Sample records for mirror module thermal

  1. Design and Analysis of Mirror Modules for IXO and Beyond

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Powell, Cory; Saha, Timo T.; Zhang, William W.

    2011-01-01

    Advancements in X-ray astronomy demand thin, light, and closely packed thin optics which lend themselves to segmentation of the annular mirrors and, in turn, a modular approach to the mirror design. The functionality requirements of such a mirror module are well understood. A baseline modular concept for the proposed International X-Ray Observatory (IXO) Flight Mirror Assembly (FMA) consisting of 14,000 glass mirror segments divided into 60 modules was developed and extensively analyzed. Through this development, our understanding of module loads, mirror stress, thermal performance, and gravity distortion have greatly progressed. The latest progress in each of these areas is discussed herein. Gravity distortion during horizontal X-ray testing and on-orbit thermal performance have proved especially difficult design challenges. In light of these challenges, fundamental trades in modular X-ray mirror design have been performed. Future directions in module X-ray mirror design are explored including the development of a 1.8 m diameter FMA utilizing smaller mirror modules. The effect of module size on mirror stress, module self-weight distortion, thermal control, and range of segment sizes required is explored with advantages demonstrated from smaller module size in most cases.

  2. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  3. Method of forming structural heliostat

    DOEpatents

    Anderson, Alfred J.

    1984-06-26

    In forming a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement characterized by a method of forming the mirror module in which the mirror is laid upon a solid rigid supporting bed in one or more sections, with or without focusing; a mirror backing sheet is applied by first applying respective thin layers of silicone grease and, thereafter, progressively rolling application to eliminate air bubbles; followed by affixing of a substrate assembly to the mirror backing sheet to form a mirror module that does not curve because of thermally induced stresses and differential thermal expansion or contraction effects. The silicone grease also serves to dampen fluttering of the mirror and protect the mirror backside against adverse effects of the weather. Also disclosed are specific details of preferred embodiments.

  4. Spectrally Selective Mirrors with Combined Optical and Thermal Benefit for Photovoltaic Module Thermal Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slauch, Ian M.; Deceglie, Michael G.; Silverman, Timothy J.

    Waste heat generated during daytime operation of a solar module will raise its temperature and reduce cell efficiency. In addition to thermalization and carrier recombination, one major source of excess heat in modules is the parasitic absorption of light with sub-bandgap energy. Parasitic absorption can be prevented if sub-bandgap radiation is reflected away from the module. We report on the design considerations and projected changes to module energy yield for photonic reflectors capable of reflecting a portion of sub-bandgap radiation while maintaining or improving transmission of light with energy greater than the semiconductor bandgap. Using a previously developed, self-consistent opto-electro-thermalmore » finite-element simulation, we calculate the total additional energy generated by a module, including various photonic reflectors, and decompose these benefits into thermal and optical effects. We show that the greatest total energy yield improvement comes from photonic mirrors designed for the outside of the glass, but that mirrors placed between the glass and the encapsulant can have significant thermal benefit. We then show that optimal photonic mirror design requires consideration of all angles of incidence, despite unequal amounts of radiation arriving at each angle. We find that optimized photonic mirrors will be omnidirectional in the sense that they have beneficial performance, regardless of the angle of incidence of radiation. By fulfilling these criteria, photonic mirrors can be used at different geographic locations or different tilt angles than their original optimization conditions with only marginal changes in performance. We show designs that improve energy output in Golden, Colorado by 3.7% over a full year. This work demonstrates the importance of considering real-world irradiance and weather conditions when designing optical structures for solar applications.« less

  5. Spectrally Selective Mirrors with Combined Optical and Thermal Benefit for Photovoltaic Module Thermal Management

    DOE PAGES

    Slauch, Ian M.; Deceglie, Michael G.; Silverman, Timothy J.; ...

    2018-03-02

    Waste heat generated during daytime operation of a solar module will raise its temperature and reduce cell efficiency. In addition to thermalization and carrier recombination, one major source of excess heat in modules is the parasitic absorption of light with sub-bandgap energy. Parasitic absorption can be prevented if sub-bandgap radiation is reflected away from the module. We report on the design considerations and projected changes to module energy yield for photonic reflectors capable of reflecting a portion of sub-bandgap radiation while maintaining or improving transmission of light with energy greater than the semiconductor bandgap. Using a previously developed, self-consistent opto-electro-thermalmore » finite-element simulation, we calculate the total additional energy generated by a module, including various photonic reflectors, and decompose these benefits into thermal and optical effects. We show that the greatest total energy yield improvement comes from photonic mirrors designed for the outside of the glass, but that mirrors placed between the glass and the encapsulant can have significant thermal benefit. We then show that optimal photonic mirror design requires consideration of all angles of incidence, despite unequal amounts of radiation arriving at each angle. We find that optimized photonic mirrors will be omnidirectional in the sense that they have beneficial performance, regardless of the angle of incidence of radiation. By fulfilling these criteria, photonic mirrors can be used at different geographic locations or different tilt angles than their original optimization conditions with only marginal changes in performance. We show designs that improve energy output in Golden, Colorado by 3.7% over a full year. This work demonstrates the importance of considering real-world irradiance and weather conditions when designing optical structures for solar applications.« less

  6. Thermal Model Development for an X-Ray Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Bonafede, Joseph A.

    2015-01-01

    Space-based x-ray optics require stringent thermal environmental control to achieve the desired image quality. Future x-ray telescopes will employ hundreds of nearly cylindrical, thin mirror shells to maximize effective area, with each shell built from small azimuthal segment pairs for manufacturability. Thermal issues with these thin optics are inevitable because the mirrors must have a near unobstructed view of space while maintaining near uniform 20 C temperature to avoid thermal deformations. NASA Goddard has been investigating the thermal characteristics of a future x-ray telescope with an image requirement of 5 arc-seconds and only 1 arc-second focusing error allocated for thermal distortion. The telescope employs 135 effective mirror shells formed from 7320 individual mirror segments mounted in three rings of 18, 30, and 36 modules each. Thermal requirements demand a complex thermal control system and detailed thermal modeling to verify performance. This presentation introduces innovative modeling efforts used for the conceptual design of the mirror assembly and presents results demonstrating potential feasibility of the thermal requirements.

  7. Thermally stabilized heliostat

    DOEpatents

    Anderson, Alfred J.

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  8. Second LDEF Post-Retrieval Symposium interim results of experiment A0034

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Kamenetzky, Rachel R.

    1993-01-01

    Thermal control coatings and contaminant collector mirrors were exposed on the leading and trailing edge modules of Long Duration Exposure Facility (LDEF) experiment A0034 to provide a basis of comparison for investigating the role of atomic oxygen in the stimulation of volatile outgassing products. The exposure of identical thermal coatings on both the leading and trailing edges of the LDEF and the additional modified exposure of identical coatings under glass windows and metallic covers in each of the flight modules provided multiple combinations of space environmental exposure to the coatings and the contaminant collector mirrors. Investigations were made to evaluate the effects of the natural space and the induced environments on the thermal coatings and the collector mirrors to differentiate the sources of observed material degradation. Two identical flight units were fabricated for the LDEF mission, each of which included twenty-five thermal control coatings mounted in isolated compartments, each with an adjacent contaminant collector mirror mounted on the wall. The covers of the flight units included apertures for each compartment, exposing the thermal coatings directly to the space environment. Six of these compartments were sealed with ultraviolet-grade transmitting quartz windows and four other compartments were sealed with aluminum covers. One module of this passive LDEF experiment, occupying one-sixth of a full tray, was mounted in Tray C9 (leading edge), while the other identical module was mounted in Tray C3 (trailing edge).

  9. Status of the eROSITA Telescope testing and calibrating the x-ray mirror assemblies

    NASA Astrophysics Data System (ADS)

    Burwitz, Vadim; Predehl, Peter; Bräuninger, Heinrich; Burkert, Wolfgang; Dennerl, Konrad; Eder, Josef; Friedrich, Peter; Fürmetz, Maria; Grisoni, Gabriele; Hartner, Gisela; Marioni, Fabio; Menz, Benedikt; Pfeffermann, Elmar; Valsecchi, Giuseppe

    2013-09-01

    The eROSITA X-ray observatory that will be launched on board the Russian Spectrum-RG mission comprises seven X-ray telescopes, each with its own mirror assembly (mirror module + X-ray baffle), electron deflector, filter wheel, and CCD camera with its control electronics. The completed flight mirror modules are undergoing many thorough X-ray tests at the PANTHER X-ray test facility after delivery, after being mated with the X-ray baffle, and again after both the vibration and thermal-vacuum tests. A description of the work done with mirror modules/assemblies and the test results obtained will be reported here. We report also on the environmental tests that have been performed on the eROSITA telescope qualification model.

  10. Design and Analysis of the International X-Ray Observatory Mirror Modules

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Carnahan, Timothy M.; Robinson, David W.; Saha, Timo T.

    2009-01-01

    The Soft X-Ray Telescope (SXT) modules are the fundamental focusing assemblies on NASA's next major X-ray telescope mission, the International X-Ray Observatory (IXO). The preliminary design and analysis of these assemblies has been completed, addressing the major engineering challenges and leading to an understanding of the factors effecting module performance. Each of the 60 modules in the Flight Mirror Assembly (FMA) supports 200-300 densely packed 0.4 mm thick glass mirror segments in order to meet the unprecedented effective area required to achieve the scientific objectives of the mission. Detailed Finite Element Analysis (FEA), materials testing, and environmental testing have been completed to ensure the modules can be successfully launched. Resulting stress margins are positive based on detailed FEA, a large factor of safety, and a design strength determined by robust characterization of the glass properties. FEA correlates well with the results of the successful modal, vibration, and acoustic environmental tests. Deformation of the module due to on-orbit thermal conditions is also a major design driver. A preliminary thermal control system has been designed and the sensitivity of module optical performance to various thermal loads has been determined using optomechanical analysis methods developed for this unique assembly. This design and analysis furthers the goal of building a module that demonstrates the ability to meet IXO requirements, which is the current focus of the IXO FMA technology development team.

  11. Simbol-X Mirror Module Thermal Shields: I-Design and X-Ray Transmission

    NASA Astrophysics Data System (ADS)

    Collura, A.; Barbera, M.; Varisco, S.; Basso, S.; Pareschi, G.; Tagliaferri, G.; Ayers, T.

    2009-05-01

    The Simbol-X mission is designed to fly in formation flight configuration. As a consequence, the telescope has both ends open to space, and thermal shielding at telescope entrance and exit is required to maintain temperature uniformity throughout the mirrors. Both mesh and meshless solutions are presently under study for the shields. We discuss the design and the X-ray transmission.

  12. Research relative to high energy astrophysics. [large area modular array of reflectors, X-ray spectroscopy, and thermal control

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1984-01-01

    Various parameters which affect the design of the proposed large area modular array of reflectors (LAMAR) are considered, including thermal control, high resolution X-ray spectroscopy, pointing control, and mirror performance. The LAMAR instrument is to be a shuttle-launched X-ray observatory to carry out cosmic X-ray investigations. The capabilities of LAMAR are enumerated. Angular resolution performance of the mirror module prototype was measured to be 30 sec of ARC for 50% of the power. The LAMAR thermal pre-collimator design concepts and test configurations are discussed in detail.

  13. Design, Construction, and Testing of Lightweight X-ray Mirror Modules

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Biskach, Michael P.; Chan, Kai-Wing; Espina, Rebecca A.; Hohl, Bruce R.; Matson, Elizabeth A.; Saha, Timo C.; Zhang, William W.

    2013-01-01

    Lightweight and high resolution optics are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The Next Generation X-ray Optics (NGXO) team at NASA GSFC is nearing mission readiness for a 10 arc-second Half Power Diameter (HPD) slumped glass mirror technology while laying the groundwork for a future 1-2 arc-second technology based on polished silicon mirrors. Technology Development Modules (TDMs) have been designed, fabricated, integrated with mirrors segments, and extensively tested to demonstrate technology readiness. Tests include X-ray performance, thermal vacuum, acoustic load, and random vibration. The thermal vacuum and acoustic load environments have proven relatively benign, while the random vibration environment has proven challenging due to large input amplification at frequencies above 500 Hz. Epoxy selection, surface preparation, and larger bond area have increased bond strength while vibration isolation has decreased vibration amplification allowing for space launch requirements to be met in the near term. The next generation of TDMs, which demonstrates a lightweight structure supporting more mirror segments, is currently being fabricated. Analysis predicts superior performance characteristics due to the use of E-60 Beryllium-Oxide Metal Matrix Composite material, with only a modest cost increase. These TDMs will be larger, lighter, stiffer, and stronger than the current generation. Preliminary steps are being taken to enable mounting and testing of 1-2 arc-second mirror segments expected to be available in the future. A Vertical X-ray Test Facility (VXTF) will minimize module gravity distortion and allow for less constrained mirror mounts, such as fully kinematic mounts. Permanent kinematic mounting into a modified TDM has been demonstrated to achieve 2 arc-second level distortion free alignment.

  14. Stable Optical Phase Modulation With Micromirrors

    DTIC Science & Technology

    2012-01-27

    Stable optical phase modulation with micromirrors Caleb Knoernschild, Taehyun Kim, Peter Maunz, Stephen G. Crain, and Jungsang Kim∗ Fitzpatrick...position stability of the micromirror is dominated by the thermal mechanical noise of the structure. With this level of stability, we utilize the... micromirror to realize an optical phase modulator by simply reflecting light off the mirror and modulating its position. The resonant frequency of the

  15. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  16. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  17. Segmented X-Ray Optics for Future Space Telescopes

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.

    2013-01-01

    Lightweight and high resolution mirrors are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The slumped glass mirror technology in development at NASA GSFC aims to build X-ray mirror modules with an area to mass ratio of approx.17 sq cm/kg at 1 keV and a resolution of 10 arc-sec Half Power Diameter (HPD) or better at an affordable cost. As the technology nears the performance requirements, additional engineering effort is needed to ensure the modules are compatible with space-flight. This paper describes Flight Mirror Assembly (FMA) designs for several X-ray astrophysics missions studied by NASA and defines generic driving requirements and subsequent verification tests necessary to advance technology readiness for mission implementation. The requirement to perform X-ray testing in a horizontal beam, based on the orientation of existing facilities, is particularly burdensome on the mirror technology, necessitating mechanical over-constraint of the mirror segments and stiffening of the modules in order to prevent self-weight deformation errors from dominating the measured performance. This requirement, in turn, drives the mass and complexity of the system while limiting the testable angular resolution. Design options for a vertical X-ray test facility alleviating these issues are explored. An alternate mirror and module design using kinematic constraint of the mirror segments, enabled by a vertical test facility, is proposed. The kinematic mounting concept has significant advantages including potential for higher angular resolution, simplified mirror integration, and relaxed thermal requirements. However, it presents new challenges including low vibration modes and imperfections in kinematic constraint. Implementation concepts overcoming these challenges are described along with preliminary test and analysis results demonstrating the feasibility of kinematically mounting slumped glass mirror segments.

  18. Nonlinear-Optical Correction of Aberrations in Imaging Telescopes Based on a Diffraction Structure on the Primary Mirror

    DTIC Science & Technology

    1998-01-01

    48 f) Metal and semiconductor thin- film systems ................ 48 3.3.2. Methods of formation of interference field for recording the hologram...in others - dynamic holograms [27,29,30,33] based either on photorefractive crystals [27,33], or on liquid -crystal spatial light modulators (SLM...variations of the primary mirror’s curvature, which can be caused, e.g., by thermal effects or by inaccuracy in adjustment of the elastic thin- film mirror

  19. Titanium Alloy Strong Back for IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Byron, Glenn P.; Kai-Wang, Chan

    2011-01-01

    A titanium-alloy mirror-holding fixture called a strong back allows the temporary and permanent bonding of a 50 degree D263 glass x-ray mirror (IXO here stands for International X-ray Observatory). The strong back is used to hold and position a mirror segment so that mounting tabs may be bonded to the mirror with ultra-low distortion of the optical surface. Ti-15%Mo alloy was the material of choice for the strong back and tabs because the coefficient of thermal expansion closely matches that of the D263 glass and the material is relatively easy to machine. This invention has the ability to transfer bonded mounting points from a temporary location on the strong back to a permanent location on the strong back with minimal distortion. Secondly, it converts a single mirror segment into a rigid body with an acceptable amount of distortion of the mirror, and then maneuvers that rigid body into optical alignment such that the mirror segment can be bonded into a housing simulator or mirror module. Key problems are that the mirrors are 0.4-mm thick and have a very low coefficient of thermal expansion (CTE). Because the mirrors are so thin, they are very flexible and are easily distorted. When permanently bonding the mirror, the goal is to achieve a less than 1-micron distortion. Temperature deviations in the lab, which have been measured to be around 1 C, have caused significant distortions in the mirror segment.

  20. Qualification of silicon pore optics

    NASA Astrophysics Data System (ADS)

    Wille, Eric; Bavdaz, Marcos; Fransen, Sebastiaan; Collon, Maximilien; Ackermann, Marcelo; Guenther, Ramses; Chatbi, Abdelhakim; Vacanti, Giuseppe; Vervest, Mark; van Baren, Coen; Haneveld, Jeroen; Riekerink, Mark Olde; Koelewijn, Arenda; Kampf, Dirk; Zuknik, Karl-Heinz; Reutlinger, Arnd

    2014-07-01

    Silicon Pore Optics (SPO) are the enabling technology for ESA's second large class mission in the Cosmic Vision programme. As for every space hardware, a critical qualification process is required to verify the suitability of the SPO mirror modules surviving the launch loads and maintaining their performance in the space environment. We present recent design modifications to further strengthen the mounting system (brackets and dowel pins) against mechanical loads. The progress of a formal qualification test campaign with the new mirror module design is shown. We discuss mechanical and thermal limitations of the SPO technology and provide recommendations for the mission design of the next X-ray Space Observatory.

  1. AXAF VETA-I mirror ring focus measurements

    NASA Technical Reports Server (NTRS)

    Tananbaum, H. D.; Zhao, P.

    1994-01-01

    The AXAF VETA-I mirror ring focus measurements were made with an HRI (microchannel plate) X-ray detector. The ring focus is a sharply focused ring formed by X-rays before they reach the VEAT-I focal plane. It is caused by spherical aberrations due to the finite source distance and the despace in the VETA-I test. The ring focus test reveals some aspects fo the test system distortions and the mirror surface figure which are difficult or impossible to detect at the focal plane. The test results show periodic modulations of the ring radius and width which could be caused by gravity, thermal, and/or epoxy shrinkage distortions. The strongest component of the modulation had a 12-fold symmetry, because these distortions were exerted on the mirror through 12 flexures of the VETA-I mount. Ring focus models were developed to simulate the ring image. The models were compared with the data to understand the test system distortions and the mirror glass imperfection. Further studies will be done to complete this work. The ring focus measurement is a very powerful test. We expect that a similar test for the finally assembled mirror of AXAD-I will be highly valuable.

  2. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Surface Micromachined Adjustable Micro-Concave Mirror for Bio-Detection Applications

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Wei-Lun; Jywe, Wen-Yuh

    2009-08-01

    We present a bio-detection system integrated with an adjustable micro-concave mirror. The bio-detection system consists of an adjustable micro-concave mirror, micro flow cytometer chip and optical detection module. The adjustable micro-concave mirror can be fabricated with ease using commercially available MEMS foundry services (such as multiuser MEMS processes, MUMPs) and its curvature can be controlled utilizing thermal or electrical effects. Experimental results show that focal lengths of the micro-concave mirror ranging from 313.5 to 2275.0 μm are achieved. The adjustable micro-concave mirror can be used to increase the efficiency of optical detection and provide a high signal-to-noise ratio. The developed micro-concave mirror is integrated with a micro flow cytometer for cell counting applications. Successful counting of fluorescent-labeled beads is demonstrated using the developed method.

  3. Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.

    2014-01-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  4. A design study of mirror modules and an assembly based on the slumped glass for an Athena-like optics

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Civitani, Marta; Pareschi, Giovanni; Buratti, Enrico; Eder, Josef; Friedrich, Peter; Fürmetz, Maria

    2015-09-01

    The Athena mission was selected for the second large-class mission, due for launch in 2028, in ESA's Cosmic Vision program. The current solution for the optics is based on the Silicon Pore Optics (SPO) technology with the goal of 2m2 effective area at 1keV (aperture about 3m diameter) with a focal length of 12m. The SPO advantages are the compactness along the axial direction and the high conductivity of the Silicon. Recent development in the fabrication of mirror shells based on the Slumped Glass Optics (SGO) makes this technology an attractive solution for the mirror modules for Athena or similar telescopes. The SGO advantages are a potential high collecting area with a limited vignetting due to the lower shadowing and the aptitude to curve the glass plates up to small radius of curvature. This study shows an alternative mirror design based on SGO technology, tailored for Athena needs. The main challenges are the optimization of the manufacturing technology with respect to the required accuracy and the thermal control of the large surface in conjunction with the low conductivity of the glass. A concept has been elaborated which considers the specific benefits of the SGO technology and provides an efficient thermal control. The output of the study is a preliminary design substantiated by analyses and technological studies. The study proposes interfaces and predicts performances and budgets. It describes also how such a mirror system could be implemented as a modular assembly for X-ray telescope with a large collecting area.

  5. James Webb Space Telescope: Frequently Asked Questions for Scientists and Engineers

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2008-01-01

    JWST will be tested incrementally during its construction, starting with individual mirrors and instruments (including cameras and spectrometers) and building up to the full observatory. JWST's mirrors and the telescope structure are first each tested individually, including optical testing of the mirrors and alignment testing of the structure inside a cold thermal-vacuum chamber. The mirrors are then installed on the telescope structure in a clean room at Goddard Space Flight Center (GSFC). In parallel to the telescope assembly and alignment, the instruments are being built and tested, again first individually, and then as part of an integrated instrument assembly. The integrated instrument assembly will be tested in a thermal-vacuum chamber at GSFC using an optical simulator of the telescope. This testing makes sure the instruments are properly aligned relative to each other and also provides an independent check of the individual tests. After both the telescope and the integrated instrument module are successfully assembled, the integrated instrument module will be installed onto the telescope, and the combined system will be sent to Johnson Space Flight Center (JSC) where it will be optically tested in one of the JSC chambers. The process includes testing the 18 primary mirror segments acting as a single primary mirror, and testing the end-to-end system. The final system test will assure that the combined telescope and instruments are focused and aligned properly, and that the alignment, once in space, will be within the range of the actively controlled optics. In general, the individual optical tests of instruments and mirrors are the most accurate. The final system tests provide a cost-effective check that no major problem has occurred during assembly. In addition, independent optical checks of earlier tests will be made as the full system is assembled, providing confidence that there are no major problems.

  6. Optomechanical stability design of space optical mapping camera

    NASA Astrophysics Data System (ADS)

    Li, Fuqiang; Cai, Weijun; Zhang, Fengqin; Li, Na; Fan, Junjie

    2018-01-01

    According to the interior orientation elements and imaging quality requirements of mapping application to mapping camera and combined with off-axis three-mirror anastigmat(TMA) system, high optomechanical stability design of a space optical mapping camera is introduced in this paper. The configuration is a coaxial TMA system used in off-axis situation. Firstly, the overall optical arrangement is described., and an overview of the optomechanical packaging is provided. Zerodurglass, carbon fiber composite and carbon-fiber reinforced silicon carbon (C/SiC) are widely used in the optomechanical structure, because their low coefficient of thermal expansion (CTE) can reduce the thermal sensitivity of the mirrors and focal plane. Flexible and unloading support are used in reflector and camera supporting structure. Epoxy structural adhesives is used for bonding optics to metal structure is also introduced in this paper. The primary mirror is mounted by means of three-point ball joint flexures system, which is attach to the back of the mirror. Then, In order to predict flexural displacements due to gravity, static finite element analysis (FEA) is performed on the primary mirror. The optical performance peak-to-valley (PV) and root-mean-square (RMS) wavefront errors are detected before and after assemble. Also, the dynamic finite element analysis(FEA) of the whole optical arrangement is carried out as to investigate the performance of optomechanical. Finally, in order to evaluate the stability of the design, the thermal vacuum test and vibration test are carried out and the Modulation Transfer Function (MTF) and elements of interior orientation are presented as the evaluation index. Before and after the thermal vacuum test and vibration test, the MTF, focal distance and position of the principal point of optical system are measured and the result is as expected.

  7. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, R. A.

    1988-01-01

    A system study to develop the definition of a structural flight experiment for a large precision segmented reflector on the Space Station was accomplished by the Boeing Aerospace Company for NASA's Langley Research Center. The objective of the study was to use a Large Deployable Reflector (LDR) baseline configuration as the basis for focusing an experiment definition, so that the resulting accommodation requirements and interface constraints could be used as part of the mission requirements data base for Space Station. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of an optical bench, thermal shield and primary mirror segments, and alignment of the optical components, would occur on a second experiment. The structure would then be moved to the payload point system for pointing, optical control, and scientific optical measurement for a third experiment. Experiment 1 will deploy the primary support truss while it is attached to the instrument module structure. The ability to adjust the mirror attachment points and to attach several dummy primary mirror segments with a robotic system will also be demonstrated. Experiment 2 will be achieved by adding new components and equipment to experiment one. Experiment 3 will demonstrate advanced control strategies, active adjustment of the primary mirror alignment, and technologies associated with optical sensing.

  8. Environmental testing of the ATHENA mirror modules (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Landgraf, Boris; Girou, David; Collon, Maximilien J.; Vacanti, Giuseppe; Barrière, Nicolas M.; Günther, Ramses; Vervest, Mark; van der Hoeven, Roy; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Fransen, Sebastiaan; Shortt, Brian; van Baren, Coen; Eigenraam, Alexander

    2017-09-01

    The European Space Agency (ESA) is studying the ATHENA (Advanced Telescope for High ENergy Astrophysics) X-ray telescope, the second L-class mission in their Cosmic Vision 2015 - 2025 program with a launch spot in 2028. The baseline technology for the X-ray lens is the newly developed high-performance, light-weight and modular Silicon Pore Optics (SPO). As part of the technology preparation, ruggedisation and environmental testing studies are being conducted to ensure mechanical stability and optical performance of the optics during and after launch, respectively. At cosine, a facility with shock, vibration, tensile strength, long time storage and thermal testing equipment has been set up in order to test SPO mirror module (MM) materials for compliance with an Ariane launch vehicle and the mission requirements. In this paper, we report on the progress of our ongoing investigations regarding tests on mechanical and thermal stability of MM components like single SPO stacks with and without multilayer coatings and complete MMs of inner (R = 250 mm), middle (R = 737 mm) and outer (R = 1500 mm) radii.

  9. An Active Heater Control Concept to Meet IXO Type Mirror Module Thermal-Structural Distortion Requirement

    NASA Technical Reports Server (NTRS)

    Choi, Michael

    2013-01-01

    Flight mirror assemblies (FMAs) of large telescopes, such as the International X-ray Observatory (IXO), have very stringent thermal-structural distortion requirements. The spatial temperature gradient requirement within a FMA could be as small as 0.05 C. Con ventionally, heaters and thermistors are attached to the stray light baffle (SLB), and centralized heater controllers (i.e., heater controller boards located in a large electronics box) are used. Due to the large number of heater harnesses, accommodating and routing them is extremely difficult. The total harness length/mass is very large. This innovation uses a thermally conductive pre-collimator to accommodate heaters and a distributed heater controller approach. It minimizes the harness length and mass, and reduces the problem of routing and accommodating them. Heaters and thermistors are attached to a short (4.67 cm) aluminum portion of the pre-collimator, which is thermally coupled to the SLB. Heaters, which have a very small heater power density, and thermistors are attached to the exterior of all the mirror module walls. The major portion (23.4 cm) of the pre-collimator for the middle and outer modules is made of thin, non-conductive material. It minimizes the view factors from the FMA and heated portion of the precollimator to space. It also minimizes heat conduction from one end of the FMA to the other. Small and multi-channel heater controllers, which have adjustable set points and internal redundancy, are used. They are mounted to the mechanical support structure members adjacent to each module. The IXO FMA, which is 3.3 m in diameter, is an example of a large telescope. If the heater controller boards are centralized, routing and accommodating heater harnesses is extremely difficult. This innovation has the following advantages. It minimizes the length/mass of the heater harness between the heater controllers and heater circuits. It reduces the problem of routing and accommodating the harness on the FMA. It reduces the risk of X-ray attenuation caused by the heater harness. Its adjustable set point capability eliminates the need for survival heater circuits. The operating mode heater circuits can also be used as survival heater circuits. In the non-operating mode, a lower set point is used.

  10. Technician checks the mirrors of the Starshine-2 experiment

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Technician checks the mirrors of the Starshine-2 experiment KSC-01PD-1715 KENNEDY SPACE CENTER, Fla. -- A technician checks the mirrors on the Starshine-2 experiment inside a canister in the payload bay of Space Shuttle Endeavour. The deployable experiment is being carried on mission STS-108. Starshine-2's 800 aluminum mirrors were polished by more than 25,000 students from 26 countries. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews, bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello, and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff of Endeavour on mission STS-108 is scheduled for 7:41 p.m. EST.

  11. Thermal optimum design for tracking primary mirror of Space Telescope

    NASA Astrophysics Data System (ADS)

    Pan, Hai-jun; Ruan, Ping; Li, Fu; Wang, Hong-Wei

    2011-08-01

    In the conventional method, the structural parameters of primary mirror are usually optimized just by the requirement of mechanical performance. Because the influences of structural parameters on thermal stability are not taken fully into account in this simple method, the lightweight optimum design of primary mirror usually brings the bad thermal stability, especially in the complex environment. In order to obtain better thermal stability, a new method about structure-thermal optimum design of tracking primary mirror is discussed. During the optimum process, both the lightweight ratio and thermal stability will be taken into account. The structure-thermal optimum is introduced into the analysis process and commenced after lightweight design as the secondary optimum. Using the engineering analysis of software ANSYS, a parameter finite element analysis (FEA) model of mirror is built. On the premise of appropriate lightweight ratio, the RMS of structure-thermal deformation of mirror surface and lightweight ratio are assigned to be state variables, and the maximal RMS of temperature gradient load to be object variable. The results show that certain structural parameters of tracking primary mirror have different influences on mechanical performance and thermal stability, even they are opposite. By structure-thermal optimizing, the optimized mirror model discussed in this paper has better thermal stability than the old one under the same thermal loads, which can drastically reduce difficulty in thermal control.

  12. ATLAST ULE mirror segment performance analytical predictions based on thermally induced distortions

    NASA Astrophysics Data System (ADS)

    Eisenhower, Michael J.; Cohen, Lester M.; Feinberg, Lee D.; Matthews, Gary W.; Nissen, Joel A.; Park, Sang C.; Peabody, Hume L.

    2015-09-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for a 9.2 m aperture space-borne observatory operating across the UV/Optical/NIR spectra. The primary mirror for ATLAST is a segmented architecture with pico-meter class wavefront stability. Due to its extraordinarily low coefficient of thermal expansion, a leading candidate for the primary mirror substrate is Corning's ULE® titania-silicate glass. The ATLAST ULE® mirror substrates will be maintained at `room temperature' during on orbit flight operations minimizing the need for compensation of mirror deformation between the manufacturing temperature and the operational temperatures. This approach requires active thermal management to maintain operational temperature while on orbit. Furthermore, the active thermal control must be sufficiently stable to prevent time-varying thermally induced distortions in the mirror substrates. This paper describes a conceptual thermal management system for the ATLAST 9.2 m segmented mirror architecture that maintains the wavefront stability to less than 10 pico-meters/10 minutes RMS. Thermal and finite element models, analytical techniques, accuracies involved in solving the mirror figure errors, and early findings from the thermal and thermal-distortion analyses are presented.

  13. Variable Emittance Electrochromic Devices for Satellite Thermal Control

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya; Shannon, Kenneth C.

    2007-01-01

    An all-solid-state electrochromic device (ECD) was designed for electronic variable emissivity (VE) control. In this paper, a low weight (5g/m2) electrochromic thermal control device, the EclipseVEECD™, is detailed as a viable thermal control system for spacecraft outer surface temperatures. Discussion includes the technology's performance, satellite applications, and preparations for space based testing. This EclipseVEECD™ system comprises substrate/mirror electrode/active element/IR transparent electrode layers. This system tunes and modulates reflection/emittance from 5 μm to 15 μm region. Average reflectance/emittance modulation of the system from the 400 K to 250 K region is about 75%, while at room temperature (9.5 micron) reflectance/emittance is around 90%. Activation voltage of the EclipseVEECD™ is around ±1 Volt. The EclipseVEECD™ can be used as a smart thermal modulator for the thermal control of satellites and spacecraft by monitoring and adjusting the amount of energy emitted from the outer surfaces. The functionality of the EclipseVEECD™ was successfully demonstrated in vacuum using a multi-purpose heat dissipation/absorption test module, the EclipseHEAT™. The EclipseHEAT™ has been successfully flight checked and integrated onto the United States Naval Alchemy MidSTAR satellite, scheduled to launch December 2006.

  14. An afocal telescope configuration for the ESA ARIEL mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, Vania; Focardi, Mauro; Middleton, Kevin; Morgante, Gianluca; Pascale, Enzo; Grella, Samuele; Pace, Emanuele; Claudi, Riccardo; Amiaux, Jérôme; Colomé Ferrer, Josep; Hunt, Thomas; Rataj, Miroslaw; Sierra-Roig, Carles; Ficai Veltroni, Iacopo; Eccleston, Paul; Micela, Giuseppina; Tinetti, Giovanna

    2017-12-01

    Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (ARIEL) is a candidate as an M4 ESA mission to launch in 2026. During its 3.5 years of scientific operations, ARIEL will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the solar system. ARIEL aims to give a breakthrough in the observation of exoplanet atmospheres and understanding of the physics and chemistry of these far-away worlds. ARIEL is based on a 1 m class telescope feeding a collimated beam into two separate instrument modules: a spectrometer module covering the waveband between 1.95 and 7.8 μm and a combined fine guidance system/visible photometer/NIR spectrometer. The telescope configuration is a classic Cassegrain layout used with an eccentric pupil and coupled to a tertiary off-axis paraboloidal mirror. To constrain the thermo-mechanically induced optical aberrations, the primary mirror (M1) temperature will be monitored and finely tuned using an active thermal control system based on thermistors and heaters. They will be switched on and off to maintain the M1 temperature within ± 1 K by the telescope control unit (TCU). The TCU is a payload electronics subsystem also responsible for the thermal control of the spectrometer module detectors as well as the secondary mirror mechanism and IR calibration source management. The TCU, being a slave subsystem of the instrument control unit, will collect the housekeeping data from the monitored subsystems and will forward them to the master unit. The latter will run the application software, devoted to the main spectrometer management and to the scientific data on-board processing.

  15. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.

  16. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  17. Space ten-meter telescope (STMT) - Structural and thermal feasibility study of the primary mirror

    NASA Technical Reports Server (NTRS)

    Bely, Pierre Y.; Bolton, John F.; Neeck, Steven P.; Tulkoff, Philip J.

    1987-01-01

    The structural and thermal behavior of a ten-meter primary mirror for a space optical/near-IR telescope in geosynchronous orbit is studied. The glass-type lightweighted mirror is monolithic, of the double arch type, and is supported at only three points. The computer programs SSPTA (thermal), NASTRAN (finite element), and ACCOS V (optical) are used in sequence to determine the temperature, deformation, and optical performance of the mirror. A mirror temperature of 130 K or less appears to be obtainable by purely passive means. With a fused silica or standard Zerodur blank, thermally-induced deformation is unacceptable and cannot be fully corrected by an active secondary mirror over the desired field. Either active thermal control or a blank of lower thermal expansion coefficient would be required.

  18. Thermal: Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Polarized Microscopy Instrumentation for the Analysis of Field-Controlled Anisotropic Nanomaterials

    DTIC Science & Technology

    2014-11-14

    figure 1.2.1, right). The discovery TGA furnace design employs a silicon carbide ( SiC ) inner chamber. Four halogen lamps surrounded by a water...amplification,(13, 17) self-phase modulation (18, 19), and new nonlinear phenomena such as the nonlinear optical mirror ,(20) and the mirrorless optical

  19. Slumped glass option for making the XEUS mirrors: preliminary design and ongoing developments

    NASA Astrophysics Data System (ADS)

    Ghigo, M.; Canestrari, R.; Proserpio, L.; Dell'Orto, E.; Basso, S.; Citterio, O.; Pareschi, G.; Parodi, Giancarlo

    2008-07-01

    The XEUS mission (X-ray Evolving-Universe Spectroscopy Mission) of ESA, in the present configuration has a mirror collecting area in the order of 5-6 m2 @ 1 keV, 2 m2 @ 7 keV and 1 m2 @ 10 keV. These large collecting areas could be obtained with a mirror assembly composed of a large number of high quality segments each being able to deliver the angular resolution requested by the mission or better. The XEUS telescope will fit in the fairing of an Ariane 5 ECA launcher and hence its diameter is presently of about 4.5 m. The request in terms of angular resolution of the telescope has been set to 5 arcsec with a goal of 2 arcsec. Due to the large size of the optics it is impossible to create closed shells like those used for XMM or Chandra and hence it will be necessary to assemble a large number of segments (for example of ~0.6 m x ~0.3 m size) to recreate the mirror shells. These segments will form a module, an optical sub-unit of the telescope. The modules will be assembled to form the whole mirror system. As for all the space missions, the limits imposed on the payload mass budget by the launcher is the main driver that force the use of very lightweight optics and this request is of course very challenging. For example, the current design for XEUS foresees a geometric-area/mass ratio better than about 30 cm2/kg. In this article is illustrated a possible approach for the realization of large size and lightweight X-ray mirrors that derive from an experience gained from a previous work made in INAF-OAB on the thermal slumping of thin glass optics. The process foresees the use of a mould having a good optical figure but opposite shape respect to the segment to be slumped. On the mould is placed an initially flat glass sheet. With a suitable thermal cycle the glass sheet is conformed to the mould shape. Once tested for acceptance the glass sheet it is then integrated into a module by means of a robotic arm having a feedback system to confirm the correct alignment. A study on different optical geometries using the classical Wolter I and Kirkpatrick-Baez configurations has been also performed to investigate the theoretical performances obtainable with optics made using very thin glass shells.

  20. Novel 3D micromirror for miniature optical bio-robe SiOB assembly

    NASA Astrophysics Data System (ADS)

    Singh, Janak; Xu, Yingshun; Premachandran, C. S.; Jason, Teo Hui Siang; Chen, Nanguang

    2008-02-01

    This article presents design and development of a novel 3D micromirror for large deflection scanning application in invivo optical coherence tomography (OCT) bio-imaging probe. Overall mirror chip size is critical to reduce the diameter of the probe; however, mirror plate itself should not be less than 500 μm as smaller size means reducing the amount of light collected after scattering for OCT imaging. In this study, mirror chip sizes of 1 × 1 mm2 and 1.5 × 1.5 mm2 were developed with respectively 400 and 500 micrometer diameter mirror plates. The design includes electro thermal excitation mechanism in the same plane as mirror plate to achieve 3D free space scanning. Larger deflection requires longer actuators, which usually increase the overall size of the chip. To accommodate longer actuators and keep overall chip size same curved beam actuators are designed and integrated for micromirror scanning. Typical length of the actuators was 800 micrometer, which provided up to 17 degrees deflection. Deep reactive ion etching (DRIE) process module was used extensively to etch high aspect ratio structures and keep the total mirror chip size small.

  1. Diamond fly cutting of aluminum thermal infrared flat mirrors for the OSIRIS-REx Thermal Emission Spectrometer (OTES) instrument

    NASA Astrophysics Data System (ADS)

    Groppi, Christopher E.; Underhill, Matthew; Farkas, Zoltan; Pelham, Daniel

    2016-07-01

    We present the fabrication and measurement of monolithic aluminum flat mirrors designed to operate in the thermal infrared for the OSIRIS-Rex Thermal Emission Spectrometer (OTES) space instrument. The mirrors were cut using a conventional fly cutter with a large radius diamond cutting tool on a high precision Kern Evo 3-axis CNC milling machine. The mirrors were measured to have less than 150 angstroms RMS surface error.

  2. Astronaut Neil Armstrong during thermovacuum training

    NASA Image and Video Library

    1969-05-07

    Astronaut Neil A. Armstrong, commander of the Apollo 11 lunar landing mission, is photographed during thermovacuum training in Chamber B of the Space Environment Simulation Laboratory, Building 32, Manned Spacecraft Center. He is wearing an Extravehicular Mobility Unit. The training simulated lunar surface vacuum and thermal conditions during astronaut operations outside the Lunar Module on the moon's surface. The mirror was used to reflect solar light.

  3. Thermal diffusivity imaging with the thermal lens microscope.

    PubMed

    Dada, Oluwatosin O; Feist, Peter E; Dovichi, Norman J

    2011-12-01

    A coaxial thermal lens microscope was used to generate images based on both the absorbance and thermal diffusivity of histological samples. A pump beam was modulated at frequencies ranging from 50 kHz to 5 MHz using an acousto-optic modulator. The pump and a CW probe beam were combined with a dichroic mirror, directed into an inverted microscope, and focused onto the specimen. The change in the transmitted probe beam's center intensity was detected with a photodiode. The photodiode's signal and a reference signal from the modulator were sent to a high-speed lock-in amplifier. The in-phase and quadrature signals were recorded as a sample was translated through the focused beams and used to generate images based on the amplitude and phase of the lock-in amplifier's signal. The amplitude is related to the absorbance and the phase is related to the thermal diffusivity of the sample. Thin sections of stained liver and bone tissues were imaged; the contrast and signal-to-noise ratio of the phase image was highest at frequencies from 0.1-1 MHz and dropped at higher frequencies. The spatial resolution was 2.5 μm for both amplitude and phase images, limited by the pump beam spot size. © 2011 Optical Society of America

  4. Ultralightweight Space Deployable Primary Reflector Demonstrator

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Zeiders, Glenn W.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A concept has been developed and analyzed and several generational prototypes built for a gossamer-class deployable truss for a mirror or reflector with many smaller precisely-figured solid elements attached will, for at least the next several decades, minimize the mass of a large primary mirror assembly while still providing the high image quality essential for planet-finding and cosmological astronomical missions. Primary mirror segments are mounted in turn on ultralightweight thermally-formed plastic panels that hold clusters of mirror segments in rigid arrays whose tip/tilt and piston would be corrected over the scale of the plastic panels by the control segments. Prototype panels developed under this program are 45 cm wide and fabricated from commercially available Kaplan sheets. A three-strut octahedral tensegrity is the basis for the overall support structure. Each fundamental is composed of two such octahedrons, rotated oppositely about a common triangular face. Adjacent modules are joined at the nodes of the upper and lower triangles to form a deployable structure that could be made arbitrarily large. A seven-module dowel-and-wire prototype has been constructed. Deployment techniques based on the use of collapsing toggled struts with diagonal tensional elements allows an assembly of tensegrities to be fully collapsed and redeployed. The prototype designs will be described and results of a test program for measuring strength and deformation will be presented.

  5. Interferometric Polarization Control

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J. (Inventor); Moseley, Samuel H. (Inventor); Chuss, David T. (Inventor); Novak, Giles A. (Inventor)

    2008-01-01

    A signal conditioning module provides a polarimeter capability in a photometric system. The module may include multiple variable delay polarization modulators. Each modulator may include an input port, and a first arm formed to include a first reflector and first rooftop mirror arranged in opposed relationship. The first reflector may direct an input radiation signal to the first rooftop mirror. Each modulator also may include an output port and a second arm formed to include a second reflector and second rooftop mirror arranged in opposed relationship. The second reflector can guide a signal from the second rooftop mirror towards the output port to provide an output radiation signal. A beamsplitting grid may be placed between the first reflector and the first rooftop mirror, and also between the second reflector and the second rooftop mirror. A translation apparatus can provide adjustment relative to optical path length vis-a-vis the first arm, the second arm and the grid.

  6. Interferometric polarization control

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J. (Inventor); Novak, Giles A. (Inventor); Moseley, Samuel H. (Inventor); Chuss, David T. (Inventor)

    2009-01-01

    A signal conditioning module provides a polarimeter capability in a photometric system. The module may include multiple variable delay polarization modulators. Each modulator may include an input port, and a first arm formed to include a first reflector and first rooftop mirror arranged in opposed relationship. The first reflector may direct an input radiation signal to the first rooftop mirror. Each modulator also may include an output port and a second arm formed to include a second reflector and second rooftop mirror arranged in opposed relationship. The second reflector can guide a signal from the second rooftop mirror towards the output port to provide an output radiation signal. A beamsplitting grid may be placed between the first reflector and the first rooftop mirror, and also between the second reflector and the second rooftop mirror. A translation apparatus can provide adjustment relative to optical path length vis-a-vis the first arm, the second arm and the grid.

  7. The effects of thermal gradients on the Mars Observer Camera primary mirror

    NASA Technical Reports Server (NTRS)

    Applewhite, Roger W.; Telkamp, Arthur R.

    1992-01-01

    The paper discusses the effect of thermal gradients on the optical performance of the primary mirror of Mars Observer Camera (MOC), which will be launched on the Mars Observer spacecraft in September 1992. It was found that mild temperature gradients can have a large effect on the mirror surface figure, even for relatively low coefficient-of-thermal-expansion materials. However, in the case of the MOC primary mirror, it was found that the radius of curvature (ROC) of the reflective surface of the mirror changed in a nearly linear fashion with the radial temperature gradient, with little additional aberration. A solid-state ROC controller using the thermal gradient effect was implemented and verified.

  8. Cryogenic Optical Performance of a Light-weight Mirror Assembly for Future Space Astronomical Telescopes: Optical Test Results and Thermal Optical Model

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Arnold, William; Baker, Markus A.; Bevan, Ryan M.; Carpenter, James R.; Effinger, Michael R.; Gaddy, Darrell E.; Goode, Brian K.; Kegley, Jeffrey R.; Hogue, William D.; hide

    2013-01-01

    A 40 cm diameter mirror assembly was interferometrically tested at room temperature down to 250 degrees Kelvin for thermal deformation. The 2.5 m radius of curvature spherical mirror assembly was constructed by low temperature fusing three abrasive waterjet core sections between two face sheets. The 93% lightweighted Corning ULE mirror assembly represents the current state of the art for future UV, optical, near IR space telescopes. During the multiple thermal test cycles, test results of interferometric test, thermal IR images of the front face were recorded in order to validate thermal optical model.

  9. Mirror Technology Development for The International X-Ray Observatory Mission

    NASA Technical Reports Server (NTRS)

    Zhang, Will

    2010-01-01

    Presentation slides include: International X-ray Observatory (IXO), Lightweight and High Resolution X-ray Optics is Needed; Modular Design of Mirror Assembly, IXO Mirror Technology Development Objectives, Focus of Technology Development, Slumping - Status, Mirror Fabrication Progress, Temporary Bonding - Status, Alignment - Status, Permanent Bonding - Status, Mirror Housing Simulator (MHS) - TRL-4, Mini-Module (TRL-5), Flight-Like Module (TRL-6), Mirror Technology Development Team, Outlook, and Small Technology Firms that Have Made Direct Contributions to IXO Mirror Technology Development.

  10. Cryogenic Optical Performance of a Lightweighted Mirror Assembly for Future Space Astronomical Telescopes: Correlating Optical Test Results and Thermal Optical Model

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Arnold, William R.; Baker, Marcus A.; Bevan, Ryan M.; Burdick, Gregory; Effinger, Michael R.; Gaddy, Darrell E.; Goode, Brian K.; Hanson, Craig; Hogue, William D.; hide

    2013-01-01

    A 43cm diameter stacked core mirror demonstrator was interferometrically tested at room temperature down to 250 degrees Kelvin for thermal deformation. The 2.5m radius of curvature spherical mirror assembly was constructed by low temperature fusing three abrasive waterjet core sections between two CNC pocket milled face sheets. The 93% lightweighted Corning ULE® mirror assembly represents the current state of the art for future UV, optical, near IR space telescopes. During the multiple thermal test cycles, test results of interferometric test, thermal IR images of the front face were recorded in order to validate thermal optical model.

  11. BESST: A Miniature, Modular Radiometer

    NASA Technical Reports Server (NTRS)

    Warden, Robert; Good, William; Baldwin-Stevens, Erik

    2010-01-01

    A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.

  12. Formation Flying of Components of a Large Space Telescope

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Quadrelli, Marco; Breckenridge, William

    2009-01-01

    A conceptual space telescope having an aperture tens of meters wide and a focal length of hundreds of meters would be implemented as a group of six separate optical modules flying in formation: a primary-membrane-mirror module, a relay-mirror module, a focal-plane-assembly module containing a fast steering mirror and secondary and tertiary optics, a primary-mirror-figure-sensing module, a scanning-electron-beam module for controlling the shape of the primary mirror, and a sunshade module. Formation flying would make it unnecessary to maintain the required precise alignments among the modules by means of an impractically massive rigid structure. Instead, a control system operating in conjunction with a metrology system comprising optical and radio subsystems would control the firing of small thrusters on the separate modules to maintain the formation, thereby acting as a virtual rigid structure. The control system would utilize a combination of centralized- and decentralized-control methods according to a leader-follower approach. The feasibility of the concept was demonstrated in computational simulations that showed that relative positions could be maintained to within a fraction of a millimeter and orientations to within several microradians.

  13. Solar energy modulator

    NASA Technical Reports Server (NTRS)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  14. Alignment method for solar collector arrays

    DOEpatents

    Driver, Jr., Richard B

    2012-10-23

    The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

  15. Development of mirror coatings for gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Steinlechner, J.

    2018-05-01

    Gravitational waves are detected by measuring length changes between mirrors in the arms of kilometre-long Michelson interferometers. Brownian thermal noise arising from thermal vibrations of the mirrors can limit the sensitivity to distance changes between the mirrors, and, therefore, the ability to measure gravitational-wave signals. Thermal noise arising from the highly reflective mirror coatings will limit the sensitivity both of current detectors (when they reach design performance) and of planned future detectors. Therefore, the development of coatings with low thermal noise, which at the same time meet strict optical requirements, is of great importance. This article gives an overview of the current status of coatings and of the different approaches for coating improvement. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  16. Development of mirror coatings for gravitational-wave detectors.

