Mirror-image-induced magnetic modes.
Xifré-Pérez, Elisabet; Shi, Lei; Tuzer, Umut; Fenollosa, Roberto; Ramiro-Manzano, Fernando; Quidant, Romain; Meseguer, Francisco
2013-01-22
Reflection in a mirror changes the handedness of the real world, and right-handed objects turn left-handed and vice versa (M. Gardner, The Ambidextrous Universe, Penguin Books, 1964). Also, we learn from electromagnetism textbooks that a flat metallic mirror transforms an electric charge into a virtual opposite charge. Consequently, the mirror image of a magnet is another parallel virtual magnet as the mirror image changes both the charge sign and the curl handedness. Here we report the dramatic modification in the optical response of a silicon nanocavity induced by the interaction with its image through a flat metallic mirror. The system of real and virtual dipoles can be interpreted as an effective magnetic dipole responsible for a strong enhancement of the cavity scattering cross section.
Charge exchange cooling in the tandem mirror plasma confinement apparatus
Logan, B. Grant
1978-01-01
Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.
Effective theory of flavor for Minimal Mirror Twin Higgs
NASA Astrophysics Data System (ADS)
Barbieri, Riccardo; Hall, Lawrence J.; Harigaya, Keisuke
2017-10-01
We consider two copies of the Standard Model, interchanged by an exact parity symmetry, P. The observed fermion mass hierarchy is described by suppression factors ɛ^{n_i} for charged fermion i, as can arise in Froggatt-Nielsen and extra-dimensional theories of flavor. The corresponding flavor factors in the mirror sector are ɛ^' {n}_i} , so that spontaneous breaking of the parity P arises from a single parameter ɛ'/ɛ, yielding a tightly constrained version of Minimal Mirror Twin Higgs, introduced in our previous paper. Models are studied for simple values of n i , including in particular one with SU(5)-compatibility, that describe the observed fermion mass hierarchy. The entire mirror quark and charged lepton spectrum is broadly predicted in terms of ɛ'/ɛ, as are the mirror QCD scale and the decoupling temperature between the two sectors. Helium-, hydrogen- and neutron-like mirror dark matter candidates are constrained by self-scattering and relic ionization. In each case, the allowed parameter space can be fully probed by proposed direct detection experiments. Correlated predictions are made as well for the Higgs signal strength and the amount of dark radiation.
NASA Astrophysics Data System (ADS)
Gu, Pei-Hong
2017-10-01
We introduce a mirror copy of the ordinary fermions and Higgs scalars for embedding the SU(2) L × U(1) Y electroweak gauge symmetry into an SU(2) L × SU(2) R × U(1) B-L left-right gauge symmetry. We then show the spontaneous left-right symmetry breaking can automatically break the parity symmetry motivated by solving the strong CP problem. Through the SU(2) R gauge interactions, a mirror Majorana neutrino can decay into a mirror charged lepton and two mirror quarks. Consequently we can obtain a lepton asymmetry stored in the mirror charged leptons. The Yukawa couplings of the mirror and ordinary charged fermions to a dark matter scalar then can transfer the mirror lepton asymmetry to an ordinary lepton asymmetry which provides a solution to the cosmic baryon asymmetry in association with the SU(2) L sphaleron processes. In this scenario, the baryon asymmetry can be well described by the neutrino mass matrix up to an overall factor.
NASCAP modelling computations on large optics spacecraft in geosynchronous substorm environments
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Purvis, C. K.
1980-01-01
Satellites in geosynchronous orbits have been found to be charged to significant negative voltages during encounters with geomagnetic substorms. When satellite surfaces are charged, there is a probability of enhanced contamination from charged particles attracted back to the satellite by electrostatic forces. This could be particularly disturbing to large satellites using sensitive optical systems. In this study the NASA Charging Analyzer Program (NASCAP) is used to evaluate qualitatively the possibility of such enhanced contamination on a conceptual version of a large satellite. The evaluation is made by computing surface voltages on the satellite due to encounters with substorm environments and then computing charged-particle trajectories in the electric fields around the satellite. Particular attention is paid to the possibility of contaminants reaching a mirror surface inside a dielectric tube because this mirror represents a shielded optical surface in the satellite model used. Deposition of low energy charged particles from other parts of the spacecraft onto the mirror was found to be possible in the assumed moderate substorm environment condition. In the assumed severe substorm environment condition, however, voltage build up on the inside and edges of the dielectric tube in which the mirror is located prevents contaminants from reaching the mirror surface.
Effective theory of flavor for Minimal Mirror Twin Higgs
Barbieri, Riccardo; Hall, Lawrence J.; Harigaya, Keisuke
2017-10-03
We consider two copies of the Standard Model, interchanged by an exact parity symmetry, P. The observed fermion mass hierarchy is described by suppression factors ϵ more » $$n_i$$ for charged fermion i, as can arise in Froggatt-Nielsen and extra-dimensional theories of flavor. The corresponding flavor factors in the mirror sector are ϵ' $$n_i$$, so that spontaneous breaking of the parity P arises from a single parameter ϵ'/ϵ, yielding a tightly constrained version of Minimal Mirror Twin Higgs, introduced in our previous paper. Models are studied for simple values of n i, including in particular one with SU(5)-compatibility, that describe the observed fermion mass hierarchy. The entire mirror quark and charged lepton spectrum is broadly predicted in terms of ϵ'/ϵ, as are the mirror QCD scale and the decoupling temperature between the two sectors. Helium-, hydrogen- and neutron-like mirror dark matter candidates are constrained by self-scattering and relic ionization. Lastly, in each case, the allowed parameter space can be fully probed by proposed direct detection experiments. Correlated predictions are made as well for the Higgs signal strength and the amount of dark radiation.« less
Thermo-electronic solar power conversion with a parabolic concentrator
NASA Astrophysics Data System (ADS)
Olukunle, Olawole C.; De, Dilip K.
2016-02-01
We consider the energy dynamics of the power generation from the sun when the solar energy is concentrated on to the emitter of a thermo-electronic converter with the help of a parabolic mirror. We use the modified Richardson-Dushman equation. The emitter cross section is assumed to be exactly equal to the focused area at a height h from the base of the mirror to prevent loss of efficiency. We report the variation of output power with solar insolation, height h, reflectivity of the mirror, and anode temperature, initially assuming that there is no space charge effect. Our methodology allows us to predict the temperature at which the anode must be cooled in order to prevent loss of efficiency of power conversion. Novel ways of tackling the space charge problem have been discussed. The space charge effect is modeled through the introduction of a parameter f (0 < f < 1) in the thermos-electron emission equation. We find that the efficiency of the power conversion depends on solar insolation, height h, apart from radii R of the concentrator aperture and emitter, and the collector material properties. We have also considered solar thermos electronic power conversion by using single atom-layer graphene as an emitter.
Tandem mirror plasma confinement apparatus
Fowler, T. Kenneth
1978-11-14
Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.
NASCAP modelling computations on large optics spacecraft in geosynchronous substorm environments
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Purvis, C. K.
1980-01-01
The NASA Charging Analyzer Program (NASCAP) is used to evaluate qualitatively the possibility of such enhanced spacecraft contamination on a conceptual version of a large satellite. The evaluation is made by computing surface voltages on the satellite due to encounters with substorm environments and then computing charged particle trajectories in the electric fields around the satellite. Particular attention is paid to the possibility of contaminants reaching a mirror surface inside a dielectric tube because this mirror represents a shielded optical surface in the satellite model used. Deposition of low energy charged particles from other parts of the spacecraft onto the mirror was found to be possible in the assumed moderate substorm environment condition. In the assumed severe substorm environment condition, however, voltage build up on the inside and edges of the dielectric tube in which the mirror is located prevents contaminants from reaching the mirror surface.
Baldwin, David E.; Logan, B. Grant
1981-01-01
The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequency of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technological state of the art required, and the capital cost are all greatly lowered.
Baldwin, D.E.; Logan, B.G.
The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequence of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technical state of the art required, and the capital cost are all greatly lowered.
Superradiance of charged black holes in Einstein–Gauss–Bonnet gravity
NASA Astrophysics Data System (ADS)
Fierro, Octavio; Grandi, Nicolás; Oliva, Julio
2018-05-01
In this paper we show that electrically charged black holes in Einstein–Gauss–Bonnet gravity suffer from a superradiant instability. It is triggered by a charged scalar field that fulfils Dirichlet boundary conditions at a mirror located outside the horizon. As in general relativity, the unstable modes exist provided that the mirror is located beyond a critical radius, making the instability a long wavelength one. We explore the effects of the Gauss–Bonnet corrections on the critical radius and find evidence that the critical radius decreases as the Gauss–Bonnet coupling α increases. Due to the, up to date, lack of an analytic rotating solution for Einstein–Gauss–Bonnet theory, this is the first example of a superradiant instability in the presence of higher curvature terms in the action.
Mirror Charge Radii and the Neutron Equation of State
NASA Astrophysics Data System (ADS)
Brown, B. Alex
2017-09-01
The differences in the charge radii of mirror nuclei are shown to be proportional to the derivative of the neutron equation of state and the symmetry energy at nuclear matter saturation density. This derivative is important for constraining the neutron equation of state for use in astrophysics. The charge radii of several neutron-rich nuclei are already measured to the accuracy of about 0.005 fm. Experiments at isotope-separator and radioactive-beam facilities are needed to measure the charge radii of the corresponding proton-rich mirror nuclei to a similar accuracy. It is also shown that neutron skins of nuclei with N =Z depend upon the value of the symmetry energy at a density of 0.10 nucleons /fm3 .
Particle accelerator employing transient space charge potentials
Post, Richard F.
1990-01-01
The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.
Magnetic mirror effect in a cylindrical Hall thruster
NASA Astrophysics Data System (ADS)
Jiang, Yiwei; Tang, Haibin; Ren, Junxue; Li, Min; Cao, Jinbin
2018-01-01
For cylindrical Hall thrusters, the magnetic field geometry is totally different from that in conventional Hall thrusters. In this study, we investigate the magnetic mirror effect in a fully cylindrical Hall thruster by changing the number of iron rings (0-5), which surround the discharge channel wall. The plasma properties inside the discharge channel and plume area are simulated with a self-developed PIC-MCC code. The numerical results show significant influence of magnetic geometry on the electron confinement. With the number of rings increasing above three, the near-wall electron density gap is reduced, indicating the suppression of neutral gas leakage. The electron temperature inside the discharge channel reaches its peak (38.4 eV) when the magnetic mirror is strongest. It is also found that the thruster performance has strong relations with the magnetic mirror as the propellant utilisation efficiency reaches the maximum (1.18) at the biggest magnetic mirror ratio. Also, the optimal magnetic mirror improves the multi-charged ion dynamics, including the ion production and propellant utilisation efficiency.
Modeling the Effects of Mirror Misalignment in a Ring Imaging Cherenkov Detector
NASA Astrophysics Data System (ADS)
Hitchcock, Tawanda; Harton, Austin; Garcia, Edmundo
2012-03-01
The Very High Momentum Particle Identification Detector (VHMPID) has been proposed for the ALICE experiment at the Large Hadron Collider (LHC). This detector upgrade is considered necessary to study jet-matter interaction at high energies. The VHMPID identifies charged hadrons in the 5 GeV/c to 25 GeV/c momentum range. The Cherenkov photons emitted in the VHMPID radiator are collected by spherical mirrors and focused onto a photo-detector plane forming a ring image. The radius of this ring is related to the Cherenkov angle, this information coupled with the particle momentum allows the particle identification. A major issue in the RICH detector is that environmental conditions can cause movements in mirror position. In addition, chromatic dispersion causes the refractive index to shift, altering the Cherenkov angle. We are modeling a twelve mirror RICH detector taking into account the effects of mirror misalignment and chromatic dispersion using a commercial optical software package. This will include quantifying the effects of both rotational and translational mirror misalignment for the initial assembly of the module and later on particle identification.
A particle accelerator employing transient space charge potentials
Post, R.F.
1988-02-25
The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles. 3 figs.
Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers
DeGeronimo, Gianluigi
2006-02-14
A charge amplifier includes an amplifier, feedback circuit, and cancellation circuit. The feedback circuit includes a capacitor, inverter, and current mirror. The capacitor is coupled across the signal amplifier, the inverter is coupled to the output of the signal amplifier, and the current mirror is coupled to the input of the signal amplifier. The cancellation circuit is coupled to the output of the signal amplifier. A method of charge amplification includes providing a signal amplifier; coupling a first capacitor across the signal amplifier; coupling an inverter to the output of the signal amplifier; coupling a current mirror to the input of the signal amplifier; and coupling a cancellation circuit to the output of the signal amplifier. A front-end system for use with radiation sensors includes a charge amplifier and a current amplifier, shaping amplifier, baseline stabilizer, discriminator, peak detector, timing detector, and logic circuit coupled to the charge amplifier.
Constraints on mirror models of dark matter from observable neutron-mirror neutron oscillation
NASA Astrophysics Data System (ADS)
Mohapatra, Rabindra N.; Nussinov, Shmuel
2018-01-01
The process of neutron-mirror neutron oscillation, motivated by symmetric mirror dark matter models, is governed by two parameters: n -n‧ mixing parameter δ and n -n‧ mass splitting Δ. For neutron mirror neutron oscillation to be observable, the splitting between their masses Δ must be small and current experiments lead to δ ≤ 2 ×10-27 GeV and Δ ≤10-24 GeV. We show that in mirror universe models where this process is observable, this small mass splitting constrains the way that one must implement asymmetric inflation to satisfy the limits of Big Bang Nucleosynthesis on the number of effective light degrees of freedom. In particular we find that if asymmetric inflation is implemented by inflaton decay to color or electroweak charged particles, the oscillation is unobservable. Also if one uses SM singlet fields for this purpose, they must be weakly coupled to the SM fields.
Lepton flavor violating radiative decays in EW-scale ν R model: an update
Hung, P. Q.; Le, Trinh; Tran, Van Que; ...
2015-12-28
Here, we perform an updated analysis for the one-loop induced charged lepton flavor violating radiative decays l i → l j γ in an extended mirror model. Mixing effects of the neutrinos and charged leptons constructed with a horizontal A 4 symmetry are also taken into account. Current experimental limit and projected sensitivity on the branching ratio of μ → eγ are used to constrain the parameter space of the model. Calculations of two related observables, the electric and magnetic dipole moments of the leptons, are included. Implications concerning the possible detection of mirror leptons at the LHC and themore » ILC are also discussed.« less
Ion temperatures in HIP-1 and SUMMA from charge-exchange neutral optical emission spectra
NASA Technical Reports Server (NTRS)
Patch, R. W.; Lauver, M. R.
1976-01-01
Ion temperatures were obtained from observations of the H sub alpha, D sub alpha, and He 587.6 nm lines emitted from hydrogen, deuterium, and helium plasmas in the SUMMA and HIP-1 mirror devices at Lewis Research Center. Steady state discharges were formed by applying a radially inward dc electric field between cylindrical or annular anodes and hollow cathodes located at the peaks of the mirrors. The ion temperatures were found from the Doppler broadening of the charge-exchange components of spectral lines. A statistical method was developed for obtaining scaling relations of ion temperature as a function of current, voltage, and magnetic flux density. Derivations are given that take into account triangular monochromator slit functions, loss cones, and superimposed charge-exchange processes. In addition, the Doppler broadening was found to be sensitive to the influence of drift on charge-exchange cross section. The effects of finite ion-cyclotron radius, cascading, and delayed emission are reviewed.
Difference in proton radii of mirror nuclei as a possible surrogate for the neutron skin
NASA Astrophysics Data System (ADS)
Yang, Junjie; Piekarewicz, J.
2018-01-01
It has recently been suggested that differences in the charge radii of mirror nuclei are proportional to the neutron-skin thickness of neutron-rich nuclei and to the slope of the symmetry energy L [Brown, Phys. Rev. Lett. 102, 122502 (2009), 10.1103/PhysRevLett.102.122502]. The determination of the neutron skin has important implications for nuclear physics and astrophysics. Although the use of electroweak probes provides a largely model-independent determination of the neutron skin, the experimental challenges are enormous. Thus, the possibility that differences in the charge radii of mirror nuclei may be used as a surrogate for the neutron skin is a welcome alternative. To test the validity of this assumption we perform calculations based on a set of relativistic energy density functionals that span a wide region of values of L . Our results confirm that the difference in charge radii between various neutron-deficient nickel isotopes and their corresponding mirror nuclei is indeed strongly correlated to both the neutron-skin thickness and L . Moreover, given that various neutron-star properties are also sensitive to L , a data-to-data relation emerges between the difference in charge radii of mirror nuclei and the radius of low-mass neutron stars.
High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.
Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu
2008-02-01
A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.
Charge symmetry breaking in light Λ hypernuclei
NASA Astrophysics Data System (ADS)
Gal, Avraham; Gazda, Daniel
2018-02-01
Charge symmetry breaking (CSB) is particularly strong in the A = 4 mirror hypernuclei {}14\\text{H}-Λ 4\\text{He}. Recent four-body no-core shell model calculations that confront this CSB by introducing Λ-Σ0 mixing to leading-order chiral effective field theory hyperon-nucleon potentials are reviewed, and a shell-model approach to CSB in p-shell Λ hypernuclei is outlined.
The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field
NASA Astrophysics Data System (ADS)
Hod, Shahar
2016-04-01
The well-known superradiant amplification mechanism allows a charged scalar field of proper mass μ and electric charge q to extract the Coulomb energy of a charged Reissner-Nordström black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical studies of this composed physical system have shown that, in the linearized regime, the inequality q / μ > 1 provides a necessary condition for the development of the superradiant instability. In the present paper we use analytical techniques to study the instability properties of the charged black-hole bomb in the regime of linearized scalar fields. In particular, we prove that the lower bound q/μ>√{rm /r- - 1/ rm /r+ - 1 } provides a necessary condition for the development of the superradiant instability in this composed physical system (here r± are the horizon radii of the charged Reissner-Nordström black hole and rm is the radius of the confining mirror). This analytically derived lower bound on the superradiant instability regime of the composed black-hole-charged-scalar-field-mirror system is shown to agree with direct numerical computations of the instability spectrum.
Correcting for the effects of pupil discontinuities with the ACAD method
NASA Astrophysics Data System (ADS)
Mazoyer, Johan; Pueyo, Laurent; N'Diaye, Mamadou; Mawet, Dimitri; Soummer, Rémi; Norman, Colin
2016-07-01
The current generation of ground-based coronagraphic instruments uses deformable mirrors to correct for phase errors and to improve contrast levels at small angular separations. Improving these techniques, several space and ground based instruments are currently developed using two deformable mirrors to correct for both phase and amplitude errors. However, as wavefront control techniques improve, more complex telescope pupil geometries (support structures, segmentation) will soon be a limiting factor for these next generation coronagraphic instruments. The technique presented in this proceeding, the Active Correction of Aperture Discontinuities method, is taking advantage of the fact that most future coronagraphic instruments will include two deformable mirrors, and is proposing to find the shapes and actuator movements to correct for the effect introduced by these complex pupil geometries. For any coronagraph previously designed for continuous apertures, this technique allow to obtain similar performance in contrast with a complex aperture (with segmented and secondary mirror support structures), with high throughput and flexibility to adapt to changing pupil geometry (e.g. in case of segment failure or maintenance of the segments). We here present the results of the parametric analysis realized on the WFIRST pupil for which we obtained high contrast levels with several deformable mirror setups (size, separation between them), coronagraphs (Vortex charge 2, vortex charge 4, APLC) and spectral bandwidths. However, because contrast levels and separation are not the only metrics to maximize the scientific return of an instrument, we also included in this study the influence of these deformable mirror shapes on the throughput of the instrument and sensitivity to pointing jitters. Finally, we present results obtained on another potential space based telescope segmented aperture. The main result of this proceeding is that we now obtain comparable performance than the coronagraphs previously designed for WFIRST. First result from the parametric analysis strongly suggest that the 2 deformable mirror set up (size and distance between them) have a important impact on the performance in contrast and throughput of the final instrument.
Electrostatic Charging of Spacecraft in Geosynchronous Orbit
1992-12-17
degrees above and below the equatorial plane. All mirrors are fabricated from " Zerodur * which has a very low coefficient of expansion, and are coated with a...conducting black paint, and the mirror itself is constructed of Zerodur and silvered on the front surface. The mirror is electrically isolated from the...TM Sp 389 provides East-West scanning, and the radiometer mirror is used to scan in the North-South direction; the mirror is moved by two pixels pcr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr
2015-04-13
Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effectmore » in the co-current magnetic field configuration.« less
NASA Astrophysics Data System (ADS)
Allain, J. P.; Nieto, M.; Hendricks, M.; Harilal, S. S.; Hassanein, A.
2007-05-01
Exposure of collector mirrors facing the hot, dense pinch plasma in plasma-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one of the highest critical issues of source component lifetime and commercial feasibility of nanolithography at 13.5-nm. Typical radiators used at 13.5-nm include Xe and Sn. Fast particles emerging from the pinch region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector configurations include either multi-layer mirrors (MLM) or single-layer mirrors (SLM) used at grazing incidence. Studies at Argonne have focused on understanding the underlying mechanisms that hinder collector mirror performance at 13.5-nm under fast Sn or Xe exposure. This is possible by a new state-of-the-art in-situ EUV reflectometry system that measures real time relative EUV reflectivity (15-degree incidence and 13.5-nm) variation during fast particle exposure. Intense EUV light and off-band radiation is also known to contribute to mirror damage. For example offband radiation can couple to the mirror and induce heating affecting the mirror's surface properties. In addition, intense EUV light can partially photo-ionize background gas (e.g., Ar or He) used for mitigation in the source device. This can lead to local weakly ionized plasma creating a sheath and accelerating charged gas particles to the mirror surface and inducing sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL source collector optics materials. The first study concerns the use of IMD simulations to study the effect of surface roughness on EUV reflectivity. The second studies the effect of fast particles on MLM reflectivity at 13.5-nm. And lastly the third studies the effect of multiple energetic sources with thermal Sn on 13.5-nm reflectivity. These studies focus on conditions that simulate the EUVL source environment in a controlled way.
Casale, Roberto; Furnari, Anna; Lamberti, Raul Coelho; Kouloulas, Efthimios; Hagenberg, Annegret; Mallik, Maryam
2015-01-01
Phantom limb and phantom limb pain control are pivotal points in the sequence of intervention to bring the amputee to functional autonomy. The alterations of perception and sensation, the pain of the residual limb and the phantom limb are therefore aspects of amputation that should be taken into account in the "prise en charge" of these patients. Within the more advanced physical therapies to control phantom and phantom limb pain there is the use of mirrors (mirror therapy). This article willfocus on its use and on the possible side effects induced by the lack of patient selection and a conflict of body schema restoration through mirror therapy with concurrent prosthetic training and trauma acceptance. Advice on the need to select patients before treatment decisions, with regard to their psychological as well as clinical profile (including time since amputation and clinical setting), and the need to be aware of the possible adverse effects matching different and somehow conflicting therapeutic approaches, are put forward. Thus a coordinated sequence of diagnostic, prognostic and therapeutic procedures carried out by an interdisciplinary rehabilitation team that works globally on all patients' problems is fundamental in the management of amputees and phantom limb pain. Further studies and the development of a multidisciplinary network to study this and other applications of mirror therapy are needed.
Characterization of trapped charges distribution in terms of mirror plot curve.
Al-Obaidi, Hassan N; Mahdi, Ali S; Khaleel, Imad H
2018-01-01
Accumulation of charges (electrons) at the specimen surface in scanning electron microscope (SEM) lead to generate an electrostatic potential. By using the method of image charges, this potential is defined in the chamber's space of such apparatus. The deduced formula is expressed in terms a general volumetric distribution which proposed to be an infinitesimal spherical extension. With aid of a binomial theorem the defined potential is expanded to a multipolar form. Then resultant formula is adopted to modify a novel mirror plot equation so as to detect the real distribution of trapped charges. Simulation results reveal that trapped charges may take a various sort of arrangement such as monopole, quadruple and octuple. But existence of any of these arrangements alone may never be take place, rather are some a formations of a mix of them. Influence of each type of these profiles depends on the distance between the incident electron and surface of a sample. Result also shows that trapped charge's amount of trapped charges can refer to a threshold for failing of point charge approximation. Copyright © 2017 Elsevier B.V. All rights reserved.
Mirror symmetric optics design for charge-stripping section in Rare Isotope Science Project
NASA Astrophysics Data System (ADS)
Kim, Hye-Jin; Kim, Hyung-Jin; Jeon, Dong-O.; Hwang, Ji-Gwang; Kim, Eun-San
2013-12-01
The main aim of the Rare Isotope Science Project is to construct a high power heavy-ion accelerator based on the superconducting linear accelerator (SCL). The heavy ion accelerator is a key research facility that will allow ground-breaking research into numerous facets of basic science, such as nuclear physics, astrophysics, atomic physics, life science, medicine and material science. The machine will provide a beam power of 400 kW with a 238U79+ beam of 8 pμA and 200 MeV/u. One of the critical components in the SCL is the charge stripper between the two segments, SCL1 and SCL2, of the SCL. The charge stripper removes electrons from the ion beams to enhance the acceleration efficiency in the subsequent SCL2. To improve the efficiency of acceleration and power in SCL2, the optimal energy of stripped ions in a solid carbon foil stripper was estimated using the code LISE++. The thickness of the solid carbon foil was 300 μg/m2. The charge stripping efficiency of the solid carbon stripper in the present study was approximately 87%. For charge selection from the ions produced by the solid carbon stripper, a dispersive section is needed down-stream of the foil. The designed optics for the dispersive section is based on the mirror-symmetric optics to minimize the effect of high-order aberrations.
Timofeyuk, N K; Johnson, R C; Mukhamedzhanov, A M
2003-12-05
We show how the charge symmetry of strong interactions can be used to relate the proton and neutron asymptotic normalization coefficients (ANCs) of the one-nucleon overlap integrals for light mirror nuclei. This relation extends to the case of real proton decay where the mirror analog is a virtual neutron decay of a loosely bound state. In this case, a link is obtained between the proton width and the squared ANC of the mirror neutron state. The relation between mirror overlaps can be used to study astrophysically relevant proton capture reactions based on information obtained from transfer reactions with stable beams.
Discovering uncolored naturalness in exotic Higgs decays
NASA Astrophysics Data System (ADS)
Curtin, David; Verhaaren, Christopher B.
2015-12-01
Solutions to the hierarchy problem usually require top partners. In standard SUSY or composite Higgs theories, the partners carry SM color and are becoming increasingly constrained by LHC searches. However, theories like Folded SUSY (FS), Twin Higgs (TH) and Quirky Little Higgs (QLH) introduce uncolored top partners, which can be SM singlets or carry electroweak charge. Their small production cross section left doubt as to whether the LHC can effectively probe such scenarios. Typically, these partners are charged under their own mirror color gauge group. In FS and QLH, the absence of light mirror matter allows glueballs to form at the bottom of the mirror spectrum. This is also the case in some TH realizations. The Higgs can decay to these mirror glueballs, with the glueballs decaying into SM particles with potentially observable lifetimes. We undertake the first detailed study of this glueball signature and quantitatively demonstrate the discovery potential of uncolored naturalness via exotic Higgs decays at the LHC and a potential future 100TeV collider. Our findings indicate that mirror glueballs are the smoking gun signature of natural FS and QLH type theories, in analogy to tree-level Higgs coupling shifts for the TH. We show that glueball masses in the ˜ 10-60 GeV mass range are theoretically preferred. Careful treatment of lifetime, mirror-hadronization and non-perturbative uncertainties is required to perform meaningful collider studies. We outline several new search strategies for exotic Higgs decays of the form h → XX → 4 f at the LHC, with X having lifetimes in the 10 μm to km range. We find that FS stops can be probed with masses up to 600 (1100) GeV at the LHC with 300 (3000) fb-1 of data, and TH top partners could be accessible with masses up to 900 (1500) GeV. This makes exotic Higgs decays the prime discovery channel for uncolored naturalness at the LHC.
NASA Technical Reports Server (NTRS)
Spjeldvik, W. N.
1981-01-01
Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.
Monte Carlo simulation of neutral-beam injection for mirror fusion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Ronald Lee
1979-01-01
Computer simulation techniques using the Monte Carlo method have been developed for application to the modeling of neutral-beam intection into mirror-confined plasmas of interest to controlled thermonuclear research. The energetic (10 to 300 keV) neutral-beam particles interact with the target plasma (T i ~ 10 to 100 keV) through electron-atom and ion-atom collisional ionization as well as ion-atom charge-transfer (charge-exchange) collisions to give a fractional trapping of the neutral beam and a loss of charge-transfer-produced neutrals which escape to bombard the reactor first wall. Appropriate interaction cross sections for these processes are calculated for the assumed anisotropic, non-Maxwellian plasma ionmore » phase-space distributions.« less
Gemini 8.2-m primary mirror no. 1 polishing
NASA Astrophysics Data System (ADS)
Cayrel, Marc; Beraud, P.; Paseri, Jacques; Dromas, E.
1998-08-01
The 8-m class primary mirrors of the GEMINI Telescopes are thin ULE menisci actively supported. The two mirror blanks are produced by CORNING, the optical figuring, manufacturing and assembling of interfaces are done by REOSC. REOSC is as well in charge of the transportation of the mirror blanks from CORNING to REOSC, and of the shipment of the finished optics to Hawaii and to Chile. The mirror assembly requirements are summarized, the manufacturing and testing methods are addressed. REOSC had to design and manufacture a dedicated active supporting system, representative of the one used at the telescope level. Its design and performance are presented. The manufacturing steps undertaken at REOSC and the results achieved are then detailed: mirror blank surface generating and grinding, polishing, testing. The current status of the mirrors is finally presented.
Electron cyclotron resonance sources: Historical review and future prospects (invited)
NASA Astrophysics Data System (ADS)
Geller, R.
1998-03-01
Low charge state electron cyclotron resonance ion source (ECRIS) work since 1965 and high charge state ECRIS since 1974. These ECR sources are categorized into three main sections: (1) Low charged ion (ECRIS) inside simple magnetic mirror or Bucket configurations. (2) High charged ion ECRIS inside min-B mirror configurations. (3) Short pulsed ECRIS with highly charged ions where the ion confinement is disturbed for a short while, which allows the extraction of intense ion pulses. Future prospects are based on rational scaling of the magnetic confinement including high B modes, by increasing the radio frequency (rf) frequency and ECR magnetic field. In this case, charge exchange has to be minimized and plasma instabilities have to be avoided. However, clever empirical tricks lead also to outstanding not always predicted improvements. Let us cite: optimized rf plasma coupling, electron guns, gas mixing, wall coating, biased electrodes, and more recently multiple ECR frequency heating. ECRIS have not yet achieved their optimal possibilities. Let us wait for the next generation of superconducting ECRIS and the possible use of subcentimeter waves.
Electron cyclotron resonance sources: Historical review and future prospects (invited)
NASA Astrophysics Data System (ADS)
Geller, R.
1998-02-01
Low charge state electron cyclotron resonance ion source (ECRIS) work since 1965 and high charge state ECRIS since 1974. These ECR sources are categorized into three main sections: (1) Low charged ion (ECRIS) inside simple magnetic mirror or Bucket configurations. (2) High charged ion ECRIS inside min-B mirror configurations. (3) Short pulsed ECRIS with highly charged ions where the ion confinement is disturbed for a short while, which allows the extraction of intense ion pulses. Future prospects are based on rational scaling of the magnetic confinement including high B modes, by increasing the radio frequency (rf) frequency and ECR magnetic field. In this case, charge exchange has to be minimized and plasma instabilities have to be avoided. However, clever empirical tricks lead also to outstanding not always predicted improvements. Let us cite: optimized rf plasma coupling, electron guns, gas mixing, wall coating, biased electrodes, and more recently multiple ECR frequency heating. ECRIS have not yet achieved their optimal possibilities. Let us wait for the next generation of superconducting ECRIS and the possible use of subcentimeter waves.
Tip/tilt optimizations for polynomial apodized vortex coronagraphs on obscured telescope pupils
NASA Astrophysics Data System (ADS)
Fogarty, Kevin; Pueyo, Laurent; Mazoyer, Johan; N'Diaye, Mamadou
2017-09-01
Obstructions due to large secondary mirrors, primary mirror segmentation, and secondary mirror support struts all introduce diffraction artifacts that limit the performance offered by coronagraphs. However, just as vortex coronagraphs provides theoretically ideal cancellation of on-axis starlight for clear apertures, the Polynomial Apodized Vortex Coronagraph (PAVC) completely blocks on-axis light for apertures with central obscurations, and delivers off-axis throughput that improves as the topological charge of the vortex increases. We examine the sensitivity of PAVC designs to tip/tilt aberrations and stellar angular size, and discuss methods for mitigating these effects. By imposing additional constraints on the pupil plane apodization, we decrease the sensitivity of the PAVC to the small positional shifts of the on-axis source induced by either tip/tilt or stellar angular size; providing a route to overcoming an important hurdle facing the performance of vortex coronagraphs on telescopes with complicated pupils.
Compaction managed mirror bend achromat
Douglas, David [Yorktown, VA
2005-10-18
A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.
Degradation of optical components in space
NASA Technical Reports Server (NTRS)
Blue, M. D.
1993-01-01
This report concerns two types of optical components: multilayer filters and mirrors, and self-scanned imaging arrays using charge coupled device (CCD) readouts. For the filters and mirrors, contamination produces a strong reduction in transmittance in the ultraviolet spectral region, but has little or no effect in the visible and infrared spectral regions. Soft substrates containing halides are unsatisfactory as windows or substrates. Materials choice for dielectric layers should also reflect such considerations. Best performance is also found for the harder materials. Compaction of the layers and interlayer diffusion causes a blue shift in center wavelength and loss of throughput. For sensors using CCD's, shifts in gate voltage and reductions in transfer efficiency occur. Such effects in CCD's are in accord with expectations of the effects of the radiation dose on the device. Except for optical fiber, degradation of CCD's represents the only ionizing-radiation induced effect on the Long Duration Exposure Facility (LDEF) optical systems components that has been observed.
NASA Astrophysics Data System (ADS)
Konovalov, V. G.; Voitsenya, V. S.; Makhov, M. N.; Ryzhkov, I. V.; Shapoval, A. N.; Solodovchenko, S. I.; Stan, A. F.; Bondarenko, V. N.; Donné, A. J. H.; Litnovsky, A.
2016-09-01
The plasma-facing (first) mirrors in ITER will be subject to sputtering and/or contamination with rates that will depend on the precise mirror locations. The resulting influence of both these factors can reduce the mirror reflectance (R) and worsen the transmitted image quality (IQ). This implies that monitoring the mirror quality in situ is an actual desire, and the present work is an attempt towards a solution. The method we propose is able to elucidate the reason for degradation of the mirror reflectance: sputtering by charge exchange atoms or deposition of contaminated layers. In case of deposition of contaminants, the mirror can be cleaned in situ, but a rough mirror (due to sputtering) cannot be used anymore and has to be replaced. To demonstrate the feasibility of the IQ method, it was applied to mirror specimens coated with carbon film in laboratory conditions and to mirrors coated with contaminants during exposure in fusion devices (TRIAM-1M and Tore Supra), as well as to mirrors of different materials exposed to sputtering by plasma ions in the DSM-2 plasma stand (in IPP NSC KIPT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Hayato, E-mail: ohashi@cc.utsunomiya-u.ac.jp; Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp; Suzuki, Yuhei
2014-01-21
We report on the identification of the optimum plasma conditions for a laser-produced plasma source for efficient coupling with multilayer mirrors at 6.x nm for beyond extreme ultraviolet lithography. A small shift to lower energies of the peak emission for Nd:YAG laser-produced gadolinium plasmas was observed with increasing laser power density. Charge-defined emission spectra were observed in electron beam ion trap (EBIT) studies and the charge states responsible identified by use of the flexible atomic code (FAC). The EBIT spectra displayed a larger systematic shift of the peak wavelength of intense emission at 6.x nm to longer wavelengths with increasingmore » ionic charge. This combination of spectra enabled the key ion stage to be confirmed as Gd{sup 18+}, over a range of laser power densities, with contributions from Gd{sup 17+} and Gd{sup 19+} responsible for the slight shift to longer wavelengths in the laser-plasma spectra. The FAC calculation also identified the origin of observed out-of-band emission and the charge states responsible.« less
Ion and electron temperatures in the SUMMA mirror device by emission spectroscopy
NASA Technical Reports Server (NTRS)
Patch, R. W.; Voss, D. E.; Reinmann, J. J.; Snyder, A.
1974-01-01
Ion and electron temperatures, and ion drift were measured in a superconducting magnetic mirror apparatus by observing the Doppler-broadened charge-exchange component of the 667.8 and 587.6 nanometer He lines in He plasma, and the H sub alpha and H sub beta lines in H2 plasma. The second moment of the line profiles was used as the parameter for determining ion temperature. Corrections for magnetic splitting, fine structure, monochromator slit function, and variation in charge-exchange cross section with energy are included. Electron temperatures were measured by the line ratio method for the corona model, and correlations of ion and electron temperatures with plasma parameters are presented.
Polishing, coating and integration of SiC mirrors for space telescopes
NASA Astrophysics Data System (ADS)
Rodolfo, Jacques
2017-11-01
In the last years, the technology of SiC mirrors took an increasingly significant part in the field of space telescopes. Sagem is involved in the JWST program to manufacture and test the optical components of the NIRSpec instrument. The instrument is made of 3 TMAs and 4 plane mirrors made of SiC. Sagem is in charge of the CVD cladding, the polishing, the coating of the mirrors and the integration and testing of the TMAs. The qualification of the process has been performed through the manufacturing and testing of the qualification model of the FOR TMA. This TMA has shown very good performances both at ambient and during the cryo test. The polishing process has been improved for the manufacturing of the flight model. This improvement has been driven by the BRDF performance of the mirror. This parameter has been deeply analysed and a model has been built to predict the performance of the mirrors. The existing Dittman model have been analysed and found to be optimistic.
A perfectly conducting surface in electrodynamics with Lorentz symmetry breaking
NASA Astrophysics Data System (ADS)
Borges, L. H. C.; Barone, F. A.
2017-10-01
In this paper we consider a model which exhibits explicit Lorentz symmetry breaking due to the presence of a single background vector v^{μ } coupled to the gauge field. We investigate such a theory in the vicinity of a perfectly conducting plate for different configurations of v^{μ }. First we consider no restrictions on the components of the background vector and we treat it perturbatively up to second order. Next, we treat v^{μ } exactly for two special cases: the first one is when it has only components parallel to the plate, and the second one when it has a single component perpendicular to the plate. For all these configurations, the propagator for the gauge field and the interaction force between the plate and a point-like electric charge are computed. Surprisingly, it is shown that the image method is valid in our model and we argue that it is a non-trivial result. We show there arises a torque on the mirror with respect to its positioning in the background field when it interacts with a point-like charge. It is a new effect with no counterpart in theories with Lorentz symmetry in the presence of a perfect mirror.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Buzinskij, O. I.; Gubsky, K. L.
A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxidemore » films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements.« less
NASA Astrophysics Data System (ADS)
Dell'Orto, E.; Barbera, M.; Bulgarelli, A.; Fioretti, V.; Malaguti, G.; Mineo, T.; Pareschi, G.; Rigato, V.; Spiga, D.; Tagliaferri, G.
2009-05-01
X-ray telescopes equipped with focusing optics in high eccentric orbit, as e.g. Newton-XMM and Chandra, showed a degradation of the detector performance and an important increase of the noise due to soft protons with energy between a few tens of keV and a few MeV, that are focused on the detector through the mirror module. It should be noted that the focusing of the protons by Wolter optics was an unexpected phenomenon. In Simbol-X a magnetic diverter will be implemented to deflect protons, in order to reduce the flux of charged particles impinging upon the focal plane. Obviously the design of the diverter should take into consideration the protons distribution at the exit of the mirror module; for this reason a detailed simulation about the interaction of particles with the mirror surface is necessary. Here we will present the scattering protons models currently under consideration, suggesting a preliminary solution for the design of the magnetic diverter. We will also discuss an ad hoc experiment to study this problem.
Cleaning of first mirrors in ITER by means of radio frequency discharges.
Leipold, F; Reichle, R; Vorpahl, C; Mukhin, E E; Dmitriev, A M; Razdobarin, A G; Samsonov, D S; Marot, L; Moser, L; Steiner, R; Meyer, E
2016-11-01
First mirrors of optical diagnostics in ITER are subject to charge exchange fluxes of Be, W, and potentially other elements. This may degrade the optical performance significantly via erosion or deposition. In order to restore reflectivity, cleaning by applying radio frequency (RF) power to the mirror itself and thus creating a discharge in front of the mirror will be used. The plasma generated in front of the mirror surface sputters off deposition, restoring its reflectivity. Although the functionality of such a mirror cleaning technique is proven in laboratory experiments, the technical implementation in ITER revealed obstacles which needs to be overcome: Since the discharge as an RF load in general is not very well matched to the power generator and transmission line, power reflections will occur leading to a thermal load of the cable. Its implementation for ITER requires additional R&D. This includes the design of mirrors as RF electrodes, as well as feeders and matching networks inside the vacuum vessel. Mitigation solutions will be evaluated and discussed. Furthermore, technical obstacles (i.e., cooling water pipes for the mirrors) need to be solved. Since cooling water lines are usually on ground potential at the feed through of the vacuum vessel, a solution to decouple the ground potential from the mirror would be a major simplification. Such a solution will be presented.
Quantized circular photogalvanic effect in Weyl semimetals
NASA Astrophysics Data System (ADS)
de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E.
The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. We find that in a class of Weyl semimetals (e.g. SrSi2) and three-dimensional Rashba materials (e.g. doped Te) without inversion and mirror symmetries, the CPGE trace is effectively Quantized in terms of the combination of fundamental constants e3/h2 cɛ0 with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points near the Fermi surface, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.
Quantized circular photogalvanic effect in Weyl semimetals
NASA Astrophysics Data System (ADS)
de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E.
2017-07-01
The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi2) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.
Charged particle motions in the distended magnetospheres of Jupiter and Saturn
NASA Technical Reports Server (NTRS)
Birmingham, T. J.
1982-01-01
Charged particle motion in the guiding center approximation is analyzed for models of the Jovian and Saturnian magnetospheric magnetic fields based on Voyager magnetometer observations. Field lines are traced and exhibit the distention which arises from azimuthally circulating magnetospheric currents. The spatial dependencies of the guiding center bounce period and azimuthal drift rate are investigated for the model fields. Non-dipolar effects in the gradient-curvature drift rate are most important at the equator and affect particles with all mirror latitudes. The effect is a factor of 10-15 for Jupiter with its strong magnetodisc current and 1-2 for Saturn with its more moderate ring current. Limits of adiabaticity, where particle gyroradii become comparable with magnetic scale lengths, are discussed and are shown to occur at quite modest kinetic energies for protons and heavier ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samu, Gergely F.; Janaky, Csaba; Kamat, Prashant V.
Photoinduced segregation in mixed halide perovskites has a direct influence on decreasing the solar cell efficiency as segregated I-rich domains serve as charge recombination centers. Here, the changes in the external quantum efficiency mirror the spectral loss in the absorption; however, the time scale of the IPCE recovery in the dark is slower than the absorption recovery, showing the intricate nature of the photoinduced halide segregation and charge collection in solar cell devices.
NASA Astrophysics Data System (ADS)
Song, Z. G.; Gong, H.; Ong, C. K.
1997-06-01
A scanning electron microscope (SEM) mirror-image method (MIM) is employed to investigate the charging behaviour of polarized polymethylmethacrylate (PMMA) under electron-beam irradiation. An ellipsoid is used to model the trapped charge distribution and a fitting method is employed to calculate the total amount of the trapped charge and its distribution parameters. The experimental results reveal that the charging ability decreases with increasing applied electric field, which polarizes the PMMA sample, whereas the trapped charge distribution is elongated along the direction of the applied electric field and increases with increasing applied electric field. The charges are believed to be trapped in some localization states, of activation energy and radius estimated to be about 19.6 meV and 0022-3727/30/11/004/img6, respectively.
NASA Astrophysics Data System (ADS)
Ragozin, Eugene N.; Mednikov, Konstantin N.; Pertsov, Andrei A.; Pirozhkov, Alexander S.; Reva, Anton A.; Shestov, Sergei V.; Ul'yanov, Artem S.; Vishnyakov, Eugene A.
2009-05-01
We report measurements of the reflection spectra of (i) concave (spherical and parabolic) Mo/Si, Mg/Si, and Al/Zr multilayer mirrors (MMs) intended for imaging solar spectroscopy in the framework of the TESIS/CORONAS-FOTON Satellite Project and of (ii) an aperiodic Mo/Si MM optimized for maximum uniform reflectivity in the 125-250 Å range intended for laboratory applications. The reflection spectra were measured in the configuration of a transmission grating spectrometer employing the radiation of a tungsten laser-driven plasma as the source. The function of detectors was fulfilled by backside-illuminated CCDs coated with Al or Zr/Si multilayer absorption filters. High-intensity second-order interference reflection peaks at wavelengths of about 160 Å were revealed in the reflection spectra of the 304-Å Mo/Si MMs. By contrast, the second-order reflection peak in the spectra of the new-generation narrow-band (~12 Å FWHM) 304-Å Mg/Si MMs is substantially depressed. Manifestations of the NEXAFS structure of the L2, 3 absorption edges of Al and Al2O3 were observed in the spectra recorded. The broadband Mo/Si MM was employed as the focusing element of spectrometers in experiments involving (i) the charge exchange of multiply charged ions with the donor atoms of a rare-gas jet; (ii) the spectroscopic characterization of a debris-free soft X-ray radiation source excited by Nd laser pulses in a Xe jet (iii) near-IR-to-soft-X-ray frequency conversion (double Doppler effect) occurring in the retroreflection from the relativistic electron plasma wake wave (flying mirror) driven by a multiterawatt laser in a pulsed helium jet.
Generalized isobaric multiplet mass equation and its application to the Nolen-Schiffer anomaly
NASA Astrophysics Data System (ADS)
Dong, J. M.; Zhang, Y. H.; Zuo, W.; Gu, J. Z.; Wang, L. J.; Sun, Y.
2018-02-01
The Wigner isobaric multiplet mass equation (IMME) is the most fundamental prediction in nuclear physics with the concept of isospin. However, it was deduced based on the Wigner-Eckart theorem with the assumption that all charge-violating interactions can be written as tensors of rank two. In the present work, the charge-symmetry breaking (CSB) and charge-independent breaking (CIB) components of the nucleon-nucleon force, which contribute to the effective interaction in nuclear medium, are established in the framework of Brueckner theory with AV18 and AV14 bare interactions. Because such charge-violating components can no longer be expressed as an irreducible tensor due to density dependence, its matrix element cannot be analytically reduced by the Wigner-Eckart theorem. With an alternative approach, we derive a generalized IMME (GIMME) that modifies the coefficients of the original IMME. As the first application of GIMME, we study the long-standing question of the origin of the Nolen-Schiffer anomaly (NSA) found in the Coulomb displacement energy of mirror nuclei. We find that the naturally emerged CSB term in GIMME is largely responsible for explaining the NSA.
Coronagraph for astronomical imaging and spectrophotometry
NASA Technical Reports Server (NTRS)
Vilas, Faith; Smith, Bradford A.
1987-01-01
A coronagraph designed to minimize scattered light in astronomical observations caused by the structure of the primary mirror, secondary mirror, and secondary support structure of a Cassegrainian telescope is described. Direct (1:1) and reducing (2.7:1) imaging of astronomical fields are possible. High-quality images are produced. The coronagraph can be used with either a two-dimensional charge-coupled device or photographic film camera. The addition of transmission dispersing optics converts the coronagraph into a low-resolution spectrograph. The instrument is modular and portable for transport to different observatories.
Manifestation of Nonuniversality of Lepton Interactions in Spontaneously Violated Mirror Symmetry
NASA Astrophysics Data System (ADS)
Dyatlov, I. T.
2018-03-01
Data from the LHCb experiments are indicative of a substantial distinction between the B → K (or K*) + e + e - and B → K (or K*) + μ + μ - branching ratios (April 2017). The branching ratio for the e+e- channel is substantially greater than that for the μ + μ - channel, whereas Standard Model (SM) calculations require that they be equal to each other. The above distinction may suggest the existence of a new interaction changing generations and discriminating between leptons that has couplings that are much greater than and are inverse in strength to the SM fermion couplings to the Higgs boson. Under conditions of spontaneously violated mirror symmetry, the coupling of SM particles to the second Higgs scalar that is inevitably present there and which is in principle heavy possesses precisely these properties. An inverse character of this coupling and its strength are not an additional hypothesis but a necessary condition for qualitatively reproducing, in addition, the observed charged-lepton mass hierarchy and the structure of weak lepton mixing—the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. Within the mirror model being considered, all properties of the new interaction, including its inverse character, are due to the hierarchical character of the quark and charged-lepton mass spectrum.
NASA Astrophysics Data System (ADS)
Mazumder, Malay; Yellowhair, Julius; Stark, Jeremy; Heiling, Calvin; Hudelson, John; Hao, Fang; Gibson, Hannah; Horenstein, Mark
2014-10-01
Large-scale solar plants are mostly installed in semi-arid and desert areas. In those areas, dust layer buildup on solar collectors becomes a major cause for energy yield loss. Development of transparent electrodynamic screens (EDS) and their applications for self-cleaning operation of solar mirrors are presented with a primary focus on the removal dust particles smaller than 30 µm in diameter while maintaining specular reflection efficiency < 90%. An EDS consists of thin rectangular array of parallel transparent conducting electrodes deposited on a transparent dielectric surface. The electrodes are insulated from each other and are embedded within a thin transparent dielectric film. The electrodes are activated using three-phase high-voltage pulses at low current (< 1 mA/m2 ). The three-phase electric field charges the deposited particles, lifts them form the substrate by electrostatic forces and propels the dust layer off of the collector's surface by a traveling wave. The cleaning process takes less than 2 minutes; needs energy less than 1 Wh/m2 without requiring any water or manual labor. The reflection efficiency can be restored > 95% of the original clean-mirror efficiency. We briefly present (1) loss of specular reflection efficiency as a function of particle size distribution of deposited dust, and (2) the effects of the electrode design and materials used for minimizing initial loss of specular reflectivity in producing EDS-integrated solar mirrors. Optimization of EDS by using a figure of merit defined by the ratio of dust removal efficiency to the initial loss of specular reflection efficiency is discussed.
Motion of charged particles in planetary magnetospheres with nonelectromagnetic forces
NASA Technical Reports Server (NTRS)
Huang, T. S.; Hill, T. W.; Wolf, R. A.
1988-01-01
Expressions are derived for the mirror point, the bounce period, the second adiabatic invariant, and the bounce-averaged azimuthal drift velocity as functions of equatorial pitch angle for a charged particle in a dipole magnetic field in the presence of centrifugal, gravitational, and Coriolis forces. These expressions are evaluated numerically, and the results are displayed graphically. The average azimuthal drift speed for a flux tube containing a thermal equilibrium plasma distribution is also evaluated.
Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation
Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey
2014-01-01
The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. PMID:23709352
Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation.
Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey; Catmur, Caroline
2014-08-01
The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Stroboscopic Interferometer for Measuring Mirror Vibrations
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Robers, Ted
2005-01-01
Stroboscopic interferometry is a technique for measuring the modes of vibration of mirrors that are lightweight and, therefore, unavoidably flexible. The technique was conceived especially for modal characterization of lightweight focusing mirror segments to be deployed in outer space; however, the technique can be applied to lightweight mirrors designed for use on Earth as well as the modal investigation of other optical and mechanical structures. To determine the modal structure of vibration of a mirror, it is necessary to excite the mirror by applying a force that varies periodically with time at a controllable frequency. The excitation can utilize sinusoidal, square, triangular, or even asynchronous waveforms. Because vibrational modes occur at specific resonant frequencies, it is necessary to perform synchronous measurements and sweep the frequency to locate the significant resonant modes. For a given mode it is possible to step the phase of data acquisition in order to capture the modal behavior over a single cycle of the resonant frequency. In order to measure interferometrically the vibrational response of the mirror at a given frequency, an interferometer must be suitably aligned with the mirror and adjustably phase-locked with the excitation signal. As in conventional stroboscopic photography, the basic idea in stroboscopic interferometry is to capture an image of the shape of a moving object (in this case, the vibrating mirror) at a specified instant of time in the vibration cycle. Adjusting the phase difference over a full cycle causes the interference fringes to vary over the full range of motion for the mode at the excitation frequency. The interference-fringe pattern is recorded as a function of the phase difference, and, from the resulting data, the surface shape of the mirror for the given mode is extracted. In addition to the interferometer and the mirror to be tested, the equipment needed for stroboscopic interferometry includes an arbitrary-function generator (that is, a signal generator), an oscilloscope, a trigger filter, and an advanced charge-coupled-device (CCD) camera. The optical components are positioned to form a pupil image of the mirror under test on the CCD chip, so that the interference pattern representative of the instantaneous mirror shape is imaged on the CCD chip.
Samu, Gergely F.; Janaky, Csaba; Kamat, Prashant V.
2017-07-24
Photoinduced segregation in mixed halide perovskites has a direct influence on decreasing the solar cell efficiency as segregated I-rich domains serve as charge recombination centers. Here, the changes in the external quantum efficiency mirror the spectral loss in the absorption; however, the time scale of the IPCE recovery in the dark is slower than the absorption recovery, showing the intricate nature of the photoinduced halide segregation and charge collection in solar cell devices.
Study of a new cusp field for an 18 GHz ECR ion source
NASA Astrophysics Data System (ADS)
Rashid, M. H.; Nakagawa, T.; Goto, A.; Yano, Y.
2007-08-01
A feasibility study was performed to generate new sufficient mirror cusp magnetic field (CMF) by using the coils of the existing room temperature traditional 18 GHz electron cyclotron resonance ion source (ECRIS) at RIKEN. The CMF configuration was chosen because it contains plasma superbly and no multipole magnet is needed to make the contained plasma quiescent with no magneto-hydrodynamic (MHD) instability and to make the system cost-effective. The least magnetic field, 13 kG is achieved at the interior wall of the plasma chamber including the point cusps (PC) on the central axis and the ring cusp (RC) on the mid-plane. The mirror ratio calculation and electron simulation were done in the computed CMF. It was found to contain the electrons for longer time than in traditional field. It is proposed that a powerful CMF ECRIS can be constructed, which is capable of producing intense highly charged ion (HCI) beam for light and heavy elements.
Charge density wave order in 1D mirror twin boundaries of single-layer MoSe 2
Barja, Sara; Wickenburg, Sebastian; Liu, Zhen-Fei; ...
2016-04-18
Here, We provide direct evidence for the existence of isolated, one-dimensional charge density waves at mirror twin boundaries (MTBs) of single-layer semiconducting MoSe 2. Such MTBs have been previously observed by transmission electron microscopy and have been predicted to be metallic in MoSe 2 and MoS 2. Our low-temperature scanning tunnelling microscopy/spectroscopy measurements revealed a substantial bandgap of 100 meV opening at the Fermi energy in the otherwise metallic one-dimensional structures. We found a periodic modulation in the density of states along the MTB, with a wavelength of approximately three lattice constants. In addition to mapping the energy-dependent densitymore » of states, we determined the atomic structure and bonding of the MTB through simultaneous high-resolution non-contact atomic force microscopy. Density functional theory calculations based on the observed structure reproduced both the gap opening and the spatially resolved density of states.« less
Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation
NASA Astrophysics Data System (ADS)
Alton, G. D.; Bilheux, H.
2004-05-01
Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.
Ring current proton decay by charge exchange
NASA Technical Reports Server (NTRS)
Smith, P. H.; Hoffman, R. A.; Fritz, T.
1975-01-01
Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.
Charge management for gravitational-wave observatories using UV LEDs
NASA Astrophysics Data System (ADS)
Pollack, S. E.; Turner, M. D.; Schlamminger, S.; Hagedorn, C. A.; Gundlach, J. H.
2010-01-01
Accumulation of electrical charge on the end mirrors of gravitational-wave observatories can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational-wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable plate brought near a plate pendulum suspended from a nonconducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging of the pendulum with equivalent charging rates of ˜105e/s, as well as spectral measurements of the pendulum charge resulting in a white noise level equivalent to 3×105e/Hz.
"CORKSCREW"-A DEVICE FOR CHANGING THE MAGNETIC MOMENT OF CHARGED PARTICLES IN A MAGNETIC FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wingerson, R.C.
1961-05-01
A helical, current-carrying magnetic field source (the "corkscrew") is described; it perturbs an axial uniform magnetic field B/sub 0/ such that the transverse energy components (ET) of selected particles moving along the sxis are increased or decreased monotonically. It is noted that, since the corkscrew has no over-all effect on B/sub 0/, the change in ET must result from a change in the particle's magnetic moment. The use of pairs of these devices in magnetic mirror machines to trap particles is suggested. (T.F.H.)
Looking through the mirror: optical microcavity-mirror image photonic interaction.
