parts and smoothing the singular regions of the MS. The singular MS is smoothed by rolling a smoothing probe sphere over the inward side of the singular MS. The MS in the vicinity of singularities is replaced with the reentrant surface of the smoothing probe sphere. The smoothing method does not disturb the topology of a singular MS, and the smooth MS is a better approximation of the dielectric border between high dielectric solvent and the low dielectric molecular interior. The SIMS method generates a smooth molecular dot surface, which has a quasi-uniform dot distribution in two orthogonal directions on the molecular surface, which is invariant with molecular rotation and stable under changes in the molecular conformation, and which can be used in a variety of implicit methods of modeling solvent effects. The SIMS program is faster than the Connolly MS program, and in a matter of seconds generates a smooth dot MS of a 200-residue protein. The program is available from the authors on request (see http:@femto.med.unc.edu/SIMS). PMID:9251789

  9. Epigenetic Control of Smooth Muscle Cell Identity and Lineage Memory.

    PubMed

    Gomez, Delphine; Swiatlowska, Pamela; Owens, Gary K

    2015-12-01

    Vascular smooth muscle cells (SMCs), like all cells, acquire a cell-specific epigenetic signature during development that includes acquisition of a unique repertoire of histone and DNA modifications. These changes are postulated to induce an open chromatin state (referred to as euchromatin) on the repertoire of genes that are expressed in differentiated SMC, including SMC-selective marker genes like Acta2 and Myh11, as well as housekeeping genes expressed by most cell types. In contrast, genes that are silenced in differentiated SMC acquire modifications associated with a closed chromatin state (ie, heterochromatin) and transcriptional silencing. Herein, we review mechanisms that regulate epigenetic control of the differentiated state of SMC. In addition, we identify some of the major limitations in the field and future challenges, including development of innovative new tools and approaches, for performing single-cell epigenetic assays and locus-selective editing of the epigenome that will allow direct studies of the functional role of specific epigenetic controls during development, injury repair, and disease, including major cardiovascular diseases, such as atherosclerosis, hypertension, and microvascular disease, associated with diabetes mellitus.

  10. An implicit Smooth Particle Hydrodynamic code

    SciTech Connect

    Charles E. Knapp

    2000-04-01

    An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.

  11. Urethane and contraction of vascular smooth muscle.

    PubMed Central

    Altura, B. M.; Weinberg, J.

    1979-01-01

    1 In vitro studies were undertaken on rat aortic strips and portal vein segments in order to determine whether or not the anaesthetic, urethane, can exert direct actions on vascular smooth muscle. 2 Urethane was found to inhibit development of spontaneous mechanical activity. This action took place with a urethane concentration as little as one tenth of that found in anaesthetic plasma concentratios, i.e., 10(-3) M. 3 Urethane (10(-3 to 10(-1) M) dose-dependently attenuated contractions induced by adrenaline, angiotensin and KCl. These inhibitory actions were observed with urethane added either before or after the induced contractions. 4 Ca2+-induced contractions of K+-depolarized aortae and portal veins were also attenuated, dose-dependently, by urethane. 5 All of these inhibitory effects were completely, and almost immediately, reversed upon washing out the anaesthetic from the organ baths. 6 A variety of pharmacological antagonists failed to mimic or affect the inhibitory effects induced by urethane. 7 These data suggest that plasma concentrations of urethane commonly associated with induction of surgical anaesthesia can induce, directly, relaxation of vascular muscle. PMID:497529

  12. Immortalization of primary human smooth muscle cells.

    PubMed Central

    Perez-Reyes, N; Halbert, C L; Smith, P P; Benditt, E P; McDougall, J K

    1992-01-01

    Primary human aortic and myometrial smooth muscle cells (SMCs) were immortalized using an amphotropic recombinant retroviral construct containing the E6 and E7 open reading frames (ORFs) of human papillomavirus type 16. The SMCs expressing the E6/E7 ORFs have considerably elevated growth rates when compared with nonimmortalized control cells and show no signs of senescence with long-term passage. The first SMC line derived in this study has been maintained in continuous tissue culture for greater than 1 year (greater than 180 population doublings). The immortalized SMCs have decreased cell size and decreased content of muscle-specific alpha-actin filaments as determined by indirect immunofluorescence. Southern blot analysis has demonstrated the stable integration of the E6/E7 ORFs in the retrovirally infected cells, and radioimmunoprecipitation has confirmed the continued expression of the E6 and E7 genes. Cytogenetic studies of the SMC lines have revealed essentially diploid populations except for the myometrial clonal line, which became aneuploid at late passage (greater than 125 doublings). These cell lines were not tumorigenic in nude mice. Images PMID:1311088

  13. Smooth cubic commensurate oxides on gallium nitride

    SciTech Connect

    Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul; Biegalski, Michael D.; Christen, Hans M.

    2014-02-14

    Smooth, commensurate alloys of 〈111〉-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.

  14. Smoothing Rotation Curves and Mass Profiles

    NASA Astrophysics Data System (ADS)

    Berrier, Joel C.; Sellwood, J. A.

    2015-02-01

    We show that spiral activity can erase pronounced features in disk galaxy rotation curves. We present simulations of growing disks, in which the added material has a physically motivated distribution, as well as other examples of physically less realistic accretion. In all cases, attempts to create unrealistic rotation curves were unsuccessful because spiral activity rapidly smoothed away features in the disk mass profile. The added material was redistributed radially by the spiral activity, which was itself provoked by the density feature. In the case of a ridge-like feature in the surface density profile, we show that two unstable spiral modes develop, and the associated angular momentum changes in horseshoe orbits remove particles from the ridge and spread them both inward and outward. This process rapidly erases the density feature from the disk. We also find that the lack of a feature when transitioning from disk to halo dominance in the rotation curves of disk galaxies, the so called "disk-halo conspiracy," could also be accounted for by this mechanism. We do not create perfectly exponential mass profiles in the disk, but suggest that this mechanism contributes to their creation.

  15. PDE Based Algorithms for Smooth Watersheds.

    PubMed

    Hodneland, Erlend; Tai, Xue-Cheng; Kalisch, Henrik

    2016-04-01

    Watershed segmentation is useful for a number of image segmentation problems with a wide range of practical applications. Traditionally, the tracking of the immersion front is done by applying a fast sorting algorithm. In this work, we explore a continuous approach based on a geometric description of the immersion front which gives rise to a partial differential equation. The main advantage of using a partial differential equation to track the immersion front is that the method becomes versatile and may easily be stabilized by introducing regularization terms. Coupling the geometric approach with a proper "merging strategy" creates a robust algorithm which minimizes over- and under-segmentation even without predefined markers. Since reliable markers defined prior to segmentation can be difficult to construct automatically for various reasons, being able to treat marker-free situations is a major advantage of the proposed method over earlier watershed formulations. The motivation for the methods developed in this paper is taken from high-throughput screening of cells. A fully automated segmentation of single cells enables the extraction of cell properties from large data sets, which can provide substantial insight into a biological model system. Applying smoothing to the boundaries can improve the accuracy in many image analysis tasks requiring a precise delineation of the plasma membrane of the cell. The proposed segmentation method is applied to real images containing fluorescently labeled cells, and the experimental results show that our implementation is robust and reliable for a variety of challenging segmentation tasks.

  16. A Smoothed Particle Hydrodynamics approach for poroelasticity

    NASA Astrophysics Data System (ADS)

    Osorno, Maria; Steeb, Holger

    2016-04-01

    Within the framework of the SHynergie project we look to investigate hydraulic fracturing and crack evolving in poroelastic media. We model biphasic media assuming incompressible solid grain and incompressible pore liquid. Modeling evolving fractures and fracture networks in elastic and poroelastic media by mesh-based numerical approaches, like X-FEM, is especially in 3-dim a challenging task. Therefore, we propose a meshless particle method for fractured media based on the Smoothed Particle Hydrodynamics (SPH) approach. SPH is a meshless Lagrangian method highly suitable for the simulation of large deformations including free surfaces and/or interfaces. Within the SPH method, the computational domain is discretized with particles, avoiding the computational expenses of meshing. Our SPH solution is implemented in a parallel computational framework, which allows to simulate large domains more representative of the scale of our study cases. Our implementation is carefully validated against classical mesh-based approaches and compared with classical solutions for consolidation problems. Furthermore, we discuss fracture initiation and propagation in poroelastic rocks at the reservoir scale.