    PubMed

    Steinlechner, J

    2018-05-28

    Gravitational waves are detected by measuring length changes between mirrors in the arms of kilometre-long Michelson interferometers. Brownian thermal noise arising from thermal vibrations of the mirrors can limit the sensitivity to distance changes between the mirrors, and, therefore, the ability to measure gravitational-wave signals. Thermal noise arising from the highly reflective mirror coatings will limit the sensitivity both of current detectors (when they reach design performance) and of planned future detectors. Therefore, the development of coatings with low thermal noise, which at the same time meet strict optical requirements, is of great importance. This article gives an overview of the current status of coatings and of the different approaches for coating improvement.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  17. Design and Analysis of Modules for Segmented X-Ray Optics

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; BIskach, Michael P.; Chan, Kai-Wing; Saha, Timo T; Zhang, William W.

    2012-01-01

    Future X-ray astronomy missions demand thin, light, and closely packed optics which lend themselves to segmentation of the annular mirrors and, in turn, a modular approach to the mirror design. The modular approach to X-ray Flight Mirror Assembly (FMA) design allows excellent scalability of the mirror technology to support a variety of mission sizes and science objectives. This paper describes FMA designs using slumped glass mirror segments for several X-ray astrophysics missions studied by NASA and explores the driving requirements and subsequent verification tests necessary to qualify a slumped glass mirror module for space-flight. A rigorous testing program is outlined allowing Technical Development Modules to reach technical readiness for mission implementation while reducing mission cost and schedule risk.

  18. Coupling of a nanomechanical oscillator and an atomic three-level medium

    NASA Astrophysics Data System (ADS)

    Sanz-Mora, A.; Eisfeld, A.; Wüster, S.; Rost, J.-M.

    2016-02-01

    We theoretically investigate the coupling of an ultracold three-level atomic gas and a nanomechanical mirror via classical electromagnetic radiation. The radiation pressure on the mirror is modulated by absorption of a probe light field, caused by the atoms which are electromagnetically rendered nearly transparent, allowing the gas to affect the mirror. In turn, the mirror can affect the gas as its vibrations generate optomechanical sidebands in the control field. We show that the sidebands cause modulations of the probe intensity at the mirror frequency, which can be enhanced near atomic resonances. Through the radiation pressure from the probe beam onto the mirror, this results in resonant driving of the mirror. Controllable by the two-photon detuning, the phase relation of the driving to the mirror motion decides upon amplification or damping of mirror vibrations. This permits direct phase locking of laser amplitude modulations to the motion of a nanomechanical element opening a perspective for cavity-free cooling through coupling to an atomic gas.

  19. Status of Technology Development to enable Large Stable UVOIR Space Telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; MSFC AMTD Team

    2017-01-01

    NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.

  20. Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors.

    PubMed

    Kakue, Takashi; Nishitsuji, Takashi; Kawashima, Tetsuya; Suzuki, Keisuke; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-07-08

    We demonstrate an aerial projection system for reconstructing 3D motion pictures based on holography. The system consists of an optical source, a spatial light modulator corresponding to a display and two parabolic mirrors. The spatial light modulator displays holograms calculated by computer and can reconstruct holographic motion pictures near the surface of the modulator. The two parabolic mirrors can project floating 3D images of the motion pictures formed by the spatial light modulator without mechanical scanning or rotating. In this demonstration, we used a phase-modulation-type spatial light modulator. The number of pixels and the pixel pitch of the modulator were 1,080 × 1,920 and 8.0 μm × 8.0 μm, respectively. The diameter, the height and the focal length of each parabolic mirror were 288 mm, 55 mm and 100 mm, respectively. We succeeded in aerially projecting 3D motion pictures of size ~2.5 mm(3) by this system constructed by the modulator and mirrors. In addition, by applying a fast computational algorithm for holograms, we achieved hologram calculations at ~12 ms per hologram with 4 CPU cores.

  1. Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors

    PubMed Central

    Kakue, Takashi; Nishitsuji, Takashi; Kawashima, Tetsuya; Suzuki, Keisuke; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-01-01

    We demonstrate an aerial projection system for reconstructing 3D motion pictures based on holography. The system consists of an optical source, a spatial light modulator corresponding to a display and two parabolic mirrors. The spatial light modulator displays holograms calculated by computer and can reconstruct holographic motion pictures near the surface of the modulator. The two parabolic mirrors can project floating 3D images of the motion pictures formed by the spatial light modulator without mechanical scanning or rotating. In this demonstration, we used a phase-modulation-type spatial light modulator. The number of pixels and the pixel pitch of the modulator were 1,080 × 1,920 and 8.0 μm × 8.0 μm, respectively. The diameter, the height and the focal length of each parabolic mirror were 288 mm, 55 mm and 100 mm, respectively. We succeeded in aerially projecting 3D motion pictures of size ~2.5 mm3 by this system constructed by the modulator and mirrors. In addition, by applying a fast computational algorithm for holograms, we achieved hologram calculations at ~12 ms per hologram with 4 CPU cores. PMID:26152453

  2. The eROSITA X-ray mirrors: technology and qualification aspects of the production of mandrels, shells and mirror modules

    NASA Astrophysics Data System (ADS)

    Arcangeli, L.; Borghi, G.; Bräuninger, H.; Citterio, O.; Ferrario, I.; Friedrich, P.; Grisoni, G.; Marioni, F.; Predehl, P.; Rossi, M.; Ritucci, A.; Valsecchi, G.; Vernani, D.

    2017-11-01

    The name "eROSITA" stands for extended Roentgen Survey with an Imaging Telescope Array. The general design of the eROSITA X-ray telescope is derived from that of ABRIXAS. A bundle of 7 mirror modules with short focal lengths make up a compact telescope which is ideal for survey observations. Similar designs had been proposed for the missions DUO and ROSITA but were not realized due to programmatic shortfall. Compared to those, however, the effective area in the soft X-ray band has now much increased by adding 27 additional outer mirror shells to the original 27 ones of each mirror module. The requirement on the on-axis resolution has also been confined, namely to 15 arc seconds HEW. For these reasons the prefix "extended" was added to the original name "ROSITA". The scientific motivation for this extension is founded in the ambitious goal to detect about 100,000 clusters of galaxies which trace the large scale structure of the Universe in space and time. The X-ray telescope of eROSITA will consist of 7 identical and co-aligned mirror modules, each with 54 nested Wolter-1 mirror shells. The mirror shells are glued onto a spider wheel which is screwed to the mirror interface structure making a rigid mechanical unit. The assembly of 7 modules forms a compact hexagonal configuration with 1300 mm diameter (see Fig. 1) and will be attached to the telescope structure which connects to the 7 separate CCD cameras in the focal planes. The co-alignment of the mirror module enables eROSITA to perform also pointed observations. The replication process described in chapter III allows the manufacturing in one single piece and at the same time of both the parabola and hyperbola parts of the Wolter 1 mirror.

  3. Long Term Outdoor Testing of Low Concentration Solar Modules

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis; Avery, James; Minkin, Leonid; Huang, H. X.; Hebrink, Tim; Hurt, Rik; Boehm, Robert

    2011-12-01

    A 1-axis carousel tracker equipped with four 3-sun low-concentration mirror modules has now been under test outdoors at the University of Nevada in Las Vegas (UNLV) for three years. There are three unique features associated with this unit. First, simple linear mirrors are used to reduce the amount of expensive single crystal silicon in order to potentially lower the module cost while potentially maintaining cell efficiencies over 20% and high module efficiency. Simple linear mirrors also allow the use of a single axis tracker. Second, the azimuth carousel tracker is also unique allowing trackers to be used on commercial building rooftops. Third, an experiment is underway comparing aluminum based mirrors with novel 3M Company multilayer polymeric mirrors which are potentially very low cost. Comparing the data from March of 2008 through March of 2011 shows that the aluminum mirror degradation to date is negligible and that the carousel tracker has been operating continuously and reliable. Also, no degradation has been observed for the 3M brand cool mirrors after one year in use.

  4. Electromagnetic DM technology meets future AO demands

    NASA Astrophysics Data System (ADS)

    Hamelinck, Roger; Rosielle, Nick; Steinbuch, Maarten; Doelman, Niek

    New deformable mirror technology is developed by the Technische Universiteit Eindhoven, Delft University of Technology and TNO Science and Industry. Several prototype adaptive deformable mirrors are realized mirrors, up to 427 actuators and ∅150mm diameter, with characteristics suitable for future AO systems. The prototypes consist of a 100µm thick, continuous facesheet on which low voltage, electromagnetic, push-pull actuators impose out-of-plane displacements. The variable reluctance actuators with ±10µm stroke and nanometer resolution are located in a standard actuator module. Each module with 61 actuators connects to a single PCB with dedicated, 16 bit, PWM based, drivers. A LVDS multi-drop cable connects up to 32 actuator modules. With the actuator module, accompanying PCB and multi-drop system the deformable mirror technology is made modular in its mechanics and electronics. An Ethernet-LVDS bridge enables any commercial PC to control the mirror using the UDP standard. Latest results of the deformable mirror technology development are presented.

  5. Optical integration of SPO mirror modules in the ATHENA telescope

    NASA Astrophysics Data System (ADS)

    Valsecchi, G.; Marioni, F.; Bianucci, G.; Zocchi, F. E.; Gallieni, D.; Parodi, G.; Ottolini, M.; Collon, M.; Civitani, M.; Pareschi, G.; Spiga, D.; Bavdaz, M.; Wille, E.

    2017-08-01

    ATHENA (Advanced Telescope for High-ENergy Astrophysics) is the next high-energy astrophysical mission selected by the European Space Agency for launch in 2028. The X-ray telescope consists of 1062 silicon pore optics mirror modules with a target angular resolution of 5 arcsec. Each module must be integrated on a 3 m structure with an accuracy of 1.5 arcsec for alignment and assembly. This industrial and scientific team is developing the alignment and integration process of the SPO mirror modules based on ultra-violet imaging at the 12 m focal plane. This technique promises to meet the accuracy requirement while, at the same time, allowing arbitrary integration sequence and mirror module exchangeability. Moreover, it enables monitoring the telescope point spread function during the planned 3-year integration phase.

  6. Laser frequency modulator for modulating a laser cavity

    DOEpatents

    Erbert, Gaylen V.

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  7. Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Ramsey, Brian; O'Dell, Stephen L.; Elsner, Ronald F.; Kilaru, Kiranmayee; Atkins, Carolyn; Pavlinskiy, Mikhail N.; Tkachenko, Alexey V.; Lapshov, Igor Y.

    2013-01-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the Astronomical Roengen Telescope- X-ray Concentrator (ART-XC) instrument on board the Spectrum-Roentgen-Gamma Mission. ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Each module provides an effective area of 65 sq cm at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. We will present a status of the ART x-ray module development at MSFC.

  8. Advances in thermal control and performance of the MMT M1 mirror

    NASA Astrophysics Data System (ADS)

    Gibson, J. D.; Williams, G. G.; Callahan, S.; Comisso, B.; Ortiz, R.; Williams, J. T.

    2010-07-01

    Strategies for thermal control of the 6.5-meter diameter borosilicate honeycomb primary (M1) mirror at the MMT Observatory have included: 1) direct control of ventilation system chiller setpoints by the telescope operator, 2) semiautomated control of chiller setpoints, using a fixed offset from the ambient temperature, and 3) most recently, an automated temperature controller for conditioned air. Details of this automated controller, including the integration of multiple chillers, heat exchangers, and temperature/dew point sensors, are presented here. Constraints and sanity checks for thermal control are also discussed, including: 1) mirror and hardware safety, 2) aluminum coating preservation, and 3) optimization of M1 thermal conditions for science acquisition by minimizing both air-to-glass temperature differences, which cause mirror seeing, and internal glass temperature gradients, which cause wavefront errors. Consideration is given to special operating conditions, such as high dew and frost points. Precise temperature control of conditioned ventilation air as delivered to the M1 mirror cell is also discussed. The performance of the new automated controller is assessed and compared to previous control strategies. Finally, suggestions are made for further refinement of the M1 mirror thermal control system and related algorithms.

  9. Progress making the top end optical assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.; Arendt, J.; Bader, S.; Danyo, G.; Heller, C.

    2012-09-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to design and produce the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakal', Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot" at the prime focus of the ATST and so presents special challenges. In this paper, we describe progress in the L-3 technical approach to meeting these challenges, including silicon carbide off-axis mirror design, fabrication, and high accuracy figuring and polishing all within L-3; mirror support design; the design for stray light control; subsystems for opto-mechanical positioning and high accuracy absolute mirror orientation sensing; Lyot stop design; and thermal management of all design elements to remain close to ambient temperature despite the imposed solar irradiance load.

  10. NT-SiC (new-technology silicon carbide) : Φ 650mm optical space mirror substrate of high-strength reaction-sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Suyama, Shoko; Itoh, Yoshiyasu; Tsuno, Katsuhiko; Ohno, Kazuhiko

    2005-08-01

    Silicon carbide (SiC) is the most advantageous as the material of various telescope mirrors, because of high stiffness, low density, low coefficient of thermal expansion, high thermal conductivity and thermal stability. Newly developed high-strength reaction-sintered silicon carbide (NTSIC), which has two times higher strength than sintered SiC, is one of the most promising candidates for lightweight optical mirror substrate, because of fully dense, lightweight, small sintering shrinkage (+/-1 %), good shape capability and low processing temperature. In this study, 650mm in diameter mirror substrate of NTSIC was developed for space telescope applications. Three developed points describe below. The first point was to realize the lightweight to thin the thickness of green bodies. Ribs down to 3mm thickness can be obtained by strengthen the green body. The second point was to enlarge the mirror size. 650mm in diameter of mirror substrate can be fabricated with enlarging the diameter in order. The final point was to realize the homogeneity of mirror substrate. Some properties, such as density, bending strength, coefficient of thermal expansion, Young's modulus, Poisson's ratio, fracture toughness, were measured by the test pieces cutting from the fabricated mirror substrates.

  11. Thermally invariant dielectric coatings for micromirrors

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Talghader, Joseph J.

    2002-06-01

    Thermal expansion-induced curvature becomes a major effect in micromirrors as the mirror diameter exceeds 100 mum. Such mirrors are used for optical switching, scanning, and many other applications. By using multilayer coatings instead of a single metal reflector, one can use the mechanical properties of the multilayer to create mirrors with zero curvature across temperature. We demonstrate the fabrication of such thermally invariant mirrors using dielectric coatings. A semianalytic model based on free-plate elastic theory is developed that uses empirical parameters in place of the true thermal expansion coefficients of the coating materials. Micromirrors are demonstrated that maintain their design curvature to within lambda/60 for lambda = 633 nm across an operating range from 21 degC to 58 degC.

  12. ART-XC/SRG: joint calibration of mirror modules and x-ray detectors

    NASA Astrophysics Data System (ADS)

    Tkachenko, A.; Pavlinsky, M.; Levin, V.; Akimov, V.; Krivchenko, A.; Rotin, A.; Kuznetsova, M.; Lapshov, I.; Yaskovich, A.; Oleinikov, V.; Gubarev, M.; Ramsey, B.

    2017-08-01

    The Astronomical Roentgen Telescope - X-ray Concentrator (ART-XC) is a hard x-ray instrument with energy response 6-30 keV that will to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. ART-XC consists of seven co-aligned mirror modules coupled with seven focal plane CdTe double-sided strip detectors. The mirror modules had been fabricated and calibrated at the NASA Marshall Space Flight Center (MSFC). The Russian Space Research Institute (IKI) has developed and tested the X-ray detectors. The joint x-ray calibration of the mirror modules and focal plane detectors was carried out at the IKI test facility. Details of the calibration procedure and an overview of the results are presented here.

  13. PVMirrors: Hybrid PV/CSP collectors that enable lower LCOEs

    NASA Astrophysics Data System (ADS)

    Fisher, Kate; Yu, Zhengshan Jason; Striling, Rob; Holman, Zachary

    2017-06-01

    The primary challenge with concentrating solar power (CSP) is that the conversion efficiency is low—and the cost high—compared to that of photovoltaics (PV), and the primary challenge with PV is that the energy generated cannot be stored cost effectively. We introduce a technology that hybridizes CSP and PV, resulting in power plants with high energy conversion efficiency and affordable storage. This is accomplished by replacing silvered troughs (or heliostat facets) with "PVMirrors" that and direct photons of each wavelength to the converter (PV or thermal) that may best use them. A PVMirror looks like a curved PV module that includes a spectrum-splitting dichroic mirror film; this film, which is the heart of the technology, transmits near-infrared light to the underlying silicon PV cells while reflecting both longer and shorter wavelengths to a thermal absorber tube. This paper investigates the optical performance of dichroic mirror film, the specularity of PVMirrors, and the anticipated levelized cost of energy (LCOE) from a PVMirror power plant. PVMirrors are found to decrease LCOE by more than 15% relative to CSP while retaining full dispatchability.

  14. Reduction and possible elimination of coating thermal noise using a rigidly controlled cavity with a quantum-nondemolition technique.

    PubMed

    Somiya, Kentaro

    2009-06-12

    Thermal noise of a mirror is one of the most important issues in high-precision measurements such as gravitational-wave detection or cold damping experiments. It has been pointed out that thermal noise of a mirror with multilayer coatings can be reduced by mechanical separation of the layers. In this Letter, we introduce a way to further reduce thermal noise by locking the mechanically separated mirrors. The reduction is limited by the standard quantum limit of control noise, but it can be overcome with a quantum-nondemolition technique, which finally raises a possibility of complete elimination of coating thermal noise.

  15. Development of Mirror Modules for the ART-XC Instrument

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Lapshov, I.

    2012-01-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART -XC instrument on board the Spectrum-Roentgen-Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module provides an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. We will present a status of the ART x-ray module development at MSFC.

  16. Gravity and thermal deformation of large primary mirror in space telescope

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong

    2016-10-01

    The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.

  17. Opto-thermal analysis of a lightweighted mirror for solar telescope.

    PubMed

    Banyal, Ravinder K; Ravindra, B; Chatterjee, S

    2013-03-25

    In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in ground and space applications.

  18. Ion beam figuring approach for thermally sensitive space optics.

    PubMed

    Yin, Xiaolin; Deng, Weijie; Tang, Wa; Zhang, Binzhi; Xue, Donglin; Zhang, Feng; Zhang, Xuejun

    2016-10-01

    During the ion beam figuring (IBF) of a space mirror, thermal radiation of the neutral filament and particle collisions will heat the mirror. The adhesive layer used to bond the metal parts and the mirror is very sensitive to temperature rise. When the temperature exceeds the designed value, the mirror surface shape will change markedly because of the thermal deformation and stress release of the adhesive layer, thereby reducing the IBF accuracy. To suppress the thermal effect, we analyzed the heat generation mechanism. By using thermal radiation theory, we established a thermal radiation model of the neutral filament. Additionally, we acquired a surface-type Gaussian heat source model of the ion beam sputtering based on the removal function and Faraday scan result. Using the finite-element-method software ABAQUS, we developed a method that can simulate the thermal effect of the IBF for the full path and all dwell times. Based on the thermal model, which was experimentally confirmed, we simulated the thermal effects for a 675  mm×374  mm rectangular SiC space mirror. By optimizing the dwell time distribution, the peak temperature value of the adhesive layer during the figuring process was reduced under the designed value. After one round of figuring, the RMS value of the surface error changed from 0.094 to 0.015λ (λ=632.8  nm), which proved the effectiveness of the thermal analysis and suppression method.

  19. Effect of gamma radiation on the stability of UV replicated composite mirrors

    NASA Astrophysics Data System (ADS)

    Zaldivar, Rafael J.; Kim, Hyun I.; Ferrelli, Geena L.

    2018-04-01

    Composite replicated mirrors are gaining increasing attention for space-based applications due to their lower density, tailorable mechanical properties, and rapid manufacturing times over state-of-the-art glass mirrors. Ultraviolet (UV)-cured mirrors provide a route by which high-quality mirrors can be manufactured at relatively low processing temperatures that minimize residual stresses. The successful utilization of these mirrors requires nanometer scale dimensional stability after both thermal cycling and hygrothermal exposure. We investigate the effect of gamma irradiation as a process to improve the stability of UV replicated mirrors. Gamma radiation exposure was shown to increase the cure state of these mirrors as evidenced by an increase in modulus, glass transition temperature, and the thermal degradation behavior with dosage. Gas chromatography-mass spectroscopy also showed evidence of consumption of the primary monomers and initiation of the photosensitive agent with gamma exposure. The gamma-exposed mirrors exhibited significant improvement in stability even after multiple thermal cycling in comparison with nonirradiated composite mirrors. Though improvements in the cure state contribute to the overall stability, the radiation dosage was also shown to reduce the film stress of the mirror by over 80% as evidenced using Stoney replicated specimens. This reduction in residual stress is encouraging considering the utilization of these structures for space applications. This paper shows that replicated composite mirrors are a viable alternative to conventional optical structures.

  20. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  1. Calibration of the ART-XC mirror modules at MSFC

    NASA Astrophysics Data System (ADS)

    Krivonos, R.; Tkachenko, A.; Burenin, R.; Filippova, E.; Lapshov, I.; Mereminskiy, I.; Molkov, S.; Pavlinsky, M.; Sazonov, S.; Gubarev, M.; Kolodziejczak, J.; O'Dell, S. L.; Swartz, D.; Zavlin, Vyacheslav E.; Ramsey, B. D.

    2017-10-01

    The Astronomical Röntgen Telescope X-ray Concentrator (ART-XC) is a hard X-ray telescope with energy response up to 30 keV, to be launched on board the Spectrum Röntgen Gamma (SRG) spacecraft in 2018. ART-XC consists of seven identical co-aligned mirror modules. Each mirror assembly is coupled with a CdTe double-sided strip (DSS) focal-plane detector. Eight X-ray mirror modules (seven flight and one spare units) for ART-XC were developed and fabricated at the Marshall Space Flight Center (MSFC), NASA, USA. We present results of testing procedures performed with an X-ray beam facility at MSFC to calibrate the point spread function (PSF) of the mirror modules. The shape of the PSF was measured with a high-resolution CCD camera installed in the focal plane with defocusing of 7 mm, as required by the ART-XC design. For each module, we performed a parametrization of the PSF at various angular distances Θ. We used a King function to approximate the radial profile of the near on-axis PSF (Θ < 9 arcmin) and an ellipse fitting procedure to describe the morphology of the far off-axis angular response (9 < Θ < 24 arcmin). We found a good agreement between the seven ART-XC flight mirror modules at the level of 10%. The on-axis angular resolution of the ART-XC optics varies between 27 and 33 arcsec (half-power diameter), except for the spare module.

  2. Challenges and Approach for Making the Top End Optical Assembly for the 4-meter Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.; Hull, T.

    2012-01-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot” at the prime focus of the ATST and so presents special challenges. In this paper, we will describe the L-3 IOS technical approach to meet these challenges, including subsystems for opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management. Key words: ATST, TEOA, L-3 IOS, thermal management, silicon carbide (SiC) mirrors, hexapods, solar astronomy

  3. Lightweight ZERODUR: a cost-effective thermally stable approach to both large and small spaceborne telescopes

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Westerhoff, Thomas

    2014-06-01

    ZERODUR®, known as the "gold standard" material for systems which require dimensional stability in the presence of gradients and transients, is now available lightweighted to the 85% to 90% level for use in high performance spaceborne telescopes and sensor systems. This establishes a design option that may have cost, testability, performance and risk advantages for an entire sensor system payload. The technical approach to making these primary mirrors is the same, whether the aperture is <0.3m to <4.0m. Since each mirror blank is made from a single monolithic billet of near zero-expansion, isotropic and homogeneous ZERODUR® material, the resulting mirror is very stable over a wide range of scenes and orbits, with minimal to no need for ancillary thermal stability and wavefront sensing and control systems. Telescopes using ZERODUR® and low expansion metering structures can accommodate thermal design challenges of both non-thermal (UV, VIS, LLLTV, NIR, SWIR and mm) and thermal (MWIR, LWIR) imaging systems, and deliver optimal performance. This lightweight mirror technology is discussed, with actual examples by SCHOTT of 0.3m and 1.2m mirrors presented. Lightweight ZERODUR® mirrors offer superior optical performance, attractive cost and aggressive lead times, and are available to present and future spaceborne sensor trades.

  4. Mass production of silicon pore optics for ATHENA

    NASA Astrophysics Data System (ADS)

    Wille, Eric; Bavdaz, Marcos; Collon, Maximilien

    2016-07-01

    Silicon Pore Optics (SPO) provide high angular resolution with low effective area density as required for the Advanced Telescope for High Energy Astrophysics (Athena). The x-ray telescope consists of several hundreds of SPO mirror modules. During the development of the process steps of the SPO technology, specific requirements of a future mass production have been considered right from the beginning. The manufacturing methods heavily utilise off-the-shelf equipment from the semiconductor industry, robotic automation and parallel processing. This allows to upscale the present production flow in a cost effective way, to produce hundreds of mirror modules per year. Considering manufacturing predictions based on the current technology status, we present an analysis of the time and resources required for the Athena flight programme. This includes the full production process starting with Si wafers up to the integration of the mirror modules. We present the times required for the individual process steps and identify the equipment required to produce two mirror modules per day. A preliminary timeline for building and commissioning the required infrastructure, and for flight model production of about 1000 mirror modules, is presented.

  5. Head temperature modulates thermal behavior in the cold in humans

    PubMed Central

    Mündel, Toby; Raman, Aaron; Schlader, Zachary J.

    2016-01-01

    ABSTRACT We tested the hypothesis that skin temperature, specifically of the head, is capable of modulating thermal behavior during exercise in the cold. Following familiarization 8 young, healthy, recreationally active males completed 3 trials, each consisting of 30 minutes of self-paced cycle ergometry in 6°C. Participants were instructed to control their exercise work rate to achieve and maintain thermal comfort. On one occasion participants wore only shorts and shoes (Control) and on the 2 other occasions their head was either warmed (Warming) or cooled (Cooling). Work rate, rate of metabolic heat production, thermal perceptions, rectal, mean weighted skin and head temperatures were measured. Exercise work rate was reduced during Warming and augmented during Cooling after the first and second minutes of exercise, respectively (P ≤ 0.04), with the rate of metabolic heat production mirroring work rate. At this early stage of exercise (≤5 min) the changes over time for rectal temperature were negligible and similar (0.1 ± 0.1°C, P = 0.51), while the decrease in mean skin temperature was not different between all trials (1.7 ± 0.6°C, P = 0.13). Mean head temperature was either decreased (Control: 1.5 ± 1.1°C, Cooling: 2.9 ± 0.8°C, both P < 0.01) or increased (Warming: 1.7 ± 0.9°C, P < 0.01). Head thermal perception was warmer and more comfortable in Warming and cooler and less comfortable in Cooling (P < 0.01). Participants achieved thermal comfort similarly in all trials (P > 0.09) after 10 ± 7 min and this was maintained until the end of exercise. These results indicate that peripheral temperatures modulate thermal behavior in the cold. PMID:27857959

  6. Fabrication of near-net shape graphite/magnesium composites for large mirrors

    NASA Astrophysics Data System (ADS)

    Wendt, Robert; Misra, Mohan

    1990-10-01

    Successful development of space-based surveillance and laser systems will require large precision mirrors which are dimensionally stable under thermal, static, and dynamic (i.e., structural vibrations and retargeting) loading conditions. Among the advanced composites under consideration for large space mirrors, graphite fiber reinforced magnesium (Gr/Mg) is an ideal candidate material that can be tailored to obtain an optimum combination of properties, including a high modulus of elasticity, zero coefficient of thermal expansion, low density, and high thermal conductivity. In addition, an innovative technique, combining conventional filament winding and vacuum casting has been developed to produce near-net shape Gr/Mg composites. This approach can significantly reduce the cost of fabricating large mirrors by decreasing required machining. However, since Gr/Mg cannot be polished to a reflective surface, plating is required. This paper will review research at Martin Marietta Astronautics Group on Gr/Mg mirror blank fabrication and measured mechanical and thermal properties. Also, copper plating and polishing methods, and optical surface characteristics will be presented.

  7. Effects of thermal inhomogeneity on 4m class mirror substrates

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Westerhoff, Thomas

    2016-07-01

    The new ground based telescope generation is moving to a next stage of performance and resolution. Mirror substrate material properties tolerance and homogeneity are getting into focus. The coefficient of thermal expansion (CTE) homogeneity is even more important than the absolute CTE. The error in shape of a mirror, even one of ZERODUR, is affected by changes in temperature, and by gradients in temperature. Front to back gradients will change the radius of curvature R that in turn will change the focus. Some systems rely on passive athermalization and do not have means to focus. Similarly changes in soak temperature will result in surface changes to the extent there is a non-zero coefficient of thermal expansion. When there are in-homogeneities in CTE, the mirror will react accordingly. Results of numerical experiments are presented discussing the impact of CTE in-homogeneities on the optical performance of 4 m class mirror substrates. Latest improvements in 4 m class ZERODUR CTE homogeneity and the thermal expansion metrology are presented as well.

  8. High-Resolution and Lightweight X-ray Optics for the X-Ray Surveyor

    NASA Astrophysics Data System (ADS)

    Zhang, William

    Envisioned in "Enduring Quest, Daring Visions" and under study by NASA as a potential major mission for the 2020s, the X-ray Surveyor mission will likely impose three requirements on its optics: (1) high angular resolution: 0.5 PSF, (2) large effective area: e10,000 cm2 or more, and (3) affordable production cost: $500M. We propose a technology that can meet these requirements by 2020. It will help the X-ray Surveyor secure the endorsement of the coming decadal survey and enable its implementation following WFIRST. The technology comprises four elements: (1) fabrication of lightweight single crystal silicon mirrors, (2) coating these mirrors with iridium to maximize effective area without figure degradation, (3) alignment and bonding of these mirrors to form meta-shells that will be integrated to make a mirror assembly, and (4) systems engineering to ensure that the mirror assembly meet all science performance and spaceflight environmental requirements. This approach grows out of our existing approach based on glass slumping. Using glass slumping technology, we have been able to routinely build and test mirror modules of 10half-power diameter (HPD). While comparable in HPD to XMM-Newtons electroformed nickel mirrors, these mirror modules are 10 times lighter. Likewise, while comparable in weight to Suzakus epoxy-replicated aluminum foil mirrors, these modules have 10 times better HPD. These modules represent the current state of the art of lightweight X-ray optics. Although both successful and mature, the glass slumping technology has reached its limit and cannot achieve sub-arc second HPD. Therefore, we are pursuing the new approach based on polishing single crystal silicon. The new approach will enable the building and testing of mirror modules, called meta-shells, capable of 3HPD by 2018 and 1HPD by 2020, and has the potential to reach diffraction limits ( 0.1) in the 2020s.

  9. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, Barry L.

    1985-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  10. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, B.L.

    1984-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  11. Lightweight ZERODUR: Validation of Mirror Performance and Mirror Modeling Predictions

    NASA Technical Reports Server (NTRS)

    Hull, Tony; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA's XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2 m diameter, f/1.2988% lightweighted SCHOTT lightweighted ZERODUR(TradeMark) mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR(TradeMark). In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response(dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR(TradeMark) mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS). Summarize the outcome of NASA's XRCF tests and model validations

  12. Lightweight ZERODUR®: Validation of mirror performance and mirror modeling predictions

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA’s XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2m diameter, f/1.29 88% lightweighted SCHOTT lightweighted ZERODUR® mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR®. In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response (dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR® mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS), and summarize the outcome of NASA’s XRCF tests and model validations.

  13. Optimizing X-ray mirror thermal performance using matched profile cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lin; Cocco, Daniele; Kelez, Nicholas

    2015-08-07

    To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick–Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle ismore » presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ~11belowthe requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.« less

  14. Cooling options for high-average-power laser mirrors

    NASA Astrophysics Data System (ADS)

    Vojna, D.; Slezak, O.; Lucianetti, A.; Mocek, T.

    2015-01-01

    Thermally-induced deformations of steering mirrors reflecting 100 J/10 Hz laser pulses in vacuum have been analyzed. This deformation is caused by the thermal stress arisen due to parasitic absorption of 1 kW square-shaped flat-top laser beam in the dielectric multi-layer structure. Deformation depends on amount of absorbed power and geometry of the mirror as well as on the heat removal scheme. In our calculations, the following percentages of absorption of the incident power have been used: 1%, 0.5% and 0.1%. The absorbed power has been considered to be much higher than that expected in reality to assess the worst case scenario. Rectangular and circular mirrors made of zerodur (low thermal expansion glass) were considered for these simulations. The effect of coating layers on induced deformations has been neglected. Induced deformation of the mirror surface can significantly degrade the quality of the laser beam in the beam delivery system. Therefore, the proper design of the cooling scheme for the mirror in order to minimize the deformations is needed. Three possible cooling schemes of the mirror have been investigated. The first one takes advantage of a radiation cooling of the mirror and a copper heatsink fixed to the rear face of the mirror, the second scheme is based on additional heat conduction provided by flexible copper wires connected to the mirror holder, and the last scheme combines two above mentioned methods.

  15. Alignment error of mirror modules of advanced telescope for high-energy astrophysics due to wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Zocchi, Fabio E.

    2017-10-01

    One of the approaches that is being tested for the integration of the mirror modules of the advanced telescope for high-energy astrophysics x-ray mission of the European Space Agency consists in aligning each module on an optical bench operated at an ultraviolet wavelength. The mirror module is illuminated by a plane wave and, in order to overcome diffraction effects, the centroid of the image produced by the module is used as a reference to assess the accuracy of the optical alignment of the mirror module itself. Among other sources of uncertainty, the wave-front error of the plane wave also introduces an error in the position of the centroid, thus affecting the quality of the mirror module alignment. The power spectral density of the position of the point spread function centroid is here derived from the power spectral density of the wave-front error of the plane wave in the framework of the scalar theory of Fourier diffraction. This allows the defining of a specification on the collimator quality used for generating the plane wave starting from the contribution to the error budget allocated for the uncertainty of the centroid position. The theory generally applies whenever Fourier diffraction is a valid approximation, in which case the obtained result is identical to that derived by geometrical optics considerations.

  16. Aligning, Bonding, and Testing Mirrors for Lightweight X-ray Telescopes

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William W.; Saha, Timo T.; McClelland, Ryan S.; Biskach, Michael P.; Niemeyer, Jason; Schofield, Mark J.; Mazzarella, James R.; Kolos, Linette D.; Hong, Melinda M.; hide

    2015-01-01

    High-resolution, high throughput optics for x-ray astronomy entails fabrication of well-formed mirror segments and their integration with arc-second precision. In this paper, we address issues of aligning and bonding thin glass mirrors with negligible additional distortion. Stability of the bonded mirrors and the curing of epoxy used in bonding them were tested extensively. We present results from tests of bonding mirrors onto experimental modules, and on the stability of the bonded mirrors tested in x-ray. These results demonstrate the fundamental validity of the methods used in integrating mirrors into telescope module, and reveal the areas for further investigation. The alignment and integration methods are applicable to the astronomical mission concept such as STAR-X, the Survey and Time-domain Astronomical Research Explorer.

  17. ART-XC/SRG: Status of the X-ray Optics Development

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Zavlin, V.; Swartz, D.; Elsner, R. F.; ODell, S.; Kilaru, K.; Atkins, C.; McCracken, J.; Pavlinsky, M.; hide

    2014-01-01

    The Astronomical Roentgen Telescope (ART) instrument is a hard x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approximately 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.

  18. ART-XC/SRG: Status of the X-ray Optics Development

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Elsner, R.; O'Dell, S.; Kolodziejczak, J.; McCracken, J.; Zavlin, V.; Swartz, D.; Kilaru, K.; Atkins, C.; hide

    2014-01-01

    The Astronomical Roentgen Telescope (ART) instrument is a hard-x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approximately 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.

  19. ART-XC/SRG: Status of the X-ray Optics Development

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Elsner, R.; O'Dell, S.; Kolodziejczak, J.; McCracken, J.; Zavlin, V.; Swartz, D.; Kilaru, K.; Atkins, C.; hide

    2014-01-01

    The Astronomical Roentgen Telescope (ART) instrument is a hard-x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approx. 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.

  20. Temperature induced distortions in space telescope mirrors

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Rudmann, A. A.

    1993-01-01

    In this paper, it is illustrated how measured instantaneous coefficients of thermal expansion (CTE) can be accurately taken into account when modeling the structural behavior of space based optical systems. In particular, the importance of including CTE spatial variations in the analysis of optical elements is emphasized. A comparison is made between the CTE's of three optical materials commonly used in the construction of space mirrors (ULE, Zerodur, and beryllium). The overall impact that selection of any one of these materials has on thermal distortions is briefly discussed. As an example of how temperature dependent spatial variations in thermal strain can be accurately incorporated in the thermo-structural analysis of a precision optical system, a finite element model is developed, which is used to estimate the thermally induced distortions in the Hubble Space Telescope's (HST) primary mirror. In addition to the structural analysis, the optical aberrations due to thermally induced distortions are also examined. These calculations indicate that thermal distortions in HST's primary mirror contribute mainly to defocus error with a relatively small contribution to spherical aberration.

  1. Cryogenic mount for mirror and piezoelectric actuator for an optical cavity.

    PubMed

    Oliveira, A N; Moreira, L S; Sacramento, R L; Kosulic, L; Brasil, V B; Wolff, W; Cesar, C L

    2017-06-01

    We present the development of a mount that accommodates a mirror and a piezoelectric actuator with emphasis on physical needs for low temperature operation. The design uses a monolithic construction with flexure features that allow it to steadily hold the mirror and the piezoelectric actuator without glue and accommodate differential thermal contraction. The mount is small and lightweight, adding little heat capacity and inertia. It provides a pre-loading of the piezoelectric actuator as well as a good thermal connection to the mirror and a thermal short across the piezoelectric actuator. The performance of the assemblies has been tested by thermally cycling from room temperature down to 3 K more than a dozen times and over one hundred times to 77 K, without showing any derating. Such mounts are proposed for the cryogenic optical enhancement cavities of the ALPHA experiment at CERN for laser spectroscopy of antihydrogen and for hydrogen spectroscopy in our laboratory at UFRJ.

  2. Research on controlling thermal deformable mirror's influence functions via manipulating thermal fields.

    PubMed

    Xue, Qiao; Huang, Lei; Hu, Dongxia; Yan, Ping; Gong, Mali

    2014-01-10

    For thermal deformable mirrors (DMs), the thermal field control is important because it will decide aberration correction effects. In order to better manipulate the thermal fields, a simple water convection system is proposed. The water convection system, which can be applied in thermal field bimetal DMs, shows effective thermal fields and influence-function controlling abilities. This is verified by the simulations and the contrast experiments of two prototypes: one of which utilizes air convection, the other uses water convection. Controlling the thermal fields will greatly promote the influence-function adjustability and aberration correction ability of thermal DMs.

  3. Lightweight ZERODUR®: Optimized athermal performance for Space Telescopes

    NASA Astrophysics Data System (ADS)

    Hull, Anthony; Westerhoff, Thomas

    2018-01-01

    ZERODUR’s extreme homogeneity and low CTE make it a strong candidate for ultrastable space telescopes. It’s excellent thermal match to CFRP supports stability and cost-effective solutions. Since the response to thermal transients is small, a spaceborne telescope using ZERODUR has reduced requirements for the implementation and validation of complex heater networks. We will describe the use of ZERODUR in a current NASA Probe Mission Study, CETUS (Cosmic Evolution Through Ultraviolet Spectroscopy), where the1.5m WFOV telescope operates at an L2 Halo Orbit, and with solar view factor is modulated by pointing requirements that extend between sun angles of 85 degrees and 135 degrees. Discussion will include recent experience on material characteristics, and new facilities for lightweight mirrors at SCHOTT.

  4. Thermal Testing of a Stacked Core Mirror for UV Applications

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Kirk, Charles S.; Maffett, Steven; Hanson, Craig; Eng, Ron; Stahl, H. Philip

    2013-01-01

    The ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center and ITT Exelis have developed a more cost effective process to make 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was built and tested down to 250K which would allow imaging out to 2.5 microns. This mirror was thermally tested at the Marshall Spaceflight Center to understand the thermal changes between the processing temperature of 293K and the potential low end of the operational temperature of 250K. Isothermal testing results and front plate gradient results have been evaluated and compared to analysis predictions. Measurement of gravity effects on surface figure will be compared to analytical predictions. Future testing of a larger Pathfinder mirror will also be discussed.

  5. Optical simulations for design, alignment, and performance prediction of silicon pore optics for the ATHENA x-ray telescope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Della Monica Ferreira, D.; Shortt, B.; Bavdaz, M.; Bergback Knudsen, E.; Bianucci, G.; Christensen, F.; Civitani, M.; Collon, M.; Conconi, P.; Fransen, S.; Marioni, F.; Massahi, S.; Pareschi, G.; Salmaso, B.; Jegers, A. S.; Tayabaly, K.; Valsecchi, G.; Westergaard, N.; Wille, E.

    2017-09-01

    The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with hundreds of mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. In the current configuration, the optical assembly has a 3 m diameter and a 2 m2 effective area at 1 keV, with a required angular resolution of 5 arcsec. The angular resolution that can be achieved is chiefly the combination of 1) the focal spot size determined by the pore diffraction, 2) the focus degradation caused by surface and profile errors, 3) the aberrations introduced by the misalignments between primary and secondary segments, 4) imperfections in the co-focality of the mirror modules in the optical assembly. A detailed simulation of these aspects is required in order to assess the fabrication and alignment tolerances; moreover, the achievable effective area and angular resolution depend on the mirror module design. Therefore, guaranteeing these optical performances requires: a fast design tool to find the most performing solution in terms of mirror module geometry and population, and an accurate point spread function simulation from local metrology and positioning information. In this paper, we present the results of simulations in the framework of ESA-financed projects (SIMPOSiuM, ASPHEA, SPIRIT), in preparation of the ATHENA X-ray telescope, analyzing the mentioned points: 1) we deal with a detailed description of diffractive effects in an SPO mirror module, 2) we show ray-tracing results including surface and profile defects of the reflective surfaces, 3) we assess the effective area and angular resolution degradation caused by alignment errors between SPO mirror module's segments, and 4) we simulate the effects of co-focality errors in X-rays and in the UV optical bench used to study the mirror module alignment and integration.

  6. Control-structure-thermal interactions in analysis of lunar telescopes

    NASA Technical Reports Server (NTRS)

    Thompson, Roger C.

    1992-01-01

    The lunar telescope project was an excellent model for the CSTI study because a telescope is a very sensitive instrument, and thermal expansion or mechanical vibration of the mirror assemblies will rapidly degrade the resolution of the device. Consequently, the interactions are strongly coupled. The lunar surface experiences very large temperature variations that range from approximately -180 C to over 100 C. Although the optical assemblies of the telescopes will be well insulated, the temperature of the mirrors will inevitably fluctuate in a similar cycle, but of much smaller magnitude. In order to obtain images of high quality and clarity, allowable thermal deformations of any point on a mirror must be less than 1 micron. Initial estimates indicate that this corresponds to a temperature variation of much less than 1 deg through the thickness of the mirror. Therefore, a lunar telescope design will most probably include active thermal control, a means of controlling the shape of the mirrors, or a combination of both systems. Historically, the design of a complex vehicle was primarily a sequential process in which the basic structure was defined without concurrent detailed analyses or other subsystems. The basic configuration was then passed to the different teams responsible for each subsystem, and their task was to produce a workable solution without requiring major alterations to any principal components or subsystems. Consequently, the final design of the vehicle was not always the most efficient, owing to the fact that each subsystem design was partially constrained by the previous work. This procedure was necessary at the time because the analysis process was extremely time-consuming and had to be started over with each significant alteration of the vehicle. With recent advances in the power and capacity of small computers, and the parallel development of powerful software in structural, thermal, and control system analysis, it is now possible to produce very detailed analyses of intermediate designs in a much shorter period of time. The subsystems can thus be designed concurrently, and alterations in the overall design can be quickly adopted into each analysis; the design becomes an iterative process in which it is much easier to experiment with new ideas, configurations, and components. Concurrent engineering has the potential to produce efficient, highly capable designs because the effect of one subystem on another can be assessed in much more detail at a very early point in the program. The research program consisted of several tasks: scale a prototype telescope assembly to a 1 m aperture, develop a model of the telescope assembly by using finite element (FEM) codes that are available on site, determine structural deflections of the mirror surfaces due to the temperature variations, develop a prototype control system to maintain the proper shape of the optical elements, and most important of all, demonstrate the concurrent engineering approach with this example. In addition, the software used for the finite element models and thermal analysis was relatively new within the Program Development Office and had yet to be applied to systems this large or complex; understanding the software and modifying it for use with this project was also required. The I-DEAS software by Structural Dynamics Research Corporation (SDRC) was used to build the finite element models, and TMG developed by Maya Heat Transfer Technologies, Ltd. (which runs as an I-DEAS module) was used for the thermal model calculations. All control system development was accomplished with MATRIX(sub X) by Integrated Systems, Inc.

  7. Space telescope optical telescope assembly/scientific instruments. Phase B: Preliminary design and program definition study. Volume 2A. focal plane camera

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Trade studies were conducted to ensure the overall feasibility of the focal plane camera in a radial module. The primary variable in the trade studies was the location of the pickoff mirror, on axis versus off-axis. Two alternatives were: (1) the standard (electromagnetic focus) SECO submodule, and (2) the MOD 15 permanent magnet focus SECO submodule. The technical areas of concern were the packaging affected parameters of thermal dissipation, focal plane obscuration, and image quality.

  8. The Marshall Space Flight Center Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Ramsey, B.; ODell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2012-01-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 sq cm at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.

  9. The Marshall Space Flight Center development of mirror modules for the ART-XC instrument aboard the Spectrum-Roentgen-Gamma mission

    NASA Astrophysics Data System (ADS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2012-09-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen-Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.

  10. Highly light-weighted ZERODUR mirror and fixation for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stephanie; Lasic, Thierry; Viale, Roger; Ruch, Eric

    2017-11-01

    Space telescopes require large primary mirrors within a demanding thermal environment: observatories at L2 orbit provide a stable environment with a drawback of very low temperature. Besides, it is necessary to limit as far as possible the mirrors mass while withstanding launch loads and keeping image quality within a cryogenic environment. ZERODUR is a well-known material extensively used for large telescope. Alcatel Alenia Space and Sagem/REOSC have combined their respective skills to go further in the lightweighting ratio of large mirror (36 kg/m2 on 1.5 m2) through a detailed design, performance assessment and technology demonstration with breadboards. Beyond on a large mirror detailed design supported by analysis, a ZERODUR mock-up has been manufacturing by Sagem/REOSC to demonstrate the achievability of the demanding parameters offering this high lightweighting ratio. Through the ISO experience on mirror attachments, a detailed design of the mirror fixation has been done as well. A full size mock-up has been manufactured and successfully tested under thermal cycling and static loading. Eventually, the ZERODUR stability behavior within this large temperature range has been verified through thermal cycling and image quality cryotest on a flat mirror breadboard. These developments demonstrate that ZERODUR is a good candidate for large space cryogenic mirrors offering outstanding optical performances associated to matured and proven technology and manufacturing process.

  11. Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Gubarev, M; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.; Atkins, C.; hide

    2013-01-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission. Four of those modules are being fabricated under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) An additional three flight modules and one spare for the ART-XC Instrument are produced under a Cooperative Agreement between NASA and IKI. The instrument will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Each module consists of 28 nested thin Ni/Co shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of the first four modules is scheduled for November 2013, while the remaining three modules will be delivered to IKI in January 2014. We present a status of the ART x-ray module development at MSFC.

  12. Development of mirror modules for the ART-XC instrument aboard the Spectrum-Roentgen-Gamma mission

    NASA Astrophysics Data System (ADS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.; Atkins, C.; Zavlin, V.

    2013-09-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission. Four of those modules are being fabricated under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) An additional three flight modules and one spare for the ART-XC Instrument are produced under a Cooperative Agreement between NASA and IKI. The instrument will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Each module consists of 28 nested thin Ni/Co shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of the first four modules is scheduled for November 2013, while the remaining three modules will be delivered to IKI in January 2014. We present a status of the ART x-ray module development at MSFC.

  13. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  14. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability.

    PubMed

    Morrison, Jessica; Imboden, Matthias; Little, Thomas D C; Bishop, D J

    2015-04-06

    MEMS micromirrors have proven to be very important optical devices with applications ranging from steerable mirrors for switches and cross-connects to spatial light modulators for correcting optical distortions. Usually beam steering and focusing are done with different MEMS devices and tilt angles in excess of 10 degrees are seldom obtained. Here we describe a single MEMS device that combines tip/tilt, piston mode and varifocal capability into a single, low cost device with very large tilt angles. Our device consists of a 400 micron diameter mirror driven with thermal bimorphs. We have demonstrated deflection angles of ± 40 degrees along both axes, a tunable focal length which varies between -0.48 mm to + 20.5 mm and a piston mode range of 300 microns - four separately controllable degrees of freedom in a single device. Potential applications range from smart lighting to optical switches and devices for telecom systems.

  15. Combined heat and power generation with a HCPV system at 2000 suns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paredes, Filippo; Montagnino, Fabio M.; Milone, Sergio

    2015-09-28

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connectedmore » to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.« less

  16. Combined heat and power generation with a HCPV system at 2000 suns

    NASA Astrophysics Data System (ADS)

    Paredes, Filippo; Montagnino, Fabio M.; Salinari, Piero; Bonsignore, Gaetano; Milone, Sergio; Agnello, Simonpietro; Barbera, Marco; Gelardi, Franco M.; Sciortino, Luisa; Collura, Alfonso; Lo Cicero, Ugo; Cannas, Marco

    2015-09-01

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.