Shi, Lei; Xifré-Pérez, E; García de Abajo, F J; Meseguer, F
2012-05-07
Although science fiction literature and art portray extraordinary stories of people interacting with their images behind a mirror, we know that they are not real and belong to the realm of fantasy. However, it is well known that charges or magnets near a good electrical conductor experience real attractive or repulsive forces, respectively, originating in the interaction with their images. Here, we show strong interaction between an optical microcavity and its image under external illumination. Specifically, we use silicon nanospheres whose high refractive index makes well-defined optical resonances feasible. The strong interaction produces attractive and repulsive forces depending on incident wavelength, cavity-metal separation and resonance mode symmetry. These intense repulsive photonic forces warrant a new kind of optical levitation that allows us to accurately manipulate small particles, with important consequences for microscopy, optical sensing and control of light by light at the nanoscale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qingbo; Liu, Zhengkun, E-mail: zhkliu@ustc.edu.cn; Chen, Huoyao
2015-02-15
To eliminate the eccentricity effect, a new method for measuring the groove density of a variable-line-space grating was adapted. Based on grating equation, groove density is calculated by measuring the internal angles between zeroth-order and first-order diffracted light for two different wavelengths with the same angle of incidence. The measurement system mainly includes two laser sources, a phase plate, plane mirror, and charge coupled device. The measurement results of a variable-line-space grating demonstrate that the experiment data agree well with theoretical values, and the value of measurement error (ΔN/N) is less than 2.72 × 10{sup −4}.
NASA Astrophysics Data System (ADS)
Wang, X.; Robertson, S. H.; Horanyi, M.; NASA Lunar Science Institute: Colorado CenterLunar Dust; Atmospheric Studies
2011-12-01
The Moon does not have a global magnetic field, unlike the Earth, rather it has strong crustal magnetic anomalies. Data from Lunar Prospector and SELENE (Kaguya) observed strong interactions between the solar wind and these localized magnetic fields. In the laboratory, a configuration of a horseshoe permanent magnet below an insulating surface is used as an analogue of lunar crustal magnetic anomalies. Plasmas are created above the surface by a hot filament discharge. Potential distributions are measured with an emissive probe and show complex spatial structures. In our experiments, electrons are magnetized with gyro-radii r smaller than the distance from the surface d (r < d) and ions are un-magnetized with r > d. Unlike negative charging on surfaces with no magnetic fields, the surface potential at the center of the magnetic dipole is found close to the plasma bulk potential. The surface charging is dominated by the cold unmagnetized ions, while the electrons are shielded away. A potential minimum is formed between the center of the surface and the bulk plasma, most likely caused by the trapped electrons between the two magnetic mirrors at the cusps. The value of the potential minimum with respect to the bulk plasma potential decreases with increasing plasma density and neutral pressure, indicating that the mirror-trapped electrons are scattered by electron-electron and electron-neutral collisions. The potential at the two cusps are found to be more negative due to the electrons following the magnetic field lines onto the surface.
New progress of high current gasdynamic ion source (invited).
Skalyga, V; Izotov, I; Golubev, S; Sidorov, A; Razin, S; Vodopyanov, A; Tarvainen, O; Koivisto, H; Kalvas, T
2016-02-01
The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)-the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10(13) cm(-3)) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10(-4)-10(-3) mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.
Charge management for gravitational-wave observatories using UV LEDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollack, S. E.; Turner, M. D.; Schlamminger, S.
Accumulation of electrical charge on the end mirrors of gravitational-wave observatories can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational-wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable plate brought near a plate pendulum suspended from a nonconducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging ofmore » the pendulum with equivalent charging rates of {approx}10{sup 5}e/s, as well as spectral measurements of the pendulum charge resulting in a white noise level equivalent to 3x10{sup 5}e/{radical}(Hz).« less
Infinite charge mobility in muscovite at 300 K
NASA Astrophysics Data System (ADS)
Russell, F. Michael; Archilla, Juan F. R.; Frutos, Fabian; Medina-Carrasco, Santiago
2017-11-01
Evidence is presented for infinite charge mobility in natural crystals of muscovite mica at room temperature. Muscovite has a basic layered structure containing a flat monatomic sheet of potassium sandwiched between mirror silicate layers. It is an excellent electrical insulator. Studies of defects in muscovite crystals indicated that positive charge could propagate over great distances along atomic chains in the potassium sheets in the absence of an applied electric potential. The charge moved in association with anharmonic lattice excitations that moved at about sonic speed and created by nuclear recoil of the radioactive isotope 40K. This was verified by measuring currents passing through crystals when irradiated with energetic alpha particles at room temperature. The charge propagated more than 1000 times the range of the alpha particles of average energy and 250 times the range of channelling particles of maximum energy. The range is limited only by size of the crystal.
Michielsen, Marian E; Smits, Marion; Ribbers, Gerard M; Stam, Henk J; van der Geest, Jos N; Bussmann, Johannes B J; Selles, Ruud W
2011-04-01
To investigate the neuronal basis for the effects of mirror therapy in patients with stroke. 22 patients with stroke participated in this study. The authors used functional MRI to investigate neuronal activation patterns in two experiments. In the unimanual experiment, patients moved their unaffected hand, either while observing it directly (no-mirror condition) or while observing its mirror reflection (mirror condition). In the bimanual experiment, patients moved both hands, either while observing the affected hand directly (no-mirror condition) or while observing the mirror reflection of the unaffected hand in place of the affected hand (mirror condition). A two-factorial analysis with movement (activity vs rest) and mirror (mirror vs no mirror) as main factors was performed to assess neuronal activity resultant of the mirror illusion. Data on 18 participants were suitable for analysis. Results showed a significant interaction effect of movement×mirror during the bimanual experiment. Activated regions were the precuneus and the posterior cingulate cortex (p<0.05 false discovery rate). In this first study on the neuronal correlates of the mirror illusion in patients with stroke, the authors showed that during bimanual movement, the mirror illusion increases activity in the precuneus and the posterior cingulate cortex, areas associated with awareness of the self and spatial attention. By increasing awareness of the affected limb, the mirror illusion might reduce learnt non-use. The fact that the authors did not observe mirror-related activity in areas of the motor or mirror neuron system questions popular theories that attribute the clinical effects of mirror therapy to these systems.
The average motion of a charged particle in a dipole field
NASA Technical Reports Server (NTRS)
Chen, A. J.; Stern, D. P.
1974-01-01
The numerical representation of the average motion of a charged particle trapped in a geomagnetic field is developed. An assumption is made of the conservation of the first two adiabatic invariants where integration is along a field line between mirror points. The averaged motion also involved the parameters defining the magnetic field line to which the particle is attached. Methods involved in obtaining the motion in the equatorial plane of model magnetospheres are based on Hamiltonian functions. The restrictions imposed by the special nature of the dipole field are defined.
Solid state optical microscope
Young, I.T.
1983-08-09
A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.
Solid state optical microscope
Young, Ian T.
1983-01-01
A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.
Systematic review of the effectiveness of mirror therapy in upper extremity function.
Ezendam, Daniëlle; Bongers, Raoul M; Jannink, Michiel J A
2009-01-01
This review gives an overview of the current state of research regarding the effectiveness of mirror therapy in upper extremity function. A systematic literature search was performed to identify studies concerning mirror therapy in upper extremity. The included journal articles were reviewed according to a structured diagram and the methodological quality was assessed. Fifteen studies were identified and reviewed. Five different patient categories were studied: two studies focussed on mirror therapy after an amputation of the upper limb, five studies focussed on mirror therapy after stroke, five studies focussed on mirror therapy with complex regional pain syndrome type 1 (CRPS1) patients, one study on mirror therapy with complex regional pain syndrome type 2 (CRPS2) and two studies focussed on mirror therapy after hand surgery other than amputation. Most of the evidence for mirror therapy is from studies with weak methodological quality. The present review showed a trend that mirror therapy is effective in upper limb treatment of stroke patients and patients with CRPS, whereas the effectiveness in other patient groups has yet to be determined.
Selles, Ruud W; Michielsen, Marian E; Bussmann, Johannes B J; Stam, Henk J; Hurkmans, Henri L; Heijnen, Iris; de Groot, Danielle; Ribbers, Gerard M
2014-09-01
Although most mirror therapy studies have shown improved motor performance in stroke patients, the optimal mirror training protocol still remains unclear. To study the relative contribution of a mirror in training a reaching task and of unilateral and bimanual training with a mirror. A total of 93 stroke patients at least 6 months poststroke were instructed to perform a reaching task as fast and as fluently as possible. They performed 70 practice trials after being randomly allocated to 1 of 5 experimental groups: training with (1) the paretic arm with direct view (Paretic-No Mirror), (2) the nonparetic arm with direct view (Nonparetic-No Mirror), (3) the nonparetic arm with mirror reflection (Nonparetic Mirror), (4) both sides and with a nontransparent screen preventing visual control of paretic side (Bilateral-Screen), and (5) both sides with mirror reflection of the nonparetic arm (Bilateral-Mirror). As baseline and follow-up, patients performed 6 trials using only their paretic side. Primary outcome measure was the movement time. We found the largest intervention effect in the Paretic-No Mirror condition. However, the Nonparetic-Mirror condition was not significantly different from the Paretic-No Mirror condition, while the Unaffected-No Mirror condition had significantly less improvement than the Paretic-No Mirror condition. In addition, movement time improved significantly less in the bimanual conditions and there was no difference between both bimanual conditions or between both mirror conditions. The present study confirms that using a mirror reflection can facilitate motor learning. In this task, bimanual movement using mirror training was less effective than unilateral training. © The Author(s) 2014.
Surface Plasmon Polariton Dependence on Metal Surface Morphology
2007-11-13
is equipped with a high efficiency collector consisting of a parabolic mirror and light guide (2, Fig. 8), which is directly coupled to the... compound of bφ = 0.7 eV and all other values as previously defined, a linear decrease in sheet charge is expected with a maximum value at Vg=0 and
Isospin Symmetry Along The N=Z Line In The sd Shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Della Vedova, F.; Lenzi, S. M.; Farnea, E.
2005-04-05
Excited states have been studied in sd-shell nuclei following the 16O (70 MeV) + 24Mg (400 {mu}g/cm2) fusion-evaporation reaction. The GASP spectrometer in conjunction with the charged-particle detector ISIS and the Neutron ring allowed the detection of the {gamma}-rays in coincidence with evaporated light particles. New data on the mirror pairs A=31 and A=35 have been obtained. In particular, the comparison between the level schemes of 35Ar and 35Cl has confirmed the importance of the electromagnetic spin-orbit term, which explains the large Mirror Energy Difference values. Evidence of isospin mixing can be deduced from the E1 transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veselov, D A; Pikhtin, N A; Lyutetskiy, A V
2015-07-31
We report an experimental study of power characteristics of semiconductor lasers based on MOVPE-grown asymmetric separate-confinement heterostructures with a broadened waveguide as functions of cavity length, stripe contact width and mirror reflectivities. It is shown that at high current pump levels, the variation of the cavity parameters of a semiconductor laser (width, length and mirror reflectivities) influences the light – current (L – I) characteristic saturation and maximum optical power by affecting such laser characteristics, as the current density and the optical output loss. A model is elaborated and an optical power of semiconductor lasers is calculated by taking intomore » account the dependence of the internal optical loss on pump current density and concentration distribution of charge carriers and photons along the cavity axis of the cavity. It is found that only introduction of the dependence of the internal optical loss on pump current density to the calculation model provides a good agreement between experimental and calculated L – I characteristics for all scenarios of variations in the laser cavity parameters. (lasers)« less
PYROTRON WITH TRANSLATIONAL CLOSURE FIELDS
Hartwig, E.C.; Cummings, D.B.; Post, R.F.
1962-01-01
Circuit means is described for effecting inward transla- ' tory motion of the intensified terminal reflector field regions of a magnetic mirror plasma containment field with a simultaneous intensification of the over-all field configuration. The circuit includes a segmented magnetic field generating solenoid and sequentially actuated switch means to consecutively short-circuit the solenoid segments and place charged capacitor banks in shunt with the segments in an appropriate correlated sequence such that electrical energy is transferred inwardly between adjacent segments from the opposite ends of the solenoid. The resulting magnetic field is effective in both radially and axially adiabatically compressing a plasma in a reaction chamber disposed concentrically within the solenoid. In addition, one half of the circuit may be employed to unidirectionally accelerate plasma. (AEC)
Effects of turbulence on a kinetic auroral arc model
NASA Technical Reports Server (NTRS)
Cornwall, J. M.; Chiu, Y. T.
1981-01-01
A plasma kinetic model of an inverted-V auroral arc structure which includes the effects of electrostatic turbulence is proposed. In the absence of turbulence, a parallel potential drop is supported by magnetic mirror forces and charge quasi neutrality, with energetic auroral ions penetrating to low altitudes; relative to the electrons, the ions' pitch angle distribution is skewed toward smaller pitch angles. The electrons energized by the potential drop form a current which excites electrostatic turbulence. In equilibrium the plasma is marginally stable. The conventional anomalous resistivity contribution to the potential drop is very small. Anomalous resistivity processes are far too dissipative to be powered by auroral particles. It is concluded that under certain circumstances equilibrium may be impossible and relaxation oscillations set in.
NASA Astrophysics Data System (ADS)
Zago, Lorenzo; Genequand, Pierre M.; Moerschell, Joseph
1998-08-01
SOFIA is a 2.5-m telescope to be carried on a special Boeing 747 for airborne observations at about 15'000 m. The paper describes the main features of the secondary mirror unit. The SOFIA secondary mirror needs active control for alignment along five degrees of freedom as well as for very fast chopping with a frequency up to 20 Hz. Moreover the general optical concept and the housing of the telescope inside a Boeing 747 have required the design of a very compact mechanism: indeed while the secondary mirror has a diameter of 350 mm the entire height of the secondary mirror unit (including the mirror) cannot be greater than 300 mm, which makes the SOFIA design much more compact than any other similar project. The objective is achieved by a very tight integration between a novel hexapod mechanism, in charge of tilt offsets and alignment along 3 axes, and a fast chopping mechanism based on advanced flexure structure technology. In the hexapod mechanism (which is in fact capable of 6-dof), the six linear actuators are arranged in an original geometry in order to leave as much space as possible to the overlying chopping system. Also, the actuators' `hinges' are here materialized by flexure elements. Three motorized levers are linked by flexure elements to the mirror isostatic interface as well as to a reaction ring for compensating angular momentum, which is mechanically driven together with the mirror. This a major difference from other designs (e.g. Keck or VLT) where the compensation mass is driven and controlled separately. The SOFIA solution obtains thus various advantages in term of used volume and has a simpler control system. Various details of the chopping mechanism are provided in the paper. Simulation preliminary results are also given.
Effects of Small Oscillations on the Effective Area
NASA Astrophysics Data System (ADS)
Cotroneo, V.; Conconi, P.; Cusumano, G.; Pareschi, G.; Spiga, D.; Tagliaferri, G.
2009-05-01
We analyze the effective area of the Simbol-X mirrors as a function of the off-axis angle for small oscillations. A reduction is expected due to: 1) geometrical effects, because some of the photons miss the secondary mirror surface; 2) reflectivity effects, caused by the variation of the coating reflectivity with the incidence angle. The former are related to the length of the two mirror surfaces, and can be reduced by making the secondary mirror longer. The second ones are energy-dependent, and strongly related to the characteristics of the reflecting coating. These effects are analyzed by means of ray-tracing simulations in order to optimize the mirror and coating design, aiming to improve the effective area stability.
Lensless imaging for wide field of view
NASA Astrophysics Data System (ADS)
Nagahara, Hajime; Yagi, Yasushi
2015-02-01
It is desirable to engineer a small camera with a wide field of view (FOV) because of current developments in the field of wearable cameras and computing products, such as action cameras and Google Glass. However, typical approaches for achieving wide FOV, such as attaching a fisheye lens and convex mirrors, require a trade-off between optics size and the FOV. We propose camera optics that achieve a wide FOV, and are at the same time small and lightweight. The proposed optics are a completely lensless and catoptric design. They contain four mirrors, two for wide viewing, and two for focusing the image on the camera sensor. The proposed optics are simple and can be simply miniaturized, since we use only mirrors for the proposed optics and the optics are not susceptible to chromatic aberration. We have implemented the prototype optics of our lensless concept. We have attached the optics to commercial charge-coupled device/complementary metal oxide semiconductor cameras and conducted experiments to evaluate the feasibility of our proposed optics.
Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Kim, J. E.; Lim, H.; Nam, J. W.; Brandt, S.; Budtz-Jørgensen, C.; Castro-Tirado, A. J.; Chen, P.; Choi, H. S.; Grossan, B.; Huang, M. A.; Jeong, S.; Jung, A.; Kim, M. B.; Kim, S.-W.; Lee, J.; Linder, E. V.; Liu, T.-C.; Na, G. W.; Panasyuk, M. I.; Park, I. H.; Ripa, J.; Reglero, V.; Smoot, G. F.; Svertilov, S.; Vedenkin, N.; Yashin, I.
2013-07-01
The Slewing Mirror Telescope (SMT) was proposed for rapid response to prompt UV/optical photons from Gamma-Ray Bursts (GRBs). The SMT is a key component of the Ultra-Fast Flash Observatory (UFFO)-pathfinder, which will be launched aboard the Lomonosov spacecraft at the end of 2013. The SMT utilizes a motorized mirror that slews rapidly forward to its target within a second after triggering by an X-ray coded mask camera, which makes unnecessary a reorientation of the entire spacecraft. Subsequent measurement of the UV/optical is accomplished by a 10 cm aperture Ritchey-Chrètien telescope and the focal plane detector of Intensified Charge-Coupled Device (ICCD). The ICCD is sensitive to UV/optical photons of 200-650 nm in wavelength by using a UV-enhanced S20 photocathode and amplifies photoelectrons at a gain of 104-106 in double Micro-Channel Plates. These photons are read out by a Kodak KAI-0340 interline CCD sensor and a CCD Signal Processor with 10-bit Analog-to-Digital Converter. Various control clocks for CCD readout are implemented using a Field Programmable Gate Array (FPGA). The SMT readout is in charge of not only data acquisition, storage and transfer, but also control of the slewing mirror, the ICCD high voltage adjustments, power distribution, and system monitoring by interfacing to the UFFO-pathfinder. These functions are realized in the FPGA to minimize power consumption and to enhance processing time. The SMT readout electronics are designed and built to meet the spacecraft's constraints of power consumption, mass, and volume. The entire system is integrated with the SMT optics, as is the UFFO-pathfinder. The system has been tested and satisfies the conditions of launch and those of operation in space: those associated with shock and vibration and those associated with thermal and vacuum, respectively. In this paper, we present the SMT readout electronics: the design, construction, and performance, as well as the results of space environment test.
Method for making glass nonfogging
Lord, David E.; Carter, Gary W.; Petrini, Richard R.
1979-01-01
A method for rendering glass nonfogging (to condensation fog) by sandwiching the glass between two electrodes such that the glass functions as the dielectric of a capacitor, a large alternating current (AC) voltage is applied across the electrodes for a selected time period causing the glass to absorb a charge, and the electrodes are removed. The glass absorbs a charge from the electrodes rendering it nonfogging. The glass surface is undamaged by application of the AC voltage, and normal optical properties are unaffected. This method can be applied to optical surfaces such as lenses, auto windshields, mirrors, etc., wherever condensation fog on glass is a problem.
NASA Technical Reports Server (NTRS)
Schaffer, L.; Burns, J. A.
1994-01-01
We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Fianlly, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.
The effects of a convex rear-view mirror on ocular accommodative responses.
Nagata, Tatsuo; Iwasaki, Tsuneto; Kondo, Hiroyuki; Tawara, Akihiko
2013-11-01
Convex mirrors are universally used as rear-view mirrors in automobiles. However, the ocular accommodative responses during the use of these mirrors have not yet been examined. This study investigated the effects of a convex mirror on the ocular accommodative systems. Seven young adults with normal visual functions were ordered to binocularly watch an object in a convex or plane mirror. The accommodative responses were measured with an infrared optometer. The average of the accommodation of all subjects while viewing the object in the convex mirror were significantly nearer than in the plane mirror, although all subjects perceived the position of the object in the convex mirror as being farther away. Moreover, the fluctuations of accommodation were significantly larger for the convex mirror. The convex mirror caused the 'false recognition of distance', which induced the large accommodative fluctuations and blurred vision. Manufactures should consider the ocular accommodative responses as a new indicator for increasing automotive safety. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
New progress of high current gasdynamic ion source (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A.
2016-02-15
The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma withmore » significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.« less
[Mirror therapy in hemiplegic patient].
Lisalde-Rodríguez, María Elena; Garcia-Fernández, José Antonio
2016-01-01
Mirror therapy is a relatively new intervention, every time more used and with easy access for the rehabilitation treatment of stroke patient. The patient moves the unaffected limb in front of a mirror watching the reflection of that move as if he was moving de affected limb. To analyze the effectiveness of mirror therapy in the sensorimotor function, hemineglect and activities of daily living of stroke patients. We defined a strategy of bibliography search in Medline, EMBASE, PEDro y Cochrane Central Register of Controlled Trials (CENTRAL) looking for randomised controlled trials (RCT) conducted with hemiplegic patients considering mirror therapy as the main rehabilitation intervention. Seven trials met the inclusion criteria with medium-high methodological quality. Most of them evaluate the mirror therapy effect on motor outcomes showing significant improvements. Three of this RCTs evaluate the effect of mirror therapy on the hemineglect with positive result. A combination of mirror therapy with conventional rehabilitation obtained significant improvements mainly in motor function but not that much on sensory function and functional performance. About the effect of mirror therapy on hemineglect, there are significant improvements but supported only with a few RCTs with small sample sizes producing promising but inconclusive results.
NASA Astrophysics Data System (ADS)
Lemaire, Joseph; Pierrard, Viviane; Darrouzet, Fabien
2013-04-01
Using European arrays of magnetometers and the cross-phase analysis to determine magnetic field line resonance frequencies, it has been found by Kale et al. (2009) that the plasma mass density within plasmaspheric flux tubes increased rapidly after the SSC of the Hallowe'en 2003 geomagnetic storms. These observations tend to confirm other independent experimental results, suggesting that heavy ion up-flow from the ionosphere is responsible for the observed plasma density increases during main phases of geomagnetic storms. The aim of our contribution is to point out that, during main phases, reversible Betatron effect induced by the increase of the southward Dst-magnetic field component (|Δ Bz|), diminishes slightly the perpendicular kinetic energy (W?) of charged particles spiraling along field lines. Furthermore, due to the conservation of the first adiabatic invariant (μ = Wm/ Bm) the mirror points of all ionospheric ions and electrons are lifted up to higher altitudes i.e. where the mirror point magnetic field (Bm) is slightly smaller. Note that the change of the mirror point altitude is given by: Δ hm = -1/3 (RE + hm) Δ Bm / Bm. It is independent of the ion species and it does not depend of their kinetic energy. The change of kinetic energy is determined by: Δ Wm = Wm Δ Bm / Bm. Both of these equations have been verified numerically by Lemaire et al. (2005; doi: 10.1016/S0273-1177(03)00099-1) using trajectory calculations in a simple time-dependant B-field model: i.e. the Earth's magnetic dipole, plus an increasing southward B-field component: i.e. the Dst magnetic field whose intensity becomes more and more negative during the main phase of magnetic storms. They showed that a variation of Bz (or Dst) by more than - 50 nT significantly increases the mirror point altitudes by more than 100 km which is about equal to scale height of the plasma density in the topside ionosphere where particles are almost collisionless (see Fig. 2 in Lemaire et al., 2005). From these theoretical results we infer that all ionospheric electrons and ions species (including the O+ ions) experience an outward flow along geomagnetic field lines whose angle of dip is not too large. Since above 500 km altitude the various ions densities decrease almost exponentially with altitude with characteristic scale heights (Hions) of the order of 100 km or less, the main phase uplift of all mirror points increases the local mass density all along these field lines. This changes the plasmaspheric concentrations of the O+ ions as well as of others heavy ions in the topside ionosphere and plasmasphere. We will outline experimental tests to check this new hypothesis and physical mechanism to enhance the plasma mass density during the main phases of geomagnetic storms. A subsequent decrease of the plasma ion mass density is expected following the geomagnetic storm event, due to inverse Betatron effect during the recovery phase, and due to the effect of gravity pulling the heavier ions back to lower altitudes.
Systematic review of the effects of mirror therapy in children with cerebral palsy.
Park, Eom-Ji; Baek, Soon-Hyung; Park, Soohee
2016-11-01
[Purpose] To provide data for systematic intervention plans in occupational therapy practice by objectivity showing the value of mirror therapy interventions in children with cerebral palsy. [Subjects and Methods] Medline and EMBASE databases were searched for the key words "cerebral palsy," "mirror movement," "mirror therapy," and "mirror visual feedback." Nine studies that met the inclusion and exclusion criteria were identified. The qualitatively determined level of evidence, period of research, comparisons and interventions, tools used to measure the intervention, and the effects were analyzed. [Results] According to the results analyzed, one (1/9, 11.1%) study showed the same result as the control group, one (1/9, 11.1%) showed a negative effect, and seven (7/9, 77.8%) showed positive effects of mirror-mediated therapy, with meaningful improvement in function, such as hand strength, movement speed, muscle activity, and accuracy of hand matching. [Conclusion] Through this study, the value of mirror-mediated therapeutic interventions in occupational therapy practice targeting cerebral palsy was confirmed. It is expected that this result will be useful in establishing mirror therapy as an interventional program.
Vacuum-induced quantum memory in an opto-electromechanical system
NASA Astrophysics Data System (ADS)
Qin, Li-Guo; Wang, Zhong-Yang; Wu, Shi-Chao; Gong, Shang-Qing; Ma, Hong-Yang; Jing, Jun
2018-03-01
We propose a scheme to implement electrically controlled quantum memory based on vacuum-induced transparency (VIT) in a high-Q tunable cavity, which is capacitively coupled to a mechanically variable capacitor by a charged mechanical cavity mirror as an interface. We analyze the changes of the cavity photons arising from vacuum-induced-Raman process and discuss VIT in an atomic ensemble trapped in the cavity. By slowly adjusting the voltage on the capacitor, the VIT can be adiabatically switched on or off, meanwhile, the transfer between the probe photon state and the atomic spin state can be electrically and adiabatically modulated. Therefore, we demonstrate a vacuum-induced quantum memory by electrically manipulating the mechanical mirror of the cavity based on electromagnetically induced transparency mechanism.
Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions.
Uralcan, Betul; Aksay, Ilhan A; Debenedetti, Pablo G; Limmer, David T
2016-07-07
We use molecular dynamics simulations in a constant potential ensemble to study the effects of solution composition on the electrochemical response of a double layer capacitor. We find that the capacitance first increases with ion concentration following its expected ideal solution behavior but decreases upon approaching a pure ionic liquid in agreement with recent experimental observations. The nonmonotonic behavior of the capacitance as a function of ion concentration results from the competition between the independent motion of solvated ions in the dilute regime and solvation fluctuations in the concentrated regime. Mirroring the capacitance, we find that the characteristic decay length of charge density correlations away from the electrode is also nonmonotonic. The correlation length first decreases with ion concentration as a result of better electrostatic screening but increases with ion concentration as a result of enhanced steric interactions. When charge fluctuations induced by correlated ion-solvent fluctuations are large relative to those induced by the pure ionic liquid, such capacitive behavior is expected to be generic.
Study of negative ion transport phenomena in a plasma source
NASA Astrophysics Data System (ADS)
Riz, D.; Paméla, J.
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.
Simultaneous PET and Multispectral 3-Dimensional Fluorescence Optical Tomography Imaging System
Li, Changqing; Yang, Yongfeng; Mitchell, Gregory S.; Cherry, Simon R.
2015-01-01
Integrated PET and 3-dimensional (3D) fluorescence optical tomography (FOT) imaging has unique and attractive features for in vivo molecular imaging applications. We have designed, built, and evaluated a simultaneous PET and 3D FOT system. The design of the FOT system is compatible with many existing small-animal PET scanners. Methods The 3D FOT system comprises a novel conical mirror that is used to view the whole-body surface of a mouse with an electron-multiplying charge-coupled device camera when a collimated laser beam is projected on the mouse to stimulate fluorescence. The diffusion equation was used to model the propagation of optical photons inside the mouse body, and 3D fluorescence images were reconstructed iteratively from the fluorescence intensity measurements measured from the surface of the mouse. Insertion of the conical mirror into the gantry of a small-animal PET scanner allowed simultaneous PET and 3D FOT imaging. Results The mutual interactions between PET and 3D FOT were evaluated experimentally. PET has negligible effects on 3D FOT performance. The inserted conical mirror introduces a reduction in the sensitivity and noise-equivalent count rate of the PET system and increases the scatter fraction. PET–FOT phantom experiments were performed. An in vivo experiment using both PET and FOT was also performed. Conclusion Phantom and in vivo experiments demonstrate the feasibility of simultaneous PET and 3D FOT imaging. The first in vivo simultaneous PET–FOT results are reported. PMID:21810591
On the emission of radiation by an isolated vibrating metallic mirror
NASA Astrophysics Data System (ADS)
Arkhipov, M. V.; Babushkin, I.; Pul'kin, N. S.; Arkhipov, R. M.; Rosanov, N. N.
2017-04-01
Quantum electrodynamics predicts the appearance of radiation in an empty cavity in which one of the mirrors is vibrating. It also predicts the appearance of radiation from an isolated vibrating mirror. Such effects can be described within the framework of classical electrodynamics. We present the qualitative explanation of the effect, along with the results of numerical simulation of the emission of radiation by an isolated vibrating metallic mirror, which can be induced by mirror illumination by an ultrashort pulse of light. The dynamics of conduction electrons in the metallic mirror is described by the classical Drude model. Simulation was performed for the cases of mirror illumination by either a bipolar or a unipolar pulse.
Commissioning and first results of the NA62 RICH
NASA Astrophysics Data System (ADS)
Lenti, M.; NA62 RICH Working Group
2016-12-01
The NA62 experiment at CERN has been constructed to measure the ultra rare charged kaon decay into a charged pion and two neutrinos with a 10% uncertainty. The main background is the charged kaon decay into a muon and a neutrino which is suppressed by kinematic tools using a magnetic spectrometer and by the different stopping power of muons and pions in the calorimeters. A RICH detector is needed to further suppress the μ+ contamination in the π+ sample by a factor of at least 100 between 15 and 35 GeV/c momentum, to measure the pion crossing time with a resolution of about 100 ps and to produce the trigger for a charged track. The detector consists of a 17 m long tank (vessel), filled with neon gas at atmospheric pressure. Cherenkov light is reflected by a mosaic of 20 spherical mirrors with 17 m focal length, placed at the downstream end, and collected by 1952 photomultipliers (PMTs) placed at the upstream end. The RICH detector installation was completed in the summer of 2014 and the detector was used for the first time during the pilot run at the end of 2014. The RICH was then operated during the NA62 Commissioning Run in 2015 and in the 2016 Physics Run. It must be noted that in 2014 and 2015 the RICH mirror alignment was not optimal and the need of a better performance in the pion-muon separation was the main reason for the detector maintenance carried out in the 2015-2016 winter shutdown. In this contribution the construction of the detector will be described and the performance reached during the 2014-2015 data-taking will be discussed; preliminary results from the 2016 data-taking will also be shown.
Flux Compression Magnetic Nozzle
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)
2001-01-01
In pulsed fusion propulsion schemes in which the fusion energy creates a radially expanding plasma, a magnetic nozzle is required to redirect the radially diverging flow of the expanding fusion plasma into a rearward axial flow, thereby producing a forward axial impulse to the vehicle. In a highly electrically conducting plasma, the presence of a magnetic field B in the plasma creates a pressure B(exp 2)/2(mu) in the plasma, the magnetic pressure. A gradient in the magnetic pressure can be used to decelerate the plasma traveling in the direction of increasing magnetic field, or to accelerate a plasma from rest in the direction of decreasing magnetic pressure. In principle, ignoring dissipative processes, it is possible to design magnetic configurations to produce an 'elastic' deflection of a plasma beam. In particular, it is conceivable that, by an appropriate arrangement of a set of coils, a good approximation to a parabolic 'magnetic mirror' may be formed, such that a beam of charged particles emanating from the focal point of the parabolic mirror would be reflected by the mirror to travel axially away from the mirror. The degree to which this may be accomplished depends on the degree of control one has over the flux surface of the magnetic field, which changes as a result of its interaction with a moving plasma.
Flat-field anastigmatic mirror objective for high-magnification extreme ultraviolet microscopy
NASA Astrophysics Data System (ADS)
Toyoda, Mitsunori
2015-08-01
To apply high-definition microscopy to the extreme ultraviolet (EUV) region in practice, i.e. to enable in situ observation of living tissue and the at-wavelength inspection of lithography masks, we constructed a novel reflective objective made of three multilayer mirrors. This objective is configured as a two-stage imaging system made of a Schwarzschild two-mirror system as the primary objective and an additional magnifier with a single curved mirror. This two-stage configuration can provide a high magnification of 1500, which is suitable for real-time observation with an EUV charge coupled device (CCD) camera. Besides, since off-axis aberrations can be corrected by the magnifier, which provides field flattener optics, we are able to configure the objective as a flat-field anastigmatic system, in which we will have a diffraction-limited spatial resolution over a large field-of-view. This paper describes in detail the optical design of the present objective. After calculating the closed-form equations representing the third-order aberrations of the objective, we apply these equations to practical design examples with a numerical aperture of 0.25 and an operation wavelength of 13.5 nm. We also confirm the imaging performances of this novel design by using the numerical ray-tracing method.
[Mirror therapy for inflammatory rheumatic pain: Potentials and limitations].
Bekrater-Bodmann, R
2015-11-01
Mirror therapy reduces chronic pain and might also be suitable for the treatment of inflammatory rheumatic pain. On the basis of the relevant literature this article a) characterizes the universal alterations in body perception and body representation in chronic pain, b) describes the potential mechanisms underlying mirror therapy and c) discusses the chances of success of mirror therapy for the treatment of inflammatory rheumatic pain. Literature search on the effectiveness and mechanisms of mirror therapy and derived procedures for the potential treatment of pain in inflammatory rheumatic disorders. There is evidence that mirror therapy can alleviate chronic pain experiences by correcting the accompanying distorted body perception as well as body representation by multimodal sensory stimulation. As there is probably a similar distortion in persons with chronic pain related to inflammatory rheumatic disorders, mirror therapy might also have positive effects in this field; however, the accompanying characteristics of these disorders, such as motor impairment and motor-evoked pain, may complicate the implementation of this kind of treatment. Mirror therapy represents an intervention with few side effects and might have positive effects on the experience of chronic pain in patients with inflammatory rheumatic disorders. Further clinical research is required in order to evaluate the potential of mirror therapy and associated interventional methods for the treatment of inflammatory rheumatic pain.
Impedance Matched to Vacuum, Invisible Edge, Diffraction Suppressed Mirror
NASA Technical Reports Server (NTRS)
Hagopian, John G. (Inventor); Roman, Patrick A. (Inventor); Shiri, Sharham (Inventor); Wollack, Edward J. (Inventor)
2015-01-01
Diffraction suppressed mirrors having an invisible edge are disclosed for incident light at both targeted wavelengths and broadband incident light. The mirrors have a first having at least one discontiguous portion having a plurality of nanostructured apertures. The discontiguous mirror portion impedance matches a relatively high impedance portion of the mirror to a relatively low impedance portion of the mirror, thereby reducing the diffraction edge effect otherwise present in a conventional mirror.
Voltage-controlled surface wrinkling of elastomeric coatings.
van den Ende, Daan; Kamminga, Jan-Dirk; Boersma, Arjen; Andritsch, Thomas; Steeneken, Peter G
2013-07-05
Wrinkling of elastomeric coatings by an electric field is reported. The associated changes in the coating's optical properties yield switchable mirrors and windows. The field Ec needed to induce wrinkling is a factor of 4.4 lower than the theoretically predicted value, which is attributed to space-charge injection. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Report to the Congress on the Strategic Defense Initiative, 1991
1991-05-01
ultraviolet, and infrared radiation-hardened charge-coupled device images , step-stare sensor signal processing algorithms , and processor...Demonstration Experiment (LODE) resolved central issues associated with wavefront sensing and control and the 4-meter I Large Advanced Mirror Program (LAMP...21 Figure 4-16 Firepond CO 2 Imaging Radar Demonstration .......................... 4-22 Figure 4-17 IBSS and the Shuttle
A magnetic diverter for charged particle background rejection in the SIMBOL-X telescope
NASA Astrophysics Data System (ADS)
Spiga, D.; Fioretti, V.; Bulgarelli, A.; Dell'Orto, E.; Foschini, L.; Malaguti, G.; Pareschi, G.; Tagliaferri, G.; Tiengo, A.
2008-07-01
Minimization of charged particle background in X-ray telescopes is a well known issue. Charged particles (chiefly protons and electrons) naturally present in the cosmic environment constitute an important background source when they collide with the X-ray detector. Even worse, a serious degradation of spectroscopic performances of the X-ray detector was observed in Chandra and Newton-XMM, caused by soft protons with kinetic energies ranging between 100 keV and some MeV being collected by the grazing-incidence mirrors and funneled to the detector. For a focusing telescope like SIMBOL-X, the exposure of the soft X-ray detector to the proton flux can increase significantly the instrumental background, with a consequent loss of sensitivity. In the worst case, it can also seriously compromise the detector duration. A well-known countermeasure that can be adopted is the implementation of a properly-designed magnetic diverter, that should prevent high-energy particles from reaching the focal plane instruments of SIMBOL-X. Although Newton-XMM and Swift-XRT are equipped with magnetic diverters for electrons, the magnetic fields used are insufficient to effectively act on protons. In this paper, we simulate the behavior of a magnetic diverter for SIMBOL-X, consisting of commercially-available permanent magnets. The effects of SIMBOL-X optics is simulated through GEANT4 libraries, whereas the effect of the intense required magnetic fields is simulated along with specifically-written numerical codes in IDL.
Method of forming structural heliostat
Anderson, Alfred J.
1984-06-26
In forming a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement characterized by a method of forming the mirror module in which the mirror is laid upon a solid rigid supporting bed in one or more sections, with or without focusing; a mirror backing sheet is applied by first applying respective thin layers of silicone grease and, thereafter, progressively rolling application to eliminate air bubbles; followed by affixing of a substrate assembly to the mirror backing sheet to form a mirror module that does not curve because of thermally induced stresses and differential thermal expansion or contraction effects. The silicone grease also serves to dampen fluttering of the mirror and protect the mirror backside against adverse effects of the weather. Also disclosed are specific details of preferred embodiments.
The effects of thermal gradients on the Mars Observer Camera primary mirror
NASA Technical Reports Server (NTRS)
Applewhite, Roger W.; Telkamp, Arthur R.
1992-01-01
The paper discusses the effect of thermal gradients on the optical performance of the primary mirror of Mars Observer Camera (MOC), which will be launched on the Mars Observer spacecraft in September 1992. It was found that mild temperature gradients can have a large effect on the mirror surface figure, even for relatively low coefficient-of-thermal-expansion materials. However, in the case of the MOC primary mirror, it was found that the radius of curvature (ROC) of the reflective surface of the mirror changed in a nearly linear fashion with the radial temperature gradient, with little additional aberration. A solid-state ROC controller using the thermal gradient effect was implemented and verified.
The design research of the test support structure for a large-diameter main mirror
NASA Astrophysics Data System (ADS)
Shi, Jiao-hong; Luo, Shi-kui; Ren, Hai-pei; Tang, Lu; Luo, Ting-yun; Mao, Yi-feng
2018-01-01
The accuracy of the main mirror surface shape measurement on ground is vital because of the importance of the main mirror in a optical remote sensor. Generally speaking, the main effects of the mirror surface shape measurement accuracy are due to the optical measurement system and support structure. The aim of this thesis is researching the design of the mirror shape measurement support structure. The main mirror discussed in this paper equipped with 650mm diameter. The requirements of PV and RMS for surface shape are no more than 0.136λ and 0.017λ respectively while λ is determined as 632.8nm. At present, the on ground adjustment methods of camera lens are optical axis horizontal and gravity discharging. In order to make the same condition between camera lens adjustment and main mirror operating, the surface shape measurement of main mirror should keep optical axis horizontal condition for mirror either. The support structure of the mirror introduced in this paper is able to extremely reduce the surface shape distortion caused by the effects of support structure mostly. According to the simulating calculation, the variation of main mirror surface shape is no more than 0.001λ. The result is acceptable for camera adjustment. Based on the measurement support structure mentioned before, the main mirror could rotate 360-degree under the condition of optical axis horizontal; the four-direction measurement for mirror is achieved. Eliminate the effects of ground gravity for surface shape measurement data, the four-direction mirror shape error is controlled no more than 0.001λ on this support structure which calculated by simulation.
Systematic review of the effects of mirror therapy in children with cerebral palsy
Park, Eom-ji; Baek, Soon-hyung; Park, Soohee
2016-01-01
[Purpose] To provide data for systematic intervention plans in occupational therapy practice by objectivity showing the value of mirror therapy interventions in children with cerebral palsy. [Subjects and Methods] Medline and EMBASE databases were searched for the key words “cerebral palsy,” “mirror movement,” “mirror therapy,” and “mirror visual feedback.” Nine studies that met the inclusion and exclusion criteria were identified. The qualitatively determined level of evidence, period of research, comparisons and interventions, tools used to measure the intervention, and the effects were analyzed. [Results] According to the results analyzed, one (1/9, 11.1%) study showed the same result as the control group, one (1/9, 11.1%) showed a negative effect, and seven (7/9, 77.8%) showed positive effects of mirror-mediated therapy, with meaningful improvement in function, such as hand strength, movement speed, muscle activity, and accuracy of hand matching. [Conclusion] Through this study, the value of mirror-mediated therapeutic interventions in occupational therapy practice targeting cerebral palsy was confirmed. It is expected that this result will be useful in establishing mirror therapy as an interventional program. PMID:27942154
Henderson, Douglas; Silvestre-Alcantara, Whasington; Kaja, Monika; ...
2016-08-18
Here, the density functional theory is applied to a study of the structure and differential capacitance of a planar electric double layer formed by a valency asymmetric mixture of charged dimers and monomers. The dimer consists of two tangentially tethered hard spheres of equal diameters of which one is charged and the other is neutral, while the monomer is a charged hard sphere of the same size. The dimer electrolyte is next to a uniformly charged, smooth planar electrode. The electrode-particle singlet distributions, the mean electrostatic potential, and the differential capacitance for the model double layer are evaluated for amore » 2:1/1:2 valency electrolyte at a given concentration. Important consequences of asymmetry in charges and in ion shapes are (i) a finite, non-zero potential of zero charge, and (ii) asymmetric shaped 2:1 and 1:2 capacitance curves which are not mirror images of each other. Comparisons of the density functional results with the corresponding Monte Carlo simulations show the theoretical predictions to be in good agreement with the simulations overall except near zero surface charge.« less
Zaïm, N; Thévenet, M; Lifschitz, A; Faure, J
2017-09-01
We propose a method to generate femtosecond, relativistic, and high-charge electron bunches using few-cycle and tightly focused radially polarized laser pulses. In this scheme, the incident laser pulse reflects off an overdense plasma that injects electrons into the reflected pulse. Particle-in-cell simulations show that the plasma injects electrons ideally, resulting in a dramatic increase of charge and energy of the accelerated electron bunch in comparison to previous methods. This method can be used to generate femtosecond pC bunches with energies in the 1-10 MeV range using realistic laser parameters corresponding to current kHz laser systems.
Carbon Nanotube/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation
NASA Technical Reports Server (NTRS)
Smith, J. G., Jr.; Watson, K. A.; Thompson, C. M.; Connell, J. W.
2002-01-01
Low solar absorptivity, space environmentally stable polymeric materials possessing sufficient electrical conductivity for electrostatic charge dissipation (ESD) are of interest for potential applications on spacecraft as thin film membranes on antennas, solar sails, large lightweight space optics, and second surface mirrors. One method of imparting electrical conductivity while maintaining low solar absorptivity is through the use of single wall carbon nanotubes (SWNTs). However, SWNTs are difficult to disperse. Several preparative methods were employed to disperse SWNTs into the polymer matrix. Several examples possessed electrical conductivity sufficient for ESD. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.
2016-03-07
This final rule revises the benefit payment provision for nonparticipating providers to more closely mirror industry practices by requiring TDP nonparticipating providers to be reimbursed (minus the appropriate cost-share) at the lesser of billed charges or the network maximum allowable charge for similar services in that same locality (region) or state. This rule also updates the regulatory provisions regarding dental sealants to clearly categorize them as a preventive service and, consequently, eliminate the current 20 percent cost-share applicable to sealants to conform with the language in the regulation to the statute.
On the Compliance of Simbol-X Mirror Roughness with its Effective Area Requirements
NASA Astrophysics Data System (ADS)
Spiga, D.; Basso, S.; Cotroneo, V.; Pareschi, G.; Tagliaferri, G.
2009-05-01
Surface microroughness of X-ray mirrors is a key issue for the angular resolution of Simbol-X to comply with the required one (<20 arcsec at 30 keV). The maximum tolerable microroughness for Simbol-X mirrors, in order to satisfy the required imaging capability, has already been derived in terms of its PSD (Power Spectral Density). However, also the Effective Area of the telescope is affected by the mirror roughness. In this work we will show how the expected effective area of the Simbol-X mirror module can be computed from the roughness PSD tolerance, checking its compliance with the requirements.
Effects of surface polishing on the microstrain behavior of telescope mirror materials
NASA Technical Reports Server (NTRS)
Eul, W. A.; Woods, W. W.
1973-01-01
Rough ground silicic mirror substrate materials were found in previous investigations to exhibit significant surface yield. This effect was removed by surface etching, a procedure not normally employed in the finishing of optical telescope mirrors. The effects of fine grinding and polishing techniques as well as graded etching are investigated. Torsional shear measurements of yield strain versus stress are made on four candidate mirror substrate materials: polycrystalline silicon, ULE silica 7971, CER-VIT 101, and fused silica 7940. Commonly employed fine grinding and polishing practices are shown to remove a major portion of the surface yield found in rough ground mirror substrate materials.
IR Imaging Study on Heater Performamnce of Outside Rearview Mirrors for Automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; England, Todd W
Adhesive bonded electrical heaters have been used in outside rearview mirrors of automobiles in order to act as defrosters. Entrapment of air pockets between the heater and the mirror can affects the performance and structural integrity of the mirror assembly. Since painting over the mirror is not an option in the production environment, the biggest challenge for IR imaging is to minimize surface reflection. Looking through a smooth, highly reflective first-surface mirror and a 2 mm thick glass without picking up other heat sources in the room, such as people, electronics equipment and the camera itself, requires careful planning andmore » effective shielding. In this paper, we present our method of avoiding mirror reflection and IR images of the heated mirror in operation. Production heaters and heaters with artificial defect were studied. The IR imaging method has shown to be an effective tool for heater quality control and performance studies.« less
Interplanetary missions with the GDM propulsion system
NASA Astrophysics Data System (ADS)
Kammash, T.; Emrich, W.
1998-01-01
The Gasdynamic Mirror (GDM) fusion propulsion system utilizes a magnetic mirror machine in which a hot dense plasma is confined long enough to produce fusion energy while allowing a fraction of its charged particle population to escape from one end to generate thrust. The particles escaping through the opposite end have their energy converted to electric power which can be used to sustain the system in a steady state operation. With the aid of a power flow diagram the minimum demands on energy production can be established and the propulsive capability of the system can be determined by solving an appropriate set of governing equations. We apply these results to several missions within the solar system and compute the trip time by invoking a continuous burn, acceleration/deceleration type of trajectory with constant thrust and specific impulse. Ignoring gravitational effects of the planets or the sun, and neglecting the change in the Earth's position during the flight we compute the round trip time for missions from Earth to Mars, Jupiter, and Pluto using linear distances and certain payload fractions. We find that a round trip to Mars with the GDM rocket takes about 170 days while those to Jupiter and Pluto take 494 and 1566 days respectively.
The effect of mirror therapy on the management of phantom limb pain.
Yıldırım, Meltem; Kanan, Nevin
2016-07-01
In the last two decades, mirror therapy has become a frequently used method of managing phantom limb pain (PLP). However, the role of nurses in mirror therapy has not yet been well defined. This study examined the effect of mirror therapy on the management of PLP, and discusses the importance of mirror therapy in the nursing care of amputee patients. This quasi-experimental study was conducted in the pain management department of a university hospital and a prosthesis clinic in İstanbul, Turkey, with 15 amputee patients who had PLP. Forty minutes of practical mirror therapy training was given to the patients and they were asked to practice at home for 4 weeks. Patients were asked to record the severity of their PLP before and after the therapy each day using 0-10 Numeric Pain Intensity Scale. Mirror therapy practiced for 4 weeks provided a significant decrease in severity of PLP. There was no significant relationship between the effect of mirror therapy and demographic, amputation or PLP-related characteristics. Patients who were not using prosthesis had greater benefit from mirror therapy. Mirror therapy can be used as an adjunct to medical and surgical treatment of PLP. It is a method that patients can practice independently, enhancing self-control over phantom pain. As mirror therapy is a safe, economical, and easy-to-use treatment method, it should be considered in the nursing care plan for patients with PLP.
Guo, Feng; Xu, Qun; Abo Salem, Hassan M; Yao, Yihao; Lou, Jicheng; Huang, Xiaolin
2016-05-15
Recovery in stroke is mediated by neural plasticity. Mirror therapy is an effective method in the rehabilitation of stroke patients, but the mechanism is still obscure. To identify the neural networks associated with the effect of lower-limbs mirror therapy, we investigated a functional magnetic resonance imaging (fMRI) study of mirror-induced visual illusion of ankle movements. Five healthy controls and five left hemiplegic stroke patients performed tasks related to mirror therapy in the fMRI study. Neural activation was compared in a no-mirror condition and a mirror condition. All subjects in the experiment performed the task of flexing and extending the right ankle. In a mirror condition, movement of the left ankle was simulated by mirror reflection of right ankle movement. Changes in neural activation in response to mirror therapy were assessed both in healthy controls and stroke patients. We found strong activation of the motor cortex bilaterally in healthy controls, as well as significant activation of the ipsilateral sensorimotor cortex, the occipital gyrus, and the anterior prefrontal gyrus in stroke patients with respect to the non-mirror condition. We concluded that mirror therapy of ankle movements may induce neural activation of the ipsilesional sensorimotor cortex, and that cortical reorganization may be useful for motor rehabilitation in stroke. Copyright © 2016 Elsevier B.V. All rights reserved.
Natural electroweak breaking from a mirror symmetry.
Chacko, Z; Goh, Hock-Seng; Harnik, Roni
2006-06-16
We present "twin Higgs models," simple realizations of the Higgs boson as a pseudo Goldstone boson that protect the weak scale from radiative corrections up to scales of order 5-10 TeV. In the ultraviolet these theories have a discrete symmetry which interchanges each standard model particle with a corresponding particle which transforms under a twin or a mirror standard model gauge group. In addition, the Higgs sector respects an approximate global symmetry. When this global symmetry is broken, the discrete symmetry tightly constrains the form of corrections to the pseudo Goldstone Higgs potential, allowing natural electroweak symmetry breaking. Precision electroweak constraints are satisfied by construction. These models demonstrate that, contrary to the conventional wisdom, stabilizing the weak scale does not require new light particles charged under the standard model gauge groups.
Moreno-Domínguez, Silvia; Rodríguez-Ruiz, Sonia; Fernández-Santaella, M Carmen; Jansen, Anita; Tuschen-Caffier, Brunna
2012-03-01
While effectiveness of mirror exposure to reduce body dissatisfaction has been demonstrated, the exposure was almost always combined with other interventions. The aim of the study was to evaluate the effectiveness of a pure mirror exposure intervention compared with a guided mirror exposure (participants are guided to describe their body shape in a non-evaluative manner) and an imagery exposure intervention (participants are guided to describe their body through mental representation). Thirty-one women with high body dissatisfaction received five sessions of treatment under one of the three conditions. All interventions reduced body dissatisfaction, but only the mirror exposures successfully reduced the frequency of negative thoughts and feelings of ugliness. Pure mirror exposure was more effective than guided exposure for reducing body discomfort within and between sessions. Pure mirror exposure, based on the traditional extinction paradigm, led to strong emotional activation followed by a fast decrease in emotional reactivity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of exercises on Bell's palsy: systematic review of randomized controlled trials.
Cardoso, Jefferson Rosa; Teixeira, Elsie Cobra; Moreira, Michelle Damasceno; Fávero, Francis Meire; Fontes, Sissy Veloso; Bulle de Oliveira, Acary Souza
2008-06-01
This study examined the effects of facial exercises associated either with mirror or electromyogram (EMG) biofeedback with respect to complications of delayed recovery in Bell's palsy. Patients with unilateral idiopathic facial palsy were included in this review. Facial exercises associated with mirror and/or EMG biofeedback as treatment. Report of facial symmetry, synkinesis, lip mobility, and physical and social aspects. Four studies of 132 met the eligibility criteria. The studies described mime therapy versus control (n = 50), mirror biofeedback exercise versus control (n = 27), "small" mirror movements versus conventional neuromuscular retraining (n = 10), and EMG biofeedback + mirror training versus mirror training alone. The treatment length varied from 1 to 12 months. Because of the small number of randomized controlled trials, it was not possible to analyze if the exercises, associated either with mirror or EMG biofeedback, were effective. In summary, the available evidence from randomized controlled trials is not yet strong enough to become integrated into clinical practice.
Optical transmission for the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Gallagher, Benjamin B.; Nickles, Neal; Copp, Tracy
2012-09-01
The fabrication and coating of the mirrors for the James Webb Space Telescope has been completed. The spectral reflectivity of the protected gold coated beryllium mirrors has been measured. The predicted end-of-life transmission through the telescope builds from these values. The additional phenomena that have been analyzed are contamination effects and effects of the environment for the JWST operation about the Earth-Sun L2 Lagrange libration point. The L2 environment analysis has been based on radiation testing of mirror samples and hypervelocity testing to assess the micrometeoroid impact effects. The mirror showed no change in reflectance over the VIS-SWIR wavelengths after exposure to 6-9 Grad (Si) that simulated 6 years orbiting the L2 Lagrange point. The effects of hypervelocity particle impacts on the mirrors from test data has been extrapolated to the to the anticipated flux characteristics for micrometeoroids at the L2 environment. The results show that the micrometeoroid effects are orders of magnitude below the particulate contamination effects. The final end-of-life transmission for the mirrors including all of these phenomena will meet the performance requirements for JWST.
van de Ruit, Mark; Grey, Michael J.
2017-01-01
Both motor imagery and mirror training have been used in motor rehabilitation settings to promote skill learning and plasticity. As motor imagery and mirror training are suggested to be closely linked, it was hypothesized that mirror training augmented by motor imagery would increase corticospinal excitability (CSE) significantly compared to mirror training alone. Forty-four participants were split over two experimental groups. Each participant visited the laboratory once to receive either mirror training alone or mirror training augmented with layered stimulus response training (LSRT), a type of motor imagery training. Participants performed 16 min of mirror training, making repetitive grasping movements paced by a metronome. Transcranial magnetic stimulation (TMS) mapping was performed before and after the mirror training to test for changes in CSE of the untrained hand. Self-reports suggested that the imagery training was effective in helping the participant to perform the mirror training task as instructed. Nonetheless, neither training type resulted in a significant change of TMS map area, nor was there an interaction between the groups. The results from the study revealed no effect of a single session of 16 min of either mirror training or mirror training enhanced by imagery on TMS map area. Despite the negative result of the present experiment, this does not suggest that either motor imagery or mirror training might be ineffective as a rehabilitation therapy. Further study is required to allow disentangling the role of imagery and action observation in mirror training so that mirror training can be further tailored to the individual according to their abilities. PMID:29311869
van de Ruit, Mark; Grey, Michael J
2017-01-01
Both motor imagery and mirror training have been used in motor rehabilitation settings to promote skill learning and plasticity. As motor imagery and mirror training are suggested to be closely linked, it was hypothesized that mirror training augmented by motor imagery would increase corticospinal excitability (CSE) significantly compared to mirror training alone. Forty-four participants were split over two experimental groups. Each participant visited the laboratory once to receive either mirror training alone or mirror training augmented with layered stimulus response training (LSRT), a type of motor imagery training. Participants performed 16 min of mirror training, making repetitive grasping movements paced by a metronome. Transcranial magnetic stimulation (TMS) mapping was performed before and after the mirror training to test for changes in CSE of the untrained hand. Self-reports suggested that the imagery training was effective in helping the participant to perform the mirror training task as instructed. Nonetheless, neither training type resulted in a significant change of TMS map area, nor was there an interaction between the groups. The results from the study revealed no effect of a single session of 16 min of either mirror training or mirror training enhanced by imagery on TMS map area. Despite the negative result of the present experiment, this does not suggest that either motor imagery or mirror training might be ineffective as a rehabilitation therapy. Further study is required to allow disentangling the role of imagery and action observation in mirror training so that mirror training can be further tailored to the individual according to their abilities.
Looking inside volcanoes with the Imaging Atmospheric Cherenkov Telescopes
NASA Astrophysics Data System (ADS)
Del Santo, M.; Catalano, O.; Cusumano, G.; La Parola, V.; La Rosa, G.; Maccarone, M. C.; Mineo, T.; Sottile, G.; Carbone, D.; Zuccarello, L.; Pareschi, G.; Vercellone, S.
2017-12-01
Cherenkov light is emitted when charged particles travel through a dielectric medium with velocity higher than the speed of light in the medium. The ground-based Imaging Atmospheric Cherenkov Telescopes (IACT), dedicated to the very-high energy γ-ray Astrophysics, are based on the detection of the Cherenkov light produced by relativistic charged particles in a shower induced by TeV photons interacting with the Earth atmosphere. Usually, an IACT consists of a large segmented mirror which reflects the Cherenkov light onto an array of sensors, placed at the focal plane, equipped by fast electronics. Cherenkov light from muons is imaged by an IACT as a ring, when muon hits the mirror, or as an arc when the impact point is outside the mirror. The Cherenkov ring pattern contains information necessary to assess both direction and energy of the incident muon. Taking advantage of the muon detection capability of IACTs, we present a new application of the Cherenkov technique that can be used to perform the muon radiography of volcanoes. The quantitative understanding of the inner structure of a volcano is a key-point to monitor the stages of the volcano activity, to forecast the next eruptive style and, eventually, to mitigate volcanic hazards. Muon radiography shares the same principle as X-ray radiography: muons are attenuated by higher density regions inside the target so that, by measuring the differential attenuation of the muon flux along different directions, it is possible to determine the density distribution of the interior of a volcano. To date, muon imaging of volcanic structures has been mainly achieved with detectors made up of scintillator planes. The advantage of using Cherenkov telescopes is that they are negligibly affected by background noise and allow a consistently improved spatial resolution when compared to the majority of the current detectors.