  17. Drop splash on a smooth, dry surface

    NASA Astrophysics Data System (ADS)

    Riboux, Guillaume; Gordillo, Jose Manuel; Korobkin, Alexander

    2013-11-01

    It is our purpose here to determine the conditions under which a drop of a given liquid with a known radius R impacting against a smooth impermeable surface at a velocity V, will either spread axisymmetrically onto the substrate or will create a splash, giving rise to usually undesired star-shaped patterns. In our experimental setup, drops are generated injecting low viscosity liquids falling under the action of gravity from a stainless steel hypodermic needle. The experimental observations using two high speed cameras operating simultaneously and placed perpendicularly to each other reveal that, initially, the drop deforms axisymmetrically, with A (T) the radius of the wetted area. For high enough values of the drop impact velocity, a thin sheet of liquid starts to be ejected from A (T) at a velocity Vjet > V for instants of time such that T >=Tc . If Vjet is above a certain threshold, which depends on the solid wetting properties as well as on the material properties of both the liquid and the atmospheric gas, the rim of the lamella dewets the solid to finally break into drops. Using Wagner's theory we demonstrate that A (T) =√{ 3 RVT } and our results also reveal that Tc We - 1 / 2 =(ρV2 R / σ) - 1 / 2 and Vjet We 1 / 4 .

  18. SMOOTHING ROTATION CURVES AND MASS PROFILES

    SciTech Connect

    Berrier, Joel C.; Sellwood, J. A.

    2015-02-01

    We show that spiral activity can erase pronounced features in disk galaxy rotation curves. We present simulations of growing disks, in which the added material has a physically motivated distribution, as well as other examples of physically less realistic accretion. In all cases, attempts to create unrealistic rotation curves were unsuccessful because spiral activity rapidly smoothed away features in the disk mass profile. The added material was redistributed radially by the spiral activity, which was itself provoked by the density feature. In the case of a ridge-like feature in the surface density profile, we show that two unstable spiral modes develop, and the associated angular momentum changes in horseshoe orbits remove particles from the ridge and spread them both inward and outward. This process rapidly erases the density feature from the disk. We also find that the lack of a feature when transitioning from disk to halo dominance in the rotation curves of disk galaxies, the so called ''disk-halo conspiracy'', could also be accounted for by this mechanism. We do not create perfectly exponential mass profiles in the disk, but suggest that this mechanism contributes to their creation.

  19. Hidden Degeneracies in Piecewise Smooth Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Jeffrey, Mike R.

    When a flow suffers a discontinuity in its vector field at some switching surface, the flow can cross through or slide along the surface. Sliding along the switching surface can be understood as the flow along an invariant manifold inside a switching layer. It turns out that the usual method for finding sliding modes — the Filippov convex combination or Utkin equivalent control — results in a degeneracy in the switching layer whenever the flow is tangent to the switching surface from both sides. We derive the general result and analyze the simplest case here, where the flow curves parabolically on either side of the switching surface (the so-called fold-fold or two-fold singularities). The result is a set of zeros of the fast switching flow inside the layer, which is structurally unstable to perturbation by terms nonlinear in the switching parameter, terms such as (signx)2 [where the superscript does mean “squared”]. We provide structurally stable forms, and show that in this form the layer system is equivalent to a generic singularity of a two timescale system. Finally we show that the same degeneracy arises when a discontinuity is smoothed using standard regularization methods.

  20. Smoothed particle hydrodynamics with GRAPE-1A

    NASA Technical Reports Server (NTRS)

    Umemura, Masayuki; Fukushige, Toshiyuki; Makino, Junichiro; Ebisuzaki, Toshikazu; Sugimoto, Daiichiro; Turner, Edwin L.; Loeb, Abraham

    1993-01-01

    We describe the implementation of a smoothed particle hydrodynamics (SPH) scheme using GRAPE-1A, a special-purpose processor used for gravitational N-body simulations. The GRAPE-1A calculates the gravitational force exerted on a particle from all other particles in a system, while simultaneously making a list of the nearest neighbors of the particle. It is found that GRAPE-1A accelerates SPH calculations by direct summation by about two orders of magnitudes for a ten thousand-particle simulation. The effective speed is 80 Mflops, which is about 30 percent of the peak speed of GRAPE-1A. Also, in order to investigate the accuracy of GRAPE-SPH, some test simulations were executed. We found that the force and position errors are smaller than those due to representing a fluid by a finite number of particles. The total energy and momentum were conserved within 0.2-0.4 percent and 2-5 x 10 exp -5, respectively, in simulations with several thousand particles. We conclude that GRAPE-SPH is quite effective and sufficiently accurate for self-gravitating hydrodynamics.

  1. A Note on the Definition of a Smooth Curve

    ERIC Educational Resources Information Center

    Euler, Russell; Sadek, Jawad

    2005-01-01

    In many elementary calculus textbooks in use today, the definition of a "smooth curve" is slightly ambiguous from the students' perspective. Even when smoothness is defined carefully, there is a shortage of relevant exercises that would serve to elaborate on related subtle points which many students may find confusing. In this article, the authors…

  2. Smooth surfaces from bilinear patches: Discrete affine minimal surfaces.

    PubMed

    Käferböck, Florian; Pottmann, Helmut

    2013-06-01

    Motivated by applications in freeform architecture, we study surfaces which are composed of smoothly joined bilinear patches. These surfaces turn out to be discrete versions of negatively curved affine minimal surfaces and share many properties with their classical smooth counterparts. We present computational design approaches and study special cases which should be interesting for the architectural application.

  3. Cognitive Processes Involved in Smooth Pursuit Eye Movements

    ERIC Educational Resources Information Center

    Barnes, G. R.

    2008-01-01

    Ocular pursuit movements allow moving objects to be tracked with a combination of smooth movements and saccades. The principal objective is to maintain smooth eye velocity close to object velocity, thus minimising retinal image motion and maintaining acuity. Saccadic movements serve to realign the image if it falls outside the fovea, the area of…

  4. Neurophysiology and Neuroanatomy of Smooth Pursuit: Lesion Studies

    ERIC Educational Resources Information Center

    Sharpe, James A.

    2008-01-01

    Smooth pursuit impairment is recognized clinically by the presence of saccadic tracking of a small object and quantified by reduction in pursuit gain, the ratio of smooth eye movement velocity to the velocity of a foveal target. Correlation of the site of brain lesions, identified by imaging or neuropathological examination, with defective smooth…

  5. Collagen degradation and platelet-derived growth factor stimulate the migration of vascular smooth muscle cells.

    PubMed

    Stringa, E; Knäuper, V; Murphy, G; Gavrilovic, J

    2000-06-01

    Cell migration is a key event in many biological processes and depends on signals from both extracellular matrix and soluble motogenic factors. During atherosclerotic plaque development, vascular smooth muscle cells migrate from the tunica media to the intima through a basement membrane and interstitial collagenous matrix and proliferate to form a neointima. Matrix metalloproteinases have previously been implicated in neointimal formation and in this study smooth muscle cell adhesion and migration on degraded collagen have been evaluated. Vascular smooth muscle cells adhered to native intact collagen type I and to its first degradation by-product, 3/4 fragment (generated by collagenase-3 cleavage), unwound at 35 degrees C to mimic physiological conditions. PDGF-BB pre-treatment induced a fourfold stimulation of smooth muscle cell motility on the collagen 3/4 fragment whereas no increase in smooth muscle cell motility on collagen type I was observed. Cell migration on collagen type I was mediated by alpha2 integrin, whereas PDGF-BB-stimulated migration on the 3/4 collagen fragment was dependent on alphavbeta3 integrin. alphavbeta3 integrin was organised in clusters concentrated at the leading and trailing edges of the cells and was only expressed when cells were exposed to the 3/4 collagen fragment. Tyrphostin A9, an inhibitor of PDGF receptor-beta tyrosine kinase activity, resulted in complete abolition of migration of PDGF-BB treated cells on collagen type I and 3/4 fragment. These results strongly support the hypothesis that the cellular migratory response to soluble motogens can be regulated by proteolytic modification of the extracellular matrix. PMID:10806116

  6. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    NASA Astrophysics Data System (ADS)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain

  7. Reduction of noise in diffusion tensor images using anisotropic smoothing.

    PubMed

    Ding, Zhaohua; Gore, John C; Anderson, Adam W

    2005-02-01

    To improve the accuracy of tissue structural and architectural characterization with diffusion tensor imaging, a novel smoothing technique is developed for reducing noise in diffusion tensor images. The technique extends the traditional anisotropic diffusion filtering method by allowing isotropic smoothing within homogeneous regions and anisotropic smoothing along structure boundaries. This is particularly useful for smoothing diffusion tensor images in which direction information contained in the tensor needs to be restored following noise corruption and preserved around tissue boundaries. The effectiveness of this technique is quantitatively studied with experiments on simulated and human in vivo diffusion tensor data. Illustrative results demonstrate that the anisotropic smoothing technique developed can significantly reduce the impact of noise on the direction as well as anisotropy measures of the diffusion tensor images.