  17. Metallic alternative to glass mirrors (active mirrors in aluminium) - A review

    NASA Astrophysics Data System (ADS)

    Rozelot, Jean P.; Leblanc, Jean-M.

    1991-09-01

    Present-day glass mirrors for telescopes, including the most recent results obtained with aluminum mirrors developed within the European EUREKA procedure (LAMA program) are reviewed. The major advantages of the aluminum-alloy solution, which can be extrapolated today for large size, are discussed. It is shown that aluminum-alloy meniscus blanks, polished on a thin nickel coating, are appropriate to manufacture mirrors of astronomical quality. With the technique of electron-beam welding, large sizes can be envisaged. The development of active optics makes it possible to easily compensate for real-time deformations. The good thermal diffusivity of aluminum alloys leads to a better and faster thermal equilibrium than all other glass structures.

  18. Thermal and structural analysis of the GOES scan mirror's on orbit performance

    NASA Technical Reports Server (NTRS)

    Zurmehly, G. E.; Hookman, R. A.

    1991-01-01

    The on-orbit performance of the GOES satellite's scan mirror has been predicted by means of thermal, structural, and optical models. A simpler-than-conventional thermal model was used to reduce the time required to obtain orbital predictions, and the structural model was used to predict on-earth gravity sag and on-orbit distortions. The transfer of data from the thermal model to the structural model was automated for a given set of thermal nodes and structural grids.

  19. Indoor and outdoor characterization of the HIRL prototype: An innovative highly integrated receiverless LCPV concept using multijunction cells

    NASA Astrophysics Data System (ADS)

    Weick, Clément; De Betelu, Romain; Tauzin, Aurélie; Baudrit, Mathieu

    2017-09-01

    Concentrator photovoltaic (CPV) modules are composed of many components and interfaces, which require complex assembling processes, resulting in fabrication complexity and often lack of reliability. The present work addresses these issues, by proposing an innovative low concentration photovoltaic (LCPV) concept. In particular, the purpose here is to develop a module with a high level of integration by lowering the number of components and interfaces. The mirror used as the concentrator optic is multifunctional, as it combines thermal, structural and optical function. Moreover, the proposed design claims to demonstrate the applicability of reliable flat PV processes (such as lamination and cells interconnections), for the manufacturing of this LCPV module. The paper describes both indoor and outdoor characterization of a new prototype. Performances by means of IV curves tracing will be discussed regarding the losses distribution within the optical chain.

  20. The results of the thin x-ray mirror module production for the ESA XMM spacecraft

    NASA Astrophysics Data System (ADS)

    de Chambure, Daniel; Laine, Robert; Grisoni, Gabriele; Kampf, Dirck

    2018-04-01

    This paper, "The results of the thin x-ray mirror module production for the ESA XMM spacecraft," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  1. ZERODUR TAILORED for cryogenic application

    NASA Astrophysics Data System (ADS)

    Jedamzik, R.; Westerhoff, T.

    2014-07-01

    ZERODUR® glass ceramic from SCHOTT is known for its very low thermal expansion coefficient (CTE) at room temperature and its excellent CTE homogeneity. It is widely used for ground-based astronomical mirrors but also for satellite applications. Many reference application demonstrate the excellent and long lasting performance of ZERODUR® components in orbit. For space application a low CTE of the mirror material is required at cryogenic temperatures together with a good match of the thermal expansion to the supporting structure material. It is possible to optimize the coefficient of thermal expansion of ZERODUR® for cryogenic applications. This paper reports on measurements of thermal expansion of ZERODUR® down to cryogenic temperatures of 10 K performed by the PTB (Physikalisch Technische Bundesanstallt, Braunschweig, Germany, the national metrology laboratory). The ZERODUR® TAILORED CRYO presented in this paper has a very low coefficient of thermal expansion down to 70 K. The maximum absolute integrated thermal expansion down to 10 K is only about 20 ppm. Mirror blanks made from ZERODUR® TAILORED CRYO can be light weighted to almost 90% with our modern processing technologies. With ZERODUR® TAILORED CRYO, SCHOTT offers the mirror blank material for the next generation of space telescope applications.

  2. Digital optical correlator x-ray telescope alignment monitoring system

    NASA Astrophysics Data System (ADS)

    Lis, Tomasz; Gaskin, Jessica; Jasper, John; Gregory, Don A.

    2018-01-01

    The High-Energy Replicated Optics to Explore the Sun (HEROES) program is a balloon-borne x-ray telescope mission to observe hard x-rays (˜20 to 70 keV) from the sun and multiple astrophysical targets. The payload consists of eight mirror modules with a total of 114 optics that are mounted on a 6-m-long optical bench. Each mirror module is complemented by a high-pressure xenon gas scintillation proportional counter. Attached to the payload is a camera that acquires star fields and then matches the acquired field to star maps to determine the pointing of the optical bench. Slight misalignments between the star camera, the optical bench, and the telescope elements attached to the optical bench may occur during flight due to mechanical shifts, thermal gradients, and gravitational effects. These misalignments can result in diminished imaging and reduced photon collection efficiency. To monitor these misalignments during flight, a supplementary Bench Alignment Monitoring System (BAMS) was added to the payload. BAMS hardware comprises two cameras mounted directly to the optical bench and rings of light-emitting diodes (LEDs) mounted onto the telescope components. The LEDs in these rings are mounted in a predefined, asymmetric pattern, and their positions are tracked using an optical/digital correlator. The BAMS analysis software is a digital adaption of an optical joint transform correlator. The aim is to enhance the observational proficiency of HEROES while providing insight into the magnitude of mechanically and thermally induced misalignments during flight. Results from a preflight test of the system are reported.

  3. An analysis of optical effects caused by thermally induced mirror deformations.

    PubMed

    Ogrodnik, R F

    1970-09-01

    This paper analyzes thermally induced mirror deformations and their resulting wavefront distortions which occur under the conditions of radially nonuniform mirror heating. The analysis is adaptable to heating produced by any radially nonuniform incident radiation. Specific examples of radiation distributions which are considered are the cosine squared and the gaussian and TEM(0, 1) laser distributions. Deformation effects are examined from two aspects, the first of which is the reflected wavefront radial phase distortion profile caused by the thermally induced surface irregularities at the mirror face. These phase distortion effects appear as aberrations in noncoherent optical applications and as the loss of spatial coherence in coherent applications. The second aspect is the gross wavefront bending due to mirror curvature effects. The analysis considers substrate material, geometry, and cooling in order to determine potential deformation controlling factors. Substrate materials are compared, and performance indicators are suggested to aid in selecting an optimum material for a given heating condition. Deformation examples are given for materials of interest and specific absorbed power levels.

  4. Modeling Thermal Noise from Crystaline Coatings for Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2016-03-01

    The sensitivity of current and future ground-based gravitational-wave detectors are, in part, limited in sensitivity by Brownian and thermoelastic noise in each detector's mirror substrate and coating. Crystalline mirror coatings could potentially reduce thermal noise, but thermal noise is challenging to model analytically in the case of crystalline materials. Thermal noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. In this poster, I will present results from a new code that numerically models thermal noise by numerically solving the auxiliary elastic problem for various types of crystalline mirror coatings. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. I will present preliminary results for a crystal coating on a fused silica substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  5. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Technical Reports Server (NTRS)

    Page, Arthur T.

    2001-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  6. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Technical Reports Server (NTRS)

    Page, Arhur T.

    1999-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(Tm), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(Tm) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(Tm) generates the SINDA/Fluint input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  7. Deformation measurements by ESPI of the surface of a heated mirror and comparison with numerical model

    NASA Astrophysics Data System (ADS)

    Languy, Fabian; Vandenrijt, Jean-François; Saint-Georges, Philippe; Georges, Marc P.

    2017-06-01

    The manufacture of mirrors for space application is expensive and the requirements on the optical performance increase over years. To achieve higher performance, larger mirrors are manufactured but the larger the mirror the higher the sensitivity to temperature variation and therefore the higher the degradation of optical performances. To avoid the use of an expensive thermal regulation, we need to develop tools able to predict how optics behaves with thermal constraints. This paper presents the comparison between experimental surface mirror deformation and theoretical results from a multiphysics model. The local displacements of the mirror surface have been measured with the use of electronic speckle pattern interferometry (ESPI) and the deformation itself has been calculated by subtracting the rigid body motion. After validation of the mechanical model, experimental and numerical wave front errors are compared.

  8. Optical analysis of thermal induced structural distortions

    NASA Technical Reports Server (NTRS)

    Weinswig, Shepard; Hookman, Robert A.

    1991-01-01

    The techniques used for the analysis of thermally induced structural distortions of optical components such as scanning mirrors and telescope optics are outlined. Particular attention is given to the methodology used in the thermal and structural analysis of the GOES scan mirror, the optical analysis using Zernike coefficients, and the optical system performance evaluation. It is pointed out that the use of Zernike coefficients allows an accurate, effective, and simple linkage between thermal/mechanical effects and the optical design.

  9. Changes in surface figure due to thermal hysteresis

    NASA Astrophysics Data System (ADS)

    Jacobs, S. F.; Johnston, S. C.; Sasian, J. M.; Watson, M.; Targove, J. D.

    1987-01-01

    Thermal cycling hysteresis affects surface figure in low-expansivity mirror substrates. Zerodur, ULE, and Cer-Vit 8-in.-diameter mirrors and dilatometer samples were thermally cycled at uniform rates of 6 K/hr and 60 K/hr, and somewhat faster for nonuniform heating. Figure distortions as large as lambda/10 were observed following nonuniform heating of standard Zerodur, which was the only material exhibiting thermal hysteresis. A new experimental Zerodur appears to be free of this problem.

  10. Surface figure changes due to thermal cycling hysteresis.

    PubMed

    Jacobs, S F; Johnston, S C; Sasian, J M; Watson, M; Targove, J D; Bass, D

    1987-10-15

    How does thermal cycling hysteresis affect surface figure in low expansivity mirror substrates? Zerodur, ULE, and Cer-Vit 20.3-cm (8-in.) diam mirrors and dilatometer samples were thermally cycled at 6 and 60 K/h with uniform and nonuniform heating. Figure distortions as large as lambda/10 were observed only with nonuniform heating of standard Zerodur, which was the only material exhibiting thermal hysteresis. A new experimental Zerodur appears to be free of this problem.

  11. Modeling the Extremely Lightweight Zerodur Mirror (ELZM) Thermal Soak Test

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas E.; Eng, Ron; Hull, Tony; Stahl, H. Philip

    2017-01-01

    Exoplanet science requires extreme wavefront stability (10 pm change/10 minutes), so every source of wavefront error (WFE) must be characterized in detail. This work illustrates the testing and characterization process that will be used to determine how much surface figure error (SFE) is produced by mirror substrate materials' CTE distributions. Schott's extremely lightweight Zerodur mirror (ELZM) was polished to a sphere, mounted, and tested at Marshall Space Flight Center (MSFC) in the X-Ray and Cryogenic Test Facility (XRCF). The test transitioned the mirror's temperature from an isothermal state at 292K to isothermal states at 275K, 250K and 230K to isolate the effects of the mirror's CTE distribution. The SFE was measured interferometrically at each temperature state and finite element analysis (FEA) has been completed to assess the predictability of the change in the mirror's surface due to a change in the mirror's temperature. The coefficient of thermal expansion (CTE) distribution in the ELZM is unknown, so the analysis has been correlated to the test data. The correlation process requires finding the sensitivity of SFE to a given CTE distribution in the mirror. A novel hand calculation is proposed to use these sensitivities to estimate thermally induced SFE. The correlation process was successful and is documented in this paper. The CTE map that produces the measured SFE is in line with the measured data of typical boules of Schott's Zerodur glass.

  12. Modeling the Extremely Lightweight Zerodur Mirror (ELZM) thermal soak test

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas E.; Eng, Ron; Hull, Tony; Stahl, H. Philip

    2017-09-01

    Exoplanet science requires extreme wavefront stability (10 pm change/10 minutes), so every source of wavefront error (WFE) must be characterized in detail. This work illustrates the testing and characterization process that will be used to determine how much surface figure error (SFE) is produced by mirror substrate materials' CTE distributions. Schott's extremely lightweight Zerodur mirror (ELZM) was polished to a sphere, mounted, and tested at Marshall Space Flight Center (MSFC) in the X-Ray and Cryogenic Test Facility (XRCF). The test transitioned the mirror's temperature from an isothermal state at 292K to isothermal states at 275K, 250K and 230K to isolate the effects of the mirror's CTE distribution. The SFE was measured interferometrically at each temperature state and finite element analysis (FEA) has been completed to assess the predictability of the change in the mirror's surface due to a change in the mirror's temperature. The coefficient of thermal expansion (CTE) distribution in the ELZM is unknown, so the analysis has been correlated to the test data. The correlation process requires finding the sensitivity of SFE to a given CTE distribution in the mirror. A novel hand calculation is proposed to use these sensitivities to estimate thermally induced SFE. The correlation process was successful and is documented in this paper. The CTE map that produces the measured SFE is in line with the measured data of typical boules of Schott's Zerodur glass.

  13. Polishing aspheric mirrors of zero-thermal expansion cordierite ceramics (NEXCERA) for space telescope

    NASA Astrophysics Data System (ADS)

    Sugawara, Jun; Kamiya, Tomohiro; Mikashima, Bumpei

    2017-09-01

    Ultra-low thermal expansion ceramics NEXCERATM is regarded as one of potential candidate materials crucial for ultralightweight and thermally-stable optical mirrors for space telescopes which are used in future optical missions satisfying extremely high observation specifications. To realize the high precision NEXCERA mirrors for space telescopes, it is important to develop a deterministic aspheric shape polishing and a precise figure correction polishing method for the NEXCERA. Magnetorheological finishing (MRF) was tested to the NEXCERA aspheric mirror from best fit sphere shape, because the MRF technology is regarded as the best suited process for a precise figure correction of the ultralightweight mirror with thin sheet due to its advantage of low normal force polishing. As using the best combination of material and MR fluid, the MRF was performed high precision figure correction and to induce a hyperbolic shape from a conventionally polished 100mm diameter sphere, and achieved the sufficient high figure accuracy and the high quality surface roughness. In order to apply the NEXCERA to a large scale space mirror, for the next step, a middle size solid mirror, 250 mm diameter concave parabola, was machined. It was roughly ground in the parabolic shape, and was lapped and polished by a computer-controlled polishing machine using sub-aperture polishing tools. It resulted in the smooth surface of 0.6 nm RMS and the figure accuracy of λ/4, being enough as pre-MRF surface. A further study of the NEXCERA space mirrors should be proceeded as a figure correction using the MRF to lightweight mirror with thin mirror sheet.

  14. Deformable mirror-based optical design of dynamic local athermal longwave infrared optical systems

    NASA Astrophysics Data System (ADS)

    Shen, Benlan; Chang, Jun; Niu, Yajun; Chen, Weilin; Ji, Zhongye

    2018-07-01

    This paper presents a dynamic local athermalisation method for longwave infrared (LWIR) optical systems; the proposed design uses a deformable mirror and is based on active optics theory. A local athermal LWIR optical system is designed as an example. The deformable mirror is tilted by 45° near the exit pupil of the system. The thermal aberrations are corrected by the deformable mirror for the local athermal field of view (FOV) that ranges from -40 °C to 80 °C. The types of thermal aberrations are analysed. Simulated results show that the local athermal LWIR optical system can effectively detect targets in the region of interest within a large FOV and correct thermal aberrations in actual working environments in real time. The system has numerous potential applications in infrared detection and tracking, surveillance and remote sensing.

  15. Effects of action observation on corticospinal excitability: Muscle specificity, direction, and timing of the mirror response.

    PubMed

    Naish, Katherine R; Houston-Price, Carmel; Bremner, Andrew J; Holmes, Nicholas P

    2014-11-01

    Many human behaviours and pathologies have been attributed to the putative mirror neuron system, a neural system that is active during both the observation and execution of actions. While there are now a very large number of papers on the mirror neuron system, variations in the methods and analyses employed by researchers mean that the basic characteristics of the mirror response are not clear. This review focuses on three important aspects of the mirror response, as measured by modulations in corticospinal excitability: (1) muscle specificity; (2) direction; and (3) timing of modulation. We focus mainly on electromyographic (EMG) data gathered following single-pulse transcranial magnetic stimulation (TMS), because this method provides precise information regarding these three aspects of the response. Data from paired-pulse TMS paradigms and peripheral nerve stimulation (PNS) are also considered when we discuss the possible mechanisms underlying the mirror response. In this systematic review of the literature, we examine the findings of 85 TMS and PNS studies of the human mirror response, and consider the limitations and advantages of the different methodological approaches these have adopted in relation to discrepancies between their findings. We conclude by proposing a testable model of how action observation modulates corticospinal excitability in humans. Specifically, we propose that action observation elicits an early, non-specific facilitation of corticospinal excitability (at around 90ms from action onset), followed by a later modulation of activity specific to the muscles involved in the observed action (from around 200ms). Testing this model will greatly advance our understanding of the mirror mechanism and provide a more stable grounding on which to base inferences about its role in human behaviour. Copyright © 2014. Published by Elsevier Ltd.

  16. Design and characterization of MEMS interferometric sensing

    NASA Astrophysics Data System (ADS)

    Snyder, R.; Siahmakoun, A.

    2010-02-01

    A MEMS-based interferometric sensor is produced using the multi-user MEMS processing standard (MUMPS) micromirrors, movable by thermal actuation. The interferometer is comprised of gold reflection surfaces, polysilicon thermal actuators, hinges, latches and thin film polarization beam splitters. A polysilicon film of 3.5 microns reflects and transmits incident polarized light from an external laser source coupled to a multi-mode optical fiber. The input beam is shaped to a diameter of 10 to 20 microns for incidence upon the 100 micron mirrors. Losses in the optical path include diffraction effects from etch holes created in the manufacturing process, surface roughness of both gold and polysilicon layers, and misalignment of micro-scale optical components. Numerous optical paths on the chip vary by length, number of reflections, and mirror subsystems employed. Subsystems include thermal actuator batteries producing lateral position displacement, angularly tunable mirrors, double reflection surfaces, and static vertical mirrors. All mirror systems are raised via manual stimulation using two micron, residue-free probe tips and some may be aligned using electrical signals causing resistive heating in thermal actuators. The characterization of thermal actuator batteries includes maximum displacement, deflection, and frequency response that coincides with theoretical thermodynamic simulations using finite-element analysis. Maximum deflection of 35 microns at 400 mW input electrical power is shown for three types of actuator batteries as is deflection dependent frequency response data for electrical input signals up to 10 kHz.

  17. ANSYS UIDL-Based CAE Development of Axial Support System for Optical Mirror

    NASA Astrophysics Data System (ADS)

    Yang, De-Hua; Shao, Liang

    2008-09-01

    The Whiffle-tree type axial support mechanism is widely adopted by most relatively large optical mirrors. Based on the secondary developing tools offered by the commonly used Finite Element Anylysis (FEA) software ANSYS, ANSYS Parametric Design Language (APDL) is used for creating the mirror FEA model driven by parameters, and ANSYS User Interface Design Language (UIDL) for generating custom menu of interactive manner, whereby, the relatively independent dedicated Computer Aided Engineering (CAE) module is embedded in ANSYS for calculation and optimization of axial Whiffle-tree support of optical mirrors. An example is also described to illustrate the intuitive and effective usage of the dedicated module by boosting work efficiency and releasing related engineering knowledge of user. The philosophy of secondary-developed special module with commonly used software also suggests itself for product development in other industries.

  18. Structural design of a large deformable primary mirror for a space telescope

    NASA Astrophysics Data System (ADS)

    Hansen, J. G. R.

    A 4 meter aperture deformable primary mirror is designed with the mirror and its supports integrated into a single structure. The integrated active mirror's minimal weight makes it desirable for a space telescope as well as a terrestrial application. Utilizing displacement actuators, the active controls at the mirror's surface include position control and slope control in both the radial and tangential directions at each of the 40 control points. Influence functions for each of the controls are nearly independent, reducing the complexity of the control system. Experiments with breadboard models verify the structural concept and the techniques used in the finite element method of computer structural analysis. The majority of this paper is a description of finite element analysis results. Localization of influence functions is exhaustively treated. For gravity loads, a thermal gradient through the mirror thickness, and a uniform thermal soak, diffraction limited performance of the 4m design is evaluated. Loads are applied to defocus the mirror and to cause fourth-order astigmatism. Mirror scallop, instigated by a focus shift, has been virtually eliminated with the 40-actuator design. The structural concept is so effective that it should be considered for uncontrolled primary mirrors as well as active mirrors.

  19. JWST ISIM Harness Thermal Evaluation

    NASA Technical Reports Server (NTRS)

    Kobel, Mark; Glazer, Stuart; Tuttle, Jim; Martins, Mario; Ruppel, Sean

    2008-01-01

    The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for 2013. JWST wl1 be the premier observatory of the next decade serving thousands of astronomers worldwide. The Integrated Science Instrument Module (ISIM) is the unit that will house thc four main JWST instruments. The ISIM enclosure passively cooled to 37 Kelvin and has a tightly managed thermal budget. A significant portion of the ISIM heat load is due to parasitic heat gains from the instrument harnesses. These harnesses provide a thermal path from the Instrument Electronics Control (IEC) to the ISIM. Because of the impact of this load to the ISIM thermal design, understanding the harness parasitic heat gains is critical. To this effect, a thermal test program has been conducted in order to characterize these parasitic loads and verify harness thermal models. Recent parasitic heat loads tests resulted in the addition of a dedicated multiple stage harness radiator. In order for the radiator to efficiently reject heat from the harness, effective thermal contact conductance values for multiple harnesses had to be determined. This presentation will describe the details and the results of this test program.

  20. Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Atkins, C.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2013-01-01

    MSFC is developing eight x-ray mirror modules for the ART-XC instrument on board the SRG Mission. The Engineering Unit tests are successful. MSFC is on schedule to deliver flight units in the November of 2013 and January 2014.

  1. Poco Graphite Inc. SuperSiC 0.25m Mirror Cryogenic Test Result

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Stahl, Phil; Hogue, Bill; Hadaway, James

    2004-01-01

    SuperSiC, a low areal density material, developed by POCO Graphite, have been used as mirror substrate for high energy lasers, laser radar systems, surveillance, telescopes, scan mirrors and satellites. SuperSiC has excellent thermal properties and cryogenic stability. It exhibits exceptional polishability for reflective optics with high strength, stiffness, and excellent thermal conductivity. A lightweighted 0.2-diameter polished SuperSic mirror was tested at cryogenic temperature at NASMSFC. Optical test results showed 6nm cry0 deformation from ambient to 30 degrees Kelvin and little to no change in its surface figure due to cry0 cycling.

  2. Performance verification and environmental testing of a unimorph deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2017-11-01

    Concepts for future large space telescopes require an active optics system to mitigate aberrations caused by thermal deformation and gravitational release. Such a system would allow on-site correction of wave-front errors and ease the requirements for thermal and gravitational stability of the optical train. In the course of the ESA project "Development of Adaptive Deformable Mirrors for Space Instruments" we have developed a unimorph deformable mirror designed to correct for low-order aberrations and dedicated to be used in space environment. We briefly report on design and manufacturing of the deformable mirror and present results from performance verifications and environmental testing.

  3. Practical tolerancing and performance implications for XUV projection lithography reduction systems (Poster Paper)

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vriddhachalam K.

    1992-07-01

    Practical considerations that will strongly affect the imaging capabilities of reflecting systems for extreme-ultraviolet (XUV) projection lithography include manufacturing tolerances and thermal distortion of the mirror surfaces due to absorption of a fraction of the incident radiation beam. We have analyzed the potential magnitudes of these effects for two types of reflective projection optical designs. We find that concentric, symmetric two-mirror systems are less sensitive to manufacturing errors and thermal distortion than off-axis, four-mirror systems.

  4. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  5. ESA unveils its big XMM spacecraft

    NASA Astrophysics Data System (ADS)

    1998-02-01

    XMM, the X-ray Multi-Mirror mission, is due do be lanched in 1999. It is a European conception with innovative telescopes. XMM will revolutionize the study of X-rays coming from the Universe, by harvesting far more X-rays per hour than any previous mission. Its enormous capacity will enable astronomers to analyse many strong sources of cosmic X-rays very quickly, and to discover and characterize many faint sources previously beyond their reach. As the most popular and competitive branch of space astronomy, X-ray astronomy reveals special places in the Universe where very high temperatures or violent forces generate energetic radiation. These sources include black holes, exploding stars, paris of stars orbiting very close together, and the central region of clusters of galaxies. XMM's optical monitor, viewing the scenes by visible light, will help in the interpretations. The combination of X-ray telescopes and optical monitoring should be well-suited to tracking down gamma-ray bursters - extraordinary explosions in space that mystify the astronomers. Full descriptions of the X-ray sources will depend on precise spectral analysis of the relative intensities of X-rays of different energies, including the signatures of identifiable chemical elements. Such spectral analysis is XMM's task, using instruments of the highest quality fed by the remarkable telescopes. As seen at ESTEC today, the spacecraft stands upside down. Its front end, where the mirror modules of the X-ray telescopes pass through the satellite's service module, is closest to the ground. At the top is the section containing detectors at the focus of the X-ray telescopes. Surmounting the assembly, a pair of cones will carry heat away from the detectors. XMM's appearance is, though, dominated by the long tube that spans the telescope's focal length, and by the black thermal blanket that will protect the spacecraft from unequal heating on the sunny and shaded sides. A miracle of telescope engineering « You have to imagine the big tube of XMM filled with focused X-rays en route to the detectors », says Robert Lainé, ESA's project manager for XMM. « That is the whole purpose of the mission, and our chief preoccupation has been with the three multi-mirror modules that accomplish it. Critics thought we were too ambitious, trying to nest 58 precisely formed mirrors together in each module. No one had ever attempted such a feat before. It was not easy, but thanks to excellent innovative work by European industry, XMM's telescopes are even better than we hoped ». X-rays are focused by glancing them off a carefully shaped mirror, like a bucket without a bottom. In a single-mirror telescope, most of the incoming X-rays miss the mirror. To catch more of them, designers nest multiple mirrors inside one another. Before XMM, astronomers had to choose between many mirrors with relatively poor focusing, or a very few mirrors with a sharp focus. With 58 precision-made mirrors in each of its three X-ray telescopes, XMM combines enormous gathering power with accurate focusing. Carl Zeiss in Germany made shaped and polished mandrels (moulds) for mirrors of 58 different diameters, up to 70 cm for the widest. Media Lario in Italy made the mirrors by electrodeposition of nickel on the mandrels, coated their inner surfaces with gold, and carefully assembled them in their nested configuration, in a framework fabricated by APCO in Switzerland. The performance of each XMM mirror module has been verified in special facilities of the Centre Spatial de Liège in Belgium and the Max-Planck Institut für extraterrestriche Physik in Germany. The first flight model conformed with the specification, and the second and third were even better. Some facts about XMM The total surface area of the extremely thin mirror that gathers X-rays in XMM's three multi-mirror telescopes (taken together) is larger than 200 m2. Two of the three X-ray telescopes are fitted with reflection grating spectrometers for the most detailed analysis of the X-ray energies. XMM is designed to fit in the fairing of Europe's new Ariane 5 launcher. Some 46 companies in 14 European countries (and 1 in the USA) have contributed to XMM's construction under the prime contractorship of Dornier Satellitensysteme. The investigators responsible for the instruments in XMM come from the Netherlands and the UK, with investigators in Belgium, France, Germany, Italy, Switzerland and the USA. XMM will spend most of its time south of the Earth, travelling quite slowly out to distances of more than 100,000 kilometres, well clear of the Earth's radiation belts. XMM will be controlled by ESA's satellite operations centre (ESOC) from Darmstadt (Germany) and Villafranca (Spain) via ground stations in Perth (Australia) and Kourou (French Guiana). A short betacam video is available upon request. For further information, please contact : ESA Public Relations Division Tel : +33(0)1.53.69.71.55 Fax: +33(0)1.53.69.76.90

  6. System Architecture of Explorer Class Spaceborne Telescopes: A look at Optimization of Cost, Testability, Risk and Operational Duty Cycle from the Perspective of Primary Mirror Material Selection

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Westerhoff, Thomas

    2015-01-01

    Management of cost and risk have become the key enabling elements for compelling science to be done within Explorer or M-Class Missions. We trace how optimal primary mirror selection may be co-optimized with orbit selection. And then trace the cost and risk implications of selecting a low diffusivity low thermal expansion material for low and medium earth orbits, vs. high diffusivity high thermal expansion materials for the same orbits. We will discuss that ZERODUR®, a material that has been in space for over 30 years, is now available as highly lightweighted open-back mirrors, and the attributes of these mirrors in spaceborne optical telescope assemblies. Lightweight ZERODUR® solutions are practical from mirrors < 0.3m in diameter to >4m in diameter. An example of a 1.2m lightweight ZERODUR® mirror will be discussed.

  7. Phase Adaptation and Correction by Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Tiziani, Hans J.

    2010-04-01

    Adaptive optical elements and systems for imaging or laser beam propagation are used for some time in particular in astronomy, where the image quality is degraded by atmospheric turbulence. In astronomical telescopes a deformable mirror is frequently used to compensate wavefront-errors due to deformations of the large mirror, vibrations as well as turbulence and hence to increase the image quality. In the last few years interesting elements like Spatial Light Modulators, SLM's, such as photorefractive crystals, liquid crystals and micro mirrors and membrane mirrors were introduced. The development of liquid crystals and micro mirrors was driven by data projectors as consumer products. They contain typically a matrix of individually addressable pixels of liquid crystals and flip mirrors respectively or more recently piston mirrors for special applications. Pixel sizes are in the order of a few microns and therefore also appropriate as active diffractive elements in digital holography or miniature masks. Although liquid crystals are mainly optimized for intensity modulation; they can be used for phase modulation. Adaptive optics is a technology for beam shaping and wavefront adaptation. The application of spatial light modulators for wavefront adaptation and correction and defect analysis as well as sensing will be discussed. Dynamic digital holograms are generated with liquid crystal devices (LCD) and used for wavefront correction as well as for beam shaping and phase manipulation, for instance. Furthermore, adaptive optics is very useful to extend the measuring range of wavefront sensors and for the wavefront adaptation in order to measure and compare the shape of high precision aspherical surfaces.

  8. Solar Thermal Propulsion Test Facility at MSFC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  9. Monocrystalline silicon and the meta-shell approach to building x-ray astronomical optics

    NASA Astrophysics Data System (ADS)

    Zhang, William W.; Allgood, Kim D.; Biskach, Michael P.; Chan, Kai-Wing; Hlinka, Michal; Kearney, John D.; Mazzarella, James R.; McClelland, Ryan S.; Numata, Ai; Olsen, Lawrence G.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.

    2017-08-01

    Angular resolution and photon-collecting area are the two most important factors that determine the power of an X-ray astronomical telescope. The grazing incidence nature of X-ray optics means that even a modest photon-collecting area requires an extraordinarily large mirror area. This requirement for a large mirror area is compounded by the fact that X-ray telescopes must be launched into, and operated in, outer space, which means that the mirror must be both lightweight and thin. Meanwhile the production and integration cost of a large mirror area determines the economical feasibility of a telescope. In this paper we report on a technology development program whose objective is to meet this three-fold requirement of making astronomical X-ray optics: (1) angular resolution, (2) photon-collecting area, and (3) production cost. This technology is based on precision polishing of monocrystalline silicon for making a large number of mirror segments and on the metashell approach to integrate these mirror segments into a mirror assembly. The meta-shell approach takes advantage of the axial or rotational symmetry of an X-ray telescope to align and bond a large number of small, lightweight mirrors into a large mirror assembly. The most important features of this technology include: (1) potential to achieve the highest possible angular resolution dictated by optical design and diffraction; and (2) capable of implementing every conceivable optical design, such as Wolter-I, WolterSchwarzschild, as well as other variations to one or another aspect of a telescope. The simplicity and modular nature of the process makes it highly amenable to mass production, thereby making it possible to produce very large X-ray telescopes in a reasonable amount of time and at a reasonable cost. As of June 2017, the basic validity of this approach has been demonstrated by finite element analysis of its structural, thermal, and gravity release characteristics, and by the fabrication, alignment, bonding, and X-ray testing of mirror modules. Continued work in the coming years will raise the technical readiness of this technology for use by SMEX, MIDEX, Probe, as well as major flagship missions.

  10. Monocrystalline Silicon and the Meta-Shell Approach to Building X-Ray Astronomical Optics

    NASA Technical Reports Server (NTRS)

    Zhang, William W.; Allgood, Kim D.; Biskach, Michael P.; Chan, Kai-Wing; Hlinka, Michal; Kearney, John D.; Mazzarella, James R.; McClelland, Ryan S.; Numata, Ai; Olsen, Lawrence G.; hide

    2017-01-01

    Angular resolution and photon-collecting area are the two most important factors that determine the power of an X-ray astronomical telescope. The grazing incidence nature of X-ray optics means that even a modest photon-collecting area requires an extraordinarily large mirror area. This requirement for a large mirror area is compounded by the fact that X-ray telescopes must be launched into, and operated in, outer space, which means that the mirror must be both lightweight and thin. Meanwhile the production and integration cost of a large mirror area determines the economical feasibility of a telescope. In this paper we report on a technology development program whose objective is to meet this three-fold requirement of making astronomical X-ray optics: (1) angular resolution, (2) photon-collecting area, and (3) production cost. This technology is based on precision polishing of monocrystalline silicon for making a large number of mirror segments and on the meta-shell approach to integrate these mirror segments into a mirror assembly. The meta-shell approach takes advantage of the axial or rotational symmetry of an X-ray telescope to align and bond a large number of small, lightweight mirrors into a large mirror assembly. The most important features of this technology include: (1) potential to achieve the highest possible angular resolution dictated by optical design and diffraction; and (2) capable of implementing every conceivable optical design, such as Wolter-I, Wolter-Schwarzschild, as well as other variations to one or another aspect of a telescope. The simplicity and modular nature of the process makes it highly amenable to mass production, thereby making it possible to produce very large X-ray telescopes in a reasonable amount of time and at a reasonable cost. As of June 2017, the basic validity of this approach has been demonstrated by finite element analysis of its structural, thermal, and gravity release characteristics, and by the fabrication, alignment, bonding, and X-ray testing of mirror modules. Continued work in the coming years will raise the technical readiness of this technology for use by SMEX, MIDEX, Probe, as well as major flagship missions.

  11. Mounting and Alignment of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  12. Calibration of the ART-XC/SRG X-ray Mirror Modules

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Zavlin, V.; Swartz, D.; Kolodziejczak, J.; Elsner, R.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2014-01-01

    Seven x-ray mirror modules are being fabricated at the Marshall Space Flight Center (MSFC) for the Astronomical Roentgen Telescope (ART) instrument to be launched on board of the Spektrum Roentgen Gamma (SRG) Mission. As they are completed, the modules are tested and calibrated at the MSFC's 104-m Stray Flight Facility. The results of these calibration measurements and comparisons with theoretical models will be presented.

  13. Influence of cross-phase modulation in SPM-based nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Pitois, Stéphane

    2005-09-01

    We study the role of cross-phase modulation (CPM) occurring between the two counter-propagating parts of a signal wave in a standard SPM-based nonlinear optical fiber loop mirror (NOLM). For pulse train with high duty-cycle, we experimentally observe the influence of cross-phase modulation on NOLM transmittivity. Finally, we propose a solution based on properly designed dispersion imbalanced NOLM to overcome undesirable CPM effects.

  14. Thermally induced changes in the focal distance of composite mirrors - Composites with a zero coefficient of thermal expansion of the radius of curvature

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P.

    1992-01-01

    Calculations are presented of the coefficient of thermal expansion (CTE) of the radius of curvature of the reflector face sheets made of a quasi-isotropic composite. It is shown that, upon cooling, the change of the CTE of the focal distance of the mirror is equal to that of the radius of the curvature of the reflector face sheet. The CTE of the radius of the curvature of a quasi-isotropic composite face sheet depends on both the in-plane and the out-of-plane CTEs. The zero in-plane CTE of a face sheet does not guarantee mirrors with no focal length changes.

  15. Modulation of the mirror system by social relevance.

    PubMed

    Kilner, James M; Marchant, Jennifer L; Frith, Chris D

    2006-09-01

    When we observe the actions of others, certain areas of the brain are activated in a similar manner as to when we perform the same actions ourselves. This 'mirror system' includes areas in the ventral premotor cortex and the inferior parietal lobule. Experimental studies suggest that action observation automatically elicits activity in the observer, which precisely mirrors the activity observed. In this case we would expect this activity to be independent of observer's viewpoint. Here we use whole-head magnetoencephalography (MEG) to record cortical activity of human subjects whilst they watched a series of videos of an actor making a movement recorded from different viewpoints. We show that one cortical response to action observation (oscillatory activity in the 7-12 Hz frequency range) is modulated by the relationship between the observer and the actor. We suggest that this modulation reflects a mechanism that filters information into the 'mirror system', allowing only socially relevant information to pass.

  16. Thermal stabilization of static single-mirror Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.

    2017-05-01

    Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.

  17. Solar Thermal Concept Evaluation

    NASA Technical Reports Server (NTRS)

    Hawk, Clark W.; Bonometti, Joseph A.

    1995-01-01

    Concentrated solar thermal energy can be utilized in a variety of high temperature applications for both terrestrial and space environments. In each application, knowledge of the collector and absorber's heat exchange interaction is required. To understand this coupled mechanism, various concentrator types and geometries, as well as, their relationship to the physical absorber mechanics were investigated. To conduct experimental tests various parts of a 5,000 watt, thermal concentrator, facility were made and evaluated. This was in anticipation at a larger NASA facility proposed for construction. Although much of the work centered on solar thermal propulsion for an upper stage (less than one pound thrust range), the information generated and the facility's capabilities are applicable to material processing, power generation and similar uses. The numerical calculations used to design the laboratory mirror and the procedure for evaluating other solar collectors are presented here. The mirror design is based on a hexagonal faceted system, which uses a spherical approximation to the parabolic surface. The work began with a few two dimensional estimates and continued with a full, three dimensional, numerical algorithm written in FORTRAN code. This was compared to a full geometry, ray trace program, BEAM 4, which optimizes the curvatures, based on purely optical considerations. Founded on numerical results, the characteristics of a faceted concentrator were construed. The numerical methodologies themselves were evaluated and categorized. As a result, the three-dimensional FORTRAN code was the method chosen to construct the mirrors, due to its overall accuracy and superior results to the ray trace program. This information is being used to fabricate and subsequently, laser map the actual mirror surfaces. Evaluation of concentrator mirrors, thermal applications and scaling the results of the 10 foot diameter mirror to a much larger concentrator, were studied. Evaluations, recommendations and pit falls regarding the structure, materials and facility design are presented.

  18. Preliminary Engineering Study of Long-Lead Time Equipment Required for Large Lightweight Mirror Manufacture

    DTIC Science & Technology

    1981-06-01

    numnber) Annealing Fusion Sealed Mirrors ULED Mirrors Boule Large Lightweight Mirror Core Low Expansion Glass Coremaker Mirror Blanks Forming Furnace...Experiments 34 4 10.6 Grinder Procurement 35 J 1 I GLOSSARY Alpha - Coef. of thermal expansion. Boule - The disc of glass formed in the furnace. Cell...turning over of large plates, cores or mirrors. Flowout - Method used to produce large diameter plates from small diameter boules. Glass - Used in the

  19. ZERODUR thermo-mechanical modelling and advanced dilatometry for the ELT generation

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Westerhoff, Thomas

    2016-07-01

    Large amounts of low thermal expansion material are required for the upcoming ELT projects. The main mirror is designed using several hundreds of hexagonal 1.4 m sized mirror blanks. The M2 and M3 are monolithic 4 m class mirror blanks. The mirror blank material needs to fulfill tight requirements regarding CTE specification and homogeneity. Additionally the mirror blanks need to be dimensionally stable for more than 30 years. In particular, stress effects due to the changes in the environment shall not entail shape variation of more than 0.5 μm PV within 30 years. In 2010 SCHOTT developed a physically based model to describe the thermal and mechanical long time behavior of ZERODUR. The model enables simulation of the long time behavior of ZERODUR mirror blanks under realistic mechanical and thermal constraints. This presentation shows FEM simulation results on the long time behavior of the ELT M1, M2 and M3 mirror blanks under different loading conditions. Additionally the model results will be compared to an already 15 years lasting long time measurement of a ZERODUR sample at the German federal physical standardization institute (PTB). In recent years SCHOTT pushed the push rod dilatometer measurement technology to its limit. With the new Advanced Dilatometer CTE measurement accuracies of +- 3 ppb/K and reproducibilities of better 1 ppb/K have been achieved. The new Advanced Dilatometer exhibits excellent long time stability.

  20. Development of ATHENA mirror modules

    NASA Astrophysics Data System (ADS)

    Collon, Maximilien J.; Vacanti, Giuseppe; Barrière, Nicolas M.; Landgraf, Boris; Günther, Ramses; Vervest, Mark; van der Hoeven, Roy; Dekker, Danielle; Chatbi, Abdel; Girou, David; Sforzini, Jessica; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Fransen, Sebastiaan; Shortt, Brian; Haneveld, Jeroen; Koelewijn, Arenda; Booysen, Karin; Wijnperle, Maurice; van Baren, Coen; Eigenraam, Alexander; Müller, Peter; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Massahi, Sonny; Christensen, Finn E.; Della Monica Ferreira, Desirée.; Valsecchi, Giuseppe; Oliver, Paul; Checquer, Ian; Ball, Kevin; Zuknik, Karl-Heinz

    2017-08-01

    Silicon Pore Optics (SPO), developed at cosine with the European Space Agency (ESA) and several academic and industrial partners, provides lightweight, yet stiff, high-resolution x-ray optics. This technology enables ATHENA to reach an unprecedentedly large effective area in the 0.2 - 12 keV band with an angular resolution better than 5''. After developing the technology for 50 m and 20 m focal length, this year has witnessed the first 12 m focal length mirror modules being produced. The technology development is also gaining momentum with three different radii under study: mirror modules for the inner radii (Rmin = 250 mm), outer radii (Rmax = 1500 mm) and middle radii (Rmid = 737 mm) are being developed in parallel.

  1. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas; Stahl, Phil; Arnold, Bill

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next Ultraviolet, Optical, Infrared (UVOIR) space observatory. A likely science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet that is 10-10 times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront. This paper investigates two topics: 1) parametric relationships between a primary mirror's thermal parameters and wavefront stability, and 2) optimal temperature profiles in the telescope's shroud and heater plate that minimize static wavefront error (WFE) in the primary mirror.

  2. Variable-delay Polarization Modulators for the CLASS Telescope

    NASA Astrophysics Data System (ADS)

    Harrington, Kathleen; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Mirel, P.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    The challenges of measuring faint polarized signals at microwave wavelengths have motivated the development of rapid polarization modulators. One scalable technique, called a Variable-delay Polarization Modulator (VPM), consists of a stationary wire array in front of a movable mirror. The mirror motion creates a changing phase difference between the polarization modes parallel and orthogonal to the wire array. The Cosmology Large Angular Scale Surveyor (CLASS) will use a VPM as the first optical element in a telescope array that will search for the signature of inflation through the “B-mode” pattern in the polarization of the cosmic microwave background. In the CLASS VPMs, parallel transport of the mirror is maintained by a voice-coil actuated flexure system which will translate the mirror in a repeatable manner while holding tight parallelism constraints with respect to the wire array. The wire array will use 51 μm diameter copper-plated tungsten wire with 160 μm pitch over a 60 cm clear aperture. We present the status of the construction and testing of the mirror transport mechanism and wire arrays for the CLASS VPMs.

  3. Silicon pore optics for the international x-ray observatory

    NASA Astrophysics Data System (ADS)

    Wille, E.; Wallace, K.; Bavdaz, M.; Collon, M. J.; Günther, R.; Ackermann, M.; Beijersbergen, M. W.; Riekerink, M. O.; Blom, M.; Lansdorp, B.; de Vreede, L.

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The International X-ray Observatory (IXO) requires a mirror assembly of 3 m2 effective area (at 1.5 keV) and an angular resolution of 5 arcsec. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the manufacturing process ranging from single mirror plates towards complete focusing mirror modules mounted in flight configuration. The performance of the mirror modules is tested using X-ray pencil beams or full X-ray illumination. In 2009, an angular resolution of 9 arcsec was achieved, demonstrating the improvement of the technology compared to 17 arcsec in 2007. Further development activities of Silicon Pore Optics concentrate on ruggedizing the mounting system and performing environmental tests, integrating baffles into the mirror modules and assessing the mass production.

  4. Design of the GOES Telescope secondary mirror mounting

    NASA Technical Reports Server (NTRS)

    Hookman, Robert A.

    1989-01-01

    The GOES Telescope utilizes a flexure mounting system for the secondary mirror to minimize thermally induced distortions of the secondary mirror. The detailed design is presented along with a discussion of the microradian pointing requirements and how they were achieved. The methodology used to dynamically tune the flexure/secondary mirror assembly to minimize structural interactions will also be discussed.

  5. James Webb Space Telescope Integrated Science Instrument Module Thermal Vacuum Thermal Balance Test Campaign at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Glazer, Stuart; Comber, Brian (Inventor)

    2016-01-01

    The James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror, designed as a successor to the Hubble Space Telescope when launched in 2018. Three of the four science instruments contained within the Integrated Science Instrument Module (ISIM) are passively cooled to their operational temperature range of 36K to 40K with radiators, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. Thermal-vacuum testing of the flight science instruments at the ISIM element level has taken place in three separate highly challenging and extremely complex thermal tests within a gaseous helium-cooled shroud inside Goddard Space Flight Centers Space Environment Simulator. Special data acquisition software was developed for these tests to monitor over 1700 flight and test sensor measurements, track over 50 gradients, component rates, and temperature limits in real time against defined constraints and limitations, and guide the complex transition from ambient to final cryogenic temperatures and back. This extremely flexible system has proven highly successful in safeguarding the nearly $2B science payload during the 3.5-month-long thermal tests. Heat flow measurement instrumentation, or Q-meters, were also specially developed for these tests. These devices provide thermal boundaries o the flight hardware while measuring instrument heat loads up to 600 mW with an estimated uncertainty of 2 mW in test, enabling accurate thermal model correlation, hardware design validation, and workmanship verification. The high accuracy heat load measurements provided first evidence of a potentially serious hardware design issue that was subsequently corrected. This paper provides an overview of the ISIM-level thermal-vacuum tests and thermal objectives; explains the thermal test configuration and thermal balances; describes special measurement instrumentation and monitoring and control software; presents key test thermal results; lists problems encountered during testing and lessons learned.

  6. Research Technology

    NASA Image and Video Library

    1998-09-16

    A team of engineers at Marshall Space Flight Center (MSFC) has designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket that produces lower thrust but has better thrust efficiency than the chemical combustion engines. This segmented array of mirrors is the solar concentrator test stand at MSFC for firing the thermal propulsion engines. The 144 mirrors are combined to form an 18-foot diameter array concentrator. The mirror segments are aluminum hexagons that have the reflective surface cut into it by a diamond turning machine, which is developed by MSFC Space Optics Manufacturing Technology Center.

  7. Dimensional-stability studies of candidate space-telescope mirror-substrate materials

    NASA Technical Reports Server (NTRS)

    Jerke, J. M.; Platt, R. J., Jr.

    1972-01-01

    The effects of aging, vacuum exposure, and thermal cycling on the dimensional stability of mirror-substrate materials, fused silica, Cer-Vit, Kanigen-coated beryllium, polycrystalline silicon, and U.L.E. fused silica were investigated. A multiple-beam interferometer was used to determine nonrecoverable surface-shape changes of the 12.7-cm-diameter mirrors with substrates of these materials. Thermal cycling and aging in vacuum produced the largest changes, but only a few were as large as 1/30 wavelength, where the wavelength was 632.8 nm.

  8. Lightweight Deployable Mirrors with Tensegrity Supports

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W.; Bradford, Larry J.; Cleve, Richard C.

    2004-01-01

    The upper part of Figure 1 shows a small-scale prototype of a developmental class of lightweight, deployable structures that would support panels in precise alignments. In this case, the panel is hexagonal and supports disks that represent segments of a primary mirror of a large telescope. The lower part of Figure 1 shows a complete conceptual structure containing multiple hexagonal panels that hold mirror segments. The structures of this class are of the tensegrity type, which was invented five decades ago by artist Kenneth Snelson. A tensegrity structure consists of momentfree compression members (struts) and tension members (cables). The structures of this particular developmental class are intended primarily as means to erect large segmented primary mirrors of astronomical telescopes or large radio antennas in outer space. Other classes of tensegrity structures could also be designed for terrestrial use as towers, masts, and supports for general structural panels. An important product of the present development effort is the engineering practice of building a lightweight, deployable structure as an assembly of tensegrity modules like the one shown in Figure 2. This module comprises two octahedral tensegrity subunits that are mirror images of each other joined at their plane of mirror symmetry. In this case, the plane of mirror symmetry is both the upper plane of the lower subunit and the lower plane of the upper subunit, and is delineated by the midheight triangle in Figure 2. In the configuration assumed by the module to balance static forces under mild loading, the upper and lower planes of each sub-unit are rotated about 30 , relative to each other, about the long (vertical) axis of the structure. Larger structures can be assembled by joining multiple modules like this one at their sides or ends. When the module is compressed axially (vertically), the first-order effect is an increase in the rotation angle, but by virtue of the mirror arrangement, the net first-order rotation between the uppermost and lowermost planes is zero. The need to have zero net rotation between these planes under all loading conditions in a typical practical structure is what prompts the use of the mirror configuration. Force and moment loadings other than simple axial compression produce only second-order deformations through strains in the struts and cables.

  9. SIM PlanetQuest: The TOM-3 (Thermo-Optical-Mechanical) Siderostat Mirror Test

    NASA Technical Reports Server (NTRS)

    Phillips, Charles J.