Figures of Merit for Mirror Materials
1980-07-10
show higher temporal stability. Mirror figure changes with time have generally been small: - X/30 - X/40 for CER-VIT and silica mirrors .27 Zerodur and...9 III. MIRROR FAILURE CRITERIA ................. s .. .................. 13 A. Mechanical Loading Effects...41 / a3 I.. I • INTRODUCTION Large space mirrors were analyzed I with the objective of comparing the ability of materials to minimize static
Park, Jin-Young; Chang, Moonyoung; Kim, Kyeong-Mi; Kim, Hee-Jung
2015-06-01
The purpose of this study was to examine the effects of mirror therapy on upper-extremity function and activities of daily living in chronic stroke patients. [Subjects and Methods] Fifteen subjects were each assigned to a mirror therapy group and a sham therapy group. The Fugl-Meyer Motor Function Assessment and the Box and Block Test were performed to compare paretic upper-extremity function and hand coordination abilities. The functional independence measurement was conducted to compare abilities to perform activities of daily living. [Results] Paretic upper-extremity function and hand coordination abilities were significantly different between the mirror therapy and sham therapy groups. Intervention in the mirror therapy group was more effective than in the sham therapy group for improving the ability to perform activities of daily living. Self-care showed statistically significant differences between the two groups. [Conclusion] Mirror therapy is effective in improving paretic upper-extremity function and activities of daily living in chronic stroke patients.
Park, Jin-Young; Chang, Moonyoung; Kim, Kyeong-Mi; Kim, Hee-Jung
2015-01-01
The purpose of this study was to examine the effects of mirror therapy on upper-extremity function and activities of daily living in chronic stroke patients. [Subjects and Methods] Fifteen subjects were each assigned to a mirror therapy group and a sham therapy group. The Fugl-Meyer Motor Function Assessment and the Box and Block Test were performed to compare paretic upper-extremity function and hand coordination abilities. The functional independence measurement was conducted to compare abilities to perform activities of daily living. [Results] Paretic upper-extremity function and hand coordination abilities were significantly different between the mirror therapy and sham therapy groups. Intervention in the mirror therapy group was more effective than in the sham therapy group for improving the ability to perform activities of daily living. Self-care showed statistically significant differences between the two groups. [Conclusion] Mirror therapy is effective in improving paretic upper-extremity function and activities of daily living in chronic stroke patients. PMID:26180297
Effect of gamma radiation on the stability of UV replicated composite mirrors
NASA Astrophysics Data System (ADS)
Zaldivar, Rafael J.; Kim, Hyun I.; Ferrelli, Geena L.
2018-04-01
Composite replicated mirrors are gaining increasing attention for space-based applications due to their lower density, tailorable mechanical properties, and rapid manufacturing times over state-of-the-art glass mirrors. Ultraviolet (UV)-cured mirrors provide a route by which high-quality mirrors can be manufactured at relatively low processing temperatures that minimize residual stresses. The successful utilization of these mirrors requires nanometer scale dimensional stability after both thermal cycling and hygrothermal exposure. We investigate the effect of gamma irradiation as a process to improve the stability of UV replicated mirrors. Gamma radiation exposure was shown to increase the cure state of these mirrors as evidenced by an increase in modulus, glass transition temperature, and the thermal degradation behavior with dosage. Gas chromatography-mass spectroscopy also showed evidence of consumption of the primary monomers and initiation of the photosensitive agent with gamma exposure. The gamma-exposed mirrors exhibited significant improvement in stability even after multiple thermal cycling in comparison with nonirradiated composite mirrors. Though improvements in the cure state contribute to the overall stability, the radiation dosage was also shown to reduce the film stress of the mirror by over 80% as evidenced using Stoney replicated specimens. This reduction in residual stress is encouraging considering the utilization of these structures for space applications. This paper shows that replicated composite mirrors are a viable alternative to conventional optical structures.
NASA Astrophysics Data System (ADS)
Uchiyama, Mizuho; Miyata, Takashi; Sako, Shigeyuki; Kamizuka, Takafumi; Nakamura, Tomohiko; Asano, Kentaro; Okada, Kazushi; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Sarugaku, Yuki; Kirino, Okiharu; Nakagawa, Hiroyuki; Okada, Norio; Mitsui, Kenji
2014-07-01
We report the restraint deformation and the corrosion protection of gold deposited aluminum mirrors for mid-infrared instruments. To evaluate the deformation of the aluminum mirrors by thermal shrinkage, monitoring measurement of the surface of a mirror has been carried out in the cooling cycles from the room temperature to 100 K. The result showed that the effect of the deformation was reduced to one fourth if the mirror was screwed with spring washers. We have explored an effective way to prevent the mirror from being galvanically corroded. A number of samples have been prepared by changing the coating conditions, such as inserting an insulation layer, making a multi-layer and overcoating water blocking layer, or carrying out precision cleaning before coating. Precision cleaning before the deposition and protecting coat with SiO over the gold layer seemed to be effective in blocking corrosion of the aluminum. The SiO over-coated mirror has survived the cooling test for the mid-infrared use and approximately 1 percent decrease in the reflectance has been detected at 6-25 microns compared to gold deposited mirror without coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Li; Xiong, Hui; Kukk, Edwin
Molecular dynamics is of fundamental interest in natural science research. The capability of investigating molecular dynamics is one of the various motivations for ultrafast optics. Here, we present our investigation of photoionization and nuclear dynamics in methyl iodine (CH 3I) molecule with an X-ray pump X-ray probe scheme. The pump–probe experiment was realized with a two-mirror X-ray split and delay apparatus. Time-of-flight mass spectra at various pump–probe delay times were recorded to obtain the time profile for the creation of high charge states via sequential ionization and for molecular dissociation. We observed high charge states of atomic iodine up tomore » 29+, and visualized the evolution of creating these high atomic ion charge states, including their population suppression and enhancement as the arrival time of the second X-ray pulse was varied. We also show the evolution of the kinetics of the high charge states upon the timing of their creation during the ionization-dissociation coupled dynamics. We demonstrate the implementation of X-ray pump–probe methodology for investigating X-ray induced molecular dynamics with femtosecond temporal resolution. The results indicate the footprints of ionization that lead to high charge states, probing the long-range potential curves of the high charge states.« less
Design and optimization of the CFRP mirror components
NASA Astrophysics Data System (ADS)
Wei, Lei; Zhang, Lei; Gong, Xiaoxue
2017-09-01
As carbon fiber reinforced polymer (CFRP) material has been developed and demonstrated as an effective material in lightweight telescope reflector manufacturing recently, the authors of this article have extended to apply this material on the lightweight space camera mirror design and fabrication. By CFRP composite laminate design and optimization using finite element method (FEM) analysis, a spherical mirror with φ316 mm diameter whose core cell reinforcement is an isogrid configuration is fabricated. Compared with traditional ways of applying ultra-low-expansion glass (ULE) on the CFRP mirror surface, the method of nickel electroplating on the surface effectively reduces the processing cost and difficulty of the CFRP mirror. Through the FEM analysis, the first order resonance frequency of the CFRP mirror components reaches up to 652.3 Hz. Under gravity affection coupling with +5°C temperature rising, the mirror surface shape root-mean-square values (RMS) at the optical axis horizontal state is 5.74 nm, which meets mechanical and optical requirements of the mirror components on space camera.
Super Memory Bros.: going from mirror patterns to concordant patterns via similarity enhancements.
Ozubko, Jason D; Joordens, Steve
2008-12-01
When memory is contrasted for stimuli belonging to distinct stimulus classes, one of two patterns is observed: a mirror pattern, in which one stimulus gives rise to higher hits but lower false alarms (e.g., the frequency-based mirror effect) or a concordant pattern, in which one stimulus class gives rise both to higher hits and to higher false alarms (e.g., the pseudoword effect). On the basis of the dual-process account proposed by Joordens and Hockley (2000), we predict that mirror patterns occur when one stimulus class is more familiar and less distinctive than another, whereas concordant patterns occur when one stimulus class is more familiar than another. We tested these assumptions within a video game paradigm using novel stimuli that allow manipulations in terms of distinctiveness and familiarity (via similarity). When more distinctive, less familiar items are contrasted with less distinctive, more familiar items, a mirror pattern is observed. Systematically enhancing the familiarity of stimuli transforms the mirror pattern to a concordant pattern as predicted. Although our stimuli differ considerably from those used in examinations of the frequency-based mirror effect and the pseudoword effect, the implications of our findings with respect to those phenomena are also discussed.
NASA Technical Reports Server (NTRS)
Toland, Ronald W.; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.
2003-01-01
We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al 6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(trademark) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.
Computational Analysis of an effect of aerodynamic pressure on the side view mirror geometry
NASA Astrophysics Data System (ADS)
Murukesavan, P.; Mu'tasim, M. A. N.; Sahat, I. M.
2013-12-01
This paper describes the evaluation of aerodynamic flow effects on side mirror geometry for a passenger car using ANSYS Fluent CFD simulation software. Results from analysis of pressure coefficient on side view mirror designs is evaluated to analyse the unsteady forces that cause fluctuations to mirror surface and image blurring. The fluctuation also causes drag forces that increase the overall drag coefficient, with an assumption resulting in higher fuel consumption and emission. Three features of side view mirror design were investigated with two input velocity parameters of 17 m/s and 33 m/s. Results indicate that the half-sphere design shows the most effective design with less pressure coefficient fluctuation and drag coefficient.
NASA Astrophysics Data System (ADS)
Yang, Zhiyong; Tang, Zhanwen; Xie, Yongjie; Shi, Hanqiao; Zhang, Boming; Guo, Hongjun
2018-02-01
Composite space mirror can completely replicate the high-precision surface of mould by replication process, but the actual surface accuracy of the replication composite mirror always decreases. Lamina thickness of prepreg affects the layers and layup sequence of composite space mirror, and which would affect surface accuracy of space mirror. In our research, two groups of contrasting cases through finite element analyses (FEA) and comparative experiments were studied; the effect of different lamina thicknesses of prepreg and corresponding lay-up sequences was focused as well. We describe a special analysis model, validated process and result analysis. The simulated and measured surface figures both get the same conclusion. Reducing lamina thickness of prepreg used in replicating composite space mirror is propitious to optimal design of layup sequence for fabricating composite mirror, and could improve its surface accuracy.
Thermally stabilized heliostat
Anderson, Alfred J.
1983-01-01
An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.
Synchro-ballistic recording of detonation phenomena
NASA Astrophysics Data System (ADS)
Critchfield, Robert R.; Asay, Blaine W.; Bdzil, John B.; Davis, William C.; Ferm, Eric N.; Idar, Deanne J.
1997-12-01
Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic detonation shock dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of the events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film's spatial dimension and the phase velocity is adjusted to provide synchronization at the camera's maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to- diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric denotation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.
Synchro-ballistic recording of detonation phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Critchfield, R.R.; Asay, B.W.; Bdzil, J.B.
1997-09-01
Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic Detonation Shock Dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of themore » events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film`s spatial dimension and the phase velocity is adjusted to provide synchronization at the camera`s maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to-diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric detonation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.« less
Mirror agnosia and the mirrored-self misidentification delusion: a hypnotic analogue.
Connors, Michael H; Cox, Rochelle E; Barnier, Amanda J; Langdon, Robyn; Coltheart, Max
2012-05-01
Mirrored-self misidentification is the delusional belief that one's reflection in the mirror is a stranger. Current theories suggest that one pathway to the delusion is mirror agnosia (a deficit in which patients are unable to use mirror knowledge when interacting with mirrors). This study examined whether a hypnotic suggestion for mirror agnosia can recreate features of the delusion. Ten high hypnotisable participants were given either a suggestion to not understand mirrors or to see the mirror as a window. Participants were asked to look into a mirror and describe what they saw. Participants were tested on their understanding of mirrors and received a series of challenges. Participants then received a detailed postexperimental inquiry. Three of five participants given the suggestion to not understand mirrors reported seeing a stranger and maintained this belief when challenged. These participants also showed signs of mirror agnosia. No participants given the suggestion to see a window reported seeing a stranger. Results indicate that a hypnotic suggestion for mirror agnosia can be used to recreate the mirrored-self misidentification delusion. Factors influencing the effectiveness of hypnotic analogues of psychopathology, such as participants' expectations and interpretations, are discussed.
Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt
2002-08-20
High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.
NASA Technical Reports Server (NTRS)
Toland, Ronald; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.
2003-01-01
In spite of its baseline mechanical stress relief, aluminum 6061-T651 harbors some residual stress that may relieve and distort mirror figure to unacceptable levels at cryogenic operating temperatures unless relieved during fabrication. Cryogenic instruments using aluminum mirrors for both ground-based and space IR astronomy have employed a variety of heat treatment formulae, with mixed results. We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(TM) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.
X-ray Pump–Probe Investigation of Charge and Dissociation Dynamics in Methyl Iodine Molecule
Fang, Li; Xiong, Hui; Kukk, Edwin; ...
2017-05-19
Molecular dynamics is of fundamental interest in natural science research. The capability of investigating molecular dynamics is one of the various motivations for ultrafast optics. Here, we present our investigation of photoionization and nuclear dynamics in methyl iodine (CH 3I) molecule with an X-ray pump X-ray probe scheme. The pump–probe experiment was realized with a two-mirror X-ray split and delay apparatus. Time-of-flight mass spectra at various pump–probe delay times were recorded to obtain the time profile for the creation of high charge states via sequential ionization and for molecular dissociation. We observed high charge states of atomic iodine up tomore » 29+, and visualized the evolution of creating these high atomic ion charge states, including their population suppression and enhancement as the arrival time of the second X-ray pulse was varied. We also show the evolution of the kinetics of the high charge states upon the timing of their creation during the ionization-dissociation coupled dynamics. We demonstrate the implementation of X-ray pump–probe methodology for investigating X-ray induced molecular dynamics with femtosecond temporal resolution. The results indicate the footprints of ionization that lead to high charge states, probing the long-range potential curves of the high charge states.« less
Electrically injected visible vertical cavity surface emitting laser diodes
Schneider, Richard P.; Lott, James A.
1994-01-01
Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors.
OSA Trends in Optics and Photonics Series, Volume 14 Spatial Light Modulators
1998-05-26
Extreme Ultraviolet Lithography Glenn D. Kubiak andDon R. Kania, eds. Vol. 5 Optical Amplifiers and Their Applications (1996) Edited by...micromirror device ( DMD ), and photorefractive crystal. Note that other devices not discussed in this article have been developed, such as the charge...earlier. DMDs are fabricated by micromachining a silicon wafer.7 Tiny (16 um X 16 um) suspended mirrors are micromachined on cantilevers. The
Electrically injected visible vertical cavity surface emitting laser diodes
Schneider, R.P.; Lott, J.A.
1994-09-27
Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.
Mirror movements in healthy humans across the lifespan: effects of development and ageing.
Koerte, Inga; Eftimov, Lara; Laubender, Ruediger Paul; Esslinger, Olaf; Schroeder, Andreas Sebastian; Ertl-Wagner, Birgit; Wahllaender-Danek, Ute; Heinen, Florian; Danek, Adrian
2010-12-01
mirror movements are a transient phenomenon during childhood, which decrease in intensity with motor development. An increasing inhibitory competence resulting in the ability of movement lateralization is thought to be the underlying mechanism. We aimed to quantify unintended mirror movements systematically across the lifespan and to investigate the influences of age, sex, handedness, and task frequency. a total of 236 participants (127 females, 109 males; 216 right-handed, 20 left-handed; age range 3-96y, median 25y 8mo) first performed four clinical routine tests while mirror movements were rated by the observer. They were then asked to hold a force transducer in each hand between the thumb and index finger and to perform oscillatory grip force changes in one hand, while the other hand had to prevent the force transducer from dropping. age showed a strong nonlinear effect on the mirror-movement ratio (the amplitude ratio of the mirror and active hand, adjusted by the respective maximum grip force). Initially, there was a steep decline in the mirror-movement ratio during childhood and adolescence, followed by a gradual rise during adulthood. Males had lower mirror-movement ratios than females. The high-frequency condition triggered lower mirror-movement ratios. No significant differences of mirror movements between dominant and non-dominant hand, or left- and right-handed participants, were found. this study provides, for the first time to our knowledge, normative values of mirror movements across the lifespan that can aid differentiation between physiological and pathological mirror movements.
Mirror therapy for patients with severe arm paresis after stroke--a randomized controlled trial.
Thieme, Holm; Bayn, Maria; Wurg, Marco; Zange, Christian; Pohl, Marcus; Behrens, Johann
2013-04-01
To evaluate the effects of individual or group mirror therapy on sensorimotor function, activities of daily living, quality of life and visuospatial neglect in patients with a severe arm paresis after stroke. Randomized controlled trial. Inpatient rehabilitation centre. Sixty patients with a severe paresis of the arm within three months after stroke. Three groups: (1) individual mirror therapy, (2) group mirror therapy and (3) control intervention with restricted view on the affected arm. Motor function on impairment (Fugl-Meyer Test) and activity level (Action Research Arm Test), independence in activities of daily living (Barthel Index), quality of life (Stroke Impact Scale) and visuospatial neglect (Star Cancellation Test). After five weeks, no significant group differences for motor function were found (P > 0.05). Pre-post differences for the Action Research Arm Test and Fugl-Meyer Test: individual mirror therapy: 3.4 (7.1) and 3.2 (3.8), group mirror therapy: 1.1 (3.1) and 5.1 (10.0) and control therapy: 2.8 (6.7) and 5.2 (8.7). However, a significant effect on visuospatial neglect for patients in the individual mirror therapy compared to control group could be shown (P < 0.01). Furthermore, it was possible to integrate a mirror therapy group intervention for severely affected patients after stroke. This study showed no effect on sensorimotor function of the arm, activities of daily living and quality of life of mirror therapy compared to a control intervention after stroke. However, a positive effect on visuospatial neglect was indicated.
NASA Astrophysics Data System (ADS)
Calvel, Bertrand; Castel, Didier; Standarovski, Eric; Rousset, Gérard; Bougoin, Michel
2017-11-01
The international Rosetta mission, now planned by ESA to be launched in January 2003, will provide a unique opportunity to directly study the nucleus of comet 46P/Wirtanen and its activity in 2013. We describe here the design, the development and the performances of the telescope of the Narrow Angle Camera of the OSIRIS experiment et its Silicon Carbide telescope which will give high resolution images of the cometary nucleus in the visible spectrum. The development of the mirrors has been specifically detailed. The SiC parts have been manufactured by BOOSTEC, polished by STIGMA OPTIQUE and ion figured by IOM under the prime contractorship of ASTRIUM. ASTRIUM was also in charge of the alignment. The final optical quality of the aligned telescope is 30 nm rms wavefront error.
The Mirror Nuclei 3H and 3He Program at JLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Javier
2017-02-28
Jefferson Lab plans to carry out in the near future a group of four experiments involving the mirror nuclei 3H and 3He, using electron beam energies of up to 11 GeV. Our experiments aim to, (A) extract the deep inelastic neutron to proton structure function ratio Fmore » $$n\\atop{2}$$F$$p\\atop{2}$$ (and u / d quark distributions) for 0.2 ≤ x ≤ 0.9 , (B) study the isospin structure of two-nucleon and search for three-nucleon Short Range Correlations (SRC) for x < 3 , (C) measure the proton momentum distribution of both nuclei at $x = 1.2$ to further our understanding of SRCs in the few-body and (D) extract the charge radii of both nuclei at Q 2 ≤ 0.1 GeV 2.« less
Schematic diagram of light path in Wide Field Planetary Camera 2
1993-03-15
S93-33258 (15 Mar 1993) --- An optical schematic diagram of one of the four channels of the Wide Field\\Planetary Camera-2 (WF\\PC-2) shows the path taken by beams from the Hubble Space Telescope (HST) before an image is formed at the camera's charge-coupled devices. A team of NASA astronauts will pay a visit to the HST later this year, carrying with them the new WF/PC-2 to replace the one currently on the HST. The Jet Propulsion Laboratory in Pasadena, California has been working on the replacement system for several months. See NASA photo S93-33257 for a close-up view of tiny articulating mirrors designed to realign incoming light in order to make certain the beams fall precisely in the middle of the secondary mirrors.
Multicharged iron ions produced by using induction heating vapor source.
Kato, Yushi; Kubo, Takashi; Muramatsu, Masayuki; Tanaka, Kiyokatsu; Kitagawa, Atsushi; Yoshida, Yoshikazu; Asaji, Toyohisa; Sato, Fuminobu; Iida, Toshiyuki
2008-02-01
Multiply charged Fe ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with an induction coil which is made of bare molybdenum wire partially covered by ceramic beads in vacuum and surrounding and heating directly the pure Fe rod. Heated material has no contact with insulators, so that outgas is minimized. The evaporator is installed around the mirror end plate outside of the ECR plasma with its hole grazing the ECR zone. Helium or argon gas is usually chosen for supporting gas. The multicharged Fe ions up to Fe(13+) are extracted from the opposite side of mirror and against the evaporator, and then multicharged Fe ion beam is formed. We compare production of multicharged iron ions by using this new source with our previous methods.
NASA Technical Reports Server (NTRS)
Katz, I.; Cassidy, J. J.; Mandell, M. J.; Parks, D. E.; Schnuelle, G. W.; Stannard, P. R.; Steen, P. G.
1981-01-01
The interactions of spacecraft systems with the surrounding plasma environment were studied analytically for three cases of current interest: calculating the impact of spacecraft generated plasmas on the main power system of a baseline solar electric propulsion stage (SEPS), modeling the physics of the neutralization of an ion thruster beam by a plasma bridge, and examining the physical and electrical effects of orbital ambient plasmas on the operation of an electrostatically controlled membrane mirror. In order to perform these studies, the NASA charging analyzer program (NASCAP) was used as well as several other computer models and analytical estimates. The main result of the SEPS study was to show how charge exchange ion expansion can create a conducting channel between the thrusters and the solar arrays. A fluid-like model was able to predict plasma potentials and temperatures measured near the main beam of an ion thruster and in the vicinity of a hollow cathode neutralizer. Power losses due to plasma currents were shown to be substantial for several proposed electrostatic antenna designs.
Data Analysis And Polarization Measurements With GEMS
NASA Technical Reports Server (NTRS)
Stohmayer, Tod
2011-01-01
The Gravity and Extreme Magnetism SMEX (GEMS) mission was selected by NASA for flight in 2014. GEMS will make the first sensitive survey of X-ray polarization across a wide range of source classes including black hole and neutron star binaries, AGN of different types, rotation and accretion-powered pulsars, magnetars, shell supernova remnants and pulsar wind nebulae. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect. The GEMS detectors image the charge tracks of photoelectrons produced by 2 - 10 keV X-rays. The initial direction of the photoelectron is determined by the linear polarization of the photon. We present an overview of the data analysis challenges and methods for GEMS, including procedures for producing optimally filtered images of the charge tracks and estimating their initial directions. We illustrate our methods using laboratory measurements of polarized and unpolarized X-rays with flight-like detectors as well as from simulated tracks. We also present detailed simulations exploring the statistics of polarization measurements appropriate for GEMS, and make comparisons with previous work.
Study of negative ion transport phenomena in a plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riz, D.; Pamela, J.
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H{sup {minus}}/H{sup +}) and charge exchanges (H{sup {minus}}/H{sup 0}). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NImore » produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter. {copyright} {ital 1996 American Institute of Physics.}« less
[Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].
Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei
2012-08-01
The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.
Who Is Controlling the Interaction? The Effect of Nonverbal Mirroring on Teacher-Student Rapport
ERIC Educational Resources Information Center
Jiang-yuan, Zhou; Wei, Guo
2012-01-01
This study investigated the effect of nonverbal mirroring on teacher-student rapport in one-on-one interactions. Nonverbal mirroring refers to the unconscious mimicry of the postures, mannerisms, facial expressions, and other behaviors of one's interaction partner in social interactions. In a within-subjects paradigm, students had four…
A Novel Effect of Scattered-Light Interference in Misted Mirrors
ERIC Educational Resources Information Center
Bridge, N. James
2005-01-01
Interference rings can be observed in mirrors clouded by condensation, even in diffuse lighting. The effect depends on individual droplets acting as point sources by refracting light into the mirror, so producing coherent wave-trains which are reflected and then scattered again by diffraction round the same source droplet. The secondary wave-train…
Effects of visual feedback with a mirror on balance ability in patients with stroke.
In, Tae-Sung; Cha, Yu-Ri; Jung, Jin-Hwa; Jung, Kyoung-Sim
2016-01-01
[Purpose] This study aimed to examine the effects of a visual feedback obtained from a mirror on balance ability during quiet standing in patients with stroke. [Subjects] Fifteen patients with stroke (9 males, 6 females) enrolled in the study. [Methods] Experimental trials (duration, 20s) included three visual conditions (eyes closed, eyes open, and mirror feedback) and two support surface conditions (stable, and unstable). Center of pressure (COP) displacements in the mediolateral and anteroposterior directions were recorded using a force platform. [Results] No effect of condition was observed along all directions on the stable surface. An effect of condition was observed on the unstable surface, with a smaller mediolateral COP distance in the mirror feedback as compared to the other two conditions. Similar results were observed for the COP speed. [Conclusion] Visual feedback from a mirror is beneficial for improving balance ability during quiet standing on an unstable surface in patients with stroke.
A Study of the Amputee Experience of Viewing Self in the Mirror
Freysteinson, Wyona; Thomas, Lisa; Sebastian-Deutsch, Amy; Douglas, Denika; Melton, Danielle; Celia, Tania; Reeves, Kristin; Bowyer, Patricia
2017-01-01
Abstract Purpose To describe the trajectory of viewing self in a mirror after an ampu-tation and participants’ perceptions of what health care professionals should know about mirrors. Design Hermeneutic phenomenology Methods Focus groups were conducted to collect the research data. Findings The mirror experience had three key moments: decision, seeing, and consent. The trajectory of viewing self in a mirror had four key themes: mirror shock, mirror anguish, recognizing self, and acceptance: a new normal. Participants’ recommendations for introducing the mirror after an amputation and using a mirror to avoid skin breakdown and infection, and correct gait and balance are described. Conclusions This study provides a unique viewpoint into the world of those who have suffered amputation of a limb. Clinical Relevance Rehabilitation nurses and other health care professionals are encouraged through these participants to consider the effect and value of mirrors when caring for those who have had an amputation. PMID:26879100
Observational physics of mirror world
NASA Technical Reports Server (NTRS)
Khlopov, M. YA.; Beskin, G. M.; Bochkarev, N. E.; Pustilnik, L. A.; Pustilnik, S. A.
1989-01-01
The existence of the whole world of shadow particles, interacting with each other and having no mutual interactions with ordinary particles except gravity is a specific feature of modern superstring models, being considered as models of the theory of everything. The presence of shadow particles is the necessary condition in the superstring models, providing compensation of the asymmetry of left and right chirality states of ordinary particles. If compactification of additional dimensions retains the symmetry of left and right states, shadow world turns to be the mirror one, with particles and fields having properties strictly symmetrical to the ones of corresponding ordinary particles and fields. Owing to the strict symmetry of physical laws for ordinary and mirror particles, the analysis of cosmological evolution of mirror matter provides rather definite conclusions on possible effects of mirror particles in the universe. A general qualitative discussion of possible astronomical impact of mirror matter is given, in order to make as wide as possible astronomical observational searches for the effects of mirror world, being the unique way to test the existence of mirror partners of ordinary particles in the Nature.
Design of Off-Axis PIAACMC Mirrors
NASA Technical Reports Server (NTRS)
Pluzhnik, Eugene; Guyon, Olivier; Belikov, Ruslan; Kern, Brian; Bendek, Eduardo
2015-01-01
The Phase-Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) provides an efficient way to control diffraction propagation effects caused by the central obstruction/segmented mirrors of the telescope. PIAACMC can be optimized in a way that takes into account both chromatic diffraction effects caused by the telescope obstructed aperture and tip/tilt sensitivity of the coronagraph. As a result, unlike classic PIAA, the PIAACMC mirror shapes are often slightly asymmetric even for an on-axis configuration and require more care in calculating off-axis shapes when an off-axis configuration is preferred. A method to design off-axis PIAA mirror shapes given an on-axis mirror design is presented. The algorithm is based on geometrical ray tracing and is able to calculate off-axis PIAA mirror shapes for an arbitrary geometry of the input and output beams. The method is demonstrated using the third generation PIAACMC design for WFIRST-AFTA (Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets) telescope. Geometrical optics design issues related to the off-axis diffraction propagation effects are also discussed.
Characterization of a piezo bendable X-ray mirror.
Vannoni, Maurizio; Freijo Martín, Idoia; Siewert, Frank; Signorato, Riccardo; Yang, Fan; Sinn, Harald
2016-01-01
A full-scale piezo bendable mirror built as a prototype for an offset mirror at the European XFEL is characterized. The piezo ceramic elements are glued onto the mirror substrate, side-face on with respect to the reflecting surface. Using a nanometre optical component measuring machine and a large-aperture Fizeau interferometer, the mirror profile and influence functions were characterized, and further analysis was made to investigate the junction effect, hysteresis, twisting and reproducibility.
Design of optical mirror structures
NASA Technical Reports Server (NTRS)
Soosaar, K.
1971-01-01
The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.
Influence of mirror therapy on human motor cortex.
Fukumura, Kenji; Sugawara, Kenichi; Tanabe, Shigeo; Ushiba, Junichi; Tomita, Yutaka
2007-07-01
This article investigates whether or not mirror therapy alters the neural mechanisms in human motor cortex. Six healthy volunteers participated. The study investigated the effects of three main factors of mirror therapy (observation of hand movements in a mirror, motor imagery of an assumed affected hand, and assistance in exercising the assumed affected hand) on excitability changes in the human motor cortex to clarify the contribution of each factor. The increase in motor-evoked potential (MEP) amplitudes during motor imagery tended to be larger with a mirror than without one. Moreover, MEP amplitudes increased greatly when movements were assisted. Watching the movement of one hand in a mirror makes it easier to move the other hand in the same way. Moreover, the increase in MEP amplitudes is related to the synergic effects of afferent information and motor imagery.
Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989
NASA Astrophysics Data System (ADS)
Roddier, Francois J.
1989-09-01
The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.
Treatments To Produce Stabilized Aluminum Mirrors for Cryogenic Uses
NASA Technical Reports Server (NTRS)
Zewari, Wahid; Barthelmy, Michael; Ohl, Raymond
2005-01-01
Five metallurgical treatments have been tested as means of stabilizing mirrors that are made of aluminum alloy 6061 and are intended for use in cryogenic applications. Aluminum alloy 6061 is favored as a mirror material by many scientists and engineers. Like other alloys, it shrinks upon cool-down from room temperature to cryogenic temperature. This shrinkage degrades the optical quality of the mirror surfaces. Hence, the metallurgical treatments were tested to determine which one could be most effective in minimizing the adverse optical effects of cooldown to cryogenic temperatures. Each of the five metallurgical treatments comprises a multistep process, the steps of which are interspersed with the steps of the mirror-fabrication process. The five metallurgical-treatment/fabrication.- process combinations were compared with each other and with a benchmark fabrication process, in which a mirror is made from an alloy blank by (1) symmetrical rough machining, (2) finish machining to within 0.006 in. (. 0.15 mm) of final dimensions, and finally (3) diamond turning to a mirror finish.
Fast ion motion in the plasma part of a stellarator-mirror fission-fusion hybrid
NASA Astrophysics Data System (ADS)
Moiseenko, V. E.; Nemov, V. V.; Ågren, O.; Kasilov, S. V.; Garkusha, I. E.
2016-06-01
Recent developments of a stellarator-mirror (SM) fission-fusion hybrid concept are reviewed. The hybrid consists of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, a stellarator-type system with an embedded magnetic mirror is used. The stellarator confines deuterium plasma with moderate temperature, 1-2 keV. In the magnetic mirror, a hot component of sloshing tritium ions is trapped. There, the fusion neutrons are generated. A candidate for a combined SM system is a DRACON magnetic trap. A basic idea behind an SM device is to maintain local neutron production in a mirror part, but at the same time eliminate the end losses by using a toroidal device. A possible drawback is that the stellarator part can introduce collision-free radial drift losses, which is the main topic for this study. For high energy ions of tritium with an energy of 70 keV, comparative computations of collisionless losses in the rectilinear part of a specific design of the DRACON type trap are carried out. Two versions of the trap are considered with different lengths of the rectilinear sections. Also the total number of current-carrying rings in the magnetic system is varied. The results predict that high energy ions from neutral beam injection can be satisfactorily confined in the mirror part during 0.1-1 s. The Uragan-2M experimental device is used to check key points of the SM concept. The magnetic configuration of a stellarator with an embedded magnetic mirror is arranged in this device by switching off one toroidal coil. The motion of particles magnetically trapped in the embedded mirror is analyzed numerically with use of motional invariants. It is found that without radial electric field particles quickly drift out of the SM, even if the particles initially are located on a nested magnetic surface. We will show that a weak radial electric field, which would be spontaneously created by the ambipolar radial particle losses, can make drift trajectories closed, which substantially improves particle confinement. It is remarkable that the improvement acts both for positive and negative charges.
Investigation of a Light Gas Helicon Plasma Source for the VASIMR Space Propulsion System
NASA Technical Reports Server (NTRS)
Squire, J. P.; Chang-Diaz, F. R.; Jacobson, V. T.; Glover, T. W.; Baity, F. W.; Carter, M. D.; Goulding, R. H.; Bengtson, R. D.; Bering, E. A., III
2003-01-01
An efficient plasma source producing a high-density (approx.10(exp 19/cu m) light gas (e.g. H, D, or He) flowing plasma with a high degree of ionization is a critical component of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept. We are developing an antenna to apply ICRF power near the fundamental ion cyclotron resonance to further accelerate the plasma ions to velocities appropriate for space propulsion applications. The high degree of ionization and a low vacuum background pressure are important to eliminate the problem of radial losses due to charge exchange. We have performed parametric (e.g. gas flow, power (0.5 - 3 kW), magnetic field , frequency (25 and 50 MHz)) studies of a helicon operating with gas (H2 D2, He, N2 and Ar) injected at one end with a high magnetic mirror downstream of the antenna. We have explored operation with a cusp and a mirror field upstream. Plasma flows into a low background vacuum (<10(exp -4) torr) at velocities higher than the ion sound speed. High densities (approx. 10(exp 19/cu m) have been achieved at the location where ICRF will be applied, just downstream of the magnetic mirror.
Paik, Young-Rim; Lee, Jeong-Hoon; Lee, Doo-Ho; Park, Hee-Su; Oh, Dong-Hwan
2017-12-01
[Purpose] This study investigated the effects of mirror therapy and neuromuscular electrical stimulation on upper extremity function in stroke patients. [Subjects and Methods] This study recruited 8 stroke patients. All patients were treated with mirror therapy and neuromuscular electrical stimulation five times per week for 4 weeks. Upper limb function evaluation was performed using upper extremity part of fugl meyer assessment. [Results] Before and after intervention, fugl meyer assessment showed significant improvement. [Conclusion] In this study, mirror therapy and neuromuscular electrical stimulation are effective methods for upper extremity function recovery in stroke patients.
NASA Technical Reports Server (NTRS)
Rasche, R. W.
1979-01-01
General background and overview material are presented along with data from studies performed to determine the sensitivity, feasibility, and required performance of systems for a total X-ray telescope assembly. Topics covered include: optical design, mirror support concepts, mirror weight estimates, the effects of l g on mirror elements, mirror assembly resonant frequencies, optical bench considerations, temperature control of the mirror assembly, and the aspect determination system.
Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.
Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan
2016-08-15
Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.
Mirror therapy: A potential intervention for pain management.
Wittkopf, Priscilla G; Johnson, Mark I
2017-11-01
The consequences of chronic pain and associated disabilities to the patient and to the health care system are well known. Medication is often the first treatment of choice for chronic pain, although side effects and high costs restrict long-term use. Inexpensive, safe and easy to self-administer non-pharmacological therapies, such as mirror therapy, are recommended as adjuncts to pain treatment. The purpose of this review is to describe the principles of use of mirror therapy so it can be incorporated into a health care delivery. The physiological rationale of mirror therapy for the management of pain and the evidence of clinical efficacy based on recent systematic reviews are also discussed. Mirror therapy, whereby a mirror is placed in a position so that the patient can view a reflection of a body part, has been used to treat phantom limb pain, complex regional pain syndrome, neuropathy and low back pain. Research evidence suggests that a course of treatment (four weeks) of mirror therapy may reduce chronic pain. Contraindications and side effects are few. The mechanism of action of mirror therapy remains uncertain, with reintegration of motor and sensory systems, restored body image and control over fear-avoidance likely to influence outcome. The evidence for clinical efficacy of mirror therapy is encouraging, but not yet definitive. Nevertheless, mirror therapy is inexpensive, safe and easy for the patient to self-administer.
Large, David R; Crundall, Elizabeth; Burnett, Gary; Harvey, Catherine; Konstantopoulos, Panos
2016-07-01
Drivers' awareness of the rearward road scene is critical when contemplating or executing lane-change manoeuvres, such as overtaking. Preliminary investigations have speculated on the use of rear-facing cameras to relay images to displays mounted inside the car to create 'digital mirrors'. These may overcome many of the limitations associated with traditional 'wing' and rear-view mirrors, yet will inevitably effect drivers' normal visual scanning behaviour, and may force them to consider the rearward road scene from an unfamiliar perspective that is incongruent with their mental model of the outside world. We describe a study conducted within a medium-fidelity simulator aiming to explore the visual behaviour, driving performance and opinions of drivers while using internally located digital mirrors during different overtaking manoeuvres. Using a generic UK motorway scenario, thirty-eight experienced drivers conducted overtaking manoeuvres using each of five different layouts of digital mirrors with varying degrees of 'real-world' mapping. The results showed reductions in decision time for lane changes and eyes-off road time while using the digital mirrors, when compared with baseline traditional reflective mirrors, suggesting that digital displays may enable drivers to more rapidly pick up the salient information from the rearward road scene. Subjectively, drivers preferred configurations that most closely matched existing mirror locations, where aspects of real-world mapping were largely preserved. The research highlights important human factors issues that require further investigation prior to further development/implementation of digital mirrors within vehicles. Future work should also aim to validate findings within real-world on-road environments whilst considering the effects of digital mirrors on other important visual behaviour characteristics, such as depth perception. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Double arch mirror study. Part 1: Preliminary engineering report
NASA Technical Reports Server (NTRS)
Vukobratovich, D.; Hillman, D.
1983-01-01
In the proposed design, the NASA AMES 20-in double arch mirror is supported by three clamp and flexure assemblies. The mirror clamp consists of a T-shaped Invar-36 member that goes into a similarly shaped socket in the back of the mirror. The mirror socket is made oversize and contacts the clamp only along the conical surface. The clamp is preloaded by a spring washer and pulls the mirror into contact with the flexure. The clamp is then inserted into the mirror socket through a cutout, is rotated 90 deg, and is then pinned in place. Loading conditions considered in socket design are discussed as well as stress in the socket and clamp. Flexure geometry and stress are examined as well as the effects of flexure error and of mirror cell error.
NASA Astrophysics Data System (ADS)
Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge
2017-08-01
A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.
Photonic crystal devices formed by a charged-particle beam
Lin, Shawn-Yu; Koops, Hans W. P.
2000-01-01
A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.
Elastic Electron Scattering from Tritium and Helium-3
DOE R&D Accomplishments Database
Collard, H.; Hofstadter, R.; Hughes, E. B.; Johansson, A.; Yearian, M. R.; Day, R. B.; Wagner, R. T.
1964-10-01
The mirror nuclei of tritium and helium-3 have been studied by the method of elastic electron scattering. Absolute cross sections have been measured for incident electron energies in the range 110 - 690 MeV at scattering angles lying between 40 degrees and 135 degrees in this energy range. The data have been interpreted in a straightforward manner and form factors are given for the distributions of charge and magnetic moment in the two nuclei over a range of four-momentum transfer squared 1.0 - 8.0 F{sup -2}. Model-independent radii of the charge and magnetic moment distributions are given and an attempt is made to deduce form factors describing the spatial distribution of the protons in tritium and helium-3.
Estimating the mirror seeing for a large optical telescope with a numerical method
NASA Astrophysics Data System (ADS)
Zhang, En-Peng; Cui, Xiang-Qun; Li, Guo-Ping; Zhang, Yong; Shi, Jian-Rong; Zhao, Yong-Heng
2018-05-01
It is widely accepted that mirror seeing is caused by turbulent fluctuations in the index of air refraction in the vicinity of a telescope mirror. Computational Fluid Dynamics (CFD) is a useful tool to evaluate the effects of mirror seeing. In this paper, we present a numerical method to estimate the mirror seeing for a large optical telescope (∼ 4 m) in cases of natural convection with the ANSYS ICEPAK software. We get the FWHM of the image for different inclination angles (i) of the mirror and different temperature differences (ΔT) between the mirror and ambient air. Our results show that the mirror seeing depends very weakly on i, which agrees with observational data from the Canada-France-Hawaii Telescope. The numerical model can be used to estimate mirror seeing in the case of natural convection although with some limitations. We can determine ΔT for thermal control of the primary mirror according to the simulation, empirical data and site seeing.
Milde, Christopher; Rance, Mariela; Kirsch, Pinar; Trojan, Jörg; Fuchs, Xaver; Foell, Jens; Bekrater-Bodmann, Robin
2015-01-01
Since its original proposal, mirror therapy has been established as a successful neurorehabilitative intervention in several neurological disorders to recover motor function or to relieve pain. Mirror therapy seems to operate by reactivating the contralesional representation of the non-mirrored limb in primary motor- and somatosensory cortex. However, mirror boxes have some limitations which prompted the use of additional mirror visual feedback devices. The present study evaluated the utility of mirror glasses compared to a mirror box. We also tested the hypothesis that increased interhemispheric communication between the motor hand areas is the mechanism by which mirror visual feedback recruits the representation of the non-mirrored limb. Therefore, mirror illusion capacity and brain activations were measured in a within-subject design during both mirror visual feedback conditions in counterbalanced order with 20 healthy subjects inside a magnetic resonance imaging scanner. Furthermore, we analyzed task-dependent functional connectivity between motor hand representations using psychophysiological interaction analysis during both mirror tasks. Neither the subjective quality of mirror illusions nor the patterns of functional brain activation differed between the mirror tasks. The sensorimotor representation of the non-mirrored hand was recruited in both mirror tasks. However, a significant increase in interhemispheric connectivity between the hand areas was only observed in the mirror glasses condition, suggesting different mechanisms for the recruitment of the representation of the non-mirrored hand in the two mirror tasks. We conclude that the mirror glasses might be a promising alternative to the mirror box, as they induce similar patterns of brain activation. Moreover, the mirror glasses can be easy applied in therapy and research. We want to emphasize that the neuronal mechanisms for the recruitment of the affected limb representation might differ depending on conceptual differences between MVF devices. However, our findings need to be validated within specific patient groups. PMID:26018572
Kim, Hwanhee; Shim, Jemyung
2015-01-01
[Purpose] The purpose of this study was to investigate the effects of mirror therapy on the upper extremity functions of stroke patients. [Subjects] The subjects of this study were 14 hemiplegia patients (8 males, 6 females; 9 infarction, 5 hemorrhage; 8 right hemiplegia, 6 left hemiplegia) who voluntarily consented to participate in the study. [Methods] The Korean version of the manual function test (MFT) was used in this study. The test was performed in the following order: arm movement (4 items), grasp and pinch (2 items), and manipulation (2 items). The experiment was conducted with the subjects sitting in a chair. The mirror was vertically placed in the sagittal plane on the desk. The paretic hand was placed behind the mirror, and the non-paretic hand was placed in front of the mirror so that it was reflected in the mirror. In this position, the subjects completed activities repetitively according to the mirror therapy program over the course of four weeks. [Results] There were significant increases in the grasp-and-pinch score and manipulation score. [Conclusion] In conclusion, the grasp-and-pinch and manipulation functions were improved through mirror therapy.
Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients
2016-01-01
Objective To investigate the effect of mirror therapy containing functional tasks on upper extremity function and activities of daily living in patients with subacute stroke. Methods The subjects were randomly divided into two groups: the mirror therapy group (30 patients) and the sham therapy group (30 patients). The mirror therapy group underwent a mirror therapy program together with conventional therapy for 20 minutes per day on 5 days per week for 4 weeks. The control group received a sham conventional therapy program under the same schedule as the mirror therapy group. The Fugl-Meyer Motor Function Assessment (FMA), Brunnstrom motor recovery stage, and Modified Barthel Index (MBI) were evaluated 4 weeks after the treatment. Results The upper extremity function on the affected side and ability to perform daily life activities after the intervention were significantly improved in both groups. After 4 weeks of intervention, improvements in the FMA (p=0.027) and MBI (p=0.041) were significantly greater in the mirror therapy group than the sham therapy group. Conclusion In this study, we found that the mirror therapy containing functional task was effective in terms of improving the upper extremity functions and activities of daily living in patients with subacute stroke. PMID:27606269
Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients.
Lim, Kil-Byung; Lee, Hong-Jae; Yoo, Jeehyun; Yun, Hyun-Ju; Hwang, Hye-Jung
2016-08-01
To investigate the effect of mirror therapy containing functional tasks on upper extremity function and activities of daily living in patients with subacute stroke. The subjects were randomly divided into two groups: the mirror therapy group (30 patients) and the sham therapy group (30 patients). The mirror therapy group underwent a mirror therapy program together with conventional therapy for 20 minutes per day on 5 days per week for 4 weeks. The control group received a sham conventional therapy program under the same schedule as the mirror therapy group. The Fugl-Meyer Motor Function Assessment (FMA), Brunnstrom motor recovery stage, and Modified Barthel Index (MBI) were evaluated 4 weeks after the treatment. The upper extremity function on the affected side and ability to perform daily life activities after the intervention were significantly improved in both groups. After 4 weeks of intervention, improvements in the FMA (p=0.027) and MBI (p=0.041) were significantly greater in the mirror therapy group than the sham therapy group. In this study, we found that the mirror therapy containing functional task was effective in terms of improving the upper extremity functions and activities of daily living in patients with subacute stroke.
Design, fabrication, and testing of duralumin zoom mirror with variable thickness
NASA Astrophysics Data System (ADS)
Hui, Zhao; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Liu, Meiying; Gong, Jie
2016-10-01
Zoom mirror is a kind of active optical component that can change its curvature radius dynamically. Normally, zoom mirror is used to correct the defocus and spherical aberration caused by thermal lens effect to improve the beam quality of high power solid-state laser since that component was invented. Recently, the probable application of zoom mirror in realizing non-moving element optical zoom imaging in visible band has been paid much attention. With the help of optical leveraging effect, the slightly changed local optical power caused by curvature variation of zoom mirror could be amplified to generate a great alteration of system focal length without moving elements involved in, but in this application the shorter working wavelength and higher surface figure accuracy requirement make the design and fabrication of such a zoom mirror more difficult. Therefore, the key to realize non-moving element optical zoom imaging in visible band lies in zoom mirror which could provide a large enough saggitus variation while still maintaining a high enough surface figure. Although the annular force based actuation could deform a super-thin mirror having a constant thickness to generate curvature variation, it is quite difficult to maintain a high enough surface figure accuracy and this phenomenon becomes even worse when the diameter and the radius-thickness ratio become bigger. In this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/50λ could provide at least 21um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be superior to 1/20λ, which proves that the effectiveness of the theoretical design.
The Terrestrial Planet Finder and Darwin Missions
NASA Technical Reports Server (NTRS)
Danchi, William C.
2004-01-01
Both in the United States and in Europe, teams of scientists and engineers are exploring the feasibility of the Terrestrial Planet Finder (TPF) and Darwin missions, which are designed to search for Earth-like planets in the habitable zone of nearby stars. In the US, the TPF Science Working Group is studying four options - small (4m by 6 m primary mirror) and large (4m by 10 m primary mirror) coronagraphs for planet detection at visible wavelengths, and structurally connected and free-flyer interferometers at thermal infrared wavelengths. The US TPF-SWG is charged with selecting an option for NASA by the end of 2006. In Europe the Darwin Terrestrial Exo-planet Advisory Team (TE- SAT) is exploring the free-flyer interferometer option only at this time. I will discuss the vurtures and difficulties of detecting and characterizing extra-solar planets in both wavelength regions as well as some of the technical challenges and progress in the past year.
An analysis of optical effects caused by thermally induced mirror deformations.
Ogrodnik, R F
1970-09-01
This paper analyzes thermally induced mirror deformations and their resulting wavefront distortions which occur under the conditions of radially nonuniform mirror heating. The analysis is adaptable to heating produced by any radially nonuniform incident radiation. Specific examples of radiation distributions which are considered are the cosine squared and the gaussian and TEM(0, 1) laser distributions. Deformation effects are examined from two aspects, the first of which is the reflected wavefront radial phase distortion profile caused by the thermally induced surface irregularities at the mirror face. These phase distortion effects appear as aberrations in noncoherent optical applications and as the loss of spatial coherence in coherent applications. The second aspect is the gross wavefront bending due to mirror curvature effects. The analysis considers substrate material, geometry, and cooling in order to determine potential deformation controlling factors. Substrate materials are compared, and performance indicators are suggested to aid in selecting an optimum material for a given heating condition. Deformation examples are given for materials of interest and specific absorbed power levels.
Yuan, Ti-Fei; Chen, Wei; Shan, Chunlei; Rocha, Nuno; Arias-Carrión, Oscar; Paes, Flávia; de Sá, Alberto Souza; Machado, Sergio
2015-01-01
The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system.
Effect of mirror use on lower extremity muscle strength of patients with chronic stroke.
Kim, Myoung-Kwon; Choe, Yu-Won; Shin, Young-Jun; Peng, Cheng; Choi, Eun-Hong
2018-02-01
[Purpose] This study examines the effect on muscle strength of lower extremity muscle strength exercise while using a mirror on the non-paretic side in patients with chronic stroke. [Subjects and Methods] Subjects were randomly assigned to a non-mirror lower extremity exercise group (n=10), a mirror lower extremity exercise group (n=10), or a mirror lower extremity muscle strength exercise group (n=10). Subjects were asked to do the exercise assigned to their group (5 sets 30 times a day, 5 times weekly for 4 weeks) with general physical therapy in the hospital. Muscle strength in the knee extensor and flexor of paretic and non-paretic side were measured using electrical muscle testing device before and after the intervention. [Results] Muscle strength significantly increased within each group after intervention. No significant differences were found among the three groups. [Conclusion] This study showed that the lower extremity muscle strength exercise of the non-paretic side using a mirror has a positive effect on muscle strength in patient with chronic stroke.
Mibu, Akira; Nishigami, Tomohiko; Tanaka, Katsuyoshi; Osumi, Michihiro; Tanabe, Akihito
2016-04-01
A 43-year-old man had deafferentation pain in his right upper extremity secondary to brachial plexus avulsion from a traffic accident 23 years previously. On our initial examination, he had severe tingling pain with numbness in the right fingers rated 10 on the numerical rating scale. The body perception of the affected third and fourth fingers was distorted in the flexed position. Although he performed traditional mirror therapy (TMT) for 4 weeks in the same methods as seen in previous studies, he could not obtain willed motor imagery and pain-alleviation effect. Therefore, we modified the task of TMT: Graded mirror therapy (GMT). GMT consisted of five stages: (1) observation of the mirror reflection of the unaffected side without imagining any movements of the affected side; (2) observation of the mirror reflection of the third and fourth fingers changing shape gradually adjusted from a flexed position to a extended position; (3) observation of the mirror reflection of passive movement; (4) motor imagery of affected fingers with observation of the mirror reflection (similar to TMT); (5) motor imagery of affected fingers without mirror. Each task was performed for 3 to 4 weeks. As a result, pain intensity during mirror therapy gradually decreased and finally disappeared. The body perception of the affected fingers also improved, and he could imagine the movement of the fingers with or without mirror. We suggested that GMT starting from the observation task without motor imagery may effectively decrease deafferentation pain compared to TMT. © 2016 World Institute of Pain.
Wang, Wen-Yong; Ma, Na-Na; Sun, Shi-Ling; Qiu, Yong-Qing
2014-03-14
The studies of geometrical structures, thermal stabilities, redox properties, nonlinear responses and optoelectronic properties have been carried out on a series of novel ferrocenyl (Fc) chromophores with the view of assessing their switchable and tailorable second order nonlinear optics (NLO). The use of a constant Fc donor and a 4,4'-bipyridinium acceptor and varied conjugated bridges makes it possible to systematically determine the contribution of organic connectors to chromophore nonlinear optical activities. The structures reveal that both the reduction reactions and organic connectors have a significant influence on 4,4'-bipyridinium. The potential energy surface maps along with plots of reduced density gradient mirror the thermal stabilities of the Fc-based chromophores. The first and second reductions take place preferentially at the 4,4'-bipyridinium moieties. Significantly, the reduction processes result in the molecular switches with large NLO contrast varying from zero or very small to a large value. Moreover, time-dependent density functional theory results indicate that the absorption peaks are mainly attributed to Fc to 4,4'-bipyridinium charge transfer and the mixture of intramolecular charge transfer within the two respective 4,4'-bipyridinium moieties coupled with interlayer charge transfer between the two 4,4'-bipyridinium moieties. This provides us with comprehensive information on the effect of organic connectors on the NLO properties.
Yeldan, Ipek; Huseyınsınoglu, Burcu Ersoz; Akıncı, Buket; Tarakcı, Ela; Baybas, Sevim; Ozdıncler, Arzu Razak
2015-11-01
[Purpose] The aim of the study was to evaluate the effects of a very early mirror therapy program on functional improvement of the upper extremity in acute stroke patients. [Subjects] Eight stroke patients who were treated in an acute neurology unit were included in the study. [Methods] The patients were assigned alternatively to either the mirror therapy group receiving mirror therapy and neurodevelopmental treatment or the neurodevelopmental treatment only group. The primary outcome measures were the upper extremity motor subscale of the Fugl-Meyer Assessment, Motricity Index upper extremity score, and the Stroke Upper Limb Capacity Scale. Somatosensory assessment with the Ayres Southern California Sensory Integration Test, and the Barthel Index were used as secondary outcome measures. [Results] No statistically significant improvements were found for any measures in either group after the treatment. In terms of minimally clinically important differences, there were improvements in Fugl-Meyer Assessment and Barthel Index in both mirror therapy and neurodevelopmental treatment groups. [Conclusion] The results of this pilot study revealed that very early mirror therapy has no additional effect on functional improvement of upper extremity function in acute stroke patients. Multicenter trials are needed to determine the results of early application of mirror therapy in stroke rehabilitation.
Adjustable bipod flexures for mounting mirrors in a space telescope.
Kihm, Hagyong; Yang, Ho-Soon; Moon, Il Kweon; Yeon, Jeong-Heum; Lee, Seung-Hoon; Lee, Yun-Woo
2012-11-10
A new mirror mounting technique applicable to the primary mirror in a space telescope is presented. This mounting technique replaces conventional bipod flexures with flexures having mechanical shims so that adjustments can be made to counter the effects of gravitational distortion of the mirror surface while being tested in the horizontal position. Astigmatic aberration due to the gravitational changes is effectively reduced by adjusting the shim thickness, and the relation between the astigmatism and the shim thickness is investigated. We tested the mirror interferometrically at the center of curvature using a null lens. Then we repeated the test after rotating the mirror about its optical axis by 180° in the horizontal setup, and searched for the minimum system error. With the proposed flexure mount, the gravitational stress at the adhesive coupling between the mirror and the mount is reduced by half that of a conventional bipod flexure for better mechanical safety under launch loads. Analytical results using finite element methods are compared with experimental results from the optical interferometer. Vibration tests verified the mechanical safety and optical stability, and qualified their use in space applications.
ERIC Educational Resources Information Center
Koch, Sabine C.; Mehl, Laura; Sobanski, Esther; Sieber, Maik; Fuchs, Thomas
2015-01-01
From the 1970s on, case studies reported the effectiveness of therapeutic mirroring in movement with children with autism spectrum disorder. In this feasibility study, we tested a dance movement therapy intervention based on mirroring in movement in a population of 31 young adults with autism spectrum disorder (mainly high-functioning and…
Yun, Gi Jeong; Chun, Min Ho; Park, Ji Young; Kim, Bo Ryun
2011-06-01
To investigate the synergic effects of mirror therapy and neuromuscular electrical stimulation (NMES) for hand function in stroke patients. Sixty patients with hemiparesis after stroke were included (41 males and 19 females, average age 63.3 years). Twenty patients had NMES applied and simultaneously underwent mirror therapy. Twenty patients had NMES applied only, and twenty patients underwent mirror therapy only. Each treatment was done five days per week, 30 minutes per day, for three weeks. NMES was applied on the surface of the extensor digitorum communis and extensor pollicis brevis for open-hand motion. Muscle tone, Fugl-Meyer assessment, and power of wrist and hand were evaluated before and after treatment. There were significant improvements in the Fugl-Meyer assessment score in the wrist, hand and coordination, as well as power of wrist and hand in all groups after treatment. The mirror and NMES group showed significant improvements in the Fugl-Meyer scores of hand, wrist, coordination and power of hand extension compared to the other groups. However, the power of hand flexion, wrist flexion, and wrist extension showed no significant differences among the three groups. Muscle tone also showed no significant differences in the three groups. Our results showed that there is a synergic effect of mirror therapy and NMES on hand function. Therefore, a hand rehabilitation strategy combined with NMES and mirror therapy may be more helpful for improving hand function in stroke patients than NMES or mirror therapy only.