  8. A smoothness constraint on the development of object recognition.

    PubMed

    Wood, Justin N

    2016-08-01

    Understanding how the brain learns to recognize objects is one of the ultimate goals in the cognitive sciences. To date, however, we have not yet characterized the environmental factors that cause object recognition to emerge in the newborn brain. Here, I present the results of a high-throughput controlled-rearing experiment that examined whether the development of object recognition requires experience with temporally smooth visual objects. When newborn chicks (Gallus gallus) were raised with virtual objects that moved smoothly over time, the chicks developed accurate color recognition, shape recognition, and color-shape binding abilities. In contrast, when newborn chicks were raised with virtual objects that moved non-smoothly over time, the chicks' object recognition abilities were severely impaired. These results provide evidence for a "smoothness constraint" on newborn object recognition. Experience with temporally smooth objects facilitates the development of object recognition. PMID:27208825

  9. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    SciTech Connect

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.; Reshetnikova, L.; Brown, J. H.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.

  10. Active substance from the serum of laying hens and its effect on uterine smooth muscles.

    PubMed

    Nikolov, A

    1989-01-01

    Blood serum from laying hens has an excitatory effect on isolated uterine smooth muscles of laying hens. This excitatory effect is not observed for the blood serum of pullets and cocks. After ultrafiltration and gel filtration on Sephadex G25, it was found that the excitatory effect of the blood serum was due to a low-molecular substance (m.w. below 5000 Da). The effect of this active substance was found to be inhibited by indomethacin, brufen and SC 19220. The presence of this substance in the serum of laying hens and its contractile effects, which are probably associated with prostaglandin mechanisms of regulation in the uterine smooth muscles, suggests that it is associated in the processes of oviposition in hens.

  11. Mechanotransduction in colonic smooth muscle cells.

    PubMed

    Young, S H; Ennes, H S; Mayer, E A

    1997-11-15

    We evaluated mechanisms which mediate alterations in intracellular biochemical events in response to transient mechanical stimulation of colonic smooth muscle cells. Cultured myocytes from the circular muscle layer of the rabbit distal colon responded to brief focal mechanical deformation of the plasma membrane with a transient increase in intracellular calcium concentration ([Ca2+]i) with peak of 422.7 +/- 43.8 nm above an average resting [Ca2+]i of 104.8 +/- 10.9 nM (n = 57) followed by both rapid and prolonged recovery phases. The peak [Ca2+]i increase was reduced by 50% in the absence of extracellular Ca2+, while the prolonged [Ca2+]i recovery was either abolished or reduced to less than or = 15% of control values. In contrast, no significant effect of gadolinium chloride (100 microM) or lanthanum chloride (25 microM) on either peak transient or prolonged [Ca2+]i recovery was observed. Pretreatment of cells with thapsigargin (1 microM) resulted in a 25% reduction of the mechanically induced peak [Ca2+]i response, while the phospholipase C inhibitor U-73122 had no effect on the [Ca2+]i transient peak. [Ca2+]i transients were abolished when cells previously treated with thapsigargin were mechanically stimulated in Ca2+-free solution, or when Ca2+ stores were depleted by thapsigargin in Ca2+-free solution. Pretreatment with the microfilament disrupting drug cytochalasin D (10 microM) or microinjection of myocytes with an intracellular saline resulted in complete inhibition of the transient. The effect of cytochalasin D was reversible and did not prevent the [Ca2+]i increases in response to thapsigargin. These results suggest a communication, which may be mediated by direct mechanical link via actin filaments, between the plasma membrane and an internal Ca2+ store.

  12. Caffeine relaxes smooth muscle through actin depolymerization.

    PubMed

    Tazzeo, Tracy; Bates, Genevieve; Roman, Horia Nicolae; Lauzon, Anne-Marie; Khasnis, Mukta D; Eto, Masumi; Janssen, Luke J

    2012-08-15

    Caffeine is sometimes used in cell physiological studies to release internally stored Ca(2+). We obtained evidence that caffeine may also act through a different mechanism that has not been previously described and sought to examine this in greater detail. We ruled out a role for phosphodiesterase (PDE) inhibition, since the effect was 1) not reversed by inhibiting PKA or adenylate cyclase; 2) not exacerbated by inhibiting PDE4; and 3) not mimicked by submillimolar caffeine nor theophylline, both of which are sufficient to inhibit PDE. Although caffeine is an agonist of bitter taste receptors, which in turn mediate bronchodilation, its relaxant effect was not mimicked by quinine. After permeabilizing the membrane using β-escin and depleting the internal Ca(2+) store using A23187, we found that 10 mM caffeine reversed tone evoked by direct application of Ca(2+), suggesting it functionally antagonizes the contractile apparatus. Using a variety of molecular techniques, we found that caffeine did not affect phosphorylation of myosin light chain (MLC) by MLC kinase, actin-filament motility catalyzed by MLC kinase, phosphorylation of CPI-17 by either protein kinase C or RhoA kinase, nor the activity of MLC-phosphatase. However, we did obtain evidence that caffeine decreased actin filament binding to phosphorylated myosin heads and increased the ratio of globular to filamentous actin in precontracted tissues. We conclude that, in addition to its other non-RyR targets, caffeine also interferes with actin function (decreased binding by myosin, possibly with depolymerization), an effect that should be borne in mind in studies using caffeine to probe excitation-contraction coupling in smooth muscle.

  13. Neptune's Orbital Migration Was Grainy, Not Smooth

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Vokrouhlický, David

    2016-07-01

    The Kuiper Belt is a population of icy bodies beyond the orbit of Neptune. The complex orbital structure of the Kuiper Belt, including several categories of objects inside and outside of resonances with Neptune, emerged as a result of Neptune’s migration into an outer planetesimal disk. An outstanding problem with the existing migration models is that they invariably predict excessively large resonant populations, while observations show that the non-resonant orbits are in fact common (e.g., the main belt population is ≃2-4 times larger than Plutinos in the 3:2 resonance). Here we show that this problem can be resolved if it is assumed that Neptune’s migration was grainy, as expected from scattering encounters of Neptune with massive planetesimals. The grainy migration acts to destabilize resonant bodies with large libration amplitudes, a fraction of which ends up on stable non-resonant orbits. Thus, the non-resonant-to-resonant ratio obtained with the grainy migration is higher, up to ˜10 times higher for the range of parameters investigated here, than in a model with smooth migration. In addition, the grainy migration leads to a narrower distribution of the libration amplitudes in the 3:2 resonance. The best fit to observations is obtained when it is assumed that the outer planetesimal disk below 30 au contained 1000-4000 Plutos. We estimate that the combined mass of Pluto-class objects in the original disk represented 10%-40% of the estimated disk mass ({M}{{disk}}≃ 20 {M}{{Earth}}). This constraint can be used to better understand the accretion processes in the outer solar system.

  14. Neptune's Orbital Migration Was Grainy, Not Smooth

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Vokrouhlický, David

    2016-07-01

    The Kuiper Belt is a population of icy bodies beyond the orbit of Neptune. The complex orbital structure of the Kuiper Belt, including several categories of objects inside and outside of resonances with Neptune, emerged as a result of Neptune’s migration into an outer planetesimal disk. An outstanding problem with the existing migration models is that they invariably predict excessively large resonant populations, while observations show that the non-resonant orbits are in fact common (e.g., the main belt population is ≃2–4 times larger than Plutinos in the 3:2 resonance). Here we show that this problem can be resolved if it is assumed that Neptune’s migration was grainy, as expected from scattering encounters of Neptune with massive planetesimals. The grainy migration acts to destabilize resonant bodies with large libration amplitudes, a fraction of which ends up on stable non-resonant orbits. Thus, the non-resonant-to-resonant ratio obtained with the grainy migration is higher, up to ˜10 times higher for the range of parameters investigated here, than in a model with smooth migration. In addition, the grainy migration leads to a narrower distribution of the libration amplitudes in the 3:2 resonance. The best fit to observations is obtained when it is assumed that the outer planetesimal disk below 30 au contained 1000–4000 Plutos. We estimate that the combined mass of Pluto-class objects in the original disk represented 10%–40% of the estimated disk mass ({M}{{disk}}≃ 20 {M}{{Earth}}). This constraint can be used to better understand the accretion processes in the outer solar system.

  15. On Factorizations of Smooth Nonnegative Matrix-Values Functions and on Smooth Functions with Values in Polyhedra

    SciTech Connect

    Krylov, N. V.

    2008-12-15

    We discuss the possibility to represent smooth nonnegative matrix-valued functions as finite linear combinations of fixed matrices with positive real-valued coefficients whose square roots are Lipschitz continuous. This issue is reduced to a similar problem for smooth functions with values in a polyhedron.

  16. Computer programs for smoothing and scaling airfoil coordinates

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.

    1983-01-01

    Detailed descriptions are given of the theoretical methods and associated computer codes of a program to smooth and a program to scale arbitrary airfoil coordinates. The smoothing program utilizes both least-squares polynomial and least-squares cubic spline techniques to smooth interatively the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. A technique for computing the camber and thickness distribution of the smoothed airfoil is also discussed. The scaling program can then be used to scale the thickness distribution generated by the smoothing program to a specific maximum thickness which is then combined with the camber distribution to obtain the final scaled airfoil contour. Computer listings of the smoothing and scaling programs are included.