    2006-01-01

    This slide presentation reviews the Space Interferometry Mission (SIM) PlanetQuest mission. It describes the mission, shows diagrams of the instrument, the collector bays, the Siderostat mirrors, the COL bay thermal environment, the TOM-3 replicating COL Bay Environment, the thermal hardware for the SID heater control, and the results of the test are shown

  10. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  11. Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon. Degree awarded by Colorado Univ., Boulder, CO

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1997-01-01

    The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to combine micro-mechanical and micro-optical elements on the same chip. One MEMS technology that has recently gained attention by the research community is the micro-mechanical Fabry-Perot optical filter. A MEMS based Fabry-Perot consists of a vertically integrated structure composed of two mirrors separated by an air gap. Wavelength tuning is achieved by applying a bias between the two mirrors resulting in an attractive electrostatic force which pulls the mirrors closer. In this work, we present a new micro-mechanical Fabry-Perot structure which is simple to fabricate and is integratable with low cost silicon photodetectors and transistors. The structure consists of a movable gold coated oxide cantilever for the top mirror and a stationary Au/Ni plated silicon bottom mirror. The fabrication process is single mask level, self aligned, and requires only one grown or deposited layer. Undercutting of the oxide cantilever is carried out by a combination of RIE and anisotropic KOH etching of the (111) silicon substrate. Metallization of the mirrors is provided by thermal evaporation and electroplating. The optical and electrical characteristics of the fabricated devices were studied and show promissing results. A wavelength shift of 120nm with 53V applied bias was demonstrated by one device geometry using 6.27 micrometer air gap. The finesse of the structure was 2.4. Modulation bandwidths ranging from 91KHz to greater than 920KHz were also observed. Theoretical calculations show that if mirror reflectivity, smoothness, and parallelism are improved, a finesse of 30 is attainable. The predictions also suggest that a reduction of the air gap to 1 micrometer results in an increased wavelength tuning range of 175 nm with a CMOS compatible 4.75V.

  12. Thermal Expansion Coefficient of Cold-Pressed Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Olivieri, E.; Pasca, E.; Ventura, G.; Barucci, M.; Risegari, L.

    2004-07-01

    The measurement of the thermal linear expansion coefficient of a cold sintered SiC has been carried out in the 4.2 - 293 K temperature range. The properties of silicon carbide are specially suitable to realise high quality mirrors and complete optomechanical structures for space astronomy. The thermal contraction of the material used for the realization of the mirror is, of course, of primary interest. We present here both a plot and smoothed data of SiC thermal contraction coefficient. Details of the dilatometric interferometer used to carry out the measurements are also reported together with a control test of the measuring bench on a material (brass) of known thermal contraction.

  13. Robust optical signal-to-noise ratio monitoring scheme using a phase-modulator-embedded fiber loop mirror.

    PubMed

    Ku, Yuen-Ching; Chan, Chun-Kit; Chen, Lian-Kuan

    2007-06-15

    We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique using a phase-modulator-embedded fiber loop mirror. This technique measures the in-band OSNR accurately by observing the output power of a fiber loop mirror filter, where the transmittance is adjusted by an embedded phase modulator driven by a low-frequency periodic signal. The measurement errors are less than 0.5 dB for an OSNR between 0 and 40 dB in a 10 Gbit/s non-return-to-zero system. This technique was also shown experimentally to have high robustness against various system impairments and high feasibility to be deployed in practical implementation.

  14. GAIA payload module mechanical development

    NASA Astrophysics Data System (ADS)

    Touzeau, S.; Sein, E.; Lebranchu, C.

    2017-11-01

    Gaia is the European Space Agency's cornerstone mission for global space astrometry. Its goal is to make the largest, most precise three-dimensional map of our Galaxy by surveying an unprecedented number of stars. This paper gives an overview of the mechanical system engineering and verification of the payload module. This development includes several technical challenges. First of all, the very high stability performance as required for the mission is a key driver for the design, which incurs a high degree of stability. This is achieved through the extensive use of Silicon Carbide (Boostec® SiC) for both structures and mirrors, a high mechanical and thermal decoupling between payload and service modules, and the use of high-performance engineering tools. Compliance of payload mass and volume with launcher capability is another key challenge, as well as the development and manufacturing of the 3.2-meter diameter toroidal primary structure. The spacecraft mechanical verification follows an innovative approach, with direct testing on the flight model, without any dedicated structural model.

  15. Simulations of far-field optical beam quality influenced by the thermal distortion of the secondary mirror for high-power laser system

    NASA Astrophysics Data System (ADS)

    Guo, Ruhai; Chen, Ning; Zhuang, Xinyu; Wang, Bing

    2015-02-01

    In order to research the influence on the beam quality due to thermal deformation of the secondary mirror in the high power laser system, the theoretical simulation study is performed. Firstly, three typical laser power 10kW, 50kW and 100kW with the wavelength 1.064μm are selected to analyze thermal deformation of mirror through the finite element analyze of thermodynamics instantaneous method. Then the wavefront aberration can be calculated by ray-tracing theory. Finally, focus spot radius,beam quality (BQ) of far-filed beam can be calculated and comparably analyzed by Fresnel diffraction integration. The simulation results show that with the increasing laser power, the optical aberration of beam director gets worse, the far-field optical beam quality decrease, which makes the laser focus spot broadening and the peak optical intensity of center decreasing dramatically. Comparing the clamping ring and the three-point clamping, the former is better than the latter because the former only induces the rotation symmetric deformation and the latter introduces additional astigmatism. The far-field optical beam quality can be improved partly by simply adjusting the distance between the main mirror and the secondary mirror. But the far-field power density is still the one tenth as that without the heat distortion of secondary mirror. These results can also provide the reference to the thermal aberration analyze for high power laser system and can be applied to the field of laser communication system and laser weapon etc.

  16. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror

    PubMed Central

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  17. Full color laser projection display using Kr-Ar laser (white laser) beam-scanning technology

    NASA Astrophysics Data System (ADS)

    Kim, Yonghoon; Lee, Hang W.; Cha, Seungnam; Lee, Jin-Ho; Park, Youngjun; Park, Jungho; Hong, Sung S.; Hwang, Young M.

    1997-07-01

    Full color laser projection display is realized on the large screen using a krypton-argon laser (white laser) as a light source, and acousto-optic devices as light modulators. The main wavelengths of red, green and blue color are 647, 515, and 488 nm separated by dichroic mirrors which are designed to obtain the best performance for the s-polarized beam with the 45 degree incident angle. The separated beams are modulated by three acousto-optic modulators driven by rf drivers which has energy level of 1 watt at 144 MHz and recombined by dichroic mirrors again. Acousto-optic modulators (AOM) are fabricated to satisfy high diffraction efficiency over 80% and fast rising time less than 50 ns at the video bandwidth of 5 MHz. The recombined three beams (RGB) are scanned by polygonal mirrors for horizontal lines and a galvanometer for vertical lines. The photodiode detection for monitoring of rotary polygonal mirrors is adopted in this system for the compensation of the tolerance in the mechanical scanning to prevent the image joggling in the horizontal direction. The laser projection display system described in this paper is expected to apply HDTV from the exploitation of the acousto- optic modulator with the video bandwidth of 30 MHz.

  18. Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Juday, Richard D.

    1991-01-01

    A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.

  19. Use of updated material properties in parametric optimization of spaceborne mirrors

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Westerhoff, Thomas; Weidmann, Guenter; Kirchhoff, Rule

    2016-07-01

    Spaceborne sensor mirrors need to be both structurally efficient and to maintain figure through thermal transients. Both properties can be represented in a plot showing structural efficiency on one axis and thermal transient resilience on the other. For material selection, engineers have effectively used such charts. However in some cases thermal attributes have improved considerably. Using contemporary values, this comparison chart looks differently. We will discuss how lines of equal merit may be formulated differently depending on the orbit of the mission.

  20. Non-destructive evaluation of water ingress in photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bora, Mihail; Kotovsky, Jack

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, amore » focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.« less

  1. High brightness MEMS mirror based head-up display (HUD) modules with wireless data streaming capability

    NASA Astrophysics Data System (ADS)

    Milanovic, Veljko; Kasturi, Abhishek; Hachtel, Volker

    2015-02-01

    A high brightness Head-Up Display (HUD) module was demonstrated with a fast, dual-axis MEMS mirror that displays vector images and text, utilizing its ~8kHz bandwidth on both axes. Two methodologies were evaluated: in one, the mirror steers a laser at wide angles of <48° on transparent multi-color fluorescent emissive film and displays content directly on the windshield, and in the other the mirror displays content on reflective multi-color emissive phosphor plates reflected off the windshield to create a virtual image for the driver. The display module is compact, consisting of a single laser diode, off-the-shelf lenses and a MEMS mirror in combination with a MEMS controller to enable precise movement of the mirror's X- and Y-axis. The MEMS controller offers both USB and wireless streaming capability and we utilize a library of functions on a host computer for creating content and controlling the mirror. Integration with smart phone applications is demonstrated, utilizing the mobile device both for content generation based on various messages or data, and for content streaming to the MEMS controller via Bluetooth interface. The display unit is highly resistant to vibrations and shock, and requires only ~1.5W to operate, even with content readable in sunlit outdoor conditions. The low power requirement is in part due to a vector graphics approach, allowing the efficient use of laser power, and also due to the use of a single, relatively high efficiency laser and simple optics.

  2. Research Technology

    NASA Image and Video Library

    1999-11-01

    This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  3. Influences of thermal deformation of cavity mirrors induced by high energy DF laser to beam quality under the simulated real physical circumstances

    NASA Astrophysics Data System (ADS)

    Deng, Shaoyong; Zhang, Shiqiang; He, Minbo; Zhang, Zheng; Guan, Xiaowei

    2017-05-01

    The positive-branch confocal unstable resonator with inhomogeneous gain medium was studied for the normal used high energy DF laser system. The fast changing process of the resonator's eigenmodes was coupled with the slow changing process of the thermal deformation of cavity mirrors. Influences of the thermal deformation of cavity mirrors to the outcoupled beam quality and transmission loss of high frequency components of high energy laser were computed. The simulations are done through programs compiled by MATLAB and GLAD software and the method of combination of finite elements and Fox-li iteration algorithm was used. Effects of thermal distortion, misaligned of cavity mirrors and inhomogeneous distribution of gain medium were introduced to simulate the real physical circumstances of laser cavity. The wavefront distribution and beam quality (including RMS of wavefront, power in the bucket, Strehl ratio, diffraction limit β, position of the beam spot center, spot size and intensity distribution in far-field ) of the distorted outcoupled beam were studied. The conclusions of the simulation agree with the experimental results. This work would supply references of wavefront correction range to the adaptive optics system of interior alleyway.

  4. Improved design of support for large aperture space lightweight mirror

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ruan, Ping; Liu, Qimin

    2013-08-01

    In order to design a kind of rational large aperture space mirror which can adapt to the space gravity and thermal environment, by taking the choice of material, the lightweight of the mirror and the design of support into account in detail, a double-deck structure with traditional flexible hinge was designed, then the analytical mathematical model of the mirror system was established. The design adopts six supports on back. in order to avoid the constraints, mirror is connected to three middle transition pieces through six flexible hinges, and then the three transition pieces are connected to support plate through another three flexible hinges. However, the initial structure is unable to reach the expected design target and needs to be made further adjustments. By improving and optimizing the original structure, a new type of flexible hinge in the shape of the letter A is designed finally. Compared with the traditional flexible hinge structure, the new structure is simpler and has less influence on the surface figure accuracy of mirror. By using the finite element analysis method, the static and dynamic characteristics as well as the thermal characteristics of the mirror system are analyzed. Analysis results show that the maximum PV value is 37 nm and the maximum RMS value is 10.4 nm when gravity load is applied. Furthermore, the maximum PV value is 46 nm and the maximum RMS value is 10.5 nm under the load case of gravity coupled with 4℃ uniform temperature rise. The results satisfy the index of optical design. The first order natural frequency of the mirror component is 130 Hz according to the conclusion obtained by modal analytical solution, so the mirror structure has high enough fundamental frequency. And, the structural strength can meet the demand under the overload and the random vibration environment respectively. It indicates that the mirror component structure has enough dynamic, static stiffness and thermal stability, meeting the design requirements.

  5. Modeling and measurement of electrostatic micromirror array fabricated with single-layer polysilicon micromachining technology

    NASA Astrophysics Data System (ADS)

    Min, Young-Hoon; Kim, Yong-Kweon

    1998-09-01

    A silicon based micro mirror array is a highly efficient component for use in optical applications as adaptive optical systems and optical correlators. Many types of micro mirror or micro mirror array have been studied and proposed in order to obtain the optimal performance according to their own purposes. A micro mirror array designed, fabricated and tested in this paper consists of 5 X 5 single layer polysilicon-based, electrostatically driven actuators. The micro mirror array for the optical phase modulation is made by using only two masks and can be driven independently by 25 channel circuits. About 6 (pi) phase modulation is obtained in He-Ne laser ((lambda) equals 633 nm) with 67% fill-factor. In this paper, the deflection characteristics of the actuators in controllable range were studied. The experimental results show that the deflection characteristics is much dependent upon a residual stress in flexure, the initial curvature of mirror due to stress gradient and an electrostatic force acted on other element except for mirror itself. The modeling results agree well with the experimental results. Also, it is important to fabricate a flat mirror that is not initially curved because the curved mirror brings a bad performance in optical use. Therefore, a new method to obtain the flat mirror by using the gold metallization in spite of the residual stress unbalance is proposed in this paper.

  6. Upper extremity rehabilitation of stroke: facilitation of corticospinal excitability using virtual mirror paradigm.

    PubMed

    Kang, Youn Joo; Park, Hae Kyung; Kim, Hyun Jung; Lim, Taeo; Ku, Jeonghun; Cho, Sangwoo; Kim, Sun I; Park, Eun Sook

    2012-10-04

    Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEP)s from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A) relaxation; (B) real mirror; and (C) virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients.

  7. Upper extremity rehabilitation of stroke: Facilitation of corticospinal excitability using virtual mirror paradigm

    PubMed Central

    2012-01-01

    Background Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. Objectives We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. Methods A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEP)s from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A) relaxation; (B) real mirror; and (C) virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. Results The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Conclusion Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients. PMID:23035951

  8. Deformable mirror technologies at AOA Xinetics

    NASA Astrophysics Data System (ADS)

    Wirth, Allan; Cavaco, Jeffrey; Bruno, Theresa; Ezzo, Kevin M.

    2013-05-01

    AOA Xinetics (AOX) has been at the forefront of Deformable Mirror (DM) technology development for over two decades. In this paper the current state of that technology is reviewed and the particular strengths and weaknesses of the various DM architectures are presented. Emphasis is placed on the requirements for DMs applied to the correction of high-energy and high average power lasers. Mirror designs optimized for the correction of typical thermal lensing effects in diode pumped solid-state lasers will be detailed and their capabilities summarized. Passive thermal management techniques that allow long laser run times to be supported will also be discussed.

  9. A technique for the optical analysis of deformed telescope mirrors

    NASA Technical Reports Server (NTRS)

    Bolton, John F.

    1986-01-01

    The NASTRAN-ACCOS V programs' interface merges structural and optical analysis capabilities in order to characterize the performance of the NASA Goddard Space Flight Center's Solar Optical Telescope primary mirror, which has a large diameter/thickness ratio. The first step in the optical analysis is to use NASTRAN's FEM to model the primary mirror, simulating any distortions due to gravitation, thermal gradients, and coefficient of thermal expansion nonuniformities. NASTRAN outputs are then converted into an ACCOS V-acceptable form; ACCOS V generates the deformed optical surface on the basis of these inputs, and imaging qualities can be determined.

  10. Foil Panel Mirrors for Nonimaging Applications

    NASA Technical Reports Server (NTRS)

    Kuyper, D. J.; Castillo, A. A.

    1984-01-01

    Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.

  11. The afocal telescope of the ESA ARIEL mission: analysis of the layout

    NASA Astrophysics Data System (ADS)

    Da Deppo, Vania; Middleton, Kevin; Focardi, Mauro; Morgante, Gianluca; Corso, Alain Jody; Pace, Emanuele; Claudi, Riccardo; Micela, Giuseppina

    2017-09-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three present candidates as an M4 ESA mission to be launched in 2026. During its foreseen 3.5 years operation, it will observe spectroscopically in the infrared a large population of known transiting planets in the neighborhood of the Solar System. The aim is to enable a deep understanding of the physics and chemistry of these exoplanets. ARIEL is based on a 1-m class telescope ahead of a suite of instruments: two spectrometer channels covering the band 1.95 to 7.8 μm and four photometric channels (two wide and two narrow band) in the range 0.5 to 1.9 μm. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is based on an eccentric pupil two-mirror classic Cassegrain configuration coupled to a tertiary paraboloidal mirror. The temperature of the primary mirror (M1) will be monitored and finely tuned by means of an active thermal control system based on thermistors and heaters. They will be switched on and off to maintain the M1 temperature within ±1 K thanks to a proportional-integral-derivative (PID) controller implemented within the Telescope Control Unit (TCU), a Payload electronics subsystem mainly in charge of the active thermal control of the two detectors owning to the spectrometer. TCU will collect the housekeeping data of the controlled subsystems and will forward them to the spacecraft (S/C) by means of the Instrument Control Unit (ICU), the main Payload's electronic Unit linked to the S/C On Board Computer (OBC).

  12. Selecting mirror materials for high-performance optical systems

    NASA Astrophysics Data System (ADS)

    Parsonage, Thomas B.

    1990-11-01

    The properties of four candidate mirror materials--beryllium, silicon carbide, a silicon carbide/aluminum iretal-matrix carposite and aluminum--are corrpared. Because of its high specific stiffness and dirrensional stability under changing mschanical and thermal loads , beryllium is the best choice . Berjllium mirrors have been made irore cost-conpetitive by new processing technologies in which mirror blanks are isostatically pressed to near-net shape directly fran beiyllium pc1ers. Isostatic pressing also improves material properties and mskes it possible to develop mirror rraterials with superior properties.

  13. Diamond Technology Initiative

    DTIC Science & Technology

    1994-05-01

    thermal stresses of 10 million Watts per meter, 1,000 times better than Zerodur *. This property is also important for many thermal management...products UTD has coated to date include: • Optical windows, lenses, and mirrors . Zinc sulfide infrared windows coated with a 2.5 micron-thick...implants 16, 49 microwave plasma-enhanced CVD 2 mirrors , diamond-coated 49 models of diamond growth 10, 25, 33, 34, 39 moderators 10

  14. Manufacture of large glass honeycomb mirrors. [for astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Hill, J. M.

    1982-01-01

    The problem of making very large glass mirrors for astronomical telescopes is examined, and the advantages of honeycomb mirrors made of borosilicate glass are discussed. Thermal gradients in the glass that degrade the figure of thick borosilicate mirrors during use can be largely eliminated in a honeycomb structure by internal ventilation (in air) or careful control of the radiation environment (in space). It is expected that ground-based telescopes with honeycomb mirrors will give better images than those with solid mirrors. Materials, techniques, and the experience that has been gained making trial mirrors and test castings as part of a program to develop 8-10-m-diameter lightweight mirrors are discussed.

  15. Associative and sensorimotor learning for parenting involves mirror neurons under the influence of oxytocin.

    PubMed

    Ho, S Shaun; Macdonald, Adam; Swain, James E

    2014-04-01

    Mirror neuron-based associative learning may be understood according to associative learning theories, in addition to sensorimotor learning theories. This is important for a comprehensive understanding of the role of mirror neurons and related hormone modulators, such as oxytocin, in complex social interactions such as among parent-infant dyads and in examples of mirror neuron function that involve abnormal motor systems such as depression.

  16. Process of constructing a lightweight x-ray flight mirror assembly

    NASA Astrophysics Data System (ADS)

    McClelland, Ryan S.; Biskach, Michael P.; Chan, Kai-Wing; Espina, Rebecca A.; Hohl, Bruce R.; Saha, Timo T.; Zhang, William W.

    2014-07-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in highenergy astrophysics. NASA's Next Generation X-ray Optics (NGXO) project has made significant progress towards building such optics, both in terms of maturing the technology for spaceflight readiness and improving the angular resolution. Technology Development Modules (TDMs) holding three pairs of mirrors have been regularly and repeatedly integrated and tested both for optical performance and mechanical strength. X-ray test results have been improved over the past year from 10.3 arc-seconds Half Power Diameter (HPD) to 8.3 arc-seconds HPD. A vibration test has been completed to NASA standard verification levels showing the optics can survive launch and pointing towards improvements in strengthening the modules through redundant bonds. A Finite Element Analysis (FEA) study was completed which shows the mirror distortion caused by bonding is insensitive to the number of bonds. Next generation TDMs, which will demonstrate a lightweight structure and mount additional pairs of mirrors, have been designed and fabricated. The light weight of the module structure is achieved through the use of E-60 Beryllium Oxide metal matrix composite material. As the angular resolution of the development modules has improved, gravity distortion during horizontal x-ray testing has become a limiting factor. To address this issue, a facility capable of testing in the vertical orientation has been designed and planned. Test boring at the construction site suggest standard caisson construction methods can be utilized to install a subterranean vertical vacuum pipe. This facility will also allow for the testing of kinematically mounted mirror segments, which greatly reduces the effect of bonding displacements. A development platform demonstrating the feasibility of kinematically mounting mirror segments has been designed, fabricated, and successfully tested.

  17. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Pueyo, Laurent A. (Inventor); Norman, Colin A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  18. SiC lightweight telescopes for advanced space applications. II - Structures technology

    NASA Technical Reports Server (NTRS)

    Anapol, Michael I.; Hadfield, Peter; Tucker, Theodore

    1992-01-01

    A critical technology area for lightweight SiC-based telescope systems is the structural integrity and thermal stability over spaceborne environmental launch and thermal operating conditions. Note, it is highly desirable to have an inherently athermal design of both SiC mirrors and structure. SSG has developed an 8 inch diameter SiC telescope system for brassboard level optical and thermal testing. The brassboard telescope has demonstrated less than 0.2 waves P-V in the visible wavefront change over +50 C to -200 C temperature range. SSG has also fabricated a SiC truss structural assembly and successfully qualified this hardware at environmental levels greater than 3 times higher than normal Delta, Titan, and ARIES launch loads. SSG is currently developing two SiC telescopes; an 20 cm diameter off-axis 3 mirror re-imaging and a 60 cm aperture on-axis 3 mirror re-imager. Both hardware developments will be tested to flight level environmental, optical, and thermal specifications.

  19. Design of the science-fold mirrors for the Gemini telescopes

    NASA Astrophysics Data System (ADS)

    Peschel, Thomas; Damm, Christoph; Heilemann, Wolfgang

    2000-07-01

    As a part of the Acquisition and Guidance Unit for the Gemini project a light-weight, 50 cm flat mirror has been designed at the Fraunhofer Institute for Applied Optics and Precision Mechanics in Jena as a subcontractor of the Carl Zeiss Jena company. A light-weight design of the mirror and its mount was essential since the total mass of the whole assembly including the positioning system was limited to 50 kg while interferometric quality of the mirror surface was required for arbitrary orientation. The overall surface error was below 54 nm r.m.s. while 27 nm was achieved in the central part. The mirror was fabricated from low-expansion glass ceramics to avoid thermally induced deformations. By milling pockets into its rear surface the mass of the mirror was reduced by 70%. The mirror is mounted cinematically via six solid-state hinges to three steel levers. The levers are connected to the mount frame at their centers via ball-and- sphere joints. This arrangement determines the position of the mirror uniquely while it allows for the thermal expansion of the mount frame. The position of the mirror as well as its tilt around an axis perpendicular to the optical one may be controlled a precision of 20 micrometers and 3 arcsec, respectively. The tilt axis is driven directly by two high- torque motors. To avoid an excessive power consumption of the motors the torque of the mirror head to be compensated for by a counterweight mechanism. The mirror may be deployed into the optical path using spindle driven linear rails.

  20. Monolithic device for modelocking and stabilization of frequency combs.

    PubMed

    Lee, C-C; Hayashi, Y; Silverman, K L; Feldman, A; Harvey, T; Mirin, R P; Schibli, T R

    2015-12-28

    We demonstrate a device that integrates a III-V semiconductor saturable absorber mirror with a graphene electro-optic modulator, which provides a monolithic solution to modelocking and noise suppression in a frequency comb. The device offers a pure loss modulation bandwidth exceeding 5 MHz and only requires a low voltage driver. This hybrid device provides not only compactness and simplicity in laser cavity design, but also small insertion loss, compared to the previous metallic-mirror-based modulators. We believe this work paves the way to portable and fieldable phase-coherent frequency combs.

  1. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study.

    PubMed

    Saleh, Soha; Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei; Tunik, Eugene

    2017-01-01

    Mirror visual feedback (MVF) is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical) or opposite (mirror) hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional) action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with non-invasive brain stimulation as a means of potentiating the effects of mirror training.

  2. Research Technology

    NASA Image and Video Library

    1999-08-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  3. Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression?

    PubMed

    Kraskov, Alexander; Dancause, Numa; Quallo, Marsha M; Shepherd, Samantha; Lemon, Roger N

    2009-12-24

    The discovery of "mirror neurons" in area F5 of the ventral premotor cortex has prompted many theories as to their possible function. However, the identity of mirror neurons remains unknown. Here, we investigated whether identified pyramidal tract neurons (PTNs) in area F5 of two adult macaques exhibited "mirror-like" activity. About half of the 64 PTNs tested showed significant modulation of their activity while monkeys observed precision grip of an object carried out by an experimenter, with somewhat fewer showing modulation during precision grip without an object or grasping concealed from the monkey. Therefore, mirror-like activity can be transmitted directly to the spinal cord via PTNs. A novel finding is that many PTNs (17/64) showed complete suppression of discharge during action observation, while firing actively when the monkey grasped food rewards. We speculate that this suppression of PTN discharge might be involved in the inhibition of self-movement during action observation. 2009 Elsevier Inc. All rights reserved.

  4. Mirroring "meaningful" actions: sensorimotor learning modulates imitation of goal-directed actions.

    PubMed

    Catmur, Caroline; Heyes, Cecilia

    2017-06-19

    Imitation is important in the development of social and technological skills throughout the lifespan. Experiments investigating the acquisition and modulation of imitation (and of its proposed neural substrate, the mirror neuron system) have produced evidence that the capacity for imitation depends on associative learning in which connections are formed between sensory and motor representations of actions. However, evidence that the development of imitation depends on associative learning has been found only for non-goal-directed actions. One reason for the lack of research on goal-directed actions is that imitation of such actions is commonly confounded with the tendency to respond in a spatially compatible manner. However, since the most prominent account of mirror neuron function, and hence of imitation, suggests that these cells encode goal-directed actions, it is important to establish whether sensorimotor learning can also modulate imitation of goal-directed actions. Experiment 1 demonstrated that imitation of goal-directed grasping can be measured while controlling for spatial compatibility, and Experiment 2 showed that this imitation effect can be modulated by sensorimotor training. Together these data support the hypothesis that the capacity for behavioural imitation, and the properties of the mirror neuron system, are constructed in the course of development through associative learning.

  5. Dish-based CPV-T for rooftop generation

    NASA Astrophysics Data System (ADS)

    Davila-Peralta, Christian; Hyatt, Justin; Alfred, Dan; Struble, Morgan; Sodari, Frank; Angel, Roger

    2017-09-01

    Hybrid CPV-T with combined electrical and thermal output is well suited to solar generation from fixed limited areas, such as on the roof of an industrial or commercial facility with need for heat. This application will become especially attractive once overall electrical conversion efficiency of 40% is reached, as is projected for REhnu CPV systems using multijunction cells of 50% efficiency, anticipated in a few years. We outline here a configuration of dish- based CPV trackers optimized for close packing on a flat roof in a triangular grid, with a mirror area-to-ground area ratio of 50%. When the geometry of shadowing averaged over a year is taken into account, 80% of all the sunlight that would strike the rooftop is directed into the receivers. Such an array on a given area of flat roof will generate more electrical energy than would be possible with conventional PV panels, even if covering the entire rooftop, because of silicon's relative inefficiency. For example, in Tucson, the annual average global flux of 5.7 kWh/m2/day on a horizontal surface covered with 22% silicon modules will yield 1.25 kWh/m2/day. We show that a CPV system collecting 80% of all the direct sunlight of 7.0 kWh/m2 and converting it with 40% efficiency will yield 2.24 kWh/m2/day of rooftop area, nearly twice as much4. Thermal power will double again the total energy yield. A dual axis CPV-T tracker designed specifically very close spacing has been built to carry a single dish mirror of the standard type used in REhnu's M-8 generator, described by Stalcup et al in these proceedings1,2. Sunlight is collected and focused by a single square paraboloidal mirror, 1.65 × 1.65 m with focal length of 1.5 m. For closest possible packing without mechanical interference, and for broad distribution of load on a rooftop, the mirror and receiver are mounted to a C-ring structure, configured such that the elevation and azimuth axes intersect at a virtual pivot, at the center of the sphere that just clears the receiver and the corners of the mirror. Initial tests of closed loop tracking show an accuracy of 0.03° rms under calm conditions, and 0.04° rms in 6 m/sec wind.

  6. UAV-borne lidar with MEMS mirror-based scanning capability

    NASA Astrophysics Data System (ADS)

    Kasturi, Abhishek; Milanovic, Veljko; Atwood, Bryan H.; Yang, James

    2016-05-01

    Firstly, we demonstrated a wirelessly controlled MEMS scan module with imaging and laser tracking capability which can be mounted and flown on a small UAV quadcopter. The MEMS scan module was reduced down to a small volume of <90mm x 60mm x 40mm, weighing less than 40g and consuming less than 750mW of power using a ~5mW laser. This MEMS scan module was controlled by a smartphone via Bluetooth while flying on a drone, and could project vector content, text, and perform laser based tracking. Also, a "point-and-range" LiDAR module was developed for UAV applications based on low SWaP (Size, Weight and Power) gimbal-less MEMS mirror beam-steering technology and off-the-shelf OEM LRF modules. For demonstration purposes of an integrated laser range finder module, we used a simple off-the-shelf OEM laser range finder (LRF) with a 100m range, +/-1.5mm accuracy, and 4Hz ranging capability. The LRFs receiver optics were modified to accept 20° of angle, matching the transmitter's FoR. A relatively large (5.0mm) diameter MEMS mirror with +/-10° optical scanning angle was utilized in the demonstration to maintain the small beam divergence of the module. The complete LiDAR prototype can fit into a small volume of <70mm x 60mm x 60mm, and weigh <50g when powered by the UAV's battery. The MEMS mirror based LiDAR system allows for ondemand ranging of points or areas within the FoR without altering the UAV's position. Increasing the LRF ranging frequency and stabilizing the pointing of the laser beam by utilizing the onboard inertial sensors and the camera are additional goals of the next design.

  7. GIRL: German Infrared Laboratory. Telescope study, phase B

    NASA Technical Reports Server (NTRS)

    Schlegelmilch, R.; Zeiss, C.

    1981-01-01

    The construction and mounting of mirrors for an infrared telescope are described. Tests conducted to determine the thermal and stress characteristics of various types of mounting for main and collection mirrors are also discussed.

  8. A space imaging concept based on a 4m structured spun-cast borosilicate monolithic primary mirror

    NASA Astrophysics Data System (ADS)

    West, S. C.; Bailey, S. H.; Bauman, S.; Cuerden, B.; Granger, Z.; Olbert, B. H.

    2010-07-01

    Lockheed Martin Corporation (LMC) tasked The University of Arizona Steward Observatory (UASO) to conduct an engineering study to examine the feasibility of creating a 4m space telescope based on mature borosilicate technology developed at the UASO for ground-based telescopes. UASO has completed this study and concluded that existing launch vehicles can deliver a 4m monolithic telescope system to a 500 km circular orbit and provide reliable imagery at NIIRS 7-8. An analysis of such an imager based on a lightweight, high-performance, structured 4m primary mirror cast from borosilicate glass is described. The relatively high CTE of this glass is used to advantage by maintaining mirror shape quality with a thermal figuring method. Placed in a 290 K thermal shroud (similar to the Hubble Space Telescope), the orbit averaged figure surface error is 6nm rms when earth-looking. Space-looking optical performance shows that a similar thermal conditioning scheme combined with a 270 K shroud achieves primary mirror distortion of 10 nm rms surface. Analysis shows that a 3-point bipod mount will provide launch survivability with ample margin. The primary mirror naturally maintains its shape at 1g allowing excellent end-to-end pre-launch testing with e.g. the LOTIS 6.5m Collimator. The telescope includes simple systems to measure and correct mirror shape and alignment errors incorporating technologies already proven on the LOTIS Collimator. We have sketched a notional earth-looking 4m telescope concept combined with a wide field TMA concept into a DELTA IV or ATLAS 552 EELV fairing. We have combined an initial analysis of launch and space performance of a special light-weighted honeycomb borosilicate mirror (areal density 95 kg/m2) with public domain information on the existing launch vehicles.

  9. Radius of curvature controlled mirror

    DOEpatents

    Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.

    2006-01-17

    A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.

  10. ED07-0210-3

    NASA Image and Video Library

    2007-09-13

    The instruments that make up the Ames Autonomous Module Scanner (AMS) that provided precise thermal-infrared imaging during the Western States Fire Mission in 2007 are detailed in this photo of the AMS as mounted on Ikhana's pod tray. The large foil-covered foam-insulated box at left covers the pressure vessel containing the data system computers and other electronics. The round white-topped assembly is the scan head, including the scan mirror, folded telescope, blackbody references, spectrometer and detectors. Two pressure boxes visible at the forward end of the tray contain the Applanix POS/AV precision navigation subsystem (black) and the power distributor including circuit breakers and ancillary wiring, scan motor controller and the blackbody reference temperature controller (blue).

  11. Efficient 2-μm Tm:YAP Q-switched and CW lasers

    NASA Astrophysics Data System (ADS)

    Hays, A. D.; Cole, Brian; King, Vernon; Goldberg, Lew

    2018-02-01

    Highly efficient, diode pumped Tm:YAP lasers generating emission in the 1.85-1.94 μm range are demonstrated and characterized. Laser optical efficiencies of 51% and 45%, and electrical efficiencies of 31% and 25% are achieved under CW and Q-switched operation, respectively. Laser performance was characterized for maximum average powers up to 20W with various cavity configurations, all using an intra-cavity lens to compensate for thermal lensing in the Tm:YAP crystal. Q-switched lasers incorportating a Cr:ZnS saturable absorber (SA), resonant mechanical mirror scanner, or acousto-optic modulator were characterized. To enable higher average output powers, measurements of the thermal lens were conducted for the Tm:YAP crystal as a function of pump power and were compared to values predicted by a finiteelement- analysis (FEA) thermal-optical model of the Tm:YAP crystal. A resonator model is developed to incorporate this calculated thermal lens and its effect on laser performance. This paper will address approaches for improving the performance of Tm:YAP lasers, and means for achieving increased average output powers while maintaining high optical efficiency for both SA and mechanical Q-switching.

  12. Strained layer Fabry-Perot device

    DOEpatents

    Brennan, Thomas M.; Fritz, Ian J.; Hammons, Burrell E.

    1994-01-01

    An asymmetric Fabry-Perot reflectance modulator (AFPM) consists of an active region between top and bottom mirrors, the bottom mirror being affixed to a substrate by a buffer layer. The active region comprises a strained-layer region having a bandgap and thickness chosen for resonance at the Fabry-Perot frequency. The mirrors are lattice matched to the active region, and the buffer layer is lattice matched to the mirror at the interface. The device operates at wavelengths of commercially available semiconductor lasers.

  13. Facile design and stabilization of a novel one-dimensional silicon-based photonic crystal microcavity

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed Shaker; Ibrahim, Shaimaa Moustafa; Amin, Mohamed

    2017-07-01

    A novel silicon-based optical microcavity composed of a defect layer sandwiched between two parallel rugate mirrors is created by the electrochemical anodization of silicon in a hydrofluoric acid-based electrolyte using a precisely controlled current density profile. The profile consists of two sinusoidally modulated current waveforms separated by a fixed current that is applied to produce a defect layer between the mirrors. The spectral response of the rugate-based microcavity is simulated using the transfer matrix method and compared to the conventional Bragg-based microcavity. It is found that the resonance position of both microcavities is unchanged. However, the rugate-based microcavity exhibits a distinct reduction of the sidebands' intensity. Further attenuation of the sidebands' intensity is obtained by creating refractive index matching layers with optimized thickness at the bottom and top of the rugate-based microcavity. In order to stabilize the produced microcavity against natural oxidation, atomic layer deposition of an ultra-thin titanium dioxide layer on the pore wall is carried out followed by thermal annealing. The microcavity resonance position shows an observable sensitivity to the deposition and annealing processes.

  14. Mirror with thermally controlled radius of curvature

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2010-06-22

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  15. Designing optimized ultra-lightweighted mirror structures made of Cesic for space and ground based applications

    NASA Astrophysics Data System (ADS)

    Hofbauer, Peter; Krödel, Matthias R.

    2010-07-01

    Today's space applications increasingly utilize lightweighted construction concepts, motivated by the demands of manufacturing and functionality, and by economics. Particularly for space optics, mirror stability and stiffness need to be maximized, while mass needs to be minimized. Therefore, mirror materials must possess, besides high material strength and manufacturing versatility, high thermal conductivity combined with low heat capacity and long-term stability against varying thermal loads. Additionally, optical surfaces need to be compatible with reflective coating materials. In order to achieve these requirements, the interplay between material properties and mirror design on one hand, and budgetary constraints on the other must be considered. In this paper, we address these issues by presenting an FEM design study of open and closed-back mirror structures with extremely thin reinforcing ribs, with the goal of obtaining optimal physical and optical characteristics. Furthermore, we show that ECM's carbon-fiber reinforced SiC composite, Cesic®, and its newly developed, HB-Cesic® , with their low CTE, low density, and high stiffness, are not only excellent mirror materials, but allow the rapid manufacturing of complex monolithic optical structures at reasonable cost.

  16. Design of spatial oval plane mirror and its support structure

    NASA Astrophysics Data System (ADS)

    Chai, Wenyi; Hu, Yongming; Wang, Chenjie; Chen, Su; Feng, Song

    2018-02-01

    For the diameter of 150mm elliptical flat mirror that used in the space, selected the zerodur material and a lightweight design is conducted in the way of selected back-open-architecture with symmetrical axisymmetric arrangement, and in order to evaluate the effect of thermal stress from -10°C to 45°C on the mirror, a reflection mirror is designed based on the multipoint flexible support. The mirror component's mechanic and thermodynamic characteristics is analyzed with the simulation software, the support structure parameters are optimized, that can be used to evaluate the effect of gravity, assembly stress, and thermal stress load on mirror, while ensuring the component's stiffness and strength. According to the design condition developed a product and carried out mechanic and thermodynamic environment, the product could meet the shape accuracy PV λ/3, RMS λ/30 in the condition of thermodynamic environment, and the shape accuracy PV λ/5, RMS λ/40 in the condition of ground gravity and assembly stress (λ=632.8nm), while the product can withstand with the mechanical oscillation environment sinusoidal oscillation 10g, RMS random oscillation acceleration 14.4g.

  17. New microwave modulation LIDAR scheme for naval mine detection

    NASA Astrophysics Data System (ADS)

    Alem, Nour; Pellen, Fabrice; Le Jeune, Bernard

    2017-10-01

    In this paper, a new modulator design suited for hybrid Lidar-radar applications is proposed and implemented. This modulator delivers a stable and tunable modulated optical pulse. Modulation frequency is in the GHz range, and associated with a bandpass filtering at the detection allow detecting a target echo embedded in the backscattering noise. This principle is known as hybrid Lidar-radar. We expose in this article theoretical principle of this new modulator and its experimental implementation. As polarization filtering can be coupled with the hybrid Lidar-radar technique to further improve target return, polarimetric sensitivity of this modulator was investigated. Since, theoretical results mismatched the experimental ones, thus, further investigations were taken. Mechanical constraint induced by mirror mount caused birefringent behavior to the mirror substrate. As this effect was not homogeneously distributed in the material, we were not being able to compensate it by modelling. However, we propose an experimental approach to solve this problem.

  18. Phase-Controlled Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Wollack, E. J.; Novak, G.; Moseley, S. H.; Pisano, G.; Krejny, M.; U-Yen, K.

    2012-01-01

    We report technology development of millimeter/submillimeter polarization modulators that operate by introducing a a variable, controlled phase delay between two orthogonal polarization states. The variable-delay polarization modulator (VPM) operates via the introduction of a variable phase delay between two linear orthogonal polarization states, resulting in a variable mapping of a single linear polarization into a combination of that Stokes parameter and circular (Stokes V) polarization. Characterization of a prototype VPM is presented at 350 and 3000 microns. We also describe a modulator in which a variable phase delay is introduced between right- and left- circular polarization states. In this architecture, linear polarization is fully modulated. Each of these devices consists of a polarization diplexer parallel to and in front of a movable mirror. Modulation involves sub-wavelength translations of the mirror that change the magnitude of the phase delay.

  19. Spectral Analysis of the Shuttle Glow. AIS Science Support

    DTIC Science & Technology

    1992-06-23

    Prism (Total Internal Cylindrical Mirror Lens Reflection) Cylindrical Folding \\ Lens Plane Mirror -Cylindrical Slt Slit Mirror Fig. 7. Cron section...on Zerodur blanks, which width of the FOV to 0.14’ outward from the lens. have a coefficient of thermal expansion near zero. The width of the grating...oummambne toathe window of the iMag hunte~air. 3002. APPLIED OPTICS I VOL 3 .No, 16 / I June I02 68 Vacondry Minrror Prmr Mirror -luterence rlZters cm

  20. High-performance coatings for micromechanical mirrors.

    PubMed

    Gatto, Alexandre; Yang, Minghong; Kaiser, Norbert; Heber, Jörg; Schmidt, Jan Uwe; Sandner, Thilo; Schenk, Harald; Lakner, Hubert

    2006-03-01

    High-performance coatings for micromechanical mirrors were developed. The high-reflective metal systems can be integrated into the technology of MOEMS, such as spatial light modulators and microscanning mirrors from the near-infrared down to the vacuum-ultraviolet spectral regions. The reported metal designs permit high optical performances to be merged with suitable mechanical properties and fitting complementary metal-oxide semiconductor compatibility.

  1. The origin and function of mirror neurons: the missing link.

    PubMed

    Lingnau, Angelika; Caramazza, Alfonso

    2014-04-01

    We argue, by analogy to the neural organization of the object recognition system, that demonstration of modulation of mirror neurons by associative learning does not imply absence of genetic adaptation. Innate connectivity defines the types of processes mirror neurons can participate in while allowing for extensive local plasticity. However, the proper function of these neurons remains to be worked out.

  2. Secondary concentrators for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Poon, P. T.

    1981-01-01

    A variety of different concepts are currently being studied with the objective to lower the cost of parabolic mirrors and to provide alternatives. One of the considered approaches involves the use of compound concentrators. A compound solar concentrator is a concentrator in which the sunlight is reflected or refracted more than once. It consists of a primary mirror or lens, whose aperture determines the amount of sunlight gathered, and a smaller secondary mirror or lens. Additional small optical elements may also be incorporated. The possibilities and problems regarding a use of compound concentrators in parabolic dish systems are discussed. Attention is given to concentrating secondary lenses, secondary imaging and concentrating mirrors, conical secondary mirrors, compound elliptic secondary concentrating mirrors, and hyperbolic trumpet secondary concentrating mirrors.

  3. Fiber-linked interferometric pressure sensor

    NASA Technical Reports Server (NTRS)

    Beheim, G.; Fritsch, K.; Poorman, R. N.

    1987-01-01

    A fiber-optic pressure sensor is described which uses a diaphragm to modulate the mirror separation of a Fabry-Perot cavity (the sensing cavity). A multimode optical fiber delivers broadband light to the sensing cavity and returns the spectrally modulated light which the cavity reflects. The sensor's output spectrum is analyzed using a tunable Fabry-Perot cavity (the reference cavity) to determine the mismatch in the mirror separations of the two cavities. An electronic servo control uses this result to cause the mirror separation of the reference cavity to equal that of the sensing cavity. The displacement of the pressure-sensing diaphragm is then obtained by measuring the capacitance of the reference cavity's metal-coated mirrors. Relative to other fiber-optic sensors, an important advantage of this instrument is its high immunity to the effects of variations in both the transmissivity of the fiber link and the wavelength of the optical source.

  4. Calibration results using highly aberrated images for aligning the JWST instruments to the telescope

    NASA Astrophysics Data System (ADS)

    Smith, Koby Z.; Acton, D. Scott; Gallagher, Ben B.; Knight, J. Scott; Dean, Bruce H.; Jurling, Alden S.; Zielinski, Thomas P.

    2016-07-01

    The James Webb Space Telescope (JWST) project is an international collaboration led by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, MD. JWST is NASA's flagship observatory that will operate nearly a million miles away from Earth at the L2 Lagrange point. JWST's optical design is a three-mirror anastigmat with four main optical components; 1) the eighteen Primary Mirror Segment Assemblies (PMSA), 2) a single Secondary Mirror Assembly (SMA), 3) an Aft-Optics Subsystem (AOS) consisting of a Tertiary Mirror and Fine Steering Mirror, and 4) an Integrated Science Instrument Module consisting of the various instruments for JWST. JWST's optical system has been designed to accommodate a significant amount of alignment capability and risk with the PMSAs and SMA having rigid body motion available on-orbit just for alignment purposes. However, the Aft-Optics Subsystem (AOS) and Integrated Science Instrument Module (ISIM) are essentially fixed optical subsystems within JWST, and therefore the cryogenic alignment of the AOS to the ISIM is critical to the optical performance and mission success of JWST. In support of this cryogenic alignment of the AOS to ISIM, an array of fiber optic sources, known as the AOS Source Plate Assembly (ASPA), are placed near the intermediate image location of JWST (between the secondary and tertiary mirrors) during thermal vacuum ground-test operations. The AOS produces images of the ASPA fiber optic sources at the JWST focal surface location, where they are captured by the various science instruments. In this manner, the AOS provides an optical yardstick by which the instruments within ISIM can evaluate their relative positions to and the alignment of the AOS to ISIM can be quantified. However, since the ASPA is located at the intermediate image location of the JWST three-mirror anastigmat design, the images of these fiber optic sources produced by the AOS are highly aberrated with approximately 2-3μm RMS wavefront error consisting mostly of 3rd-order astigmatism and coma. This is because the elliptical tertiary mirror of the AOS is used off of its ideal foci locations without the compensating wavefront effects of the JWST primary and secondary mirrors. Therefore, the PSFs created are highly asymmetric with relatively complex structure and the centroid and encircled energy analyses traditionally used to locate images are not sufficient for ensuring the AOS to ISIM alignment. A novel approach combining phase retrieval and spatial metrology was developed to both locate the images with respect to the AOS and provide calibration information for eventual AOS to ISIM alignment verification. During final JWST OTE and ISIM (OTIS) testing, only a single thru-focus image will be collected by the instruments. Therefore, tools and processes were developed to perform single-image phase retrieval on these highly aberrated images such that any single image of the ASPA source can provide calibrated knowledge of the instruments' position relative to the AOS. This paper discusses the results of the methodology, hardware, and calibration performed to ensure that the AOS and ISIM are aligned within their respective tolerances at JWST OTIS testing.

  5. A soft actuation system for segmented reflector articulation and isolation

    NASA Technical Reports Server (NTRS)

    Agronin, Michael L.; Jandura, Louise

    1990-01-01

    Segmented reflectors have been proposed for space based applications such as optical communication and large diameter telescopes. An actuation system for mirrors in a space based segmented mirror array was developed as part of NASA's Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), provides 3 degrees of freedom mirror articulation, gives isolation from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM was built and is described.

  6. JEUMICO: Czech-Bavarian astronomical X-ray optics project

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Döhring, T.

    2017-07-01

    Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.

  7. A Non-thermal Pulsed X-Ray Emission of AR Scorpii

    NASA Astrophysics Data System (ADS)

    Takata, J.; Hu, C.-P.; Lin, L. C. C.; Tam, P. H. T.; Pal, P. S.; Hui, C. Y.; Kong, A. K. H.; Cheng, K. S.

    2018-02-01

    We report the analysis result of UV/X-ray emission from AR Scorpii, which is an intermediate polar (IP) composed of a magnetic white dwarf and an M-type star, with the XMM-Newton data. The X-ray/UV emission clearly shows a large variation over the orbit, and their intensity maximum (or minimum) is located at the superior conjunction (or inferior conjunction) of the M star orbit. The hardness ratio of the X-ray emission shows a small variation over the orbital phase and shows no indication of the absorption by an accretion column. These properties are naturally explained by the emission from the M star surface rather than that from the accretion column on the white dwarf’s (WD) star, which is similar to usual IPs. Additionally, the observed X-ray emission also modulates with the WD’s spin with a pulse fraction of ∼14%. The peak position is aligned in the optical/UV/X-ray band. This supports the hypothesis that the electrons in AR Scorpii are accelerated to a relativistic speed and emit non-thermal photons via the synchrotron radiation. In the X-ray bands, evidence of the power-law spectrum is found in the pulsed component, although the observed emission is dominated by the optically thin thermal plasma emissions with several different temperatures. It is considered that the magnetic dissipation/reconnection process on the M star surface heats up the plasma to a temperature of several keV and also accelerates the electrons to the relativistic speed. The relativistic electrons are trapped in the WD’s closed magnetic field lines by the magnetic mirror effect. In this model, the observed pulsed component is explained by the emissions from the first magnetic mirror point.