Experiments On Transparent Conductive Films For Spacecraft
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Rutledge, Sharon K.; De Groh, Kim K.; Hung, Ching-Cheh; Malave-Sanabria, Tania; Hambourger, Paul; Roig, David
1995-01-01
Report describes experiments on thin, transparent, electrically conductive films made, variously, of indium tin oxide covered by magnesium fluoride (ITO/MgF2), aluminum-doped zinc oxide (AZO), or pure zinc oxide (ZnO). Films are candidates for application to such spacecraft components, including various optoelectronic devices and window surfaces that must be protected against buildup of static electric charge. On Earth, such films useful on heat mirrors, optoelectronic devices, gas sensors, and automotive and aircraft windows.
Surface field theories of point group symmetry protected topological phases
NASA Astrophysics Data System (ADS)
Huang, Sheng-Jie; Hermele, Michael
2018-02-01
We identify field theories that describe the surfaces of three-dimensional bosonic point group symmetry protected topological (pgSPT) phases. The anomalous nature of the surface field theories is revealed via a dimensional reduction argument. Specifically, we study three different surface field theories. The first field theory is quantum electrodynamics in three space-time dimensions (QED3) with four flavors of fermions. We show this theory can describe the surfaces of a majority of bosonic pgSPT phases protected by a single mirror reflection, or by Cn v point group symmetry for n =2 ,3 ,4 ,6 . The second field theory is a variant of QED3 with charge-1 and charge-3 Dirac fermions. This field theory can describe the surface of a reflection symmetric pgSPT phase built by placing an E8 state on the mirror plane. The third field theory is an O (4 ) nonlinear sigma model with a topological theta term at θ =π , or, equivalently, a noncompact CP1 model. Using a coupled wire construction, we show this is a surface theory for bosonic pgSPT phases with U (1 ) ×Z2P symmetry. For the latter two field theories, we discuss the connection to gapped surfaces with topological order. Moreover, we conjecture that the latter two field theories can describe surfaces of more general bosonic pgSPT phases with Cn v point group symmetry.
ZnO Thin Film Electronics for More than Displays
NASA Astrophysics Data System (ADS)
Ramirez, Jose Israel
Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow discharging time constants. Finally, to circumvent fabrication challenges on predetermined complex shapes, like curved mirror optics, a technique to transfer electronics from a rigid substrate to a flexible substrate is used. This technique allows various thin films, regardless of their deposition temperature, to be transferred to flexible substrates. Finally, ultra-low power operation of ZnO TFT gas sensors was demonstrated. The ZnO ozone sensors were optimized to operate with excellent electrical stability in ambient conditions, without using elevated temperatures, while still providing good gas sensitivity. This was achieved by using a post-deposition anneal and by partially passivating the contact regions while leaving the semiconductor sensing area open to the ambient. A novel technique to reset the gas sensor using periodic pulsing of a UV light over the sensor results in less than 25 milliseconds recovery time. A pathway to achieve gas selectivity by using organic thin-film layers as filters deposited over the gas sensors tis demonstrated. The ZnO ozone sensor TFTs and the UV light operate at room temperature with an average power below 1 muW.
Broderick, P; Horgan, F; Blake, C; Ehrensberger, M; Simpson, D; Monaghan, K
2018-06-01
Mirror therapy has been proposed as an effective intervention for lower limb rehabilitation post stroke. This systematic review with meta-analysis examined if lower limb mirror therapy improved the primary outcome measures of muscle tone and motor function and the secondary outcome measures balance characteristics, functional ambulation, walking velocity, passive range of motion (PROM) for ankle dorsiflexion and gait characteristics in patients with stroke compared to other interventions. Standardised mean differences (SMD) and mean differences (MD) were used to assess the effect of mirror therapy on lower limb functioning. Nine studies were included in the review. Among the primary outcome measures there was evidence of a significant effect of mirror therapy on motor function compared with sham and non-sham interventions (SMD 0.54; 95% CI 0.24-0.93). Furthermore, among the secondary outcome measures there was evidence of a significant effect of mirror therapy for balance capacity (SMD -0.55; 95% CI -1.01 to -0.10), walking velocity (SMD 0.71; 95% CI 0.35-1.07), PROM for ankle dorsiflexion (SMD 1.20; 95% CI 0.71-1.69) and step length (SMD 0.56; 95% CI -0.00 to 1.12). The results indicate that using mirror therapy for the treatment of certain lower limb deficits in patients with stroke may have a positive effect. Although results are somewhat positive, overly favourable interpretation is cautioned due to methodological issues concerning included studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Mirror therapy for phantom limb pain: brain changes and the role of body representation.
Foell, J; Bekrater-Bodmann, R; Diers, M; Flor, H
2014-05-01
Phantom limb pain (PLP) is a common consequence of amputation and is difficult to treat. Mirror therapy (MT), a procedure utilizing the visual recreation of movement of a lost limb by moving the intact limb in front of a mirror, has been shown to be effective in reducing PLP. However, the neural correlates of this effect are not known. We investigated the effects of daily mirror training over 4 weeks in 13 chronic PLP patients after unilateral arm amputation. Eleven participants performed hand and lip movements during a functional magnetic resonance imaging (fMRI) measurement before and after MT. The location of neural activity in primary somatosensory cortex during these tasks was used to assess brain changes related to treatment. The treatment caused a significant reduction of PLP (average decrease of 27%). Treatment effects were predicted by a telescopic distortion of the phantom, with those patients who experienced a telescope profiting less from treatment. fMRI data analyses revealed a relationship between change in pain after MT and a reversal of dysfunctional cortical reorganization in primary somatosensory cortex. Pain reduction after mirror training was also related to a decrease of activity in the inferior parietal cortex (IPC). Experienced body appearance seems to be an important predictor of mirror treatment effectiveness. Maladaptive changes in cortical organization are reversed during mirror treatment, which also alters activity in the IPC, a region involved in painful perceptions and in the perceived relatedness to an observed limb. © 2013 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC®.
Influence of Layup Sequence on the Surface Accuracy of Carbon Fiber Composite Space Mirrors
NASA Astrophysics Data System (ADS)
Yang, Zhiyong; Liu, Qingnian; Zhang, Boming; Xu, Liang; Tang, Zhanwen; Xie, Yongjie
2018-04-01
Layup sequence is directly related to stiffness and deformation resistance of the composite space mirror, and error caused by layup sequence can affect the surface precision of composite mirrors evidently. Variation of layup sequence with the same total thickness of composite space mirror changes surface form of the composite mirror, which is the focus of our study. In our research, the influence of varied quasi-isotropic stacking sequences and random angular deviation on the surface accuracy of composite space mirrors was investigated through finite element analyses (FEA). We established a simulation model for the studied concave mirror with 500 mm diameter, essential factors of layup sequences and random angular deviations on different plies were discussed. Five guiding findings were described in this study. Increasing total plies, optimizing stacking sequence and keeping consistency of ply alignment in ply placement are effective to improve surface accuracy of composite mirror.
Analysis of target wavefront error for secondary mirror of a spaceborne telescope
NASA Astrophysics Data System (ADS)
Chang, Shenq-Tsong; Lin, Wei-Cheng; Kuo, Ching-Hsiang; Chan, Chia-Yen; Lin, Yu-Chuan; Huang, Ting-Ming
2014-09-01
During the fabrication of an aspherical mirror, the inspection of the residual wavefront error is critical. In the program of a spaceborne telescope development, primary mirror is made of ZERODUR with clear aperture of 450 mm. The mass is 10 kg after lightweighting. Deformation of mirror due to gravity is expected; hence uniform supporting measured by load cells has been applied to reduce the gravity effect. Inspection has been taken to determine the residual wavefront error at the configuration of mirror face upwards. Correction polishing has been performed according to the measurement. However, after comparing with the data measured by bench test while the primary mirror is at a configuration of mirror face horizontal, deviations have been found for the two measurements. Optical system that is not able to meet the requirement is predicted according to the measured wavefront error by bench test. A target wavefront error of secondary mirror is therefore analyzed to correct that of primary mirror. Optical performance accordingly is presented.
Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.
2014-01-01
Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546
Weisstanner, Christian; Saxer, Stefanie; Wiest, Roland; Kaelin-Lang, Alain; Newman, Christopher J; Steinlin, Maja; Grunt, Sebastian
2017-03-21
To investigate the neuronal activation pattern underlying the effects of mirror illusion in children/adolescents with normal motor development and in children/adolescents with hemiparesis and preserved contralateral corticospinal organisation. The type of cortical reorganisation was classified according to results of transcranial magnetic stimulation. Only subjects with congenital lesions and physiological contralateral cortical reorganisation were included. Functional magnetic resonance imaging was performed to investigate neuronal activation patterns with and without a mirror box. Each test consisted of a unimanual and a bimanual motor task. Seven children/adolescents with congenital hemiparesis (10-20 years old, three boys and four girls) and seven healthy subjects (8-17 years old, four boys and three girls) participated in this study. In the bimanual experiment, children with hemiparesis showed a significant effect of the mirror illusion (p<0.001 at voxel level, family-wise error corrected at cluster level) in the dorsolateral prefrontal cortex and anterior cingulate cortex of the affected and unaffected hemispheres, respectively. No significant effects of the mirror illusion were observed in unimanual experiments and in healthy participants. Mirror illusion in children/adolescents with hemiparesis leads to activation of brain areas involved in visual conflict detection and cognitive control to resolve this conflict. This effect is observed only in bimanual training. We consider that for mirror therapy in children and adolescents with hemiparesis a bimanual approach is more suitable than a unimanual approach.
Performance of The Far Ultraviolet Spectroscopic Explorer Mirror Assemblies
NASA Technical Reports Server (NTRS)
Ohi, Raymond G.; Barkhouser, Robert H.; Conard, Steven J.; Friedman, Scott D.; Hampton, Jeffery; Moos, H. Warren; Nikulla, Paul; Oliveira, Cristina M.; Saha, Timo T.; Obenschain, Arthur (Technical Monitor)
2000-01-01
The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5-118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four coaligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 x 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50 percent and 95 percent slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The far-ultraviolet reflectivity of the SiC- and AlLiF-coated mirrors decreased about six percent and three percent, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.
Performance of the Far Ultraviolet Spectroscopic Explorer mirror assemblies
NASA Astrophysics Data System (ADS)
Ohl, Raymond G.; Barkhouser, Robert H.; Conard, Steven J.; Friedman, Scott D.; Hampton, Jeffrey; Moos, H. Warren; Nikulla, Paul; Oliveira, Cristina M.; Saha, Timo T.
2000-12-01
The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5 - 118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four co- aligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 X 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50% and 95% slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The FUV reflectivity of the SiC- and Al:LiF-coated mirrors decreased about 6% and 3%, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.
6TH Saint Petersburg International Conference on Integrated Navigation Systems.
1999-10-01
France and Germany. RLGs of different architectures are considered: those with planar and nonplanar resonators, mirrors and totally reflecting...unless the possibility to use magnetic mirrors [21-25], based on the nonreciprocal transverse Kerr effect [23-25], for frequency separation of the...is in the plane of the magnetic mirror and normal to the plane of incidence. The magnetic mirror consists of a very thin transparent layer of
Gurbuz, Nigar; Afsar, Sevgi Ikbali; Ayaş, Sehri; Cosar, Sacide Nur Saracgil
2016-09-01
[Purpose] This study aimed to evaluate the effectiveness of mirror therapy combined with a conventional rehabilitation program on upper extremity motor and functional recovery in stroke patients. [Subjects and Methods] Thirty-one hemiplegic patients were included. The patients were randomly assigned to a mirror (n=16) or conventional group (n=15). The patients in both groups underwent conventional therapy for 4 weeks (60-120 minutes/day, 5 days/week). The mirror group received mirror therapy, consisting of periodic flexion and extension movements of the wrist and fingers on the non-paralyzed side. The patients in the conventional group performed the same exercises against the non-reflecting face of the mirror. The patients were evaluated at the beginning and end of the treatment by a blinded assessor using the Brunnstrom stage, Fugl-Meyer Assessment (FMA) upper extremity score, and the Functional Independence Measure (FIM) self-care score. [Results] There was an improvement in Brunnstrom stage and the FIM self-care score in both groups, but the post-treatment FMA score was significantly higher in the mirror therapy group than in the conventional treatment group. [Conclusion] Mirror therapy in addition to a conventional rehabilitation program was found to provide additional benefit in motor recovery of the upper extremity in stroke patients.
Gurbuz, Nigar; Afsar, Sevgi Ikbali; Ayaş, Sehri; Cosar, Sacide Nur Saracgil
2016-01-01
[Purpose] This study aimed to evaluate the effectiveness of mirror therapy combined with a conventional rehabilitation program on upper extremity motor and functional recovery in stroke patients. [Subjects and Methods] Thirty-one hemiplegic patients were included. The patients were randomly assigned to a mirror (n=16) or conventional group (n=15). The patients in both groups underwent conventional therapy for 4 weeks (60–120 minutes/day, 5 days/week). The mirror group received mirror therapy, consisting of periodic flexion and extension movements of the wrist and fingers on the non-paralyzed side. The patients in the conventional group performed the same exercises against the non-reflecting face of the mirror. The patients were evaluated at the beginning and end of the treatment by a blinded assessor using the Brunnstrom stage, Fugl-Meyer Assessment (FMA) upper extremity score, and the Functional Independence Measure (FIM) self-care score. [Results] There was an improvement in Brunnstrom stage and the FIM self-care score in both groups, but the post-treatment FMA score was significantly higher in the mirror therapy group than in the conventional treatment group. [Conclusion] Mirror therapy in addition to a conventional rehabilitation program was found to provide additional benefit in motor recovery of the upper extremity in stroke patients. PMID:27799679
Design and Analysis of Mirror Modules for IXO and Beyond
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.; Powell, Cory; Saha, Timo T.; Zhang, William W.
2011-01-01
Advancements in X-ray astronomy demand thin, light, and closely packed thin optics which lend themselves to segmentation of the annular mirrors and, in turn, a modular approach to the mirror design. The functionality requirements of such a mirror module are well understood. A baseline modular concept for the proposed International X-Ray Observatory (IXO) Flight Mirror Assembly (FMA) consisting of 14,000 glass mirror segments divided into 60 modules was developed and extensively analyzed. Through this development, our understanding of module loads, mirror stress, thermal performance, and gravity distortion have greatly progressed. The latest progress in each of these areas is discussed herein. Gravity distortion during horizontal X-ray testing and on-orbit thermal performance have proved especially difficult design challenges. In light of these challenges, fundamental trades in modular X-ray mirror design have been performed. Future directions in module X-ray mirror design are explored including the development of a 1.8 m diameter FMA utilizing smaller mirror modules. The effect of module size on mirror stress, module self-weight distortion, thermal control, and range of segment sizes required is explored with advantages demonstrated from smaller module size in most cases.
Mirror therapy for phantom limb pain in an adolescent cancer survivor.
Clerici, Carlo Alfredo; Spreafico, Filippo; Cavallotti, Gaia; Consoli, Annalisa; Veneroni, Laura; Sala, Alessio; Massimino, Maura
2012-01-01
Several pediatric tumors require mutilating procedures in order to be treated effectively. Although the pain caused by the surgery is usually of a transient nature, the perception of pain in the amputated limb may persist. This prolonged pain, which is often refractory to pain-killing medication, may severely affect the patient's quality of life. The phenomenon of phantom limb pain (or phantom limb syndrome) has been investigated using neurological, neurophysiological and psychopathological approaches. Here we discuss the advantages of an unconventional rehabilitation technique, the recently reported mirror therapy, whose positive effects might be due, according to some researchers, to neuronal plasticity mechanisms. We describe the use of mirror therapy to treat phantom limb syndrome in a 39-year-old patient whose right leg had been amputated at the age of 17 because of an osteosarcoma. The patient suffered from frequent episodes of pain, with severely negative effects on his quality of life. We obtained positive subjective feedback from the patient, who reported having benefited significantly from using the mirror. The beneficial effect was still present six months after the start of mirror therapy. The reported case highlights the value of an integrated multidisciplinary approach including neurological/physiatric assessment, clinical psychological support, physiotherapy and other, unconventional treatment modalities. This report should guide future studies towards the application of mirror therapy in order to elucidate its effects and efficacy.
Thermal Model Development for an X-Ray Mirror Assembly
NASA Technical Reports Server (NTRS)
Bonafede, Joseph A.
2015-01-01
Space-based x-ray optics require stringent thermal environmental control to achieve the desired image quality. Future x-ray telescopes will employ hundreds of nearly cylindrical, thin mirror shells to maximize effective area, with each shell built from small azimuthal segment pairs for manufacturability. Thermal issues with these thin optics are inevitable because the mirrors must have a near unobstructed view of space while maintaining near uniform 20 C temperature to avoid thermal deformations. NASA Goddard has been investigating the thermal characteristics of a future x-ray telescope with an image requirement of 5 arc-seconds and only 1 arc-second focusing error allocated for thermal distortion. The telescope employs 135 effective mirror shells formed from 7320 individual mirror segments mounted in three rings of 18, 30, and 36 modules each. Thermal requirements demand a complex thermal control system and detailed thermal modeling to verify performance. This presentation introduces innovative modeling efforts used for the conceptual design of the mirror assembly and presents results demonstrating potential feasibility of the thermal requirements.
Mirror and (absence of) counter-mirror responses to action sounds measured with TMS.
Ticini, Luca F; Schütz-Bosbach, Simone; Waszak, Florian
2017-11-01
To what extent is the mirror neuron mechanism malleable to experience? The answer to this question can help characterising its ontogeny and its role in social cognition. Some suggest that it develops through sensorimotor associations congruent with our own actions. Others argue for its extreme volatility that will encode any sensorimotor association in the environment. Here, we added to this debate by exploring the effects of short goal-directed 'mirror' and 'counter-mirror' trainings (a 'mirror' training is defined as the first type of training encountered by the participants) on human auditory mirror motor-evoked potentials (MEPs). We recorded MEPs in response to two tones void of previous motor meaning, before and after mirror and counter-mirror trainings in which participants generated two tones of different pitch by performing free-choice button presses. The results showed that mirror MEPs, once established, were protected against an equivalent counter-mirror experience: they became manifest very rapidly and the same number of training trials that lead to the initial association did not suffice to reverse the MEP pattern. This steadiness of the association argues that, by serving direct-matching purposes, the mirror mechanism is a good solution for social cognition. © The Author (2017). Published by Oxford University Press.
Ultralightweight optics for space applications
NASA Astrophysics Data System (ADS)
Mayo, James W.; DeHainaut, Linda L.; Bell, Kevin D.; Smith, Winfred S.; Killpatrick, Don H.; Dyer, Richard W.
2000-07-01
Lightweight, deployable space optics has been identified as a key technology for future cost-effective, space-based systems. The United States Department of Defense has partnered with the National Aeronautical Space Administration to implement a space mirror technology development activity known as the Advanced Mirror System Demonstrator (AMSD). The AMSD objectives are to advance technology in the production of low-mass primary mirror systems, reduce mirror system cost and shorten mirror- manufacturing time. The AMSD program will offer substantial weight, cost and production rate improvements over Hubble Space Telescope mirror technology. A brief history of optical component development and a review of optical component state-of-the-art technology will be given, and the AMSD program will be reviewed.
A path planning method used in fluid jet polishing eliminating lightweight mirror imprinting effect
NASA Astrophysics Data System (ADS)
Li, Wenzong; Fan, Bin; Shi, Chunyan; Wang, Jia; Zhuo, Bin
2014-08-01
With the development of space technology, the design of optical system tends to large aperture lightweight mirror with high dimension-thickness ratio. However, when the lightweight mirror PV value is less than λ/10 , the surface will show wavy imprinting effect obviously. Imprinting effect introduced by head-tool pressure has become a technological barrier in high-precision lightweight mirror manufacturing. Fluid jet polishing can exclude outside pressure. Presently, machining tracks often used are grating type path, screw type path and pseudo-random path. On the edge of imprinting error, the speed of adjacent path points changes too fast, which causes the machine hard to reflect quickly, brings about new path error, and increases the polishing time due to superfluous path. This paper presents a new planning path method to eliminate imprinting effect. Simulation results show that the path of the improved grating path can better eliminate imprinting effect compared to the general path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dynan, William S.
The goal of the project was to determine whether high linear energy transfer (LET) space radiation produces the same or different effects as low doses of terrestrial (low-LET) radiation. The work used the Japanese medaka fish (Oryzias latipes) as a vertebrate model organism that can be maintained in large numbers at low cost for lifetime studies. To determine whether simulated space radiation produced the same or different effects as low doses of low-LET radiation, medaka embryos were irradiated at doses ranging from 0.1 to 9 Gray (Gy) of high-LET charged particle radiation (1000 MeV/nucleon 56-Fe ions) or 0.1 Gy tomore » 27 Gy of low-LET gamma-rays. To examine the effect of irradiation on potential biomarkers, the population was sampled at intervals from 8 to 28 months post-irradiation and liver tissue was subjected to histological and molecular analysis. Charged particle radiation and aging contributed synergistically to accumulation of lipid oxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in mRNA encoding the transcriptional activator PPARGC1A, which is required for mitochondrial maintenance and for defense against oxidative stress. Additionally, mitochondria had an elongated and enlarged ultrastructure. Depending on the endpoint, effects of gamma-rays in the same dose range were either lesser or not detected. Together, results indicate that a single exposure to high-LET, but not low-LET radiation, early in life, leads to increased oxidative stress throughout the normal lifespan of the individual.« less
Evaluation of Deer Mirrors for Reducing Deer-Vehicle Collisions
DOT National Transportation Integrated Search
1982-05-01
Deer mirrors were placed in 12 random 0.5-mile test sections along 14.8 miles of I-95 between Topsham and Gardiner, Maine, to test the effectiveness of the mirrors in reducing deer-vehicle collisions. In nearly 4 years, 11 deer-vehicle collisions wer...
Intuitive optics: what great apes infer from mirrors and shadows.
Völter, Christoph J; Call, Josep
2018-05-02
There is ongoing debate about the extent to which nonhuman animals, like humans, can go beyond first-order perceptual information to abstract structural information from their environment. To provide more empirical evidence regarding this question, we examined what type of information great apes (chimpanzees, bonobos, and orangutans) gain from optical effects such as shadows and mirror images. In an initial experiment, we investigated whether apes would use mirror images and shadows to locate hidden food. We found that all examined ape species used these cues to find the food. Follow-up experiments showed that apes neither confused these optical effects with the food rewards nor did they merely associate cues with food. First, naïve chimpanzees used the shadow of the hidden food to locate it but they did not learn within the same number of trials to use a perceptually similar rubber patch as indicator of the hidden food reward. Second, apes made use of the mirror images to estimate the distance of the hidden food from their own body. Depending on the distance, apes either pointed into the direction of the food or tried to access the hidden food directly. Third, apes showed some sensitivity to the geometrical relation between mirror orientation and mirrored objects when searching hidden food. Fourth, apes tended to interpret mirror images and pictures of these mirror images differently depending on their prior knowledge. Together, these findings suggest that apes are sensitive to the optical relation between mirror images and shadows and their physical referents.
Assessing Human Mirror Activity With EEG Mu Rhythm: A Meta-Analysis
Fox, Nathan A.; Bakermans-Kranenburg, Marian J.; Yoo, Kathryn H.; Bowman, Lindsay C.; Cannon, Erin N.; Vanderwert, Ross E.; Ferrari, Pier F.; van IJzendoorn, Marinus H.
2016-01-01
A fundamental issue in cognitive neuroscience is how the brain encodes others’ actions and intentions. In recent years, a potential advance in our knowledge on this issue is the discovery of mirror neurons in the motor cortex of the nonhuman primate. These neurons fire to both execution and observation of specific types of actions. Researchers use this evidence to fuel investigations of a human mirror system, suggesting a common neural code for perceptual and motor processes. Among the methods used for inferring mirror system activity in humans are changes in a particular frequency band in the electroencephalogram (EEG) called the mu rhythm. Mu frequency appears to decrease in amplitude (reflecting cortical activity) during both action execution and action observation. The current meta-analysis reviewed 85 studies (1,707 participants) of mu that infer human mirror system activity. Results demonstrated significant effect sizes for mu during execution (Cohen’s d = 0.46, N = 701) as well as observation of action (Cohen’s d = 0.31, N = 1,508), confirming a mirroring property in the EEG. A number of moderators were examined to determine the specificity of these effects. We frame these meta-analytic findings within the current discussion about the development and functions of a human mirror system, and conclude that changes in EEG mu activity provide a valid means for the study of human neural mirroring. Suggestions for improving the experimental and methodological approaches in using mu to study the human mirror system are offered. PMID:26689088
Kim, Jung Hee; Lee, Byoung-Hee
2015-06-01
The objective of this study was to evaluate the effects of mirror therapy in combination with biofeedback functional electrical stimulation (BF-FES) on motor recovery of the upper extremities after stroke. Twenty-nine patients who suffered a stroke > 6 months prior participated in this study and were randomly allocated to three groups. The BF-FES + mirror therapy and FES + mirror therapy groups practiced training for 5 × 30 min sessions over a 4-week period. The control group received a conventional physical therapy program. The following clinical tools were used to assess motor recovery of the upper extremities: electrical muscle tester, electrogoniometer, dual-inclinometer, electrodynamometer, the Box and Block Test (BBT) and Jabsen Taylor Hand Function Test (JHFT), the Functional Independence Measure, the Modified Ashworth Scale, and the Stroke Specific Quality of Life (SSQOL) assessment. The BF-FES + mirror therapy group showed significant improvement in wrist extension as revealed by the Manual Muscle Test and Range of Motion (p < 0.05). The BF-FES + mirror therapy group showed significant improvement in the BBT, JTHT, and SSQOL compared with the FES + mirror therapy group and control group (p < 0.05). We found that BF-FES + mirror therapy induced motor recovery and improved quality of life. These results suggest that mirror therapy, in combination with BF-FES, is feasible and effective for motor recovery of the upper extremities after stroke. Copyright © 2014 John Wiley & Sons, Ltd.
Experiential effects on mirror systems and social learning: implications for social intelligence.
Reader, Simon M
2014-04-01
Investigations of biases and experiential effects on social learning, social information use, and mirror systems can usefully inform one another. Unconstrained learning is predicted to shape mirror systems when the optimal response to an observed act varies, but constraints may emerge when immediate error-free responses are required and evolutionary or developmental history reliably predicts the optimal response. Given the power of associative learning, such constraints may be rare.
Design and Analysis of an Optical Interface Message Processor
1993-03-01
Device 16 2.2.15 Microchannel Spatial Light Modulator (MSLM) 16 2.2.16 Si/PLST Modulator 16 2.2.17 Deformable Mirror Device ( DMD ) 17 2.2.18 Charged...wavelength of UV light, ’n this process, is the minimum image which can be developed. X-Ray lithography wil’ reduce the image size to the 1000 Angstrom...resonance of laser wavelength. This is due to a change in the index of refraction which results in an optical path allowing constructive interference
Preliminary design and development of a reflectance spectrometer instrument
NASA Technical Reports Server (NTRS)
Mccord, T. B.
1979-01-01
An improved design for the reflectance spectrometer is described to be used on various terrestrial body missions. These improvements were made on the original Lunar Polar Orbiter design. These include a larger entrance mirror, rectangular aperture, multiple optical beams, spatial resolution, and a bandwidth extension to 5 microns. In addition, detailed electronic designs were produced for a charge amplifier and an amplifier/demodulator/integrator. Design of a microprocessor driven test system was begun. Laboratory tests were performed on a tuning fork chopper.
Research study on stellar X-ray imaging experiment, volume 1
NASA Technical Reports Server (NTRS)
Wilson, H. H.; Vanspeybroeck, L. P.
1972-01-01
The use of microchannel plates as focal plane readout devices and the evaluation of mirrors for X-ray telescopes applied to stellar X-ray imaging is discussed. The microchannel plate outputs were either imaged on a phosphor screen which was viewed by a low light level vidicon or on a wire array which was read out by digitally processing the output of a charge division network attached to the wires. A service life test which was conducted on two image intensifiers is described.
ERIC Educational Resources Information Center
Fuentes, Sarah Quebec
2015-01-01
NCTM's "Principles to Actions: Ensuring Mathematical Success for All" (2014), outlines eight teaching practices for effective teaching and learning mathematics. One of them, facilitate meaningful mathematical discourse, states, "Effective teaching of mathematics facilitates discourse among students to build shared understanding of…
Group Mirrors to Support Interaction Regulation in Collaborative Problem Solving
ERIC Educational Resources Information Center
Jermann, Patrick; Dillenbourg, Pierre
2008-01-01
Two experimental studies test the effect of group mirrors upon quantitative and qualitative aspects of participation in collaborative problem solving. Mirroring tools consist of a graphical representation of the group's actions which is dynamically updated and displayed to the collaborators. In addition, metacognitive tools display a standard for…
Mirror therapy for improving motor function after stroke.
Thieme, Holm; Mehrholz, Jan; Pohl, Marcus; Behrens, Johann; Dohle, Christian
2012-03-14
Mirror therapy is used to improve motor function after stroke. During mirror therapy, a mirror is placed in the patient's midsagittal plane, thus reflecting movements of the non-paretic side as if it were the affected side. To summarise the effectiveness of mirror therapy for improving motor function, activities of daily living, pain and visuospatial neglect in patients after stroke. We searched the Cochrane Stroke Group's Trials Register (June 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to June 2011), EMBASE (1980 to June 2011), CINAHL (1982 to June 2011), AMED (1985 to June 2011), PsycINFO (1806 to June 2011) and PEDro (June 2011). We also handsearched relevant conference proceedings, trials and research registers, checked reference lists and contacted trialists, researchers and experts in our field of study. We included randomised controlled trials (RCTs) and randomised cross-over trials comparing mirror therapy with any control intervention for patients after stroke. Two review authors independently selected trials based on the inclusion criteria, documented the methodological quality of studies and extracted data. We analysed the results as standardised mean differences (SMDs) for continuous variables. We included 14 studies with a total of 567 participants that compared mirror therapy with other interventions. When compared with all other interventions, mirror therapy may have a significant effect on motor function (post-intervention data: SMD 0.61; 95% confidence interval (CI) 0.22 to 1.0; P = 0.002; change scores: SMD 1.04; 95% CI 0.57 to 1.51; P < 0.0001). However, effects on motor function are influenced by the type of control intervention. Additionally, mirror therapy may improve activities of daily living (SMD 0.33; 95% CI 0.05 to 0.60; P = 0.02). We found a significant positive effect on pain (SMD -1.10; 95% CI -2.10 to -0.09; P = 0.03) which is influenced by patient population. We found limited evidence for improving visuospatial neglect (SMD 1.22; 95% CI 0.24 to 2.19; P = 0.01). The effects on motor function were stable at follow-up assessment after six months. The results indicate evidence for the effectiveness of mirror therapy for improving upper extremity motor function, activities of daily living and pain, at least as an adjunct to normal rehabilitation for patients after stroke. Limitations are due to small sample sizes of most included studies, control interventions that are not used routinely in stroke rehabilitation and some methodological limitations of the studies.
The Mirror Illusion’s Effects on Body State Estimation
Soliman, Tamer M.; Buxbaum, Laurel J.; Jax, Steven A.
2016-01-01
The mirror illusion uses a standard mirror to create a compelling illusion in which movements of one limb seem to be made by the other hidden limb. In this paper we adapt a motor control framework to examine which estimates of the body’s configuration are affected by the illusion. We propose that the illusion primarily alters estimates related to upcoming states of the body (the desired state and the predicted state), with smaller effects on the estimate of the body state prior to movement initiation. Support for this proposal is provided both by behavioral effects of the illusion as well as neuroimaging evidence from one neural region, V6A, that is critically involved in the mirror illusion and limb state estimation more generally. PMID:27390062
Veale, David; Miles, Sarah; Valiallah, Natasha; Butt, Saira; Anson, Martin; Eshkevari, Ertimiss; Gledhill, Lucinda J; Baldock, Emma
2016-09-01
Self-focused attention is hypothesized to be a maintenance factor in body dysmorphic disorder (BDD). The aim of this study was to use an experimental paradigm to test this hypothesis by studying the effect of self-focused attention during mirror-gazing on appearance dissatisfaction. An experimental group design was used, in which 173 women were randomly allocated to one of three conditions before mirror-gazing for 2 min: (a) external focus of attention, (b) self-focus of attention, and (c) self-focus of attention with a negative mood induction. After mirror-gazing, participants across all groups rated themselves as being more dissatisfied with their appearance. In both the self-focus conditions, there was an increase in sadness from pre to post mirror gazing, and there was a significant difference in focus of attention for participants in the self-focused, mood-induced group from pre to post manipulation, suggesting mood induction had more of an effect than focus of attention. (1) there was no condition involving an external focus with a negative mood induction, and (2) due to the level of information provided to patients on the nature of the task, we cannot rule out demand characteristics as an influencing factor on our results. Self-focused attention during mirror-gazing may act indirectly to increase appearance dissatisfaction via the effect of negative mood. Further studies are required to establish the relative contribution of self-focused attention and negative mood to increases in appearance dissatisfaction as a function of mirror-gazing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Goldovsky, David; Jouravsky, Valery; Pe'er, Avi
2016-12-12
We present an approach to locking of optical cavities with piezoelectric actuated mirrors based on a simple and effective mechanical decoupling of the mirror and actuator from the surrounding mount. Using simple elastic materials (e.g. rubber or soft silicone gel pads) as mechanical dampers between the piezo-mirror compound and the surrounding mount, a firm and stable mounting of a relatively large mirror (8mm diameter) can be maintained that is isolated from external mechanical resonances, and is limited only by the internal piezo-mirror resonance of > 330 KHz. Our piezo lock showed positive servo gain up to 208 KHz, and a temporal response to a step interference within < 3 μs.
Structural design of a large deformable primary mirror for a space telescope
NASA Astrophysics Data System (ADS)
Hansen, J. G. R.
A 4 meter aperture deformable primary mirror is designed with the mirror and its supports integrated into a single structure. The integrated active mirror's minimal weight makes it desirable for a space telescope as well as a terrestrial application. Utilizing displacement actuators, the active controls at the mirror's surface include position control and slope control in both the radial and tangential directions at each of the 40 control points. Influence functions for each of the controls are nearly independent, reducing the complexity of the control system. Experiments with breadboard models verify the structural concept and the techniques used in the finite element method of computer structural analysis. The majority of this paper is a description of finite element analysis results. Localization of influence functions is exhaustively treated. For gravity loads, a thermal gradient through the mirror thickness, and a uniform thermal soak, diffraction limited performance of the 4m design is evaluated. Loads are applied to defocus the mirror and to cause fourth-order astigmatism. Mirror scallop, instigated by a focus shift, has been virtually eliminated with the 40-actuator design. The structural concept is so effective that it should be considered for uncontrolled primary mirrors as well as active mirrors.
Electron gun controlled smart structure
Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.
2001-01-01
Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.
Distributed microscopic actuation analysis of deformable plate membrane mirrors
NASA Astrophysics Data System (ADS)
Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen
2018-02-01
To further reduce the areal density of optical mirrors used in space telescopes and other space-borne optical structures, the concept of flexible membrane deformable mirror has been proposed. Because of their high flexibility, poor stiffness and low damping properties, environmental excitations such as orbital maneuver, path changing, and non-uniform heating may induce unexpected vibrations and thus reduce working performance. Therefore, active vibration control is essential for these membrane mirrors. In this paper, two different mirror models, i.e., the plate membrane model and pure membrane model, are studied respectively. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as actuators. Dynamic equations of the mirror laminated with piezoelectric actuators are presented first. Then, the actuator induced modal control force is defined. When the actuator area shrinks to infinitesimal, the expressions of microscopic local modal control force and its two components are obtained to predict the spatial microscopic actuation behavior of the mirror. Different membrane pretension forces are also applied to reveal the tension effects on the actuation of the mirror. Analyses indicate that the spatial distribution of modal micro-control forces is exactly the same with the sensing signals distribution of the mirror, which provides crucial guidelines for optimal actuator placement of membrane deformable mirrors.
Preston, Catherine; Kuper-Smith, Benjamin J.; Henrik Ehrsson, H.
2015-01-01
Mirrors allow us to view our own body from a third-person (observer) perspective. However, how viewing ourselves through a mirror affects central body representations compared with true third-person perspective is not fully understood. Across a series of experiments, multisensory full-body illusions were used to modulate feelings of ownership over a mannequin body that was viewed from a third-person perspective through a mirror, from a third-person perspective without a mirror, and from a first-person perspective. In contrast to non-mirror third-person perspective, synchronously touching the participant’s actual body and the mannequin body viewed in the mirror elicited strong feelings of ownership over the mannequin and increased physiological responses to the mannequin being threatened compared to the equivalent asynchronous (non-ownership) control condition. Subjective reports of ownership viewing the mannequin through a mirror were also statistically equivalent to those following the first-person perspective illusion. These findings suggest that mirrors have a special role for viewing the self. The results also support the importance of egocentric reference frames for body ownership and suggest that mirror reflections of one’s own body are related to peripersonal space, which enables updating of central body representations. PMID:26678091
Tilt correction for intracavity mirror of laser with an unstable resonator
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Xu, Bing; Yang, Wei
2005-12-01
The influence on outcoupled mode by introducing intracavity tilt-perturbation in confocal unstable resonator is analyzed. The intracavity mode properties and Zernike-aberration coefficient of intrcavity mirror's maladjustment are calculated theoretically. The experimental results about the relations of intracavity mirror maladjustment and the properties of mode aberration are presented by adopting Hartmann-Shack wavefront sensor. The results show that the intracavity perturbation of the concave mirror has more remarkable effect on outcoupled beam-quality than that of the convex mirror. For large Fresnel-number resonator, the tilt angle of intracavity mirror has a close linear relationship with extracavity Zernike tilt coefficient. The ratio of tilt aberration coefficient approaches to the magnification of unstable resonator if equivalent perturbation is applied to concave mirror and convex mirror respectively. Furthermore, astigmatism and defocus aberration also increase with the augment of tilt aberration of beam mode. So intracavity phase-corrected elements used in unstable resonator should be close to the concave mirror. Based these results, a set of automatic control system of intracavity tilt aberration is established and the aberration-corrected results are presented and analyzed in detail.
Maintenance and testing of anodized aluminum mirrors on the Whipple 10 m Whipple Telescope
NASA Astrophysics Data System (ADS)
Badran, H. M.; Weekes, T. C.
2001-08-01
Threshold energy sensitivity depends not only on the high reflectivity of the mirrors used in atmospheric Cherenkov telescopes but also on the maintenance of this reflectivity over months/years. The successful application of a mirror maintenance technique depends on the type of mirror coating and the contamination that must be removed. The uncovered mirrors in use on the 10-m Whipple gamma-ray telescope are anodized aluminum mirrors. A standard cleaning technique for such mirrors is not available. With the aim of extending the life of the aluminum coating exposed to the Mt ˙Hopkins environment, several cleaning procedures were tested on mirrors that had been exposed for three years. Evaluation of the most effective cleaners is presented. Preliminary results are also presented from a long-term experiment using newly coated mirrors at the proposed VERITAS site and at the current 10 m site. This experiment is designed to reveal the rates at which the reflectance degrades as a function of time, depth of anodization, storage direction, degree of covering, and maintenance procedures.
LED structure with enhanced mirror reflectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Michael; Donofrio, Matthew; Heikman, Sten
2014-04-01
Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer andmore » adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.« less
Advanced Mirror Technology Development (AMTD) Thermal Trade Studies
NASA Technical Reports Server (NTRS)
Brooks, Thomas
2015-01-01
Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.
Bertamini, Marco
2014-01-01
In the Venus effect observers assume that Venus is admiring her own reflection in the mirror (Bertamini et al., 2003a). However, since the observer sees her face in the mirror, Venus is actually looking at the reflection of the painter. This effect is general because it is not specific to paintings or to images of people. This study tests whether people have difficulties in estimating what is visible from a given viewpoint using a paper and pencil task. Participants (N = 80) judged what is visible in a scene that could include a mirror or an aperture. The object in the scene (a train) was already located in front of the mirror or behind the aperture, or the same object had to be imagined to move to that location. The hypothesis was that this extra step (spatial transformation) is always part of how people reason about mirrors because they have to imagine the location of the reflection based on the location of the physical object. If so, this manipulation would equate the difficulty of the mirror and of the aperture conditions. Results show that performance on the paper and pencil task was better than expected, probably because of the asymmetric nature of the object used. However, an additional cost in reasoning about mirrors was confirmed.
Alignment and assembly process for primary mirror subsystem of a spaceborne telescope
NASA Astrophysics Data System (ADS)
Lin, Wei-Cheng; Chang, Shenq-Tsong; Chang, Sheng-Hsiung; Chang, Chen-Peng; Lin, Yu-Chuan; Chin, Chi-Chieh; Pan, Hsu-Pin; Huang, Ting-Ming
2015-11-01
In this study, a multispectral spaceborne Cassegrain telescope was developed. The telescope was equipped with a primary mirror with a 450-mm clear aperture composed of Zerodur and lightweighted at a ratio of approximately 50% to meet both thermal and mass requirements. Reducing the astigmatism was critical for this mirror. The astigmatism is caused by gravity effects, the bonding process, and deformation from mounting the main structure of the telescope (main plate). This article presents the primary mirror alignment, mechanical ground-supported equipment (MGSE), assembly process, and optical performance test used to assemble the primary mirror. A mechanical compensated shim is used as the interface between the bipod flexure and main plate. The shim was used to compensate for manufacturer errors found in components and differences between local coplanarity errors to prevent stress while the bipod flexure was screwed to the main plate. After primary mirror assembly, an optical performance test method called a bench test with an algorithm was used to analyze the astigmatism caused by the gravity effect and deformation from the mounting or supporter. The tolerance conditions for the primary mirror assembly require the astigmatism caused by gravity and mounting force deformation to be less than P-V 0.02 λ at 632.8 nm. The results demonstrated that the designed MGSE used in the alignment and assembly processes met the critical requirements for the primary mirror assembly of the telescope.
Photonic Doppler velocimetry probe designed with stereo imaging
NASA Astrophysics Data System (ADS)
Malone, Robert M.; Cata, Brian M.; Daykin, Edward P.; Esquibel, David L.; Frogget, Brent C.; Holtkamp, David B.; Kaufman, Morris I.; McGillivray, Kevin D.; Palagi, Martin J.; Pazuchanics, Peter; Romero, Vincent T.; Sorenson, Danny S.
2014-09-01
During the fabrication of an aspherical mirror, the inspection of the residual wavefront error is critical. In the program of a spaceborne telescope development, primary mirror is made of ZERODUR with clear aperture of 450 mm. The mass is 10 kg after lightweighting. Deformation of mirror due to gravity is expected; hence uniform supporting measured by load cells has been applied to reduce the gravity effect. Inspection has been taken to determine the residual wavefront error at the configuration of mirror face upwards. Correction polishing has been performed according to the measurement. However, after comparing with the data measured by bench test while the primary mirror is at a configuration of mirror face horizontal, deviations have been found for the two measurements. Optical system that is not able to meet the requirement is predicted according to the measured wavefront error by bench test. A target wavefront error of secondary mirror is therefore analyzed to correct that of primary mirror. Optical performance accordingly is presented.
NASA Astrophysics Data System (ADS)
Ioan, M.-R.
2018-01-01
Almost all optical diagnostic systems associated with classical particle accelerators or with new state-of-the-art particle accelerators, such as those developed within the European Collaboration ELI-NP (Extreme Light Infrastructure-Nuclear Physics) (involving extreme power laser beams), contain in their infrastructure high quality laser mirrors, used for their reflectivity and/or their partial transmittance. These high quality mirrors facilitate the extraction and handling of optical signals. When optical mirrors are exposed to high energy ionizing radiation fields, their optical and structural properties will change over time and their functionality will be affected, meaning that they will provide imprecise information. In some experiments, being exposed to mixed laser and accelerated particle beams, the deterioration of laser mirrors is even more acute, since the destruction mechanisms of both types of beams are cumulated. The main task of the work described in this paper was to find a novel specific method to analyse and highlight such degradation processes. By using complex fractal techniques integrated in a MATLAB code, the effects induced by alpha radiation to laser mirrors were studied. The fractal analysis technique represents an alternative approach to the classical Euclidean one. It can be applied for the characterization of the defects occurred in mirrors structure due to their exposure to high energy alpha particle beams. The proposed method may be further integrated into mirrors manufacturing process, as a testing instrument, to obtain better quality mirrors (enhanced resistance to high energy ionizing beams) by using different types of reflective coating materials and different deposition techniques. Moreover, the effect of high energy alpha ionizing particles on the optical properties of the exposed laser mirrors was studied by using spectrophotometric techniques.
The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment.
Grainger, William F; North, Chris E; Ade, Peter A R
2011-06-01
We investigate the possibility of using a flat-fold beam steering mirror for a cosmic microwave background B-mode experiment. An aluminium flat-fold mirror is found to add ∼0.075% polarization, which varies in a scan synchronous way. Time-domain simulations of a realistic scanning pattern are performed, and the effect on the power-spectrum illustrated, and a possible method of correction applied. © 2011 American Institute of Physics
Generation of magneto-immersed electron beams
NASA Astrophysics Data System (ADS)
Pikin, A.; Raparia, D.
2018-05-01
There are many applications of electron beams in accelerator facilities: for electron coolers, electron lenses, and electron beam ion sources (EBIS) to mention a few. Most of these applications require magnetic compression of the electron beam to reduce the beam radius with the goal of either matching the circulating ion beam (electron lenses and electron coolers) or increasing the ionization capability for the production of highly charged ions (EBIS). The magnetic compression of the electron beam comes at a cost of increasing share of the transverse component of energy and therefore increased angles of the electron trajectories to the longitudinal axis. Considering the effect of the magnetic mirror, it is highly desirable to produce a laminar electron beam in the electron gun. The analysis of electron guns with different configurations is given in this paper with emphasis on generating laminar electron beams.
Bonding Thin Mirror Segments Without Distortion for the International X-Ray Observatory
NASA Technical Reports Server (NTRS)
Evans, Tyler C.; Chan, Kai-Wing; Saha, Timo T.
2011-01-01
The International X-Ray Observatory (IXO) uses thin glass optics to maximize large effective area and precise low angular resolution. The thin glass mirror segments must be transferred from their fabricated state to a permanent structure without imparting distortion. IXO will incorporate about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arcseconds. To preserve figure and alignment, the mirror segment must be bonded with sub-micron movement at each corner. Recent advances in technology development have produced significant x-ray test results of a bonded pair of mirrors. Three specific bonding cycles will be described highlighting the improvements in procedure, temperature control, and precision bonding. This paper will highlight the recent advances in alignment and permanent bonding as well as the results they have produced.
Burgess, Jed D; Arnold, Sara L; Fitzgibbon, Bernadette M; Fitzgerald, Paul B; Enticott, Peter G
2013-01-01
Mirror neurons are a class of motor neuron that are active during both the performance and observation of behavior, and have been implicated in interpersonal understanding. There is evidence to suggest that the mirror response is modulated by the perspective from which an action is presented (e.g., egocentric or allocentric). Most human research, however, has only examined this when presenting intransitive actions. Twenty-three healthy adult participants completed a transcranial magnetic stimulation experiment that assessed corticospinal excitability whilst viewing transitive hand gestures from both egocentric (i.e., self) and allocentric (i.e., other) viewpoints. Although action observation was associated with increases in corticospinal excitability (reflecting putative human mirror neuron activity), there was no effect of visual perspective. These findings are discussed in the context of contemporary theories of mirror neuron ontogeny, including models concerning associative learning and evolutionary adaptation.
NASA Astrophysics Data System (ADS)
Min, K.; Liu, K.; Gary, S. P.
2017-12-01
The main challenge of the secondary ENA mechanism, a theory put forth to explain the IBEX ENA ribbon, is maintaining the stability of the pickup ion velocity distribution before the pickup ions in the outer heliosheath go through two consecutive charge exchanges. The Alfvén/ion-cyclotron instability, which has its maximum growth at propagation parallel to Bo, the background magnetic field, is believed to be the main agent leading to rapid isotropization of the pickup ions. However, recent studies found that this instability can be suppressed when parallel temperatures of the background plasma and the pickup ion ring distribution are comparable, allowing the pickup ion distribution to remain stable for a long period. This paper demonstrates that a pickup ion ring distribution can also drive the mirror and ion Bernstein instabilities which lead to growing modes at propagation oblique to Bo. For idealized proton-electron plasmas where relatively cool background electron and proton populations are represented by isotropic Maxwellian distributions and tenuous (1%) pickup protons are represented by a Maxwellian-ring distribution (assuming a 90˚ pickup angle), linear Vlasov theory predicts unstable mirror and ion Bernstein modes with growth rates comparable to or exceeding that of the Alfvén-cyclotron instability. According to quasilinear theory, interactions with these obliquely-propagating modes can lead to substantial pitch angle scattering of the ring protons. Two-dimensional hybrid (kinetic ions and massless fluid electrons) simulations are carried out to examine the nonlinear consequences of the mirror and Bernstein instabilities. The preliminary simulation results are presented. The study suggests a scenario that the oblique mirror and ion Bernstein modes can be an active agent of the pickup ion isotropization when the condition is such that the Alfvén-cyclotron instability is suppressed.
Characteristics of laser beam focusing with single spherical mirrors during laser treatment
NASA Astrophysics Data System (ADS)
Borkin, A. G.; Drobyazko, S. V.; Kosheleva, G. A.; Pavlovich, Yu. V.; Senatorov, Yu. M.; Fromm, V. A.; Kurchatov, I. V.
1988-04-01
Focusing of a laser beam with a single spherical mirror is analyzed, such a mirror being combined with a rotatable annular plane mirror in a coaxial configuration. Its focal length must be sufficiently large to ensure adequately high power density and to avoid shielding. When the distance from mirror to laser cavity is too large, then the laser beam may degenerate into a nonannular one and its focusing without loss may become unattainable. Tilting the spherical mirror will make this possible, even when the laser beam is not annular, if astigmatism as well as spherical aberration are minimized. Such a focusing mirror made of metal is theoretically shown to be much more effective than a focusing lens made of KC1 crystal; this has been confirmed experimentally in a CO sub 2 laser facility for perforation of tubular seperator meshes.
Multiple-reflection optical gas cell
Matthews, Thomas G.
1983-01-01
A multiple-reflection optical cell for Raman or fluorescence gas analysis consists of two spherical mirrors positioned transverse to a multiple-pass laser cell in a confronting plane-parallel alignment. The two mirrors are of equal diameter but possess different radii of curvature. The spacing between the mirrors is uniform and less than half of the radius of curvature of either mirror. The mirror of greater curvature possesses a small circular portal in its center which is the effective point source for conventional F1 double lens collection optics of a monochromator-detection system. Gas to be analyzed is flowed into the cell and irradiated by a multiply-reflected composite laser beam centered between the mirrors of the cell. Raman or fluorescence radiation originating from a large volume within the cell is (1) collected via multiple reflections with the cell mirrors, (2) partially collimated and (3) directed through the cell portal in a geometric array compatible with F1 collection optics.
NASA Astrophysics Data System (ADS)
Kuo, Ju-Nan; Chen, Wei-Lun; Jywe, Wen-Yuh
2009-08-01
We present a bio-detection system integrated with an adjustable micro-concave mirror. The bio-detection system consists of an adjustable micro-concave mirror, micro flow cytometer chip and optical detection module. The adjustable micro-concave mirror can be fabricated with ease using commercially available MEMS foundry services (such as multiuser MEMS processes, MUMPs) and its curvature can be controlled utilizing thermal or electrical effects. Experimental results show that focal lengths of the micro-concave mirror ranging from 313.5 to 2275.0 μm are achieved. The adjustable micro-concave mirror can be used to increase the efficiency of optical detection and provide a high signal-to-noise ratio. The developed micro-concave mirror is integrated with a micro flow cytometer for cell counting applications. Successful counting of fluorescent-labeled beads is demonstrated using the developed method.
Ma, Qingguo; Hu, Linfeng; Li, Jiaojie; Hu, Yue; Xia, Ling; Chen, Xiaojian; Hu, Wendong
2016-01-01
The present study explored the neural mechanism underlying the effect of moderate and transient hypoxic exposure on mental rotation of two-dimensional letters in both normal and mirror versions. Event-related potential data and behavioral data were acquired in the task of discrimination between normal and mirrored versions separately in conditions of normoxia (simulated sea level) and hypoxia conditions (simulated 5000 meter altitude). The behavioral results revealed no significant difference between the normoxia and hypoxia conditions both in response time and error rate. However, obvious differences between these two conditions in ERP were found. First, enlarged P300 and Rotation-related Negativity (RRN) were observed in the hypoxia condition compared to the normoxia condition only with normal letters. Second, the angle effect on the amplitude of RRN was more evident with normal letters in the hypoxia condition than that in the normoxia condition. However, this angle effect nearly disappeared with the mirrored letters in the hypoxia condition. Third, more bilateral parietal activation was observed in the hypoxia condition than the normoxia condition. These results suggested that the compensation mechanism existed in the hypoxia condition and was effective with normal letters but had little effect on the mirrored letters. This study extends the research about the hypoxic effect on spatial ability of humans by employing a mental rotation task and further provides neural evidence for this effect.
Ma, Qingguo; Hu, Linfeng; Li, Jiaojie; Hu, Yue; Xia, Ling; Chen, Xiaojian; Hu, Wendong
2016-01-01
The present study explored the neural mechanism underlying the effect of moderate and transient hypoxic exposure on mental rotation of two-dimensional letters in both normal and mirror versions. Event-related potential data and behavioral data were acquired in the task of discrimination between normal and mirrored versions separately in conditions of normoxia (simulated sea level) and hypoxia conditions (simulated 5000 meter altitude). The behavioral results revealed no significant difference between the normoxia and hypoxia conditions both in response time and error rate. However, obvious differences between these two conditions in ERP were found. First, enlarged P300 and Rotation-related Negativity (RRN) were observed in the hypoxia condition compared to the normoxia condition only with normal letters. Second, the angle effect on the amplitude of RRN was more evident with normal letters in the hypoxia condition than that in the normoxia condition. However, this angle effect nearly disappeared with the mirrored letters in the hypoxia condition. Third, more bilateral parietal activation was observed in the hypoxia condition than the normoxia condition. These results suggested that the compensation mechanism existed in the hypoxia condition and was effective with normal letters but had little effect on the mirrored letters. This study extends the research about the hypoxic effect on spatial ability of humans by employing a mental rotation task and further provides neural evidence for this effect. PMID:27144444
Gauged $B-L$ number and neutron–antineutron oscillation: long-range forces mediated by baryophotons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addazi, Andrea; Berezhiani, Zurab; Kamyshkov, Yuri
Transformation of a neutron to an antineutron n→n~ has not yet been experimentally observed. In principle, it can occur with free neutrons in the vacuum or with neutrons bound inside the nuclei. In a nuclear medium the neutron and the antineutron have different potentials and for that reason n–n~ conversion in nuclei is heavily suppressed. This transformation can also be suppressed for free neutrons in the presence of an environmental vector field that distinguishes the neutron from the antineutron. We consider the case of a gauge field coupled to the $B-L$ charge of the particles ($B-L$ photon), and we showmore » that discovery of n–n~ oscillation in experiment will lead to few order of magnitudes stronger limits on its coupling constant than present limits from the tests of the equivalence principle. If n–n~ oscillation will be discovered via nuclear instability, but not in free neutron oscillations at a corresponding level, this would indicate the presence of such environmental fifth forces. In the latter case the $B-L$ potential can be measurable by varying the external magnetic field for achieving the resonance conditions for n–n~ conversion. As for neutron–mirror neutron oscillation, such potentials should have no effect once the fifth forces are associated to a common quantum number $(B - L) - (B' - L')$ shared by the ordinary and mirror particles.« less
Gauged $B-L$ number and neutron–antineutron oscillation: long-range forces mediated by baryophotons
Addazi, Andrea; Berezhiani, Zurab; Kamyshkov, Yuri
2017-05-11
Transformation of a neutron to an antineutron n→n~ has not yet been experimentally observed. In principle, it can occur with free neutrons in the vacuum or with neutrons bound inside the nuclei. In a nuclear medium the neutron and the antineutron have different potentials and for that reason n–n~ conversion in nuclei is heavily suppressed. This transformation can also be suppressed for free neutrons in the presence of an environmental vector field that distinguishes the neutron from the antineutron. We consider the case of a gauge field coupled to the $B-L$ charge of the particles ($B-L$ photon), and we showmore » that discovery of n–n~ oscillation in experiment will lead to few order of magnitudes stronger limits on its coupling constant than present limits from the tests of the equivalence principle. If n–n~ oscillation will be discovered via nuclear instability, but not in free neutron oscillations at a corresponding level, this would indicate the presence of such environmental fifth forces. In the latter case the $B-L$ potential can be measurable by varying the external magnetic field for achieving the resonance conditions for n–n~ conversion. As for neutron–mirror neutron oscillation, such potentials should have no effect once the fifth forces are associated to a common quantum number $(B - L) - (B' - L')$ shared by the ordinary and mirror particles.« less
Enantiomorphy through the Looking Glass: Literacy Effects on Mirror-Image Discrimination
ERIC Educational Resources Information Center
Kolinsky, Regine; Verhaeghe, Arlette; Fernandes, Tania; Mengarda, Elias Jose; Grimm-Cabral, Loni; Morais, Jose
2011-01-01
To examine whether enantiomorphy (i.e., the ability to discriminate lateral mirror images) is influenced by the acquisition of a written system that incorporates mirrored letters (e.g., b and d), unschooled illiterate adults were compared with people reading the Latin alphabet, namely, both schooled literate adults and unschooled adults…
Accounting for a mirror-image conformation as a subtle effect in protein folding.