  17. Nodular smooth muscle metaplasia in multiple peritoneal endometriosis.

    PubMed

    Kim, Hyun-Soo; Yoon, Gun; Ha, Sang Yun; Song, Sang Yong

    2015-01-01

    We report here an unusual presentation of peritoneal endometriosis with smooth muscle metaplasia as multiple protruding masses on the lateral pelvic wall. Smooth muscle metaplasia is a common finding in rectovaginal endometriosis, whereas in peritoneal endometriosis, smooth muscle metaplasia is uncommon and its nodular presentation on the pelvic wall is even rarer. To the best of our knowledge, this is the first case of nodular smooth muscle metaplasia occurring in peritoneal endometriosis. As observed in this case, when performing laparoscopic surgery in order to excise malignant tumors of intra-abdominal or pelvic organs, it can be difficult for surgeons to distinguish the metastatic tumors from benign nodular pelvic wall lesions, including endometriosis, based on the gross findings only. Therefore, an intraoperative frozen section biopsy of the pelvic wall nodules should be performed to evaluate the peritoneal involvement by malignant tumors. Moreover, this report implies that peritoneal endometriosis, as well as rectovaginal endometriosis, can clinically present as nodular lesions if obvious smooth muscle metaplasia is present. The pathological investigation of smooth muscle cells in peritoneal lesions can contribute not only to the precise diagnosis but also to the structure and function of smooth muscle cells and related cells involved in the histogenesis of peritoneal endometriosis.

  18. Neurophysiology and neuroanatomy of smooth pursuit: lesion studies.

    PubMed

    Sharpe, James A

    2008-12-01

    Smooth pursuit impairment is recognized clinically by the presence of saccadic tracking of a small object and quantified by reduction in pursuit gain, the ratio of smooth eye movement velocity to the velocity of a foveal target. Correlation of the site of brain lesions, identified by imaging or neuropathological examination, with defective smooth pursuit determines brain structures that are necessary for smooth pursuit. Paretic, low gain, pursuit occurs toward the side of lesions at the junction of the parietal, occipital and temporal lobes (area V5), the frontal eye field and their subcortical projections, including the posterior limb of the internal capsule, the midbrain and the basal pontine nuclei. Paresis of ipsiversive pursuit also results from damage to the ventral paraflocculus and caudal vermis of the cerebellum. Paresis of contraversive pursuit is a feature of damage to the lateral medulla. Retinotopic pursuit paresis consists of low gain pursuit in the visual hemifield contralateral to damage to the optic radiation, striate cortex or area V5. Craniotopic paresis of smooth pursuit consists of impaired smooth eye movement generation contralateral to the orbital midposition after acute unilateral frontal or parietal lobe damage. Omnidirectional saccadic pursuit is a most sensitive sign of bilateral or diffuse cerebral, cerebellar or brainstem disease. The anatomical and physiological bases of defective smooth pursuit are discussed here in the context of the effects of lesion in the human brain.

  19. Separated flow past smooth slender bodies

    NASA Astrophysics Data System (ADS)

    Williams, Ann Louise

    1991-02-01

    This dissertation describes an investigation of the separated flow past slender bodies at high angles of attack. Flows of this type occur on aircraft and missile forebodies and can develop large forces which are important when considering stability and control of the vehicle. The objective of this work is to extend the vortex sheet model, which has previously been implemented for slender wings and circular and elliptic cones, to cones of more general cross-section and to non-conical bodies. The cross-sections of the bodies studied here are basically square or triangular, but with rounded corners. The model is inviscid, so the separation positions must be prescribed. Two distinct families of solutions have been identified. For laterally symmetric configurations with symmetric separation positions and no yaw, the first family solutions are symmetric, whereas the second family solutions are asymmetric. For elliptic cones, it is known that cross-section thickness affects the degree of asymmetry of the flow and this represents a mechanism for the control of side forces. Square or triangular cross-sections with rounded corners are of interest to aerodynamicists and have been investigated to assess the effect on asymmetry of making a circular cross-section 'square' or 'triangular'. For 'square' and 'triangular' cones placed either side, or corner on to the flow, results are obtained which enable the effect of cross-section shape on the degree of asymmetry to be assessed. A non-conical vortex sheet model has been developed for the first time for separation from a smooth body. Previously a non-conical line-vortex model was implemented, however lack of representation of vorticity near the separation line limits the applicability of the results. The solution procedure for the non-conical problem consists of a downstream-marching scheme starting from a known solution at the nose. Starting solutions are available if the flow at the nose is assumed conical. With symmetry

  20. Sphingosylphosphorylcholine inhibits macrophage adhesion to vascular smooth muscle cells.

    PubMed

    Wirrig, Christiane; McKean, Jenny S; Wilson, Heather M; Nixon, Graeme F

    2016-09-01

    Inflammation in de-endothelialised arteries contributes to the development of cardiovascular diseases. The process that initiates this inflammatory response is the adhesion of monocytes/macrophages to exposed vascular smooth muscle cells, typically stimulated by cytokines such as tumour necrosis factor-α (TNF). The aim of this study was to determine the effect of the sphingolipid sphingosylphosphorylcholine (SPC) on the interaction of monocytes/macrophages with vascular smooth muscle cells. Rat aortic smooth muscle cells and rat bone marrow-derived macrophages were co-cultured using an in vitro assay following incubation with sphingolipids to assess inter-cellular adhesion. We reveal that SPC inhibits the TNF-induced adhesion of macrophages to smooth muscle cells. This anti-adhesive effect was the result of SPC-induced changes to the smooth muscle cells (but not the macrophages) and was mediated, at least partly, via the sphingosine 1-phosphate receptor subtype 2. Lipid raft domains were also required. Although SPC did not alter expression or membrane distribution of the adhesion proteins intercellular adhesion molecule-1 and vascular cellular adhesion protein-1 in smooth muscle cells, SPC preincubation inhibited the TNF-induced increase in inducible nitric oxide synthase (NOS2) resulting in a subsequent decrease in nitric oxide production. Inhibiting NOS2 activation in smooth muscle cells led to a decrease in the adhesion of macrophages to smooth muscle cells. This study has therefore delineated a novel pathway which can inhibit the interaction between macrophages and vascular smooth muscle cells via SPC-induced repression of NOS2 expression. This mechanism could represent a potential drug target in vascular disease.

  1. AnL1 smoothing spline algorithm with cross validation

    NASA Astrophysics Data System (ADS)

    Bosworth, Ken W.; Lall, Upmanu

    1993-08-01

    We propose an algorithm for the computation ofL1 (LAD) smoothing splines in the spacesWM(D), with . We assume one is given data of the formyiD(f(ti) +ɛi, iD1,...,N with {itti}iD1N ⊂D, theɛi are errors withE(ɛi)D0, andf is assumed to be inWM. The LAD smoothing spline, for fixed smoothing parameterλ?;0, is defined as the solution,sλ, of the optimization problem (1/N)∑iD1N yi-g(ti +λJM(g), whereJM(g) is the seminorm consisting of the sum of the squaredL2 norms of theMth partial derivatives ofg. Such an LAD smoothing spline,sλ, would be expected to give robust smoothed estimates off in situations where theɛi are from a distribution with heavy tails. The solution to such a problem is a "thin plate spline" of known form. An algorithm for computingsλ is given which is based on considering a sequence of quadratic programming problems whose structure is guided by the optimality conditions for the above convex minimization problem, and which are solved readily, if a good initial point is available. The "data driven" selection of the smoothing parameter is achieved by minimizing aCV(λ) score of the form .The combined LAD-CV smoothing spline algorithm is a continuation scheme in λ↘0 taken on the above SQPs parametrized inλ, with the optimal smoothing parameter taken to be that value ofλ at which theCV(λ) score first begins to increase. The feasibility of constructing the LAD-CV smoothing spline is illustrated by an application to a problem in environment data interpretation.