  8. /III-V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices

    NASA Astrophysics Data System (ADS)

    Koeninger, Anna; Boehm, Gerhard; Meyer, Ralf; Amann, Markus-Christian

    2014-12-01

    Semiconductor devices such as vertical-cavity surface-emitting lasers (VCSELs) or semiconductor-saturable absorber mirrors (SESAMs) require high-reflection mirrors. Moreover, in VCSELs, it is beneficial to have a crystalline mirror, which is as thin as possible in order to ensure a high thermal conductivity for efficient heat-sinking of the laser. On the other hand, the wavelength tuning range of a SESAM is limited by the reflection bandwidth of its distributed Bragg reflector (DBR). Thus, broadband mirrors are preferable here. This paper reports a three-pair DBR grown by molecular beam epitaxy (MBE) using BaCaF2 and GaAs on a GaAs (100) substrate. Due to the high ratio in refractive indices of GaAs and the group-IIa-fluorides, high-reflectivity mirrors and wide bandwidths can be obtained with low total thicknesses. We also investigated growth and stability of the material BaCaF2, as well as its thermal conductivity both as single layer and Bragg reflector. Observed peeling of the layers could be avoided by implementing a fluorine treatment previous to the BaCaF2 growth.

  9. Method and system for compact efficient laser architecture

    DOEpatents

    Bayramian, Andrew James; Erlandson, Alvin Charles; Manes, Kenneth Rene; Spaeth, Mary Louis; Caird, John Allyn; Deri, Robert J.

    2015-09-15

    A laser amplifier module having an enclosure includes an input window, a mirror optically coupled to the input window and disposed in a first plane, and a first amplifier head disposed along an optical amplification path adjacent a first end of the enclosure. The laser amplifier module also includes a second amplifier head disposed along the optical amplification path adjacent a second end of the enclosure and a cavity mirror disposed along the optical amplification path.

  10. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  11. ART-XC: A Medium-energy X-ray Telescope System for the Spectrum-R-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Arefiev, V.; Pavlinsky, M.; Lapshov, I.; Thachenko, A.; Sazonov, S.; Revnivtsev, M.; Semena, N.; Buntov,M.; Vikhlinin, A.; Gubarev, M.; hide

    2008-01-01

    The ART-XC instrument is an X-ray grazing-incidence telescope system in an ABRIXAS-type optical configuration optimized for the survey observational mode of the Spectrum-RG astrophysical mission which is scheduled to be launched in 2011. ART-XC has two units, each equipped with four identical X-ray multi-shell mirror modules. The optical axes of the individual mirror modules are not parallel but are separated by several degrees to permit the four modules to share a single CCD focal plane detector, 1/4 of the area each. The 450-micron-thick pnCCD (similar to the adjacent eROSITA telescope detector) will allow detection of X-ray photons up to 15 keV. The field of view of the individual mirror module is about 18 x 18 arcminutes(exp 2) and the sensitivity of the ART-XC system for 4 years of survey will be better than 10(exp -12) erg s(exp -1) cm(exp -2) over the 4-12 keV energy band. This will allow the ART-XC instrument to discover several thousand new AGNs.

  12. Materials Science | Concentrating Solar Power | NREL

    Science.gov Websites

    include higher-reflectivity mirrors, better thermal-absorbing receivers, and more corrosion-resistant electron-beam evaporation with ion-beam assist, plasma-enhanced chemical vapor deposition, and thermal Thermal Storage Materials Laboratory Our Thermal Storage Materials Laboratory supports NREL's research and

  13. Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2017-01-01

    In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  14. Selection considerations between ZERODUR® and silicon carbide for dimensionally-stable spaceborne optical telescopes in two-earth-orbits

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Westerhoff, Thomas; Weidmann, Gunter

    2015-09-01

    A key consideration in defining a space telescope mission is definition of the optical materials. This selection defines both the performance of the system and system complexity and cost. Optimal material selection for system stability must consider the thermal environment and its variation. Via numerical simulations, we compare the thermal and structural-mechanical behavior of ZERODUR® and SiC as mirror substrates for telescope assemblies in space. SiC has significantly larger CTE values then ZERODUR®, but also its thermal diffusivity k/(ρcp) is larger, and that helps to homogenize thermal gradients in the mirror. Therefore it is not obvious at first glance which material performs with better dimensional stability under realistic unsteady, inhomogeneous thermal loads. We specifically examine the telescope response to transient, gradient driving, thermal environments representative of low- and high-earth- orbits.

  15. Alignment and Integration of Lightweight Mirror Segments

    NASA Technical Reports Server (NTRS)

    Evans, Tyler; Biskach, Michael; Mazzarella, Jim; McClelland, Ryan; Saha, Timo; Zhang, Will; Chan, Kai-Wing

    2011-01-01

    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it difficult not to impart distortion at the sub-arc-second level. This paper outlines the precise alignment, permanent bonding, and verification testing techniques developed at NASA's Goddard Space Flight Center (GSFC). Improvements in alignment include new hardware and automation software. Improvements in bonding include two module new simulators to bond mirrors into, a glass housing for proving single pair bonding, and a Kovar module for bonding multiple pairs of mirrors. Three separate bonding trials were x-ray tested producing results meeting the requirement of sub ten arc-second alignment. This paper will highlight these recent advances in alignment, testing, and bonding techniques and the exciting developments in thin x-ray optic technology development.

  16. First results obtained within the European 'LAMA' programme (Large Active Mirrors in Aluminium)

    NASA Astrophysics Data System (ADS)

    Rozelot, J.-P.

    1993-11-01

    To investigate the feasibility of large size aluminum mirrors, studies have been undertaken in cooperation with European Southern Observatory (ESO), in the framework of a European program. The first phase, which is just now ended, addressed the following items: (1) tests to select the best aluminum alloy, (2) aluminum welding, homogeneity and stability, (3) aluminum high-precision machining, (4) nickel coating, (5) polishing of the nickel layer, (6) active optics. Furthermore, tests have been conducted to demonstrate that the quality of the mirrors is not altered at various temperatures and after a large number of aluminizing and cleaning cycles (corresponding to about 50 years' life). The mirror shape (whose specifications are fully compliant with those of the Very Large Telescope (VLT), as the program is conducted in cooperation with ESO) was computed under several causes of deformations: evidencing gravity as the predominant effect, and very low distortions as the high thermal conductivity limits the thermal transverse gradient to 0.025 C. Results show that it is quite possible to obtain high optical quality mirrors, mainly due to recent progress both in metallurgical processes (high precision machining -7 microns rms-) and active optics, that permit to correct residual aberrations of the surface. Such an alternative to classical glass mirrors will presently stand as a safe, economical solution that saves manufacturing time, for monolithic or segmented mirrors for innovative telescopes (e.g., lunar interferometric network).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Haruhiko, E-mail: hohashi@spring8.or.jp; Senba, Yasunori; Yumoto, Hirokatsu

    We studied typical forms of contamination on X-ray mirrors that cause degradation of beam quality, investigated techniques to remove the contaminants, and propose methods to eliminate the sources of the contamination. The total amount of carbon-containing substances on various materials in the vicinity of a mirror was measured by thermal desorption-gas chromatography/mass spectrometry and thermal desorption spectroscopy. It was found that cleanliness and ultra-high vacuum techniques are required to produce the contamination-free surfaces that are essential for the propagation of high-quality X-ray beams. The reduction of carbonaceous residue adsorbed on the surfaces, and absorbed into the bulk, of the materialsmore » in the vicinity of the mirrors is a key step toward achieving contamination-free X-ray optics.« less

  18. Manufacturing aspheric mirrors made of zero thermal expansion cordierite ceramics using Magnetorheological Finishing (MRF)

    NASA Astrophysics Data System (ADS)

    Sugawara, Jun; Maloney, Chris

    2016-07-01

    NEXCERATM cordierite ceramics, which have ultra-low thermal expansion properties, are perfect candidate materials to be used for light-weight satellite mirrors that are used for geostationary earth observation and for mirrors used in ground-based astronomical metrology. To manufacture the high precision aspheric shapes required, the deterministic aspherization and figure correction capabilities of Magnetorheological Finishing (MRF) are tested. First, a material compatibility test is performed to determine the best method for achieving the lowest surface roughness of RMS 0.8nm on plano surfaces made of NEXCERATM ceramics. Secondly, we will use MRF to perform high precision figure correction and to induce a hyperbolic shape into a conventionally polished 100mm diameter sphere.

  19. Thin film coatings for improved alpha/epi

    NASA Technical Reports Server (NTRS)

    Krisl, M. E.; Sachs, I. M.

    1985-01-01

    New thin film coatings were developed for fused silica, ceria doped glass, and Corning 0211 microsheet which provide increased emissivity and/or decreased solar absorption. Emissivity is enhanced by suppression of the reststrahlen reflectance and solar absorption is reduced by externally reflecting the ultraviolet portion of the solar spectrum. Optical properties of these coatings make them suitable for both solar cell cover and thermal control mirror applications. Measurements indicate equivalent environmental performance to conventional solar cell cover and thermal control mirror products.

  20. Testing the equipment for the cryogenic optical test of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Whitman, Tony L.; Dziak, K. J.; Huguet, Jesse; Knight, J. Scott; Reis, Carl; Wilson, Erin

    2014-08-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the JWST optics are tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. Tens of trucks full of custom test equipment are being delivered to the JSC, in addition to the large pieces built at the Center, and the renovation of the chamber itself. The facility is tested for the thermal stability control for optical measurements and contamination control during temperature transitions. The support for the OTIS is also tested for thermal stability control, load tested in the cryogenic environment, and tested for isolation of the background vibration for the optical measurements. The Center of Curvature Optical Assembly (COCOA) is tested for the phasing and wavefront error (WFE) measurement of an 18 segment mirror and for cryogenic operation. A photogrammetry system is tested for metrology performance and cryogenic operation. Test mirrors for auto-collimation measurements are tested for optical performance and cryogenic operation. An assembly of optical test sources are calibrated and tested in a cryogenic environment. A Pathfinder telescope is used as a surrogate telescope for cryogenic testing of the OTIS optical test configuration. A Beam Image Analyzer (BIA) is used as a surrogate ISIM with the Pathfinder in this test. After briefly describing the OTIS optical test configuration, the paper will overview the list and configuration of significant tests of the equipment leading up to the OTIS test.

  1. The influence of reading expertise in mirror-letter perception: Evidence from beginning and expert readers

    PubMed Central

    Duñabeitia, Jon Andoni; Dimitropoulou, María; Estévez, Adelina; Carreiras, Manuel

    2013-01-01

    The visual word recognition system recruits neuronal systems originally developed for object perception which are characterized by orientation insensitivity to mirror reversals. It has been proposed that during reading acquisition beginning readers have to “unlearn” this natural tolerance to mirror reversals in order to efficiently discriminate letters and words. Therefore, it is supposed that this unlearning process takes place in a gradual way and that reading expertise modulates mirror-letter discrimination. However, to date no supporting evidence for this has been obtained. We present data from an eye-movement study that investigated the degree of sensitivity to mirror-letters in a group of beginning readers and a group of expert readers. Participants had to decide which of the two strings presented on a screen corresponded to an auditorily presented word. Visual displays always included the correct target word and one distractor word. Results showed that those distractors that were the same as the target word except for the mirror lateralization of two internal letters attracted participants’ attention more than distractors created by replacement of two internal letters. Interestingly, the time course of the effects was found to be different for the two groups, with beginning readers showing a greater tolerance (decreased sensitivity) to mirror-letters than expert readers. Implications of these findings are discussed within the framework of preceding evidence showing how reading expertise modulates letter identification. PMID:24273596

  2. Properties of a Variable-Delay Polarization Modulator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Henry, Ross; Hui, Howard; Juarez, Aaron J.; Krenjy, Megan; Moseley, Harvey; Novak, Giles

    2011-01-01

    We investigate the polarization modulation properties of a variable-delay polarization modulator (VPM). The VPM modulates polarization via a variable separation between a polarizing grid and a parallel mirror. We find that in the limit where the wavelength is much larger than the diameter of the metal wires that comprise the grid, the phase delay derived from the geometric separation between the mirror and the grid is sufficient to characterize the device. However, outside of this range, additional parameters describing the polarizing grid geometry must be included to fully characterize the modulator response. In this paper, we report test results of a VPM at wavelengths of 350 micron and 3 mm. Electromagnetic simulations of wire grid polarizers were performed and are summarized using a simple circuit model that incorporates the loss and polarization properties of the device.

  3. Solar Thermal Propulsion for Microsatellite Manoeuvring

    DTIC Science & Technology

    2004-09-01

    of 14-cm and 56-cm diameter solar concentrating mirrors has clearly validated initial optical ray trace modelling and suggests that there is...concentrating mirror’s focus, permitting multiple mirror inputs to heat a single receiver and allowing the receiver to be placed anywhere on the host...The STE is conceptually simple, relying on a mirror or lens assembly to collect and concentrate incident solar radiation. This energy is focused, by

  4. Estimating the mirror seeing for a large optical telescope with a numerical method

    NASA Astrophysics Data System (ADS)

    Zhang, En-Peng; Cui, Xiang-Qun; Li, Guo-Ping; Zhang, Yong; Shi, Jian-Rong; Zhao, Yong-Heng

    2018-05-01

    It is widely accepted that mirror seeing is caused by turbulent fluctuations in the index of air refraction in the vicinity of a telescope mirror. Computational Fluid Dynamics (CFD) is a useful tool to evaluate the effects of mirror seeing. In this paper, we present a numerical method to estimate the mirror seeing for a large optical telescope (∼ 4 m) in cases of natural convection with the ANSYS ICEPAK software. We get the FWHM of the image for different inclination angles (i) of the mirror and different temperature differences (ΔT) between the mirror and ambient air. Our results show that the mirror seeing depends very weakly on i, which agrees with observational data from the Canada-France-Hawaii Telescope. The numerical model can be used to estimate mirror seeing in the case of natural convection although with some limitations. We can determine ΔT for thermal control of the primary mirror according to the simulation, empirical data and site seeing.

  5. Ion-assisted coating for large-scale Bimorph deformable mirror

    NASA Astrophysics Data System (ADS)

    Mikami, Takuya; Okamoto, Takayuki; Yoshida, Kunio; Jitsuno, Takahisa; Motokoshi, Shinji; Samarkin, Vadim V.; Kudryashov, Alexis V.; Kawanaka, Junji; Miyanaga, Noriaki

    2016-07-01

    We have fabricated a 410 x 468 mm size deformable mirror with 100 Bimorph piezoceramic actuators for the LFEX laser system at Osaka University. In the case of Bimorph-type deformable mirrors, the mirror surface had to be polished and coated after bonding the piezoceramic actuators to the rear side of the thin mirror substrate. This provides a good surface figure, but the coating temperature for the high-reflection mirror was strictly limited because of the thermal fragility of piezoceramic actuators. The mirror substrate with the actuators was polished, and an ion-assisted multilayer dielectric coating was produced at 60 degrees Celsius with our 80-inch coating chamber. The flatness of the mirror just after coating was 7 μm, and reduced by aging to 3.2 μm when the mirror was assembled. The surface figure of the assembled mirror with 20 piezostack bonded actuators is demonstrated and a laser-induced damage threshold tested with a witness sample is also reported.

  6. On the Compliance of Simbol-X Mirror Roughness with its Effective Area Requirements

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Basso, S.; Cotroneo, V.; Pareschi, G.; Tagliaferri, G.

    2009-05-01

    Surface microroughness of X-ray mirrors is a key issue for the angular resolution of Simbol-X to comply with the required one (<20 arcsec at 30 keV). The maximum tolerable microroughness for Simbol-X mirrors, in order to satisfy the required imaging capability, has already been derived in terms of its PSD (Power Spectral Density). However, also the Effective Area of the telescope is affected by the mirror roughness. In this work we will show how the expected effective area of the Simbol-X mirror module can be computed from the roughness PSD tolerance, checking its compliance with the requirements.

  7. Thermal stability of lightweight graphite glass sandwich reflectors for far infrared astronomy

    NASA Technical Reports Server (NTRS)

    Bluege, J. H.; Mayor, R. A.; Hoffman, W. F.

    1986-01-01

    Graphite fiber-reinforced glass matrix composites are being developed for a variety of structural applications requiring excellent thermomechanical stability. These materials are ideally suited for lightweight, high strength, thermally stable infrared mirrors because of their low density, low thermal expansion, high strength and stiffness, and their ability to be machined, replicated and figured using standard polishing techniques. These properties are particularly promising for applications such as a 3-meter balloon-borne far-infrared and submillimeter telescope mirror which must be both very lightweight and able to retain its figure accuracy when cycled between room temperature and its operating temperature of -50 C. This paper presents the results of a set of low temperature optical tests conducted to determine the figure stability of a 30-cm diameter, frit-bonded graphite/glass mirror in the +20 to -60 C temperature range using a 10.6 micron laser interferometer. The results indicate that the residual change in figure was less than 0.3 microns, rms.

  8. Completion of the Design of the Top End Optical Assembly for ATST

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.

    2013-01-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult operational environment. The TEOA (including a 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, Lyot stop, safety interlock and control system, and support frame) operates in the “hot spot” at the prime focus of the ATST, presenting unusual challenges. L-3 IOS has passed Critical Design Review of the TEOA. In this paper, we describe L-3 IOS success meeting technical challenges, including our solutions for optic fabrication, opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management and control.

  9. Advanced technology optical telescopes IV; Proceedings of the Meeting, Tucson, AZ, Feb. 12-16, 1990. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Barr, Lawrence D. (Editor)

    1990-01-01

    The present conference on the current status of large, advanced-technology optical telescope development and construction projects discusses topics on such factors as their novel optical system designs, the use of phased arrays, seeing and site performance factors, mirror fabrication and testing, pointing and tracking techniques, mirror thermal control, structural design strategies, mirror supports and coatings, and the control of segmented mirrors. Attention is given to the proposed implementation of the VLT Interferometer, the first diffraction-limited astronomical images with adaptive optics, a fiber-optic telescope using a large cross-section image-transmitting bundle, the design of wide-field arrays, Hartmann test data reductions, liquid mirrors, inertial drives for telescope pointing, temperature control of large honeycomb mirrors, evaporative coatings for very large telescope mirrors, and the W. M. Keck telescope's primary mirror active control system software.

  10. Alignment and Distortion-Free Integration of Lightweight Mirrors into Meta-Shells for High-Resolution Astronomical X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William W.; Schofield, Mark J.; Numata, Ai; Mazzarella, James R.; Saha, Timo T.; Biskach, Michael P.; McCelland, Ryan S.; Niemeyer, Jason; Sharpe, Marton V.; hide

    2016-01-01

    High-resolution, high throughput optics for x-ray astronomy requires fabrication of well-formed mirror segments and their integration with arc-second level precision. Recently, advances of fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror integration. The new integration scheme takes advantage of the stiffer, more thermally conductive, and lower-CTE silicon, compared to glass, to build a telescope of much lighter weight. In this paper, we address issues of aligning and bonding mirrors with this method. In this preliminary work, we demonstrated the basic viability of such scheme. Using glass mirrors, we demonstrated that alignment error of 1" and bonding error 2" can be achieved for mirrors in a single shell. We will address the immediate plan to demonstrate the bonding reliability and to develop technology to build up a mirror stack and a whole "meta-shell".

  11. Water Cooled Mirror Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient coolingmore » of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.« less

  12. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    DOEpatents

    Baldwin, David E.; Logan, B. Grant

    1981-01-01

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequency of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technological state of the art required, and the capital cost are all greatly lowered.

  13. Finite Element Modeling of a Semi-Rigid Hybrid Mirror and a Highly Actuated Membrane Mirror as Candidates for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Craig, Larry; Jacobson, Dave; Mosier, Gary; Nein, Max; Page, Timothy; Redding, Dave; Sutherlin, Steve; Wilkerson, Gary

    2000-01-01

    Advanced space telescopes, which will eventually replace the Hubble Space Telescope (HTS), will have apertures of 8 - 20 n. Primary mirrors of these dimensions will have to be foldable to fit into the space launcher. By necessity these mirrors will be extremely light weight and flexible and the historical approaches to mirror designs, where the mirror is made as rigid as possible to maintain figure and to serve as the anchor for the entire telescope, cannot be applied any longer. New design concepts and verifications will depend entirely on analytical methods to predict optical performance. Finite element modeling of the structural and thermal behavior of such mirrors is becoming the tool for advanced space mirror designs. This paper discusses some of the preliminary tasks and study results, which are currently the basis for the design studies of the Next Generation Space Telescope.

  14. JWST Lightweight Mirror TRL-6 Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  15. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    DOEpatents

    Baldwin, D.E.; Logan, B.G.

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequence of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technical state of the art required, and the capital cost are all greatly lowered.

  16. Materials characterization study of conductive flexible second surface mirrors

    NASA Technical Reports Server (NTRS)

    Levadou, F.; Bosma, S. J.; Paillous, A.

    1981-01-01

    The status of prequalification and qualification work on conductive flexible second surface mirrors is described. The basic material is FEP Teflon witn either aluminium or silver vacuum deposited reflectors. The top layer has been made conductive by deposition of layer of a indium oxide. The results of a prequalification program comprised of decontamination, humidity, thermal cycling, thermal shock and vibration tests are presented. Thermo-optical and electrical properties. The results of a prequalification program comprised of decontamination, humidity, thermal cycling, thermal shock and vibration tests are presented. Thermo-optical and electrical properties, the electrostatic behavior of the materials under simulated substorm environment and electrical conductivity at low temperatures are characterized. The effects of simulated ultra violet and particles irradiation on electrical and thermo-optical properties of the materials are also presented.

  17. Study of hollow corner retroreflectors for use in a synchronous orbit

    NASA Technical Reports Server (NTRS)

    Yoder, P. R., Jr.

    1975-01-01

    The performance of a hollow corner cube retroreflector made up of three mutually perpendicular optically flat mirrors when undergoing the thermal-mechanical strains induced by a spacecraft environment was studied. Of particular interest was a device of 200 square centimeter optical aperture used on a satellite in a synchronous orbit. It was assumed that the reflector always faces the earth. The effects of direct solar irradiance, earthshine, and albedo were considered. The results included the maximum mirror surface temperature during the orbit as well as the worst-case loss of optical performance due to thermally-induced mirror distortions. It was concluded that a device made of three suitably coated flat ULE mirrors, optically contacted to each other and supported mechanically in a nonrigid mount, would be expected to concentrate over 80 percent of the theoretical maximum energy in the central of the far field diffraction pattern. Continued development of the device through a detailed design, fabrication, and test phase was recommended.

  18. Multispectral optical telescope alignment testing for a cryogenic space environment

    NASA Astrophysics Data System (ADS)

    Newswander, Trent; Hooser, Preston; Champagne, James

    2016-09-01

    Multispectral space telescopes with visible to long wave infrared spectral bands provide difficult alignment challenges. The visible channels require precision in alignment and stability to provide good image quality in short wavelengths. This is most often accomplished by choosing materials with near zero thermal expansion glass or ceramic mirrors metered with carbon fiber reinforced polymer (CFRP) that are designed to have a matching thermal expansion. The IR channels are less sensitive to alignment but they often require cryogenic cooling for improved sensitivity with the reduced radiometric background. Finding efficient solutions to this difficult problem of maintaining good visible image quality at cryogenic temperatures has been explored with the building and testing of a telescope simulator. The telescope simulator is an onaxis ZERODUR® mirror, CFRP metered set of optics. Testing has been completed to accurately measure telescope optical element alignment and mirror figure changes in a cryogenic space simulated environment. Measured alignment error and mirror figure error test results are reported with a discussion of their impact on system optical performance.

  19. Design of a medium size x-ray mirror module based on thin glass foils

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Civitani, Marta; Pareschi, Giovanni

    2016-07-01

    The hot slumping glass technology for X-ray mirror is under development and in the last years the results have been improved. Nustar is the first X-ray telescope based on slumped glass foils and it benefit is the low cost compared to the direct polishing of glass. With the slumping technique it is possible to maintain the glass mass to low values with respect to the direct polishing, but in general the angular resolution is worst. A further technique based on glass is the cold shaping of foils. The improved capabilities of manufacturing thin glass foils, pushed by the industrial application for screens, open new possibilities for X-ray mirror. The increase in strength of thin tempered glasses, the reduction of thickness errors and the good roughness of flat foils are potentially great advantages. In this paper a design of a mediumsize X-ray mirror module is analysed. It is based on integration of glass foils, stacked directly on a supporting structure that is part of the X-ray telescope using stiffening ribs as spacer between foils. The alignment of each stack is performed directly into the integration machine avoiding the necessity of the alignment of different stacked modules. A typical module (glass optic and metallic structure) provides an effective area of 10 cm2/kg at 1 keV (with a mass of about 50- 100 kg and a focal length of 10 m).

  20. Non-Mechanical Beam Steering in Free-Space Optical Communication Transceivers

    NASA Astrophysics Data System (ADS)

    Shortt, Kevin

    Free-space optical communications systems are a rapidly growing field as they carry many of the advantages of traditional fibre-based communications systems without the added investment of installing complex infrastructure. Moreover, these systems are finding key niches in mobile platforms in order to take advantage of the increased bandwidth over traditional RF systems. Of course, the inevitable problem of tracking arises when dealing with mobile stations. To compound the problem in the case of communications to low Earth or geosynchronous orbits, FSOC systems typically operate with tightly confined beams over great distances often requiring pointing accuracies on the order of micro-radians or smaller. Mechanisms such as gimbal mounts and fine-steering mirrors are the usual candidates for platform stabilization, however, these clearly have substantial power requirements and inflate the mass of the system. Spatial light modulators (also known as optical phased arrays), on the other hand, offer a suitable alternative for beam-pointing stabilization. Some of the advantages of spatial light modulators over fine-steering mirrors include programmable multiple simultaneous beams, dynamic focus/defocus and moderate to excellent optical power handling capability. This thesis serves as an investigation into the implementation of spatial light modulators as a replacement for traditional fine-steering mirrors in the fine-pointing subsystem. In particular, pointing accuracy and scanning ability will be highlighted as performance metrics in the context of a variety of communication scenarios. Keywords: Free-space optical communications, beam steering, fine-steering mirror, spatial light modulator, optical phased array.

  1. Focusing mirrors for enhanced neutron radiography with thermal neutrons and application for irradiated nuclear fuel

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh K.; Abir, Muhammad; Wu, Huarui; Khaykovich, Boris; Moncton, David E.

    2018-01-01

    Neutron radiography is a powerful method of probing the structure of materials based on attenuation of neutrons. This method is most suitable for materials containing heavy metals, which are not transparent to X-rays, for example irradiated nuclear fuel and other nuclear materials. Neutron radiography is one of the first non-distractive post-irradiated examination methods, which is applied to gain an overview of the integrity of irradiated nuclear fuel and other nuclear materials. However, very powerful gamma radiation emitted by the samples is damaging to the electronics of digital imaging detectors and has so far precluded the use of modern detectors. Here we describe a design of a neutron microscope based on focusing mirrors suitable for thermal neutrons. As in optical microscopes, the sample is separated from the detector, decreasing the effect of gamma radiation. In addition, the application of mirrors would result in a thirty-fold gain in flux and a resolution of better than 40 μm for a field-of-view of about 2.5 cm. Such a thermal neutron microscope can be useful for other applications of neutron radiography, where thermal neutrons are advantageous.

  2. Out of time: a possible link between mirror neurons, autism and electromagnetic radiation.

    PubMed

    Thornton, Ian M

    2006-01-01

    Recent evidence suggests a link between autism and the human mirror neuron system. In this paper, I argue that temporal disruption from the environment may play an important role in the observed mirror neuron dysfunction, leading in turn to the pattern of deficits associated with autism. I suggest that the developing nervous system of an infant may be particularly prone to temporal noise that can interfere with the initial calibration of brain networks such as the mirror neuron system. The most likely source of temporal noise in the environment is artificially generated electromagnetic radiation. To date, there has been little evidence that electromagnetic radiation poses a direct biological hazard. It is clear, however, that time-varying electromagnetic waves have the potential to temporally modulate the nervous system, particularly when populations of neurons are required to act together. This modulation may be completely harmless for the fully developed nervous system of an adult. For an infant, this same temporal disruption might act to severely delay or disrupt vital calibration processes.

  3. Silicon pore optics for future x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Wille, Eric; Bavdaz, Marcos; Wallace, Kotska; Shortt, Brian; Collon, Maximilien; Ackermann, Marcelo; Günther, Ramses; Olde Riekerink, Mark; Koelewijn, Arenda; Haneveld, Jeroen; van Baren, Coen; Erhard, Markus; Kampf, Dirk; Christensen, Finn; Krumrey, Michael; Freyberg, Michael; Burwitz, Vadim

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The candidate mission ATHENA (Advanced Telescope for High Energy Astrophysics) required a mirror assembly of 1 m2 effective area (at 1 keV) and an angular resolution of 10 arcsec or better. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is being developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the recent upgrades made to the manufacturing processes and equipment, ranging from the manufacture of single mirror plates towards complete focusing mirror modules mounted in flight configuration, and results from first vibration tests. The performance of the mirror modules is tested at X-ray facilities that were recently extended to measure optics at a focal distance up to 20 m.

  4. CSP Research | Concentrating Solar Power | NREL

    Science.gov Websites

    provide assistance in the following four areas. Materials Science Optical, thermal, and containment storage materials laboratories are designed to investigate advanced concepts for heat transfer, thermal determine thermal performance of receiver tubes, measure reflectance and durability of mirrors to

  5. New Method for Characterizing the State of Optical and Opto-Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva; Saif, Babak; Feinberg, Lee; Chaney, David; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Smith, Scott; Sanders, James

    2014-01-01

    James Webb Space Telescope Optical Telescope Element (OTE) is a three mirror anastigmat consisting of a 6.5 m primary mirror (PM), secondary mirror (SM) and a tertiary mirror. The primary mirror is made out of 18 segments. The telescope and instruments will be assembled at Goddard Space Flight Center (GSFC) to make it the Optical Telescope Element-Integrated Science Instrument Module (OTIS). The OTIS will go through environmental testing at GSFC before being transported to Johnson Space Center for testing at cryogenic temperature. The objective of the primary mirror Center of Curvature test (CoC) is to characterize the PM before and after the environmental testing for workmanship. This paper discusses the CoC test including both a surface figure test and a new method for characterizing the state of the primary mirror using high speed dynamics interferometry.

  6. High-resolution deployable telescope for satellite applications

    NASA Astrophysics Data System (ADS)

    Pica, Giulia; Ciofaniello, Luca; Mattei, Stefania; Santovito, Maria Rosaria; Gardi, Roberto

    2004-02-01

    CO.RI.S.T.A. is involved in a research project funded by ASI (Italian Space Agency), named MITAR, to realise a very compact, lightweight deployable telescope in visible wavelength range to get earth images from microsatellite. The satellite considered for the study is SMART, an Italian academic multi-mission microsatellite operating on circular sun-synchronous orbits. The telescope has a Cassegrain configuration with a parabolic primary mirror and an hyperbolic secondary mirror. This configuration guaranties the best aberrations corrections and the best compactness. The primary and the secondary mirror are 40 cm and 10 cm in diameter respectively, while their relative distance is 52cm. Mirrors will be realised with innovative composite material to obtain lightweight optical elements. Thanks to its limited size and light weight, the system can be easily deployed. The deployable structure will keep the secondary mirror close to the primary one during launch phases. Once in orbit, a system of lenticular tape springs and dumpers will extend the structure. The structure will be enclosed in multilayer blankets that will shield the sensor from light and will thermally stabilize the structure, preventing excessive thermal deformation. The images will be detected by a very high resolution CCD camera installed onboard the satellite.

  7. High-resolution wavefront control of high-power laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J; Brown, C; Carrano, C

    1999-07-08

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformablemore » glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more than two orders of magnitude greater than the best Deformable Mirrors currently made. Even with the increased spatial resolution, the cost of these devices is nearly two orders of magnitude less than the cost of the largest deformable mirror.« less

  8. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope.

    PubMed

    Hu, Rui; Liu, Shutian; Li, Quhao

    2017-05-20

    For the development of a large-aperture space telescope, one of the key techniques is the method for designing the flexures for mounting the primary mirror, as the flexures are the key components. In this paper, a topology-optimization-based method for designing flexures is presented. The structural performances of the mirror system under multiple load conditions, including static gravity and thermal loads, as well as the dynamic vibration, are considered. The mirror surface shape error caused by gravity and the thermal effect is treated as the objective function, and the first-order natural frequency of the mirror structural system is taken as the constraint. The pattern repetition constraint is added, which can ensure symmetrical material distribution. The topology optimization model for flexure design is established. The substructuring method is also used to condense the degrees of freedom (DOF) of all the nodes of the mirror system, except for the nodes that are linked to the mounting flexures, to reduce the computation effort during the optimization iteration process. A potential optimized configuration is achieved by solving the optimization model and post-processing. A detailed shape optimization is subsequently conducted to optimize its dimension parameters. Our optimization method deduces new mounting structures that significantly enhance the optical performance of the mirror system compared to the traditional methods, which only focus on the parameters of existing structures. Design results demonstrate the effectiveness of the proposed optimization method.

  9. Directed Energy Technology Overview

    DTIC Science & Technology

    2011-06-01

    with an AR coating, The primary mirror is zerodur on a 9 point mount incorporating a tuned mass damper.. The secondary, tertiary, and coude optics are...beam conditioning back end section: • A beam expander enlarges the beam and shapes it to fill the active area of a deformable mirror • Because of the...enabling technologies that would make a 100-kW SS laser possible (high power optical coatings, high power gain modules, deformable mirror technology

  10. Thermal-mechanical behavior of high precision composite mirrors

    NASA Technical Reports Server (NTRS)

    Kuo, C. P.; Lou, M. C.; Rapp, D.

    1993-01-01

    Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors.

  11. Optical Design of Segmented Hexagon Array Solar Mirror

    NASA Technical Reports Server (NTRS)

    Huegele, Vince

    2000-01-01

    A segmented array of mirrors was designed for a solar concentrator test stand at MSFC for firing solar thermal propulsion engines. The 144 mirrors each have a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The mirror segments are aluminum hexagons that had the surface diamond turned and quartz coated. The array focuses sunlight reflected from a heliostat to a 4 inch diameter spot containing 10 kw of power at the 15-foot focal point. The derivation of the surface figure for the respective mirror elements is shown. The alignment process of the array is discussed and test results of the system's performance is given.

  12. Experimental investigation of the deformable mirror with bidirectional thermal actuators.

    PubMed

    Huang, Lei; Ma, Xingkun; Gong, Mali; Bian, Qi

    2015-06-29

    A deformable mirror with actuators of thermoelectric coolers (TECs) is introduced in this paper. Due to the bidirectional thermal actuation property of the TEC, both upward and downward surface control is available for the DM. The response functions of the actuators are investigated. A close-loop wavefront control experiment is performed too, where the defocus and the astigmatism were corrected. The results reveal that there is a promising prospect for the novel design to be used in corrections of static aberrations, such as in the Inertial Confinement Fusion (ICF).

  13. Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels.

    PubMed

    Steinberg, Fabian; Pixa, Nils Henrik; Doppelmayr, Michael

    2016-01-01

    Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research.

  14. Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels

    PubMed Central

    Pixa, Nils Henrik; Doppelmayr, Michael

    2016-01-01

    Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research. PMID:27642526

  15. Significance of Landsat-7 Spacecraft Level Thermal Balance and Thermal Test for ETM+Instrument

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    1999-01-01

    The thermal design and the instrument thermal vacuum (T/V) test of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument were based on the Landsat-4, 5 and 6 heritage. The ETM+ scanner thermal model was also inherited from Landsat-4, 5 and 6. The temperature predictions of many scanner components in the original thermal model had poor agreement with the spacecraft and instrument integrated sun-pointing safehold (SPSH) thermal balance (T/B) test results. The spacecraft and instrument integrated T/B test led to a change of the Full Aperture Calibrator (FAC) motor stack "solar shield" coating from MIL-C-5541 to multi-layer insulation (MLI) thermal blanket. The temperature predictions of the Auxiliary Electronics Module (AEM) in the thermal model also had poor agreement with the T/B test results. Modifications to the scanner and AEM thermal models were performed to give good agreement between the temperature predictions and the test results. The correlated ETM+ thermal model was used to obtain flight temperature predictions. The flight temperature predictions in the nominal 15-orbit mission profile, plus margins, were used as the yellow limits for most of the ETM+ components. The spacecraft and instrument integrated T/B and TN test also revealed that the standby heater capacity on the Scan Mirror Assembly (SMA) was insufficient when the Earth Background Simulator (EBS) was 1 50C or colder, and the baffle heater possibly caused the coherent noise in the narrow band data when it was on. Also, the cooler cool-down was significantly faster than that in the instrument T/V test, and the coldest Cold Focal Plane Array (CFPA) temperature achieved was colder.

  16. Production of ELZM mirrors: performance coupled with attractive schedule, cost, and risk factors

    NASA Astrophysics Data System (ADS)

    Leys, Antoine; Hull, Tony; Westerhoff, Thomas

    2016-08-01

    Extreme light weighted ZERODUR Mirrors (ELZM) have been developed to exploit the superb thermal characteristics of ZERODUR. Coupled with up to date mechanical and optical fabrication methods this becomes an attractive technical approach. However the process of making mirror substrates has demonstrated to be unusually rapid and especially cost-effective. ELZM is aimed at the knee of the cost as a function of light weighting curve. ELZM mirrors are available at 88% light weighted. Together with their low risk, low cost production methods, this is presented as a strong option for NASA Explorer and Probe class missions.

  17. Origins Space Telescope Concept 1: Mid to Far Infrared Mission

    NASA Astrophysics Data System (ADS)

    Carter, Ruth; DiPirro, Michael; Origins Space Telescope Decadal Mission Study Team

    2018-01-01

    Origins Space Telescope (OST), is a NASA large mission concept designed to investigate the mid to far infrared sky. It would launch in the mid 2030’s, with mission development and implementation beginning in the mid-2020’s. This poster presents the overall architecture of OST Mission Concept 1. The Concept 1 telescope has a 9-meter diameter off-axis primary mirror, a three-mirror astigmat with a field steering mirror, covering the wavelength range of 6 to 600 µm. Five science instruments are on board the OST observatory for spectroscopy, imaging and coronagraphy. The instruments are the Medium Resolution Survey Spectrometer (MRSS), High Resolution Spectrometer (HRS), Far –IR Imaging and Polarimeter (FIP), Mid-IR Imaging Spectrometer and Coronagraph (MISC) and Heterodyne Instrument (HERO). The instruments are housed in the Instrument Accommodation Module (IAM). The Telescope and IAM are actively cooled to 4 Kelvin by relative high maturity 4 K cryocoolers To limit the Sun, Earth, Moon, and Spacecraft thermal radiation into the 4 K environment, multiple layers of sun shields similar to those used on JWST, are implemented. The sun-shields are also designed to minimize solar pressure and center of gravity discrepancies, thus resulting in the “sugar-scoop” like shape. To prevent locally generated stray light from entering the 4 Kelvin environment during mission operations, a 4 K baffle around the telescope and IAM is used. The OST Observatory will be inserted to a Sun-Earth L2 for mission operations.

  18. Atom optics in the time domain

    NASA Astrophysics Data System (ADS)

    Arndt, M.; Szriftgiser, P.; Dalibard, J.; Steane, A. M.

    1996-05-01

    Atom-optics experiments are presented using a time-modulated evanescent light wave as an atomic mirror in the trampoline configuration, i.e., perpendicular to the direction of the atomic free fall. This modulated mirror is used to accelerate cesium atoms, to focus their trajectories, and to apply a ``multiple lens'' to separately focus different velocity classes of atoms originating from a point source. We form images of a simple two-slit object to show the resolution of the device. The experiments are modelled by a general treatment analogous to classical ray optics.

  19. SIC mirrors polishing

    NASA Astrophysics Data System (ADS)

    Rodolfo, J.; Ruch, E.; Tarreau, M.; Merceron, J.-M.; Ferré, J.; Rousselet, N.; Leplan, H.; Geyl, R.; Harnisch, B.

    2017-11-01

    Silicon Carbide is a material of high interest in the design and manufacturing of space telescopes, thanks to its mechanical and thermal properties. Since many years, Reosc has gathered a large experience in the polishing, testing, integration and coating of large size Silicon Carbide mirrors as well as in the integration of full SiC TMAs.

  20. Solar Collector Mirror for Brayton Power System

    NASA Image and Video Library

    1966-09-21

    NASA’s Lewis Research Center conducted extensive research programs in the 1960s and 1970s to develop systems that provide electrical power in space. One system, the Brayton cycle engine, converted solar thermal energy into electrical power. This system operated on a closed-loop Brayton thermodynamic cycle. The Brayton system relied on this large mirror to collect radiation from the sun. The mirror concentrated the Sun's rays on a heat storage receiver which warmed the Brayton system’s working fluid, a helium-xenon gas mixture. The heated fluid powered the system’s generator which produced power. In the mid-1960s Lewis researchers constructed this 30-foot diameter prototype of a parabolic solar mirror for the Brayton cycle system. The mirror had to be rigid, impervious to micrometeorite strikes, and lightweight. This mirror was comprised of twelve 1-inch thick magnesium plate sections that were coated with aluminum. The mirror could be compactly broken into its sections for launch.

  1. A Proposal to Develop and Test a Fibre-Optic Coupled Solar Thermal Propulsion System for Microsatellites

    DTIC Science & Technology

    2006-03-01

    high numerical aperture fibre optics. Applying fibre optics to STP allows the solar concentrator mirror to be mechanically decoupled from the solar...Applying fibre optics to STP allows the solar concentrator mirror to be mechanically decoupled from the solar heat exchanger as well as granting...concentration is achieved via an optical concentrating system, such as a series of lenses or mirrors . This concentrated sunlight impinges on a blackbody

  2. Thermal mirror spectrometry: An experimental investigation of optical glasses

    NASA Astrophysics Data System (ADS)

    Zanuto, V. S.; Herculano, L. S.; Baesso, M. L.; Lukasievicz, G. V. B.; Jacinto, C.; Malacarne, L. C.; Astrath, N. G. C.

    2013-03-01

    The Thermal mirror technique relies on measuring laser-induced nanoscale surface deformation of a solid sample. The amplitude of the effect is directly dependent on the optical absorption and linear thermal expansion coefficients, and the time evolution depends on the heat diffusion properties of the sample. Measurement of transient signals provide direct access to thermal, optical and mechanical properties of the material. The theoretical models describing this effect can be formulated for very low optical absorbing and for absorbing materials. In addition, the theories describing the effect apply for semi-infinite and finite samples. In this work, we apply the Thermal mirror technique to measure physical properties of optical glasses. The semi-infinite and finite models are used to investigate very low optical absorbing glasses. The thickness limit for which the semi-infinite model retrieves the correct values of the thermal diffusivity and amplitude of the transient is obtained using the finite description. This procedure is also employed on absorbing glasses, and the semi-infinite Beer-Lambert law model is used to analyze the experimental data. The experimental data show the need to use the finite model for samples with very low bulk absorption coefficients and thicknesses L < 1.5 mm. This analysis helped to establish limit values of thickness for which the semi-infinite model for absorbing materials could be used, L > 1.0 mm in this case. In addition, the physical properties of the samples were calculated and absolute values derived.

  3. Contextual Modulation of Mirror and Countermirror Sensorimotor Associations

    ERIC Educational Resources Information Center

    Cook, Richard; Dickinson, Anthony; Heyes, Cecilia

    2012-01-01

    Automatic imitation--the unintended copying of observed actions--is thought to be a behavioral product of the mirror neuron system (MNS). Evidence that the MNS develops through associative learning comes from previous research showing that automatic imitation is attenuated by countermirror training, in which the observation of one action is paired…

  4. Interferometric Creep Testing.

    DTIC Science & Technology

    1985-03-01

    33 3 FIGURES (Continued) 16. Temperature of Zerodur sample and apparent strain * as a function of time with PZT-modulated mirror (point b...moves vertically if all mirrors are at 45 deg. The lower beam path et remains constant if the prism moves up or down or if the Zerodur plate expands...using a 2-in. Zerodur test sample at room temperature and no load except that from the weight of the top steel mirror disk, equivalent to 0.5 psi

  5. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  6. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    NASA Technical Reports Server (NTRS)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  7. Carbon Fiber Mirror for a CubeSat Telescope

    NASA Astrophysics Data System (ADS)

    Kim, Young-Soo; Jang, Jeong Gyun; Kim, Jihun; Nam, Uk Won

    2017-08-01

    Telescope mirrors made by carbon fibers have been increasingly used especially for space applications, and they may replace the traditional glass mirrors. Glass mirrors are easy to fabricate, but needed to be carefully handled as they are brittle. Other materials have also been considered for telescope mirrors, such as metals, plastics, and liquids even. However glass and glass ceramics are still commonly and dominantly used.Carbon fiber has mainly been used for mechanical supports like truss structure and telescope tubes, as it is stiff and light-weight. It can also be a good material for telescope mirrors, as it has additional merits of non-brittle and very low thermal expansion. Therefore, carbon fiber mirror would be suitable for space telescopes which should endure the harsh vibration conditions during launch.A light-weight telescope made by carbon fiber has been designed for a small satellite which would have much less weight than conventional ones. In this poster, mirror materials are reviewed, and a design of carbon fiber telescope is presented and discussed.

  8. Experiments and analysis of tunable monolithic 1- μm single-frequency fiber lasers with loop mirror filters

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Song, Huaqing; Wang, Xingpeng; Wang, Dongdong; Li, Li

    2018-03-01

    In this paper, we demonstrated thermally tunable 1- μm single-frequency fiber lasers utilizing loop mirror filters (LMFs) with unpumped Yb-doped fibers. The frequency selection and tracking was achieved by combining a fiber Bragg grating (FBG) and a dynamic grating established inside the LMF. The central emission wavelength was at 1064.07 nm with a tuning range of 1.4 nm, and the measured emission linewidth was less than 10 kHz. We also systematically studied the wavelength-tracking thermal stability of the LMF with separate thermal treatment upon the FBG and LMF, respectively. Finally, we presented a selection criterion for the minimum unpumped doped fiber length inside the LMF with experimental verification.

  9. Designing new classes of high-power, high-brightness VECSELs

    NASA Astrophysics Data System (ADS)

    Moloney, J. V.; Zakharian, A. R.; Hader, J.; Koch, Stephan W.

    2005-10-01

    Optically-pumped vertical external cavity semiconductor lasers offer the exciting possibility of designing kW-class solid state lasers that provide significant advantages over their doped YAG, thin-disk YAG and fiber counterparts. The basic VECSEL/OPSL (optically-pumped semiconductor laser) structure consists of a very thin (approximately 6 micron thick) active mirror consisting of a DBR high-reflectivity stack followed by a multiple quantum well resonant periodic (RPG) structure. An external mirror (reflectivity typically between 94%-98%) provides conventional optical feedback to the active semiconductor mirror chip. The "cold" cavity needs to be designed to take into account the semiconductor sub-cavity resonance shift with temperature and, importantly, the more rapid shift of the semiconductor material gain peak with temperature. Thermal management proves critical in optimizing the device for serious power scaling. We will describe a closed-loop procedure that begins with a design of the semiconductor active epi structure. This feeds into the sub-cavity optimization, optical and thermal transport within the active structure and thermal transport though the various heat sinking elements. Novel schemes for power scaling beyond current record performances will be discussed.

  10. Influence of number and depth of magnetic mirror on Alfvénic gap eigenmode

    NASA Astrophysics Data System (ADS)

    Chang, Lei; Hu, Ning; Yao, Jianyao

    2016-10-01

    Alfvénic gap eigenmode (AGE) can eject energetic particles from confinement and thereby threaten the success of magnetically controlled fusion. A low-temperature plasma cylinder is a promising candidate to study this eigenmode, due to easy diagnostic access and simple geometry, and the idea is to arrange a periodic array of magnetic mirrors along the plasma cylinder and introduce a local defect to break the field periodicity. The present work validates this idea by reproducing a clear AGE inside a spectral gap, and more importantly details the influence of the number and depth (or modulation factor) of magnetic mirror on the characteristics of AGE. Results show that AGE is suppressed by other modes inside the spectral gap when the number of magnetic mirrors is below a certain value, which leads to a weakened Bragg’s effect. The structure and frequency of AGE remain unchanged for a decreased number of magnetic mirrors, as long as this number is enough for the AGE formation. The width of spectral gap and decay constant (inverse of decay length) of AGE are linearly proportional to the depth of magnetic mirror, implying easier observation of AGE through a bigger mirror depth. The frequency of AGE shifts to a lower range with the depth increased, possibly due to the unfrozen plasma with field line and the invalidity of small-perturbation analysis. Nevertheless, it is exciting to find that the depth of field modulation can be increased to form AGE for a very limited number of magnetic mirrors. This is of particular interest for the experimental implementation of AGE on a low-temperature plasma cylinder with limited length. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405271, 11372104, 75121543, 11332013, 11372363, and 11502037).

  11. Cavity-induced mirror-mirror entanglement in a single-atom Raman laser

    NASA Astrophysics Data System (ADS)

    Teklu, Berihu; Byrnes, Tim; Khan, Faisal Shah

    2018-02-01

    We address an experimental scheme to analyze the optical bistability and the entanglement of two movable mirrors coupled to a two-mode laser inside a doubly resonant cavity. With this aim we investigate the master equations of the atom-cavity subsystem in conjunction with the quantum Langevin equations that describe the interaction of the mirror cavity. The parametric amplification-type coupling induced by the two-photon coherence on the optical bistability of the intracavity mean photon numbers is found and investigated. Under this condition, the optical intensities exhibit bistability for all large values of cavity laser detuning. We also provide numerical evidence for the generation of strong entanglement between the movable mirrors and show that it is robust against environmental thermalization.

  12. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al 6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(trademark) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  13. Interferometric phase measurement of zerodur, aluminum and SXA mirrors at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Magner, Thomas J.; Barney, Richard D.

    1988-01-01

    A research program was undertaken to determine the surface figure error of several different types of mirrors at cryogenic temperatures. Two-inch diameter parabolic, spherical and flat mirrors were fabricated from zerodur, aluminum and a metal matrix composite of silicon carbide reinforced aluminum (SXA). The ratio of silicon carbide to aluminum was selected so that the coefficient of thermal expansion (CTE) of the metal matrix matched electroless nickel. A liquuid helium dewar was modified to add an interferometric grade window, a cold electronic shutter and a strain-free copper mirror mount. Interferometric phase measurements on each mirror mounted in the dewar were made without the window, with the window, under vacuum, at around 80K and between 10K and 24K.