Kachlishvili, Khatuna; Maisuradze, Gia G; Martin, Osvaldo A; Liwo, Adam; Vila, Jorge A; Scheraga, Harold A
2014-06-10
By using local (free-energy profiles along the amino acid sequence and (13)C(α) chemical shifts) and global (principal component) analyses to examine the molecular dynamics of protein-folding trajectories, generated with the coarse-grained united-residue force field, for the B domain of staphylococcal protein A, we are able to (i) provide the main reason for formation of the mirror-image conformation of this protein, namely, a slow formation of the second loop and part of the third helix (Asp29-Asn35), caused by the presence of multiple local conformational states in this portion of the protein; (ii) show that formation of the mirror-image topology is a subtle effect resulting from local interactions; (iii) provide a mechanism for how protein A overcomes the barrier between the metastable mirror-image state and the native state; and (iv) offer a plausible reason to explain why protein A does not remain in the metastable mirror-image state even though the mirror-image and native conformations are at least energetically compatible.
Accounting for a mirror-image conformation as a subtle effect in protein folding
Kachlishvili, Khatuna; Maisuradze, Gia G.; Martin, Osvaldo A.; Liwo, Adam; Vila, Jorge A.; Scheraga, Harold A.
2014-01-01
By using local (free-energy profiles along the amino acid sequence and 13Cα chemical shifts) and global (principal component) analyses to examine the molecular dynamics of protein-folding trajectories, generated with the coarse-grained united-residue force field, for the B domain of staphylococcal protein A, we are able to (i) provide the main reason for formation of the mirror-image conformation of this protein, namely, a slow formation of the second loop and part of the third helix (Asp29–Asn35), caused by the presence of multiple local conformational states in this portion of the protein; (ii) show that formation of the mirror-image topology is a subtle effect resulting from local interactions; (iii) provide a mechanism for how protein A overcomes the barrier between the metastable mirror-image state and the native state; and (iv) offer a plausible reason to explain why protein A does not remain in the metastable mirror-image state even though the mirror-image and native conformations are at least energetically compatible. PMID:24912167
Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A
2012-02-01
A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.
Cosmology with liquid mirror telescopes
NASA Technical Reports Server (NTRS)
Hogg, David W.; Gibson, Brad K.; Hickson, Paul
1993-01-01
Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.
Optimizing X-ray mirror thermal performance using matched profile cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lin; Cocco, Daniele; Kelez, Nicholas
2015-08-07
To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick–Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle ismore » presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ~11belowthe requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.« less
Xu, Qun; Guo, Feng; Salem, Hassan M Abo; Chen, Hong; Huang, Xiaolin
2017-12-01
To investigate the effectiveness of mirror therapy combined with neuromuscular electrical stimulation in promoting motor recovery of the lower limbs and walking ability in patients suffering from foot drop after stroke. Randomized controlled study. Inpatient rehabilitation center of a teaching hospital. Sixty-nine patients with foot drop. Patients were randomly divided into three groups: control, mirror therapy, and mirror therapy + neuromuscular electrical stimulation. All groups received interventions for 0.5 hours/day and five days/week for four weeks. 10-Meter walk test, Brunnstrom stage of motor recovery of the lower limbs, Modified Ashworth Scale score of plantar flexor spasticity, and passive ankle joint dorsiflexion range of motion were assessed before and after the four-week period. After four weeks of intervention, Brunnstrom stage ( P = 0.04), 10-meter walk test ( P < 0.05), and passive range of motion ( P < 0.05) showed obvious improvements between patients in the mirror therapy and control groups. Patients in the mirror therapy + neuromuscular electrical stimulation group showed better results than those in the mirror therapy group in the 10-meter walk test ( P < 0.05). There was no significant difference in spasticity between patients in the two intervention groups. However, compared with patients in the control group, patients in the mirror therapy + neuromuscular electrical stimulation group showed a significant decrease in spasticity ( P < 0.001). Therapy combining mirror therapy and neuromuscular electrical stimulation may help improve walking ability and reduce spasticity in stroke patients with foot drop.
NASA Astrophysics Data System (ADS)
Duff, Edward A.; Washburn, Donald C.
2004-09-01
Laser weapon systems would be significantly enhanced with the addition of high altitude or space-borne relay mirrors. Such mirrors, operating alone with a directed energy source, or many in a series fashion, can be shown to effectively move the laser source to the last, so-called fighting mirror. This "magically" reduces the range to target and offers to enhance the performance of directed energy systems like the Airborne Laser and even ground-based or ship-based lasers. Recent development of high altitude airships will be shown to provide stationary positions for such relay mirrors thereby enabling many new and important applications for laser weapons. The technical challenges to achieve this capability are discussed.
Electromagnetic deformable mirror for space applications
NASA Astrophysics Data System (ADS)
Kuiper, S.; Doelman, N.; Overtoom, T.; Nieuwkoop, E.; Russchenberg, T.; van Riel, M.; Wildschut, J.; Baeten, M.; Spruit, H.; Brinkers, S.; Human, J.
2017-09-01
To increase the collecting power and to improve the angular imaging resolution, space telescopes are evolving towards larger primary mirrors. The aerial density of the telescope mirrors needs to be kept low, however, to be compatible with the launch requirements. A light-weight (primary) mirror will introduce additional optical aberrations to the system. These may be caused by for instance manufacturing errors, gravity release and thermo-elastic effects. Active Optics (AO) is a key candidate technology to correct for the resultant wave front aberrations [1].
Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A; Celestre, Richard S; Church, Matthew M; Fakra, Sirine; Domning, Edward E; Glossinger, James M; Kirschman, Jonathan L; Morrison, Gregory Y; Plate, Dave W; Smith, Brian V; Warwick, Tony; Yashchuk, Valeriy V; Padmore, Howard A; Ustundag, Ersan
2009-03-01
A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend). This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 microm spot of approximately 5x10(9) photons/s (0.1% bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored by two pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 microm are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (approximately 0.2 microm) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10(-5) strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si-drift detector serves as a high-energy-resolution (approximately 150 eV full width at half maximum) fluorescence detector. Fluorescence scans can be collected in continuous scan mode with up to 300 pixels/s scan speed. A charge coupled device area detector is utilized as diffraction detector. Diffraction can be performed in reflecting or transmitting geometry. Diffraction data are processed using XMAS, an in-house written software package for Laue and monochromatic microdiffraction analysis.
Composite structures for optical mirror applications
NASA Astrophysics Data System (ADS)
Brand, Richard A.; Marks, John E.
1990-10-01
The employment of composites in RF structures such as antennas, feedhorns, and waveguides is outlined, and focus is placed on the parameters of a composite mirror operating in the 3-5- and 8-12-micron areas. A large beam-steering composite mirror fabricated from ultrahigh-modulus graphite/epoxy is described, including its three subassemblies: the core subassembly and two facesheet subassemblies. Attention is given to an alternative approach in which a gel coat resin is applied to the glass surface and the mirror substrate is pressed to the tool to cover the mirror with the resin. Another method is to seal the composite from the effects of moisture expansion by applying a eutectic coating; voids and crystal-grain growth are the main sources of surface perturbation on such mirror surfaces.
Whole surface image reconstruction for machine vision inspection of fruit
NASA Astrophysics Data System (ADS)
Reese, D. Y.; Lefcourt, A. M.; Kim, M. S.; Lo, Y. M.
2007-09-01
Automated imaging systems offer the potential to inspect the quality and safety of fruits and vegetables consumed by the public. Current automated inspection systems allow fruit such as apples to be sorted for quality issues including color and size by looking at a portion of the surface of each fruit. However, to inspect for defects and contamination, the whole surface of each fruit must be imaged. The goal of this project was to develop an effective and economical method for whole surface imaging of apples using mirrors and a single camera. Challenges include mapping the concave stem and calyx regions. To allow the entire surface of an apple to be imaged, apples were suspended or rolled above the mirrors using two parallel music wires. A camera above the apples captured 90 images per sec (640 by 480 pixels). Single or multiple flat or concave mirrors were mounted around the apple in various configurations to maximize surface imaging. Data suggest that the use of two flat mirrors provides inadequate coverage of a fruit but using two parabolic concave mirrors allows the entire surface to be mapped. Parabolic concave mirrors magnify images, which results in greater pixel resolution and reduced distortion. This result suggests that a single camera with two parabolic concave mirrors can be a cost-effective method for whole surface imaging.
Edge effect modeling of small tool polishing in planetary movement
NASA Astrophysics Data System (ADS)
Li, Qi-xin; Ma, Zhen; Jiang, Bo; Yao, Yong-sheng
2018-03-01
As one of the most challenging problems in Computer Controlled Optical Surfacing (CCOS), the edge effect greatly affects the polishing accuracy and efficiency. CCOS rely on stable tool influence function (TIF), however, at the edge of the mirror surface,with the grinding head out of the mirror ,the contact area and pressure distribution changes, which resulting in a non-linear change of TIF, and leads to tilting or sagging at the edge of the mirror. In order reduce the adverse effects and improve the polishing accuracy and efficiency. In this paper, we used the finite element simulation to analyze the pressure distribution at the mirror edge and combined with the improved traditional method to establish a new model. The new method fully considered the non-uniformity of pressure distribution. After modeling the TIFs in different locations, the description and prediction of the edge effects are realized, which has a positive significance on the control and suppression of edge effects
Simulation of parabolic reflectors for ultraviolet phototherapy
NASA Astrophysics Data System (ADS)
Grimes, David Robert
2016-08-01
Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity.
Superoxide dismutase 1 is positively selected to minimize protein aggregation in great apes.
Dasmeh, Pouria; Kepp, Kasper P
2017-08-01
Positive (adaptive) selection has recently been implied in human superoxide dismutase 1 (SOD1), a highly abundant antioxidant protein with energy signaling and antiaging functions, one of very few examples of direct selection on a human protein product (exon); the molecular drivers of this selection are unknown. We mapped 30 extant SOD1 sequences to the recently established mammalian species tree and inferred ancestors, key substitutions, and signatures of selection during the protein's evolution. We detected elevated substitution rates leading to great apes (Hominidae) at ~1 per 2 million years, significantly higher than in other primates and rodents, although these paradoxically generally evolve much faster. The high evolutionary rate was partly due to relaxation of some selection pressures and partly to distinct positive selection of SOD1 in great apes. We then show that higher stability and net charge and changes at the dimer interface were selectively introduced upon separation from old world monkeys and lesser apes (gibbons). Consequently, human, chimpanzee and gorilla SOD1s have a net charge of -6 at physiological pH, whereas the closely related gibbons and macaques have -3. These features consistently point towards selection against the malicious aggregation effects of elevated SOD1 levels in long-living great apes. The findings mirror the impact of human SOD1 mutations that reduce net charge and/or stability and cause ALS, a motor neuron disease characterized by oxidative stress and SOD1 aggregates and triggered by aging. Our study thus marks an example of direct selection for a particular chemical phenotype (high net charge and stability) in a single human protein with possible implications for the evolution of aging.
Mirror therapy in children with hemiplegia: a pilot study.
Gygax, Marine Jequier; Schneider, Patrick; Newman, Christopher John
2011-05-01
Mirror therapy, which provides the visual illusion of a functional paretic limb by using the mirror reflection of the non-paretic arm, is used in the rehabilitation of hemiparesis after stroke in adults. We tested the effectiveness and feasibility of mirror therapy in children with hemiplegia by performing a pilot crossover study in ten participants (aged 6-14 y; five males, five females; Manual Ability Classification System levels: one at level I, two at level II, four at level III, three at level IV) randomly assigned to 15 minutes of daily bimanual training with and without a mirror for 3 weeks. Assessments of maximal grasp and pinch strengths, and upper limb function measured by the Shriner's Hospital Upper Extremity Evaluation were performed at weeks 0 (baseline), 3, 6 (intervention), and 9 (wash-out). Testing of grasp strength behind the mirror improved performance by 15% (p=0.004). Training with the mirror significantly improved grasp strength (with mirror +20.4%, p=0.033; without +5.9%, p>0.1) and upper limb dynamic position (with mirror +4.6%, p=0.044; without +1.2%, p>0.1), while training without a mirror significantly improved pinch strength (with mirror +6.9%, p>0.1; without +21.9%, p=0.026). This preliminary study demonstrates the feasibility of mirror therapy in children with hemiplegia and that it may improve strength and dynamic function of the paretic arm. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.
Impact of large field angles on the requirements for deformable mirror in imaging satellites
NASA Astrophysics Data System (ADS)
Kim, Jae Jun; Mueller, Mark; Martinez, Ty; Agrawal, Brij
2018-04-01
For certain imaging satellite missions, a large aperture with wide field-of-view is needed. In order to achieve diffraction limited performance, the mirror surface Root Mean Square (RMS) error has to be less than 0.05 waves. In the case of visible light, it has to be less than 30 nm. This requirement is difficult to meet as the large aperture will need to be segmented in order to fit inside a launch vehicle shroud. To reduce this requirement and to compensate for the residual wavefront error, Micro-Electro-Mechanical System (MEMS) deformable mirrors can be considered in the aft optics of the optical system. MEMS deformable mirrors are affordable and consume low power, but are small in size. Due to the major reduction in pupil size for the deformable mirror, the effective field angle is magnified by the diameter ratio of the primary and deformable mirror. For wide field of view imaging, the required deformable mirror correction is field angle dependant, impacting the required parameters of a deformable mirror such as size, number of actuators, and actuator stroke. In this paper, a representative telescope and deformable mirror system model is developed and the deformable mirror correction is simulated to study the impact of the large field angles in correcting a wavefront error using a deformable mirror in the aft optics.
Kang, Youn Joo; Park, Hae Kyung; Kim, Hyun Jung; Lim, Taeo; Ku, Jeonghun; Cho, Sangwoo; Kim, Sun I; Park, Eun Sook
2012-10-04
Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEP)s from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A) relaxation; (B) real mirror; and (C) virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients.
2012-01-01
Background Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. Objectives We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. Methods A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEP)s from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A) relaxation; (B) real mirror; and (C) virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. Results The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Conclusion Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients. PMID:23035951
NASA Astrophysics Data System (ADS)
May, M. J.; Finkenthal, M.; Regan, S. P.; Moos, H. W.; Terry, J. L.; Graf, M. A.; Fournier, K.; Goldstein, W. L.
1995-01-01
A photometrically calibrated polychromator utilizing layered synthetic microstructure coated flats (also known as multilayer mirrors, MLMs) as dispersive elements is operating on the Alcator C-Mod tokamak to measure the molybdenum emissions in the XUV. Molybdenum, the first wall material in C-Mod, is the dominant high Z impurity in the plasma. Three spectral regions are measured by three separate MLM-detector channels. The characteristic charge states in the region between 30-40 Å are Mo xv to Mo xx, between 65-90 Å are Mo xxiv to Mo xxvi, and between 110-130 Å are Mo xxxi and Mo xxxii. The instrument's spectral resolution varies from 0.4 Å at λ=30 Å to 7 Å at λ=130 Å. The temporal resolution is typically 1.0 ms, but sampling rates of less than 1 ms are possible. The instrument was photometrically calibrated at The Johns Hopkins University using a Manson soft x-ray light source. Power loss estimates from Mo xxiv to Mo xxvi, Mo xxxi, and Mo xxxii have been obtained during ohmic and ICRF plasmas using the mist transport code to model the molybdenum charge state distributions in the plasma. The Mo concentrations have also been determined. Mo contributes ˜0.1 to the Zeff of 1.3 during ohmic plasmas. This contribution increases during ICRF heating to ˜0.5 of the Zeff of 2. The polychromator functions as a time-resolved soft x-ray emission power loss monitor.
Manufacturing Large Membrane Mirrors at Low Cost
NASA Technical Reports Server (NTRS)
2007-01-01
Relatively inexpensive processes have been developed for manufacturing lightweight, wide-aperture mirrors that consist mainly of reflectively coated, edge-supported polyimide membranes. The polyimide and other materials in these mirrors can withstand the environment of outer space, and the mirrors have other characteristics that make them attractive for use on Earth as well as in outer space: With respect to the smoothness of their surfaces and the accuracy with which they retain their shapes, these mirrors approach the optical quality of heavier, more expensive conventional mirrors. Unlike conventional mirrors, these mirrors can be stowed compactly and later deployed to their full sizes. In typical cases, deployment would be effected by inflation. Potential terrestrial and outer-space applications for these mirrors include large astronomical telescopes, solar concentrators for generating electric power and thermal power, and microwave reflectors for communication, radar, and short-distance transmission of electric power. The relatively low cost of manufacturing these mirrors stems, in part, from the use of inexpensive tooling. Unlike in the manufacture of conventional mirrors, there is no need for mandrels or molds that have highly precise surface figures and highly polished surfaces. The surface smoothness is an inherent property of a polyimide film. The shaped area of the film is never placed in contact with a mold or mandrel surface: Instead the shape of a mirror is determined by a combination of (1) the shape of a fixture that holds the film around its edge and (2) control of manufacturing- process parameters. In a demonstration of this manufacturing concept, spherical mirrors having aperture diameters of 0.5 and 1.0 m were fabricated from polyimide films having thicknesses ranging from <20 m to 150 m. These mirrors have been found to maintain their preformed shapes following deployment.
Sensorimotor learning configures the human mirror system.
Catmur, Caroline; Walsh, Vincent; Heyes, Cecilia
2007-09-04
Cells in the "mirror system" fire not only when an individual performs an action but also when one observes the same action performed by another agent [1-4]. The mirror system, found in premotor and parietal cortices of human and monkey brains, is thought to provide the foundation for social understanding and to enable the development of theory of mind and language [5-9]. However, it is unclear how mirror neurons acquire their mirror properties -- how they derive the information necessary to match observed with executed actions [10]. We address this by showing that it is possible to manipulate the selectivity of the human mirror system, and thereby make it operate as a countermirror system, by giving participants training to perform one action while observing another. Before this training, participants showed event-related muscle-specific responses to transcranial magnetic stimulation over motor cortex during observation of little- and index-finger movements [11-13]. After training, this normal mirror effect was reversed. These results indicate that the mirror properties of the mirror system are neither wholly innate [14] nor fixed once acquired; instead they develop through sensorimotor learning [15, 16]. Our findings indicate that the human mirror system is, to some extent, both a product and a process of social interaction.
NASA Astrophysics Data System (ADS)
Chang, Chia-Feng; Hung, P. Q.; Nugroho, Chrisna Setyo; Tran, Van Que; Yuan, Tzu-Chiang
2018-03-01
The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.
Beta decay of exotic TZ = -1, -2 nuclei: the interesting case of 56Zn
NASA Astrophysics Data System (ADS)
Orrigo, S. E. A.; Rubio, B.; Fujita, Y.; Blank, B.; Gelletly, W.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Cáceres, L.; Cakirli, R. B.; Fujita, H.; Ganioğlu, E.; Gerbaux, M.; Giovinazzo, J.; Grévy, S.; Kamalou, O.; Kozer, H. C.; Kucuk, L.; Kurtukian-Nieto, T.; Molina, F.; Popescu, L.; Rogers, A. M.; Susoy, G.; Stodel, C.; Suzuki, T.; Tamii, A.; Thomas, J. C.
2014-03-01
The β decay properties of the Tz = -2, 56Zn isotope and other proton-rich nuclei in the fp-shell have been investigated in an experiment performed at GANIL. The ions were produced in fragmentation reactions and implanted in a double-sided silicon strip detector surrounded by Ge EXOGAM clovers. Preliminary results for 56Zn are presented .The 56Zn decay proceeds mainly by β delayed proton emission, but β delayed gamma rays were also detected. Moreover, the exotic β delayed gamma-proton decay was observed for the first time. The 56Zn half-life and the energy levels populated in the 56Cu daughter have been determined. Knowledge of the gamma de-excitation of the mirror states in 56Co and the comparison with the results of the mirror charge exchange process, the 56Fe(3He,t) reaction (where 56Fe has Tz = +2), were important in the interpretation of the 56Zn decay data. The absolute Fermi and Gamow-Teller strengths have been deduced.
NASA Astrophysics Data System (ADS)
Rubio, B.; Orrigo, S. E. A.; Kucuk, L.; Montaner-Pizá, A.; Fujita, Y.; Fujita, H.; Blank, B.; Gelletly, W.; Adachi, T.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Cáceres, L.; Cakirli, R. B.; de France, G.; Ganioğlu, E.; Gerbaux, M.; Giovinazzo, J.; Grevy, S.; Kamalou, O.; Kozer, H. C.; Kurtukian-Nieto, T.; Marqués, F. M.; Molina, F.; Oktem, Y.; de Oliveira Santos, F.; Perrot, L.; Popescu, L.; Raabe, R.; Rogers, A. M.; Srivastava, P. C.; Susoy, G.; Suzuki, T.; Tamii, A.; Thomas, J. C.
2014-06-01
This paper concerns the experimental study of the β decay properties of few proton-rich fp-shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The β-delayed gammas, β-delayed protons and the exotic β-delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the Tz = - 2 nucleus 56Zn has been studied in detail. Information from the β-delayed protons and β-delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp-shell. The interpretation of the data was made possible thanks to the detailed knowledge of the mirror Charge Exchange (CE) process and the gamma de-excitation of the states in 56Co, the mirror nucleus of 56Cu.
NASA Astrophysics Data System (ADS)
Leys, Antoine; Hull, Tony; Westerhoff, Thomas
2015-09-01
We address the problem that larger spaceborne mirrors require greater sectional thickness to achieve a sufficient first eigen frequency that is resilient to launch loads, and to be stable during optical telescope assembly integration and test, this added thickness results in unacceptable added mass if we simply scale up solutions for smaller mirrors. Special features, like cathedral ribs, arch, chamfers, and back-side following the contour of the mirror face have been considered for these studies. For computational efficiency, we have conducted detailed analysis on various configurations of a 800 mm hexagonal segment and of a 1.2-m mirror, in a manner that they can be constrained by manufacturing parameters as would be a 4-m mirror. Furthermore each model considered also has been constrained by cost-effective machining practice as defined in the SCHOTT Mainz factory. Analysis on variants of this 1.2-m mirror has shown a favorable configuration. We have then scaled this optimal configuration to 4-m aperture. We discuss resulting parameters of costoptimized 4-m mirrors. We also discuss the advantages and disadvantages this analysis reveals of going to cathedral rib architecture on 1-m class mirror substrates.
Possibilities of application of the swirling flows in cooling systems of laser mirrors
NASA Astrophysics Data System (ADS)
Shanin, Yu; Chernykh, A.
2018-03-01
The paper presents analytical investigations into advanced cooling systems of the laser mirrors with heat exchange intensification by methods of ordered vortex impact on a coolant flow structure. Advantages and effectiveness of the proposed cooling systems have been estimated to reduction displacement of an optical mirror surface due to a flexure.
Annual Industrial Capabilities Report to Congress
1999-02-01
suspension systems is not a concern. Deformable Mirrors (September 1998) The atmosphere, temperature variations, and vibration distort optical system...images. Deformable mirrors can compensate for these effects in real time. They are used in surveillance optics, laser weapons, and astronomical telescopes...This assessment investigated the availability of current and potential deformable mirror producers, and possible alternative technologies. The
ERIC Educational Resources Information Center
Ribeiro, Jair Lúcio Prados
2016-01-01
A disco ball is a spherical object covered with small plane mirrors. When light reflects on these mirrors, it is scattered in many directions, producing a novel effect. The mirror globe is usually set to rotate, creating a profusion of moving spots (Fig. 1). In this article, we present a geometrical description of the movement of these spots and…
ERIC Educational Resources Information Center
Feltham, Max G.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.
2010-01-01
The study examined the effects of mirror feedback information on neuromuscular activation during bimanual coordination in eight children with spastic hemiparetic cerebral palsy (SHCP) and a matched control group. The "mirror box" creates a visual illusion, which gives rise to a visual perception of a zero lag, symmetric movement between the two…
Integrated fiber-mirror ion trap for strong ion-cavity coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandstätter, B., E-mail: birgit.brandstaetter@uibk.ac.at; Schüppert, K.; Casabone, B.
2013-12-15
We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvaturemore » and ellipticities of the fiber mirrors. From finesse measurements, we infer a single-atom cooperativity of up to 12 for FFPCs longer than 200 μm in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We characterize the birefringence of our fiber mirrors, finding that careful fiber-mirror selection enables us to construct FFPCs with degenerate polarization modes. As FFPCs are novel devices, we describe procedures developed for handling, aligning, and cleaning them. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. X-ray photoelectron spectroscopy measurements indicate that these losses may be attributable to oxygen depletion in the mirror coating. Special design considerations enable us to introduce a FFPC into a trapped ion setup. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to compensate distortions of the potential due to the fibers. Home-built fiber feedthroughs connect the FFPC to external optics, and an integrated nanopositioning system affords the possibility of retracting or realigning the cavity without breaking vacuum.« less
The effects of mirror therapy on arm and hand function in subacute stroke in patients.
Radajewska, Alina; Opara, Józef A; Kucio, Cezary; Błaszczyszyn, Monika; Mehlich, Krzysztof; Szczygiel, Jarosław
2013-09-01
The aim of this study was to evaluate the effect of mirror therapy on arm and hand function in subacute stroke in patients. The study included 60 hemiparetic right-handed patients after ischemic stroke 8-10 weeks after onset. They underwent stationary comprehensive rehabilitation in the rehabilitation centre. They were divided into two randomly assigned groups: mirror (n=30) and control (n=30). For both groups, two subgroups were created: one that included patients with right arm paresis (n=15) and the other that included patients with left arm paresis (n=15). The mirror group received an additional intervention: training with a mirror for 5 days/week, 2 sessions/day, for 21 days. Each single session lasted for 15 min. The control group (n=30) underwent a conventional rehabilitation program without mirror therapy. To evaluate self-care in performing activities of daily living, the Functional Index 'Repty' was used. To evaluate hand and arm function, the Frenchay Arm Test and the Motor Status Score were used. Measurements were performed twice: before and after 21 days of applied rehabilitation. No significant improvement in hand and arm function in both subgroups in Frenchay Arm Test and Motor Status Score scales was observed. However, there was a significant improvement in self-care of activities of daily living in the right arm paresis subgroup in the mirror group measured using the Functional Index 'Repty'. Mirror therapy improves self-care of activities of daily living for patients with right arm paresis after stroke.
Effect of constraint-induced movement therapy and mirror therapy for patients with subacute stroke.
Yoon, Jin A; Koo, Bon Il; Shin, Myung Jun; Shin, Yong Beom; Ko, Hyun-Yoon; Shin, Yong-Il
2014-08-01
To evaluate the effectiveness of constraint-induced movement therapy (CIMT) and combined mirror therapy for inpatient rehabilitation of the patients with subacute stroke. Twenty-six patients with subacute stroke were enrolled and randomly divided into three groups: CIMT combined with mirror therapy group, CIMT only group, and control group. Two weeks of CIMT for 6 hours a day with or without mirror therapy for 30 minutes a day were performed under supervision. All groups received conventional occupational therapy for 40 minutes a day for the same period. The CIMT only group and control group also received additional self-exercise to substitute for mirror therapy. The box and block test, 9-hole Pegboard test, grip strength, Brunnstrom stage, Wolf motor function test, Fugl-Meyer assessment, and the Korean version of Modified Barthel Index were performed prior to and two weeks after the treatment. After two weeks of treatment, the CIMT groups with and without mirror therapy showed higher improvement (p<0.05) than the control group, in most of functional assessments for hemiplegic upper extremity. The CIMT combined with mirror therapy group showed higher improvement than CIMT only group in box and block test, 9-hole Pegboard test, and grip strength, which represent fine motor functions of the upper extremity. The short-term CIMT combined with mirror therapy group showed more improvement compared to CIMT only group and control group, in the fine motor functions of hemiplegic upper extremity for the patients with subacute stroke.
NASA Astrophysics Data System (ADS)
Huang, Lei; Zhou, Chenlu; Gong, Mali; Ma, Xingkun; Bian, Qi
2016-07-01
Deformable mirror is a widely used wavefront corrector in adaptive optics system, especially in astronomical, image and laser optics. A new structure of DM-3D DM is proposed, which has removable actuators and can correct different aberrations with different actuator arrangements. A 3D DM consists of several reflection mirrors. Every mirror has a single actuator and is independent of each other. Two kinds of actuator arrangement algorithm are compared: random disturbance algorithm (RDA) and global arrangement algorithm (GAA). Correction effects of these two algorithms and comparison are analyzed through numerical simulation. The simulation results show that 3D DM with removable actuators can obviously improve the correction effects.
Ethylene glycol contamination effects on first surface aluminized mirrors
NASA Astrophysics Data System (ADS)
Dunlop, Patrick; Probst, Ronald G.; Evatt, Matthew; Reddell, Larry; Sprayberry, David
2016-07-01
The Dark Energy Spectroscopic Instrument (DESI) is under construction for installation on the Mayall 4 Meter telescope. The use of a liquid cooling system is proposed to maintain the DESI prime focus assembly temperature within ±1°C of ambient. Due to concerns of fluid deposition onto optical surfaces from possible leaks, systematic tests were performed of the effects on first surface aluminized mirrors of ethylene glycol and two other candidate coolants. Objective measurement of scattering and reflectivity was an important supplement to visual inspection. Rapid cleanup of a coolant spill followed by a hand wash of the mirror limited surface degradation to the equivalent of a few months of general environmental exposure. Prolonged exposure to corrosive coolants dissolved the aluminum, necesitating mirror recoating.
Gravito-electrodynamics, Ehd and Their Applications To Natural Hazards and Laboratory Devices
NASA Astrophysics Data System (ADS)
Kikuchi, H.
For the past two decades, theory of dusty and dirty plasmas in space and in the labo - ratory has been developed on the basis of both unconventional gravito-electrody- nam ics and a new EHD (electrohydrodynamics) with novel concepts of electric re- connection and critical ionization velocity as well as modern concepts of self-organ- ization and chaos and has been applied to explanations of a variety of new dust-re- lated and meteorologyico-electric phenomena such as planetary (Saturn's and Jupi- ter's) dust layer or ring formation, terrestrial dust layer formation, terrestrial light - ning including winter thunderstorms, rocket and tower triggered lightning, planetary (Saturn's, Jupiter's, and Io's) lightning, nebular lightning, ball lightning, tornadic thunderstorms, whirlwinds, cloud-to-ionosphere discharges, pre-earthquake atmo- sphereic and ionospheric effects, and new laboratory devices such as electric undu - lators, a universal electric-cusp type plasma reactor for basic laboratory studies, sim- ulations of atmospheric phenomena and pollution control and gas cleaning, plasma processing and new material production for industrial applications, and new devices such as towards cancer treatment for biological and medical applications. Reference H. Kikuchi, Electrohydrodynamics in Dusty and Dirty plasmas, Kluwer Academic Publishers, Dordrecht/The Netherlands, 2001. For describing any plasmas, particle dynamics plays always fundamental and impor - tant roles in understanding all of plasma behaviors. A variety of descriptions in a magnetic field such as a guiding center approach have well been developed as a test-particle approach particularly for a base of MHD. This is still true for EHD or EMHD, but additional factors become significant due to the existence of space charges and electric fields for EHD or EMHD in dielectric or semiconducting fluids. In cosmic plasmas, the existence of double layers, electric and magnetic dipoles or quadru-poles often affects the particle motions drastically even if particles are uncharged, and can play a crucial role in planetary dust layer or ring formation. This is a new discov-ery and has been discussed in detail for the past several EGS meetings. In the presenc e of quadrupole-like charged cloud configurations which constitute electric cusps and mirrors, a neutral or uncharged particle can be accelerated in an electric cusp, reaching a maximum speed near a cusp boundary, if the environment is a tenuous gas whatever it may be neutral or ionized, and also can be reflected back at a mirror point. Otherwise, a dust in an electric cusp is capable for a source origin of plasma layer formation, gas discharges or lightnings due to additional effect of `criti-cal velocity' if the local electric fields around the dust produced by quadrupole-like charged clouds are sufficiently high beyond a gas-breakdown threshold. Then electric reconnection through the dust is followed by streamer or leader formation due to the critical ionization effect and consequent gas discharges or lightnings. One of major features of new electrodynamics, gravito-electrodynamics, and EHD is a new addition of two basic concepts of electric reconnection and critical ionization . First, one may recall that a distribution of scattered charged clouds is so ubiquitous in space and in the laboratory, even in our daily life, whatever they are of large-scale or small-scale, like thunderclouds in the atmosphere, charged clouds in interstellar space, charges on the belt of Van de Graff generator, and a system of miniature thunder-clouds produced by frictional electricity almost everywhere, typically on human hairs. All those cases are capable for electric reconnection. Whenever electric reconnection occurs through dusts in the atmosphere, it can be accompanied by a critical ioniza-tion flow . In this way, electric reconnection and critical ionization could be a signifi-cant cause of electrification and electric discharge and play important roles in a varie-ty of phenomena in meteorologico-electric, dusty and dirty plasma environments.
Seon, C R; Choi, S H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R
2010-10-01
A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.
The 200 MeV Pi+ induced single-nucleon removal from 24Mg
NASA Technical Reports Server (NTRS)
Joyce, Donald; Lieb, B. Joseph; Lieb, B. Joseph; Lieb, B. Joseph; Lieb, B. Joseph; Lieb, B. Joseph; Lieb, B. Joseph; Lieb, B. Joseph; Lieb, B. Joseph; Lieb, B. Joseph;
1985-01-01
Nuclear gamma-rays in coincidence with outgoing pions or protons following single nucleon removal from Mg-24 by 200 MeV pions (+) were detected with Ge(Li) detectors. Differential cross sections are reported for gamma-rays from the first excited mirror states of Na-23 and Mg-23 in coincidence with positive pions or protons detected in particle telescopes at 30, 60, 90, 120, and 150 deg; angle-integrated absolute cross sections and cross section ratios are calculated. These results are compared with the predictions of a Pauli-blocked plane-wave impulse approximation (PWIA) and the intranuclear cascade (INC) and nucleon charge exchange (NCX) reaction models. The PWIA and the INC calculations generally agree with the angular dependence of the experimental results but not the absolute magnitude. The NCX calculation does not reproduce the observed cross section charge ratios.
Multichordal charge exchange recombination spectroscopy on Doublet III (abstract)
NASA Astrophysics Data System (ADS)
Seraydarian, R. P.; Burrell, K. H.; Kahn, C.
1985-05-01
Single shot, multipoint ion temperature and plasma rotation profiles have been routinely obtained on the Doublet III tokamak for 32 consecutive time slices with 20-ms resolution. A six-chord tangentially viewing spectroscopic diagnostic has been built to look at radiation emitted by fully stripped low-Z impurity ions (He, C, O) that have undergone charge exchange recombination with hydrogen atoms from a 3-MW heating beam. The main components of the instrument are a single monochromator for wavelength dispersion, a single image intensifier tube for photon gain, and a pair of 1024-element linear photodiode arrays for detection. A special arrangement of fiber optics allows simultaneous data acquisition from all chords without the use of scanning mirrors or other moving parts. Ion temperature profiles taken under a variety of plasma conditions will be presented.
Distributed sensing signal analysis of deformable plate/membrane mirrors
NASA Astrophysics Data System (ADS)
Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen
2017-11-01
Deformable optical mirrors usually play key roles in aerospace and optical structural systems applied to space telescopes, radars, solar collectors, communication antennas, etc. Limited by the payload capacity of current launch vehicles, the deformable mirrors should be lightweight and are generally made of ultra-thin plates or even membranes. These plate/membrane mirrors are susceptible to external excitations and this may lead to surface inaccuracy and jeopardize relevant working performance. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as sensors. The piezoelectric layer is segmented into infinitesimal elements so that microscopic distributed sensing signals can be explored. In this paper, the deformable mirror is modeled as a pre-tensioned plate and membrane respectively and sensing signal distributions of the two models are compared. Different pre-tensioning forces are also applied to reveal the tension effects on the mode shape and sensing signals of the mirror. Analytical results in this study could be used as guideline of optimal sensor/actuator placement for deformable space mirrors.
Combined mirror visual and auditory feedback therapy for upper limb phantom pain: a case report
2011-01-01
Introduction Phantom limb sensation and phantom limb pain is a very common issue after amputations. In recent years there has been accumulating data implicating 'mirror visual feedback' or 'mirror therapy' as helpful in the treatment of phantom limb sensation and phantom limb pain. Case presentation We present the case of a 24-year-old Caucasian man, a left upper limb amputee, treated with mirror visual feedback combined with auditory feedback with improved pain relief. Conclusion This case may suggest that auditory feedback might enhance the effectiveness of mirror visual feedback and serve as a valuable addition to the complex multi-sensory processing of body perception in patients who are amputees. PMID:21272334
NASA Astrophysics Data System (ADS)
Hull, Tony; Hartmann, Peter; Clarkson, Andrew R.; Barentine, John M.; Jedamzik, Ralf; Westerhoff, Thomas
2010-07-01
Pending critical spaceborne requirements, including coronagraphic detection of exoplanets, require exceptionally smooth mirror surfaces, aggressive lightweighting, and low-risk cost-effective optical manufacturing methods. Simultaneous development at Schott for production of aggressively lightweighted (>90%) Zerodur® mirror blanks, and at L-3 Brashear for producing ultra-smooth surfaces on Zerodur®, will be described. New L-3 techniques for large-mirror optical fabrication include Computer Controlled Optical Surfacing (CCOS) pioneered at L-3 Tinsley, and the world's largest MRF machine in place at L-3 Brashear. We propose that exceptional mirrors for the most critical spaceborne applications can now be produced with the technologies described.
Quantum channels from reflections on moving mirrors.
Gianfelici, Giulio; Mancini, Stefano
2017-11-16
Light reflection on a mirror can be thought as a simple physical effect. However if this happens when the mirror moves a rich scenario opens up. Here we aim at analyzing it from a quantum communication perspective. In particular, we study the kind of quantum channel that arises from (Gaussian) light reflection upon an accelerating mirror. Two competing mechanisms emerge in such a context, namely photons production by the mirror's motion and interference between modes. As consequence we find out a quantum amplifier channel and quantum lossy channel respectively below and above a threshold frequency (that depends on parameters determining mirror's acceleration). Exactly at the threshold frequency the channel behaves like a purely classical additive channel, while it becomes purely erasure for large frequencies. In addition the time behavior of the channel is analyzed by employing wave packets expansion of the light field.
Park, Youngju; Chang, Moonyoung; Kim, Kyeong-Mi; An, Duk-Hyun
2015-05-01
[Purpose] The purpose of this study was to determine the effects of mirror therapy with tasks on upper extremity unction and self-care in stroke patients. [Subjects] Thirty participants were randomly assigned to either an experimental group (n=15) or a control group (n=15). [Methods] Subjects in the experimental group received mirror therapy with tasks, and those in the control group received a sham therapy; both therapies were administered, five times per week for six weeks. The main outcome measures were the Manual Function Test for the paralyzed upper limb and the Functional Independence Measure for self-care performance. [Results] The experimental group had more significant gains in change scores compared with the control group after the intervention. [Conclusion] We consider mirror therapy with tasks to be an effective form of intervention for upper extremity function and self-care in stroke patients.
The Mirror Illusion Increases Motor Cortex Excitability in Children With and Without Hemiparesis.
Grunt, Sebastian; Newman, Christopher J; Saxer, Stefanie; Steinlin, Maja; Weisstanner, Christian; Kaelin-Lang, Alain
2017-03-01
Mirror therapy provides a visual illusion of a normal moving limb by using the mirror reflection of the unaffected arm instead of viewing the paretic limb and is used in rehabilitation to improve hand function. Little is known about the mechanism underlying its effect in children with hemiparesis. To investigate the effect of the mirror illusion (MI) on the excitability of the primary motor cortex (M1) in children and adolescents. Twelve patients with hemiparesis (10-20 years) and 8 typically developing subjects (8-17 years) participated. Corticospinal reorganization was classified as contralateral (projection from contralateral hemisphere to affected hand) or ipsilateral (projection from ipsilateral hemisphere to affected hand). M1 excitability of the hemisphere projecting to the affected (nondominant in typically developing subjects) hand was obtained during 2 different conditions using single-pulse transcranial magnetic stimulation (TMS). Each condition (without/with mirror) consisted of a unimanual and a bimanual task. Motor-evoked potentials (MEPs) were recorded from the abductor pollicis brevis and flexor digitorum superficialis muscles. MEP amplitudes were significantly increased during the mirror condition ( P = .005) in typically developing subjects and in patients with contralateral reorganization. No significant effect of MI was found in subjects with ipsilateral reorganization. MI increased M1 excitability during active movements only. This increase was not correlated to hand function. MI increases the excitability of M1 in hemiparetic patients with contralateral corticospinal organization and in typically developing subjects. This finding provides neurophysiological evidence supporting the application of mirror therapy in selected children and adolescents with hemiparesis.
Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z
2008-02-01
There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.
NASA Astrophysics Data System (ADS)
Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Cao, Y.; Lu, W.; Zhang, Z. M.; Yuan, P.; Song, M. T.; Zhao, H. Y.; Jin, T.; Shang, Y.; Zhan, W. L.; Wei, B. W.; Xie, D. Z.
2008-02-01
There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6T at injection, 2.2T at extraction, and a radial sextupole field of 2.0T at plasma chamber wall. During the commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5kW by two 18GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810eμA of O7+, 505eμA of Xe20+, 306eμA of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.
Magneto-hydrodynamically stable axisymmetric mirrorsa)
NASA Astrophysics Data System (ADS)
Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.
2011-09-01
Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.
Apparatus for providing a servo drive signal in a high-speed stepping interferometer
NASA Technical Reports Server (NTRS)
Schindler, R. A. (Inventor)
1979-01-01
An analog voltage approximately linearly proportional to a desired offset from the present null position of a moving mirror in an interferometer is applied to the mirror moving means. As the mirror moves to the next null position, as determined by the analog voltage, the fringes of a laser reference interference pattern are detected. At the occurrence of each fringe the analog voltage is reduced proportionally so that when the next null position is reached, this driving analog is effectively zero. A binary up/down counter, by its internal count, causes a digital/analog converter to supply the analog voltage to the mirror moving means. Fringe detection and direction of movement logic cause the binary up/down counter to be decremented from its offset count as the mirror is moved to the new null position. Undesirable movement of the mirror due to vibration or other sources causes a correcting drive signal to be applied to the mirror moving means that is proportional to the distance of movement.
NASA Astrophysics Data System (ADS)
Spiga, D.; Della Monica Ferreira, D.; Shortt, B.; Bavdaz, M.; Bergback Knudsen, E.; Bianucci, G.; Christensen, F.; Civitani, M.; Collon, M.; Conconi, P.; Fransen, S.; Marioni, F.; Massahi, S.; Pareschi, G.; Salmaso, B.; Jegers, A. S.; Tayabaly, K.; Valsecchi, G.; Westergaard, N.; Wille, E.
2017-09-01
The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with hundreds of mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. In the current configuration, the optical assembly has a 3 m diameter and a 2 m2 effective area at 1 keV, with a required angular resolution of 5 arcsec. The angular resolution that can be achieved is chiefly the combination of 1) the focal spot size determined by the pore diffraction, 2) the focus degradation caused by surface and profile errors, 3) the aberrations introduced by the misalignments between primary and secondary segments, 4) imperfections in the co-focality of the mirror modules in the optical assembly. A detailed simulation of these aspects is required in order to assess the fabrication and alignment tolerances; moreover, the achievable effective area and angular resolution depend on the mirror module design. Therefore, guaranteeing these optical performances requires: a fast design tool to find the most performing solution in terms of mirror module geometry and population, and an accurate point spread function simulation from local metrology and positioning information. In this paper, we present the results of simulations in the framework of ESA-financed projects (SIMPOSiuM, ASPHEA, SPIRIT), in preparation of the ATHENA X-ray telescope, analyzing the mentioned points: 1) we deal with a detailed description of diffractive effects in an SPO mirror module, 2) we show ray-tracing results including surface and profile defects of the reflective surfaces, 3) we assess the effective area and angular resolution degradation caused by alignment errors between SPO mirror module's segments, and 4) we simulate the effects of co-focality errors in X-rays and in the UV optical bench used to study the mirror module alignment and integration.
Murayama, Takashi; Takasugi, Jun; Monma, Masahiko; Oga, Masaru
2013-01-01
Mirror therapy can be used to promote recovery from paralysis in patients with post-stroke hemiplegia, There are a lot of reports that mirror-image observation of the unilateral moving hand enhanced the excitability of the primary motor area (M1) ipsilateral to the moving hand in healthy subjects. but the neural mechanisms underlying its therapeutic effects are currently unclear. To investigate this issue, we used functional magnetic resonance imaging to measure activity in brain regions related to visual information processing during mirror image movement observation. Thirteen healthy subjects performed a finger-thumb opposition task with the left and right hands separately, with or without access to mirror observation. In the mirror condition, one hand was reflected in a mirror placed above the abdomen in the MRI scanner. In the masked mirror condition, subjects performed the same task but with the mirror obscured. In both conditions, the other hand was held at rest behind the mirror. A between-task comparison (mirror versus masked mirror) revealed significant activation in the ipsilateral hemisphere in the anterior intraparietal sulcus (aIP) while performing all tasks, regardless of which hand was used. The right aIP was significantly activated while moving the right hand. In contrast, in the left aIP, a small number of voxels showed a tendency toward activation during both left and right hand movement. The enhancement of ipsilateral aIP activity by the mirror image observation of finger action suggests that bimodal aIP neurons can be activated by visual information. We propose that activation in the M1 ipsilateral to the moving hand can be induced by information passing through the ventral premotor area from the aIP. PMID:25792898
Radell, Sally A; Adame, Daniel D; Cole, Steven P; Blumenkehl, Nicole J
2011-09-01
This study assesses the effect of mirrors on body image and performance in high and low performing female collegiate ballet students. Twenty-three females enrolled in a beginning ballet class were taught using mirrors, and a second group of 23 beginning females were taught without mirrors. All participants completed the Cash 69-item Body Self-Relations Questionnaire during the first and last class of a 14-week semester. They were videotaped performing in the studio during the fifth and fourteenth weeks. Two ballet teachers independently viewed the videotapes to evaluate the dancers' rhythmic accuracy, ease and flow of movement, and mastery of steps and alignment, and rated the students' skill level on a 1-5 scale. For analysis purposes, students whose scores averaged three or higher were categorized as "high performers," and those who averaged less than three were "low performers." Two (mirror, non-mirror) by two (high performance, low performance) by two (pre-test, post-test) repeated measures ANOVAs were used to test class differences over the course of the semester. There were significant 3-way interactions for overweight preoccupation (p < 0.01) and body-areas satisfaction (p < 0.05). Low performers increased in overweight preoccupation in the non-mirror class while decreasing in the mirror class. High performers significantly increased in satisfaction for most areas of their body in the non-mirror class, while there were smaller increases for both low and high performers in the mirror class. It is concluded that while use of the mirror has some benefits in training, higher performing dancers feel better about their body image when they do not use the mirror. Lower performers who use the mirror worry less about their weight; those who do not use the mirror worry more. The mirror may provide feedback that helps low performing dancers feel more comfortable with their weight.
NASA Astrophysics Data System (ADS)
Devilliers, Christophe; Krödel, Matthias
2017-11-01
Alcatel Alenia Space and ECM have jointly developed a new ceramic material to produce lightweight, stiff, stable and cost effective structures and mirrors for space instrument the CesicÒ. Its intrinsic properties, added to ample manufacturing capabilities allow to manufacture stiff and lightweight cost effective mirrors and structure for space instruments. Different scale 1 flight representative CesicÒ optical structures have been manufactured and successfully tested under very strong dynamic environment and cryogenic condition down to 30K CesicÒ is also envisaged for large and lightweight space telescopes mirrors, a large CesicÒ 1 meter class mirror with an area mass of less than 25 Kg/m2 has been sized again launch loads and WFE performance and manufactured. CesicÒ applicability for large focal plane have been demonstrated through different scale 1 breadboards. Based on these successful results, AlcatelAleniaSpace and ECM are now in position to propose for space this technology with new innovative concepts thanks to the CesicÒ manufacturing capabilities. CesicÒ has therefore been selected for the structure and mirrors parts of a flight instrument payload and the manufacturing of the flight hardware is already underway. An high temperature high gain lightweight antenna breadboard is also under manufacturing for Bepi colombo mission. CesicÒ is therefore a good candidate for future challenging space instruments and is currently proposed for Japan and US space projects.
NASA Astrophysics Data System (ADS)
Song, Huixu; Shi, Zhaoyao; Chen, Hongfang; Sun, Yanqiang
2018-01-01
This paper presents a novel experimental approach and a simple model for verifying that spherical mirror of laser tracking system could lessen the effect of rotation errors of gimbal mount axes based on relative motion thinking. Enough material and evidence are provided to support that this simple model could replace complex optical system in laser tracking system. This experimental approach and model interchange the kinematic relationship between spherical mirror and gimbal mount axes in laser tracking system. Being fixed stably, gimbal mount axes' rotation error motions are replaced by spatial micro-displacements of spherical mirror. These motions are simulated by driving spherical mirror along the optical axis and vertical direction with the use of precision positioning platform. The effect on the laser ranging measurement accuracy of displacement caused by the rotation errors of gimbal mount axes could be recorded according to the outcome of laser interferometer. The experimental results show that laser ranging measurement error caused by the rotation errors is less than 0.1 μm if radial error motion and axial error motion are under 10 μm. The method based on relative motion thinking not only simplifies the experimental procedure but also achieves that spherical mirror owns the ability to reduce the effect of rotation errors of gimbal mount axes in laser tracking system.
Effectiveness of Mirror Therapy for Subacute Stroke in Relation to Chosen Factors.
Radajewska, Alina; Opara, Józef; Biliński, Grzegorz; Kaczorowska, Antonina; Nawrat-Szołtysik, Agnieszka; Kucińska, Aleksandra; Lepsy, Ewelina
The aim of this study was to determine the effectiveness of mirror therapy (MT) combined with comprehensive treatment and to investigate the possible relationships of functional state. Prospective, controlled trial of 60 stroke inpatients. The Functional Index "Repty" (FIR) was an outcome measure to assess changes of independence in daily activities. The Frenchay Arm Test (FAT) and Motor Status Score were outcome measures to assess changes in hand function. The analysis of pre- and posttest data indicated a significant improvement in hand function ([INCREMENT]FAT in the Mirror group p = .035, N = 30). Age factor indicated a significant change in relation to FIR outcome ([INCREMENT]FIR in the Mirror group p = .005, N = 30 and [INCREMENT]FIR in the Mirror group [left hand paresis] p = .037, N = 15). Additional MT influenced improvement in hand function. The age is significant in terms of functional state. The older adults are likely to benefit from MT. A positive impact of combining MT with other treatment was indicated.
Cost-effective lightweight mirrors for aerospace and defense
NASA Astrophysics Data System (ADS)
Woodard, Kenneth S.; Comstock, Lovell E.; Wamboldt, Leonard; Roy, Brian P.
2015-05-01
The demand for high performance, lightweight mirrors was historically driven by aerospace and defense (A&D) but now we are also seeing similar requirements for commercial applications. These applications range from aerospace-like platforms such as small unmanned aircraft for agricultural, mineral and pollutant aerial mapping to an eye tracking gimbaled mirror for optometry offices. While aerospace and defense businesses can often justify the high cost of exotic, low density materials, commercial products rarely can. Also, to obtain high performance with low overall optical system weight, aspheric surfaces are often prescribed. This may drive the manufacturing process to diamond machining thus requiring the reflective side of the mirror to be a diamond machinable material. This paper summarizes the diamond machined finishing and coating of some high performance, lightweight designs using non-exotic substrates to achieve cost effective mirrors. The results indicate that these processes can meet typical aerospace and defense requirements but may also be competitive in some commercial applications.
Barbieri, Riccardo; Hall, Lawrence J.; Harigaya, Keisuke
2016-11-29
In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z 2 parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z 2 breaking, can generate the Z 2 breaking in the Higgs sector necessary for the Twin Higgs mechanism. The theory has constrained and correlated signals i n Higgs decays, direct Dark Matter Detection andmore » Dark Radiation, all within reach of foreseen experiments, over a region of parameter space where the fine-tuning for the electroweak scale is 10-50%. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z 2 breaking from the vacuum expectation values of B-L breaking fields are also discussed.« less
Figure correction of a metallic ellipsoidal neutron focusing mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jiang, E-mail: jiang.guo@riken.jp; Yamagata, Yutaka; Morita, Shin-ya
2015-06-15
An increasing number of neutron focusing mirrors is being adopted in neutron scattering experiments in order to provide high fluxes at sample positions, reduce measurement time, and/or increase statistical reliability. To realize a small focusing spot and high beam intensity, mirrors with both high form accuracy and low surface roughness are required. To achieve this, we propose a new figure correction technique to fabricate a two-dimensional neutron focusing mirror made with electroless nickel-phosphorus (NiP) by effectively combining ultraprecision shaper cutting and fine polishing. An arc envelope shaper cutting method is introduced to generate high form accuracy, while a fine polishingmore » method, in which the material is removed effectively without losing profile accuracy, is developed to reduce the surface roughness of the mirror. High form accuracy in the minor-axis and the major-axis is obtained through tool profile error compensation and corrective polishing, respectively, and low surface roughness is acquired under a low polishing load. As a result, an ellipsoidal neutron focusing mirror is successfully fabricated with high form accuracy of 0.5 μm peak-to-valley and low surface roughness of 0.2 nm root-mean-square.« less
Lee, Ho Jeong; Kim, Young Mi; Lee, Dong Kyu
2017-03-01
[Purpose] The aim of this study was to evaluate the effects of action observation training and mirror therapy to improve on balance and gait function of stroke patients. [Subjects and Methods] The participants were randomly allocated to one of three groups: The action observation training with activity group practiced additional action observation training with activity for three 30-minute session for six weeks (n=12). The mirror therapy with activity group practiced additional mirror therapy with activity for three 30-minute sessions for six weeks (n=11). The only action observation training group practiced additional action observation training for three 30-minute sessions for weeks (n=12). All groups received conventional therapy for five 60-minute sessions over a six-week period. [Results] There were significant improvements in balance and gait function. The action observation training with activity group significantly improved subjects' static balance. The action observation training with activity group and the mirror therapy with activity group significantly improved subjects' gait ability. [Conclusion] The activation of mirror neurons combined with a conventional stroke physiotherapy program enhances lower-extremity motor recovery and motor functioning in stroke patients.
Design of spatial oval plane mirror and its support structure
NASA Astrophysics Data System (ADS)
Chai, Wenyi; Hu, Yongming; Wang, Chenjie; Chen, Su; Feng, Song
2018-02-01
For the diameter of 150mm elliptical flat mirror that used in the space, selected the zerodur material and a lightweight design is conducted in the way of selected back-open-architecture with symmetrical axisymmetric arrangement, and in order to evaluate the effect of thermal stress from -10°C to 45°C on the mirror, a reflection mirror is designed based on the multipoint flexible support. The mirror component's mechanic and thermodynamic characteristics is analyzed with the simulation software, the support structure parameters are optimized, that can be used to evaluate the effect of gravity, assembly stress, and thermal stress load on mirror, while ensuring the component's stiffness and strength. According to the design condition developed a product and carried out mechanic and thermodynamic environment, the product could meet the shape accuracy PV λ/3, RMS λ/30 in the condition of thermodynamic environment, and the shape accuracy PV λ/5, RMS λ/40 in the condition of ground gravity and assembly stress (λ=632.8nm), while the product can withstand with the mechanical oscillation environment sinusoidal oscillation 10g, RMS random oscillation acceleration 14.4g.
High-Resolution and Lightweight X-ray Optics for the X-Ray Surveyor
NASA Astrophysics Data System (ADS)
Zhang, William
Envisioned in "Enduring Quest, Daring Visions" and under study by NASA as a potential major mission for the 2020s, the X-ray Surveyor mission will likely impose three requirements on its optics: (1) high angular resolution: 0.5 PSF, (2) large effective area: e10,000 cm2 or more, and (3) affordable production cost: $500M. We propose a technology that can meet these requirements by 2020. It will help the X-ray Surveyor secure the endorsement of the coming decadal survey and enable its implementation following WFIRST. The technology comprises four elements: (1) fabrication of lightweight single crystal silicon mirrors, (2) coating these mirrors with iridium to maximize effective area without figure degradation, (3) alignment and bonding of these mirrors to form meta-shells that will be integrated to make a mirror assembly, and (4) systems engineering to ensure that the mirror assembly meet all science performance and spaceflight environmental requirements. This approach grows out of our existing approach based on glass slumping. Using glass slumping technology, we have been able to routinely build and test mirror modules of 10half-power diameter (HPD). While comparable in HPD to XMM-Newtons electroformed nickel mirrors, these mirror modules are 10 times lighter. Likewise, while comparable in weight to Suzakus epoxy-replicated aluminum foil mirrors, these modules have 10 times better HPD. These modules represent the current state of the art of lightweight X-ray optics. Although both successful and mature, the glass slumping technology has reached its limit and cannot achieve sub-arc second HPD. Therefore, we are pursuing the new approach based on polishing single crystal silicon. The new approach will enable the building and testing of mirror modules, called meta-shells, capable of 3HPD by 2018 and 1HPD by 2020, and has the potential to reach diffraction limits ( 0.1) in the 2020s.