  2. Sphingosylphosphorylcholine inhibits macrophage adhesion to vascular smooth muscle cells.

    PubMed

    Wirrig, Christiane; McKean, Jenny S; Wilson, Heather M; Nixon, Graeme F

    2016-09-01

    Inflammation in de-endothelialised arteries contributes to the development of cardiovascular diseases. The process that initiates this inflammatory response is the adhesion of monocytes/macrophages to exposed vascular smooth muscle cells, typically stimulated by cytokines such as tumour necrosis factor-α (TNF). The aim of this study was to determine the effect of the sphingolipid sphingosylphosphorylcholine (SPC) on the interaction of monocytes/macrophages with vascular smooth muscle cells. Rat aortic smooth muscle cells and rat bone marrow-derived macrophages were co-cultured using an in vitro assay following incubation with sphingolipids to assess inter-cellular adhesion. We reveal that SPC inhibits the TNF-induced adhesion of macrophages to smooth muscle cells. This anti-adhesive effect was the result of SPC-induced changes to the smooth muscle cells (but not the macrophages) and was mediated, at least partly, via the sphingosine 1-phosphate receptor subtype 2. Lipid raft domains were also required. Although SPC did not alter expression or membrane distribution of the adhesion proteins intercellular adhesion molecule-1 and vascular cellular adhesion protein-1 in smooth muscle cells, SPC preincubation inhibited the TNF-induced increase in inducible nitric oxide synthase (NOS2) resulting in a subsequent decrease in nitric oxide production. Inhibiting NOS2 activation in smooth muscle cells led to a decrease in the adhesion of macrophages to smooth muscle cells. This study has therefore delineated a novel pathway which can inhibit the interaction between macrophages and vascular smooth muscle cells via SPC-induced repression of NOS2 expression. This mechanism could represent a potential drug target in vascular disease. PMID:27402344

  3. Smooth solutions of the Navier-Stokes equations

    SciTech Connect

    Pokhozhaev, S I

    2014-02-28

    We consider smooth solutions of the Cauchy problem for the Navier-Stokes equations on the scale of smooth functions which are periodic with respect to x∈R{sup 3}. We obtain existence theorems for global (with respect to t>0) and local solutions of the Cauchy problem. The statements of these depend on the smoothness and the norm of the initial vector function. Upper bounds for the behaviour of solutions in both classes, which depend on t, are also obtained. Bibliography: 10 titles.

  4. Heat kernel smoothing using Laplace-Beltrami eigenfunctions.

    PubMed

    Seo, Seongho; Chung, Moo K; Vorperian, Houri K

    2010-01-01

    We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green's function of an isotropic diffusion equation on a manifold is constructed as a linear combination of the Laplace-Beltraimi operator. The Green's function is then used in constructing heat kernel smoothing. Unlike many previous approaches, diffusion is analytically represented as a series expansion avoiding numerical instability and inaccuracy issues. This proposed framework is illustrated with mandible surfaces, and is compared to a widely used iterative kernel smoothing technique in computational anatomy. The MATLAB source code is freely available at http://brainimaging.waisman.wisc.edu/ chung/lb.

  5. Tobacco constituents are mitogenic for arterial smooth-muscle cells

    SciTech Connect

    Becker, C.G.; Hajjar, D.P.; Hefton, J.M.

    1985-07-01

    Tobacco glycoprotein (TGP) purified from flue-cured tobacco leaves, tar-derived material (TAR), the water soluble, nondialyzable, delipidized extract of cigarette smoke condensate, rutin-bovine serum albumin conjugates, quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells, but not adventitial fibroblasts. The mitogenicity appears to depend on polyphenol epitopes on carrier molecules. Ellagic acid, another plant polyphenol, inhibited arterial smooth-muscle proliferation. These results suggest that a number of ubiquitous, plant-derived substances may influence smooth-muscle cell proliferation in the arterial wall.

  6. Vascular smooth muscle progenitor cells: building and repairing blood vessels.

    PubMed

    Majesky, Mark W; Dong, Xiu Rong; Regan, Jenna N; Hoglund, Virginia J

    2011-02-01

    Molecular pathways that control the specification, migration, and number of available smooth muscle progenitor cells play key roles in determining blood vessel size and structure, capacity for tissue repair, and progression of age-related disorders. Defects in these pathways produce malformations of developing blood vessels, depletion of smooth muscle progenitor cell pools for vessel wall maintenance and repair, and aberrant activation of alternative differentiation pathways in vascular disease. A better understanding of the molecular mechanisms that uniquely specify and maintain vascular smooth muscle cell precursors is essential if we are to use advances in stem and progenitor cell biology and somatic cell reprogramming for applications directed to the vessel wall.

  7. Stabilizing S.P.H. with conservative smoothing

    SciTech Connect

    Wen, Y.; Hicks, D.L.; Swegle, J.W.

    1994-08-01

    There is an instability in certain S.P.H. (Smoothed Particle Hydrodynamics method) material dynamics computations. Evidence from analyses and experiments suggests that the instabilities in S.P.H. are not removable with artificial viscosities. However, the analysis shows that a type of conservative smoothing does remove the instability. Also, numerical experiments, on certain test problems, show that SPHCS, and S.P.H. code with conservative smoothing, compares well in accuracy with computations based on the von Neumann-Richtmyer method.

  8. Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells.

    PubMed Central

    Chen, J K; Hoshi, H; McKeehan, W L

    1987-01-01

    Myo-intimal proteoglycan metabolism is thought to be important in blood vessel homeostasis, blood clotting, atherogenesis, and atherosclerosis. Human platelet-derived transforming growth factor type beta (TGF-beta) specifically stimulated synthesis of at least two types of chondroitin sulfate proteoglycans in nonproliferating human adult arterial smooth muscle cells in culture. Stimulation of smooth muscle cell proteoglycan synthesis by smooth muscle cell growth promoters (epidermal growth factor, platelet-derived growth factor, and heparin-binding growth factors) was less than 20% of that elicited by TGF-beta. TGF-beta neither significantly stimulated proliferation of quiescent smooth muscle cells nor inhibited proliferating cells. The extent of TGF-beta stimulation of smooth muscle cell proteoglycan synthesis was similar in both nonproliferating and growth-stimulated cells. TGF-beta, which is a reversible inhibitor of endothelial cell proliferation, had no comparable effect on endothelial cell proteoglycan synthesis. These results are consistent with the hypothesis that TGF-beta is a cell-type-specific regulator of proteoglycan synthesis in human blood vessels and may contribute to the myo-intimal accumulation of proteoglycan in atherosclerotic lesions. Images PMID:3474655

  9. The effect of hyperpolarization-activated cyclic nucleotide-gated ion channel inhibitors on the vagal control of guinea pig airway smooth muscle tone

    PubMed Central

    McGovern, Alice E; Robusto, Jed; Rakoczy, Joanna; Simmons, David G; Phipps, Simon; Mazzone, Stuart B

    2014-01-01

    BACKGROUND AND PURPOSE Subtypes of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of cation channels are widely expressed on nerves and smooth muscle cells in many organ systems, where they serve to regulate membrane excitability. Here we have assessed whether HCN channel inhibitors alter the function of airway smooth muscle or the neurons that regulate airway smooth muscle tone. EXPERIMENTAL APPROACH The effects of the HCN channel inhibitors ZD7288, zatebradine and Cs+ were assessed on agonist and nerve stimulation-evoked changes in guinea pig airway smooth muscle tone using tracheal strips in vitro, an innervated tracheal tube preparation ex vivo or in anaesthetized mechanically ventilated guinea pigs in vivo. HCN channel expression in airway nerves was assessed using immunohistochemistry, PCR and in situ hybridization. KEY RESULTS HCN channel inhibition did not alter airway smooth muscle reactivity in vitro to exogenously administered smooth muscle spasmogens, but significantly potentiated smooth muscle contraction evoked by the sensory nerve stimulant capsaicin and electrical field stimulation of parasympathetic cholinergic postganglionic neurons. Sensory nerve hyperresponsiveness was also evident in in vivo following HCN channel blockade. Cs+, but not ZD7288, potentiated preganglionic nerve-dependent airway contractions and over time induced autorhythmic preganglionic nerve activity, which was not mimicked by inhibitors of potassium channels. HCN channel expression was most evident in vagal sensory ganglia and airway nerve fibres. CONCLUSIONS AND IMPLICATIONS HCN channel inhibitors had a previously unrecognized effect on the neural regulation of airway smooth muscle tone, which may have implications for some patients receiving HCN channel inhibitors for therapeutic purposes. PMID:24762027

  10. Carrier tracking by smoothing filter improves symbol SNR

    NASA Technical Reports Server (NTRS)

    Pomalaza-Raez, Carlos A.; Hurd, William J.

    1986-01-01

    The potential benefit of using a smoothing filter to estimate carrier phase over use of phase locked loops (PLL) is determined. Numerical results are presented for the performance of three possible configurations of the deep space network advanced receiver. These are residual carrier PLL, sideband aided residual carrier PLL, and finally sideband aiding with a Kalman smoother. The average symbol signal to noise ratio (SNR) after losses due to carrier phase estimation error is computed for different total power SNRs, symbol rates and symbol SNRs. It is found that smoothing is most beneficial for low symbol SNRs and low symbol rates. Smoothing gains up to 0.4 dB over a sideband aided residual carrier PLL, and the combined benefit of smoothing and sideband aiding relative to a residual carrier loop is often in excess of 1 dB.

  11. Carrier tracking by smoothing filter can improve symbol SNR

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Pomalaza-Raez, C. A.

    1985-01-01

    The potential benefit of using a smoothing filter to estimate carrier phase over use of phase locked loops (PLL) is determined. Numerical results are presented for the performance of three possible configurations of the deep space network advanced receiver. These are residual carrier PLL, sideband aided residual carrier PLL, and finally sideband aiding with a Kalman smoother. The average symbol signal to noise ratio (CNR) after losses due to carrier phase estimation error is computed for different total power SNRs, symbol rates and symbol SNRs. It is found that smoothing is most beneficial for low symbol SNRs and low symbol rates. Smoothing gains up to 0.4 dB over a sideband aided residual carrier PLL, and the combined benefit of smoothing and sideband aiding relative to a residual carrier loop is often in excess of 1 dB.