  14. Opto-Mechanics of the Constellation-X SXT Mirrors: Challenges in Mounting and Assembling the Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, WIlliam W.; Saha, Timo; Lehan, John P.; Mazzarella, James; Lozipone, Lawrence; Hong, Melinda; Byron, Glenn

    2008-01-01

    The Constellation-X Spectroscopy X-Ray Telescopes consists of segmented glass mirrors with an axial length of 200 mm, a width of up to 400 mm, and a thickness of 0.4 mm. To meet the requirement of less than 15 arc-second half-power diameter with the small thickness and relatively large size is a tremendous challenge in opto-mechanics. How shall we limit distortion of the mirrors due to gravity in ground tests, that arises from thermal stress, and that occurs in the process of mounting, affixing and assembling of these mirrors? In this paper, we will describe our current opto-mechanical approach to these problems. We will discuss, in particular, the approach and experiment where the mirrors are mounted vertically by first suspending it at two points.

  15. Large optics technology; Proceedings of the Meeting, San Diego, CA, August 19-21, 1985. Volume 571

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanger, G.M.

    1986-01-01

    The present conference on telescope primary mirror design and manufacturing technologies considers topics in mirror fabrication and testing, novel technology currently under development, recently instituted large optics development programs, and large mirror materials. Among the topics discussed are aspheric figure generation using feedback from an IR phase-shifting interferometer, thermal stability tests of CFRP sandwich panels for far-IR astronomy, Zerodur lightweight (large mirror) blanks, and the precision machining of grazing-incidence X-ray mirror substrates. Also treated are the rapid fabrication of large aspheric optics, steps toward 8-m honeycomb mirrors, a novel telescope design employing the refraction of prism rows, telescope technology formore » the Far-UV Spectroscopic Explorer, hot isostatic-pressed Be for large optics, and a concept for a moderate cost large deployable reflector.« less

  16. SiC lightweight telescopes for advanced space applications. I - Mirror technology

    NASA Technical Reports Server (NTRS)

    Anapol, Michael I.; Hadfield, Peter

    1992-01-01

    A SiC based telescope is an extremely attractive emerging technology which offers the lightweight and stiffness features of beryllium, the optical performance of glass to diffraction limited visible resolution, superior optical/thermal stability to cryogenic temperatures, and the cost advantages of an aluminum telescope. SSG has developed various SiC mirrors with and without a silicon coating and tested these mirrors over temperature ranges from +50 C to -250 C. Our test results show less than 0.2 waves P-V in visible wavefront change and no hysteresis over this wide temperature range. Several SSG mirrors are representative of very lightweight SiC/Si mirrors including (1) a 9 cm diameter, high aspect ratio mirror weighing less than 30 grams and (2) a 23 cm diameter eggcrated mirror weighing less than 400 grams. SSG has also designed and analyzed a 0.6 meter SiC based, on axis, three mirror reimaging telescope in which the primary mirror weighs less than 6 kg and a 0.5 meter GOES-like scan mirror. SSG has also diamond turned several general aspheric SiC/Si mirrors with excellent cryo optical performance.

  17. OSA Proceedings of the Topical Meeting on Soft-X-Ray Projection Lithography Held in Monterey, California on 10-12 April 1991. Volume 12

    DTIC Science & Technology

    1992-05-22

    Carbide because of its high thermal the mirror on its backside or edge. Shott Zerodur conductivity. Edge cooling causes a larger exceeded the limit by about...Characterization Angstrom-level noncontact profiling of mirrors for soft x-ray lithography............ 134 Paul Glenn Nonspecular Scattering from X-Ray...structed by patterning a Mo/Si Tropel Division of GCA Corporation. multilayer coated silicon wafer. The mirrors were coated at AT&T Bell The multilayer

  18. Cryogenic optical tests of a lightweight HIP beryllium mirror

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Miller, Jacob H.; Young, J. A.; Howard, Steven D.; Pryor, G. Mark

    1989-01-01

    Five interferometric tests were conducted at cryogenic temperatures on a lightweight, 50 cm diameter, hot isostatic pressed (HIP) beryllium mirror in the Ames Research Center (ARC) Cryogenic Optics Test Facility. The purpose of the tests was to determine the stability of the mirror's figure when cooled to cryogenic temperatures. Test temperatures ranged from room ambient to 8 K. One cycle to 8 K and five cycles to 80 K were performed. Optical and thermal test methods are described. Data is presented to show the amount of cryogenic distortion and hysteresis present in the mirror when measured with an earlier, Shack interferometer, and with a newly-acquired, phase-measuring interferometer.

  19. Social context rather than behavioral output or winning modulates post-conflict testosterone responses in Japanese quail (Coturnix japonica).

    PubMed

    Hirschenhauser, K; Wittek, M; Johnston, P; Möstl, E

    2008-10-20

    Testosterone regulates the expression of sexual and aggressive behavior in male vertebrates and treatments with testosterone may promote territorial aggression and winning in dyadic contests. Conversely, individual testosterone levels respond to sexual or aggressive interactions and the social environment. Post-conflict testosterone in winner males though appears to be more complex than simply reflecting conflict outcome. Expression and degree of post-conflict testosterone responses may adapt to additional modulators such as repeated winning experience, audience presence, opponent's fighting ability, and self-assessment. We present simulated intrusion experiments with male Japanese quail using mirror-elicited aggression and fights with real opponents ('direct challenge'). We recorded agonistic behavior and measured immunoreactive testosterone metabolites (TM) non-invasively from individual droppings. Frequencies of initiated agonistic behavior were similar whether towards the mirror or in direct challenge tests, although some of the males were behaviorally non-responsive to the mirror ('mirror submissives'). However, there was no TM response to the mirror test in both, mirror fighters and mirror submissives, thus independently of behavioral output. After direct challenges TM levels were elevated in all males (focal males winning or conflict unresolved after 30 min), hence independently of conflict outcome. Thus, in male quail a combination of physical stimuli and the individual perception of own and opponent's fighting ability explained the expression of post-conflict TM responses rather than behavioral performance, conflict outcome, or any of these factors alone. In sum, our results emphasize that the degree of androgen responsiveness to agonistic behavior is fine-tuned by components related with social context and environment.

  20. A new quasi-thermal trap model for solar flare hard X-ray bursts - An electrostatic trap model

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Emslie, A. G.

    1988-01-01

    A new quasi-thermal trap model of solar flare hard X-ray bursts is presented. The new model utilizes the trapping ability of a magnetic mirror and a magnetic field-aligned electrostatic potential produced by differences in anisotropies of the electron and ion distribution function. It is demonstrated that this potential can, together with the magnetic mirror itself, effectively confine electrons in a trap, thereby enhancing their bremsstrahlung yield per electron. This analysis makes even more untenable models involving precipitation of the bremsstrahlung-producing electrons onto a cold target.

  1. Thermal noise from optical coatings in gravitational wave detectors.

    PubMed

    Harry, Gregory M; Armandula, Helena; Black, Eric; Crooks, D R M; Cagnoli, Gianpietro; Hough, Jim; Murray, Peter; Reid, Stuart; Rowan, Sheila; Sneddon, Peter; Fejer, Martin M; Route, Roger; Penn, Steven D

    2006-03-01

    Gravitational waves are a prediction of Einstein's general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10(-21). There are a number of basic physics experiments around the world designed to detect these waves by using interferometers with very long arms, up to 4 km in length. The next-generation interferometers are currently being designed, and the thermal noise in the mirrors will set the sensitivity over much of the usable bandwidth. Thermal noise arising from mechanical loss in the optical coatings put on the mirrors will be a significant source of noise. Achieving higher sensitivity through lower mechanical loss coatings, while preserving the crucial optical and thermal properties, is an area of active research right now.

  2. Overview and Summary of the Advanced Mirror Technology Development Project

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness. This presentation will introduce the goals and objectives of the AMTD project and summarize its recent accomplishments.

  3. Concept for the fast modulation of light in amplitude and phase using analog tilt-mirror arrays

    NASA Astrophysics Data System (ADS)

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2017-02-01

    The full complex, spatial modulation of light at high frame rates is essential for a variety of applications. In particular, emerging techniques applied to scattering media, such as Digital Optical Phase Conjugation and Wavefront Shaping, request challenging performance parameters. They refer to imaging tasks inside biological media, whose characteristics concerning the transmission and reflection of scattered light may change over time within milliseconds. Thus, these methods call for frame rates in the kilohertz range. Existing solutions typically over frame rate capabilities below 100 Hz, since they rely on liquid crystal spatial light modulators (SLMs). We propose a diffractive MEMS optical system for this application range. It relies on an analog, tilt-type micro mirror array (MMA) based on an established SLM technology, where the standard application is grayscale amplitude control. The new MMA system design allows the phase manipulation at high-speed as well. The article studies properties of the appropriate optical setup by simulating the propagation of the light. Relevant test patterns and sensitivity parameters of the system will be analyzed. Our results illustrate the main opportunities of the concept with particular focus on the tilt mirror technology. They indicate a promising path to realize the complex light modulation at frame rates above 1 kHz and resolutions well beyond 10,000 complex pixels.

  4. Modular Orbital Demonstration of an Evolvable Space Telescope

    NASA Astrophysics Data System (ADS)

    Baldauf, Brian

    2016-06-01

    The key driver for a telescope's sensitivityis directly related to the size of t he mirror area that collects light from the objects being observed.The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The HDST envisioned for this mission would have an aperture >10 m, which is a larger payload than can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. The Optical Telescope Assembly for HDST is a primary mission cost driver. Enabling affordable solutions for this next generation of large aperture space-based telescope are needed.This reports on the concept for the MODEST, which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, a testbed for new instruments, and a tool for student's exploration of space. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Ceramic Matrix Composite that have excellent mechanical and thermal properties, e.g. high stiffness, high thermal conductivity, and low thermal expansion. It has been demonstrated that mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making these materials excellent candidates for a low cost, high performance OTA.

  5. Innovative space x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.; Ticha, H.; Brozek, V.

    2017-11-01

    We report on the progress in innovative X-ray mirror development with focus on requirements of future X-ray astronomy space projects. Various future projects in X-ray astronomy and astrophysics will require large lightweight but highly accurate segments with multiple thin shells or foils. The large Wolter 1 grazing incidence multiple mirror arrays, the Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (shaped, bent or flat foils) with high X-ray reflectivity and excellent mechanical stability.

  6. High Speed Computational Ghost Imaging via Spatial Sweeping

    NASA Astrophysics Data System (ADS)

    Wang, Yuwang; Liu, Yang; Suo, Jinli; Situ, Guohai; Qiao, Chang; Dai, Qionghai

    2017-03-01

    Computational ghost imaging (CGI) achieves single-pixel imaging by using a Spatial Light Modulator (SLM) to generate structured illuminations for spatially resolved information encoding. The imaging speed of CGI is limited by the modulation frequency of available SLMs, and sets back its practical applications. This paper proposes to bypass this limitation by trading off SLM’s redundant spatial resolution for multiplication of the modulation frequency. Specifically, a pair of galvanic mirrors sweeping across the high resolution SLM multiply the modulation frequency within the spatial resolution gap between SLM and the final reconstruction. A proof-of-principle setup with two middle end galvanic mirrors achieves ghost imaging as fast as 42 Hz at 80 × 80-pixel resolution, 5 times faster than state-of-the-arts, and holds potential for one magnitude further multiplication by hardware upgrading. Our approach brings a significant improvement in the imaging speed of ghost imaging and pushes ghost imaging towards practical applications.

  7. Direct Observations of ULF and Whistler-Mode Chorus Modulation of 500eV EDI Electrons by MMS

    NASA Astrophysics Data System (ADS)

    Paulson, K. W.; Argall, M. R.; Ahmadi, N.; Torbert, R. B.; Le Contel, O.; Ergun, R.; Khotyaintsev, Y. V.; Strangeway, R. J.; Magnes, W.; Russell, C. T.

    2016-12-01

    We present here direct observations of chorus-wave modulated field-aligned 500 eV electrons using the Electron Drift Instrument (EDI) on board the Magnetospheric Multiscale mission. These periods of wave activity were additionally observed to be modulated by Pc5-frequency magnetic perturbations, some of which have been identified as drifting mirror-mode structures. The spacecraft encountered these mirror-mode structures just inside of the duskside magnetopause. Using the high sampling rate provided by EDI in burst sampling mode, we are able to observe the individual count fluctuations of field-aligned electrons in this region up to 512 Hz. We use the multiple look directions of EDI to generate both pitch angle and gyrophase plots of the fluctuating counts. Our observations often show unidirectional flow of these modulated electrons along the background field, and in some cases demonstrate gyrophase bunching in the wave region.

  8. COI Structural Analysis Presentation

    NASA Technical Reports Server (NTRS)

    Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2001-01-01

    This report discusses the structural analysis of the Next Generation Space Telescope Mirror System Demonstrator (NMSD) developed by Composite Optics Incorporated (COI) in support of the Next Generation Space Telescope (NGST) project. The mirror was submitted to Marshall Space Flight Center (MSFC) for cryogenic testing and evaluation. Once at MSFC, the mirror was lowered to approximately 40 K and the optical surface distortions were measured. Alongside this experiment, an analytical model was developed and used to compare to the test results. A NASTRAN finite element model was provided by COI and a thermal model was developed from it. Using the thermal model, steady state nodal temperatures were calculated based on the predicted environment of the large cryogenic test chamber at MSFC. This temperature distribution was applied in the structural analysis to solve for the deflections of the optical surface. Finally, these deflections were submitted for optical analysis and comparison to the interferometer test data.

  9. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  10. Design And Development The Ixo Mirrors By Innovative Slumping Glass Technologies

    NASA Astrophysics Data System (ADS)

    Pareschi, Giovanni; Ghigo, M.; Basso, S.; Citterio, O.; Canestrari, R.; Dell'Orto, E.; Conconi, P.; Parodi, G.; Proserpio, L.

    2009-01-01

    At INAF Brera Astronomical Observatory development activities are ongoing aiming at the design and development of the IXO mirrors based on slumping glass technique. Our approach is based on the use of thermal slumping of thin glass optics and it presents a number of innovative solution for the implementation. In particular our approach foresees the use of a ceramic mould made of SiC for thermal shaping of the glass segments, which occurs exerting a proper pressure during the moulding process. A thin layer (a few hundred Angstroms) of Pt or Ir is previously deposited on the glass segment, to prevent the adhesion on the SiC mould surface. Therefore this coating not only acts as a release agent of the process but, at the same time, it has also the role of reflecting layer of the X-ray mirror (in a sense like it was the role of gold in the Ni electroforming replication method used for the XMM shells). SiC is chosen for its very good T/M characteristics and, in particular, a very high thermal conductivity and very low CTE. SiC mould will be produced via injection moulding process, followed by a the application of a cladding layer (a few tens microns) application of CVD SiC for allowing a superpolishing of the surface until a roughness of a few Angstrom rms is achieved. Once the mirror segments are produced, they are integrated in petals by means of air-bearings supports, that allows us to maintain the proper shape of the segments without deformations. The segments are stacked into the petals by the use of connecting ribs, glued to the front surface of each mirror and to the rear of the next one.

  11. Fabrication of micromachined focusing mirrors with seamless reflective surface

    NASA Astrophysics Data System (ADS)

    Hou, Max Ti-Kuang; Liao, Ke-Min; Yeh, Hong-Zhen; Cheng, Bo-Wen; Hong, Pei-Yuan; Chen, Rongshun

    2003-01-01

    A surface-micromachined focusing mirror with variable focal length, which is controlled by adjusting the mirror"s curvature, is fabricated and characterized. The bowl-shaped micromirror, which is fabricated from the micro bilayer circular plate, focuses light beam through thermal actuation of the external heat source. Both the initial and operational curvatures are manipulated by the residual stresses in two layers of the mirror. Improper stresses would lead to the failure of the bowl-shaped structure. We analyze and design geometrical dimensions for simultaneously avoiding the structure failure and increasing the tuning range of the focal length. The interferometer has been used to measure the focal length and the focusing ability. Mirrors with nominal focal lengths approximately 730 μm, and tuning ranges of about 50 microns were demonstrated. The measurement directly through optical approach has also been tried, but requires further investigation, because the laser beam affects the focusing of the micromirror seriously.

  12. Research on large-aperture primary mirror supporting way of vehicle-mounted laser communication system

    NASA Astrophysics Data System (ADS)

    Meng, Lixin; Meng, Lingchen; Zhang, Yiqun; Zhang, Lizhong; Liu, Ming; Li, Xiaoming

    2018-01-01

    In the satellite to earth laser communication link, large-aperture ground laser communication terminals usually are used in order to realize the requirement of high rate and long distance communication and restrain the power fluctuation by atmospheric scintillation. With the increasing of the laser communication terminal caliber, the primary mirror weight should also be increased, and selfweight, thermal deformation and environment will affect the surface accuracy of the primary mirror surface. A high precision vehicular laser communication telescope unit with an effective aperture of 600mm was considered in this paper. The primary mirror is positioned with center hole, which back is supported by 9 floats and the side is supported by a mercury band. The secondary mirror adopts a spherical adjusting mechanism. Through simulation analysis, the system wave difference is better than λ/20 when the primary mirror is in different dip angle, which meets the requirements of laser communication.

  13. Advanced mirror technology development (AMTD): year five status

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2017-09-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature the Technology Readiness Level (TRL) of critical technologies required to enable 4-m-orlarger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics, ultra-high-contrast observations of exoplanets, and National Interest missions. Key accomplishments of 2016/17 include the completion of the Harris Corp 150 Hz 1.5-meter Ultra-Low Expansion (ULE) mirror substrate using stacked core method to demonstrate lateral stability of the stacked core technology, as well as the characterization and validation by test of the mechanical and thermal performance of the 1.2-meter Zerodur mirror using the STOP model prediction and verification of CTE homogeneity.

  14. Investigation of mechanical dissipation in CO2 laser-drawn fused silica fibres and welds

    NASA Astrophysics Data System (ADS)

    Heptonstall, Alastair; Barton, Mark; Cantley, Caroline; Cumming, Alan; Cagnoli, Geppo; Hough, James; Jones, Russell; Kumar, Rahul; Martin, Iain; Rowan, Sheila; Torrie, Calum; Zech, Steven

    2010-02-01

    The planned upgrades to the LIGO gravitational wave detectors include monolithic mirror suspensions to reduce thermal noise. The mirrors will be suspended using CO2 laser-drawn fused silica fibres. We present here measurements of mechanical dissipation in synthetic fused silica fibres drawn using a CO2 laser. The level of dissipation in the surface layer is investigated and is found to be at a similar level to fibres produced using a gas flame. Also presented is a method for examining dissipation at welded interfaces, showing clear evidence of the existence of this loss mechanism which forms an additional component of the total detector thermal noise. Modelling of a typical detector suspension configuration shows that the thermal noise contribution from this loss source will be negligible.

  15. Entropy evolution of moving mirrors and the information loss problem

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Yeom, Dong-han

    2017-07-01

    We investigate the entanglement entropy and the information flow of two-dimensional moving mirrors. Here we point out that various mirror trajectories can help to mimic different candidate resolutions to the information loss paradox following the semiclassical quantum field theory: (i) a suddenly stopping mirror corresponds to the assertion that all information is attached to the last burst, (ii) a slowly stopping mirror corresponds to the assertion that thermal Hawking radiation carries information, and (iii) a long propagating mirror corresponds to the remnant scenario. Based on such analogy, we find that the last burst of a black hole cannot contain enough information, while slowly emitting radiation can restore unitarity. For all cases, there is an apparent inconsistency between the picture based on quantum entanglements and that based on the semiclassical quantum field theory. Based on the quantum entanglement theory, a stopping mirror will generate a firewall-like violent emission which is in conflict with notions based on the semiclassical quantum field theory.

  16. Metrology Arrangement for Measuring the Positions of Mirrors of a Submillimeter Telescope

    NASA Technical Reports Server (NTRS)

    Abramovici, Alex; Bartman, Randall K.

    2011-01-01

    The position of the secondary mirror of a submillimeter telescope with respect to the primary mirror needs to be known .0.03 mm in three dimensions. At the time of this reporting, no convenient, reasonably priced arrangement that offers this capability exists. The solution proposed here relies on measurement devices developed and deployed for the GeoSAR mission, and later adapted for the ISAT (Innovative Space Based Radar Antenna Technology) demonstration. The measurement arrangement consists of four metrology heads, located on an optical bench, attached to the secondary mirror. Each metrology head has a dedicated target located at the edge of the primary mirror. One laser beam, launched from the head and returned by the target, is used to measure distance. Another beam, launched from a beacon on the target, is monitored by the metrology head and generates a measurement of the target position in the plane perpendicular to the laser beam. A 100-MHz modulation is carried by a collimated laser beam. The relevant wavelength is the RF one, 3 m, divided by two, because the light carries it to the target and back. The phase change due to travel to the target and back is measured by timing the zero-crossing of the RF modulation, using a 100-MHz clock. In order to obtain good resolution, the 100-MHz modulation signal is down-converted to 1 kHz. Then, the phase change corresponding to the round-trip to the target is carried by a 1-kHz signal. Since the 100-MHz clock beats 100,000 times during one period of the 1-kHz signal, the least-significant-bit (LSB) resolution is LSB = 0.015 mm.

  17. Characteristic investigation of Golay9 multiple mirror telescope with a spherical primary mirror

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Wu, Quanying; Zhu, Xifang; Xiang, Ruxi; Qian, Lin

    2017-10-01

    The sparse aperture provides a novel solution to the manufacturing difficulties of modern super large telescopes. Golay configurations are optimal in the sparse aperture family. Characteristics of the Golay9 multiple mirror telescope having a spherical primary mirror are investigated. The arrangement of the nine sub-mirrors is discussed after the planar Golay9 configuration is analyzed. The characteristics of the entrance pupil are derived by analyzing the sub-aperture shapes with different relative apertures and sub-mirror sizes. Formulas about the fill factor and the overlay factor are deduced. Their maximal values are presented based on the derived tangency condition. Formulas for the point spread function (PSF) and the modulation transfer function (MTF) of the Golay9 MMT are also deduced. Two Golay9 MMT have been developed by Zemax simulation. Their PSF, MTF, fill factors, and overlay factors prove that our theoretical results are consistent with the practical simulation ones.

  18. Modulation of the Intracortical LFP during Action Execution and Observation

    PubMed Central

    Vigneswaran, Ganesh; Philipp, Roland; Lemon, Roger N.; Kraskov, Alexander

    2015-01-01

    The activity of mirror neurons in macaque ventral premotor cortex (PMv) and primary motor cortex (M1) is modulated by the observation of another's movements. This modulation could underpin well documented changes in EEG/MEG activity indicating the existence of a mirror neuron system in humans. Because the local field potential (LFP) represents an important link between macaque single neuron and human noninvasive studies, we focused on mirror properties of intracortical LFPs recorded in the PMv and M1 hand regions in two macaques while they reached, grasped and held different objects, or observed the same actions performed by an experimenter. Upper limb EMGs were recorded to control for covert muscle activity during observation. The movement-related potential (MRP), investigated as intracortical low-frequency LFP activity (<9 Hz), was modulated in both M1 and PMv, not only during action execution but also during action observation. Moreover, the temporal LFP modulations during execution and observation were highly correlated in both cortical areas. Beta power in both PMv and M1 was clearly modulated in both conditions. Although the MRP was detected only during dynamic periods of the task (reach/grasp/release), beta decreased during dynamic and increased during static periods (hold). Comparison of LFPs for different grasps provided evidence for partially nonoverlapping networks being active during execution and observation, which might be related to different inputs to motor areas during these conditions. We found substantial information about grasp in the MRP corroborating its suitability for brain–machine interfaces, although information about grasp was generally low during action observation. PMID:26041914

  19. Tongue Pressure Modulation during Swallowing: Water versus Nectar-Thick Liquids

    ERIC Educational Resources Information Center

    Steele, Catriona M.; Bailey, Gemma L.; Molfenter, Sonja M.

    2010-01-01

    Purpose: Evidence of tongue-palate pressure modulation during swallowing between thin and nectar-thick liquids stimuli has been equivocal. This mirrors a lack of clear evidence in the literature of tongue and hyoid movement modulation between nectar-thick and thin liquid swallows. In the current investigation, the authors sought to confirm whether…

  20. Single mode CO2 laser frequency modulation up to 350 MHz

    NASA Technical Reports Server (NTRS)

    Leeb, W. R.; Peruso, C. J.

    1977-01-01

    Experiments on internal frequency modulation (FM) of a CO2 laser showed no limitation of FM by the linewidth. However, distortions in the form of strong enhancement of sideband amplitude arise for frequencies equal to the cavity resonant frequencies, most pronounced if the modulator is positioned near a cavity mirror.

  1. Owning the body in the mirror: The effect of visual perspective and mirror view on the full-body illusion

    PubMed Central

    Preston, Catherine; Kuper-Smith, Benjamin J.; Henrik Ehrsson, H.

    2015-01-01

    Mirrors allow us to view our own body from a third-person (observer) perspective. However, how viewing ourselves through a mirror affects central body representations compared with true third-person perspective is not fully understood. Across a series of experiments, multisensory full-body illusions were used to modulate feelings of ownership over a mannequin body that was viewed from a third-person perspective through a mirror, from a third-person perspective without a mirror, and from a first-person perspective. In contrast to non-mirror third-person perspective, synchronously touching the participant’s actual body and the mannequin body viewed in the mirror elicited strong feelings of ownership over the mannequin and increased physiological responses to the mannequin being threatened compared to the equivalent asynchronous (non-ownership) control condition. Subjective reports of ownership viewing the mannequin through a mirror were also statistically equivalent to those following the first-person perspective illusion. These findings suggest that mirrors have a special role for viewing the self. The results also support the importance of egocentric reference frames for body ownership and suggest that mirror reflections of one’s own body are related to peripersonal space, which enables updating of central body representations. PMID:26678091

  2. Design Study of 8 Meter Monolithic Mirror UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    The planned Ares V launch vehicle with its 10 meter fairing shroud and 55,000 kg capacity to the Sun Earth L2 point enables entirely new classes of space telescopes. NASA MSFC has conducted a preliminary study that demonstrates the feasibility of launching a 6 to 8 meter class monolithic primary mirror telescope to Sun-Earth L2 using an Ares V. Specific technical areas studied included optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations and servicing; mass and power budgets; and system cost.

  3. An RF Therapy System for Breast Cancer Using Dual Deformable Mirrors — Computational Study

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Udpa, Satish S.; Udpa, Lalita

    2007-03-01

    Breast cancer is the second leading cause of cancer deaths amongst women in the United States. In the past two decades, the potential of non-ionizing high power RF waves to destroy cancerous biological tissues is actively investigated for cancer therapy. This paper presents the computational feasibility study of an alternative mode of electromagnetic radiation therapy that employs dual source and deformable mirror. The adaptive focusing capability of the deformable mirror is exploited for preferential energy deposition at the tumor site in the breast irradiated by electromagnetic radiation. The outcome of the computational study for the proposed deformable mirror-based thermal therapy for breast cancer is presented in this paper.

  4. Alpha particle confinement in tandem mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devoto, R.S.; Ohnishi, M.; Kerns, J.

    1980-10-10

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step.

  5. X-ray mirror prototype based on cold shaping of thin glass foils

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Civitani, Marta; Ghigo, Mauro; Hołyszko, Joanna; Pareschi, Giovanni; Salmaso, Bianca; Vecchi, Gabriele; Burwitz, Vadim; Pelliciari, Carlo; Hartner, Gisela D.; Breunig, Elias

    2017-08-01

    The Slumping Glass Optics technology for the fabrication of astronomical X-ray mirrors has been developed in recent years in USA and Europe. The process has been used for making the mirrors of the Nustar, mission. The process starts with very thin glass foils hot formed to copy the profile of replication moulds. At INAF - Osservatorio Astronomico di Brera a process based on cold shaping is being developed, based on an integration method involving the use of interconnecting ribs for making stacks. Each glass foil in the stack is shaped onto a very precise integration mould and the correct shape is frozen by means of glued ribs that act as spacers between one layer and the next one (the first layers being attached to a thick substrate). Therefore, the increasing availability of flexible glass foils with a thickness of a few tens of microns (driven by electronic market for ultra-thin displays) opens new possibilities for the fabrication of X-ray mirrors. This solution appears interesting especially for the fabrication of mirrors for hard X-rays (with energy > 10 keV) based on multilayer coatings, taking advantage from the intrinsic low roughness of the glass foils that should grant a low scattering level. The stress frozen on the glass due to the cold shaping is not negligible, but it is kept into account in the errors of the X-ray optics design. As an exercise, we have considered the requirements and specs of the FORCE hard Xray mission concept (being studied by JAXA) and we have designed the mirror modules assuming the cold slumping as a fabrication method. In the meantime, a prototype (representative of the FORCE mirror modules) is being design and integrated in order to demonstrate the feasibility and the capacity to reach good angular resolution.

  6. Analysis and testing of a soft actuation system for segmented reflector articulation and isolation

    NASA Technical Reports Server (NTRS)

    Jandura, Louise; Agronin, Michael L.

    1991-01-01

    Segmented reflectors have been proposed for space-based applications such as optical communication and large-diameter telescopes. An actuation system for mirrors in a space-based segmented mirror array has been developed as part of the National Aeronautics and Space Administration-sponsored Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), articulates a mirror panel in 3 degrees of freedom in the submicron regime, isolates the panel from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM has been built and is described. Three-axis modeling, analysis, and testing of the breadboard is discussed.

  7. Recent Updates to the Arnold Mirror Modeler and Integration into the Evolving NASA Overall Design System for Large Space-Based Optical Systems

    NASA Technical Reports Server (NTRS)

    Arnold, William R.

    2015-01-01

    Since last year, a number of expanded capabilities have been added to the modeler. The support the integration with thermal modeling, the program can now produce simplified thermal models with the same geometric parameters as the more detailed dynamic and even more refined stress models. The local mesh refinement and mesh improvement tools have been expanded and more user friendly. The goal is to provide a means of evaluating both monolithic and segmented mirrors to the same level of fidelity and loading conditions at reasonable man-power efforts. The paper will demonstrate most of these new capabilities.

  8. Recent Updates to the Arnold Mirror Modeler and Integration into the Evolving NASA Overall Design System for Large Space Based Optical Systems

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    Since last year, a number of expanded capabilities have been added to the modeler. The support the integration with thermal modeling, the program can now produce simplified thermal models with the same geometric parameters as the more detailed dynamic and even more refined stress models. The local mesh refinement and mesh improvement tools have been expanded and more user friendly. The goal is to provide a means of evaluating both monolithic and segmented mirrors to the same level of fidelity and loading conditions at reasonable man-power efforts. The paper will demonstrate most of these new capabilities.

  9. A design of optical modulation system with pixel-level modulation accuracy

    NASA Astrophysics Data System (ADS)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  10. Alignment Test Results of the JWST Pathfinder Telescope Mirrors in the Cryogenic Environment

    NASA Technical Reports Server (NTRS)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James; Knight, J. Scott; Lunt, Sharon

    2016-01-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASAs Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the SI detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  11. Advanced Mirror Technology Development (AMTD): Year Five Status

    NASA Technical Reports Server (NTRS)

    Stahl, H Philip

    2017-01-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature the Technology Readiness Level (TRL) of critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics, ultra-high-contrast observations of exoplanets, and National Interest missions. Key accomplishments of 2016/17 include the completion of the Harris Corp approximately 150 Hz 1.5-meter Ultra-Low Expansion (ULE Registered trademark) mirror substrate using stacked core method to demonstrate lateral stability of the stacked core technology, as well as the characterization and validation by test of the mechanical and thermal performance of the 1.2-meter Zerodur (Registered trademark) mirror using the STOP model prediction and verification of CTE homogeneity.

  12. Design and fabrication of reflective spatial light modulator for high-dynamic-range wavefront control

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Bierden, Paul; Cornelissen, Steven; Bifano, Thomas; Kim, Jin-Hong

    2004-10-01

    This paper describes design and fabrication of a microelectromechanical metal spatial light modulator (SLM) integrated with complementary metal-oxide semiconductor (CMOS) electronics, for high-dynamic-range wavefront control. The metal SLM consists of a large array of piston-motion MEMS mirror segments (pixels) which can deflect up to 0.78 µm each. Both 32x32 and 150x150 arrays of the actuators (1024 and 22500 elements respectively) were fabricated onto the CMOS driver electronics and individual pixels were addressed. A new process has been developed to reduce the topography during the metal MEMS processing to fabricate mirror pixels with improved optical quality.

  13. Photoacoustic emission from Au nanoparticles arrayed on thermal insulation layer.

    PubMed

    Namura, Kyoko; Suzuki, Motofumi; Nakajima, Kaoru; Kimura, Kenji

    2013-04-08

    Efficient photoacoustic emission from Au nanoparticles on a porous SiO(2) layer was investigated experimentally and theoretically. The Au nanoparticle arrays/porous SiO(2)/SiO(2)/Ag mirror sandwiches, namely, local plasmon resonators, were prepared by dynamic oblique deposition (DOD). Photoacoustic measurements were performed on the local plasmon resonators, whose optical absorption was varied from 0.03 (3%) to 0.95 by varying the thickness of the dielectric SiO(2) layer. The sample with high absorption (0.95) emitted a sound that was eight times stronger than that emitted by graphite (0.94) and three times stronger than that emitted by the sample without the porous SiO(2) layer (0.93). The contribution of the porous SiO(2) layer to the efficient photoacoustic emission was analyzed by means of a numerical method based on a one-dimensional heat transfer model. The result suggested that the low thermal conductivity of the underlying porous layer reduces the amount of heat escaping from the substrate and contributes to the efficient photoacoustic emission from Au nanoparticle arrays. Because both the thermal conductivity and the spatial distribution of the heat generation can be controlled by DOD, the local plasmon resonators produced by DOD are suitable for the spatio-temporal modulation of the local temperature.

  14. Lateral topological crystalline insulator heterostructure

    NASA Astrophysics Data System (ADS)

    Sun, Qilong; Dai, Ying; Niu, Chengwang; Ma, Yandong; Wei, Wei; Yu, Lin; Huang, Baibiao

    2017-06-01

    The emergence of lateral heterostructures fabricated by two-dimensional building blocks brings many exciting realms in material science and device physics. Enriching available nanomaterials for creating such heterostructures and enabling the underlying new physics is highly coveted for the integration of next-generation devices. Here, we report a breakthrough in lateral heterostructure based on the monolayer square transition-metal dichalcogenides MX2 (M  =  W, X  =  S/Se) modules. Our results reveal that the MX2 lateral heterostructure (1S-MX2 LHS) can possess excellent thermal and dynamical stability. Remarkably, the highly desired two-dimensional topological crystalline insulator phase is confirmed by the calculated mirror Chern number {{n}\\text{M}}=-1 . A nontrivial band gap of 65 meV is obtained with SOC, indicating the potential for room-temperature observation and applications. The topologically protected edge states emerge at the edges of two different nanoribbons between the bulk band gap, which is consistent with the mirror Chern number. In addition, a strain-induced topological phase transition in 1S-MX2 LHS is also revealed, endowing the potential utilities in electronics and spintronics. Our predictions not only introduce new member and vitality into the studies of lateral heterostructures, but also highlight the promise of lateral heterostructure as appealing topological crystalline insulator platforms with excellent stability for future devices.

  15. Design, fabrication and space suitability tests of wide field of view, ultra-compact, and high resolution telescope for space application.

    PubMed

    Tumarina, M; Ryazanskiy, M; Jeong, S; Hong, G; Vedenkin, N; Park, I H; Milov, A

    2018-02-05

    We report on the design, manufacture, and testing of an ultra-compact telescope for 16 unit (16U) CubeSats for Earth and space observation. This telescope provides 1 arcsec resolution at a 2.9 degree field of view. Dimensions are optimized to 230 × 230 × 330mm 3 with a mass of less than 6kg including support structure. Our catadioptric 5-element design consists of a full-aperture corrector, a Mangin primary mirror (PM), a secondary mirror (SM), and a 2-lens field corrector. The focal length is 745mm, and squared-circular aperture has an equivalent diameter of 241mm. The designed modulation transfer function (MTF) is 0.275 for the entire unit including baffles at a Nyquist frequency of 161 cycles/mm for the 450-800nm band. As one of the distinguishing features of our state-of-the-art design, all optical surfaces are spherical to simplify adjustment. For the best thermal stability, all optical elements are produced from fused silica. We describe the details of design, adjustment, and laboratory performance tests for space environments in accordance with the requirements for in-orbit operation onboard Earth-observation micro-satellites to be launched in 2018.

  16. Advanced Mirror Technology Development (AMTD) Project: 3.0 Year Status

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is a funded NASA Strategic Astrophysics Technology project. Begun in 2011, we are in Phase 2 of a multi-year effort. Our objective is to mature towards TRL6 critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable astronomy mission can be considered by the 2020 Decadal Review. The developed technology must enable missions capable of both general astrophysics and ultra-high contrast observations of exoplanets. Just as JWST's architecture was driven by launch vehicle, a future UVOIR mission's architecture (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. Another key accomplishment is that we have matured our technology by building and testing hardware. To demonstrate stacked core technology, we built a 400 mm thick mirror. Currently, to demonstrate lateral scalability, we are manufacturing a 1.5 meter mirror. To assist in architecture trade studies, the Engineering team develops Structural, Thermal and Optical Performance (STOP) models of candidate mirror assembly systems including substrates, structures, and mechanisms. These models are validated by test of full- and subscale components in relevant thermo-vacuum environments. Specific analyses include: maximum mirror substrate size, first fundamental mode frequency (i.e., stiffness) and mass required to fabricate without quilting, survive launch, and achieve stable pointing and maximum thermal time constant.

  17. Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.

  18. NASA Tech Briefs, December 2011

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Topics covered include: 1) SNE Industrial Fieldbus Interface; 2) Composite Thermal Switch; 3) XMOS XC-2 Development Board for Mechanical Control and Data Collection; 4) Receiver Gain Modulation Circuit; 5) NEXUS Scalable and Distributed Next-Generation Avionics Bus for Space Missions; 6) Digital Interface Board to Control Phase and Amplitude of Four Channels; 7) CoNNeCT Baseband Processor Module; 8) Cryogenic 160-GHz MMIC Heterodyne Receiver Module; 9) Ka-Band, Multi-Gigabit-Per-Second Transceiver; 10) All-Solid-State 2.45-to-2.78-THz Source; 11) Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn); 12) Space Environments Testbed; 13) High-Performance 3D Articulated Robot Display; 14) Athena; 15) In Situ Surface Characterization; 16) Ndarts; 17) Cryo-Etched Black Silicon for Use as Optical Black; 18) Advanced CO2 Removal and Reduction System; 19) Correcting Thermal Deformations in an Active Composite Reflector; 20) Umbilical Deployment Device; 21) Space Mirror Alignment System; 22) Thermionic Power Cell To Harness Heat Energies for Geothermal Applications; 23) Graph Theory Roots of Spatial Operators for Kinematics and Dynamics; 24) Spacesuit Soft Upper Torso Sizing Systems; 25) Radiation Protection Using Single-Wall Carbon Nanotube Derivatives; 26) PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure; 27) Lidar Luminance Quantizer; 28) Distributed Capacitive Sensor for Sample Mass Measurement; 29) Base Flow Model Validation; 30) Minimum Landing Error Powered-Descent Guidance for Planetary Missions; 31) Framework for Integrating Science Data Processing Algorithms Into Process Control Systems; 32) Time Synchronization and Distribution Mechanisms for Space Networks; 33) Local Estimators for Spacecraft Formation Flying; 34) Software-Defined Radio for Space-to-Space Communications; 35) Reflective Occultation Mask for Evaluation of Occulter Designs for Planet Finding; and 36) Molecular Adsorber Coating

  19. Emotion processing fails to modulate putative mirror neuron response to trained visuomotor associations.

    PubMed

    Fitzgibbon, Bernadette M; Kirkovski, Melissa; Fornito, Alex; Paton, Bryan; Fitzgerald, Paul B; Enticott, Peter G

    2016-04-01

    Recent neuroimaging studies have demonstrated that activation of the putative human mirror neuron system (MNS) can be elicited via visuomotor training. This is generally interpreted as supporting an associative learning account of the mirror neuron system (MNS) that argues against the ontogeny of the MNS to be an evolutionary adaptation for social cognition. The current study assessed whether a central component of social cognition, emotion processing, would influence the MNS activity to trained visuomotor associations, which could support a broader role of the MNS in social cognition. Using functional magnetic resonance imaging (fMRI), we assessed repetition suppression to the presentation of stimulus pairs involving a simple hand action and a geometric shape that was either congruent or incongruent with earlier association training. Each pair was preceded by an image of positive, negative, or neutral emotionality. In support of an associative learning account of the MNS, repetition suppression was greater for trained pairs compared with untrained pairs in several regions, primarily supplementary motor area (SMA) and right inferior frontal gyrus (rIFG). This response, however, was not modulated by the valence of the emotional images. These findings argue against a fundamental role of emotion processing in the mirror neuron response, and are inconsistent with theoretical accounts linking mirror neurons to social cognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A kinematic flexure-based mechanism for precise parallel motion for the Hertz Variable-delay Polarization Modulator (VPM)

    NASA Astrophysics Data System (ADS)

    Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.

    2006-06-01

    We describe the design and construction of a Variable-delay Polarization Modulator (VPM) that has been built and integrated into the Hertz ground-based, submillimeter polarimeter at the SMTO on Mt. Graham in Arizona. VPMs allow polarization modulation by controlling the phase difference between two linear, orthogonal polarizations. This is accomplished by utilizing a grid-mirror pair with a controlled separation. The size of the gap between the mirror and the polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. The necessity of controlling the phase of the radiation across this device drives the two novel features of the VPM. First, a novel, kinematic, flexure is employed that passively maintains the parallelism of the mirror and the grid to 1.5 μm over a 150 mm diameter, with a 400 μm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. Second, the VPM uses a grid flattener that highly constrains the planarity of the polarizing grid. In doing so, the phase error across the device is minimized. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.

  1. Design survey of X-ray/XUV projection lithography systems

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Viswanathan, V. K.

    1991-02-01

    Several configurations of two- to four-multilayer mirror systems that have been proposed for use in soft-X-ray projection lithography are examined. The performance capabilities of spherical and aspherical two-mirror projection systems are compared, and a two-spherical-mirror four-reflection system that can resolve 0.1-micron features over a 10 x 10 mm field is described. It is emphasized that three-mirror systems show promise of high resolution in telescope applications, but have not been fully analyzed for projection lithography applications. It has been shown that a four-mirror aspheric system can be designed to meet the resolution requirements, but a trade-off must be made between reducing distortion below 10 microns over the field of view and increasing the modulation transfer function greater than 50 percent at spatial frequency of 5000 cycles/mm.

  2. DIVA optical telescope

    NASA Astrophysics Data System (ADS)

    Graue, Roland; Kampf, Dirk; Röser, Siegfried; Bastian, Ulrich; Seifert, Walter

    2003-02-01

    The German Instrument for Multi-channel Photometry and Astrometry (DIVA), dedicated to the German (DLR) small extraterrestrial satellite program, is intended as a kind of technology precursor mission to GAIA. DIVA is scheduled for launch in 2004 and shall perform a sky survey to measure within 2 years life time the positions, parallaxes, magnitudes, etc. of about 35 million stars. The main instrument, covering the spectral range of 400-1000nm, observes 2 fields of view (0.6° x 0.77°) by a single Focal Plane Assembly (FPA). The focal length is 11200mm. The DIVA Optomechanics is based on a high precision Three Mirror Anastigmat (TMA) concept with 8 mirrors, 5 of them flat. An extremely high short term stability (torsion tolerance) of 0.3 mas over 10h only has to be realized only by passive means to achieve the astrometrical performance requirements. The paper describes the phase B2 design activities wrt. the optomechanical and thermal design of the main instrument. Special emphasis is given to an exhausting, but very pragmatic thermomechanical and optical performance trade off between a cost effective athermal design concept, applying mirrors and an optical bench made from a specially treated isotropic aluminum alloy, and a thermally stable hybrid material concept based on a Carbon Fiber Reinforced Plastics (CFRP) sandwich structure and Zerodur mirrors. The selection of the final baseline design solution shall be reported. According to the very high long and short scale surface properties of the candidate aluminum mirrors a sophisticated manufacturing procedure was established based on conventional and ion beam polishing techniques. The representative breadboard mirror test results will be given.

  3. The mechanisms of the SAMS experiment flown on Nimbus 7 with particular reference to the 2 axis scanning mirror. [infrared radiometer for stratospheric and mesospheric investigations

    NASA Technical Reports Server (NTRS)

    Hadley, H.

    1980-01-01

    The stratospheric and mesospheric sounder (SAMS) experiment on Nimbus 7 includes a 2 axis scanning mirror and 7 pressure modulator cells. The SAMS experiment is a limb sounding instrument to measure the temperature profile and minor constituents of the atmosphere. The limb scan requires small mirror steps over a 3 deg range, while the scan in azimuth is in larger steps over a 15 deg range. The mirror is plane, 20 cm in diameter, and of zero expansion glass-ceramic. It is supported on two tilt tables, fitted one on the other, with the axes at right angles. The angle of tilt is adjusted by means of recirculating ball screws which are ion plated with lead for lubrication and driven by stepper motors. The seven gas filled cells are each pressure modulated by a 3 cm diameter, 0.3 cm stroke piston which is supported by diaphragm springs and driven electromagnetically at the system's mechanical resonant frequency. The mean pressure of the filling gas, which is the atmospheric constituent being measured, is changed by varying the temperature of a suitable molecular sieve.

  4. Modulations of mirroring activity by desire for social connection and relevance of movement

    PubMed Central

    Sharer, Elizabeth A.; Bargh, John A.; Pineda, Jaime A.

    2014-01-01

    Mirroring neurons fire both when an individual moves and observes another move in kind. This simulation of others’ movements is thought to effortlessly and ubiquitously support empathetic connection and social understanding. However, at times this could be maladaptive. How could a boxer mirror a losing opponent’s expressions of fatigue, feeling his weariness, precisely when strength is required? Clearly, the boxer must emotionally disconnect from his opponent and those expressions of fatigue must become irrelevant and not mirrored. But, movements that inform of his opponent’s intentions to deliver an incoming blow are quite relevant and still should require mirroring. We tested these dimensions of emotional connectedness and relevance of movement in an electroencephalography experiment, where participants’ desires to socially connect with a confederate were manipulated. Before manipulation, all participants mirrored the confederate’s purely kinematic (a hand opening and closing) and goal-directed (a hand opening and closing around a token that the participant desired) hand movements. After manipulation, unfairly treated subjects ceased to mirror the purely kinematic movements but continued to mirror goal-relevant movements. Those treated fairly continued to mirror all movements. The results suggest that social mirroring can be adaptive in order to meet the demands of a varied social environment. PMID:24194581

  5. The role of handedness-dependent sensorimotor experience in the development of mirroring.

    PubMed

    Mori, Hirotaka; Yamamoto, Shinji; Aihara, Tsuyoshi; Uehara, Shintaro

    2015-01-01

    In daily life, we often try to learn motor actions by imitating others' actions. Motor imitation requires us to simultaneously map an observed action onto a motor program used to perform that action. This sensorimotor associative experience can plastically modulate the mirror property of the human mirror system, which has a role in matching observed actions directly with the observer's motor programs, to enhance the association between observed and performed actions. In the present study, we investigated the effects of handedness on the mirror property. Healthy left- and right-handed individuals performed a motor imitation task. They were required to imitate hand actions with their dominant hand as quickly and accurately as possible in response to pictures of a left and right hand. Reaction times (RTs) for imitating the hand actions were evaluated. Under the condition where the hand pictures were presented as if facing the participant, we found that, in left-handed participants, RTs for imitating right-handed actions were significantly shorter than those for imitating left-handed actions. Under the same conditions in right-handers, similar differences in RTs when presented left- and right-handed actions were not observed. These findings demonstrate that the imitative responses for left- and right-handed actions are differently facilitated depending on the handedness of the observer, indicating an effect of handedness on the development of mirror systems. The mirror property in left- and right-handers is likely modulated in a different manner by different sensorimotor associative experiences throughout their daily lives. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Polydyne displacement interferometer using frequency-modulated light

    NASA Astrophysics Data System (ADS)

    Arablu, Masoud; Smith, Stuart T.

    2018-05-01

    A radio-frequency Frequency-Modulated (FM) signal is used to diffract a He-Ne laser beam through an Acousto-Optic Modulator (AOM). Due to the modulation of the FM signal, the measured spectra of the diffracted beams comprise a series of phase-synchronized harmonics that have exact integer frequency separation. The first diffraction side-beam emerging from the AOM is selected by a slit to be used in a polydyne displacement interferometer in a Michelson interferometer topology. The displacement measurement is derived from the phase measurement of selected modulation harmonic pairs. Individual harmonic frequency amplitudes are measured using discrete Fourier transform applied to the signal from a single photodetector. Phase signals are derived from the changes in the amplitudes of different harmonic pairs (typically odd-even pairs) with the phase being extracted using a standard quadrature method. In this study, two different modulation frequencies of 5 and 10 kHz are used at different modulation depths. The measured displacements by different harmonic pairs are compared with a commercial heterodyne interferometer being used as a reference for these studies. Measurements obtained from five different harmonic pairs when the moving mirror of the interferometer is scanned over ranges up to 10 μm all show differences of less than 50 nm from the reference interferometer measurements. A drift test was also used to evaluate the differences between the polydyne interferometer and reference measurements that had different optical path lengths of approximately 25 mm and 50 mm, respectively. The drift test results indicate that about half of the differences can be attributed to temperature, pressure, and humidity variations. Other influences include Abbe and thermal expansion effects. Rough magnitude estimates using simple models for these two effects can account for remaining observed deviations.