Effect of teaching with or without mirror on balance in young female ballet students
2014-01-01
Background In literature there is a general consensus that the use of the mirror improves proprioception. During rehabilitation the mirror is an important instrument to improve stability. In some sports, such as dancing, mirrors are widely used during training. The purpose of this study is to evaluate the effectiveness of the use of a mirror on balance in young dancers. Sixty-four young dancers (ranging from 9–10 years) were included in this study. Thirty-two attending lessons with a mirror (mirror- group) were compared to 32 young dancers that attended the same lessons without a mirror (non-mirror group). Balance was evaluated by BESS (Balance Error Scoring System), which consists of three stances (double limb, single limb, and tandem) on two surfaces (firm and foam). The errors were assessed at each stance and summed to create the two subtotal scores (firm and foam surface) and the final total score (BESS). The BESS was performed at recruitment (T0) and after 6 months of dance lessons (T1). Results The repeated measures ANOVA analysis showed that for the BESS total score there is a difference due to the time (F = 3.86; p < 0.05). No other differences due to the group or to the time of measurement were found (p > 0.05). The analysis of the multiple regression model showed the influence of the values at T0 for every BESS items and the dominance of limb for stability on an unstable surface standing on one or two legs. Conclusions These preliminary results suggest that the use of a mirror in a ballet classroom does not improve balance acquisition of the dancer. On the other hand, improvement found after 6 months confirms that at the age of the dancers studied motor skills and balance can easily be trained and improved. PMID:24996519
Effect of teaching with or without mirror on balance in young female ballet students.
Notarnicola, Angela; Maccagnano, Giuseppe; Pesce, Vito; Di Pierro, Silvia; Tafuri, Silvio; Moretti, Biagio
2014-07-04
In literature there is a general consensus that the use of the mirror improves proprioception. During rehabilitation the mirror is an important instrument to improve stability. In some sports, such as dancing, mirrors are widely used during training. The purpose of this study is to evaluate the effectiveness of the use of a mirror on balance in young dancers. Sixty-four young dancers (ranging from 9-10 years) were included in this study. Thirty-two attending lessons with a mirror (mirror- group) were compared to 32 young dancers that attended the same lessons without a mirror (non-mirror group). Balance was evaluated by BESS (Balance Error Scoring System), which consists of three stances (double limb, single limb, and tandem) on two surfaces (firm and foam). The errors were assessed at each stance and summed to create the two subtotal scores (firm and foam surface) and the final total score (BESS). The BESS was performed at recruitment (T0) and after 6 months of dance lessons (T1). The repeated measures ANOVA analysis showed that for the BESS total score there is a difference due to the time (F = 3.86; p < 0.05). No other differences due to the group or to the time of measurement were found (p > 0.05). The analysis of the multiple regression model showed the influence of the values at T0 for every BESS items and the dominance of limb for stability on an unstable surface standing on one or two legs. These preliminary results suggest that the use of a mirror in a ballet classroom does not improve balance acquisition of the dancer. On the other hand, improvement found after 6 months confirms that at the age of the dancers studied motor skills and balance can easily be trained and improved.
Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs.
Kim, Kyoung-Ran; Kim, Hyo Young; Lee, Yong-Deok; Ha, Jong Seong; Kang, Ji Hee; Jeong, Hansaem; Bang, Duhee; Ko, Young Tag; Kim, Sehoon; Lee, Hyukjin; Ahn, Dae-Ro
2016-12-10
Nanoparticle delivery systems have been extensively investigated for targeted delivery of anticancer drugs over the past decades. However, it is still a great challenge to overcome the drawbacks of conventional nanoparticle systems such as liposomes and micelles. Various novel nanomaterials consist of natural polymers are proposed to enhance the therapeutic efficacy of anticancer drugs. Among them, deoxyribonucleic acid (DNA) has received much attention as an emerging material for preparation of self-assembled nanostructures with precise control of size and shape for tailored uses. In this study, self-assembled mirror DNA tetrahedron nanostructures is developed for tumor-specific delivery of anticancer drugs. l-DNA, a mirror form of natural d-DNA, is utilized for resolving a poor serum stability of natural d-DNA. The mirror DNA nanostructures show identical thermodynamic properties to that of natural d-DNA, while possessing far enhanced serum stability. This unique characteristic results in a significant effect on the pharmacokinetics and biodistribution of DNA nanostructures. It is demonstrated that the mirror DNA nanostructures can deliver anticancer drugs selectively to tumors with enhanced cellular and tissue penetration. Furthermore, the mirror DNA nanostructures show greater anticancer effects as compared to that of conventional PEGylated liposomes. Our new approach provides an alternative strategy for tumor-specific delivery of anticancer drugs and highlights the promising potential of the mirror DNA nanostructures as a novel drug delivery platform. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gambicorti, Lisa; D'Amato, Francesco; Vettore, Christian; Duò, Fabrizio; Guercia, Alessio; Patauner, Christian; Biasi, Roberto; Lisi, Franco; Riccardi, Armando; Gallieni, Daniele; Lazzarini, Paolo; Tintori, Matteo; Zuccaro Marchi, Alessandro; Pereira do Carmo, Joao
2017-11-01
The aim of this work is to describe the latest results of new technological concepts for Large Aperture Telescopes Technology (LATT) using thin deployable lightweight active mirrors. This technology is developed under the European Space Agency (ESA) Technology Research Program and can be exploited in all the applications based on the use of primary mirrors of space telescopes with large aperture, segmented lightweight telescopes with wide Field of View (FOV) and low f/#, and LIDAR telescopes. The reference mission application is a potential future ESA mission, related to a space borne DIAL (Differential Absorption Lidar) instrument operating around 935.5 nm with the goal to measure water vapor profiles in atmosphere. An Optical BreadBoard (OBB) for LATT has been designed for investigating and testing two critical aspects of the technology: 1) control accuracy in the mirror surface shaping. 2) mirror survivability to launch. The aim is to evaluate the effective performances of the long stroke smart-actuators used for the mirror control and to demonstrate the effectiveness and the reliability of the electrostatic locking (EL) system to restraint the thin shell on the mirror backup structure during launch. The paper presents a comprehensive vision of the breadboard focusing on how the requirements have driven the design of the whole system and of the various subsystems. The manufacturing process of the thin shell is also presented.
Enhancing the mirror illusion with transcranial direct current stimulation.
Jax, Steven A; Rosa-Leyra, Diana L; Coslett, H Branch
2015-05-01
Visual feedback has a strong impact on upper-extremity movement production. One compelling example of this phenomena is the mirror illusion (MI), which has been used as a treatment for post-stroke movement deficits (mirror therapy). Previous research indicates that the MI increases primary motor cortex excitability, and this change in excitability is strongly correlated with the mirror's effects on behavioral performance of neurologically-intact controls. Based on evidence that primary motor cortex excitability can also be increased using transcranial direct current stimulation (tDCS), we tested whether bilateral tDCS to the primary motor cortices (anode right-cathode left and anode left-cathode right) would modify the MI. We measured the MI using a previously-developed task in which participants make reaching movements with the unseen arm behind a mirror while viewing the reflection of the other arm. When an offset in the positions of the two limbs relative to the mirror is introduced, reaching errors of the unseen arm are biased by the reflected arm's position. We found that active tDCS in the anode right-cathode left montage increased the magnitude of the MI relative to sham tDCS and anode left-cathode right tDCS. We take these data as a promising indication that tDCS could improve the effect of mirror therapy in patients with hemiparesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mirror book therapy for the treatment of idiopathic facial palsy.
Barth, Jodi Maron; Stezar, Gincy L; Acierno, Gabriela C; Kim, Thomas J; Reilly, Michael J
2014-09-01
We conducted a retrospective chart review to determine the effectiveness of treating idiopathic facial palsy with mirror book therapy in conjunction with facial physical rehabilitation. We compared outcomes in 15 patients who underwent mirror book therapy in addition to standard therapy with those of 10 patients who underwent standard rehabilitation therapy without the mirror book. Before and after treatment, patients in both groups were rated according to the Facial Grading System (FGS), the Facial Disability Index-Physical (FDIP), and the Facial Disability Index-Social (FDIS). Patients in the mirror therapy group had a mean increase of 24.9 in FGS score, 22.0 in FDIP score, and 25.0 in FDIS score, all of which represented statistically significant improvements over their pretreatment scores. Those who did not receive mirror book therapy had mean increases of 20.8, 19.0, 14.6, respectively; these, too, represented significant improvements over baseline, and thus there was no statistically significant difference in improvement between the two groups. Nevertheless, our results show that patients who used mirror book therapy in addition to standard facial rehabilitation therapy experienced significant improvements in the treatment of idiopathic facial palsy. While further studies are necessary to determine if it has a definitive, statistically significant advantage over standard therapy, we recommend adding this therapy to the rehabilitation program in view of its ease of use, low cost, and lack of side effects.
Cooling options for high-average-power laser mirrors
NASA Astrophysics Data System (ADS)
Vojna, D.; Slezak, O.; Lucianetti, A.; Mocek, T.
2015-01-01
Thermally-induced deformations of steering mirrors reflecting 100 J/10 Hz laser pulses in vacuum have been analyzed. This deformation is caused by the thermal stress arisen due to parasitic absorption of 1 kW square-shaped flat-top laser beam in the dielectric multi-layer structure. Deformation depends on amount of absorbed power and geometry of the mirror as well as on the heat removal scheme. In our calculations, the following percentages of absorption of the incident power have been used: 1%, 0.5% and 0.1%. The absorbed power has been considered to be much higher than that expected in reality to assess the worst case scenario. Rectangular and circular mirrors made of zerodur (low thermal expansion glass) were considered for these simulations. The effect of coating layers on induced deformations has been neglected. Induced deformation of the mirror surface can significantly degrade the quality of the laser beam in the beam delivery system. Therefore, the proper design of the cooling scheme for the mirror in order to minimize the deformations is needed. Three possible cooling schemes of the mirror have been investigated. The first one takes advantage of a radiation cooling of the mirror and a copper heatsink fixed to the rear face of the mirror, the second scheme is based on additional heat conduction provided by flexible copper wires connected to the mirror holder, and the last scheme combines two above mentioned methods.
Wide acceptance angle, high concentration ratio, optical collector
NASA Technical Reports Server (NTRS)
Kruer, Mark Arthur (Inventor)
1990-01-01
The invention is directed to an optical collector requiring a wide acceptance angle, and a high concentration ratio. The invention is particularly adapted for use in solar collectors of cassegrain design. The optical collector system includes a parabolic circular concave primary mirror and a hyperbolic circular convex secondary mirror. The primary mirror includes a circular hole located at its center wherein a solar collector is located. The mirrored surface of the secondary mirror has three distinct zones: a center circle, an on-axis annulus, and an off-axis section. The parabolic shape of the primary mirror is chosen so that the primary mirror reflects light entering the system on-axis onto the on-axis annulus. A substantial amount of light entering the system off-axis is reflected by the primary mirror onto either the off-axis section or onto the center circle. Subsequently, the off-axis sections reflect the off-axis light toward the solar collector. Thus, off-axis light is captured which would otherwise be lost to the system. The novelty of the system appears to lie in the configuration of the primary mirror which focuses off-axis light onto an annular portion of the secondary mirror to enable capture thereof. This feature results in wide acceptance angle and a high concentration ratio, and also compensates for the effects of non-specular reflection, and enables a cassegrain configuration to be used where such characteristics are required.
Bähr, Florian; Ritter, Alexander; Seidel, Gundula; Puta, Christian; Gabriel, Holger H W; Hamzei, Farsin
2018-01-01
Action observation (AO) allows access to a network that processes visuomotor and sensorimotor inputs and is believed to be involved in observational learning of motor skills. We conducted three consecutive experiments to examine the boosting effect of AO on the motor outcome of the untrained hand by either mirror visual feedback (MVF), video therapy (VT), or a combination of both. In the first experiment, healthy participants trained either with MVF or without mirror feedback while in the second experiment, participants either trained with VT or observed animal videos. In the third experiment, participants first observed video clips that were followed by either training with MVF or training without mirror feedback. The outcomes for the untrained hand were quantified by scores from five motor tasks. The results demonstrated that MVF and VT significantly increase the motor performance of the untrained hand by the use of AO. We found that MVF was the most effective approach to increase the performance of the target effector. On the contrary, the combination of MVF and VT turns out to be less effective looking from clinical perspective. The gathered results suggest that action-related motor competence with the untrained hand is acquired by both mirror-based and video-based AO.
Ritter, Alexander; Seidel, Gundula; Puta, Christian; Gabriel, Holger H. W.; Hamzei, Farsin
2018-01-01
Action observation (AO) allows access to a network that processes visuomotor and sensorimotor inputs and is believed to be involved in observational learning of motor skills. We conducted three consecutive experiments to examine the boosting effect of AO on the motor outcome of the untrained hand by either mirror visual feedback (MVF), video therapy (VT), or a combination of both. In the first experiment, healthy participants trained either with MVF or without mirror feedback while in the second experiment, participants either trained with VT or observed animal videos. In the third experiment, participants first observed video clips that were followed by either training with MVF or training without mirror feedback. The outcomes for the untrained hand were quantified by scores from five motor tasks. The results demonstrated that MVF and VT significantly increase the motor performance of the untrained hand by the use of AO. We found that MVF was the most effective approach to increase the performance of the target effector. On the contrary, the combination of MVF and VT turns out to be less effective looking from clinical perspective. The gathered results suggest that action-related motor competence with the untrained hand is acquired by both mirror-based and video-based AO. PMID:29849570
Characteristics of extreme ultraviolet emission from high-Z plasmas
NASA Astrophysics Data System (ADS)
Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.
2016-03-01
We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.
Introductory assessment of orbiting reflections for terrestrial power generation
NASA Technical Reports Server (NTRS)
Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.
1977-01-01
The use of orbiting mirrors for providing energy to ground conversion stations to produce electrical power is shown to be a viable, cost effective and environmentally sound alternative to satellite solar power stations and conventional power sources. This is accomplished with the use of very light weight metal coated polymeric films as mirrors which, after deployment at 800 km, are placed in operational orbit and controlled by solar radiation pressure. Relations are developed showing the influence of a number of parameters (mirror altitude, orbit inclination, period, mirror size and number, and atmospheric effects) on the reflected insolation that may be received by a ground spot as a function of location. Some attractive alternative uses of the reflection are briefly discussed as a beneficial adjuncts to the system.
Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi
2010-02-01
An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully.
Biosonar navigation above water II: exploiting mirror images.
Genzel, Daria; Hoffmann, Susanne; Prosch, Selina; Firzlaff, Uwe; Wiegrebe, Lutz
2015-02-15
As in vision, acoustic signals can be reflected by a smooth surface creating an acoustic mirror image. Water bodies represent the only naturally occurring horizontal and acoustically smooth surfaces. Echolocating bats flying over smooth water bodies encounter echo-acoustic mirror images of objects above the surface. Here, we combined an electrophysiological approach with a behavioral experimental paradigm to investigate whether bats can exploit echo-acoustic mirror images for navigation and how these mirrorlike echo-acoustic cues are encoded in their auditory cortex. In an obstacle-avoidance task where the obstacles could only be detected via their echo-acoustic mirror images, most bats spontaneously exploited these cues for navigation. Sonar ensonifications along the bats' flight path revealed conspicuous changes of the reflection patterns with slightly increased target strengths at relatively long echo delays corresponding to the longer acoustic paths from the mirrored obstacles. Recordings of cortical spatiotemporal response maps (STRMs) describe the tuning of a unit across the dimensions of elevation and time. The majority of cortical single and multiunits showed a special spatiotemporal pattern of excitatory areas in their STRM indicating a preference for echoes with (relative to the setup dimensions) long delays and, interestingly, from low elevations. This neural preference could effectively encode a reflection pattern as it would be perceived by an echolocating bat detecting an object mirrored from below. The current study provides both behavioral and neurophysiological evidence that echo-acoustic mirror images can be exploited by bats for obstacle avoidance. This capability effectively supports echo-acoustic navigation in highly cluttered natural habitats. Copyright © 2015 the American Physiological Society.
Development and performance of Hobby-Eberly Telescope 11-m segmented mirror
NASA Astrophysics Data System (ADS)
Krabbendam, Victor L.; Sebring, Thomas A.; Ray, Frank B.; Fowler, James R.
1998-08-01
The Hobby Eberly Telescope features a unique eleven-meter spherical primary mirror consisting of a single steel truss populated with 91 Zerodur(superscript TM) mirror segments. The 1 meter hexagonal segments are fabricated to 0.033 micron RMS spherical surfaces with matched radii to 0.5 mm. Silver coatings are applied to meet reflectance criteria for wavelengths from 0.35 to 2.5 micron. To support the primary spectroscopic uses of the telescope the mirror must provide a 0.52 arc sec FWHM point spread function. Mirror segments are co-aligned to within 0.0625 ar sec and held to 25 microns of piston envelope using a segment positioning system that consists of 273 actuators (3 per mirror), a distributed population of controllers, and custom developed software. A common path polarization shearing interferometer was developed to provide alignment sensing of the entire array from the primary mirror's center of curvature. Performance of the array is being tested with an emphasis on alignment stability. Distributed temperature measurements throughout the truss are correlated to pointing variances of the individual mirror segments over extended periods of time. Results are very encouraging and indicate that this mirror system approach will prove to be a cost-effective solution for large optical collecting apertures.
Mirror and (absence of) counter-mirror responses to action sounds measured with TMS
Schütz-Bosbach, Simone; Waszak, Florian
2017-01-01
Abstract To what extent is the mirror neuron mechanism malleable to experience? The answer to this question can help characterising its ontogeny and its role in social cognition. Some suggest that it develops through sensorimotor associations congruent with our own actions. Others argue for its extreme volatility that will encode any sensorimotor association in the environment. Here, we added to this debate by exploring the effects of short goal-directed ‘mirror’ and ‘counter-mirror’ trainings (a ‘mirror’ training is defined as the first type of training encountered by the participants) on human auditory mirror motor-evoked potentials (MEPs). We recorded MEPs in response to two tones void of previous motor meaning, before and after mirror and counter-mirror trainings in which participants generated two tones of different pitch by performing free-choice button presses. The results showed that mirror MEPs, once established, were protected against an equivalent counter-mirror experience: they became manifest very rapidly and the same number of training trials that lead to the initial association did not suffice to reverse the MEP pattern. This steadiness of the association argues that, by serving direct-matching purposes, the mirror mechanism is a good solution for social cognition. PMID:29036454
Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of 22Mg
NASA Astrophysics Data System (ADS)
Henderson, J.; Hackman, G.; Ruotsalainen, P.; Stroberg, S. R.; Launey, K. D.; Holt, J. D.; Ali, F. A.; Bernier, N.; Bentley, M. A.; Bowry, M.; Caballero-Folch, R.; Evitts, L. J.; Frederick, R.; Garnsworthy, A. B.; Garrett, P. E.; Jigmeddorj, B.; Kilic, A. I.; Lassen, J.; Measures, J.; Muecher, D.; Olaizola, B.; O'Sullivan, E.; Paetkau, O.; Park, J.; Smallcombe, J.; Svensson, C. E.; Wadsworth, R.; Wu, C. Y.
2018-07-01
Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might be studied within a microscopic or ab initio framework without the use of effective charges; for example with the proper evolution of the E2 operator, or alternatively, through the use of an appropriate and manageable subset of particle-hole excitations. We present a precise determination of E2 strength in 22Mg and its mirror 22Ne by Coulomb excitation, allowing for rigorous comparisons with theory. No-core symplectic shell-model calculations were performed and agree with the new B (E 2) values while in-medium similarity-renormalization-group calculations consistently underpredict the absolute strength, with the missing strength found to have both isoscalar and isovector components. The discrepancy between two microscopic models demonstrates the sensitivity of E2 strength to the choice of many-body approximation employed.
Generation of large scale GHZ states with the interactions of photons and quantum-dot spins
NASA Astrophysics Data System (ADS)
Miao, Chun; Fang, Shu-Dong; Dong, Ping; Yang, Ming; Cao, Zhuo-Liang
2018-03-01
We present a deterministic scheme for generating large scale GHZ states in a cavity-quantum dot system. A singly charged quantum dot is embedded in a double-sided optical microcavity with partially reflective top and bottom mirrors. The GHZ-type Bell spin state can be created and two n-spin GHZ states can be perfectly fused to a 2n-spin GHZ state with the help of n ancilla single-photon pulses. The implementation of the current scheme only depends on the photon detection and its need not to operate multi-qubit gates and multi-qubit measurements. Discussions about the effect of the cavity loss, side leakage and exciton cavity coupling strength for the fidelity of generated states show that the fidelity can remain high enough by controlling system parameters. So the current scheme is simple and feasible in experiment.
New fabrication method for an ellipsoidal neutron focusing mirror with a metal substrate.
Guo, Jiang; Takeda, Shin; Morita, Shin-ya; Hino, Masahiro; Oda, Tatsuro; Kato, Jun-ichi; Yamagata, Yutaka; Furusaka, Michihiro
2014-10-06
We propose an ellipsoidal neutron focusing mirror using a metal substrate made with electroless nickel-phosphorus (NiP) plated material for the first time. Electroless NiP has great advantages for realizing an ellipsoidal neutron mirror because of its amorphous structure, good machinability and relatively large critical angle of total reflection for neutrons. We manufactured the mirror by combining ultrahigh precision cutting and fine polishing to generate high form accuracy and low surface roughness. The form accuracy of the mirror was estimated to be 5.3 μm P-V and 0.8 μm P-V for the minor-axis and major-axis direction respectively, while the surface roughness was reduced to 0.2 nm rms. The effect of form error on focusing spot size was evaluated by using a laser beam and the focusing performance of the mirror was verified by neutron experiments.
NASA Astrophysics Data System (ADS)
Meng, Lixin; Meng, Lingchen; Zhang, Yiqun; Zhang, Lizhong; Liu, Ming; Li, Xiaoming
2018-01-01
In the satellite to earth laser communication link, large-aperture ground laser communication terminals usually are used in order to realize the requirement of high rate and long distance communication and restrain the power fluctuation by atmospheric scintillation. With the increasing of the laser communication terminal caliber, the primary mirror weight should also be increased, and selfweight, thermal deformation and environment will affect the surface accuracy of the primary mirror surface. A high precision vehicular laser communication telescope unit with an effective aperture of 600mm was considered in this paper. The primary mirror is positioned with center hole, which back is supported by 9 floats and the side is supported by a mercury band. The secondary mirror adopts a spherical adjusting mechanism. Through simulation analysis, the system wave difference is better than λ/20 when the primary mirror is in different dip angle, which meets the requirements of laser communication.
Analysis and manipulation of the induced changes in the state of polarization by mirror scanners.
Petrova-Mayor, Anna; Knudsen, Sarah
2017-05-20
The induced polarization effects of metal-coated mirrors were studied in the configurations of one- and two-mirror lidar scanners as a function of azimuth and elevation angles. The theoretical results were verified experimentally for three types of mirrors (custom enhanced gold, off-the-shelf protected gold, and protected aluminum). A method was devised and tested to maintain a desired polarization state (linear or circular) of the transmit beam for all pointing directions by means of rotating wave plates in the transmit and detection paths. Alternatively, the mirror coating can be optimized to preserve the linear polarization state of the transmitted beam. The compensation methods will enable ground-based scanning lidars to produce absolutely calibrated depolarization measurements.
Quantum locking of mirrors in interferometers.
Courty, Jean-Michel; Heidmann, Antoine; Pinard, Michel
2003-02-28
We show that quantum noise in very sensitive interferometric measurements such as gravitational-wave detectors can be drastically modified by quantum feedback. We present a new scheme based on active control to lock the motion of a mirror to a reference mirror at the quantum level. This simple technique allows one to reduce quantum effects of radiation pressure and to greatly enhance the sensitivity of the detection.
2006-04-01
Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT
Zult, Tjerk; Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn
2015-04-01
Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp (2) = 0.005; ECR: P = 0.712, ηp (2) = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp (2) = 0.049; ECR: P = 0.343, ηp (2) = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions. Copyright © 2015 the American Physiological Society.
Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn
2015-01-01
Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp2 = 0.005; ECR: P = 0.712, ηp2 = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp2 = 0.049; ECR: P = 0.343, ηp2 = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions. PMID:25632077
Why is your spouse so predictable? Connecting mirror neuron system and self-expansion model of love.
Ortigue, Stephanie; Bianchi-Demicheli, Francesco
2008-12-01
The simulation theory assumes we understand actions and intentions of others through a direct matching process. This matching process activates a complex brain network involving the mirror neuron system (MNS), which is self-related and active when one does something or observes someone else acting. Because social psychology admits that mutual intention's understanding grows in close relationship as love grows, we hypothesize that mirror mechanisms take place in love relationships. The similarities between the mirror matching process and the mutual intention's understanding that occurs when two persons are in love suggest that exposure to love might affect functional and neural mechanisms, thus facilitating the understanding of the beloved's intentions. Congruent with our hypothesis, our preliminary results from 38 subjects strongly suggest a significant facilitation effect of love on understanding the intentions of the beloved (as opposed to control stimuli). Based on these phenomenological, and neurofunctional findings we suggest that the mirror mechanisms are involved in the facilitation effects of love for understanding intentions, and might further be extended to any types of love (e.g., passionate love, maternal love). Love experiences are important not only to the beloved himself, but also to any societal, cultural, and institutional patterns that relate to love. Yet, concerning its subjective character, love experiences are difficult to access. The modern procedures and techniques of socio-cognitive neuroscience make it possible to understand love and self-related experiences not only by the analysis of subjective self-reported questionnaires, but also by approaching the automatic (non-conscious) mirror experiences of love in healthy subjects, and neurological patients with a brain damage within the mirror neuron system. Although the psychology of love is now well admitted, the systematic study of the automatic facilitation effect of love through mirror mechanisms might open a new avenue towards the social mind and also self consciousness.
Prototype Development of the GMT Fast Steering Mirror
NASA Astrophysics Data System (ADS)
Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.
2013-06-01
A Fast Steering Mirror (FSM) is going to be produced as a secondary mirror of the Giant Magellan Telescope (GMT). FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m. It also contains tip-tilt actuators which would compensate wind effect and structure jitter. An FSM prototype (FSMP) has been developed, which consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The main purpose of the FSMP development is to achieve key technologies, such as fabrication of highly aspheric off-axis mirror and tip-tilt actuation. The development has been conducted by a consortium of five institutions in Korea and USA, and led by Korea Astronomy and Space Science Institute. The mirror was light-weighted and grinding of the front surface was finished. Polishing is in progress with computer generated hologram tests. The tip-tilt test-bed has been manufactured and assembled. Frequency tests are being performed and optical tilt set-up is arranged for visual demonstration. In this paper, we present progress of the prototype development, and future works.
NASA Astrophysics Data System (ADS)
Chakdar, Shreyashi; Ghosh, K.; Hoang, V.; Hung, P. Q.; Nandi, S.
2017-01-01
The existence of tiny neutrino masses at a scale more than a million times smaller than the lightest charged fermion mass, namely the electron, and their mixings cannot be explained within the framework of the exceptionally successful standard model (SM). Several mechanisms were proposed to explain the tiny neutrino masses, most prominent among which is the so-called seesaw mechanism. Many models were built around this concept, one of which is the electroweak (EW)-scale νR model. In this model, right-handed neutrinos are fertile and their masses are connected to the electroweak scale ΛEW˜246 GeV . It is these two features that make the search for right-handed neutrinos at colliders such as the LHC feasible. The EW-scale νR model has new quarks and leptons of opposite chirality at the electroweak scale [for the same SM gauge symmetry S U (2 )W×U (1 )Y] compared to what we have for the standard model. With suitable modification of the Higgs sector, the EW-scale νR model satisfies the electroweak precision test and, also the constraints coming from the observed 125-GeV Higgs scalar. Since in this model, the mirror fermions are required to be in the EW scale, these can be produced at the LHC giving final states with a very low background from the SM. One such final state is the same sign dileptons with large missing pT for the events. In this work, we explore the constraint provided by the 8 TeV data, and prospect of observing this signal in the 13 TeV runs at the LHC. Additional signals will be the presence of displaced vertices depending on the smallness of the Yukawa couplings of the mirror leptons with the ordinary leptons and the singlet Higgs present in the model. Of particular importance to the EW-scale νR model is the production of νR which will be a direct test of the seesaw mechanism at collider energies.
Fine alignment of a large segmented mirror
NASA Technical Reports Server (NTRS)
Dey, Thomas William (Inventor)
2010-01-01
A system for aligning a segmented mirror includes a source of radiation directed along a first axis to the segmented mirror and a beamsplitter removably inserted along the first axis for redirecting radiation from the first axis to a second axis, substantially perpendicular to the first axis. An imaging array is positioned along the second axis for imaging the redirected radiation, and a knife-edge configured for cutting the redirected radiation is serially positioned to occlude and not occlude the redirected radiation, effectively providing a variable radiation pattern detected by the imaging array for aligning the segmented mirror.
Cavity optomechanical coupling assisted by an atomic gas
NASA Astrophysics Data System (ADS)
Ian, H.; Gong, Z. R.; Liu, Yu-Xi; Sun, C. P.; Nori, Franco
2008-07-01
We theoretically study a cavity filled with atoms, which provides the optical-mechanical interaction between the modified cavity photonic field and a oscillating mirror at one end. We show that the cavity field “dresses” these atoms, producing two types of polaritons, effectively enhancing the radiation pressure of the cavity field upon the oscillating mirror, as well as establishing an additional squeezing mode of the oscillating mirror. This squeezing produces an adiabatic entanglement, which is absent in usual vacuum cavities, between the oscillating mirror and the rest of the system. We analyze the entanglement and quantify it using the Loschmidt echo and fidelity.
Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect
NASA Astrophysics Data System (ADS)
Good, Michael R. R.; Linder, Eric V.
2017-12-01
Radiation from accelerating mirrors in a Minkowski spacetime provides insights into the nature of horizons, black holes, and entanglement entropy. We introduce new, simple, symmetric and analytic moving mirror solutions and study their particle, energy, and entropy production. This includes an asymptotically static case with finite emission that is the black hole analog of complete evaporation. The total energy, total entropy, total particles, and spectrum are the same on both sides of the mirror. We also study its asymptotically inertial, drifting analog (which gives a black hole remnant) to explore differences in finite and infinite production.
Mounting for Fabrication, Metrology, and Assembly of Full Shell Grazing Incidence Optics
NASA Technical Reports Server (NTRS)
Roche, Jacqueline M.; Gubarev, Mikhail V.; O'Dell, Stephen L.; Kolodziejczak, Jeffery; Weisskopf, Martin C.; Ramsey, Brian D.; Elsner, Ronald F.
2014-01-01
Future x-ray telescopes will likely require lightweight mirrors to attain the large collecting areas needed to accomplish the science objectives. Understanding and demonstrating processes now is critical to achieving sub-arcsecond performance in the future. Consequently, designs not only of the mirrors but of fixtures for supporting them during fabrication, metrology, handling, assembly, and testing must be adequately modeled and verified. To this end, MSFC is using finite-element modeling to study the effects of mounting on full-shell grazing-incidence mirrors, during all processes leading to flight mirror assemblies. Here we report initial results of this study.
Production of ELZM mirrors: performance coupled with attractive schedule, cost, and risk factors
NASA Astrophysics Data System (ADS)
Leys, Antoine; Hull, Tony; Westerhoff, Thomas
2016-08-01
Extreme light weighted ZERODUR Mirrors (ELZM) have been developed to exploit the superb thermal characteristics of ZERODUR. Coupled with up to date mechanical and optical fabrication methods this becomes an attractive technical approach. However the process of making mirror substrates has demonstrated to be unusually rapid and especially cost-effective. ELZM is aimed at the knee of the cost as a function of light weighting curve. ELZM mirrors are available at 88% light weighted. Together with their low risk, low cost production methods, this is presented as a strong option for NASA Explorer and Probe class missions.
Nakamura, Kimihiro; Makuuchi, Michiru; Nakajima, Yasoichi
2014-01-01
Previous studies show that the primate and human visual system automatically generates a common and invariant representation from a visual object image and its mirror reflection. For humans, however, this mirror-image generalization seems to be partially suppressed through literacy acquisition, since literate adults have greater difficulty in recognizing mirror images of letters than those of other visual objects. At the neural level, such category-specific effect on mirror-image processing has been associated with the left occpitotemporal cortex (L-OTC), but it remains unclear whether the apparent "inhibition" on mirror letters is mediated by suppressing mirror-image representations covertly generated from normal letter stimuli. Using transcranial magnetic stimulation (TMS), we examined how transient disruption of the L-OTC affects mirror-image recognition during a same-different judgment task, while varying the semantic category (letters and non-letter objects), identity (same or different), and orientation (same or mirror-reversed) of the first and second stimuli. We found that magnetic stimulation of the L-OTC produced a significant delay in mirror-image recognition for letter-strings but not for other objects. By contrast, this category specific impact was not observed when TMS was applied to other control sites, including the right homologous area and vertex. These results thus demonstrate a causal link between the L-OTC and mirror-image discrimination in literate people. We further suggest that left-right sensitivity for letters is not achieved by a local inhibitory mechanism in the L-OTC but probably relies on the inter-regional coupling with other orientation-sensitive occipito-parietal regions.
Magnetic pumping of particles in the outer Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Borovsky, J. E.
1980-01-01
The mechanism of magnetic pumping consists of two processes, the adiabatic motion of charged particles in a time varying magnetic field and their pitch-angle diffusion. The result is a systematic increase in the energy of charged particles trapped in mirror (and particularly, magnetospheric) magnetic fields. A numerical model of the mechanism is constructed, compared with analytic theory where possible, and, through elementary exercises, is used to predict the consequences of the process for cases that are not tractable by analytical means. For energy dependent pitch angle diffusion rates, characteristic 'two temperature' distributions are produced. Application of the model to the outer Jovian magnetosphere shows that beyond 20 Jupiter radii in the outer magnetosphere, particles may be magnetically pumped to energies of the order of 1 - 2 MeV. Two temperature distribution functions with "break points" at 1 - 4 KeV for electrons and 8 - 35 KeV for ions are predicted.
NASA Technical Reports Server (NTRS)
Biddle, A. P.; Reynolds, J. M.
1986-01-01
The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.
Dynamical formation of a Reissner-Nordström black hole with scalar hair in a cavity
NASA Astrophysics Data System (ADS)
Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Herdeiro, Carlos; Font, José A.; Montero, Pedro J.
2016-08-01
In a recent Letter [Sanchis-Gual et al., Phys. Rev. Lett. 116, 141101 (2016)], we presented numerical relativity simulations, solving the full Einstein-Maxwell-Klein-Gordon equations, of superradiantly unstable Reissner-Nordström black holes (BHs), enclosed in a cavity. Low frequency, spherical perturbations of a charged scalar field trigger this instability. The system's evolution was followed into the nonlinear regime, until it relaxed into an equilibrium configuration, found to be a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. Here, we investigate the impact of adding self-interactions to the scalar field. In particular, we find sufficiently large self-interactions suppress the exponential growth phase, known from linear theory, and promote a nonmonotonic behavior of the scalar field energy. Furthermore, we discuss in detail the influence of the various parameters in this model: the initial BH charge, the initial scalar perturbation, the scalar field charge, the mass, and the position of the cavity's boundary (mirror). We also investigate the "explosive" nonlinear regime previously reported to be akin to a bosenova. A mode analysis shows that the "explosions" can be interpreted as the decay into the BH of modes that exit the superradiant regime.
Polarization Phase-Compensating Coats for Metallic Mirrors
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatham
2006-01-01
A method of compensating for or minimizing phase differences between orthogonal polarizations of light reflected from metallic mirrors at oblique incidence, as, for example, from weakly curved mirrors, is undergoing development. The method is intended to satisfy a need to maintain precise polarization phase relationships or minimum polarization differences needed for proper operation of telescopes and other scientific instruments that include single or multiple mirrors. The basic idea of the method is to optimally coat mirrors with thin engineered layers of materials that introduce phase differences that, as nearly precisely as possible, are opposite of the undesired phase differences arising in reflection with non-optimum coatings. Depending on the specific optical system, the method could involve any or all of the following elements: a) Optimization of a single coat on all the mirrors in the system. b) Optimization of a unique coat for each mirror such that the polarization phase effects of the coat on one mirror compensate, to an acceptably high degree over an acceptably wide wavelength range, for those of the coat on another mirror. c) Tapering the coat on each mirror. Optimization could involve the choice of a single dielectric coating material and its thickness, or design of a more complex coat consisting of multiple layers of different dielectric materials and possibly some metallic materials. Such designs and coatings are particularly significant and needed for obtaining very high quality of wavefront required in high-contrast imaging instruments such as the NASA Terrestrial Planet Finder Coronagraph.
Ye, Liangchen; Zhang, Gaofei; You, Zheng
2017-03-05
The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively.
Ye, Liangchen; Zhang, Gaofei; You, Zheng
2017-01-01
The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively. PMID:28273880
Complementary Hand Responses Occur in Both Peri- and Extrapersonal Space.
Faber, Tim W; van Elk, Michiel; Jonas, Kai J
2016-01-01
Human beings have a strong tendency to imitate. Evidence from motor priming paradigms suggests that people automatically tend to imitate observed actions such as hand gestures by performing mirror-congruent movements (e.g., lifting one's right finger upon observing a left finger movement; from a mirror perspective). Many observed actions however, do not require mirror-congruent responses but afford complementary (fitting) responses instead (e.g., handing over a cup; shaking hands). Crucially, whereas mirror-congruent responses don't require physical interaction with another person, complementary actions often do. Given that most experiments studying motor priming have used stimuli devoid of contextual information, this space or interaction-dependency of complementary responses has not yet been assessed. To address this issue, we let participants perform a task in which they had to mirror or complement a hand gesture (fist or open hand) performed by an actor depicted either within or outside of reach. In three studies, we observed faster reaction times and less response errors for complementary relative to mirrored hand movements in response to open hand gestures (i.e., 'hand-shaking') irrespective of the perceived interpersonal distance of the actor. This complementary effect could not be accounted for by a low-level spatial cueing effect. These results demonstrate that humans have a strong and automatic tendency to respond by performing complementary actions. In addition, our findings underline the limitations of manipulations of space in modulating effects of motor priming and the perception of affordances.
Modeling Indications of Technology in Planetary Transit Light Curves-Dark-side Illumination
NASA Astrophysics Data System (ADS)
Korpela, Eric J.; Sallmen, Shauna M.; Leystra Greene, Diana
2015-08-01
We analyze potential effects of an extraterrestrial civilization’s use of orbiting mirrors to illuminate the dark side of a synchronously rotating planet on planetary transit light curves. Previous efforts to detect civilizations based on side effects of planetary-scale engineering have focused on structures affecting the host star output (e.g., Dyson spheres). However, younger civilizations are likely to be less advanced in their engineering efforts, yet still capable of sending small spacecraft into orbit. Since M dwarfs are the most common type of star in the solar neighborhood, it seems plausible that many of the nearest habitable planets orbit dim, low-mass M stars, and will be in synchronous rotation. Logically, a civilization evolving on such a planet may be inspired to illuminate their planet’s dark side by placing a single large mirror at the L2 Lagrangian point, or launching a fleet of small thin mirrors into planetary orbit. We briefly examine the requirements and engineering challenges of such a collection of orbiting mirrors, then explore their impact on transit light curves. We incorporate stellar limb darkening and model a simplistic mirror fleet’s effects for transits of Earth-like (R = 0.5 to 2 {R}{Earth}) planets which would be synchronously rotating for orbits within the habitable zone of their host star. Although such an installation is undetectable in Kepler data, the James Webb Space Telescope will provide the sensitivity necessary to detect a fleet of mirrors orbiting Earth-like habitable planets around nearby stars.
Effects of Mirror Therapy Using a Tablet PC on Central Facial Paresis in Stroke Patients.
Kang, Jung-A; Chun, Min Ho; Choi, Su Jin; Chang, Min Cheol; Yi, You Gyoung
2017-06-01
To investigate the effects of mirror therapy using a tablet PC for post-stroke central facial paresis. A prospective, randomized controlled study was performed. Twenty-one post-stroke patients were enrolled. All patients performed 15 minutes of orofacial exercise twice daily for 14 days. The mirror group (n=10) underwent mirror therapy using a tablet PC while exercising, whereas the control group (n=11) did not. All patients were evaluated using the Regional House-Brackmann Grading Scale (R-HBGS), and the length between the corner of the mouth and the ipsilateral earlobe during rest and smiling before and after therapy were measured bilaterally. We calculated facial movement by subtracting the smile length from resting length. Differences and ratios between bilateral sides of facial movement were evaluated as the final outcome measure. Baseline characteristics were similar for the two groups. There were no differences in the scores for the basal Modified Barthel Index, the Korean version of Mini-Mental State Examination, National Institutes of Health Stroke Scale, R-HBGS, and bilateral differences and ratios of facial movements. The R-HBGS as well as the bilateral differences and ratios of facial movement showed significant improvement after therapy in both groups. The degree of improvement of facial movement was significantly larger in the mirror group than in the control group. Mirror therapy using a tablet PC might be an effective tool for treating central facial paresis after stroke.
Effects of Mirror Therapy Using a Tablet PC on Central Facial Paresis in Stroke Patients
2017-01-01
Objective To investigate the effects of mirror therapy using a tablet PC for post-stroke central facial paresis. Methods A prospective, randomized controlled study was performed. Twenty-one post-stroke patients were enrolled. All patients performed 15 minutes of orofacial exercise twice daily for 14 days. The mirror group (n=10) underwent mirror therapy using a tablet PC while exercising, whereas the control group (n=11) did not. All patients were evaluated using the Regional House–Brackmann Grading Scale (R-HBGS), and the length between the corner of the mouth and the ipsilateral earlobe during rest and smiling before and after therapy were measured bilaterally. We calculated facial movement by subtracting the smile length from resting length. Differences and ratios between bilateral sides of facial movement were evaluated as the final outcome measure. Results Baseline characteristics were similar for the two groups. There were no differences in the scores for the basal Modified Barthel Index, the Korean version of Mini-Mental State Examination, National Institutes of Health Stroke Scale, R-HBGS, and bilateral differences and ratios of facial movements. The R-HBGS as well as the bilateral differences and ratios of facial movement showed significant improvement after therapy in both groups. The degree of improvement of facial movement was significantly larger in the mirror group than in the control group. Conclusion Mirror therapy using a tablet PC might be an effective tool for treating central facial paresis after stroke. PMID:28758071
EAGLE: relay mirror technology development
NASA Astrophysics Data System (ADS)
Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.
2002-06-01
EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.
NASA Technical Reports Server (NTRS)
Lemen, J. R.; Claflin, E. S.; Brown, W. A.; Bruner, M. E.; Catura, R. C.
1989-01-01
A grazing incidence solar X-ray telescope, Soft X-ray Telescope (SXT), will be flown on the Solar-A satellite in 1991. Measurements have been conducted to determine the focal length, Point Spread Function (PSF), and effective area of the SXT mirror. The measurements were made with pinholes, knife edges, a CCD, and a proportional counter. The results show the 1/r character of the PSF, and indicate a half power diameter of 4.9 arcsec and an effective area of 1.33 sq cm at 13.3 A (0.93 keV). The mirror was found to provide a high contrast image with very little X-ray scattering.
Extracting Zero-Gravity Surface Figure of a Mirror
NASA Technical Reports Server (NTRS)
Bloemhof, Eric E.; Lam, Jonathan C.; Feria, Alfonso; Chang, Zensheu
2011-01-01
The technical innovation involves refinement of the classic optical technique of averaging surface measurements made in different orientations with respect to gravity, so the effects of gravity cancel in the averaged image. Particularly for large, thin mirrors subject to substantial deformation, the further requirement is that mount forces must also cancel when averaged over measurement orientations. The zerogravity surface figure of a mirror in a hexapod mount is obtained by analyzing the summation of mount forces in the frame of the optic as surface metrology is averaged over multiple clockings. This is illustrated with measurements taken from the Space Interferometry Mission (SIM) PT-Ml mirror for both twofold and threefold clocking. The positive results of these measurements and analyses indicate that, from this perspective, a lighter mirror could be used; that is, one might place less reliance on the damping effects of the elliptic partial differential equations that describe the propagation of forces through glass. The advantage over prior art is relaxing the need for an otherwise substantial thickness of glass that might be needed to ensure accurate metrology in the absence of a detailed understanding and analysis of the mount forces. The general insights developed here are new, and provide the basic design principles on which mirror mount geometry may be chosen.
Ji, Sang-Goo; Cha, Hyun-Gyu; Kim, Myoung-Kwon; Lee, Chang-Ryeol
2014-04-01
[Purpose] The aim of the present study was to examine whether mirror therapy in conjunction with FES in stroke patients can improve gait ability. [Subjects] This study was conducted with 30 subjects who were diagnosed with hemiparesis due to stroke. [Methods] Experimental group I contained 10 subjects who received mirror therapy in conjunction with functional electrical stimulation, experimental group II contained 10 subjects who received mirror therapy, and the control group contained 10 subjects who received a sham therapy. A gait analysis was performed using a three-dimensional motion capture system, which was a real-time tracking device that delivers data in an infrared mode via reflective markers using six cameras. [Results] The results showed a significant difference in gait velocity between groups after the experiment, and post hoc analysis revealed significant differences between experimental group I and the control group and between experimental group II and the control group, respectively. There were also significant differences in step length and stride length between the groups after the experiment, and post hoc analysis revealed significant differences between experimental group I and control group. [Conclusion] The present study showed that mirror therapy in conjunction with FES is more effective for improving gait ability than mirror therapy alone.
Correction of large amplitude wavefront aberrations
NASA Astrophysics Data System (ADS)
Cornelissen, S. A.; Bierden, P. A.; Bifano, T. G.; Webb, R. H.; Burns, S.; Pappas, S.
2005-12-01
Recently, a number of research groups around the world have developed ophthalmic instruments capable of in vivo diffraction limited imaging of the human retina. Adaptive optics was used in these systems to compensate for the optical aberrations of the eye and provide high contrast, high resolution images. Such compensation uses a wavefront sensor and a wavefront corrector (usually a deformable mirror) coordinated in a closed- loop control system that continuously works to counteract aberrations. While those experiments produced promising results, the deformable mirrors have had insufficient range of motion to permit full correction of the large amplitude aberrations of the eye expected in a normal population of human subjects. Other retinal imaging systems developed to date with MEMS (micro-electromechanical systems) DMs suffer similar limitations. This paper describes the design, manufacture and testing of a 6um stroke polysilicon surface micromachined deformable mirror that, coupled with an new optical method to double the effective stroke of the MEMS-DM, will permit diffraction-limited retinal imaging through dilated pupils in at least 90% of the human population. A novel optical design using spherical mirrors provides a double pass of the wavefront over the deformable mirror such that a 6um mirror displacement results in 12um of wavefront compensation which could correct for 24um of wavefront error. Details of this design are discussed. Testing of the effective wavefront modification was performed using a commercial wavefront sensor. Results are presented demonstrating improvement in the amplitude of wavefront control using an existing high degree of freedom MEMS deformable mirror.
Hu, Rui; Liu, Shutian; Li, Quhao
2017-05-20
For the development of a large-aperture space telescope, one of the key techniques is the method for designing the flexures for mounting the primary mirror, as the flexures are the key components. In this paper, a topology-optimization-based method for designing flexures is presented. The structural performances of the mirror system under multiple load conditions, including static gravity and thermal loads, as well as the dynamic vibration, are considered. The mirror surface shape error caused by gravity and the thermal effect is treated as the objective function, and the first-order natural frequency of the mirror structural system is taken as the constraint. The pattern repetition constraint is added, which can ensure symmetrical material distribution. The topology optimization model for flexure design is established. The substructuring method is also used to condense the degrees of freedom (DOF) of all the nodes of the mirror system, except for the nodes that are linked to the mounting flexures, to reduce the computation effort during the optimization iteration process. A potential optimized configuration is achieved by solving the optimization model and post-processing. A detailed shape optimization is subsequently conducted to optimize its dimension parameters. Our optimization method deduces new mounting structures that significantly enhance the optical performance of the mirror system compared to the traditional methods, which only focus on the parameters of existing structures. Design results demonstrate the effectiveness of the proposed optimization method.
Calibration of the Auger Fluorescence Telescopes
NASA Astrophysics Data System (ADS)
Klages, H.; Pierre Auger Observatory Collaboration
Thirty fluorescence telescopes in four stations will overlook the detector array of the southern hemisphere experiment of the Pierre Auger project. The main aim of these telescopes is tracking of EHE air showers, measurement of the longitudinal shower development (Xmax) and determination of the absolute energy of EHE events. A telescope camera contains 440 PMTs each covering a 1.5 x 1.5 degree pixel of the sky. The response of every pixel is converted into the number of charged particles at the observed part of the shower. This reconstruction includes the shower/observer geometry and the details of the atmospheric photon production and transport. The remaining experimental task is to convert the ADC counts of the camera pixel electronics into the light flux entering the Schmidt aperture. Three types of calibration and control are necessary : a) Monitoring of time dependent variations has to be performed for all parts of the optics and for all pixels frequently. Common illumination for all pixels of a camera allows the detection of individual deviations. Properties of windows, filters and mirrors have to be measured separately. b) Differences in pixel-to-pixel efficiency are mainly due to PMT gain and to differences in effective area (camera shadow, mirror size limits). Homogeneous and isotropic illumination will enable cross calibration. c) An absolute calibration has to be performed once in a while using trusted light monitors. The calibration methods used for the Pierre Auger FD telescopes in Argentina are discussed.
The soft x ray telescope for Solar-A
NASA Technical Reports Server (NTRS)
Brown, W. A.; Acton, L. W.; Bruner, M. E.; Lemen, J. R.; Strong, K. T.
1989-01-01
The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature.
Structural evaluation of candidate designs for the large space telescope primary mirror
NASA Technical Reports Server (NTRS)
Soosaar, K.; Grin, R.; Furey, M.; Hamilton, J.
1975-01-01
Structural performance analyses were conducted on two candidate designs (Itek and Perkin-Elmer designs) for the large space telescope three-meter mirror. The mirror designs and the finite-element models used in the analyses evaluation are described. The results of the structural analyses for several different types of loading are presented in tabular and graphic forms. Several additional analyses are also reported: the evaluation of a mirror design concept proposed by the Boeing Co., a study of the global effects of local cell plate deflections, and an investigation of the fracture mechanics problems likely to occur with Cervit and ULE. Flexibility matrices were obtained for the Itek and Perkin-Elmer mirrors to be used in active figure control studies. Summary, conclusions, and recommendations are included.
Unraveling mirror properties in time-delayed quantum feedback scenarios
NASA Astrophysics Data System (ADS)
Faulstich, Fabian M.; Kraft, Manuel; Carmele, Alexander
2018-06-01
We derive in the Heisenberg picture a widely used phenomenological coupling element to treat feedback effects in quantum optical platforms. Our derivation is based on a microscopic Hamiltonian, which describes the mirror-emitter dynamics based on a dielectric, a mediating fully quantized electromagnetic field and a single two-level system in front of the dielectric. The dielectric is modelled as a system of identical two-state atoms. The Heisenberg equation yields a system of describing differential operator equations, which we solve in the Weisskopf-Wigner limit. Due to a finite round-trip time between emitter and dielectric, we yield delay differential operator equations. Our derivation motivates and justifies the typical phenomenologicalassumed coupling element and allows, furthermore, a generalization to a variety of mirrors, such as dissipative mirrors or mirrors with gain dynamics.
We are the opposite of you! Mirroring of national, regional and ethnic stereotypes.
Hřebíčková, Martina; Graf, Sylvie; Tegdes, Tamás; Brezina, Ivan
2017-01-01
The content of stereotypes can be shaped by multiple mechanisms, one of them possibly being the "mirroring effect." Mirroring describes a phenomenon whereby people rate their ingroup characteristics as opposite to characteristics typical of a relevant outgroup. The aim of our study was to explore mirroring in three intergroup contexts-in national, regional, and ethnic stereotypes. In Study 1, 2,241 participants rated national ingroup stereotype and outgroup stereotypes of five Central European countries. In Study 2, 741 Czech participants rated regional ingroup and outgroup stereotypes of people living in two distinct parts of the Czech Republic. In Study 3, 463 majority and Hungarian minority participants in Slovakia rated ethnic ingroup and outgroup stereotypes. The results showed a clear presence of mirroring in all three contexts.
Michielsen, Marian E; Selles, Ruud W; van der Geest, Jos N; Eckhardt, Martine; Yavuzer, Gunes; Stam, Henk J; Smits, Marion; Ribbers, Gerard M; Bussmann, Johannes B J
2011-01-01
To evaluate for any clinical effects of home-based mirror therapy and subsequent cortical reorganization in patients with chronic stroke with moderate upper extremity paresis. A total of 40 chronic stroke patients (mean time post .onset, 3.9 years) were randomly assigned to the mirror group (n = 20) or the control group (n = 20) and then joined a 6-week training program. Both groups trained once a week under supervision of a physiotherapist at the rehabilitation center and practiced at home 1 hour daily, 5 times a week. The primary outcome measure was the Fugl-Meyer motor assessment (FMA). The grip force, spasticity, pain, dexterity, hand-use in daily life, and quality of life at baseline-posttreatment and at 6 months-were all measured by a blinded assessor. Changes in neural activation patterns were assessed with functional magnetic resonance imaging (fMRI) at baseline and posttreatment in an available subgroup (mirror, 12; control, 9). Posttreatment, the FMA improved more in the mirror than in the control group (3.6 ± 1.5, P < .05), but this improvement did not persist at follow-up. No changes were found on the other outcome measures (all Ps >.05). fMRI results showed a shift in activation balance within the primary motor cortex toward the affected hemisphere in the mirror group only (weighted laterality index difference 0.40 ± 0.39, P < .05). This phase II trial showed some effectiveness for mirror therapy in chronic stroke patients and is the first to associate mirror therapy with cortical reorganization. Future research has to determine the optimum practice intensity and duration for improvements to persist and generalize to other functional domains.
Pervane Vural, Secil; Nakipoglu Yuzer, Guldal Funda; Sezgin Ozcan, Didem; Demir Ozbudak, Sibel; Ozgirgin, Nese
2016-04-01
To investigate the effects of mirror therapy on upper limb motor functions, spasticity, and pain intensity in patients with hemiplegia accompanied by complex regional pain syndrome type 1. Randomized controlled trial. Training and research hospital. Adult patients with first-time stroke and simultaneous complex regional pain syndrome type 1 of the upper extremity at the dystrophic stage (N=30). Both groups received a patient-specific conventional stroke rehabilitation program for 4 weeks, 5 d/wk, for 2 to 4 h/d. The mirror therapy group received an additional mirror therapy program for 30 min/d. We evaluated the scores of the Brunnstrom recovery stages of the arm and hand for motor recovery, wrist and hand subsections of the Fugl-Meyer Assessment (FMA) and motor items of the FIM-motor for functional status, Modified Ashworth Scale (MAS) for spasticity, and visual analog scale (VAS) for pain severity. After 4 weeks of rehabilitation, both groups had significant improvements in the FIM-motor and VAS scores compared with baseline scores. However, the scores improved more in the mirror therapy group than the control group (P<.001 and P=.03, respectively). Besides, the patients in the mirror therapy arm showed significant improvement in the Brunnstrom recovery stages and FMA scores (P<.05). No significant difference was found for MAS scores. In patients with stroke and simultaneous complex regional pain syndrome type 1, addition of mirror therapy to a conventional stroke rehabilitation program provides more improvement in motor functions of the upper limb and pain perception than conventional therapy without mirror therapy. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Minghuan; Sun, Feihu; Wang, Zhifeng
2017-06-01
The solar tower concentrator is mainly composed of the central receiver on the tower top and the heliostat field around the tower. The optical efficiencies of a solar tower concentrator are important to the whole thermal performance of the solar tower collector, and the aperture plane of a cavity receiver or the (inner or external) absorbing surface of any central receiver is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated time-changing solar flux density distributions on the flat or curved receiving surface of the collector, with main optical errors considered. The transient concentrated solar flux on the receiving surface is the superimposition of the flux density distributions of all the normal working heliostats in the field. In this paper, we will mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the flux density map on the receiving-surface. For BRT, bundles of rays are launched at the receiving-surface points of interest, strike directly on the valid cell centers among the uniformly sampled mirror cell centers in the mirror surface of the heliostats, and then direct to the effective solar cone around the incident sun beam direction after reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is here supposed to be circular Gaussian type. The mirror curvature can be adequately formulated by certain number of local normal vectors at the mirror cell centers of a heliostat. The shading & blocking mirror region of a heliostat by neighbor heliostats and also the solar tower shading on the heliostat mirror are all computed on the flat-ground-plane platform, i.e., projecting the mirror contours and the envelope cylinder of the tower onto the horizontal ground plane along the sun-beam incident direction or along the reflection directions. If the shading projection of a sampled mirror point of the current heliostat is inside the shade cast of a neighbor heliostat or in the shade cast of the tower, this mirror point should be shaded from the incident sun beam. A code based on this new ray tracing method for the 1MW Badaling solar tower power plant in Beijing has been developed using MATLAB. There are 100 azimuth-elevation tracking heliostats in the solar field and the total tower is 118 meters high. The mirror surface of the heliostats is 10m wide and 10m long, it is composed of 8 rows × 8 columns of square mirror facets and each mirror facet has the size of 1.25m×1.25m. This code also was verified by two sets of sun-beam concentrating experiments of the heliostat field on the June 14, 2015. One set of optical experiments were conducted between some typical heliostats to verify the shading & blocking computation of the code, since shading & blocking computation is the most complicated, time-consuming and important optical computing section of the code. The other set of solar concentrating tests were carried out on the field center heliostat (No. 78) to verify the simulated the solar flux images on the white target region of the northern wall of the tower. The target center is 74.5 m high to the ground plane.