  12. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and size of the fruit. “Fairly thin” means that the skin thickness does not average more than 1/2 inch...

  13. Smooth local subspace projection for nonlinear noise reduction

    SciTech Connect

    Chelidze, David

    2014-03-15

    Many nonlinear or chaotic time series exhibit an innate broad spectrum, which makes noise reduction difficult. Local projective noise reduction is one of the most effective tools. It is based on proper orthogonal decomposition (POD) and works for both map-like and continuously sampled time series. However, POD only looks at geometrical or topological properties of data and does not take into account the temporal characteristics of time series. Here, we present a new smooth projective noise reduction method. It uses smooth orthogonal decomposition (SOD) of bundles of reconstructed short-time trajectory strands to identify smooth local subspaces. Restricting trajectories to these subspaces imposes temporal smoothness on the filtered time series. It is shown that SOD-based noise reduction significantly outperforms the POD-based method for continuously sampled noisy time series.

  14. Large planer for finishing smooth, flat surfaces of large pieces ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Large planer for finishing smooth, flat surfaces of large pieces of metal; in operating condition and used for public demonstrations. - Thomas A. Edison Laboratories, Building No. 5, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  15. Smooth sailing through board meetings: practical hints for new chairpersons.

    PubMed

    Harney, M K

    1983-11-01

    The author has some practical and useful suggestions for chairpersons to help keep board meetings running smoothly and efficiently, from the physical arrangement of the room to the formulation of and adherence to agendas.

  16. Chemical basis of rough and smooth variation in mycobacteria.

    PubMed Central

    Belisle, J T; Brennan, P J

    1989-01-01

    Rough and smooth colony variants of Mycobacterium kansasii were compared with respect to surface glycolipid composition. Thin-layer chromatography of the native glycolipid antigens, gas chromatography of the constituent sugars, and in situ probing with an appropriate monoclonal antibody by colony dot blot enzyme-linked immunosorbent assay and immunogold labeling demonstrated that all M. kansasii strains of smooth colony morphology contain on their surfaces the recently described trehalose-containing lipooligosaccharides, whereas all rough variants were devoid of such surface antigens. Yet all strains, rough and smooth, contained another glycolipid, the M. kansasii-specific phenolic glycolipid. Previous studies by others had shown that the rough forms of M. kansasii persist longer than smooth variants in experimentally infected mice. Therefore, this study may provide some insight into the question of the chemical basis of pathogenesis in certain mycobacteria. Images PMID:2722755

  17. Propylthiouracil, independent of its antithyroid effect, promotes vascular smooth muscle cells differentiation via PTEN induction.

    PubMed

    Chen, Wei-Jan; Pang, Jong-Hwei S; Lin, Kwang-Huei; Lee, Dany-Young; Hsu, Lung-An; Kuo, Chi-Tai

    2010-01-01

    Propylthiouracil (PTU), independent of its antithyroid effect, is recently found to have an antiatherosclerotic effect. The aim of this study is to determine the impact of PTU on phenotypic modulation of vascular smooth muscle cells (VSMCs), as phenotypic modulation may contribute to the growth of atherosclerotic lesions and neointimal formation after arterial injury. Propylthiouracil reduced neointimal formation in balloon-injured rat carotid arteries. In vitro, PTU may convert VSMCs from a serum-induced dedifferentiation state to a differentiated state, as indicated by a spindle-shaped morphology and an increase in the expression of SMC differentiation marker contractile proteins, including calponin and smooth muscle (SM)-myosin heavy chain (SM-MHC). Transient transfection studies in VSMCs demonstrated that PTU induced the activity of SMC marker genes (calponin and SM-MHC) promoters, indicating that PTU up-regulates these genes expression predominantly at the transcriptional level. Furthermore, PTU enhanced the expression of PTEN and inhibition of PTEN by siRNA knockdown blocked PTU-induced activation of contractile proteins expression and promoter activity. In the rat carotid injury model, PTU reversed the down-regulation of contractile proteins and up-regulated PTEN in the neointima induced by balloon injury. Propylthiouracil promotes VSMC differentiation, at lest in part, via induction of the PTEN-mediated pathway. These findings suggest a possible mechanism by which PTU may contribute to its beneficial effects on atherogenesis and neointimal formation after arterial injury.

  18. Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W. G.; Hoover, C. G.

    1993-08-01

    Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics ``smoothed-particle hydrodynamics,`` in 1977. It is a likely contributor to ``hybrid`` simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.

  19. Neuroblastoma cell lines showing smooth muscle cell phenotypes.

    PubMed

    Sugimoto, T; Mine, H; Horii, Y; Takahashi, K; Nagai, R; Morishita, R; Komada, M; Asada, Y; Sawada, T

    2000-12-01

    Neuroblastoma is a tumor that is derived from the neural crest. Recent studies demonstrated that several human neuroblastoma cell lines exhibit at least three morphologic types: neuroblastic (N)-type, substrate-adhesive (S)-type and intermediate (I)-type cells. However, the origin of the S-type cells has not been clearly identified. In this study, the expressions of smooth muscle-specific proteins (desmin, alpha-smooth muscle actin, basic calponin and the smooth muscle myosin heavy-chain isoforms of SM1 and SM2) in three parent and four cloned neuroblastoma cell lines, composed of S-type cells, were examined by indirect immunofluorescence, Western blot and/or by reverse transcription-polymerase chain reaction (RT-PCR). Desmin was found in two of the seven cell lines, and alpha-smooth muscle actin and basic calponin were detected in all of seven of the cell lines. In three parent cell lines and one cloned cell line composed of N-type cells, none of three smooth muscle-specific proteins were detected. In smooth muscle myosin heavy-chain isoforms, SM1 was detected in two parent cell lines composed of S-type cells (MP-N-MS and KP-N-YS) by immunofluorescence, Western blot and/or by RT-PCR, whereas the SM2 isoform was detected in one parent cell line (MP-N-MS) by RT-PCR. These findings indicate that S-type cells have either the immature or mature smooth muscle cell phenotype, and neural crest cells very likely have the ability of to differentiate into smooth muscle cells in the human system.

  20. Globular adiponectin reduces vascular calcification via inhibition of ER-stress-mediated smooth muscle cell apoptosis

    PubMed Central

    Lu, Yan; Bian, Yunfei; Wang, Yueru; Bai, Rui; Wang, Jiapu; Xiao, Chuanshi

    2015-01-01

    Objective: This study aims to explore the mechanism of globular adiponectin inhibiting vascular calcification. Methods: We established drug-induced rat vascular calcification model, globular adiponectin was given to observe the effect of globular Adiponectin on the degree of calcification. The markers of vascular calcification and apoptosis were also investigated. Meanwhile, the in vitro effect of globular Adiponectin on vascular calcification was also evaluated using primary cultured rat vascular smooth muscle cells. Results: We found that globular adiponectin could inhibit drug-induced rat vascular calcification significantly in vivo. The apoptosis of vascular smooth muscle cells was also reduced. The possible mechanism could be the down-regulation of endoplasmic reticulum stress by globular adiponectin. Experiments in primary cultured vascular smooth muscle cells also confirmed that globular adiponectin could reduce cell apoptosis to suppress vascular calcification via inhibition of endoplasmic reticulum stress. Conclusions: This study confirmed that globular adiponectin could suppress vascular calcification; one of the mechanisms could be inhibition of endoplasmic reticulum stress to reduce cell apoptosis. It could provide an effective method in the therapy of vascular calcification-associated diseases. PMID:26045760

  1. Orai1 forms a signal complex with BKCa channel in mesenteric artery smooth muscle cells.

    PubMed

    Chen, Meihua; Li, Jie; Jiang, Feifei; Fu, Jie; Xia, Xianming; Du, Juan; Hu, Min; Huang, Junhao; Shen, Bing

    2016-01-01

    Orai1, a specific nonvoltage-gated Ca(2+) channel, has been found to be one of key molecules involved in store-operated Ca(2+) entry (SOCE). Orai1 may associate with other proteins to form a signaling complex, which is essential for regulating a variety of physiological functions. In this study, we studied the possible interaction between Orai1 and large conductance Ca(2+)-activated potassium channel (BKC a). Using RNA interference technique, we demonstrated that the SOCE and its associated membrane hyperpolarization were markedly suppressed after knockdown of Orai1 with a specific Orai1 siRNA in rat mesenteric artery smooth muscle. Moreover, isometric tension measurements showed that agonist-induced vasocontraction was increased after Orai1 was knocked down or the tissue was incubated with BKC a blocker iberiotoxin. Coimmunoprecipitation data revealed that BKC a and Orai1 could reciprocally pull down each other. In situ proximity ligation assay further demonstrated that Orai1 and BKC a are in close proximity. Taken together, these results indicate that Orai1 physically associates with BKC a to form a signaling complex in the rat mesenteric artery smooth muscle. Ca(2+) influx via Orai1 stimulates BKC a, leading to membrane hyperpolarization. This hyperpolarizing effect of Orai1-BKC a coupling could contribute to reduce agonist-induced membrane depolarization, therefore preventing excessive contraction of the rat mesenteric artery smooth muscle in response to contractile agonists.