  7. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    NASA Astrophysics Data System (ADS)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  8. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    NASA Technical Reports Server (NTRS)

    Toland, Ronald; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    In spite of its baseline mechanical stress relief, aluminum 6061-T651 harbors some residual stress that may relieve and distort mirror figure to unacceptable levels at cryogenic operating temperatures unless relieved during fabrication. Cryogenic instruments using aluminum mirrors for both ground-based and space IR astronomy have employed a variety of heat treatment formulae, with mixed results. We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(TM) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  9. Status of the Advanced Mirror Technology Development (AMTD) Phase 2, 1.5m ULE(Registered Trademark) Mirror

    NASA Technical Reports Server (NTRS)

    Egerman, Robert; Matthews, Gary W.; Johnson, Matthew; Ferland, Albert; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.

    2015-01-01

    The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. Under a Phase I program, a proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. In 2014, Exelis and NASA started a Phase II program to design and build a 1.5m mirror to demonstrate lateral scalability to a 4m monolithic primary mirror. The current status of the Phase II development program will be provided along with a Phase II program summary.

  10. NASA Tech Briefs, April 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics covered include: Fully Integrated, Miniature, High-Frequency Flow Probe Utilizing MEMS Leadless SOI Technology; Nanoscale Surface Plasmonics Sensor With Nanofluidic Control; Advanced Dispersed Fringe Sensing Algorithm for Coarse Phasing Segmented Mirror Telescopes; Neural Network Back-Propagation Algorithm for Sensing Hypergols; Bulk Moisture and Salinity Sensor; Change-Based Satellite Monitoring Using Broad Coverage and Targetable Sensing; Circularly Polarized Microwave Antenna Element with Very Low Off-Axis Cross-Polarization; Ultra-Low Heat-Leak, High-Temperature Superconducting Current Leads for Space Applications; Flash Cracking Reactor for Waste Plastic Processing; An Automated Safe-to-Mate (ASTM) Tester; Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch; Compute Element and Interface Box for the Hazard Detection System; DOT Transmit Module; Composite Aerogel Multifoil Protective Shielding; Li-Ion Electrolytes with Improved Safety and Tolerance to High-Voltage Systems; Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation; Controlled, Site-Specific Functionalization of Carbon Nanotubes with Diazonium Salts; Regenerable Sorbent for CO2 Removal; Sprayable Aerogel Bead Compositions With High Shear Flow Resistance and High Thermal Insulation Value; Lexan Linear Shaped Charge Holder with Magnets and Backing Plate; Robotic Ankle for Omnidirectional Rock Anchors; Wind, Wave, and Tidal Energy Without Power Conditioning; An Active Heater Control Concept to Meet IXO Type Mirror Module Thermal-Structural Distortion Requirement; Waterless Clothes-Cleaning Machine; Integrated Electrical Wire Insulation Repair System; LVGEMS Time-of-Flight Mass Spectrometry on Satellites; Surface Inspection Tool for Optical Detection of Surface Defects; Per-Pixel, Dual-Counter Scheme for Optical Communications; Certification-Based Process Analysis; Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization; Smart-Divert Powered Descent Guidance to Avoid the Backshell Landing Dispersion Ellipse; Estimating Foreign-Object-Debris Density from Photogrammetry Data; Adaptive Sampling of Spatiotemporal Phenomena with Optimization Criteria; Building a 2.5D Digital Elevation Model From 2D Imagery; Eyes on the Earth 3D; Target Trailing With Safe Navigation for Maritime Autonomous Surface Vehicles; Adams-Based Rover Terramechanics and Mobility Simulator - ARTEMIS; ISTP CDF Skeleton Editor; Uplink Summary Generator (ULSGEN) Version 1.0; Robotics On-Board Trainer (ROBoT); Software Engineering Tools for Scientific Models; Automatic Data Filter Customization Using a Genetic Algorithm; Tracker Toolkit; Towards Efficient Scientific Data Management Using Cloud Storage; On a Formal Tool for Reasoning About Flight Software Cost Analysis; A Nanostructured Composites Thermal Switch Controls Internal and External Short Circuit in Lithium Ion Batteries; Spacecraft Crew Cabin Condensation Control; and Functional Near-Infrared Spectroscopy Signals Measure Neuronal Activity in the Cortex.

  11. Longitudinal On-Column Thermal Modulation for Comprehensive Two-Dimensional Liquid Chromatography.

    PubMed

    Creese, Mari E; Creese, Mathew J; Foley, Joe P; Cortes, Hernan J; Hilder, Emily F; Shellie, Robert A; Breadmore, Michael C

    2017-01-17

    Longitudinal on-column thermal modulation for comprehensive two-dimensional liquid chromatography is introduced. Modulation optimization involved a systematic investigation of heat transfer, analyte retention, and migration velocity at a range of temperatures. Longitudinal on-column thermal modulation was realized using a set of alkylphenones and compared to a conventional valve-modulator employing sample loops. The thermal modulator showed a reduced modulation-induced pressure impact than valve modulation, resulting in reduced baseline perturbation by a factor of 6; yielding a 6-14-fold improvement in signal-to-noise. A red wine sample was analyzed to demonstrate the potential of the longitudinal on-column thermal modulator for separation of a complex sample. Discrete peaks in the second dimension using the thermal modulator were 30-55% narrower than with the valve modulator. The results shown herein demonstrate the benefits of an active focusing modulator, such as reduced detection limits and increased total peak capacity.

  12. ULE design considerations for a 3m class light weighted mirror blank for E-ELT M5

    NASA Astrophysics Data System (ADS)

    Fox, Andrew; Hobbs, Tom; Edwards, Mary; Arnold, Matthew; Sawyer, Kent

    2016-07-01

    It is expected that the next generation of large ground based astronomical telescopes will need large fast-steering/tip-tilt mirrors made of ultra-lightweight construction. These fast-steering mirrors are used to continuously correct for atmospheric disturbances and telescope vibrations. An example of this is the European Extremely Large Telescope (E-ELT) M5 lightweight mirror, which is part of the Tip-Tilt/Field-Stabilization Unit. The baseline design for the E-ELT M5 mirror, as presented in the E-ELT Construction Proposal, is a closed-back ULE mirror with a lightweight core using square core cells. Corning Incorporated (Corning) has a long history of manufacturing lightweight mirror blanks using ULE in a closed-back construction, going back to the 1960's, and includes the Hubble Space Telescope primary mirror, Subaru Telescope secondary and tertiary mirrors, the Magellan I and II tertiary mirrors, and Kepler Space Telescope primary mirror, among many others. A parametric study of 1-meter class lightweight mirror designs showed that Corning's capability to seal a continuous back sheet to a light-weighted core structure provides superior mirror rigidity, in a near-zero thermal expansion material, relative to other existing technologies in this design space. Corning has investigated the parametric performance of several design characteristics for a 3-meter class lightweight mirror blank for the E-ELT M5. Finite Element Analysis was performed on several design scenarios to obtain weight, areal density, and first Eigen frequency. This paper presents an overview of Corning ULE and lightweight mirror manufacturing capabilities, the parametric performance of design characteristics for 1-meter class and 3-meter class lightweight mirrors, as well as the manufacturing advantages and disadvantages of those characteristics.

  13. Restraint deformation and corrosion protection of gold deposited aluminum mirrors for cold optics of mid-infrared instruments

    NASA Astrophysics Data System (ADS)

    Uchiyama, Mizuho; Miyata, Takashi; Sako, Shigeyuki; Kamizuka, Takafumi; Nakamura, Tomohiko; Asano, Kentaro; Okada, Kazushi; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Sarugaku, Yuki; Kirino, Okiharu; Nakagawa, Hiroyuki; Okada, Norio; Mitsui, Kenji

    2014-07-01

    We report the restraint deformation and the corrosion protection of gold deposited aluminum mirrors for mid-infrared instruments. To evaluate the deformation of the aluminum mirrors by thermal shrinkage, monitoring measurement of the surface of a mirror has been carried out in the cooling cycles from the room temperature to 100 K. The result showed that the effect of the deformation was reduced to one fourth if the mirror was screwed with spring washers. We have explored an effective way to prevent the mirror from being galvanically corroded. A number of samples have been prepared by changing the coating conditions, such as inserting an insulation layer, making a multi-layer and overcoating water blocking layer, or carrying out precision cleaning before coating. Precision cleaning before the deposition and protecting coat with SiO over the gold layer seemed to be effective in blocking corrosion of the aluminum. The SiO over-coated mirror has survived the cooling test for the mid-infrared use and approximately 1 percent decrease in the reflectance has been detected at 6-25 microns compared to gold deposited mirror without coating.

  14. Measurements of print-through in graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Jeunnette, Timothy T.; Anzic, Judith M.

    1989-01-01

    High-reflectance accurate-contour mirrors are needed for solar dynamic space power systems. Graphite fiber epoxy composites are attractive candidates for such applications owing to their high modulus, near-zero coefficient of thermal expansion, and low mass. However, mirrors prepared from graphite fiber epoxy composite substrates often exhibit print-through, a distortion of the surface, which causes a loss in solar specular reflectance. Efforts to develop mirror substrates without print-through distortion require a means of quantifying print-through. Methods have been developed to quantify the degree of print-through in graphite fiber epoxy composite specimens using surface profilometry.

  15. Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    NASA Astrophysics Data System (ADS)

    Baldauf, Brian; Conti, Alberto

    2016-01-01

    The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The High Definition Space Telescope (HDST) envisioned for this mission would have an aperture >10 m, which is a larger payload than what can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. Space-based telescopes with large apertures will require major changes to system architectures.The Optical Telescope Assembly (OTA) for HDST is a primary mission cost driver. Enabling and affordable solutions for this next generation of large aperture space-based telescope are needed.This paper reports on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST), which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will also facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, and a testbed for new instruments. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Other key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. It has been demonstrated that mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making these materials excellent candidates for a low cost, high performance OTA.

  16. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Gates, Richard M.

    1988-01-01

    A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.

  17. Mirror Birefringence in a Fabry-Perot Cavity and the Detection of Vacuum Birefringence in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Chui, T. C. P.; Shao, M.; Redding, D.; Gursel, Y.; Boden, A.

    1995-01-01

    We discuss the effect of mirror birefringence in two optical schemes designed to detect the quantum-electrodynamics (QED) predictions of vacuum birefringence under the influence of a strong magnetic field, B. Both schemes make use of a high finesse Fabry-Perot cavity (F-P) to increase the average path length of the light in the magnetic field. The first scheme, which we called the frequency scheme, is based on measurement of the beat frequency of two orthogonal polarized laser beams in the cavity. We show that mirror birefringence contributes to the detection uncertainties in first order, resulting in a high susceptibility to small thermal disturbances. We estimate that an unreasonably high thermal stability of 10-9 K is required to resolve the effect to 0.1%. In the second scheme, which we called the polarization rotation scheme, laser polarized at 45 relative to the B field is injected into the cavity.

  18. Alignment test results of the JWST Pathfinder Telescope mirrors in the cryogenic environment

    NASA Astrophysics Data System (ADS)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James B.; Knight, J. Scott; Lunt, Sharon

    2016-07-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the Science Instrument (SI) detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  19. LUTE primary mirror materials and design study report

    NASA Astrophysics Data System (ADS)

    Ruthven, Greg

    1993-02-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  20. LUTE primary mirror materials and design study report

    NASA Technical Reports Server (NTRS)

    Ruthven, Greg

    1993-01-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  1. The Development of Stacked Core Technology for the Fabrication of Deep Lightweight UV-quality Space Mirrors

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kirk, Charles S.; Maffett, Steven P.; Abplanalp, Calvin E.; Stahl, H. Philip; Effinger, Michael R.

    2013-01-01

    The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. The parameters and test results of this concept mirror will be shown. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will also be outlined.

  2. Development of Stacked Core Technology for the Fabrication of Deep Lightweight UV Quality Space Mirrors

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Kirk, Charlie; Maffett, Steve; Abplanalp, Cal; Stahl, H. Philip

    2013-01-01

    Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and ITT Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was completed at ITT Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. The parameters and test results of this concept mirror will be shown. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will also be outlined.

  3. Interferometric apparatus for ultra-high precision displacement measurement

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2004-01-01

    A high-precision heterodyne interferometer measures relative displacement by creating a thermally-insensitive system generally not subject to polarization leakage. By using first and second light beams separated by a small frequency difference (.DELTA.f), beams of light at the first frequency (f.sub.0) are reflected by co-axial mirrors, the first mirror of which has a central aperture through which the light is transmitted to and reflected by the second mirror. Prior to detection, the light beams from the two mirrors are combined with light of the second and slightly different frequency. The combined light beams are separated according to the light from the mirrors. The change in phase (.DELTA..phi.) with respect to the two signals is proportional to the change in distance of Fiducial B by a factor of wavelength (.lambda.) divided by 4.pi. (.DELTA.L=.lambda..DELTA..phi.1/(4.pi.)). In a second embodiment, a polarizing beam splitting system can be used.

  4. Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Chambers, John; Rohrback. Scott; Bly, Vincent; Morell, Armando; Budinoff, Jason

    2013-01-01

    This innovation is the environmental qualification of a single-crystal silicon mirror for spaceflight use. The single-crystal silicon mirror technology is a previous innovation, but until now, a mirror of this type has not been qualified for spaceflight use. The qualification steps included mounting, gravity change measurements, vibration testing, vibration- induced change measurements, thermal cycling, and testing at the cold operational temperature of 225 K. Typical mirrors used for cold applications for spaceflight instruments include aluminum, beryllium, glasses, and glass-like ceramics. These materials show less than ideal behavior after cooldown. Single-crystal silicon has been demonstrated to have the smallest change due to temperature change, but has not been spaceflight-qualified for use. The advantage of using a silicon substrate is with temperature stability, since it is formed from a stress-free single crystal. This has been shown in previous testing. Mounting and environmental qualification have not been shown until this testing.

  5. Development of an adaptive optics test-bed for relay mirror applications

    NASA Astrophysics Data System (ADS)

    Mansell, Justin D.; Jacobs, Arturo A.; Maynard, Morris

    2005-08-01

    The relay mirror concept involves deploying a passive optical station at a high altitude for relaying a beam from a laser weapon to a target. Relay mirrors have been proposed as a method of increasing the range of laser weapons that is less costly than deploying a larger number of laser weapons. Relay mirrors will only be effective if the beam spreading and beam quality degradation induced by atmospheric aberrations and thermal blooming can be mitigated. In this paper we present the first phase of a multi-year effort to develop a theoretical and experimental capability at Boeing-SVS to study these problems. A team from MZA and Boeing-SVS has developed a laboratory test-bed consisting of a distributed atmospheric path simulated by three liquid crystal phase screens, a Shack-Hartmann wavefront sensor, and a MEMS membrane deformable mirror. We present results of AO component calibration and evaluation, the system construction, and the system performance.

  6. Steady state whistler turbulence and stability of thermal barriers in tandem mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Sudan, R.N.

    The effect of the whistler turbulence on anisotropic electrons in a thermal barrier is examined. The electron distribution function is derived self-consistently by solving the steady state quasilinear diffusion equation. Saturated amplitudes are computed using the resonance broadening theory or convective stabilization. Estimated power levels necessary for sustaining the steady state of a strongly anisotropic electron population are found to exceed by orders of magnitude the estimates based on Fokker--Planck calculations for the range of parameters of tandem mirror (TMX-U and MFTF-B) experiments (Nucl. Fusion 25, 1205 (1985)). Upper limits on the allowed degree of anisotropy for existing power densitiesmore » are calculated.« less

  7. The Development and Optimisation of High Bandwidth Bimorph Deformable Mirrors

    NASA Astrophysics Data System (ADS)

    Rowe, D.; Laycock, L.; Griffith, M.; Archer, N.

    Our first mirror designs were based on a standard bimorph construction and exhibited a resonant frequency of 1 kHz with a maximum stroke of ±5 μm. These devices were limited by the requirement to have a "dead space" between the inner active area and the mirror boundary. This was necessary to ensure that the requirements for both the stroke and the static boundary conditions at the edge of the mirror could be met simultaneously, but there was a significant penalty to pay in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. In a series of design iteration steps, we have created mounting arrangements that seek not only to reduce dead space, but also to improve ruggedness and temperature stability through the use of a repeatable and reliable assembly procedure. As a result, the most recently modeled mirrors display a resonance in excess of 5 kHz, combined with a maximum stroke in excess of ±10 μm. This has been achieved by virtually eliminating the "dead space" around the mirror. By careful thermal matching of the mirror and piezoelectric substrates, operation over a wide temperature range is possible. This paper will discuss the outcomes from the design study and present our initial experimental results for the most recently assembled mirror.

  8. Foundry Microfabrication of Deformable Mirrors for Adaptive Optics

    DTIC Science & Technology

    1998-04-28

    radians) of deflection. The 25% amplitude modulation of the piston array is due to constructive and destructive interference of light reflecting off the...34 Lithographie Galvanoformung und Abformung" is frequently applied to these plating processes. In the LIGA process synchrotron x-ray radiation is used to... interference because the support structures were metallized. In addition, only 61 mirror elements were controlled. Two approaches to improved

  9. Reward in the mirror neuron system, social context, and the implications on psychopathology.

    PubMed

    Brown, Elliot C; Brüne, Martin

    2014-04-01

    Positive and negative reinforcers guide our behaviors as we interact with others in our social environment. Here, we present evidence that highlights a central role for reward in the general functioning of the mirror neuron system (MNS). We also discuss the relevance of reward-related modulation on other previous findings revealing certain properties of the MNS, and on social context and psychopathology.

  10. Mirror-image pain after nerve reconstruction in rats is related to enhanced density of epidermal peptidergic nerve fibers.

    PubMed

    Kambiz, S; Brakkee, E M; Duraku, L S; Hovius, S E R; Ruigrok, T J H; Walbeehm, E T

    2015-05-01

    Mirror-image pain is a phenomenon in which unprovoked pain is detected on the uninjured contralateral side after unilateral nerve injury. Although it has been implicated that enhanced production of nerve growth factor (NGF) in the contralateral dorsal root ganglion is important in the development of mirror-image pain, it is not known if this is related to enhanced expression of nociceptive fibers in the contralateral skin. Mechanical and thermal sensitivity in the contralateral hind paw was measured at four different time points (5, 10, 20 and 30weeks) after transection and immediate end-to-end reconstruction of the sciatic nerve in rats. These findings were compared to the density of epidermal (peptidergic and non-peptidergic) nerve fibers on the contralateral hind paw. Mechanical hypersensitivity of the contralateral hind paw was observed at 10weeks PO, a time point in which both subgroups of epidermal nerve fibers reached control values. Thermal hypersensitivity was observed with simultaneous increase in the density of epidermal peptidergic nerve fibers of the contralateral hind paw at 20weeks PO. Both thermal sensitivity and the density of epidermal nerve fibers returned to control values 30weeks PO. We conclude that changes in skin innervation and sensitivity are present on the uninjured corresponding side in a transient pain model. Therefore, the contralateral side cannot serve as control. Moreover, the current study confirms the involvement of the peripheral nervous system in the development of mirror-image pain. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The mirror mechanism: recent findings and perspectives

    PubMed Central

    Rizzolatti, Giacomo; Fogassi, Leonardo

    2014-01-01

    Mirror neurons are a specific type of visuomotor neuron that discharge both when a monkey executes a motor act and when it observes a similar motor act performed by another individual. In this article, we review first the basic properties of these neurons. We then describe visual features recently investigated which indicate that, besides encoding the goal of motor acts, mirror neurons are modulated by location in space of the observed motor acts, by the perspective from which the others’ motor acts are seen, and by the value associated with the object on which others’ motor acts are performed. In the last part of this article, we discuss the role of the mirror mechanism in planning actions and in understanding the intention underlying the others’ motor acts. We also review some human studies suggesting that motor intention in humans may rely, as in the monkey, on the mirror mechanism. PMID:24778385

  12. A transcranial magnetic stimulation study of the effect of visual orientation on the putative human mirror neuron system.

    PubMed

    Burgess, Jed D; Arnold, Sara L; Fitzgibbon, Bernadette M; Fitzgerald, Paul B; Enticott, Peter G

    2013-01-01

    Mirror neurons are a class of motor neuron that are active during both the performance and observation of behavior, and have been implicated in interpersonal understanding. There is evidence to suggest that the mirror response is modulated by the perspective from which an action is presented (e.g., egocentric or allocentric). Most human research, however, has only examined this when presenting intransitive actions. Twenty-three healthy adult participants completed a transcranial magnetic stimulation experiment that assessed corticospinal excitability whilst viewing transitive hand gestures from both egocentric (i.e., self) and allocentric (i.e., other) viewpoints. Although action observation was associated with increases in corticospinal excitability (reflecting putative human mirror neuron activity), there was no effect of visual perspective. These findings are discussed in the context of contemporary theories of mirror neuron ontogeny, including models concerning associative learning and evolutionary adaptation.

  13. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  14. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  15. Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei

    2017-02-01

    Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.

  16. Software framework for the upcoming MMT Observatory primary mirror re-aluminization

    NASA Astrophysics Data System (ADS)

    Gibson, J. Duane; Clark, Dusty; Porter, Dallan

    2014-07-01

    Details of the software framework for the upcoming in-situ re-aluminization of the 6.5m MMT Observatory (MMTO) primary mirror are presented. This framework includes: 1) a centralized key-value store and data structure server for data exchange between software modules, 2) a newly developed hardware-software interface for faster data sampling and better hardware control, 3) automated control algorithms that are based upon empirical testing, modeling, and simulation of the aluminization process, 4) re-engineered graphical user interfaces (GUI's) that use state-of-the-art web technologies, and 5) redundant relational databases for data logging. Redesign of the software framework has several objectives: 1) automated process control to provide more consistent and uniform mirror coatings, 2) optional manual control of the aluminization process, 3) modular design to allow flexibility in process control and software implementation, 4) faster data sampling and logging rates to better characterize the approximately 100-second aluminization event, and 5) synchronized "real-time" web application GUI's to provide all users with exactly the same data. The framework has been implemented as four modules interconnected by a data store/server. The four modules are integrated into two Linux system services that start automatically at boot-time and remain running at all times. Performance of the software framework is assessed through extensive testing within 2.0 meter and smaller coating chambers at the Sunnyside Test Facility. The redesigned software framework helps ensure that a better performing and longer lasting coating will be achieved during the re-aluminization of the MMTO primary mirror.

  17. CESIC: a new technology for lightweight and cost effective space instrument structures and mirrors

    NASA Astrophysics Data System (ADS)

    Devilliers, Christophe; Kroedel, Matthias R.

    2005-08-01

    For some years Alcatel Space has been interested in the development of a new material to produce lightweight, stiff, stable and cost effective structures and mirrors for space instrument. Cesic from ECM has been selected for its intrinsic properties (high specific modulus, high conductivity, quite low thermal expansion coefficient and high fracture toughness for a ceramic material), added to ample manufacturing capabilities. Under ESA responsibility, a flight representative optical bench of Cesic has been designed, manufactured and tested. The optical bench has been submitted with success to intensive vibration tests up to 80 g on shaker without problem and was tested down to 30 K showing very high stability. Cesic is also envisaged for large and lightweight space telescope mirrors. Coatings on the Cesic substrate have been developed and qualified for the most stringent optical needs. To prove the lightweight capability, a large Cesic mirror D=950 mm with an area mass of less than 25 kg/m2 has been designed, sized again launch loads and WFE performance, and then manufactured. Cesic is also envisaged for large future focal plane holding a large number of detectors assuring high stability thanks to its high thermal conductivity. A full size Cesic focal plane has been already successfully built and tested. Based on these successful results, Alcatel Space is now in position to propose for space projects this technology mastered in common with ECM both for mirrors and structures with new innovative concepts thanks to the manufacturing capabilities of this technology.

  18. LDR segmented mirror technology assessment study

    NASA Technical Reports Server (NTRS)

    Krim, M.; Russo, J.

    1983-01-01

    In the mid-1990s, NASA plans to orbit a giant telescope, whose aperture may be as great as 30 meters, for infrared and sub-millimeter astronomy. Its primary mirror will be deployed or assembled in orbit from a mosaic of possibly hundreds of mirror segments. Each segment must be shaped to precise curvature tolerances so that diffraction-limited performance will be achieved at 30 micron (nominal operating wavelength). All panels must lie within 1 micron on a theoretical surface described by the optical precipitation of the telescope's primary mirror. To attain diffraction-limited performance, the issues of alignment and/or position sensing, position control of micron tolerances, and structural, thermal, and mechanical considerations for stowing, deploying, and erecting the reflector must be resolved. Radius of curvature precision influences panel size, shape, material, and type of construction. Two superior material choices emerged: fused quartz (sufficiently homogeneous with respect to thermal expansivity to permit a thin shell substrate to be drape molded between graphite dies to a precise enough off-axis asphere for optical finishing on the as-received a segment) and a Pyrex or Duran (less expensive than quartz and formable at lower temperatures). The optimal reflector panel size is between 1-1/2 and 2 meters. Making one, two-meter mirror every two weeks requires new approaches to manufacturing off-axis parabolic or aspheric segments (drape molding on precision dies and subsequent finishing on a nonrotationally symmetric dependent machine). Proof-of-concept developmental programs were identified to prove the feasibility of the materials and manufacturing ideas.

  19. Large Binocular Telescope project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    2000-08-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. The telescope will have two 8.4 meter diameter primary mirrors phased on a common mounting with a 22.8 meter baseline. The second of two borosilicate honeycomb primary mirrors for LBT is being case at the Steward Observatory Mirror Lab this year. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of- view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage the two folded Gregorian focal planes to three central locations. The telescope elevation structure accommodates swing arm spiders which allow rapid interchange of the various secondary and tertiary mirrors as well as prime focus cameras. Maximum stiffness and minimal thermal disturbance were important drivers for the design of the telescope in order to provide the best possible images for interferometric observations. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The telescope structure is being fabricated in Italy by Ansaldo Energia S.p.A. in Milan. After pre-erection in the factory, the telescope will be shipped to Arizona in early 2001. The enclosure is being built on Mt. Graham under the auspices of Hart Construction Management Services of Safford, Arizona. The enclosure will be completed by late 2001 and ready for telescope installation.

  20. Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating

    NASA Astrophysics Data System (ADS)

    Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.

    2018-06-01

    In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.

  1. Modulations of mirroring activity by desire for social connection and relevance of movement.

    PubMed

    Aragón, Oriana R; Sharer, Elizabeth A; Bargh, John A; Pineda, Jaime A

    2014-11-01

    Mirroring neurons fire both when an individual moves and observes another move in kind. This simulation of others' movements is thought to effortlessly and ubiquitously support empathetic connection and social understanding. However, at times this could be maladaptive. How could a boxer mirror a losing opponent's expressions of fatigue, feeling his weariness, precisely when strength is required? Clearly, the boxer must emotionally disconnect from his opponent and those expressions of fatigue must become irrelevant and not mirrored. But, movements that inform of his opponent's intentions to deliver an incoming blow are quite relevant and still should require mirroring. We tested these dimensions of emotional connectedness and relevance of movement in an electroencephalography experiment, where participants' desires to socially connect with a confederate were manipulated. Before manipulation, all participants mirrored the confederate's purely kinematic (a hand opening and closing) and goal-directed (a hand opening and closing around a token that the participant desired) hand movements. After manipulation, unfairly treated subjects ceased to mirror the purely kinematic movements but continued to mirror goal-relevant movements. Those treated fairly continued to mirror all movements. The results suggest that social mirroring can be adaptive in order to meet the demands of a varied social environment. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    PubMed

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-08-15

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.

  3. Non-reciprocal optical mirrors based on spatio-temporal acousto-optic modulation

    NASA Astrophysics Data System (ADS)

    Fleury, R.; Sounas, D. L.; Alù, A.

    2018-03-01

    Here, we investigate a scheme to realize free-space isolators and highly non-reciprocal mirrors with weak modulation imparted by an acoustic wave. We propose a strategy to dramatically break time-reversal symmetry by exploiting resonant interactions between a travelling acoustic wave and highly resonant Fabry-Pérot modes, inducing total reflection of an optical beam at a given angle, and no reflection at the negative angle. Different from conventional acousto-optic isolators, which are based on non-resonant frequency conversion and filtering, our proposal operates at the frequency of the optical signal by tailoring the resonant properties of the structure as well as the acoustic wave frequency and intensity, enabling 50 dB isolation with modest modulation requirements. Operation in the reflection mode allows for close-to-zero insertion loss, enabling disruptive opportunities in our ability to control and manipulate photons.

  4. Autistic traits modulate frontostriatal connectivity during processing of rewarding faces

    PubMed Central

    Neufeld, Janina; Johnstone, Tom; Chakrabarti, Bhismadev

    2014-01-01

    Deficits in facial mimicry have been widely reported in autism. Some studies have suggested that these deficits are restricted to spontaneous mimicry and do not extend to volitional mimicry. We bridge these apparently inconsistent observations by testing the impact of reward value on neural indices of mimicry and how autistic traits modulate this impact. Neutral faces were conditioned with high and low reward. Subsequently, functional connectivity between the ventral striatum (VS) and inferior frontal gyrus (IFG) was measured while neurotypical adults (n = 30) watched happy expressions made by these conditioned faces. We found greater VS–IFG connectivity in response to high reward vs low reward happy faces. This difference was negatively proportional to autistic traits, suggesting that reduced spontaneous mimicry of social stimuli seen in autism, may be related to a failure in the modulation of the mirror system by the reward system rather than a circumscribed deficit in the mirror system. PMID:24493838

  5. Spatial light modulator array with heat minimization and image enhancement features

    DOEpatents

    Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY

    2007-01-30

    An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.

  6. Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD)

    NASA Astrophysics Data System (ADS)

    De Beule, Pieter A. A.; de Vries, Anthony H. B.; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    2011-03-01

    We report progress on the construction of an optical sectioning programmable array microscope (PAM) implemented with a digital micro-mirror device (DMD) spatial light modulator (SLM) utilized for both fluorescence illumination and detection. The introduction of binary intensity modulation at the focal plane of a microscope objective in a computer controlled pixilated mode allows the recovery of an optically sectioned image. Illumination patterns can be changed very quickly, in contrast to static Nipkow disk or aperture correlation implementations, thereby creating an optical system that can be optimized to the optical specimen in a convenient manner, e.g. for patterned photobleaching, photobleaching reduction, or spatial superresolution. We present a third generation (Gen-3) dual path PAM module incorporating the 25 kHz binary frame rate TI 1080p DMD and a newly developed optical system that offers diffraction limited imaging with compensation of tilt angle distortion.

  7. Thermal modulation for gas chromatography

    NASA Technical Reports Server (NTRS)

    Waite, J. Hunter (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Block, Bruce P. (Inventor); Sacks, Richard D. (Inventor); Hasselbrink, Ernest F. (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a recirculating fluid cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary. The capillary can include more than one separate thermally modulated sections.

  8. Fast-steering solutions for cubesat-scale optical communications

    NASA Astrophysics Data System (ADS)

    Kingsbury, R. W.; Nguyen, T.; Riesing, K.; Cahoy, K.

    2017-11-01

    We describe the design of a compact free-space optical communications module for use on a nanosatellite and present results from a detailed trade study to select an optical fine steering mechanism compatible with our stringent size, weight and power (SWaP) constraints. This mechanism is an integral component of the compact free-space optical communications system that is under development at the MIT Space Systems Laboratory [1]. The overall goal of this project is to develop a laser communications (lasercom) payload that fits within the SWaP constraints of a typical ``3U'' CubeSat. The SWaP constraints for the entire lasercom payload are 5 cm × 10 cm × 10 cm, 600 g and 10W. Although other efforts are underway to qualify MEMS deformable mirrors for use in CubeSats [2], there has been very little work towards qualifying tip-tilt MEMS mirrors [3]. Sec. II provides additional information on how the fast steering mechanism is used in our lasercom system. Performance requirements and desirable traits of the mechanism are given. In Sec. III we describe the various types of compact tip-tilt mirrors that are commercially available as well as the justification for selecting a MEMS-based device for our application. Sec. IV presents an analysis of the device's transfer function characteristics and ways of predicting this behavior that are suitable for use in the control processor. This analysis is based upon manufacturer-provided test data which was collected at standard room conditions. In the final section, we describe on-going work to build a testbed that will be used to measure device performance in a thermal chamber.

  9. The afocal telescope optical design and tolerance analysis for the ESA ARIEL mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, Vania; Middleton, Kevin; Focardi, Mauro; Morgante, Gianluca; Grella, Samuele; Claudi, Riccardo; Pace, Emanuele; Ficai Veltroni, Iacopo; Micela, Giuseppina

    2017-11-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three present candidates for the next ESA medium-class science mission (M4) to be launched in 2026. During its 3.5 years of scientific operations from L2 orbit, this mission will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the Solar System. The aim is to enable a deep understanding of the physics and chemistry of these exoplanets. ARIEL is based on a 1-m class telescope ahead of a suite of instruments: two spectrometer channels covering the band 1.95 to 7.80 µm and four photometric channels (two wide and two narrow band) in the range 0.5 to 1.9 μm. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is based on an eccentric pupil two-mirror classic Cassegrain configuration coupled to a tertiary paraboloidal mirror. An all-aluminum structure has been considered for the telescope layout, and a detailed tolerance analysis has been conducted to assess the telescope feasibility. This analysis has been done including the different parts of the realization and life of the instrument, from integration on-ground to in-flight stability during the scientific acquisitions. The primary mirror (M1) temperature will be monitored and finely tuned via an active thermal control system based on thermistors and heaters. The heaters will be switched on and off to maintain the M1 temperature within ±1K thanks to a proportional-integral-derivative (PID) controller.

  10. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Fasong; Departments of Physics, College of Science, Beijing University of Chemical Technology, Beijing 100029; Tan, Yidong

    2015-04-15

    The noncooperative and ultrahigh sensitive length measurement approach is of great significance to the study of a high-precision thermal expansion coefficient (TEC) determination of materials at a wide temperature range. The novel approach is presented in this paper based on the Nd:YAG microchip laser feedback interferometry with 1064 nm wavelength, the beam frequency of which is shifted by a pair of acousto-optic modulators and then the heterodyne phase measurement technique is used. The sample is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams are perpendicular and coaxial on each surfacemore » of the sample, the configuration which can not only achieve the length measurement of sample but also eliminate the influence of the distortion of the sample supporter. The reference beams inject on the reference mirrors which are put as possible as near the holes, respectively, to eliminate the air disturbances and the influence of thermal lens effect out of the furnace chamber. For validation, the thermal expansion coefficients of aluminum and steel 45 samples are measured from room temperature to 748 K, which proved measurement repeatability of TECs is better than 0.6 × 10{sup −6}(K{sup −1}) at the range of 298 K–598 K and the high-sensitive non-contact measurement of the low reflectivity surface induced by the oxidization of the samples at the range of 598 K–748 K.« less

  11. Optical fabrication of lightweighted 3D printed mirrors

    NASA Astrophysics Data System (ADS)

    Herzog, Harrison; Segal, Jacob; Smith, Jeremy; Bates, Richard; Calis, Jacob; De La Torre, Alyssa; Kim, Dae Wook; Mici, Joni; Mireles, Jorge; Stubbs, David M.; Wicker, Ryan

    2015-09-01

    Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM) 3D printing technologies were utilized to create lightweight, optical grade mirrors out of AlSi10Mg aluminum and Ti6Al4V titanium alloys at the University of Arizona in Tucson. The mirror prototypes were polished to meet the λ/20 RMS and λ/4 P-V surface figure requirements. The intent of this project was to design topologically optimized mirrors that had a high specific stiffness and low surface displacement. Two models were designed using Altair Inspire software, and the mirrors had to endure the polishing process with the necessary stiffness to eliminate print-through. Mitigating porosity of the 3D printed mirror blanks was a challenge in the face of reconciling new printing technologies with traditional optical polishing methods. The prototypes underwent Hot Isostatic Press (HIP) and heat treatment to improve density, eliminate porosity, and relieve internal stresses. Metal 3D printing allows for nearly unlimited topological constraints on design and virtually eliminates the need for a machine shop when creating an optical quality mirror. This research can lead to an increase in mirror mounting support complexity in the manufacturing of lightweight mirrors and improve overall process efficiency. The project aspired to have many future applications of light weighted 3D printed mirrors, such as spaceflight. This paper covers the design/fab/polish/test of 3D printed mirrors, thermal/structural finite element analysis, and results.

  12. Scaling behavior of the thermal conductivity of width-modulated nanowires and nanofilms for heat transfer control at the nanoscale.

    PubMed

    Zianni, Xanthippi; Jean, Valentin; Termentzidis, Konstantinos; Lacroix, David

    2014-11-21

    We report on scaling behavior of the thermal conductivity of width-modulated nanowires and nanofilms that have been studied with the phonon Monte Carlo technique. It has been found that the reduction of the thermal conductivity scales with the nanostructure transmissivity, a property entirely determined by the modulation geometry, irrespectively of the material choice. Tuning of the thermal conductivity is possible by the nanostructure width-modulation without strict limitations for the modulation profile. In addition, a very significant constriction thermal resistance due to width-discontinuity has been identified, in analogy to the contact thermal resistance between two dissimilar materials. The constriction thermal resistance also scales with the modulated nanostructure transmissivity. Our conclusions are generic indicating that a wide range of materials can be used for the modulated nanostructures. Direct heat flow control can be provided by designing the nanostructure width-modulation.

  13. Development of a miniature multiple reference optical coherence tomography imaging device

    NASA Astrophysics Data System (ADS)

    McNamara, Paul M.; O'Riordan, Colm; Collins, Seán.; O'Brien, Peter; Wilson, Carol; Hogan, Josh; Leahy, Martin J.

    2016-03-01

    Multiple reference optical coherence tomography (MR-OCT) is a new technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short sweep of a miniature voice coil motor on which the scanning mirror is mounted. Applications of this technology include biometric security, ophthalmology, personal health monitoring and non-destructive testing. This work details early-stage development of the first iteration of a miniature MR-OCT device. This device utilizes a fiber-coupled input from an off-board superluminescent diode (SLD). Typical dimensions of the module are 40 × 57 mm, but future designs are expected to be more compact. Off-the-shelf miniature optical components, voice coil motors and photodetectors are used, with the complexity of design depending on specific applications. The photonic module can be configured as either polarized or non-polarized and can include balanced detection. The photodetectors are directly connected to a printed circuit board under the module containing a transimpedance amplifier with complimentary outputs. The results shown in this work are from the non-polarized device. Assembly of the photonic modules requires extensive planning. In choosing the optical components, Zemax simulations are performed to model the beam characteristics. The physical layout is modeled using Solidworks and each component is placed and aligned via a well-designed alignment procedure involving an active-alignment pick-and-place assembly system.

  14. High-performance reactionless scan mechanism

    NASA Technical Reports Server (NTRS)

    Williams, Ellen I.; Summers, Richard T.; Ostaszewski, Miroslaw A.

    1995-01-01

    A high-performance reactionless scan mirror mechanism was developed for space applications to provide thermal images of the Earth. The design incorporates a unique mechanical means of providing reactionless operation that also minimizes weight, mechanical resonance operation to minimize power, combined use of a single optical encoder to sense coarse and fine angular position, and a new kinematic mount of the mirror. A flex pivot hardware failure and current project status are discussed.

  15. Low CTE glass, SiC & Beryllium for lightweight mirror substrates

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Cayrel, Marc

    2005-10-01

    This paper is intended to analyze the relative merits of low CTE glass, SiC and Beryllium as candidates for lightweight mirror substrates in connection with real practical experience and example or three major projects using these three materials and running presently at SAGEM-REOSC. Beryllium and SiC have nice thermal and mechanical properties but machined glass ceramic can still well compete technically or economically in some cases.

  16. Observations of mirror waves and plasma depletion layer upstream of Saturn's magnetopause

    NASA Technical Reports Server (NTRS)

    Violante, L.; Cattaneo, M. B. Bavassano; Moreno, G.; Richardson, J. D.

    1995-01-01

    The two inbound traversals of the Saturn's magnetosheath by Voyagers 1 and 2 have been studied using plasma and magnetic field data. In a great portion of the subsolar magnetosheath, large-amplitude compressional waves are observed at low frequency (approximately 0.1 f(sub p)) in a high-beta plasma regime. The fluctuations of the magnetic field magnitude and ion density are anticorrelated, as are those of the magnetic and thermal pressures. The normals to the structures are almost orthogonal to the background field, and the Doppler ratio is on the average small. Even though the data do not allow the determination of the ion thermal anisotropy, the observations are consistent with values of T(sub perpendicular)/T(sub parallel) greater than 1, producing the onset of the mirror instability. All the above features indicate that the waves should be most probably identified with mirror modes. One of the two magnetopause crossings is of the high-shear type and the above described waves are seen until the magnetopause. The other crossing is of the low-shear type and, similarly to what has been observed at Earth, a plasma depletion occurs close to the magnetopause. In this layer, waves with smaller amplitude, presumably of the mirror mode, are present together with higher-frequency waves showing a transverse component.

  17. Solar Collector With Image-Forming Mirror Cavity to Irradiate Small Central Volume

    NASA Technical Reports Server (NTRS)

    Buchele, Don; Castle, Charles; Bonoetti, Joseph A.

    2001-01-01

    A unique solar thermal chamber has been designed and fabricated to produce the maximum concentration of solar energy and higher temperature possible. Its primary purpose was for solar plasma propulsion experiments and related material specimen testing above 3000 K. The design not only maximized solar concentration, but also, minimized infrared heat loss. This paper provides the underlying theory and operation of the chamber and initial optical correlation to the actual fabricated hardware. The chamber is placed at the focal point of an existing primary concentrator with a 2.74 m (9 ft) focal length. A quartz lens focuses a small sun image at the inlet hole of the mirrored cavity. The lens focuses two image planes at prescribed positions; the sun at the cavity's entrance hole and the primary concentrator at the junction plane of two surfaces that form the cavity chamber. The back half is an ellipsoid reflector that produces a 1.27 cm diameter final sun image. The image is "suspended in space," 7.1 cm away from the nearest cavity surface, to minimize thermal and contaminate damage to the mirror surfaces. A hemisphere mirror makes up the front chamber and has its center of curvature at the target image, where rays leaving the target are reflected back upon themselves, minimizing radiation losses.

  18. Angular Alignment Testing of Laser Mirror Mounts Under Temperature Cycling

    NASA Technical Reports Server (NTRS)

    Bullock, K. T.; DeYoung, R. J.; Sandford, S. P.

    1997-01-01

    A number of commercial and custom-built laser mirror mounts were tested for angular alignment sensitivity during temperature cycling from room temperature (20 C) to 40 C. A Nd:YAG laser beam was reflected off a mirror that was held by the mount under test and was directed to a position-sensitive detector. Horizontal and vertical movement of the reflected beam was recorded, and the angular movement, as a function of temperature (coefficient of thermal tilt (CTT)) was calculated from these data. In addition, the amount of hysteresis in the movement after cycling from room temperature to 40 C and back was determined. All commercial mounts showed greater angular movement than the simpler National Aeronautics and Space Administration Lidar Atmospheric Sensing Experiment (NASA LASE) custom mirror mounts.

  19. Using E-Learning to Improve Prescribing Practice in Emerging Prescribers

    ERIC Educational Resources Information Center

    Baskett, Karen

    2011-01-01

    This paper reports on "The National Prescribing Curriculum" (NPC), a series of online, case-based modules designed to improve prescribing performance and confidence in emerging Australian prescribers. The modules mirror the decision-making process outlined in the "WHO Guide to Good Prescribing" (de Vries "et al.",…

  20. Manufacturing Large Membrane Mirrors at Low Cost

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Relatively inexpensive processes have been developed for manufacturing lightweight, wide-aperture mirrors that consist mainly of reflectively coated, edge-supported polyimide membranes. The polyimide and other materials in these mirrors can withstand the environment of outer space, and the mirrors have other characteristics that make them attractive for use on Earth as well as in outer space: With respect to the smoothness of their surfaces and the accuracy with which they retain their shapes, these mirrors approach the optical quality of heavier, more expensive conventional mirrors. Unlike conventional mirrors, these mirrors can be stowed compactly and later deployed to their full sizes. In typical cases, deployment would be effected by inflation. Potential terrestrial and outer-space applications for these mirrors include large astronomical telescopes, solar concentrators for generating electric power and thermal power, and microwave reflectors for communication, radar, and short-distance transmission of electric power. The relatively low cost of manufacturing these mirrors stems, in part, from the use of inexpensive tooling. Unlike in the manufacture of conventional mirrors, there is no need for mandrels or molds that have highly precise surface figures and highly polished surfaces. The surface smoothness is an inherent property of a polyimide film. The shaped area of the film is never placed in contact with a mold or mandrel surface: Instead the shape of a mirror is determined by a combination of (1) the shape of a fixture that holds the film around its edge and (2) control of manufacturing- process parameters. In a demonstration of this manufacturing concept, spherical mirrors having aperture diameters of 0.5 and 1.0 m were fabricated from polyimide films having thicknesses ranging from <20 m to 150 m. These mirrors have been found to maintain their preformed shapes following deployment.

  1. Modes of interaction between nanostructured metal and a conducting mirror as a function of separation and incident polarization

    NASA Astrophysics Data System (ADS)

    Bonnie, F.; Arnold, M. D.; Smith, G. B.; Gentle, A. R.

    2013-09-01

    The optical resonances that occur in nanostructured metal layers are modulated in thin film stacks if the nanostructured layer is separated from a reflecting conducting layer by various thicknesses of thin dielectric. We have measured and modeled the optical response of interacting silver layers, with alumina spacer thickness ranging from a few nm to 50 nm, for s- and p-polarized incident light, and a range of incident angles. Standard thin film models, including standard effective medium models for the nanostructured layer, will break down for spacer thickness below a critical threshold. For example, with polarisation in the film plane and some nano-islands, it may occur at around 10 nm depending on spacer refractive index. Of particular interest here are novel effects observed with the onset of percolation in the nanolayer. Hot spot effects can be modified by nearby mirrors. Other modes to consider include (a) a two-particle mode involving a particle and its mirror image (b) A Fano resonance from hybridisation of localized and de-localised plasmon modes (c) a Babinet's core-(partial) shell particle with metal core-dielectric shell in metal (d) spacing dependent phase modulation (e) the impact of field gradients induced by the mirror at the nano-layer.

  2. Degradation of Silicon Carbide Reflective Surfaces in the LEO Environment

    NASA Astrophysics Data System (ADS)

    Mileti, Sandro; Coluzzi, Plinio; Marchetti, Mario

    2009-01-01

    Space mirrors in Low Earth Orbit (LEO) encounter a degradation problem caused by the impact of atomic oxygen (ATOX) in the space environment. This paper presents an experiment of the atomic oxygen impact degradation and UV synergic effects on ground simulation. The experiment was carried out in a dedicated ATOX simulation vacuum chamber. As target materials, a polished CVD Beta-silicon carbide (SiC) coating was investigated. The selection of silicon carbide is due to its high potential candidate as a mirror layer substrate material for its good reflectance at UV wavelengths and excellent thermal diffusivity. It has highly desirable mechanical and thermal properties and can achieve an excellent surface finish. The deposition of the coatings were on carbon-based material substrate; i.e., silicon impregnated carbon fiber composite (C/SiC). Mechanical and thermal properties of the coatings such as hardness and Coefficient of Thermal Expansion (CTE) were achieved. Several atomic oxygen impact angles were studied tilting the target samples respect to the flux direction. The various impact angles permitted to analyze the different erosion rates and typologies which the mirrors would encounter in LEO environment. The degradation was analyzed in various aspects. Macroscopic mass loss per unit area, surface roughness and morphology change were basically analyzed. The exposed surfaces of the materials were observed through a Scanning Electron Microscope (SEM). Secondly, optical diagnostic of the surfaces were performed in order to investigate their variation in optical properties as the evaluation of reflectance degradation. The presence of micro-cracks caused by shrinkage, grinding, polishing or thermal cycling and the porosity in the coatings, could have led to the undercutting phenomenon. Observation of uprising of undercutting was also conducted. Remarks are given regarding capabilities in short-term mission exposures to the LEO environment of this coating.

  3. Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis.

    PubMed

    Anctil, G; McCarthy, N; Piché, M

    2000-12-20

    We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems (C = 0) or self-imaging systems (B = 0) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.

  4. Sensitivity of a Three-Mirror Cavity to Thermal and Nonlinear Lensing: Gaussian-Beam Analysis

    NASA Astrophysics Data System (ADS)

    Anctil, Geneviève; McCarthy, Nathalie; Piché, Michel

    2000-12-01

    We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems ( C 0 ) or self-imaging systems ( B 0 ) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.

  5. 1940 nm all-fiber Q-switched fiber laser

    NASA Astrophysics Data System (ADS)

    Ahmadi, P.; Estrada, A.; Katta, N.; Lim, E.; McElroy, A.; Milner, T. E.; Mokan, V.; Underwood, M.

    2017-02-01

    We present development of a nanosecond Q-switched Tm3+-doped fiber laser with 16 W average power and 4.4 kW peak power operating at 1940 nm. The laser has a master oscillator power amplifier design, and uses large mode area Tm3+-doped fibers as the gain medium. Special techniques are used to splice Tm3+-doped fibers to minimize splice loss. The laser design is optimized to reduce non-linear effects, including modulation instability. Pulse width broadening due to high gain is observed and studied in detail. Medical surgery is a field of application where this laser may be able to improve clinical practice. The laser together with scanning galvanometer mirrors is used to cut precisely around small footprint vessels in tissue phantoms without leaving any visible residual thermal damage. These experiments provide proof-of-principle that this laser has promising potential in the laser surgery application space.