Thermal Testing of a Stacked Core Mirror for UV Applications
NASA Technical Reports Server (NTRS)
Matthews, Gary; Kirk, Charles S.; Maffett, Steven; Hanson, Craig; Eng, Ron; Stahl, H. Philip
2013-01-01
The ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center and ITT Exelis have developed a more cost effective process to make 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was built and tested down to 250K which would allow imaging out to 2.5 microns. This mirror was thermally tested at the Marshall Spaceflight Center to understand the thermal changes between the processing temperature of 293K and the potential low end of the operational temperature of 250K. Isothermal testing results and front plate gradient results have been evaluated and compared to analysis predictions. Measurement of gravity effects on surface figure will be compared to analytical predictions. Future testing of a larger Pathfinder mirror will also be discussed.
Mass production of silicon pore optics for ATHENA
NASA Astrophysics Data System (ADS)
Wille, Eric; Bavdaz, Marcos; Collon, Maximilien
2016-07-01
Silicon Pore Optics (SPO) provide high angular resolution with low effective area density as required for the Advanced Telescope for High Energy Astrophysics (Athena). The x-ray telescope consists of several hundreds of SPO mirror modules. During the development of the process steps of the SPO technology, specific requirements of a future mass production have been considered right from the beginning. The manufacturing methods heavily utilise off-the-shelf equipment from the semiconductor industry, robotic automation and parallel processing. This allows to upscale the present production flow in a cost effective way, to produce hundreds of mirror modules per year. Considering manufacturing predictions based on the current technology status, we present an analysis of the time and resources required for the Athena flight programme. This includes the full production process starting with Si wafers up to the integration of the mirror modules. We present the times required for the individual process steps and identify the equipment required to produce two mirror modules per day. A preliminary timeline for building and commissioning the required infrastructure, and for flight model production of about 1000 mirror modules, is presented.
Adjustable Membrane Mirrors Incorporating G-Elastomers
NASA Technical Reports Server (NTRS)
Chang, Zensheu; Morgan, Rhonda M.; Xu, Tian-Bing; Su, Ji; Hishinuma, Yoshikazu; Yang, Eui-Hyeok
2008-01-01
Lightweight, flexible, large-aperture mirrors of a type being developed for use in outer space have unimorph structures that enable precise adjustment of their surface figures. A mirror of this type includes a reflective membrane layer bonded with an electrostrictive grafted elastomer (G-elastomer) layer, plus electrodes suitably positioned with respect to these layers. By virtue of the electrostrictive effect, an electric field applied to the G-elastomer membrane induces a strain along the membrane and thus causes a deflection of the mirror surface. Utilizing this effect, the mirror surface figure can be adjusted locally by individually addressing pairs of electrodes. G-elastomers, which were developed at NASA Langley Research Center, were chosen for this development in preference to other electroactive polymers partly because they offer superior electromechanical performance. Whereas other electroactive polymers offer, variously, large strains with low moduli of elasticity or small strains with high moduli of elasticity, G-elastomers offer both large strains (as large as 4 percent) and high moduli of elasticity (about 580 MPa). In addition, G-elastomer layers can be made by standard melt pressing or room-temperature solution casting.
McFee, R H
1975-07-01
The effects of random waviness, curvature, and tracking error of plane-mirror heliostats in a rectangular array around a central-receiver solar power system are determined by subdividing each mirror into 484 elements, assuming the slope of each element to be representative of the surface slope average at its location, and summing the contributions of all elements and then of all mirrors in the array. Total received power and flux density distribution are computed for a given sun location and set of array parameter values. Effects of shading and blocking by adjacent mirrors are included in the calculation. Alt-azimuth mounting of the heliostats is assumed. Representative curves for two receiver diameters and two sun locations indicate a power loss of 20% for random waviness, curvature, and tracking error of 0.1 degrees rms, 0.002 m(-1), and 0.5 degrees , 3sigma, respectively, for an 18.2-m diam receiver and 0.3 degrees rms, 0.005 m(-1), and greater than 1 degrees , respectively, for a 30.4-m diam receiver.
Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study.
Saleh, Soha; Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei; Tunik, Eugene
2017-01-01
Mirror visual feedback (MVF) is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical) or opposite (mirror) hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional) action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with non-invasive brain stimulation as a means of potentiating the effects of mirror training.
Chiral discrimination in nuclear magnetic resonance spectroscopy
NASA Astrophysics Data System (ADS)
Lazzeretti, Paolo
2017-11-01
Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is favoured in general (e.g. L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry) because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ‘blind’ to chirality, i.e. unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between true and false chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e. the trace of a second-rank tensor, the mixed electric dipole/magnetic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality and symmetry properties under the combined set of fundamental discrete operations, namely charge conjugation, parity (space inversion) and time (motion) reversal.
Pseudospin-orbit splitting and its consequences for the central depression in nuclear density
NASA Astrophysics Data System (ADS)
Li, Jia Jie; Long, Wen Hui; Song, Jun Ling; Zhao, Qiang
2016-05-01
The occurrence of the bubble-like structure has been studied, in the light of pseudospin degeneracy, within the relativistic Hartree-Fock-Bogoliubov (RHFB) theory. It is concluded that the charge/neutron bubble-like structure is predicted to occur in the mirror system of {34Si,34Ca } commonly by the selected Lagrangians, due to the persistence of Z (N )=14 subshell gaps above which the π (ν ) 2 s1 /2 states are not occupied. However, for the popular candidate 46Ar, the RHFB Lagrangian PKA1 does not support the occurrence of the bubble-like structure in the charge (proton) density profiles, due to the almost degenerate pseudospin doublet {π 2 s1 /2,π 1 d3 /2} and coherent pairing effects. The formation of a semibubble in heavy nuclei is less possible as a result of small pseudospin-orbit (PSO) splitting, while it tends to appear at Z =120 superheavy systems which coincides with large PSO splitting of the doublet {π 3 p3 /2,π 2 f5 /2} and couples with significant shell effects. Pairing correlations, which can work against bubble formation, significantly affect the PSO splitting. Furthermore, we found that the influence on semibubble formation due to different types of pairing interactions is negligible. The quenching of the spin-orbit splitting in the p orbit has been also stressed, and it may be considered the hallmark for semibubble nuclei.
Lightweight deformable mirrors for future space telescopes
NASA Astrophysics Data System (ADS)
Patterson, Keith
This thesis presents a concept for ultra-lightweight deformable mirrors based on a thin substrate of optical surface quality coated with continuous active piezopolymer layers that provide modes of actuation and shape correction. This concept eliminates any kind of stiff backing structure for the mirror surface and exploits micro-fabrication technologies to provide a tight integration of the active materials into the mirror structure, to avoid actuator print-through effects. Proof-of-concept, 10-cm-diameter mirrors with a low areal density of about 0.5 kg/m2 have been designed, built and tested to measure their shape-correction performance and verify the models used for design. The low cost manufacturing scheme uses replication techniques, and strives for minimizing residual stresses that deviate the optical figure from the master mandrel. It does not require precision tolerancing, is lightweight, and is therefore potentially scalable to larger diameters for use in large, modular space telescopes. Other potential applications for such a laminate could include ground-based mirrors for solar energy collection, adaptive optics for atmospheric turbulence, laser communications, and other shape control applications. The immediate application for these mirrors is for the Autonomous Assembly and Reconfiguration of a Space Telescope (AAReST) mission, which is a university mission under development by Caltech, the University of Surrey, and JPL. The design concept, fabrication methodology, material behaviors and measurements, mirror modeling, mounting and control electronics design, shape control experiments, predictive performance analysis, and remaining challenges are presented herein. The experiments have validated numerical models of the mirror, and the mirror models have been used within a model of the telescope in order to predict the optical performance. A demonstration of this mirror concept, along with other new telescope technologies, is planned to take place during the AAReST mission.
Physiological Effects of Touching Coated Wood.
Ikei, Harumi; Song, Chorong; Miyazaki, Yoshifumi
2017-07-13
This study examined the physiological effects of touching wood with various coating with the palm of the hand on brain activity and autonomic nervous activity. Participants were 18 female university students (mean age, 21.7 ± 1.6 years). As an indicator of brain activity, oxyhemoglobin concentrations were measured in the left and right prefrontal cortices using near-infrared time-resolved spectroscopy. Heart rate variability (HRV) and heart rate were used as indicators of autonomic nervous activity. The high-frequency (HF) component of HRV, which reflects parasympathetic nervous activity, and the low-frequency (LF)/HF ratio, which reflects sympathetic nervous activity, were measured. Plates of uncoated, oil-finished, vitreous-finished, urethane-finished, and mirror-finished white oak wood were used as tactile stimuli. After sitting at rest with their eyes closed for 60 s, participants touched the stimuli with their palm for 90 s each. The results indicated that tactile stimulation with uncoated wood calmed prefrontal cortex activity (vs. urethane finish and mirror finish), increased parasympathetic nervous activity (vs. vitreous finish, urethane finish, and mirror finish), and decreased heart rate (vs. mirror finish), demonstrating a physiological relaxation effect. Further, tactile stimulation with oil- and vitreous-finished wood calmed left prefrontal cortex activity and decreased heart rate relative to mirror-finished wood.
[The optimizing design and experiment for a MOEMS micro-mirror spectrometer].
Mo, Xiang-xia; Wen, Zhi-yu; Zhang, Zhi-hai; Guo, Yuan-jun
2011-12-01
A MOEMS micro-mirror spectrometer, which uses micro-mirror as a light switch so that spectrum can be detected by a single detector, has the advantages of transforming DC into AC, applying Hadamard transform optics without additional template, high pixel resolution and low cost. In this spectrometer, the vital problem is the conflict between the scales of slit and the light intensity. Hence, in order to improve the resolution of this spectrometer, the present paper gives the analysis of the new effects caused by micro structure, and optimal values of the key factors. Firstly, the effects of diffraction limitation, spatial sample rate and curved slit image on the resolution of the spectrum were proposed. Then, the results were simulated; the key values were tested on the micro mirror spectrometer. Finally, taking all these three effects into account, this micro system was optimized. With a scale of 70 mm x 130 mm, decreasing the height of the image at the plane of micro mirror can not diminish the influence of curved slit image in the spectrum; under the demand of spatial sample rate, the resolution must be twice over the pixel resolution; only if the width of the slit is 1.818 microm and the pixel resolution is 2.2786 microm can the spectrometer have the best performance.
Physiological Effects of Touching Coated Wood
2017-01-01
This study examined the physiological effects of touching wood with various coating with the palm of the hand on brain activity and autonomic nervous activity. Participants were 18 female university students (mean age, 21.7 ± 1.6 years). As an indicator of brain activity, oxyhemoglobin concentrations were measured in the left and right prefrontal cortices using near-infrared time-resolved spectroscopy. Heart rate variability (HRV) and heart rate were used as indicators of autonomic nervous activity. The high-frequency (HF) component of HRV, which reflects parasympathetic nervous activity, and the low-frequency (LF)/HF ratio, which reflects sympathetic nervous activity, were measured. Plates of uncoated, oil-finished, vitreous-finished, urethane-finished, and mirror-finished white oak wood were used as tactile stimuli. After sitting at rest with their eyes closed for 60 s, participants touched the stimuli with their palm for 90 s each. The results indicated that tactile stimulation with uncoated wood calmed prefrontal cortex activity (vs. urethane finish and mirror finish), increased parasympathetic nervous activity (vs. vitreous finish, urethane finish, and mirror finish), and decreased heart rate (vs. mirror finish), demonstrating a physiological relaxation effect. Further, tactile stimulation with oil- and vitreous-finished wood calmed left prefrontal cortex activity and decreased heart rate relative to mirror-finished wood. PMID:28703777
Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer
NASA Technical Reports Server (NTRS)
Anderson, Brian J.; Fuselier, Stephen A.; Gary, S. Peter; Denton, Richard E.
1994-01-01
Correlations between plasma properties and magnetic fluctuations in the sub-solar magnetosheath downstream of a quasi-perpendicular shock have been found and indicate that mirror and ion cyclotronlike fluctuations correlate with the magnetosheath proper and plasma depletion layer, respectively (Anderson and Fueselier, 1993). We explore the entire range of magnetic spectral signatures observed from the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE)spacecraft in the magnetosheath downstream of a quasi-perpendicular shock. The magnetic spectral signatures typically progress from predominantly compressional fluctuations,delta B(sub parallel)/delta B perpendicular to approximately 3, with F/F (sub p) less than 0.2 (F and F (sub p) are the wave frequency and proton gyrofrequency, respectively) to predominantly transverse fluctuations, delta B(sub parallel)/delta B perpendicular to approximately 0.3, extending up to F(sub p). The compressional fluctuations are characterized by anticorrelation between the field magnitude and electron density, n(sub e), and by a small compressibility, C(sub e) identically equal to (delta n(sub e)/n(sub e)) (exp 2) (B/delta B(sub parallel)) (exp 2) approximately 0.13, indicative of mirror waves. The spectral characteristics of the transverse fluctuations are in agreement with predictions of linear Vlasov theory for the H(+) and He(2+) cyclotron modes. The power spectra and local plasma parameters are found to vary in concert: mirror waves occur for beta(s ub parallel p) (beta (sub parallel p) identically = 2 mu(sub zero) n(sub p) kT (sub parallel p) / B(exp 2) approximately = 2, A(sub p) indentically = T(sub perpendicular to p)/T(sub parallel p) - 1 approximately = 0.4, whereas cyclotron waves occur for beta (sub parallel p) approximately = 0.2 and A(sub p) approximately = 2. The transition from mirror to cyclotron modes is predicted by linear theory. The spectral characteristics overlap for intermediate plasma parameters. The plasma observations are described by A(sub p) = 0.85 beta(sub parallel P) (exp - 0.48) with a log regression coefficient of -0.74. This inverse A(sub p) - beta(sub parallel p) correlation corresponds closely to the isocontours of maximum ion anisotropy instability growth, gamma (sub m)/omega(sub p) = 0.01, for the mirror and cyclotron modes. The agreement of observed properties and predictions of local theory suggests that the spectral signatures reflect the local plasma environment and that the anisotropy instabilities regulate A(sub p). We suggest that the spectral characteristics may provide a useful basis for ordering observations in the magnetosheath and that the A(sub p) - beta(sub parallel p) inverse correlation may be used as a beta-dependent upper limit on the proton anisotropy to represent kinetic effects.
Study on control of defect mode in hybrid mirror chirped porous silicon photonic crystal
NASA Astrophysics Data System (ADS)
Chen, Ying; Luo, Pei; Han, Yangyang; Cui, Xingning; He, Lei
2018-03-01
Based on the optical resonance principle and the tight-binding theory, a hybrid mirror chirped porous silicon photonic crystal is proposed. The control of the defect mode in hybrid mirror chirped porous silicon photonic crystal is studied. Through the numerical simulation, the control regulations of the defect modes resulted by the number of the periodical layers for the fundamental unit and the cascading number of the chirped structures are analyzed, and the split and the degeneration of the defect modes resulted by the change of the relative location between the mirror structures and the quasi-mirror structures are discussed. The simulation results show that the band gap would be broadened with the increase of the chirp quantity and the layer number of unilateral chirp. Adjusting the structural parameters of the hybrid mirror structure, the multimode characteristics will occur in the band gap. The more the cascading number of the chirped units, the more the number of the filtering channels will be. In addition, with the increase of the relative location between the mirror structures and the quasi-mirror structures, the degeneration of the defect modes will occur and can obtain high Q value. The structure can provide effective theoretical references for the design the multi-channel filters and high Q value sensors.
Hyperbola-parabola primary mirror in Cassegrain optical antenna to improve transmission efficiency.
Zhang, Li; Chen, Lu; Yang, HuaJun; Jiang, Ping; Mao, Shengqian; Caiyang, Weinan
2015-08-20
An optical model with a hyperbola-parabola primary mirror added in the Cassegrain optical antenna, which can effectively improve the transmission efficiency, is proposed in this paper. The optimum parameters of a hyperbola-parabola primary mirror and a secondary mirror for the optical antenna system have been designed and analyzed in detail. The parabola-hyperbola primary structure optical antenna is obtained to improve the transmission efficiency of 10.60% in theory, and the simulation efficiency changed 9.359%. For different deflection angles to the receiving antenna with the emit antenna, the coupling efficiency curve of the optical antenna has been obtained.
Cleaning the Southern African Large Telescope's M5 mirror
NASA Astrophysics Data System (ADS)
Crause, Lisa A.; Gajjar, Hitesh; Love, Jonathan; Strümpfer, Francois; O'Connor, James E.; O'Donoghue, Darragh E.; Strydom, Ockert J.; Buckley, David A. H.; Gillingham, Peter
2010-07-01
This paper describes the cleaning of M5, one of the four mirrors that make up the Southern African Large Telescope's Spherical Aberration Corrector. As the top upward-facing mirror in a relatively exposed environment, M5 had accumulated a considerable amount of dust and dirt during the six years it had been on the telescope. With the corrector on the ground for re-alignment and testing, we had the opportunity to remove, wash and replace the mirror. Various cleaning techniques were investigated, including an unsuccessful trial application of First Contact surface cleaning polymer film - fortunately only to a small region outside the mirror's clear aperture. Ultimately, "drag-wiping" with wads of cotton wool soaked in a 10g/l sodium lauryl sulphate solution proved highly effective in restoring the reflectivity of M5's optical surface. Following this success, we repeated the procedure for M3, the other upward-facing mirror in the corrector. The results for M3 were equally spectacular.
NASA Technical Reports Server (NTRS)
Egerman, Robert; Matthews, Gary W.; Johnson, Matthew; Ferland, Albert; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.
2015-01-01
The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. Under a Phase I program, a proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. In 2014, Exelis and NASA started a Phase II program to design and build a 1.5m mirror to demonstrate lateral scalability to a 4m monolithic primary mirror. The current status of the Phase II development program will be provided along with a Phase II program summary.
DABAM: an open-source database of X-ray mirrors metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele
2016-04-20
An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less
DABAM: an open-source database of X-ray mirrors metrology
Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; Siewert, Frank; Spielmann-Jaeggi, Sibylle; Takacs, Peter; Tomasset, Muriel; Tonnessen, Tom; Vivo, Amparo; Yashchuk, Valeriy
2016-01-01
An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database. PMID:27140145
DABAM: An open-source database of X-ray mirrors metrology
Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; ...
2016-05-01
An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. In conclusion, some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less
DABAM: an open-source database of X-ray mirrors metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele
An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less
DABAM: An open-source database of X-ray mirrors metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele
An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. In conclusion, some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less
Bibliography of Soviet Laser Developments, Number 27, January - February 1977.
1977-11-21
is 3. Deflectors .......................................... 15 4. Filters .............................................. 16 5. Mirrors ...Leont’yev and A.M. Khapayev (2). Study of the effect of a mirror aperture on the pro- perties of a hemispherical Fabry-Perot resonator. VMU, no. 4, 1976...modes in a resonator with an aperture in the mirror . ZhPS, v. 26, no. 1, 1977, 141-143. 2. Pump Sources 108. Kruglov, B.V., V.P. Osetrov, G.V
Effects of a Fragmented View of One’s Partner on Interpersonal Coordination in Dance
Brown, Derrick D.; Meulenbroek, Ruud G. J.
2016-01-01
In this study we investigated the effects of a mirror-mediated, partial view of one’s dance partner on interpersonal coordination in dance duets. Fourteen participant pairs (dyads) were asked to perform a reflectionally-symmetric eight-segment dance-relevant arm movement sequence in two visual conditions: with one dancer facing the mirror and providing a partial view on the dance partner, or both dancers facing back to back with, for both dancers, no view on one’s partner. During an eight-count beat-preparation phase, the task was paced via a metronome at three TEMPI; 1.6, 1.9, and 2.3 Hz, which was subsequently removed after which the movement sequence continued in silence. Interpersonal coordination was assessed using two tri-axial wireless accelerometers, one fixed to each dancer, that allowed the off-line kinematic analyses of dyad correlation, mean relative phase and mean standard deviation of relative phase of the up–down movements of (one of) the hands of the two dancers. In addition, two independent raters estimated the realized movement frequencies and percentage of the trial duration that the dancers moved in sync. Repeated measure ANOVAs revealed systematic effects of tempo on the performance measures, a positive effect of the use of the mirror on the coordination of the dancers’ movements but no facilitating effect of the mirror on the dancers’ synchronization. Overall, the results support the contention that when dancing to an internalized rhythmic beat the use of a mirror provides an ecological means to stabilize interpersonal coordination in dance duets without an effect on synchronization. PMID:27199847
Quantum noise in the mirror-field system: A field theoretic approach
NASA Astrophysics Data System (ADS)
Hsiang, Jen-Tsung; Wu, Tai-Hung; Lee, Da-Shin; King, Sun-Kun; Wu, Chun-Hsien
2013-02-01
We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror.
[Mirror neurons: from anatomy to pathophysiological and therapeutic implications].
Mathon, B
2013-04-01
Mirror neurons are a special class of neurons discovered in the 1990s. They respond when we perform an action and also when we see someone else perform that action. They play a role in the pathophysiology of some neuropsychiatric diseases. Mirror neurons have been identified in humans: in Broca's area and the inferior parietal cortex. Their responses are qualitative and selective depending on the observed action. Emotions (including disgust) and empathy seem to operate according to a mirror mechanism. Indeed, the mirror system allows us to encode the sensory experience and to simulate the emotional state of others. This results in our improved identification of the emotions in others. Additionally, mirror neurons can encode an observed action in motor stimuli and allow its reproduction; thus, they are involved in imitation and learning. Current studies are assessing the role of mirror neurons in the pathopysiology of social-behavior disorders, including autism and schizophrenia. Understanding this mirror system will allow us to develop psychotherapy practices based on empathic resonance between the patient and the therapist. Also, some authors report that a passive rehabilitation technique, based on stimulation of the mirror-neuron system, has a beneficial effect in the treatment of patients with post-stroke motor deficits. Mirror neurons are an anatomical entity that enables improved understanding of behavior and emotions, and serves as a base for developing new cognitive therapies. Additional studies are needed to clarify the exact role of this neuronal system in social cognition and its role in the development of some neuropsychiatric diseases. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Depth-resolved measurement of ocular fundus pulsations by low-coherence tissue interferometry
NASA Astrophysics Data System (ADS)
Dragostinoff, Nikolaus; Werkmeister, René M.; Gröschl, Martin; Schmetterer, Leopold
2009-09-01
A device that allows for the measurement of ocular fundus pulsations at preselected axial positions of a subject's eye is presented. Unlike previously presented systems, which only allow for observation of the strongest reflecting retinal layer, our system enables the measurement of fundus pulsations at a preselected ocular layer. For this purpose the sample is illuminated by light of low temporal coherence. The layer is then selected by positioning one mirror of a Michelson interferometer according to the depth of the layer. The device contains a length measurement system based on partial coherence interferometry and a line scan charge-coupled device camera for recording and online inspection of the fringe system. In-vivo measurements in healthy humans are performed as proof of principle. The algorithms used for enhancing the recorded images are briefly introduced. The contrast of the observed interference pattern is evaluated for different positions of the measurement mirror and at various distances from the front surface of the cornea. The applications of such a system may be wide, including assessment of eye elongation during myopia development and blood-flow-related changes in intraocular volume.
The picture superiority effect: support for the distinctiveness model.
Mintzer, M Z; Snodgrass, J G
1999-01-01
The form change paradigm was used to explore the basis for the picture superiority effect. Recognition memory for studied pictures and words was tested in their study form or the alternate form. Form change cost was defined as the difference between recognition performance for same and different form items. Based on the results of Experiment 1 and previous studies, it was difficult to determine the relative cost for studied pictures and words due to a reversal of the mirror effect. We hypothesized that the reversed mirror effect results from subjects' basing their recognition decisions on their assumptions about the study form. Experiments 2 and 3 confirmed this hypothesis and generated a method for evaluating the relative cost for pictures and words despite the reversed mirror effect. More cost was observed for pictures than words, supporting the distinctiveness model of the picture superiority effect.
The Emergence of Dirac points in Photonic Crystals with Mirror Symmetry
He, Wen-Yu; Chan, C. T.
2015-01-01
We show that Dirac points can emerge in photonic crystals possessing mirror symmetry when band gap closes. The mechanism of generating Dirac points is discussed in a two-dimensional photonic square lattice, in which four Dirac points split out naturally after the touching of two bands with different parity. The emergence of such nodal points, characterized by vortex structure in momentum space, is attributed to the unavoidable band crossing protected by mirror symmetry. The Dirac nodes can be unbuckled through breaking the mirror symmetry and a photonic analog of Chern insulator can be achieved through time reversal symmetry breaking. Breaking time reversal symmetry can lead to unidirectional helical edge states and breaking mirror symmetry can reduce the band gap to amplify the finite size effect, providing ways to engineer helical edge states. PMID:25640993
Ren, Ming-Liang; Li, Zhi-Yuan
2009-08-17
We theoretically investigate second harmonic generation (SHG) in one-dimensional multilayer nonlinear photonic crystal (NPC) structures with distributed Bragg reflector (DBR) as mirrors. The NPC structures have periodic modulation on both the linear and second-order susceptibility. Three major physical mechanisms, quasi-phase matching (QPM) effect, slow light effect at photonic band gap edges, and cavity effect induced by DBR mirrors can be harnessed to enhance SHG. Selection of appropriate structural parameters can facilitate coexistence of these mechanisms to act collectively and constructively to create very high SHG conversion efficiency with an enhancement by up to seven orders of magnitude compared with the ordinary NPC where only QPM works. (c) 2009 Optical Society of America
Thermodynamic cycle in a cavity optomechanical system
NASA Astrophysics Data System (ADS)
Ian, Hou
2014-07-01
A cavity optomechanical system is initiated by the radiation pressure of a cavity field onto a mirror element acting as a quantum resonator. This radiation pressure can control the thermodynamic character of the mirror to some extent, such as by cooling its effective temperature. Here, we show that by properly engineering the spectral density of a thermal heat bath that interacts with a quantum system, the evolution of the quantum system can be effectively turned on and off. Inside a cavity optomechanical system, when the heat bath is realized by a multi-mode oscillator modelling of the mirror, this on-off effect translates to infusion or extraction of heat energy in and out of the cavity field, facilitating a four-stroke thermodynamic cycle.
Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Alexandrova, A. S.; Buzhinsky, O. I.
2015-12-15
The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.
NASA Astrophysics Data System (ADS)
Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji
2016-12-01
To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system.
Measurement of total hemispherical emissivity of contaminated mirror surfaces
NASA Technical Reports Server (NTRS)
Facey, T. A.; Nonnenmacher, A. L.
1989-01-01
The effects of dust contamination on the total hemispherical emissivity (THE) of a 1.5-inch-diameter Al/MgF2-coated telescope mirror are investigated experimentally. The THE is determined by means of cooling-rate measurements in the temperature range 10-14.5 C in a vacuum of 100 ntorr or better. Photographs and drawings of the experimental setup are provided, and results for 11 dust levels are presented in tables and graphs. It is shown that dust has a significant effect on THE, but the experimental losses are only about half those predicted for perfectly black dust in perfect thermal contact with the mirror surface.
NASA Technical Reports Server (NTRS)
Donovan, Terence; Johnson, Linda; Klemm, Karl; Scheri, Rick; Bennett, Jean; Erickson, Jon; Dibrozolo, Filippo
1995-01-01
Two mirror designs developed for space applications were flown along with a standard mid-infrared design on the leading and trailing edges of the Long Duration Exposure Facility (LDEF). Preliminary observations of induced changes in optical performance of ZnS-coated mirrors and impact-related microstructural and microchemical effects are described in the proceedings of the First LDEF Post-Retrieval Symposium. In this paper, effects of the induced environment and meteoroid/debris impacts on mirror performance are described in more detail. Also, an analysis of reflectance spectra using the results of Auger and secondary ion mass spectroscopy (SIMS) profiling measurements are used to identify an optical-degradation mechanism for the ZnS-coated mirrors. Structural damage associated with a high-velocity impact on a (Si/Al2O3)-coated mirror was imaged optically and with scanning electron and atomic force microscopy (SEM and AFM). Scanning Auger and SIMS analysis provided chemical mapping of selected impact sites. The impact data suggest design and fabrication modifications for obtaining improved mechanical performance using a design variation identified in preflight laboratory simulations. Auger surface profile and SIMS imaging data verified the conclusion that secondary impacts are the source of contamination associated with the dendrites grown on the leading-edge ZnS-coated test samples. It was also found that dendrites can be grown in the laboratory by irradiating contaminated sites on a trailing-edge ZnS-coated sample with a rastered electron beam. These results suggest a mechanism for dendrite growth.
Strength of Zerodur® for mirror applications
NASA Astrophysics Data System (ADS)
Béhar-Lafenêtre, S.; Cornillon, Laurence; Ait-Zaid, Sonia
2015-09-01
Zerodur® is a well-known glass-ceramic used for optical components because of its unequalled dimensional stability under thermal environment. In particular it has been used since decades in Thales Alenia Space's optical payloads for space telescopes, especially for mirrors. The drawback of Zerodur® is however its quite low strength, but the relatively small size of mirrors in the past had made it unnecessary to further investigate this aspect, although elementary tests have always shown higher failure strength. As performance of space telescopes is increasing, the size of mirrors increases accordingly, and an optimization of the design is necessary, mainly for mass saving. Therefore the question of the effective strength of Zerodur® has become a real issue. Thales Alenia Space has investigated the application of the Weibull law and associated size effects on Zerodur® in 2014, under CNES funding, through a thorough test campaign with a high number of samples (300) of various types. The purpose was to accurately determine the parameters of the Weibull law for Zerodur® when machined in the same conditions as mirrors. The proposed paper will discuss the obtained results, in the light of the Weibull theory. The applicability of the 2-parameter and 3-parameter (with threshold strength) laws will be compared. The expected size effect has not been evidenced therefore some investigations are led to determine the reasons of this result, from the test implementation quality to the data post-processing methodology. However this test campaign has already provided enough data to safely increase the allowable value for mirrors sizing.
Immediate Effects of Mirror Therapy in Patients With Shoulder Pain and Decreased Range of Motion.
Louw, Adriaan; Puentedura, Emilio J; Reese, Dave; Parker, Paula; Miller, Terra; Mintken, Paul E
2017-10-01
To determine the effects of a brief single component of the graded motor imagery (GMI) sequence (mirror therapy) on active range of motion (AROM), pain, fear avoidance, and pain catastrophization in patients with shoulder pain. Single-blind case series. Three outpatient physical therapy clinics. Patients with shoulder pain and limited AROM (N=69). Patients moved their unaffected shoulder through comfortable AROM in front of a mirror so that it appeared that they were moving their affected shoulder. We measured pain, pain catastrophization, fear avoidance, and AROM in 69 consecutive patients with shoulder pain and limited AROM before and immediately after mirror therapy. There were significant differences in self-reported pain (P=.014), pain catastrophization (P<.001), and the Tampa Scale of Kinesiophobia (P=.012) immediately after mirror therapy; however, the means did not meet or exceed the minimal detectable change (MDC) for each outcome measure. There was a significant increase (mean, 14.5°) in affected shoulder flexion AROM immediately postmirror therapy (P<.001), which exceeded the MDC of 8°. A brief mirror therapy intervention can result in statistically significant improvements in pain, pain catastrophization, fear avoidance, and shoulder flexion AROM in patients presenting with shoulder pain with limited AROM. The immediate changes may allow a quicker transition to multimodal treatment, including manual therapy and exercise in these patients. Further studies, including randomized controlled trials, are needed to investigate these findings and determine longer-term effects. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Adding EUV reflectance to aluminum-coated mirrors for space-based observation
NASA Astrophysics Data System (ADS)
Allred, David D.; Turley, R. Steven; Thomas, Stephanie M.; Willett, Spencer G.; Greenburg, Michael J.; Perry, Spencer B.
2017-09-01
Protective layers on aluminum mirror surfaces which can be removed via the use of atomic hydrogen or hydrogen plasmas at the point of use in space may allow an expansion of broad-band mirrors into the EUV. LUVOIR (large, UV-optical-IR telescope) is a potential NASA flagship space-based observatory of the 2020's or 30's. It would utilize the largest mirrors ever flown1 . Their reflective coating will almost certainly be aluminum, since such telescopes would profit from truly broad-band mirrors. To achieve reflectance over the broadest band, the top surface of such aluminum mirrors, however, needs to be bare, without the oxide layers that naturally form in air. This will open the 11 to 15 eV band. Since thin aluminum films are largely transparent between 15 and 70 eV an EUV mirror under the aluminum could make EUV bands such as 30.4 nm available for space-based astrophysics without sacrificing mirror IR, visible and UV reflectance. The local space environment for the observatory is sufficiently oxygen-free that the surface should remain bare for decades. We discuss protecting as-deposited aluminum mirrors with robust, oxygenimpenetrable, barrier layers applied in vacuo to the aluminum immediately after deposition and before air contact. The goal is that the barrier could also be cleanly, and relatively easily, removed once the mirror is in space. We propose hydrogen atoms as the means for removing the overcoat, since they can be expected to meet the criteria that the means is gentle enough to not roughen the mirror surface, and does not redeposit material on the mirror or other spacecraft components. We have investigated both organic and inorganic (such as, a-Si) hydrogen-removable films that can be applied to the aluminum immediately after its deposition have been investigated. We also examined the REVAP technique, using Cd and Zn. Agglomeration limited their effectiveness as barrier layers. That and dealing with the reevaporated atoms may limit their utility as barrier materials.
Finite element analyses of thin film active grazing incidence x-ray optics
NASA Astrophysics Data System (ADS)
Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.
2010-09-01
The Chandra X-ray Observatory, with its sub-arc second resolution, has revolutionized X-ray astronomy by revealing an extremely complex X-ray sky and demonstrating the power of the X-ray window in exploring fundamental astrophysical problems. Larger area telescopes of still higher angular resolution promise further advances. We are engaged in the development of a mission concept, Generation-X, a 0.1 arc second resolution x-ray telescope with tens of square meters of collecting area, 500 times that of Chandra. To achieve these two requirements of imaging and area, we are developing a grazing incidence telescope comprised of many mirror segments. Each segment is an adjustable mirror that is a section of a paraboloid or hyperboloid, aligned and figure corrected in situ on-orbit. To that end, finite element analyses of thin glass mirrors are performed to determine influence functions for each actuator on the mirrors, in order to develop algorithms for correction of mirror deformations. The effects of several mirror mounting schemes are also studied. The finite element analysis results, combined with measurements made on prototype mirrors, will be used to further refine the correction algorithms.
Cryogenic Test Results of Hextek Mirror
NASA Technical Reports Server (NTRS)
Hadaway, James; Stahl, H. Philip; Eng, Ron; Hogue, William
2004-01-01
A 250 mm diameter lightweight borosilicate mirror has been interferometrically tested from room-temperature down to 30 K at the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The minor blank was manufactured by Hextek Corporation using a high-temperature gas fusion process and was then polished at MSFC. It is a sandwich-type mirror consisting of a thin face-sheet (approx.1.5 mm thick), a core structure (20 mm thick, approx.43 mm diameter cells, & 0.5-1.2 mm thick walls), and a thin back-sheet (3 mm thick). The mirror has a 2500 mm spherical radius-of- curvature @/lo). The areal density is 14 kg/sq m. The mirror was tested in the 1 m x 2 m chamber using an Instantaneous Phase Interferometer (PI) from ADE Phase Shift Technologies. The mirror was tested twice. The first test measured the change in surface figure from ambient to 30 K and the repeatability of the change. An attempt was then made by QED Technologies to cryo-figure the mirror using magnetorheological finishing. The second test measured the effectiveness of the cryo- figuring. This paper will describe the test goals, the test instrumentation, and the test results for these cryogenic tests.
Adler, Caroline; Berweck, Steffen; Lidzba, Karen; Becher, Thomas; Staudt, Martin
2015-09-01
Mirror movements are involuntary movements of the other hand during voluntary unimanual movements. Some, but not all children with unilateral spastic cerebral palsy (USCP) show this phenomenon. In this observational study, we investigated whether these mirror movements have a specific negative impact on bimanual activities of daily living. Eighteen children (six girls; age range, 6-16 years; mean age, 12 years 1 month; SD, 3 years 3 month) with USCP, nine with and nine without mirror movements, underwent the Jebsen Taylor Hand Function Test (unimanual capacity) and the Assisting Hand Assessment (bimanual performance). In addition, we measured the time the participants needed for the completion of five activities we had identified as particularly difficult for children with mirror movements. Multivariate analysis demonstrated that mirror movements indeed have a specific negative impact on bimanual performance (Assisting Hand Assessment) and on the time needed for the completion of these five particularly difficult activities. This effect was independent from unimanual capacity. Functional therapies in children with USCP and mirror movements should address this phenomenon. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Adaptive metal mirror for high-power CO2 lasers
NASA Astrophysics Data System (ADS)
Jarosch, Uwe-Klaus
1996-08-01
Spherical mirrors with a variable radius of curvature are used inside laser resonators as well as in the beam path between the laser and the workpiece. Commercially-available systems use piezoelectric actuators, or the pressure of the coolant, to deform the mirror surface. In both cases, the actuator and the cooling system influence each other. This interaction is avoided through the integration of the cooling system with the flexible mirror membrane. A multi- channel design leads to an optimized cooling effect, which is necessary for high power applications. The contour of the variable metal mirror depends on the mounting between the membrane and the mirror body and on the distribution of forces. Four cases of deformation can be distinguished for a circular elastic membrane. The realization of an adaptive metal mirror requires a technical compromise to be made. A mechanical construction is presented which combines an elastic hinge with the inlet and outlet of the coolant. For the deformation of the mirror membranes two actuators with different character of deformation are used. The superposition of the two deformations results in smaller deviations from the spherical surface shape than can be achieved using a single actuator. DC proportional magnets have been introduced as cheap and rigid actuators. The use of this adaptive mirror, either in a low pressure atmosphere of a gas laser resonator, or in an extra-cavity beam path is made possible through the use of a ventilation system.
Stereo optical guidance system for control of industrial robots
NASA Technical Reports Server (NTRS)
Powell, Bradley W. (Inventor); Rodgers, Mike H. (Inventor)
1992-01-01
A device for the generation of basic electrical signals which are supplied to a computerized processing complex for the operation of industrial robots. The system includes a stereo mirror arrangement for the projection of views from opposite sides of a visible indicia formed on a workpiece. The views are projected onto independent halves of the retina of a single camera. The camera retina is of the CCD (charge-coupled-device) type and is therefore capable of providing signals in response to the image projected thereupon. These signals are then processed for control of industrial robots or similar devices.
Probing the N˜Z line via β decay
NASA Astrophysics Data System (ADS)
Oinonen, Markku
1999-11-01
This contribution reports several beta-decay studies performed at ISOLDE On-line Mass Separator at CERN recently for nuclei close to N=Z line. Beta decay of 58Zn provides a possibility to compare Gamow-Teller strength extracted from complementary beta-decay studies and charge-exchange reactions. Measurement on beta-decay half-life of 70Kr shows importance of experimental information in modelling the path of the astrophysical rp process. Decay of 71Kr is an example of a mirror beta decay and extends the systematics of these particular decays towards highly deformed region close to A=80.
2001 Tom W. Bonner Prize in Nuclear Physics Lecture
NASA Astrophysics Data System (ADS)
Geller, Richard
2001-04-01
As long as the Highly Charged Ions (HCI) were obtained with a hot cathode ion source and foil strippers the reliability of the accelerators remained poor. Therefore in 1973, I thought of an ion source based an Electron Cyclotron Resonance (ECR) plasmas trapped inside magnetic mirrors since such devices deliver stable confinement plasmas with energetic electrons and cold ions which are the main ingredients for HCI production. In addition ECR eliminates the use of hot cathodes and this improves considerably their reliability. In 1974 we transformed a voluminous and obsolete " min B fusion mirror device " into an ECR Ion Source (ECRIS) delivering excellent HCI beams. However due to its large size it used too much electrical power (3 MW). To be practical we had to launch a smaller ECRIS with permanent magnets and such an ECRIS worked in 1979 at Grenoble. Between 1980-90 we developed half a dozen of increasingly performing prototypes and many accelerator groups followed the trend. This world wide success is a clear recognition of its reliability and its ability to yield intense HCI beams. However for these very reasons one rarely speaks about ECRIS ; in addition the ECRIS is far away from the targets so it is invisible and moreover it is unsubstantial since it is just an empty cavity filled with 3 invisible components : a) rarefied gas b) microwaves c) specific magnetic field lines… These components must be tuned to create a central ECR zone (where the Larmor frequency equals the microwave frequency) to ignite the plasma inside its magnetic mirror trap ; then one has to adjust accurately the parameters a) b) c) in order to prevent the on-set of always possible plasma instabilities. A well tuned ECRIS is ready to yield intense HCI beams without interruption for weeks and months, in continuous or pulsed regimes. At present an ECRIS has become a " must " for : (i) Nuclear reactions with very small cross-sections - where one has no other solution than to increase the incident ion dose (ex : superheavies - rare isotopes, etc.). (ii) Long duration runs with extreme heavy ion energy on existing machines (ex. CERN : 33 TeV Pb ions, for gluon quark plasma). (iii) Cancer therapy with heavy ions where the physicians require extremely reproducible doses for therapy protocols. The future of ECRIS will depend on further applications : for instance the production of very short life (1+) isotope ions delivered by ISOL systems in continuous regime. For this we developed in 1995 the so called (1+/N+) ECRIS charge booster which catches the (1+) ions before they are adsorpted on the walls. Moreover for pulsed accelerators we developed in 1998 an ECRIT (ECR Ion Trap) charge booster which is simultaneously a (1+) ions accumulator and HCI beam buncher.
ERIC Educational Resources Information Center
De Luca, R.; Fedullo, A.
2009-01-01
A vertical light ray coming from infinity is reflected by a primary parabolic mirror M[subscript 1] having focus at F[subscript 1]. At a small distance from F[subscript 1] a secondary mirror M[subscript 2], symmetric with respect to the vertical axis, is placed. One would like to find the analytic equation of the mirror M[subscript 2], so that all…
NASA Astrophysics Data System (ADS)
Vallayer, B.; Blaise, G.; Treheux, D.
1999-07-01
When an insulating material is subjected to electron irradiation, it produces a secondary emission the yield of which varies from a few percent to very high values (up to 24 per incoming electron) depending on the material and the experimental conditions. If the secondary electron emission yield is less than one, a net negative charge remains trapped in the sample. In this case, the study of the electric charges trapping properties of the material becomes possible. This article describes how it is possible to use a secondary electron microscope (SEM) as a device to perform such a study. In Sec. II, the effect of a net negative trapped charge resulting (from the injection of typically 50 pC) on the imaging process of the SEM has been described. It has been shown that when the trapped charge is high enough, it acts as a mirror reflecting the incoming electron beam which is deflected somewhere in the vacuum chamber of the microscope. A global qualitative description of the image displayed on the screen is first presented. Then electron trajectories are quantitatively studied by using the Rutherford scattering cross section in the case of a point charge. When the charge is extended, a numeric simulation has been done in order to predict the validity range of the previous model. Once the trajectories have been calculated, the connection between the remarkable elements of the image and the quantity of trapped charges has been established. Moreover, this technique allows one to study the lateral dimension of the trapped charge zone and to measure the surface potential. In Sec. III, the discussion is first focused on some precautions to be taken concerning the sample preparation before the experiment is performed. It has been shown that surface defects due either to contamination layers or machining change the trapping properties of single-crystals ceramics such as MgO and Al2O3. A cleaning procedure is proposed that consists of annealing the sample at 1500 °C for 4 h in order to heal the crystalline defects and a heating at 400 °C in the vacuum chamber of the SEM to remove the contamination layers. Finally, the effect of the temperature on the trapping properties of pure and chromium doped sapphire has been studied in relation with the chromium concentration. It is shown that temperature behavior of trapping is in relation with the chromium concentration. In the pure sapphire trapping is activated below -16 °C, in 500 ppm rubis it is below -9.5 °C due to isolated chromium atoms, and in the 8000 ppm rubis the critical trapping temperature rises to 3.7 °C due to Cr3+ pairs. The interpretation of the role played by chromium on trapping is based on the experimental study of the fluorescence of chromium atoms and pairs as a function of concentration.
Mirror therapy for improving motor function after stroke.
Thieme, Holm; Mehrholz, Jan; Pohl, Marcus; Behrens, Johann; Dohle, Christian
2013-01-01
This systematic review summarizes the effectiveness of mirror therapy for improving motor function, activities of daily living, pain, and visuospatial neglect in patients after stroke. We searched the Cochrane Stroke Group’s Trials Register (June 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to June 2011), EMBASE (1980 to June 2011), CINAHL (1982 to June 2011), AMED (1985 to June 2011), PsycINFO (1806 to June 2011), and PEDro (June 2011). We also handsearched relevant conference proceedings, trials, and research registers; checked reference lists; and contacted trialists, researchers, and experts in our field of study. We included randomized controlled trials and randomized crossover trials comparing mirror therapy with any control intervention for patients after stroke. Two review authors independently selected trials based on the inclusion criteria, documented the methodological quality of studies, and extracted data. The primary outcome was motor function. We analyzed the results as standardized mean differences (SMDs) for continuous variables. We included 14 studies with a total of 567 participants, which compared mirror therapy with other interventions. When compared with all other interventions, mirror therapy was found to have a significant effect on motor function (postintervention data: SMD 0.61; 95% CI 0.22 to 1.0; P=0.002; change scores: SMD 1.04; 95% CI 0.57 to 1.51; P<0.0001) ; Figure). However, effects on motor function are influenced by the type of control intervention. Additionally, mirror therapy was found to improve activities of daily living (SMD 0.33; 95% CI 0.05 to 0.60; P=0.02). We found a significant positive effect on pain (SMD −1.10; 95% CI −2.10 to −0.09; P=0.03), which is influenced by patient population. We found limited evidence for improving visuospatial neglect (SMD 1.22; 95% CI 0.24 to 2.19; P=0.01). The effects on motor function were stable at follow-up assessment after 6 months.
Ion beam figuring approach for thermally sensitive space optics.
Yin, Xiaolin; Deng, Weijie; Tang, Wa; Zhang, Binzhi; Xue, Donglin; Zhang, Feng; Zhang, Xuejun
2016-10-01
During the ion beam figuring (IBF) of a space mirror, thermal radiation of the neutral filament and particle collisions will heat the mirror. The adhesive layer used to bond the metal parts and the mirror is very sensitive to temperature rise. When the temperature exceeds the designed value, the mirror surface shape will change markedly because of the thermal deformation and stress release of the adhesive layer, thereby reducing the IBF accuracy. To suppress the thermal effect, we analyzed the heat generation mechanism. By using thermal radiation theory, we established a thermal radiation model of the neutral filament. Additionally, we acquired a surface-type Gaussian heat source model of the ion beam sputtering based on the removal function and Faraday scan result. Using the finite-element-method software ABAQUS, we developed a method that can simulate the thermal effect of the IBF for the full path and all dwell times. Based on the thermal model, which was experimentally confirmed, we simulated the thermal effects for a 675 mm×374 mm rectangular SiC space mirror. By optimizing the dwell time distribution, the peak temperature value of the adhesive layer during the figuring process was reduced under the designed value. After one round of figuring, the RMS value of the surface error changed from 0.094 to 0.015λ (λ=632.8 nm), which proved the effectiveness of the thermal analysis and suppression method.
Temperature and flow fields in samples heated in monoellipsoidal mirror furnaces
NASA Astrophysics Data System (ADS)
Rivas, D.; Haya, R.
The temperature field in samples heated in monoellipsoidal mirror furnaces will be analyzed. The radiation heat exchange between the sample and the mirror is formulated analytically, taking into account multiple reflections at the mirror. It will be shown that the effect of these multiple reflections in the heating process is quite important, and, as a consequence, the effect of the mirror reflectance in the temperature field is quite strong. The conduction-radiation model will be used to simulate the heating process in the floating-zone technique in microgravity conditions; important parameters like the Marangoni number (that drives the thermocapillary flow in the melt), and the temperature gradient at the melt-crystal interface will be estimated. The model will be validated comparing with experimental data. The case of samples mounted in a wall-free configuration (as in the MAXUS-4 programme) will be also considered. Application to the case of compound samples (graphite-silicon-graphite) will be made; the melting of the silicon part and the surface temperature distribution in the melt will be analyzed. Of special interest is the temperature difference between the two graphite rods that hold the silicon part, since it drives the thermocapillary flow in the melt. This thermocapillary flow will be studied, after coupling the previous model with the convective effects. The possibility of counterbalancing this flow by the controlled vibration of the graphite rods will be studied as well. Numerical results show that suppressing the thermocapillary flow can be accomplished quite effectively.
Modeling of MOEMS electromagnetic scanning grating mirror for NIR micro-spectrometer
NASA Astrophysics Data System (ADS)
Zhou, Ying; Wen, Quan; Wen, Zhiyu; Yang, Tingyan
2016-02-01
In this paper, the mathematical model is developed for researching the detailed electromagnetic mechanism of MOEMS scanning mirror. We present the relationship between spectral range and optical scanning angle. Furthermore, the variation tendencies of resonant frequency and maximal torsional angle are studied in detail under different aspect ratios of MOEMS scanning mirror and varied dimensions of torsional bar. The numerical results and Finite Element Analysis simulations both indicate that the thickness of torsional bar is the most important factor. The maximal torsional angle appears when the aspect ratio equals to 1. This mathematical model is an effective way for designing the MOEMS electromagnetic scanning grating mirror in actual fabrication.
NASA Astrophysics Data System (ADS)
Chen, Wei-Guo; Lou, Shu-Qin; Wang, Li-Wen; Li, Hong-Lei; Guo, Tieying; Jian, Shui-Sheng
2010-03-01
The switchable dual-wavelength erbium-doped fiber laser (EDFL) with a two-mode photonic crystal fiber (PCF) loop mirror and a chirped fiber Bragg grating (CFBG) at room temperature is proposed and experimentally demonstrated. The two-mode PCF loop mirror is formed by inserting a piece of two-mode PCF into a Sagnac loop mirror, with the air-holes of the PCF intentionally collapsing at the splices. By adjusting the state of the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength operations by means of the polarization hole burning (PHB) and spectral hole burning (SHB) effects.
NASA Technical Reports Server (NTRS)
Lenzen, R.
1980-01-01
Theoretical and experimental results are presented on the geometrical-optic imaging properties of a Wolter-1 type paraboloid-hyperboloid X-ray telescope. Particular consideration is given to the effect of microroughness of the mirror on the imaging properties. Experiments were conducted in which scattering properties were determined as a function of wavelength, incidence angle, and roughness of the plane mirrors. Results indicate the need for optimization of mirror material and polishing technology as well as the development of improved mirror manufacturing techniques. The use of transmission gratings along with the Wolter-1 type telescope in spectroscopy applications is discussed.
Variable curvature mirror having variable thickness: design and fabrication
NASA Astrophysics Data System (ADS)
Zhao, Hui; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Gong, Jie
2017-10-01
Variable curvature mirror (VCM) can change its curvature radius dynamically and is usually used to correct the defocus and spherical aberration caused by thermal lens effect to improve the output beam quality of high power solid-state laser. Recently, the probable application of VCM in realizing non-moving element optical zoom imaging in visible band has been paid much attention. The basic requirement for VCM lies in that it should provide a large enough saggitus variation and still maintains a high enough surface figure at the same time. Therefore in this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/80λ could provide bigger than 36um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be superior to 1/40λ with the spherical aberration removed, which proves that the effectiveness of the theoretical design.
Steinberg, Fabian; Pixa, Nils Henrik; Doppelmayr, Michael
2016-01-01
Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research.
Pixa, Nils Henrik; Doppelmayr, Michael
2016-01-01
Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research. PMID:27642526
Arc-Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure
NASA Technical Reports Server (NTRS)
Evans, Tyler, C.; Chan, Kai-Wing; Saha, Timo T.
2010-01-01
The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it hard to meet the strict angular resolution requirement of 5 arc-seconds for the telescope. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc-second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. Recent advances in the mirror fixture process known as the suspension mount has allowed for a mirror to be mounted to a fixture with minimal distortion. Once on the fixture, mirror segments have been aligned to around 5 arc-seconds which is halfway to the goal of 2.5 arc-seconds per mirror segment. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.
Modeling the Extremely Lightweight Zerodur Mirror (ELZM) Thermal Soak Test
NASA Technical Reports Server (NTRS)
Brooks, Thomas E.; Eng, Ron; Hull, Tony; Stahl, H. Philip
2017-01-01
Exoplanet science requires extreme wavefront stability (10 pm change/10 minutes), so every source of wavefront error (WFE) must be characterized in detail. This work illustrates the testing and characterization process that will be used to determine how much surface figure error (SFE) is produced by mirror substrate materials' CTE distributions. Schott's extremely lightweight Zerodur mirror (ELZM) was polished to a sphere, mounted, and tested at Marshall Space Flight Center (MSFC) in the X-Ray and Cryogenic Test Facility (XRCF). The test transitioned the mirror's temperature from an isothermal state at 292K to isothermal states at 275K, 250K and 230K to isolate the effects of the mirror's CTE distribution. The SFE was measured interferometrically at each temperature state and finite element analysis (FEA) has been completed to assess the predictability of the change in the mirror's surface due to a change in the mirror's temperature. The coefficient of thermal expansion (CTE) distribution in the ELZM is unknown, so the analysis has been correlated to the test data. The correlation process requires finding the sensitivity of SFE to a given CTE distribution in the mirror. A novel hand calculation is proposed to use these sensitivities to estimate thermally induced SFE. The correlation process was successful and is documented in this paper. The CTE map that produces the measured SFE is in line with the measured data of typical boules of Schott's Zerodur glass.
Modeling the Extremely Lightweight Zerodur Mirror (ELZM) thermal soak test
NASA Astrophysics Data System (ADS)
Brooks, Thomas E.; Eng, Ron; Hull, Tony; Stahl, H. Philip
2017-09-01
Exoplanet science requires extreme wavefront stability (10 pm change/10 minutes), so every source of wavefront error (WFE) must be characterized in detail. This work illustrates the testing and characterization process that will be used to determine how much surface figure error (SFE) is produced by mirror substrate materials' CTE distributions. Schott's extremely lightweight Zerodur mirror (ELZM) was polished to a sphere, mounted, and tested at Marshall Space Flight Center (MSFC) in the X-Ray and Cryogenic Test Facility (XRCF). The test transitioned the mirror's temperature from an isothermal state at 292K to isothermal states at 275K, 250K and 230K to isolate the effects of the mirror's CTE distribution. The SFE was measured interferometrically at each temperature state and finite element analysis (FEA) has been completed to assess the predictability of the change in the mirror's surface due to a change in the mirror's temperature. The coefficient of thermal expansion (CTE) distribution in the ELZM is unknown, so the analysis has been correlated to the test data. The correlation process requires finding the sensitivity of SFE to a given CTE distribution in the mirror. A novel hand calculation is proposed to use these sensitivities to estimate thermally induced SFE. The correlation process was successful and is documented in this paper. The CTE map that produces the measured SFE is in line with the measured data of typical boules of Schott's Zerodur glass.
ERIC Educational Resources Information Center
Ruiter, Margina; Loyens, Sofie; Paas, Fred
2015-01-01
It was investigated whether task-related body movements yield beneficial effects on children's learning of two-digit numbers and whether these learning effects are affected by mirror-based self-observation of those movements. Participants were 118 first-graders, who were randomly assigned to two movement conditions and two non-movement control…
ERIC Educational Resources Information Center
Palmer, Carmen
2018-01-01
This paper introduces Rewritten Scripture and scriptural rewriting as a creative process that, when mirrored in a teaching exercise, may serve as an effective practice in teaching sacred texts. Observing changes made between scripture and its rewriting may allow readers to identify different contexts among these texts. Furthermore, the act of…
ERIC Educational Resources Information Center
Moreno, Jalene Donica
2012-01-01
Using pre-and post-intervention non-concurrent multiple probe designs across participants, I conducted 2 experiments that tested the effects of imitation instruction using a mirror on the emergence of both basic and advanced forms of generalized imitation (GI) involving physical actions with preschool students diagnosed with developmental delays.…
NASA Astrophysics Data System (ADS)
Mehnert, Jan; Brunetti, Maddalena; Steinbrink, Jens; Niedeggen, Michael; Dohle, Christian
2013-06-01
Mirror therapy is a therapy to treat patients with pain syndromes or hemiparesis after stroke. However, the underlying neurophysiologic mechanisms are not clearly understood. In order to determine the effect of a mirror-like illusion (MIR) on brain activity using functional near-infrared spectroscopy, 20 healthy right-handed subjects were examined. A MIR was induced by a digital horizontal inversion of the subjects' filmed hand. Optodes were placed on the primary motor cortex (M1) and the occipito-parietal cortex (precuneus, PC). Regions of interest (ROI) were defined a priori based on previous results of similar studies and confirmed by the analysis of effect sizes. Analysis of variance of the ROI signal revealed a dissociated pattern: at the PC, the MIR caused a significant inversion of a hemispheric lateralization opposite to the perceived hand, independent of the moving hand. In contrast, activity in M1 showed lateralization opposite to the moving hand, but revealed no mirror effect. These findings extend our understanding on interhemispheric rivalry and indicate that a MIR is integrated into visuomotor coordination similar to normal view, irrespective of the hand that is actually performing the task.
NASA Technical Reports Server (NTRS)
Matthews, Gary W.; Kirk, Charles S.; Maffett, Steven P.; Abplanalp, Calvin E.; Stahl, H. Philip; Effinger, Michael R.