  2. Slow cycling of unphosphorylated myosin is inhibited by calponin, thus keeping smooth muscle relaxed

    PubMed Central

    Malmqvist, Ulf; Trybus, Kathleen M.; Yagi, Shinobu; Carmichael, Jeff; Fay, Fredric S.

    1997-01-01

    A key unanswered question in smooth muscle biology is whether phosphorylation of the myosin regulatory light chain (RLC) is sufficient for regulation of contraction, or if thin-filament-based regulatory systems also contribute to this process. To address this issue, the endogenous RLC was extracted from single smooth muscle cells and replaced with either a thiophosphorylated RLC or a mutant RLC (T18A/S19A) that cannot be phosphorylated by myosin light chain kinase. The actin-binding protein calponin was also extracted. Following photolysis of caged ATP, cells without calponin that contained a nonphosphorylatable RLC shortened at 30% of the velocity and produced 65% of the isometric force of cells reconstituted with the thiophosphorylated RLC. The contraction of cells reconstituted with nonphosphorylatable RLC was, however, specifically suppressed in cells that contained calponin. These results indicate that calponin is required to maintain cells in a relaxed state, and that in the absence of this inhibition, dephosphorylated cross-bridges can slowly cycle and generate force. These findings thus provide a possible framework for understanding the development of latch contraction, a widely studied but poorly understood feature of smooth muscle. PMID:9207148

  3. Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture.

    PubMed

    Bennett, M R

    1999-02-01

    Apoptosis (programmed cell death) of vascular smooth muscle cells (VSMCs) has recently been identified as an important process in a variety of human vascular diseases, including atherosclerosis, arterial injury, and restenosis after angioplasty. VSMC apoptosis is regulated by interactions between the local cell-cell and cytokine environment within the arterial wall, and the expression of pro- and anti-apoptotic proteins by the cell, including death receptors, proto-oncogenes and tumour suppressor genes. This review summarises our current knowledge of the occurrence and mechanisms underlying VSMC apoptosis in atherosclerosis and arterial remodelling.

  4. Airway mechanics and methods used to visualize smooth muscle dynamics in vitro.

    PubMed

    Cooper, P R; McParland, B E; Mitchell, H W; Noble, P B; Politi, A Z; Ressmeyer, A R; West, A R

    2009-10-01

    Contraction of airway smooth muscle (ASM) is regulated by the physiological, structural and mechanical environment in the lung. We review two in vitro techniques, lung slices and airway segment preparations, that enable in situ ASM contraction and airway narrowing to be visualized. Lung slices and airway segment approaches bridge a gap between cell culture and isolated ASM, and whole animal studies. Imaging techniques enable key upstream events involved in airway narrowing, such as ASM cell signalling and structural and mechanical events impinging on ASM, to be investigated.

  5. Phorbol Ester Effects on Neurotransmission: Interaction with Neurotransmitters and Calcium in Smooth Muscle

    NASA Astrophysics Data System (ADS)

    Baraban, Jay M.; Gould, Robert J.; Peroutka, Stephen J.; Snyder, Solomon H.

    1985-01-01

    Stimulation of the phosphatidylinositol cycle by neurotransmitters generates diacylglycerol, an activator of protein kinase C, which may regulate some forms of neurotransmission. Phorbol esters, potent inflammatory and tumorpromoting compounds, also activate protein kinase C. We demonstrate potent and selective effects of phorbol esters on smooth muscle, indicating a role for protein kinase C in neurotransmission. In rat vas deferens and dog basilar artery, phorbol esters synergize with calcium to mimic the contractile effects of neurotransmitters that act through the phosphatidylinositol cycle. In guinea pig ileum and rat uterus, phorbol esters block contractions produced by these neurotransmitters.

  6. Smooth Pursuit in Elderly Adults Studied With Apparent Motion.

    PubMed

    Bozhkova, Valentina P; Surovicheva, Nadezhda S; Nikolaev, Dmitry P; Nikolaev, Ilya P; Bolshakov, Andrey S

    2015-01-01

    The variability of smooth pursuit eye movements was studied in a group of healthy subjects for horizontal apparent motion by a method that does not require direct measurements of eye movements. It was found that the individual smooth pursuit efficiencies for binocular perception in group of healthy elderly subjects (mean age 61 years) as well as in the group of healthy young adults were distinctly differentiated. Furthermore, we have not detected any age-related decrease in the fraction of subjects showing high smooth pursuit efficiencies. This fact demonstrates that the human oculomotor system is relatively resistant to the effects of aging. At the same time, an appreciable increase of percentage of persons with directional asymmetry of smooth pursuit has been found among elderly adults. A higher smooth pursuit efficiency was noticed reliably more often in the direction from left to right rather than in the opposite direction. Subject eye movements were recorded with i-View XTM Hi-Speed 1250 eye tracking system (SMI Inc.). These records confirmed that the smooth pursuit accuracy of older adults is less than that of young persons, at least in some directions of tracking.

  7. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    SciTech Connect

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-02-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 ..mu..M serotonin with increased incorporation of (/sup 3/H)thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 ..mu..M. At a concentration of 1 ..mu..M, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was approx. = 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors.

  8. Graded effects of unregulated smooth muscle myosin on intestinal architecture, intestinal motility and vascular function in zebrafish

    PubMed Central

    Abrams, Joshua; Einhorn, Zev; Seiler, Christoph; Zong, Alan B.; Sweeney, H. Lee; Pack, Michael

    2016-01-01

    ABSTRACT Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11). Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt), which converts a highly conserved tryptophan to arginine (W512R) in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y) and coil-coiled (L1287M) domains of Myh11 that fail to complement mlt. Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress. PMID:26893369

  9. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    SciTech Connect

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie; Zhang, Wei; Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun; Jiang, Shanping

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  10. Characterizing the Pressure Smoothing Scale of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Hennawi, Joseph F.; Oñorbe, Jose; Rorai, Alberto; Springel, Volker

    2015-10-01

    The thermal state of the intergalactic medium (IGM) at z < 6 constrains the nature and timing of cosmic reionization events, but its inference from the Lyα forest is degenerate with the 3D structure of the IGM on ∼100 kpc scales, where, analogous to the classical Jeans argument, the pressure of the T ≃ 104 K gas supports it against gravity. We simulate the IGM using smoothed particle hydrodynamics, and find that, at z < 6, the gas density power spectrum does not exhibit the expected filtering scale cutoff, because dense gas in collapsed halos dominates the small-scale power masking pressure smoothing effects. We introduce a new statistic, the real-space Lyα flux, Freal, which naturally suppresses dense gas, and is thus robust against the poorly understood physics of galaxy formation, revealing pressure smoothing in the diffuse IGM. The Freal power spectrum is accurately described by a simple fitting function with cutoff at λF, allowing us to rigorously quantify the pressure smoothing scale for the first time: we find λF = 79 kpc (comoving) at z = 3 for our fiducial thermal model. This statistic has the added advantage that it directly relates to observations of correlated Lyα forest absorption in close quasar pairs, recently proposed as a method to measure the pressure smoothing scale. Our results enable one to quantify the pressure smoothing scale in simulations, and ask meaningful questions about its dependence on reionization and thermal history. Accordingly, the standard description of the IGM in terms of the amplitude T0 and slope γ of the temperature–density relation T={T}0{(ρ /\\bar{ρ })}γ -1 should be augmented with a third pressure smoothing scale parameter λF.