2013-01-01
The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. The parameters and test results of this concept mirror will be shown. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will also be outlined.
NASA Technical Reports Server (NTRS)
Matthews, Gary; Kirk, Charlie; Maffett, Steve; Abplanalp, Cal; Stahl, H. Philip
2013-01-01
Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and ITT Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was completed at ITT Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. The parameters and test results of this concept mirror will be shown. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will also be outlined.
Polarized Nuclei in a Simple Mirror Fusion Reactor
NASA Technical Reports Server (NTRS)
Noever, David A.
1995-01-01
The possibility of enhancing the ratio of output to input power Q in a simple mirror machine by polarizing Deuterium-Tritium (D- T) nuclei is evaluated. Taking the Livermore mirror reference design mirror ratio of 6.54, the expected sin(sup 2) upsilon angular distribution of fusion decay products reduces immediate losses of alpha particles to the loss cone by 7.6% and alpha-ion scattering losses by approx. 50%. Based on these findings, alpha- particle confinement times for a polarized plasma should therefore be 1.11 times greater than for isotropic nuclei. Coupling this enhanced alpha-particle heating with the expected greater than 50% D- T reaction cross section, a corresponding power ratio for polarized nuclei, Q(sub polarized), is found to be 1.63 times greater than the classical unpolarized value Q(sub classical). The effects of this increase in Q are assessed for the simple mirror.
Development of an adaptive optics test-bed for relay mirror applications
NASA Astrophysics Data System (ADS)
Mansell, Justin D.; Jacobs, Arturo A.; Maynard, Morris
2005-08-01
The relay mirror concept involves deploying a passive optical station at a high altitude for relaying a beam from a laser weapon to a target. Relay mirrors have been proposed as a method of increasing the range of laser weapons that is less costly than deploying a larger number of laser weapons. Relay mirrors will only be effective if the beam spreading and beam quality degradation induced by atmospheric aberrations and thermal blooming can be mitigated. In this paper we present the first phase of a multi-year effort to develop a theoretical and experimental capability at Boeing-SVS to study these problems. A team from MZA and Boeing-SVS has developed a laboratory test-bed consisting of a distributed atmospheric path simulated by three liquid crystal phase screens, a Shack-Hartmann wavefront sensor, and a MEMS membrane deformable mirror. We present results of AO component calibration and evaluation, the system construction, and the system performance.
Recent Development of IMP ECR Ion Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H.W.; Zhang, Z.M.; Sun, L.T.
2005-03-15
Great efforts have been made to develop highly charged ECR ion sources for application of heavy ion accelerator and atomic physics research at IMP in the past few years. The latest development of ECR ion sources at IMP is briefly reviewed. Intense beams with high and intermediate charge states have been produced from IMP LECR3 by optimization of the ion source conditions including rf frequency extended up to 18GHz. 1.1 emA of Ar8+ and 325 e{mu} A of Ar11+ were produced. Dependence of beam emittance on those key parameters of ECR ion source, beam extraction and space charge compensation weremore » experimentally studied at LECR3. Furthermore, an advanced superconducting ECR ion source named SECRAL is being constructed. SECRAL is designed to operate at rf frequency 18-28GHz with axial mirror magnetic fields 3.6-4.0 Tesla at injection, 2.2 Tesla at extraction and sextupole field 2.0 Tesla at the wall. The superconducting magnet with sextupole and three solenoids was tested in a test-cryostat and 95% of designed fields were reached. Construction status and planed schedule of SECRAL are presented.« less
Advanced Laser Technologies for High-brightness Photocathode Electron Gun
NASA Astrophysics Data System (ADS)
Tomizawa, Hiromitsu
A laser-excited photocathode RF gun is one of the most reliable high-brightness electron beam sources for XFELs. Several 3D laser shaping methods have been developed as ideal photocathode illumination sources at SPring-8 since 2001. To suppress the emittance growth caused by nonlinear space-charge forces, the 3D cylindrical UV-pulse was optimized spatially as a flattop and temporally as squarely stacked chirped pulses. This shaping system is a serial combination of a deformable mirror that adaptively shapes the spatial profile with a genetic algorithm and a UV-pulse stacker that consists of four birefringent α-BBO crystal rods for temporal shaping. Using this 3D-shaped pulse, a normalized emittance of 1.4 π mm mrad was obtained in 2006. Utilizing laser's Z-polarization, Schottky-effect-gated photocathode gun was proposed in 2006. The cathode work functions are reduced by a laser-induced Schottky effect. As a result of focusing a radially polarized laser pulse with a hollow lens in vacuum, the Z-field (Z-polarization) is generated at the cathode.
Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications
NASA Astrophysics Data System (ADS)
Milanović, Veljko; Kasturi, Abhishek; Yang, James; Hu, Frank
2017-05-01
In 2016, we presented a low SWaP wirelessly controlled MEMS mirror-based LiDAR prototype which utilized an OEM laser rangefinder for distance measurement [1]. The MEMS mirror was run in open loop based on its exceptionally fast design and high repeatability performance. However, to further extend the bandwidth and incorporate necessary eyesafety features, we recently focused on providing mirror position feedback and running the system in closed loop control. Multiple configurations of optical position sensors, mounted on both the front- and the back-side of the MEMS mirror, have been developed and will be presented. In all cases, they include a light source (LED or laser) and a 2D photosensor. The most compact version is mounted on the backside of the MEMS mirror ceramic package and can "view" the mirror's backside through openings in the mirror's PCB and its ceramic carrier. This version increases the overall size of the MEMS mirror submodule from 12mm x 12mm x 4mm to 15mm x 15mm x 7mm. The sensors also include optical and electronic filtering to reduce effects of any interference from the application laser illumination. With relatively simple FPGA-based PID control running at the sample rate of 100 kHz, we could configure the overall response of the system to fully utilize the MEMS mirror's native bandwidth which extends well beyond its first resonance. When compared to the simple open loop method of suppressing overshoot and ringing which significantly limits bandwidth utilization, running the mirrors in closed loop control increased the bandwidth to nearly 3.7 times. A 2.0mm diameter integrated MEMS mirror with a resonant frequency of 1300 Hz was limited to 500Hz bandwidth in open loop driving but was increased to 3kHz bandwidth with the closed loop controller. With that bandwidth it is capable of very sharply defined uniform-velocity scans (sawtooth or triangle waveforms) which are highly desired in scanned mirror LiDAR systems. A 2.4mm diameter mirror with +/-12° of scan angle achieves over 1.3kHz of flat response, allowing sharp triangle waveforms even at 300Hz (600 uniform velocity lines per second). The same methodology is demonstrated with larger, bonded mirrors. Here closed loop control is more challenging due to the additional resonance and a more complex system dynamic. Nevertheless, results are similar - a 5mm diameter mirror bandwidth was increased from 150Hz to 500Hz.
A cryogenically cooled, multidetector spectrometer for infrared astronomy
NASA Technical Reports Server (NTRS)
Witteborn, F. C.; Bregman, J. D.
1984-01-01
A liquid helium-cooled, 24 detector grating spectrometer was developed and used for low resolution astronomical observations in the 5 to 14 micron spectral range. The instrument operated on the 91 cm Kuiper Airborne Observatory, the 3 m IRTF (Mauna Kea), the 3 m Shane telescope Observatory, the 3 m Shane telescope (Lick Observatory), and the 152 cm NASA and University of Arizona telescope. The detectors are discrete Si:Bi photoconductors with individual metal oxide semiconductor field effect transistor preamplifiers operating at 4 K. The system uses a liquid helium-cooled slit, order-sorter filter, collimator mirror, grating, and camera mirror arranged in a Czerny-Turner configuration with a cold stop added between the collimator mirror and the grating. The distances between components are chosen so that the collimator mirror images the secondary mirror of the telescope onto the cold stop, thus providing a very effective baffle. Scattered radiation is effectively reduced by using liquid helium-cooled, black baffles to divide the spectrometer into three separate compartments. The system noise-equivalent flux density, when used on the 152 cm telescope from 8 to 13 microns with a resolving power of 50, is 4.4 x 10 to the minus 17th power W/sq cm micron square root of Hz. The main applications are for measuring continuum radiation levels and solid state emission and absorption features in regions of star and planet formation.
Ji, Sang Gu; Kim, Myoung Kwon
2015-04-01
To investigate the effect of mirror therapy on the gait of patients with subacute stroke. Randomized controlled experimental study. Outpatient rehabilitation hospital. Thirty-four patients with stroke were randomly assigned to two groups: a mirror therapy group (experimental) and a control group. The stroke patients in the experimental group underwent comprehensive rehabilitation therapy and mirror therapy for the lower limbs. The stroke patients in the control group underwent sham therapy and comprehensive rehabilitation therapy. Participants in both groups received therapy five days per week for four weeks. Temporospatial gait characteristics, such as single stance, stance phase, step length, stride, swing phase, velocity, and cadence, were assessed before and after the four weeks therapy period. A significant difference was observed in post-training gains for the single stance (10.32 SD 4.14 vs. 6.54 SD 3.23), step length (8.47 SD 4.12 vs. 4.83 SD 2.14), and stride length (17.03 SD 6.57 vs 10.54 SD 4.34) between the experimental group and the control group (p < 0.05). However, there were no significant differences between two groups on stance phase, swing phase, velocity, cadence, and step width (P > 0.05). We conclude that mirror therapy may be beneficial in improving the effects of stroke on gait ability. © The Author(s) 2014.
Effect of hydrogen-switchable mirrors on the Casimir force.
Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico
2004-03-23
We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials.
Effect of hydrogen-switchable mirrors on the Casimir force
Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico
2004-01-01
We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials. PMID:15024111
NASA Astrophysics Data System (ADS)
Viswanathan, Vriddhachalam K.
1992-07-01
Practical considerations that will strongly affect the imaging capabilities of reflecting systems for extreme-ultraviolet (XUV) projection lithography include manufacturing tolerances and thermal distortion of the mirror surfaces due to absorption of a fraction of the incident radiation beam. We have analyzed the potential magnitudes of these effects for two types of reflective projection optical designs. We find that concentric, symmetric two-mirror systems are less sensitive to manufacturing errors and thermal distortion than off-axis, four-mirror systems.
1998-01-01
48 f) Metal and semiconductor thin- film systems ................ 48 3.3.2. Methods of formation of interference field for recording the hologram...in others - dynamic holograms [27,29,30,33] based either on photorefractive crystals [27,33], or on liquid -crystal spatial light modulators (SLM...variations of the primary mirror’s curvature, which can be caused, e.g., by thermal effects or by inaccuracy in adjustment of the elastic thin- film mirror
Testing large flats with computer generated holograms
NASA Astrophysics Data System (ADS)
Pariani, Giorgio; Tresoldi, Daniela; Spanò, Paolo; Bianco, Andrea
2012-09-01
We describe the optical test of a large flat based on a spherical mirror and a dedicated CGH. The spherical mirror, which can be accurately manufactured and tested in absolute way, allows to obtain a quasi collimated light beam, and the hologram performs the residual wavefront correction. Alignment tools for the spherical mirror and the hologram itself are encoded in the CGH. Sensitivity to fabrication errors and alignment has been evaluated. Tests to verify the effectiveness of our approach are now under execution.
Direct Measurement of Scattered Light Effect on the Sensitivity in TAMA300
NASA Astrophysics Data System (ADS)
Takahashi, R.; Arai, Koji; Kawamaru, Seiji; Smith, Michael R.
2003-07-01
Laser interferometer gravitational wave detectors need vacuum tubes through which the laser beams pass. The light scattered from the arm cavity mirrors will make multiple reflections from the inside wall of the polished tube back onto the mirrors causing phase noise on the interferometer output beam. The TAMA300 has two 300-m length arms enclosed by vacuum tubes. By vibrating one of the tubes of the TAMA300, we directly observed the effect of scattered light on the displacement sensitivity. It was found that a tube vibration amplitude of 5.6 µm at 776.5 Hz increased the mirror displacement noise to 1.2 × 10-17 m. This noise level is consistent with the calculated noise due to the scattered light effect.
Demonstration of Flying Mirror with Improved Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirozhkov, Alexander S.; Kando, Masaki; Fukuda, Yuji
2009-07-25
A strongly nonlinear wake wave driven by an intense laser pulse can act as a partially reflecting relativistic mirror (the flying mirror)[S. V. Bulanov, et al., Bulletin of the Lebedev Physics Institute, No. 6, 9 (1991); S. V. Bulanov, et al., Phys. Rev. Lett. 91, 085001 (2003)]. Upon reflection from such mirror, a counter-propagating optical-frequency laser pulse is directly converted into high-frequency radiation, with a frequency multiplication factor approx4gamma{sup 2}(the double Doppler effect). We present the results of recent experiment in which the photon number in the reflected radiation was at least several thousand times larger than in our proof-of-principlemore » experiment [M. Kando, et al., Phys. Rev. Lett. 99, 135001 (2007); A. S. Pirozhkov, et al., Phys. Plasmas 14, 123106 (2007)]. The flying mirror holds promise of generating intense coherent ultrashort XUV and x-ray pulses that inherit their temporal shape and polarization from the original optical-frequency (laser) pulses. Furthermore, the reflected radiation bears important information about the reflecting wake wave itself, which can be used for its diagnostics.« less
The Development of Stacked Core for the Fabrication of Deep Lightweight UV-Quality Space Mirrors
NASA Technical Reports Server (NTRS)
Matthews, Gary W.; Egerman, Robert; Maffett, Steven P.; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.
2014-01-01
The 2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make 4m class or larger monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept 0.43m mirror was completed at Exelis optically tested at 250K at MSFC which demonstrated the ability for imaging out to 2.5 microns. The parameters and test results of this concept mirror are shown. The next phase of the program includes a 1.5m subscale mirror that will be optically and dynamically tested. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will be outlined.
Feedback-controlled radiation pressure cooling
NASA Astrophysics Data System (ADS)
Prior, Yehiam; Vilensky, Mark; Averbukh, Ilya Sh.
2008-03-01
We propose a new approach to laser cooling of micromechanical devices, which is based on the phenomenon of optical bistability. These devices are modeled as a Fabry-Perot resonator with one fixed and one oscillating mirror. The bistability may be induced by an external feedback loop. When excited by an external laser, the cavity field has two co-existing stable steady-states depending on the position of the moving mirror. If the latter moves slow enough, the field in the cavity adjusts itself adiabatically to the mirror's instantaneous position. The mirror experiences radiation pressure corresponding to the intensity value. A sharp transition between two values of the radiation pressure force happens twice per every period of the mirror oscillation at non-equivalent positions (hysteresis effect), which leads to a non-zero net energy loss. The cooling mechanism resembles Sisyphus cooling in which the cavity mode performs sudden transitions between two stable states. We provide a dynamical stability analysis of the coupled moving mirror -- cavity field system, and find the parameters for efficient cooling. Direct numerical simulations show that a bistable cavity provides much more efficient cooling compared to the regular one.
Effect of pH buffer molecules on the light-induced currents from oriented purple membrane.
Liu, S Y; Kono, M; Ebrey, T G
1991-01-01
The effect of pH buffers on the microsecond photocurrent component, B2, of oriented purple membranes has been studied. We found that under low salt conditions (less than 10 mM monovalent cationic salt) pH buffers can dramatically alter the waveform of the B2 component. The effect is induced by the protonation process of the buffer molecules by protons expelled from the membrane. These effects can be classified according to the charge transition upon protonation of the buffer. Buffers that carry two positive charges in their protonated form add a negative current component (N component) to B2. Almost all of the other buffers add a positive current component (P component) to B2, which is essentially a mirror image of the N component. Buffers with a pK less than 5.5 have only a small positive buffer component. The pH dependence of the buffer effect is closely related to the pK of the buffer; it requires that the buffer be in its unprotonated form. The rise time of the buffer component increases with the concentration of the buffer molecules. All the buffer effects can be inhibited by the addition of 5 mM of a divalent cation such as Ca2+. Reducing the surface potential slows down the N component but accelerates the P component without affecting the amplitude of the buffer effect significantly. Many of the buffer effects can be explained if we assume that upon protonation of the buffer by a proton expelled from the membrane by light, the buffer molecules move toward the membrane. This backward movement of buffer molecules forms a counter current very similar to that due to cations discussed in Liu, S. Y., R. Govindjee, and T. G. Ebrey. (1990. Biophys. J. 57:951-963). PMID:1883939
Discrimination of emotional states from scalp- and intracranial EEG using multiscale Rényi entropy.
Tonoyan, Yelena; Chanwimalueang, Theerasak; Mandic, Danilo P; Van Hulle, Marc M
2017-01-01
A data-adaptive, multiscale version of Rényi's quadratic entropy (RQE) is introduced for emotional state discrimination from EEG recordings. The algorithm is applied to scalp EEG recordings of 30 participants watching 4 emotionally-charged video clips taken from a validated public database. Krippendorff's inter-rater statistic reveals that multiscale RQE of the mid-frontal scalp electrodes best discriminates between five emotional states. Multiscale RQE is also applied to joint scalp EEG, amygdala- and occipital pole intracranial recordings of an implanted patient watching a neutral and an emotionally charged video clip. Unlike for the neutral video clip, the RQEs of the mid-frontal scalp electrodes and the amygdala-implanted electrodes are observed to coincide in the time range where the crux of the emotionally-charged video clip is revealed. In addition, also during this time range, phase synchrony between the amygdala and mid-frontal recordings is maximal, as well as our 30 participants' inter-rater agreement on the same video clip. A source reconstruction exercise using intracranial recordings supports our assertion that amygdala could contribute to mid-frontal scalp EEG. On the contrary, no such contribution was observed for the occipital pole's intracranial recordings. Our results suggest that emotional states discriminated from mid-frontal scalp EEG are likely to be mirrored by differences in amygdala activations in particular when recorded in response to emotionally-charged scenes.
A Battery Charger and State of Charge Indicator
NASA Technical Reports Server (NTRS)
Latos, T. S.
1984-01-01
A battery charger which has a full wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches, which are programmed to actively shape the input dc line current to be a mirror image of the ac line voltage is discussed. The power circuit operates at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state of charge software programs. The state of charge definition employed is the energy remaining in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictate the use of high power NPN Darlington switching transistors. The power circuit topology is a three switch design which utilizes a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.
Discrimination of emotional states from scalp- and intracranial EEG using multiscale Rényi entropy
Chanwimalueang, Theerasak; Mandic, Danilo P.; Van Hulle, Marc M.
2017-01-01
A data-adaptive, multiscale version of Rényi’s quadratic entropy (RQE) is introduced for emotional state discrimination from EEG recordings. The algorithm is applied to scalp EEG recordings of 30 participants watching 4 emotionally-charged video clips taken from a validated public database. Krippendorff’s inter-rater statistic reveals that multiscale RQE of the mid-frontal scalp electrodes best discriminates between five emotional states. Multiscale RQE is also applied to joint scalp EEG, amygdala- and occipital pole intracranial recordings of an implanted patient watching a neutral and an emotionally charged video clip. Unlike for the neutral video clip, the RQEs of the mid-frontal scalp electrodes and the amygdala-implanted electrodes are observed to coincide in the time range where the crux of the emotionally-charged video clip is revealed. In addition, also during this time range, phase synchrony between the amygdala and mid-frontal recordings is maximal, as well as our 30 participants’ inter-rater agreement on the same video clip. A source reconstruction exercise using intracranial recordings supports our assertion that amygdala could contribute to mid-frontal scalp EEG. On the contrary, no such contribution was observed for the occipital pole’s intracranial recordings. Our results suggest that emotional states discriminated from mid-frontal scalp EEG are likely to be mirrored by differences in amygdala activations in particular when recorded in response to emotionally-charged scenes. PMID:29099846
Coma of modified Gregorian and Cassegrainian mirror systems
NASA Technical Reports Server (NTRS)
Jones, R. T.
1976-01-01
The equivalence of the classical Newtonian, Cassegrainian, and Gregorian mirror systems with respect to the first two Seidel aberrations is rederived by means of a simple congruence. The effects of arbitrary small modifications of the two mirror systems are then studied and general formulas are derived for the effects of such modifications on the spherical aberration and coma. Spherical aberration is corrected to the third order if the amount of glass removed from one surface is replaced at the corresponding zone of the other surface. Modifications in which one surface is made spherical while the other is adjusted to eliminate spherical aberration result in large increases of coma for systems having the usual amplifying ratios.
NASA Astrophysics Data System (ADS)
Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.
2017-11-01
The need for both high quality images and light structures is a constant concern in the conception of space telescopes. In this paper, we present an active optics system as a way to fulfill those two objectives. Indeed, active optics consists in controlling mirrors' deformations in order to improve the images quality [1]. The two main applications of active optics techniques are the in-situ compensation of phase errors in a wave front by using a corrector deformable mirror [2] and the manufacturing of aspherical mirrors by stress polishing or by in-situ stressing [3]. We will focus here on the wave-front correction. Indeed, the next generation of space telescopes will have lightweight primary mirrors; in consequence, they will be sensitive to the environment variations, inducing optical aberrations in the instrument. An active optics system is principally composed of a deformable mirror, a wave front sensor, a set of actuators deforming the mirror and control/command electronics. It is used to correct the wave-front errors due to the optical design, the manufacturing imperfections, the large lightweight primary mirrors' deflection in field gravity, the fixation devices, and the mirrors and structures' thermal distortions due to the local turbulence [4]. Active optics is based on the elasticity theory [5]; forces and/or load are used to deform a mirror. Like in adaptive optics, actuators can simply be placed under the optical surface [1,2], but other configurations have also been studied: a system's simplification, inducing a minimization of the number of actuators can be achieved by working on the mirror design [5]. For instance, in the so called Vase form Multimode Deformable Mirror [6], forces are applied on an external ring clamped on the pupil. With this method, there is no local effect due to the application of forces on the mirror's back face. Furthermore, the number of actuators needed to warp the mirror does not depend on the pupil size; it is a fully scalable configuration. The insertion of a Vase form Multimode Deformable Mirror on the design of an optical instrument will allow correcting the most common low spatial frequency aberrations. This concept could be applied in a space telescope. A Finite Element Analysis of the developed model has been conducted in order to characterize the system's behavior and to validate the concept.
Chamorro, Ester R; Sequeira, Alfredo F; Zalazar, M Fernanda; Peruchena, Nélida M
2008-09-15
In the present work, the distribution of the electronic charge density of the natural sex pheromone, the (Z)-13-hexadecen-11-ynyl acetate, in the female processionary moth, Thaumetopoea pytiocampa, and its nine analogue derivatives was studied within the framework of the Density Functional Theory and the Atoms in Molecules (AIM) Theory at B3LYP/6-31G *//B3LYP/6-31++G * * level. Additionally, molecular electrostatic potential (MEP) maps of the previously mentioned compounds were computed and compared. Furthermore, the substitution of hydrogen atoms from the methyl group in the acetate group by electron withdrawing substituents (i.e., halogen atoms) as well as the replacement effect of hydrogen by electron donor substituents (+I effect) as methyl group, were explored. The key feature of the topological distribution of the charge density in analogue compounds, such as the variations of the topological properties encountered in the region formed by neighbouring atoms from the substitution site were presented and discussed. Using topological parameters, such as electronic charge density, Laplacian, kinetic energy density, and potential energy density evaluated at bond critical points (BCP), we provide here a detailed analysis of the nature of the chemical bonding of these molecules. In addition, the atomic properties (population, charge, energy, volume, and dipole moment) were determined on selected atoms. These properties were analyzed at the substitution site (with respect to the natural sex pheromone) and related to the biological activity and to the possible binding site with the pheromone binding protein, (PBP). Moreover, the Laplacian function of the electronic density was used to locate electrophilic regions susceptible to be attacked (by deficient electron atoms or donor hydrogen). Our results indicate that the change in the atomic properties, such as electronic population and atomic volume, are sensitive indicators of the loss of the biological activity in the analogues studied here. The crucial interaction between the acetate group of the natural sex pheromone and the PBP is most likely to be a hydrogen bonding and the substitution of hydrogen atoms by electronegative atoms in the pheromone molecule reduces the hydrogen acceptor capacity. This situation is mirrored by the diminish of the electronic population on carbon and oxygen atoms at the carbonylic group in the halo-acetate group. Additionally, the modified acetate group (with electronegative atoms) shows new charge concentration critical points or regions of concentration of charge density in which an electrophilic attack can also occur. Finally, the use of the topological analysis based in the charge density distribution and its Laplacian function, in conjunction with MEP maps provides valuable information about the steric volume and electronic requirement of the sex pheromone for binding to the PBP.
Reasoning About Visibility in Mirrors: A Comparison Between a Human Observer and a Camera.
Bertamini, Marco; Soranzo, Alessandro
2018-01-01
Human observers make errors when predicting what is visible in a mirror. This is true for perception with real mirrors as well as for reasoning about mirrors shown in diagrams. We created an illustration of a room, a top-down view, with a mirror on a wall and objects (nails) on the opposite wall. The task was to select which nails were visible in the mirror from a given position (viewpoint). To study the importance of the social nature of the viewpoint, we divided the sample ( N = 108) in two groups. One group ( n = 54) were tested with a scene in which there was the image of a person. The other group ( n = 54) were tested with the same scene but with a camera replacing the person. Participants were instructed to think about what would be captured by a camera on a tripod. This manipulation tests the effect of social perspective-taking in reasoning about mirrors. As predicted, performance on the task shows an overestimation of what can be seen in a mirror and a bias to underestimate the role of the different viewpoints, that is, a tendency to treat the mirror as if it captures information independently of viewpoint. In terms of the comparison between person and camera, there were more errors for the camera, suggesting an advantage for evaluating a human viewpoint as opposed to an artificial viewpoint. We suggest that social mechanisms may be involved in perspective-taking in reasoning rather than in automatic attention allocation.
NASA Astrophysics Data System (ADS)
Arcangeli, L.; Borghi, G.; Bräuninger, H.; Citterio, O.; Ferrario, I.; Friedrich, P.; Grisoni, G.; Marioni, F.; Predehl, P.; Rossi, M.; Ritucci, A.; Valsecchi, G.; Vernani, D.
2017-11-01
The name "eROSITA" stands for extended Roentgen Survey with an Imaging Telescope Array. The general design of the eROSITA X-ray telescope is derived from that of ABRIXAS. A bundle of 7 mirror modules with short focal lengths make up a compact telescope which is ideal for survey observations. Similar designs had been proposed for the missions DUO and ROSITA but were not realized due to programmatic shortfall. Compared to those, however, the effective area in the soft X-ray band has now much increased by adding 27 additional outer mirror shells to the original 27 ones of each mirror module. The requirement on the on-axis resolution has also been confined, namely to 15 arc seconds HEW. For these reasons the prefix "extended" was added to the original name "ROSITA". The scientific motivation for this extension is founded in the ambitious goal to detect about 100,000 clusters of galaxies which trace the large scale structure of the Universe in space and time. The X-ray telescope of eROSITA will consist of 7 identical and co-aligned mirror modules, each with 54 nested Wolter-1 mirror shells. The mirror shells are glued onto a spider wheel which is screwed to the mirror interface structure making a rigid mechanical unit. The assembly of 7 modules forms a compact hexagonal configuration with 1300 mm diameter (see Fig. 1) and will be attached to the telescope structure which connects to the 7 separate CCD cameras in the focal planes. The co-alignment of the mirror module enables eROSITA to perform also pointed observations. The replication process described in chapter III allows the manufacturing in one single piece and at the same time of both the parabola and hyperbola parts of the Wolter 1 mirror.
Brun, C; Metral, M; Chancel, M; Kavounoudias, A; Luyat, M; Guerraz, M
2015-01-29
Recent studies of both healthy and patient populations have cast doubt on the mirror paradigm's beneficial effect on motor behavior. Indeed, the voluntary arm displacement that accompanies reflection in the mirror may be the determining factor in terms of the motor behavior of the contralateral arm. The objective of the present study was to assess the respective effects of mirror reflection and arm displacement (whether real or simulated) on involuntary motor behavior of the contralateral arm following sustained, isometric contraction (Kohnstamm phenomenon). Our results revealed that (i) passive displacement of one arm (displacement of the left arm via a motorized manipulandum moving at 4°/s) influenced the velocity of the Kohnstamm phenomenon (forearm flexion occurring shortly after the cessation of muscle contraction) in the contralateral arm and (ii) mirror vision had no effect. Indeed, the velocity of the Kohnstamm phenomenon tended to be adjusted to match the velocity of the passive displacement of the other arm. In a second experiment, arm displacement was simulated by vibrating the triceps at 25, 50 or 75 Hz. Results showed that the velocity of the Kohnstamm phenomenon in one arm increased with the vibration frequency applied to the other arm. Our results revealed the occurrence of bimanual coupling because involuntary displacement of one arm was regulated by muscle-related information generated by the actual or simulated displacement of the other arm. In line with the literature data on voluntary motor behavior, our study failed to evidence an additional impact of mirror vision on involuntary motor behavior. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Rothgangel, Andreas Stefan; Braun, Susy; Schulz, Ralf Joachim; Kraemer, Matthias; de Witte, Luc; Beurskens, Anna; Smeets, Rob Johannes
2015-01-01
Non-pharmacological interventions such as mirror therapy are gaining increased recognition in the treatment of phantom limb pain; however, the evidence in people with phantom limb pain is still weak. In addition, compliance to self-delivered exercises is generally low. The aim of this randomised controlled study is to investigate the effectiveness of mirror therapy supported by telerehabilitation on the intensity, duration and frequency of phantom limb pain and limitations in daily activities compared to traditional mirror therapy and care as usual in people following lower limb amputation. A three-arm multi-centre randomised controlled trial will be performed. Participants will be randomly assigned to care as usual, traditional mirror therapy or mirror therapy supported by telerehabilitation. During the first 4 weeks, at least 10 individual sessions will take place in every group. After the first 4 weeks, participants will be encouraged to perform self-delivered exercises over a period of 6 weeks. Outcomes will be assessed at 4 and 10 weeks after baseline and at 6 months follow-up. The primary outcome measure is the average intensity of phantom limb pain during the last week. Secondary outcome measures include the different dimensions of phantom limb pain, pain-related limitations in daily activities, global perceived effect, pain-specific self-efficacy, and quality of life. Several questions concerning the study design that emerged during the preparation of this trial will be discussed. This will include how these questions were addressed and arguments for the choices that were made. Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Arnold, Luc
1996-03-01
Explicit analytical expressions are derived for the elastic deformation of a thin or thick mirror of uniform thickness and with a central hole. Thin-plate theory is used to derive the general influence function, caused by uniform and/or discrete loads, for a mirror supported by discrete points. No symmetry considerations of the locations of the points constrain the model. An estimate of the effect of the shear forces is added to the previous pure bending model to take into account the effect of the mirror thickness. Two particular cases of general influence are the uniform-load (equivalent to gravity in the case of a thin mirror) influence function for a ring support of k discrete points with k-fold symmetry. The influence of the size of the support pads is studied. A method for optimizing an active mirror cell is presented that couples the minimization of the gravity influence function with the optimization of the combined actuator influence functions to fit low-order aberrations. These low-spatial-frequency aberrations can be of elastic or optical origin. In the latter case they are due, for example, to great residual polishing errors corresponding to the soft polishing specifications relaxed for cost reductions. Results show that the correction range of the active cell can thus be noticeably enlarged, compared with an active cell designed as a passive cell, i.e., by minimizing only the deflection under gravitational loading. In the example treated here of the European Southern Observatory's New Technology Telescope I show that the active correction range can be enlarged by approximately 50% in the case of third-order astigmatic correction.
NASA Astrophysics Data System (ADS)
Mackler, D. A.; Jahn, J. M.; Perez, J. D.; Pollock, C. J.
2014-12-01
Plasma sheet particles with sufficiently low mirror points will interact with thermospheric neutrals through charge exchange. The resulting ENAs are no longer magnetically bound and can therefore be detected by remote platforms outside the ionosphere/lower atmosphere. These ENAs closely associated with ion precipitation are termed Low Altitude Emissions (LAEs). They are non-isotropic in velocity space and mimic the corresponding ion pitch angle distribution. In this study we present a statistical correlation between remote observations of the LAE emission characteristics and ion precipitation maps determined in situ over the declining phase of solar cycle 23 (2000-2005). We discuss the strength and derived location (MLT, iMLAT) of LAEs as a function of geomagnetic activity levels in relation to the simultaneously measured strength, location, and spectral characteristics of in situ ion precipitation. These comparisons may allow us to use ENA images to assess where and how much energy is deposited during any type of enhanced geomagnetic activity. The precipitating ion differential directional flux maps are built up from combining NOAA-14/15/16 TED and DMSP-13/14/15 SSJ4 data. Low altitude ENA source locations are identified algorithmically using IMAGE/MENA images. ENA flux maps are derived by computing the LAE source locations assuming an ENA emission altitude (h) of 650 km, then projecting each image pixel onto a sphere with radius Re+h to determine the local time and latitude extent of the ENA source. The IGRF magnetic field model is used in combination with the Solar Magnetic coordinates of LAE pixels to compute the pitch angle of the escaping neutrals (previously ion before charge exchanging). Pitch angles larger than 90° will have a mirror point further into the atmosphere than the assumed emission altitude.
Spherical primary optical telescope (SPOT) segments
NASA Astrophysics Data System (ADS)
Hall, Christopher; Hagopian, John; DeMarco, Michael
2012-09-01
The spherical primary optical telescope (SPOT) project is an internal research and development program at NASA Goddard Space Flight Center. The goals of the program are to develop a robust and cost effective way to manufacture spherical mirror segments and demonstrate a new wavefront sensing approach for continuous phasing across the segmented primary. This paper focuses on the fabrication of the mirror segments. Significant cost savings were achieved through the design, since it allowed the mirror segments to be cast rather than machined from a glass blank. Casting was followed by conventional figuring at Goddard Space Flight Center. After polishing, the mirror segments were mounted to their composite assemblies. QED Technologies used magnetorheological finishing (MRF®) for the final figuring. The MRF process polished the mirrors while they were mounted to their composite assemblies. Each assembly included several magnetic invar plugs that extended to within an inch of the face of the mirror. As part of this project, the interaction between the MRF magnetic field and invar plugs was evaluated. By properly selecting the polishing conditions, MRF was able to significantly improve the figure of the mounted segments. The final MRF figuring demonstrates that mirrors, in the mounted configuration, can be polished and tested to specification. There are significant process capability advantes due to polishing and testing the optics in their final, end-use assembled state.
Fabrication of large aperture SiC brazing mirror
NASA Astrophysics Data System (ADS)
Li, Ang; Wang, Peipei; Dong, Huiwen; Wang, Peng
2016-10-01
The SiC brazing mirror is the mirror whose blank is made by assembling together smaller SiC pieces with brazing technique. Using such kinds of joining techniques, people can manufacture large and complex SiC assemblies. The key technologies of fabricating and testing SiC brazing flat mirror especially for large aperture were studied. The SiC brazing flat mirror was ground by smart ultrasonic-milling machine, and then it was lapped by the lapping smart robot and measured by Coordinate Measuring Machine (CMM). After the PV of the surface below 4um, we did classic coarse polishing to the surface and studied the shape of the polishing tool which directly effects removal amount distribution. Finally, it was figured by the polishing smart robot and measured by Fizeau interferometer. We also studied the influence of machining path and removal functions of smart robots on the manufacturing results and discussed the use of abrasive in this process. At last, an example for fabricating and measuring a similar SiC brazing flat mirror with the aperture of 600 mm made by Shanghai Institute of Ceramics was given. The mirror blank consists of 6 SiC sectors and the surface was finally processed to a result of the Peak-to-Valley (PV) 150nm and Root Mean Square (RMS) 12nm.
NASA Astrophysics Data System (ADS)
Ames, A.; Bruni, R.; Cotroneo, V.; Johnson-Wilke, R.; Kester, T.; Reid, P.; Romaine, S.; Tolier-McKinstry, S.; Wilke, R. H. T.
2015-09-01
Adjustable X-ray optics represent a potential enabling technology for simultaneously achieving large effective area and high angular resolution for future X-ray Astronomy missions. The adjustable optics employ a bimorph mirror composed of a thin (1.5 μm) film of piezoelectric material deposited on the back of a 0.4 mm thick conical mirror segment. The application of localized electric fields in the piezoelectric material, normal to the mirror surface, result in localized deformations in mirror shape. Thus, mirror fabrication and mounting induced figure errors can be corrected, without the need for a massive reaction structure. With this approach, though, film stresses in the piezoelectric layer, resulting from deposition, crystallization, and differences in coefficient of thermal expansion, can distort the mirror. The large relative thickness of the piezoelectric material compared to the glass means that even 100MPa stresses can result in significant distortions. We have examined compensating for the piezoelectric processing related distortions by the deposition of controlled stress chromium/iridium films on the front surface of the mirror. We describe our experiments with tuning the product of the chromium/iridium film stress and film thickness to balance that resulting from the piezoelectric layer. We also evaluated the repeatability of this deposition process, and the robustness of the iridium coating.
Rotational MEMS mirror with latching arm for silicon photonics
NASA Astrophysics Data System (ADS)
Brière, Jonathan; Beaulieu, Philippe-Olivier; Saidani, Menouer; Nabki, Frederic; Menard, Michaël.
2015-02-01
We present an innovative rotational MEMS mirror that can control the direction of propagation of light beams inside of planar waveguides implemented in silicon photonics. Potential applications include but are not limited to optical telecommunications, medical imaging, scan and spectrometry. The mirror has a half-cylinder shape with a radius of 300 μm that provides low and constant optical losses over the full angular displacement range. A circular comb drive structure is anchored such that it allows free or latched rotation experimentally demonstrated over 8.5° (X-Y planar rotational movement) using 290V electrostatic actuation. The entire MEMS structure was implemented using the MEMSCAP SOIMUMPs process. The center of the anchor beam is designed to be the approximate rotation point of the circular comb drive to counter the rotation offset of the mirror displacement. A mechanical characterization of the MEMS mirror is presented. The latching mechanism provides up to 20 different angular locking positions allowing the mirror to counter any resonance or vibration effects and it is actuated with an electrostatic linear comb drive. An innovative gap closing structure was designed to reduce optical propagation losses due to beam divergence in the interstitial space between the mirror and the planar waveguide. The gap closing structure is also electrostatically actuated and includes two side stoppers to prevent stiction.
ERIC Educational Resources Information Center
Anaki, D.; Faran, Y.; Ben-Shalom, D.; Henik, A.
2005-01-01
The mirror effect refers to a phenomenon where the hit rate is higher for low frequency words while the false alarm rate is higher for high frequency distractors. Using a false memory paradigm (Roediger & McDermott, 1995), we examined whether false memory for non-presented lures would be influenced by the lure's familiarity. The results revealed…
ERIC Educational Resources Information Center
Criss, Amy H.
2006-01-01
When items on one list receive more encoding than items on another list, the improvement in performance usually manifests as an increase in the hit rate and a decrease in the false alarm rate (FAR). A common account of this strength based mirror effect is that participants adopt a more strict criterion following a strongly than weakly encoded list…
Reducing Heating In High-Speed Cinematography
NASA Technical Reports Server (NTRS)
Slater, Howard A.
1989-01-01
Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.
Absolute Effective Area of the Chandra High-Resolution Mirror Assembly
NASA Technical Reports Server (NTRS)
Schwartz, D. A.; David, L. P.; Donnelly, R. H.; Edgar, R. J.; Gaetz, T. J.; Jerius, D.; Juda, M.; Kellogg, E. M.; McNamara, B. R.; Dewey, D.
2000-01-01
The Chandra X-ray Observatory was launched in July 1999, and is returning exquisite sub-arcsecond x-ray images of star groups, supernova remnants, galaxies, quasars, and clusters of galaxies. In addition to being the premier X-ray observatory in terms of angular and spectral resolution, Chandra is the best calibrated X-ray facility ever flown. We discuss here the calibration of the effective area of the High Resolution Mirror Assembly. Because we do not know the absolute X-ray flux density of any celestial source, this must be based primarily on ground measurements and on modeling. In particular, we must remove the calibrated modeled responses of the detectors and gratings to obtain the mirror area. For celestial sources which may be assumed to have smoothly varying spectra, such as the Crab Nebula, we may verify the continuity of the area calibration as a function of energy. This is of significance in energy regions such as the Ir M-edges, or near the critical grazing angle cutoff of the various mirror shells.
Sputtering effects on mirrors made of different tungsten grades
NASA Astrophysics Data System (ADS)
Voitsenya, V. S.; Ogorodnikova, O. V.; Bardamid, A. F.; Bondarenko, V. N.; Konovalov, V. G.; Lytvyn, P. M.; Marot, L.; Ryzhkov, I. V.; Shtan', A. F.; Skoryk, O. O.; Solodovchenko, S. I.
2018-03-01
Because tungsten (W) is used in present fusion devices and it is a reference material for ITER divertor and possible plasma-facing material for DEMO, we strive to understand the response of different W grades to ion bombardment. In this study, we investigated the behavior of mirrors made of four polycrystalline W grades under long-term ion sputtering. Argon (Ar) and deuterium (D) ions extracted from a plasma were used to investigate the effect of projectile mass on surface modification. Depending on the ion fluence, the reflectance measured at normal incidence was very different for different W grades. The lowest degradation rate of the reflectance was measured for the mirror made of recrystallized W. The highest degradation rate was found for one of the ITER-grade W samples. Pre-irradiation of a mirror with 20-MeV W6+ ions, as simulation of neutron irradiation in ITER, had no noticeable influence on reflectance degradation under sputtering with either Ar or D ions.
Optical design of free-form surface two-mirror telescopic objective with ultrawide field of view
NASA Astrophysics Data System (ADS)
Liu, Qinghan; Zhou, Zhengping; Jin, Yangming; Shen, Weimin
2016-10-01
Compact off-axial two-mirror fore objective with an ultra wide ground coverage and for spaceborne pushbroom imaging spectrometers is studied and designed. Based on Gaussian optics and Young's formulas, the approach to determine its initial structural parameters is presented. In order to meet the required performance, freeform surfaces are used to increase the degree of freedom of our optimization. And the impact of various X-Y polynomials on its pupil aberration is analyzed for elimination of too large smile effect. As an example, an off-axis two-mirror fore telescopic objective with field of view of 108° across-pushbroom direction, F number of 10, focal length of 34 mm and working wavelength range from 0.27 to 2.4 μm is optimally designed, which both the primary and the secondary mirrors have freeform surface. The designed lens has many advantages of simple and compact structure, imagery telecentricity, near diffraction-limited imaging quality, and small smile effect.
[The mirror neuron system in motor and sensory rehabilitation].
Oouchida, Yutaka; Izumi, Shinichi
2014-06-01
The discovery of the mirror neuron system has dramatically changed the study of motor control in neuroscience. The mirror neuron system provides a conceptual framework covering the aspects of motor as well as sensory functions in motor control. Previous studies of motor control can be classified as studies of motor or sensory functions, and these two classes of studies appear to have advanced independently. In rehabilitation requiring motor learning, such as relearning movement after limb paresis, however, sensory information of feedback for motor output as well as motor command are essential. During rehabilitation from chronic pain, motor exercise is one of the most effective treatments for pain caused by dysfunction in the sensory system. In rehabilitation where total intervention unifying the motor and sensory aspects of motor control is important, learning through imitation, which is associated with the mirror neuron system can be effective and suitable. In this paper, we introduce the clinical applications of imitated movement in rehabilitation from motor impairment after brain damage and phantom limb pain after limb amputation.
NASA Technical Reports Server (NTRS)
Shi, Fang; Basinger, Scott A.; Redding, David C.
2006-01-01
Dispersed Fringe Sensing (DFS) is an efficient and robust method for coarse phasing of a segmented primary mirror such as the James Webb Space Telescope (JWST). In this paper, modeling and simulations are used to study the effect of segmented mirror aberrations on the fringe image, DFS signals and DFS detection accuracy. The study has shown due to the pixilation spatial filter effect from DFS signal extraction the effect of wavefront error is reduced and DFS algorithm will be more robust against wavefront aberration by using multi-trace DFS approach. We also studied the JWST Dispersed Hartmann Sensor (DHS) performance in presence of wavefront aberrations caused by the gravity sag and we use the scaled gravity sag to explore the JWST DHS performance relationship with the level of the wavefront aberration. This also includes the effect from line-of-sight jitter.
NASA Astrophysics Data System (ADS)
Lin, Han; Baoqi, Mao; Wen, Sun; Weimin, Shen
2016-10-01
There is a race to develop spaceborne high-resolution video cameras since Skybox's success. For low manufacture cost and adaption to micro and small satellites, it is urgent to design and develop compact long focal length optical system with not only small volume, light weight and easy implementation, and also two dimensional field. Our focus is on the Coaxial Three-Mirror Anastigmat (CTMA) with intermediate real image for its no need outer hood and compactness and for its easy alignment, low-order aspheric surface and low cost. The means to deflect its image space beam for accessibility of focal plane array detector and to eliminate its inherent secondary obscuration from its primary mirror central hole and deflection flat mirror is discussed. The conditions to satisfy the above-mentioned requirements are presented with our derived relationship among its optical and structural parameters based on Gaussian optics and geometry. One flat mirror near its exit pupil can be used to deflect its image plane from its axis. And its total length can be decreased with other some flat mirrors. Method for determination of its initial structure with the derived formulae is described through one design example. Furthermore, optimized CTMA without secondary obscuration and with effective focal length (EFFL) of 10m is reported. Its full field, F-number and total length are respectively 1.1°×1°, F/14.3, and one eighth of its EFFL. And its imaging quality is near diffraction limit.
Some ideas on the choice of designs and materials for cooled mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howells, M.R.
1994-12-01
This paper expresses some views on the fabrication of future synchrotron beam-line optics; more particularly the metallurgical issues in high-quality metal mirrors. A simple mirror with uniform cooling channels is first analyzed theoretically, followed by the cullular-pin-post system with complex coolant flow path. Choice of mirror material is next considered. For the most challenging situations (need for intensive cooling), the present practice is to use nickel-plated glidcop or silicon; for less severe challenges, Si carbide may be used and cooling may be direct or indirect; and for the mildest heat loads, fused silica or ulf are popular. For the highestmore » performance mirrors (extreme heat load), the glidcop developments should be continued perhaps to cellular-pin-post systems. For extreme distortion, Si is indicated and invar offers both improved performance and lower price. For less extreme challenges but still with cooling, Ni-plated metals have the cost advantage and SXA and other Al alloys can be added to glidcop and invar. For mirrors with mild cooling requirements, stainless steel would have many advantages. Once the internal cooling designs are established, they will be seen as more cost-effective and reliable than clamp-on schemes. Where no cooling is needed, Si, Si carbide, and the glasses can be used. For the future, the effect of electroless Ni layers on cooling design need study, and a way to finish nickel that is compatible with multilayers should be developed.« less
Mirror therapy for motor function of the upper extremity in patients with stroke: A meta-analysis.
Zeng, Wen; Guo, Yonghong; Wu, Guofeng; Liu, Xueyan; Fang, Qian
2018-01-10
To evaluate the mean treatment effect of mirror therapy on motor function of the upper extremity in patients with stroke. Electronic databases, including the Cochrane Library, PubMed, MEDLINE, Embase and CNKSystematic, were searched for relevant studies published in English between 1 January 2007 and 22 June 2017. Randomized controlled trials and pilot randomized controlled trials that compared mirror therapy/mirror box therapy with other rehabilitation approaches were selected. Two authors independently evaluated the searched studies based on the inclusion/exclusion criteria and appraised the quality of included studies according to the criteria of the updated version 5.1.0 of the Cochrane Handbook for Systematic Review of Interventions. Eleven trials, with a total of 347 patients, were included in the meta-analysis. A moderate effect of mirror therapy (standardized mean difference 0.51, 95% confidence interval (CI) 0.29, 0.73) on motor function of the upper extremity was found. However, a high degree of heterogeneity (χ2 = 25.65, p = 0.004; I2 = 61%) was observed. The heterogeneity decreased a great deal (χ2 = 6.26, p = 0.62; I2 = 0%) after 2 trials were excluded though sensitivity analysis. Although the included studies had high heterogeneity, meta-analysis provided some evidence that mirror therapy may significantly improve motor function of the upper limb in patients with stroke. Further well-designed studies are needed.
Compensation for 6.5 K cryogenic distortion of a fused quartz mirror by refiguring
NASA Technical Reports Server (NTRS)
Augason, Gordon C.; Young, Jeffrey A.; Melugin, Ramsey K.; Clarke, Dana S.; Howard, Steven D.; Scanlan, Michael; Wong, Steven; Lawton, Kenneth C.
1993-01-01
A 46 cm diameter, lightweight, Amersil TO8E, fused-natural-quartz mirror with a single-arch cross section was tested at the NASA-Ames Research Center Cryogenic Optical Test Facility to measure its cryogenic distortion at 6.5 K. Then the mirror was refigured with the inverse of the measured cryogenic distortion to compensate for this figure defect. The mirror was retested at 6.5 K and found to have a significantly improved figure. The compensation for cryogenic distortion was not complete, but preliminary analysis indicates that the compensation was better than 0.25 waves P-V if edge effects are ignored. The feasibility of compensating for cryogenic distortion by refiguring has thus been verified.
Thermally invariant dielectric coatings for micromirrors
NASA Astrophysics Data System (ADS)
Liu, Wei; Talghader, Joseph J.
2002-06-01
Thermal expansion-induced curvature becomes a major effect in micromirrors as the mirror diameter exceeds 100 mum. Such mirrors are used for optical switching, scanning, and many other applications. By using multilayer coatings instead of a single metal reflector, one can use the mechanical properties of the multilayer to create mirrors with zero curvature across temperature. We demonstrate the fabrication of such thermally invariant mirrors using dielectric coatings. A semianalytic model based on free-plate elastic theory is developed that uses empirical parameters in place of the true thermal expansion coefficients of the coating materials. Micromirrors are demonstrated that maintain their design curvature to within lambda/60 for lambda = 633 nm across an operating range from 21 degC to 58 degC.
Design and analysis of multilayer x ray/XUV microscope
NASA Technical Reports Server (NTRS)
Shealy, David L.
1990-01-01
The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view.
[Phantom limb pain syndrome: therapeutic approach using mirror therapy in a Geriatric Department].
González García, Paloma; Manzano Hernández, M Pilar; Muñoz Tomás, M Teresa; Martín Hernández, Carlos; Forcano García, Mercedes
2013-01-01
The clinical use of mirror visual feedback was initially introduced to alleviate phantom pain by restoring motor function through plastic changes in the human primary motor cortex. It is a promising novel technique that gives a new perspective to neurological rehabilitation. Using this therapy, the mirror neuron system is activated and decrease the activity of those systems that perceive protopathic pain, making somatosensory cortex reorganization possible. This paper reports the results of the mirror therapy in three patients with phantom limb pain after recent lower limb amputation, showing its analgesic effects and its benefits as a comprehensive rehabilitation instrument for lower limb amputee geriatric patients. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.
Choe, Eugenie; Lee, Tae Young; Kim, Minah; Hur, Ji-Won; Yoon, Youngwoo Bryan; Cho, Kang-Ik K; Kwon, Jun Soo
2018-03-26
It has been suggested that the mentalizing network and the mirror neuron system network support important social cognitive processes that are impaired in schizophrenia. However, the integrity and interaction of these two networks have not been sufficiently studied, and their effects on social cognition in schizophrenia remain unclear. Our study included 26 first-episode psychosis (FEP) patients and 26 healthy controls. We utilized resting-state functional connectivity to examine the a priori-defined mirror neuron system network and the mentalizing network and to assess the within- and between-network connectivities of the networks in FEP patients. We also assessed the correlation between resting-state functional connectivity measures and theory of mind performance. FEP patients showed altered within-network connectivity of the mirror neuron system network, and aberrant between-network connectivity between the mirror neuron system network and the mentalizing network. The within-network connectivity of the mirror neuron system network was noticeably correlated with theory of mind task performance in FEP patients. The integrity and interaction of the mirror neuron system network and the mentalizing network may be altered during the early stages of psychosis. Additionally, this study suggests that alterations in the integrity of the mirror neuron system network are highly related to deficient theory of mind in schizophrenia, and this problem would be present from the early stage of psychosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; Lee, Jeffrey R.; Weinberger, Paul M.; Dynan, William S.
2014-01-01
High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZE particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration. PMID:25375139
NASA Astrophysics Data System (ADS)
Shi, Wujun; Muechler, Lukas; Manna, Kaustuv; Zhang, Yang; Koepernik, Klaus; Car, Roberto; van den Brink, Jeroen; Felser, Claudia; Sun, Yan
2018-02-01
We predict a magnetic Weyl semimetal in the inverse Heusler Ti2MnAl , a compensated ferrimagnet with a vanishing net magnetic moment and a Curie temperature of over 650 K. Despite the vanishing net magnetic moment, we calculate a large intrinsic anomalous Hall effect (AHE) of about 300 S/cm. It derives from the Berry curvature distribution of the Weyl points, which are only 14 meV away from the Fermi level and isolated from trivial bands. Different from antiferromagnets Mn3X (X =Ge , Sn, Ga, Ir, Rh, and Pt), where the AHE originates from the noncollinear magnetic structure, the AHE in Ti2MnAl stems directly from the Weyl points and is topologically protected. The large anomalous Hall conductivity (AHC) together with a low charge carrier concentration should give rise to a large anomalous Hall angle. In contrast to the Co-based ferromagnetic Heusler compounds, the Weyl nodes in Ti2MnAl do not derive from nodal lines due to the lack of mirror symmetries in the inverse Heusler structure. Since the magnetic structure breaks spin-rotation symmetry, the Weyl nodes are stable without SOC. Moreover, because of the large separation between Weyl points of opposite topological charge, the Fermi arcs extent up to 75 % of the reciprocal lattice vectors in length. This makes Ti2MnAl an excellent candidate for the comprehensive study of magnetic Weyl semimetals. It is the first example of a material with Weyl points, large anomalous Hall effect, and angle despite a vanishing net magnetic moment.
Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; ...
2014-11-06
High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZEmore » particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration.« less
Condenser for extreme-UV lithography with discharge source
Sweatt, William C.; Kubiak, Glenn D.
2001-01-01
Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.
APPARATUS FOR TRAPPING ENERGETIC CHARGED PARTICLES AND CONFINING THE RESULTING PLASMA
Gibson, G.; Jordan, W.C.; Lauer, E.J.
1963-04-01
The present invention relates to a plasma-confining device and a particle injector therefor, the device utilizing a generally toroidal configuration with magnetic fields specifically tailored to the associated injector. The device minimizes the effects of particle end losses and particle drift to the walls with a relatively simple configuration. More particularly, the magnetic field configuration is created by a continuous array of circular, mirror field coils, disposed side-by- side, in particularly spaced relation, to form an endless, toroidal loop. The resulting magnetic field created therein has the appearance of a bumpy'' torus, from which is derived the name Bumpy Torus.'' One of the aforementioned coils is split transverse to its axis, and injection of particles is accomplished along a plane between the halves of such modified coil. The guiding center of the particles follows a constant magnetic field in the plane for a particular distance within the torus, to move therefrom onto a precessional surface which does not intersect the point of injection. (AEC)
Effect of intermediate layers on atomic layer deposition-aluminum oxide protected silver mirrors
NASA Astrophysics Data System (ADS)
Fryauf, David M.; Diaz Leon, Juan J.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.
2017-07-01
This work investigates intermediate materials deposited between silver (Ag) thin-film mirrors and an aluminum oxide (AlOx) barrier overlayer and compares the effects on mirror durability to environmental stresses. Physical vapor deposition of various fluorides, oxides, and nitrides in combination with AlOx by atomic layer deposition (ALD) is used to develop several coating recipes. Ag-AlOx samples with different intermediate materials undergo aggressive high-temperature (80°C), high-humidity (80%) (HTHH) testing for 10 days. Reflectivity of mirror samples is measured before and after HTHH testing, and image processing techniques are used to analyze the specular surface of the samples after HTHH testing. Among the seven intermediate materials used in this work, TiN, MgAl2O4, NiO, and Al2O3 intermediate layers offer more robust protection against chemical corrosion and moisture when compared with samples with no intermediate layer. In addition, results show that the performance of the ALD-AlOx barrier overlayer depends significantly on the ALD-growth process temperature. Because higher durability is observed in samples with less transparent TiN and NiO layers, we propose a figure of merit based on post-HTHH testing reflectivity change and specular reflective mirror surface area remaining after HTHH testing to judge overall barrier performance.
THz optical design considerations and optimization for medical imaging applications
NASA Astrophysics Data System (ADS)
Sung, Shijun; Garritano, James; Bajwa, Neha; Nowroozi, Bryan; Llombart, Nuria; Grundfest, Warren; Taylor, Zachary D.
2014-09-01
THz imaging system design will play an important role making possible imaging of targets with arbitrary properties and geometries. This study discusses design consideration and imaging performance optimization techniques in THz quasioptical imaging system optics. Analysis of field and polarization distortion by off-axis parabolic (OAP) mirrors in THz imaging optics shows how distortions are carried in a series of mirrors while guiding the THz beam. While distortions of the beam profile by individual mirrors are not significant, these effects are compounded by a series of mirrors in antisymmetric orientation. It is shown that symmetric orientation of the OAP mirror effectively cancels this distortion to recover the original beam profile. Additionally, symmetric orientation can correct for some geometrical off-focusing due to misalignment. We also demonstrate an alternative method to test for overall system optics alignment by investigating the imaging performance of the tilted target plane. Asymmetric signal profile as a function of the target plane's tilt angle indicates when one or more imaging components are misaligned, giving a preferred tilt direction. Such analysis can offer additional insight into often elusive source device misalignment at an integrated system. Imaging plane tilting characteristics are representative of a 3-D modulation transfer function of the imaging system. A symmetric tilted plane is preferred to optimize imaging performance.