  11. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation

    PubMed Central

    Biddinger, Jessica E.; Baquet, Zachary C.; Jones, Kevin R.; McAdams, Jennifer

    2013-01-01

    A large proportion of vagal afferents are dependent on neurotrophin-3 (NT-3) for survival. NT-3 is expressed in developing gastrointestinal (GI) smooth muscle, a tissue densely innervated by vagal mechanoreceptors, and thus could regulate their survival. We genetically ablated NT-3 from developing GI smooth muscle and examined the pattern of loss of NT-3 expression in the GI tract and whether this loss altered vagal afferent signaling or feeding behavior. Meal-induced c-Fos activation was reduced in the solitary tract nucleus and area postrema in mice with a smooth muscle-specific NT-3 knockout (SM-NT-3KO) compared with controls, suggesting a decrease in vagal afferent signaling. Daily food intake and body weight of SM-NT-3KO mice and controls were similar. Meal pattern analysis revealed that mutants, however, had increases in average and total daily meal duration compared with controls. Mutants maintained normal meal size by decreasing eating rate compared with controls. Although microstructural analysis did not reveal a decrease in the rate of decay of eating in SM-NT-3KO mice, they ate continuously during the 30-min meal, whereas controls terminated feeding after 22 min. This led to a 74% increase in first daily meal size of SM-NT-3KO mice compared with controls. The increases in meal duration and first meal size of SM-NT-3KO mice are consistent with reduced satiation signaling by vagal afferents. This is the first demonstration of a role for GI NT-3 in short-term controls of feeding, most likely involving effects on development of vagal GI afferents that regulate satiation. PMID:24068045

  12. Myosin light chain kinase controls voltage-dependent calcium channels in vascular smooth muscle.

    PubMed

    Martinsen, A; Schakman, O; Yerna, X; Dessy, C; Morel, N

    2014-07-01

    The Ca(2+)-dependent kinase myosin light chain kinase (MLCK) is the activator of smooth muscle contraction. In addition, it has been reported to be involved in Ca(2+) channel regulation in cultured cells, and we previously showed that the MLCK inhibitor ML-7 decreases arginine vasopressin (AVP)-induced Ca(2+) influx in rat aorta. This study was designed to investigate whether MLCK is involved in Ca(2+) regulation in resistance artery smooth muscle cell, which plays a major role in the control of blood pressure. As ML compounds were shown to have off-target effects, MLCK was downregulated by transfection with a small interfering RNA targeting MLCK (MLCK-siRNA) in rat small resistance mesenteric artery (RMA) and in the rat embryonic aortic cell line A7r5. Noradrenaline-induced contraction and Ca(2+) signal were significantly depressed in MLCK-siRNA compared to scramble-siRNA-transfected RMA. Contraction and Ca(2+) signal induced by high KCl and voltage-activated Ca(2+) current were also significantly decreased in MLCK-siRNA-transfected RMA, suggesting that MLCK depletion modifies voltage-operated Ca(2+) channels. KCl- and AVP-induced Ca(2+) signals and voltage-activated Ca(2+) current were decreased in MLCK-depleted A7r5 cells. Eventually, real-time quantitative PCR analysis indicated that in A7r5, MLCK controlled mRNA expression of CaV1.2 (L-type) and CaV3.1 (T-type) voltage-dependent Ca(2+) channels. Our results suggest that MLCK controls the transcription of voltage-dependent Ca(2+) channels in vascular smooth muscle cells. PMID:24162233

  13. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  14. Marker profile for the evaluation of human umbilical artery smooth muscle cell quality obtained by different isolation and culture methods.

    PubMed

    Mazza, G; Roßmanith, E; Lang-Olip, I; Pfeiffer, D

    2016-08-01

    Even though umbilical cord arteries are a common source of vascular smooth muscle cells, the lack of reliable marker profiles have not facilitated the isolation of human umbilical artery smooth muscle cells (HUASMC). For accurate characterization of HUASMC and cells in their environment, the expression of smooth muscle and mesenchymal markers was analyzed in umbilical cord tissue sections. The resulting marker profile was then used to evaluate the quality of HUASMC isolation and culture methods. HUASMC and perivascular-Wharton's jelly stromal cells (pv-WJSC) showed positive staining for α-smooth muscle actin (α-SMA), smooth muscle myosin heavy chain (SM-MHC), desmin, vimentin and CD90. Anti-CD10 stained only pv-WJSC. Consequently, HUASMC could be characterized as α-SMA+ , SM-MHC+ , CD10- cells, which are additionally negative for endothelial markers (CD31 and CD34). Enzymatic isolation provided primary HUASMC batches with 90-99 % purity, yet, under standard culture conditions, contaminant CD10+ cells rapidly constituted more than 80 % of the total cell population. Contamination was mainly due to the poor adhesion of HUASMC to cell culture plates, regardless of the different protein coatings (fibronectin, collagen I or gelatin). HUASMC showed strong attachment and long-term viability only in 3D matrices. The explant isolation method achieved cultures with only 13-40 % purity with considerable contamination by CD10+ cells. CD10+ cells showed spindle-like morphology and up-regulated expression of α-SMA and SM-MHC upon culture in smooth muscle differentiation medium. Considering the high contamination risk of HUASMC cultures by CD10+ neighboring cells and their phenotypic similarities, precise characterization is mandatory to avoid misleading results.

  15. Geographic smoothing of solar PV: Results from Gujarat

    DOE PAGES

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f,more » ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.« less

  16. Research of beam smoothing technologies using CPP, SSD, and PS

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Su, Jingqin; Hu, Dongxia; Li, Ping; Yuan, Haoyu; Zhou, Wei; Yuan, Qiang; Wang, Yuancheng; Tian, Xiaocheng; Xu, Dangpeng; Dong, Jun; Zhu, Qihua

    2015-02-01

    Precise physical experiments place strict requirements on target illumination uniformity in Inertial Confinement Fusion. To obtain a smoother focal spot and suppress transverse SBS in large aperture optics, Multi-FM smoothing by spectral dispersion (SSD) was studied combined with continuous phase plate (CPP) and polarization smoothing (PS). New ways of PS are being developed to improve the laser irradiation uniformity and solve LPI problems in indirect-drive laser fusion. The near field and far field properties of beams using polarization smoothing were studied and compared, including birefringent wedge and polarization control array. As more parameters can be manipulated in a combined beam smoothing scheme, quad beam smoothing was also studies. Simulation results indicate through adjusting dispersion directions of one-dimensional (1-D) SSD beams in a quad, two-dimensional SSD can be obtained. Experiments have been done on SG-III laser facility using CPP and Multi-FM SSD. The research provides some theoretical and experimental basis for the application of CPP, SSD and PS on high-power laser facilities.

  17. Benzydamine Oral Spray Inhibiting Parasympathetic Function of Tracheal Smooth Muscle

    PubMed Central

    Chao, Pin-Zhir; Lee, Fei-Peng

    2015-01-01

    Objectives Benzydamine is a nonsteroidal anti-inflammatory agents agent with anti-inflammatory and local anesthesia properties that is available in the entire world as an oral spray for oral mucositis patients who are suffering from radiation effects. The effect of benzydamine on oral mucositis in vivo is well known; however, the effect of the drug on tracheal smooth muscle has rarely been explored. During administration of the benzydamine for oral symptoms, it might affect the trachea via oral intake or inhalation. Methods We examined the effectiveness of benzydamine on isolated rat tracheal smooth muscle. The following assessments of benzydamine were performed: effect on tracheal smooth muscle resting tension; effect on contraction caused by 10-6M methacholine as a parasympathetic mimetic; and effect of the drug on electrically induced tracheal smooth muscle contractions. Results Addition of methacholine to the incubation medium caused the trachea to contract in a dose-dependent manner. Addition of benzydamine at doses of 10-5M or above elicited a significant relaxation response to 10-6M methacholine-induced contraction. Benzydamine could inhibit electrical field stimulation-induced spike contraction. It alone had a minimal effect on the basal tension of trachea as the concentration increased. Conclusion This study indicated that high concentrations of benzydamine might actually inhibit parasympathetic function of the trachea. Benzydamine might reduce asthma attacks in oral mucositis patients because it could inhibit parasympathetic function and reduce methacholine-induced contraction of tracheal smooth muscle. PMID:25729498

  18. Piperine Congeners as Inhibitors of Vascular Smooth Muscle Cell Proliferation.

    PubMed

    Mair, Christina E; Liu, Rongxia; Atanasov, Atanas G; Wimmer, Laurin; Nemetz-Fiedler, Daniel; Sider, Nadine; Heiss, Elke H; Mihovilovic, Marko D; Dirsch, Verena M; Rollinger, Judith M

    2015-08-01

    Successful vascular healing after percutaneous coronary interventions is related to the inhibition of abnormal vascular smooth muscle cell proliferation and efficient re-endothelialization. In the search for vascular smooth muscle cell anti-proliferative agents from natural sources we identified piperine (1), the main pungent constituent of the fruits from Piper nigrum (black pepper). Piperine inhibited vascular smooth muscle cell proliferation with an IC50 of 21.6 µM, as quantified by a resazurin conversion assay. Investigations of ten piperamides isolated from black pepper fruits and 15 synthesized piperine derivatives resulted in the identification of three potent vascular smooth muscle cell proliferation inhibitors: the natural alkaloid pipertipine (4), and the two synthetic derivatives (2E,4E)-N,N-dibutyl-5-(3,5-dimethoxyphenyl)penta-2,4-dienamide (14) and (E)-N,N-dibutyl-3-(naphtho[2,3-d][1,3]dioxol-5-yl)acrylamide (20). They showed IC50 values of 3.38, 6.00, and 7.85 µM, respectively. Furthermore, the synthetic compound (2E,4E)-5-(4-fluorophenyl)-1-(piperidin-1-yl)penta-2,4-dien-1-one (12) was found to be cell type selective, by inhibiting vascular smooth muscle cell proliferation with an IC50 of 11.8 µM without influencing the growth of human endothelial cells. PMID:26132851

  19. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    PubMed

    Ma, Yun-Yun; Sun, Lin; Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  20. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055