  6. Parametric instability in the high power era of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Hardwick, Terra; Blair, Carl; Kennedy, Ross; Evans, Matthew; Fritschel, Peter; LIGO Virgo Scientific Collaboration

    2017-01-01

    After the first direct detections of gravitational waves, Advanced LIGO aims to increase its detection rate during the upcoming science runs through a series of detector improvements, including increased optical power. Higher circulating power increases the likelihood for three-mode parametric instabilities (PIs), in which mechanical modes of the mirrors scatter light into higher-order optical modes in the cavity and the resulting optical modes reinforce the mechanical modes via radiation pressure. Currently, LIGO uses two PI mitigation methods: thermal tuning to change the cavity g-factor and effectively decrease the frequency overlap between mechanical and optical modes, and active damping of mechanical modes with electrostatic actuation. While the combined methods provide stability at the current operating power, there is evidence that these will be insufficient for the next planned power increase; future suppression methods including acoustic mode dampers and dynamic g-factor modulation are discussed.

  7. The TolTEC Camera for the LMT Telescope

    NASA Astrophysics Data System (ADS)

    Bryan, Sean

    2018-01-01

    TolTEC is a new camera being built for the 50-meter Large Millimeter-wave Telescope (LMT) on Sierra Negra in Puebla, Mexico. The instrument will discover and characterize distant galaxies by detecting the thermal emission of dust heated by starlight. The polarimetric capabilities of the camera will measure magnetic fields in star-forming regions in the Milky Way. The optical design of the camera uses mirrors, lenses, and dichroics to simultaneously couple a 4 arcminute diameter field of view onto three single-band focal planes at 150, 220, and 280 GHz. The 7000 polarization-selective detectors are single-band horn-coupled LEKID detectors fabricated at NIST. A rotating half wave plate operates at ambient temperature to modulate the polarized signal. In addition to the galactic and extragalactic surveys already planned, TolTEC installed at the LMT will provide open observing time to the community.

  8. Cosmology with liquid mirror telescopes

    NASA Technical Reports Server (NTRS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  9. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Alexandrova, A. S.; Buzhinsky, O. I.

    2015-12-15

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.

  10. Measurement of total hemispherical emissivity of contaminated mirror surfaces

    NASA Technical Reports Server (NTRS)

    Facey, T. A.; Nonnenmacher, A. L.

    1989-01-01

    The effects of dust contamination on the total hemispherical emissivity (THE) of a 1.5-inch-diameter Al/MgF2-coated telescope mirror are investigated experimentally. The THE is determined by means of cooling-rate measurements in the temperature range 10-14.5 C in a vacuum of 100 ntorr or better. Photographs and drawings of the experimental setup are provided, and results for 11 dust levels are presented in tables and graphs. It is shown that dust has a significant effect on THE, but the experimental losses are only about half those predicted for perfectly black dust in perfect thermal contact with the mirror surface.

  11. Development of CFRP mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo

    2013-09-01

    CFRP (Caron fiber reinforced plastics) have superior properties of high specific elasticity and low thermal expansion for satellite telescope structures. However, difficulties to achieve required surface accuracy and to ensure stability in orbit have discouraged CFRP application as main mirrors. We have developed ultra-light weight and high precision CFRP mirrors of sandwich structures composed of CFRP skins and CFRP cores using a replica technique. Shape accuracy of the demonstrated mirrors of 150 mm in diameter was 0.8 μm RMS (Root Mean Square) and surface roughness was 5 nm RMS as fabricated. Further optimization of fabrication process conditions to improve surface accuracy was studied using flat sandwich panels. Then surface accuracy of the flat CFRP sandwich panels of 150 mm square was improved to flatness of 0.2 μm RMS with surface roughness of 6 nm RMS. The surface accuracy vs. size of trial models indicated high possibility of fabrication of over 1m size mirrors with surface accuracy of 1μm. Feasibility of CFRP mirrors for low temperature applications was examined for JASMINE project as an example. Stability of surface accuracy of CFRP mirrors against temperature and moisture was discussed.

  12. Cleaning of first mirrors in ITER by means of radio frequency discharges.

    PubMed

    Leipold, F; Reichle, R; Vorpahl, C; Mukhin, E E; Dmitriev, A M; Razdobarin, A G; Samsonov, D S; Marot, L; Moser, L; Steiner, R; Meyer, E

    2016-11-01

    First mirrors of optical diagnostics in ITER are subject to charge exchange fluxes of Be, W, and potentially other elements. This may degrade the optical performance significantly via erosion or deposition. In order to restore reflectivity, cleaning by applying radio frequency (RF) power to the mirror itself and thus creating a discharge in front of the mirror will be used. The plasma generated in front of the mirror surface sputters off deposition, restoring its reflectivity. Although the functionality of such a mirror cleaning technique is proven in laboratory experiments, the technical implementation in ITER revealed obstacles which needs to be overcome: Since the discharge as an RF load in general is not very well matched to the power generator and transmission line, power reflections will occur leading to a thermal load of the cable. Its implementation for ITER requires additional R&D. This includes the design of mirrors as RF electrodes, as well as feeders and matching networks inside the vacuum vessel. Mitigation solutions will be evaluated and discussed. Furthermore, technical obstacles (i.e., cooling water pipes for the mirrors) need to be solved. Since cooling water lines are usually on ground potential at the feed through of the vacuum vessel, a solution to decouple the ground potential from the mirror would be a major simplification. Such a solution will be presented.

  13. Enhancement of Photon Number Reflected by the Relativistic Flying Mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kando, M.; Pirozhkov, A. S.; Kawase, K.

    2009-12-04

    Laser light reflection by a relativistically moving electron density modulation (flying mirror) in a wake wave generated in a plasma by a high intensity laser pulse is investigated experimentally. A counterpropagating laser pulse is reflected and upshifted in frequency with a multiplication factor of 37-66, corresponding to the extreme ultraviolet wavelength. The demonstrated flying mirror reflectivity (from 3x10{sup -6} to 2x10{sup -5}, and from 1.3x10{sup -4} to 0.6x10{sup -3}, for the photon number and pulse energy, respectively) is close to the theoretical estimate for the parameters of the experiment.

  14. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    DOEpatents

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  15. The Development of Stacked Core for the Fabrication of Deep Lightweight UV-Quality Space Mirrors

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Egerman, Robert; Maffett, Steven P.; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.

    2014-01-01

    The 2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make 4m class or larger monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept 0.43m mirror was completed at Exelis optically tested at 250K at MSFC which demonstrated the ability for imaging out to 2.5 microns. The parameters and test results of this concept mirror are shown. The next phase of the program includes a 1.5m subscale mirror that will be optically and dynamically tested. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will be outlined.

  16. Optomechanical design software for segmented mirrors

    NASA Astrophysics Data System (ADS)

    Marrero, Juan

    2016-08-01

    The software package presented in this paper, still under development, was born to help analyzing the influence of the many parameters involved in the design of a large segmented mirror telescope. In summary, it is a set of tools which were added to a common framework as they were needed. Great emphasis has been made on the graphical presentation, as scientific visualization nowadays cannot be conceived without the use of a helpful 3d environment, showing the analyzed system as close to reality as possible. Use of third party software packages is limited to ANSYS, which should be available in the system only if the FEM results are needed. Among the various functionalities of the software, the next ones are worth mentioning here: automatic 3d model construction of a segmented mirror from a set of parameters, geometric ray tracing, automatic 3d model construction of a telescope structure around the defined mirrors from a set of parameters, segmented mirror human access assessment, analysis of integration tolerances, assessment of segments collision, structural deformation under gravity and thermal variation, mirror support system analysis including warping harness mechanisms, etc.

  17. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  18. Electron temperature differences and double layers

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.; Lonngren, K. E.

    1983-01-01

    Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.

  19. Versatile Chromium-Doped Zinc Selenide Infrared Laser Sources

    DTIC Science & Technology

    2010-05-01

    ability of the fixed- angle curved mirrors in the Z- cavity to compensate for the increasing astigmatism from the Brewster - angle thermal lens in the...duty cycle at varying PRFs. 20 Table 4: Thermal Lensing Power at 1 kHz PRF, 1 W peak power, Q-switched Laser PRF (kHz) Thermal lens power (m-1...with it some negative astigmatism effects which are compounded by thermal lensing in the crystal which is now at an angle . To counteract this

  20. Measurements of the frequency stability of ultralow thermal expansion glass ceramic optical cavity lasers

    NASA Astrophysics Data System (ADS)

    Oram, R. J.; Latimer, I. D.; Spoor, S. P.

    1997-05-01

    This paper reports on a technique for providing a frequency-stabilized helium - neon gas laser by using inherently stable ultralow thermal expansion optical cavities. Four longitudinal monoblock cavity lasers were constructed and tested. These had their laser mirrors optically contacted to the bulk material. A 1 mm diameter hole along the axis of the block served as the discharge channel with electrodes optically contacted to the sides of the block. One of these lasers had a glass capilliary for the discharge channel. A fifth laser had a gain tube with Brewster angle windows fixed in a Zerodur box with the mirrors contacted to the ends. The warm-up characteristics of the five different lasers have been obtained and a theoretical model using finite element analysis was developed to determine the thermal expansion during warm-up. Using this computer model the thermal expansion coefficient of the material Zerodur was obtained. The results suggest that monoblock lasers can produce a free-running laser frequency stability of better than 10 MHz and show a repeatable warm-up characteristic of 100 MHz frequency drift.

  1. Thermal Design and Analysis of the Optical Telescope Assembly for the Gondola for High Altitude Planetary Science

    NASA Technical Reports Server (NTRS)

    O'Connor, Brian; Brooks, Thomas

    2017-01-01

    The NASA Gondola for High Altitude Planetary Science (GHAPS) project is an effort to design, build, and fly a balloon-borne platform for planetary science missions. GHAPS observations will be in the 300 nm to 5 micron wavelength region covering UV, visible, and near-mid IR. The primary element of the project is the Optical Telescope Assembly (OTA). It is a one meter aperture narrow-field-of-view telescope that contains the primary and secondary mirrors, the support system/metering structure, a secondary mirror focusing system, baffles, and insulation. This paper presents the thermal design and analysis that has been done to support the design of the OTA. A major part of the thermal analysis was bounding the flight environment for the six potential Columbia Scientific Balloon Facility launch sites. These analyses were used to give input into the Structural Thermal Optical Performance (STOP) analysis of the telescope. Also the analysis was used to select heater sizes for the few OTA associated electronic components. Currently the telescope is scheduled to have its first flight in 2019.

  2. On-orbit figure sensing and figure correction control for 0.5 arc-second adjustable X-ray optics

    NASA Astrophysics Data System (ADS)

    Reid, Paul

    This investigation seeks to develop the technology to directly monitor on-orbit changes to imaging performance of adjustable X-ray optics so as to be able to efficiently correct adverse changes at a level consistent with 0.5 arc-second X-ray telescope imaging. Adjustable X-ray optics employ thin film piezoelectric material deposited on the back of a thin glass Wolter mirror segment to introduce localized stresses in the mirror. These stresses are used in a deterministic way to improve mirror figure from 10 arc-sec, half power diameter (HPD), to 0.5 arc-sec, HPD, without the need for a heavy reaction structure. This is a realizable technology for potential future X-ray telescope missions with 0.5 arc-second resolution and several square meters effective area, such as SMART-X. We are pursuing such mirror development under an existing APRA grant. Here we propose a new investigation to accomplish the monitoring and control of the mirrors by monitoring the health of the piezoelectric actuators of the adjustable optics to a level consistent with 0.5 arcsec imaging. Such measurements are beyond the capability of conventional, thin metal film strain gauges using DC measurements. Instead, we propose to develop the technology to deposit different types of strain gauges (metal film, semiconductor) directly on the piezoelectric cells; to investigate the use of additional thin layers of piezoelectric materials such as lead zirconate titanate or zinc oxide as strain and temperature gauges; and to use AC measurement of strain gauges for precise measurement of piezoelectric adjuster performance. The intent is to use this information to correct changes in mirror shape by adjusting the voltages on the piezoelectric adjustors. Adjustable X-ray optics are designed to meet the challenge of large collecting area and high angular resolution. The mirrors are called adjustable rather than active as mirror figure error is corrected (adjusted) once or infrequently, as opposed to being changed constantly at several cycles/sec (active). In our approach, the mirror figure is corrected based on ground measurements, accounting for figure errors due to mirror manufacturing, mounting induced deformations, modeled gravity release, and modeled on-orbit thermal effects. The piezoelectric strain monitoring we seek to develop in this program extends adjustable mirror technology development, as it enables efficient adjustment and correction of mirror figure on-orbit, as required. This unprecedented level of system robustness will make telescopes less expensive to build because requirements for the non-optical systems can be looser, and it will also make the system more resistant to degradation, promoting mission success. The largest drivers for changes from ground calibration to on-orbit performance are piezoelectric material aging and an unexpected thermal environment (i.e., larger gradients than modeled or other thermal control system problem). Developing the capability to accurately monitor the health of each piezoelectric cell and the local mirror surface temperature will enable the real time sensing of any of these potential issues, help determine the cause, and enable corrections via updating models of on-orbit conditions and re-optimizing the required piezoelectric cell voltages for mirror figure correction. Our 3 year research program includes the development of the strain monitoring technology, its deposition on the adjustable optics, modeling and performance simulation, accelerated lifetime testing, and optical and electrical metrology of sample adjustable optics that incorporate monitoring sensors. Development of the capability to remotely monitor piezo performance and temperature to necessary precision will vastly improve reliability of the SMART-X mission concept, or the sub-arc-second X-ray Surveyor mission described in the 2013 NASA Astrophysics Roadmap, Enduring Quests Daring Visions.

  3. Electroformed Nickel Mirrors for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Redmon, John W.; Engelhaupt, Darrel

    1998-01-01

    This paper summarizes the work to date on a novel mirror fabrication technique being developed at the Marshall Space Flight Center for potential use on the Next Generation Space Telescope (NGST). This technique involves forming an extremely lightweight mirror by electroplating nickel and nickel based alloys onto a highly polished precision mandrel. The resulting mirror shell can then be backed up with or attached to a lightweight structure to produce a mirror element that is on the order of 15 kg/sq m areal density. Since the mirrors are fabricated from a mandrel (or master), subsequent mirrors can be made with very high economy; this technique is particularly suited to segmented mirrors schemes whereby large apertures are achieved through the deployment of smaller segments. Control of the electroplating process is the key element for producing high quality optics; bath chemistry and real time control of the plating current density yields uniform grained electroforms with zero residual stress. To accomplish this, a special electronic sensor was developed whereby the residual stress can be monitored as the nickel is electrolytically deposited. This information is used in a feedback loop to modulate current density which, in turn, directly governs the residual stress. Details pertaining to this and other aspects of the fabrication of a half meter mirror will be published along with test results and metrology data.

  4. Design and simulation of the surface shape control system for membrane mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Gengsheng; Tang, Minxue

    2009-11-01

    The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.

  5. Fiber optics welder having movable aligning mirror

    DOEpatents

    Higgins, Robert W.; Robichaud, Roger E.

    1981-01-01

    A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  6. Activity-Dependent Neurorehabilitation Beyond Physical Trainings: "Mental Exercise" Through Mirror Neuron Activation.

    PubMed

    Yuan, Ti-Fei; Chen, Wei; Shan, Chunlei; Rocha, Nuno; Arias-Carrión, Oscar; Paes, Flávia; de Sá, Alberto Souza; Machado, Sergio

    2015-01-01

    The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system.

  7. Reflecting on the mirror neuron system in autism: a systematic review of current theories.

    PubMed

    Hamilton, Antonia F de C

    2013-01-01

    There is much interest in the claim that dysfunction of the mirror neuron system in individuals with autism spectrum condition causes difficulties in social interaction and communication. This paper systematically reviews all published studies using neuroscience methods (EEG/MEG/TMS/eyetracking/EMG/fMRI) to examine the integrity of the mirror system in autism. 25 suitable papers are reviewed. The review shows that current data are very mixed and that studies using weakly localised measures of the integrity of the mirror system are hard to interpret. The only well localised measure of mirror system function is fMRI. In fMRI studies, those using emotional stimuli have reported group differences, but studies using non-emotional hand action stimuli do not. Overall, there is little evidence for a global dysfunction of the mirror system in autism. Current data can be better understood under an alternative model in which social top-down response modulation is abnormal in autism. The implications of this model and future research directions are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Modeling the Effects of Mirror Misalignment in a Ring Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Hitchcock, Tawanda; Harton, Austin; Garcia, Edmundo

    2012-03-01

    The Very High Momentum Particle Identification Detector (VHMPID) has been proposed for the ALICE experiment at the Large Hadron Collider (LHC). This detector upgrade is considered necessary to study jet-matter interaction at high energies. The VHMPID identifies charged hadrons in the 5 GeV/c to 25 GeV/c momentum range. The Cherenkov photons emitted in the VHMPID radiator are collected by spherical mirrors and focused onto a photo-detector plane forming a ring image. The radius of this ring is related to the Cherenkov angle, this information coupled with the particle momentum allows the particle identification. A major issue in the RICH detector is that environmental conditions can cause movements in mirror position. In addition, chromatic dispersion causes the refractive index to shift, altering the Cherenkov angle. We are modeling a twelve mirror RICH detector taking into account the effects of mirror misalignment and chromatic dispersion using a commercial optical software package. This will include quantifying the effects of both rotational and translational mirror misalignment for the initial assembly of the module and later on particle identification.

  9. Multi-pass light amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry (Inventor); Grossman, William M. (Inventor)

    1997-01-01

    A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A confocal resonator or White Cell resonator is provided, including two or three curvilinearly shaped mirrors facing each other along a resonator axis and an optical gain medium positioned on the resonator axis between the mirrors (confocal resonator) or adjacent to one of the mirrors (White Cell). In a first embodiment, two mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. The optical gain medium may be solid-state, liquid or gaseous medium and may be pumped longitudinally or transversely. In a second embodiment, first and second mirrors face a third mirror in a White Cell configuration, and the optical gain medium is positioned at or adjacent to one of the mirrors. Defocusing means and optical gain medium cooling means are optionally provided with either embodiment, to controllably defocus the light beam, to cool the optical gain medium and to suppress thermal lensing in the gain medium.

  10. A review of passive thermal management of LED module

    NASA Astrophysics Data System (ADS)

    Huaiyu, Ye; Koh, Sau; van Zeijl, Henk; Gielen, A. W. J.; Guoqi, Zhang

    2011-01-01

    Recently, the high-brightness LEDs have begun to be designed for illumination application. The increased electrical currents used to drive LEDs lead to thermal issues. Thermal management for LED module is a key design parameter as high operation temperature directly affects their maximum light output, quality, reliability and life time. In this review, only passive thermal solutions used on LED module will be studied. Moreover, new thermal interface materials and passive thermal solutions applied on electronic equipments are discussed which have high potential to enhance the thermal performance of LED Module.

  11. EUV multilayer mirrors with enhanced stability

    NASA Astrophysics Data System (ADS)

    Benoit, Nicolas; Yulin, Sergiy; Feigl, Torsten; Kaiser, Norbert

    2006-08-01

    The application of multilayer optics in EUV lithography requires not only the highest possible normal-incidence reflectivity but also a long-term thermal and radiation stability at operating temperatures. This requirement is most important in the case of the collector mirror of the illumination system close to the EUV source where a short-time decrease in reflectivity is most likely. Mo/Si multilayer mirrors, designed for high normal reflectivity at the wavelength of 13.5 nm and deposited by dc magnetron sputtering, were directly exposed to EUV radiation without mitigation system. They presented a loss of reflectivity of more than 18% after only 8 hours of irradiation by a Xe-discharge source. Another problem of Mo/Si multilayers is the instability of reflectivity and peak wavelength under high heat load. It becomes especially critical at temperatures above 200°C, where interdiffusion between the molybdenum and the silicon layers is observed. The development of high-temperature multilayers was focused on two alternative Si-based systems: MoSi II/Si and interface engineered Mo/C/Si/C multilayer mirrors. The multilayer designs as well as the deposition parameters of all systems were optimized in terms of high peak reflectivity (>= 60 %) at a wavelength of 13.5 nm and high thermal stability. Small thermally induced changes of the MoSi II/Si multilayer properties were found but they were independent of the annealing time at all temperatures examined. A wavelength shift of -1.7% and a reflectivity drop of 1.0% have been found after annealing at 500°C for 100 hours. The total degradation of optical properties above 650°C can be explained by a recrystallization process of MoSi II layers.

  12. Dynamic optical modulation of an electron beam on a photocathode RF gun: Toward intensity-modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi

    2008-10-01

    In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.

  13. Autonomous Non-Linear Classification of LPI Radar Signal Modulations

    DTIC Science & Technology

    2007-09-01

    Wigner - Ville distribution ( WVD ), the Choi-Williams distribution (CWD) and a Quadrature...accomplished using the images from the Wigner - Ville distribution and the Choi-Williams distribution for polyphase modulations. For the WVD images, radon...this work. Four detection techniques including the Wigner - Ville distribution ( WVD ), the Choi-Williams distribution (CWD), Quadrature Mirror

  14. A Kinematic, Flexure-based Mechanism for Precise, Parallel Motion for the Hertz Variable-delay Polarization Modulator (VPM)

    NASA Technical Reports Server (NTRS)

    Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.

    2008-01-01

    We describe the design of the linear motion stage for a Variable-delay Polarization Modulator (VPM) and of a grid flattener that has been built and integrated into the Hertz ground-based, submillimeter polarimeter. VPMs allow the modulation of a polarized source by controlling the phase difference between two linear, orthogonal polarizations. The size of the gap between a mirror and a very flat polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. A novel, kinematic, flexure-based mechanism is described that passively maintains the parallelism of the mirror and the grid to 1.5 pm over a 150 mm diameter, with a 400 pm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. A simple device that ensures the planarity of the polarizing grid is also described. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.

  15. Flight Test of a Technology Transparent Light Concentration Panel on SMEX/WIRE

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; Lyons, John

    2000-01-01

    A flight experiment has demonstrated a modular solar concentrator that can be used as a direct substitute replacement for planar photovoltaic panels in spacecraft solar arrays. The Light Concentrating Panel (LCP) uses an orthogrid arrangement of composite mirror strips to form an array of rectangular mirror troughs that reflect light onto standard, high-efficiency solar cells at a concentration ratio of approximately 3:1. The panel area, mass, thickness, and pointing tolerance has been shown to be similar to a planar array using the same cells. Concentration reduces the panel's cell area by 2/3, which significantly reduces the cost of the panel. An opportunity for a flight experiment module arose on NASA's Small Explorer / Wide-Field Infrared Explorer (SMEX/WIRE) spacecraft, which uses modular solar panel modules integrated into a solar panel frame structure. The design and analysis that supported implementation of the LCP as a flight experiment module is described. Easy integration into the existing SMEX-LITE wing demonstrated the benefits of technology transparency. Flight data shows the stability of the LCP module after nearly one year in Low Earth Orbit.

  16. Investigation of Laser Based Thomson Scattering

    DTIC Science & Technology

    2015-06-04

    laser liquid interaction has the potential to provide sources of energetic ions and fission products such as neutrons . The development of strong...by the production of heavy water d-d fusion and the production of neutrons . Finally, in section VII the tight focusing of light by a 2π mirror is...laser system is estimated to be 10 -15 , using cross- polarization modulation and two plasma mirrors. These parameters allow prepulse expansion to be

  17. Performance of a Low-Cost, Low-Concentration Photovoltaic Module

    NASA Astrophysics Data System (ADS)

    Shell, Kara A.; Brown, Scott A.; Schuetz, Mark A.; Davis, Bob J.; French, Roger H.

    2011-12-01

    In order to significantly reduce the cost of solar power, Replex Plastics has developed a low-cost, low-concentration PV module incorporating acrylic mirror reflectors. The reflectors are compound parabolic concentrators designed for use with low-accuracy single axis trackers. The prototypes use crystalline silicon photovoltaic cells and achieved 7.1x concentration over a receiver without reflectors. The 1×1.6 m module used 1/10th the silicon of a standard module and produced a max power of 140 W.

  18. System and method for online inspection of turbines using an optical tube with broadspectrum mirrors

    DOEpatents

    Baleine, Erwan

    2015-12-22

    An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 .mu.m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 .mu.m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 .mu.m wavelength).

  19. Cost/performance of solar reflective surfaces for parabolic dish concentrators

    NASA Technical Reports Server (NTRS)

    Bouquet, F.

    1980-01-01

    Materials for highly reflective surfaces for use in parabolic dish solar concentrators are discussed. Some important factors concerning performance of the mirrors are summarized, and typical costs are treated briefly. Capital investment cost/performance ratios for various materials are computed specifically for the double curvature parabolic concentrators using a mathematical model. The results are given in terms of initial investment cost for reflective surfaces per thermal kilowatt delivered to the receiver cavity for various operating temperatures from 400 to 1400 C. Although second surface glass mirrors are emphasized, first surface, chemically brightened and anodized aluminum surfaces as well as second surface, metallized polymeric films are treated. Conventional glass mirrors have the lowest cost/performance ratios, followed closely by aluminum reflectors. Ranges in the data due to uncertainties in cost and mirror reflectance factors are given.

  20. Instabilities excited by an energetic ion beam and electron temperature anisotropy in tandem mirrors

    NASA Technical Reports Server (NTRS)

    Da Jornada, E. H.; Gaffey, J. D., Jr.; Winske, D.

    1985-01-01

    Tandem mirrors are magnetic confinement devices, which have the objective to prevent a leaking out of ions in a central (solenoidal) cell at the end. This is accomplished by making use of an electrostatic potential, which is maintained by a denser plasma in mirror end cells. In the Tandem Mirror Experiment (TMX), Correll et al. (1982) have successfully verified the basic concepts involved in the design of the considered device. However, it was also found that the simple tandem mirror could not be easily scaled to a reactor-size device. Approaches for solving the arising problems were studied, taking into account also the utilization of a thermal barrier. In this connection, Winske et al. (1985) studied the nonlinear development of the instability in a finite beta plasma with isotropic electrons. The present investigation is concerned with an extension of the calculations conducted by Winske et al., giving attention to the parameter regime of the TMX. It is found that three instabilities can occur.

  1. Optomechanical performance of 3D-printed mirrors with embedded cooling channels and substructures

    NASA Astrophysics Data System (ADS)

    Mici, Joni; Rothenberg, Bradley; Brisson, Erik; Wicks, Sunny; Stubbs, David M.

    2015-09-01

    Advances in 3D printing technology allow for the manufacture of topologically complex parts not otherwise feasible through conventional manufacturing methods. Maturing metal and ceramic 3D printing technologies are becoming more adept at printing complex shapes, enabling topologically intricate mirror substrates. One application area that can benefit from additive manufacturing is reflective optics used in high energy laser (HEL) systems that require materials with a low coefficient of thermal expansion (CTE), high specific stiffness, and (most importantly) high thermal conductivity to effectively dissipate heat from the optical surface. Currently, the limits of conventional manufacturing dictate the topology of HEL optics to be monolithic structures that rely on passive cooling mechanisms and high reflectivity coatings to withstand laser damage. 3D printing enables the manufacture of embedded cooling channels in metallic mirror substrates to allow for (1) active cooling and (2) tunable structures. This paper describes the engineering and analysis of an actively cooled composite optical structure to demonstrate the potential of 3D printing on the improvement of optomechanical systems.

  2. A cryogenic 'set-and-forget' deformable mirror

    NASA Astrophysics Data System (ADS)

    Trines, Robin; Janssen, Huub; Paalvast, Sander; Teuwen, Maurice; Brandl, Bernhard; Rodenhuis, Michiel

    2016-07-01

    This paper discusses the development, realization and initial characterization of a demonstrator for a cryogenic 'set and forget' deformable mirror. Many optical and cryogenic infrared instruments on modern very and extremely large telescopes aim at diffraction-limited performance and require total wave front errors in the order of 50 nanometers or less. At the same time, their complex optical functionality requires either a large number of spherical mirrors or several complex free-form mirrors. Due to manufacturing and alignment tolerances, each mirror contributes static aberrations to the wave front. Many of these aberrations are not known in the design phase and can only be measured once the system has been assembled. A 'set-and-forget' deformable mirror can be used to compensate for these aberrations, making it especially interesting for systems with complex free-form mirrors or cryogenic systems where access to iterative realignment is very difficult or time consuming. The mirror with an optical diameter of 200 mm is designed to correct wave front aberrations of up to 2 μm root-mean square (rms). The shape of the wave front is approximated by the first 15 Zernike modes. Finite element analysis of the mirror shows a theoretically possible reduction of the wave front error from 2 μm to 53 nm rms. To produce the desired shapes, the mirror surface is controlled by 19 identical actuator modules at the back of the mirror. The actuator modules use commercially available Piezo-Knob actuators with a high technology readiness level (TRL). These provide nanometer resolution at cryogenic temperatures combined with high positional stability, and allow for the system to be powered off once the desired shape is obtained. The stiff design provides a high resonance frequency (>200 Hz) to suppress external disturbances. A full-size demonstrator of the deformable mirror containing 6 actuators and 13 dummy actuators is realized and characterized. Measurement results show that the actuators can provide sufficient stroke to correct the 2 μm rms WFE. The resolution of the actuator influence functions is found to be 0.24 nm rms or better depending on the position of the actuator within the grid. Superposition of the actuator influence functions shows that a 2 μm rms WFE can be accurately corrected with a 38 nm fitting error. Due to the manufacturing method of the demonstrator an artificially large print-through error of 182 nm is observed. The main cause of this print-through error has been identified and will be reduced in future design iterations. After these design changes the system is expected to have a total residual error of less than 70 nm and offer diffraction limited performance (λ14) for wavelengths of 1 μm and above.

  3. Temperature dependence of the properties of DBR mirrors used in surface normal optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Dudley, J. J.; Crawford, D. L.; Bowers, J. E.

    1992-01-01

    The variation in the center wavelength of distributed Bragg reflectors used in optoelectronic devices, such as surface emitting lasers and Fabry-Perot modulators, is measured as the temperature of the mirrors changes over the range 25 C to 105 C. An analytic expression for the shift in center wavelength with temperature is presented. The mirrors measured are made of InP/InGaAsP, GaAs/AlAs, and Si/SiN(x). The linear shifts in center wavelength are 0.110 +/- 0.003 nm/C, 0.087 +/- 0.003 nm/C, and 0.067 +/- 0.007 nm/C for the InP/InGaAsP, GaAs/AlAs, and Si/SiN mirrors, respectively. Based on these data, the change in penetration depth with temperature is calculated.

  4. Mirror neurons encode the subjective value of an observed action.

    PubMed

    Caggiano, Vittorio; Fogassi, Leonardo; Rizzolatti, Giacomo; Casile, Antonino; Giese, Martin A; Thier, Peter

    2012-07-17

    Objects grasped by an agent have a value not only for the acting agent, but also for an individual observing the grasping act. The value that the observer attributes to the object that is grasped can be pivotal for selecting a possible behavioral response. Mirror neurons in area F5 of the monkey premotor cortex have been suggested to play a crucial role in the understanding of action goals. However, it has not been addressed if these neurons are also involved in representing the value of the grasped object. Here we report that observation-related neuronal responses of F5 mirror neurons are indeed modulated by the value that the monkey associates with the grasped object. These findings suggest that during action observation F5 mirror neurons have access to key information needed to shape the behavioral responses of the observer.

  5. Optimal micro-mirror tilt angle and sync mark design for digital micro-mirror device based collinear holographic data storage system.

    PubMed

    Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Liu, Jinyan; Huang, Yong; Tan, Xiaodi

    2017-06-01

    The collinear holographic data storage system (CHDSS) is a very promising storage system due to its large storage capacities and high transfer rates in the era of big data. The digital micro-mirror device (DMD) as a spatial light modulator is the key device of the CHDSS due to its high speed, high precision, and broadband working range. To improve the system stability and performance, an optimal micro-mirror tilt angle was theoretically calculated and experimentally confirmed by analyzing the relationship between the tilt angle of the micro-mirror on the DMD and the power profiles of diffraction patterns of the DMD at the Fourier plane. In addition, we proposed a novel chess board sync mark design in the data page to reduce the system bit error rate in circumstances of reduced aperture required to decrease noise and median exposure amount. It will provide practical guidance for future DMD based CHDSS development.

  6. Background Rejection of Charged Particles in the Simbol-X Telescope: Preliminary Study of Protons Scattering

    NASA Astrophysics Data System (ADS)

    Dell'Orto, E.; Barbera, M.; Bulgarelli, A.; Fioretti, V.; Malaguti, G.; Mineo, T.; Pareschi, G.; Rigato, V.; Spiga, D.; Tagliaferri, G.

    2009-05-01

    X-ray telescopes equipped with focusing optics in high eccentric orbit, as e.g. Newton-XMM and Chandra, showed a degradation of the detector performance and an important increase of the noise due to soft protons with energy between a few tens of keV and a few MeV, that are focused on the detector through the mirror module. It should be noted that the focusing of the protons by Wolter optics was an unexpected phenomenon. In Simbol-X a magnetic diverter will be implemented to deflect protons, in order to reduce the flux of charged particles impinging upon the focal plane. Obviously the design of the diverter should take into consideration the protons distribution at the exit of the mirror module; for this reason a detailed simulation about the interaction of particles with the mirror surface is necessary. Here we will present the scattering protons models currently under consideration, suggesting a preliminary solution for the design of the magnetic diverter. We will also discuss an ad hoc experiment to study this problem.

  7. Double Arm Linkage precision Linear motion (DALL) Carriage, a simplified, rugged, high performance linear motion stage for the moving mirror of an Fourier Transform Spectrometer or other system requiring precision linear motion

    NASA Astrophysics Data System (ADS)

    Johnson, Kendall B.; Hopkins, Greg

    2017-08-01

    The Double Arm Linkage precision Linear motion (DALL) carriage has been developed as a simplified, rugged, high performance linear motion stage. Initially conceived as a moving mirror stage for the moving mirror of a Fourier Transform Spectrometer (FTS), it is applicable to any system requiring high performance linear motion. It is based on rigid double arm linkages connecting a base to a moving carriage through flexures. It is a monolithic design. The system is fabricated from one piece of material including the flexural elements, using high precision machining. The monolithic design has many advantages. There are no joints to slip or creep and there are no CTE (coefficient of thermal expansion) issues. This provides a stable, robust design, both mechanically and thermally and is expected to provide a wide operating temperature range, including cryogenic temperatures, and high tolerance to vibration and shock. Furthermore, it provides simplicity and ease of implementation, as there is no assembly or alignment of the mechanism. It comes out of the machining operation aligned and there are no adjustments. A prototype has been fabricated and tested, showing superb shear performance and very promising tilt performance. This makes it applicable to both corner cube and flat mirror FTS systems respectively.

  8. Improvements of VIIRS and MODIS Solar Diffuser and Lunar Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, James J.; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit Avinash

    2013-01-01

    Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.

  9. Implementation of Bluetooth technology in processing aspheric mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Dong-yun; Li, Xiao-jin

    2010-10-01

    This paper adopts the Bluetooth wireless transmission to replace the conducting rings currently using in the active lap process to overcome the cost and abrasion problems brought by the conducting rings, which has great significance for reducing the costs of processing large aspheric mirrors. Based on the actual application requirements, Article proposes the overall program of using Bluetooth technology as data transmission, including the active lap-side and machine tool-side: In the machine tool-side, the MCU separately connects with Bluetooth module and the sensor via UART0 and UART1 serial port, and when the MCU receives the signals sending from the sensor, the MCU packs and then sends them through the Bluetooth module; while in the active lap side, the CCAL reads-out the position signals of sensor detecting in dual-port memory via one-side ports, and the other side ports connect with the MCU's high ports P4-P7, so the MCU can unpacks and stores the position signals receiving via Bluetooth module. This paper designs and implements the system's hardware circuit, and mainly introduces the ways of serial and parallel. Based upon the realized system, design the test program for the Bluetooth wireless transmission and the experiment results, in the condition of the active lap processing large aspheric mirrors, showed that Bluetooth technology can meet the requirements of practical applications.

  10. Thermal expansion as a precision actuator

    NASA Astrophysics Data System (ADS)

    Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine

    2016-07-01

    The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.

  11. A hybrid silicon membrane spatial light modulator for optical information processing

    NASA Technical Reports Server (NTRS)

    Pape, D. R.; Hornbeck, L. J.

    1984-01-01

    A new two dimensional, fast, analog, electrically addressable, silicon based membrane spatial light modulator (SLM) was developed for optical information processing applications. Coherent light reflected from the mirror elements is phase modulated producing an optical Fourier transform of an analog signal input to the device. The DMD architecture and operating parameters related to this application are presented. A model is developed that describes the optical Fourier transform properties of the DMD.

  12. Pattern-free thermal modulator via thermal radiation between Van der Waals materials

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Shen, Jiadong; Xuan, Yimin

    2017-10-01

    Modulating heat flux provides a platform for a plethora of emerging devices such as thermal diodes, thermal transistors, and thermal memories. Here, a pattern-free noncontact thermal modulator is proposed based on the mechanical rotation between two Van der Waals films with optical axes parallel to the surfaces. A modulation contrast can reach a value higher than 5 for hexagonal Boron Nitride (hBN) films separated by a nanoscale gap distance. The dominant radiative heat exchange comes from the excitation of both Type I and Type II hyperbolic surface phonon polaritons (HSPhPs) at the vacuum-hBN interface for different orientations, while the large modulation contrast is mainly attributed to the mismatching Type I HSPhPs induced by rotation. This work opens the possibility to design cheap thermal modulators without relying on nanofabrication techniques, and paves the way to apply natural Van der Waals materials in manipulating heat currents in an active way.

  13. Design and analysis of an active optics system for a 4-m telescope mirror combining hydraulic and pneumatic supports

    NASA Astrophysics Data System (ADS)

    Lousberg, Gregory P.; Moreau, Vincent; Schumacher, Jean-Marc; Piérard, Maxime; Somja, Aude; Gloesener, Pierre; Flebus, Carlo

    2015-09-01

    AMOS has developed a hybrid active optics system that combines hydraulic and pneumatic properties of actuators to support a 4-m primary mirror. The mirror is intended to be used in the Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope) that will be installed by the National Solar Observatory (NSO) atop the Haleakala volcano in Hawaii. The mirror support design is driven by the needs of (1) minimizing the support-induced mirror distortions under telescope operating conditions, (2) shaping the mirror surface to the desired profile, and (3) providing a high stiffness against wind loads. In order to fulfill these requirements, AMOS proposes an innovative support design that consist of 118 axial actuators and 24 lateral actuators. The axial support is based on coupled hydraulic and pneumatic actuators. The hydraulic part is a passive system whose main function is to support the mirror weight with a high stiffness. The pneumatic part is actively controlled so as to compensate for low-order wavefront aberrations that are generated by the mirror support itself or by any other elements in the telescope optical chain. The performances of the support and its adequacy with the requirements are assessed with the help of a comprehensive analysis loop involving finite-element, thermal and optical modellings.

  14. Alignment and assembly process for primary mirror subsystem of a spaceborne telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Chang, Sheng-Hsiung; Chang, Chen-Peng; Lin, Yu-Chuan; Chin, Chi-Chieh; Pan, Hsu-Pin; Huang, Ting-Ming

    2015-11-01

    In this study, a multispectral spaceborne Cassegrain telescope was developed. The telescope was equipped with a primary mirror with a 450-mm clear aperture composed of Zerodur and lightweighted at a ratio of approximately 50% to meet both thermal and mass requirements. Reducing the astigmatism was critical for this mirror. The astigmatism is caused by gravity effects, the bonding process, and deformation from mounting the main structure of the telescope (main plate). This article presents the primary mirror alignment, mechanical ground-supported equipment (MGSE), assembly process, and optical performance test used to assemble the primary mirror. A mechanical compensated shim is used as the interface between the bipod flexure and main plate. The shim was used to compensate for manufacturer errors found in components and differences between local coplanarity errors to prevent stress while the bipod flexure was screwed to the main plate. After primary mirror assembly, an optical performance test method called a bench test with an algorithm was used to analyze the astigmatism caused by the gravity effect and deformation from the mounting or supporter. The tolerance conditions for the primary mirror assembly require the astigmatism caused by gravity and mounting force deformation to be less than P-V 0.02 λ at 632.8 nm. The results demonstrated that the designed MGSE used in the alignment and assembly processes met the critical requirements for the primary mirror assembly of the telescope.

  15. Production of the 4.26 m ZERODUR mirror blank for the Advanced Technology Solar telescope (ATST)

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Werner, Thomas; Westerhoff, Thomas

    2014-07-01

    The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) will be the most powerful solar telescope in the world. It is currently being built by the Association of Universities for Research in Astronomy (AURA) in a height of 3000 m above sea level on the mountain Haleakala of Maui, Hawaii. The primary mirror blank of diameter 4.26 m is made of the extremely low thermal expansion glass ceramic ZERODUR® of SCHOTT AG Advanced Optics. The DKIST primary mirror design is extremely challenging. With a mirror thickness of only 78 to 85 mm it is the smallest thickness ever machined on a mirror of 4.26 m in diameter. Additionally the glassy ZERODUR® casting is one of the largest in size ever produced for a 4 m class ZERODUR® mirror blank. The off axis aspherical mirror surface required sophisticated grinding procedures to achieve the specified geometrical tolerance. The small thickness of about 80 mm required special measures during processing, lifting and transport. Additionally acid etch treatment was applied to the convex back-surface and the conical shaped outer diameter surface to improve the strength of the blank. This paper reports on the challenging tasks and the achievements on the material property and dimensional specification parameter during the production of the 4.26 m ZERODUR® primary mirror blank for AURA.

  16. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.

  17. Towards the SQL: Status of the direct thermal-noise measurements at the ANU

    NASA Astrophysics Data System (ADS)

    Mow-Lowry, C. M.; Goßler, S.; Slagmolen, B. J. J.; Cumpston, J.; Gray, M. B.; McClelland, D. E.

    2006-03-01

    We present the preliminary results for an experiment that aims to perform direct measurements of suspension thermal noise. The experiment is based on a niobium flexure membrane approximately 200 µm thickness that is operated as a stable inverted pendulum. A 0.25 g mirror suspended by this flexure membrane is used as the end mirror of a Fabry-Perot test cavity. This test cavity has a length of 12mm and a finesse of about 800. It is mounted at the lowest stage of a quadruple cascaded pendulum suspension, enclosed in a high-vacuum envelope. The length of test cavity is stabilized with 1Hz bandwidth to a Nd:YAG laser, which itself is stabilized with high bandwidth to the length of a suspended Zerodur reference cavity of finesse 6000.

  18. Heat transfer in a fissioning uranium plasma reactor cavity

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1973-01-01

    Two schemes are investigated by which a fission-heated uranium plasma located in the central cavity of a test reactor could be insulated to keep its temperature above condensation in a neutron flux of 10 to the 15th power neutrons/(sq cm)(sec) or less. The first scheme was to use a mirrored cavity wall to reflect the thermal radiation back into the plasma. The second scheme was to seed the transpirational cavity wall coolant so as to make it opaque to thermal radiation, thus insulating the hot plasma from the cold wall. The analysis showed that a mirrored cavity wall must have a reflectivity of over 95 percent or that seeded argon must be used as the wall coolant to give an acceptable operating margin above fuel condensation conditions.

  19. Thermal modulation for gas chromatography

    NASA Technical Reports Server (NTRS)

    Block, Bruce P. (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Sacks, Richard D. (Inventor); Hasselbrink, Ernest F. (Inventor); Waite, J. Hunter (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary.

  20. Experimental Observation of Thermal Self-Modulation in OPO

    NASA Technical Reports Server (NTRS)

    Gao, Jiangrui; Wang, Hai; Xie, Changde; Peng, Kunchi

    1996-01-01

    The thermal self-modulation has been observed experimentally via SHG in OPO. The threshold pump power for the thermal self- modulation is much smaller than that of the nonlinear self-pulsing. The thermal effect prevent from realizing the theoretical prediction for the self-pulsing.

  1. Metrology for Trending Alignment of the James Webb Space Telescope Before and After Ambient Environmental Testing

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeffery; Hayden, Joseph; Khreishi, Manal; McLean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg; hide

    2017-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, theJWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.

  2. Connecting mirror neurons and forward models.

    PubMed

    Miall, R C

    2003-12-02

    Two recent developments in motor neuroscience are promising the extension of theoretical concepts from motor control towards cognitive processes, including human social interactions and understanding the intentions of others. The first of these is the discovery of what are now called mirror neurons, which code for both observed and executed actions. The second is the concept of internal models, and in particular recent proposals that forward and inverse models operate in paired modules. These two ideas will be briefly introduced, and a recent suggestion linking between the two processes of mirroring and modelling will be described which may underlie our abilities for imitating actions, for cooperation between two actors, and possibly for communication via gesture and language.

  3. Picosecond pulse generation in a hybrid Q-switched laser source by using a microelectromechanical mirror.

    PubMed

    Couderc, Vincent; Crunteanu, Aurelian; Fabert, Marc; Doutre, Florent; El Bassri, Farid; Pagnoux, Dominique; Jalocha, Alain

    2012-02-27

    We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.

  4. Study on the key alignment technology of the catadioptric optical system

    NASA Astrophysics Data System (ADS)

    Song, Chong; Fu, Xing; Fu, Xi-hong; Kang, Xiao-peng; Liu, Kai

    2017-02-01

    Optical system alignment has a great influence on the whole system accuracy. In this paper, the processing of optical system alignment was mainly studied, the processing method of optics on the primary and secondary mirrors, front correction lens group and behind correction lens group with high precision centering lathe and internal focusing telescope. Then using the height indicator complete the system alignment of the primary mirror, secondary mirror, front correction group and behind correction group. Finally, based on the zygo interferometer detect the wavefront information. Using this alignment program for catadioptric optical system, the wavefront aberration of optical system, focal length, modulation transfer function (MTF) and other technical indicators have reached the requirements.

  5. Metrology for Trending Alignment of the James Webb Space Telescope Before and After Ambient Environmental Testing

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeff; Hayden, Joseph; Khreishi, Manal; Mclean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg; hide

    2017-01-01

    NASAs James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, the JWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.

  6. Using iridium films to compensate for piezo-electric materials processing stresses in adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Ames, A.; Bruni, R.; Cotroneo, V.; Johnson-Wilke, R.; Kester, T.; Reid, P.; Romaine, S.; Tolier-McKinstry, S.; Wilke, R. H. T.

    2015-09-01

    Adjustable X-ray optics represent a potential enabling technology for simultaneously achieving large effective area and high angular resolution for future X-ray Astronomy missions. The adjustable optics employ a bimorph mirror composed of a thin (1.5 μm) film of piezoelectric material deposited on the back of a 0.4 mm thick conical mirror segment. The application of localized electric fields in the piezoelectric material, normal to the mirror surface, result in localized deformations in mirror shape. Thus, mirror fabrication and mounting induced figure errors can be corrected, without the need for a massive reaction structure. With this approach, though, film stresses in the piezoelectric layer, resulting from deposition, crystallization, and differences in coefficient of thermal expansion, can distort the mirror. The large relative thickness of the piezoelectric material compared to the glass means that even 100MPa stresses can result in significant distortions. We have examined compensating for the piezoelectric processing related distortions by the deposition of controlled stress chromium/iridium films on the front surface of the mirror. We describe our experiments with tuning the product of the chromium/iridium film stress and film thickness to balance that resulting from the piezoelectric layer. We also evaluated the repeatability of this deposition process, and the robustness of the iridium coating.

  7. Status of ART-XC/SRG Instrument

    NASA Technical Reports Server (NTRS)

    Pavlinsky, M.; Akimov, V.; Levin, V.; Lapshov, I.; Tkachenko, A.; Semena, N.; Buntov, M.; Glushenko, A.; Arefiev, V.; Yaskovich, A.; hide

    2014-01-01

    Spectrum Roentgen Gamma (SRG) is an X-ray astrophysical observatory, developed by Russia in collaboration with Germany. The mission will be launched in March 2016 from Baikonur, by a Zenit rocket with a Fregat booster and placed in a 6-month-period halo orbit around L2. The scientific payload consists of two independent telescopes - a soft-x-ray survey instrument, eROSITA, being provided by Germany and a medium-x-ray-energy survey instrument ART-XC being developed by Russia. ART-XC will consist of seven independent, but co-aligned, telescope modules. The NASA Marshall Space Flight Center (MSFC) is fabricating the flight mirror modules for the ART-XC/SRG. Each mirror module will be aligned with a focal plane CdTe double-sided strip detectors which will operate over the energy range of 6-30 keV, with an angular resolution of less than 1', a field of view of approximately 34' and an expected energy resolution of about 10 percent at 14 keV.

  8. Status of ART-XC/SRG instrument

    NASA Astrophysics Data System (ADS)

    Pavlinsky, M.; Akimov, V.; Levin, V.; Krivchenko, A.; Rotin, A.; Kuznetsova, M.; Lapshov, I.; Tkachenko, A.; Semena, N.; Buntov, M.; Glushenko, A.; Arefiev, V.; Yaskovich, A.; Grebenev, S.; Sazonov, S.; Revnivtsev, M.; Lutovinov, A.; Molkov, S.; Krivonos, R.; Serbinov, D.; Kudelin, M.; Drozdova, T.; Voronkov, S.; Sunyaev, R.; Churazov, E.; Gilfanov, M.; Babyshkin, V.; Lomakin, I.; Menderov, A.; Gubarev, M.; Ramsey, B.; Kilaru, K.; O'Dell, S. L.; Kolodziejczak, J.; Elsner, R.; Zavlin, V.; Swartz, D.

    2016-07-01

    Spectrum Roentgen Gamma (SRG) is an X-ray astrophysical observatory, developed by Russia in collaboration with Germany. The mission will be launched in 2017 from Baikonur and placed in a 6-month-period halo orbit around L2. The scientific payload consists of two independent telescope arrays - a soft-x-ray survey instrument, eROSITA, being provided by Germany and a medium-x-ray-energy survey instrument ART-XC being developed by Russia. ART-XC will consist of seven independent, but co-aligned, telescope modules. The ART-XC flight mirror modules have been developed and fabricated at the NASA Marshall Space Flight Center (MSFC). Each mirror module will be aligned with a focal plane CdTe double-sided strip detector which will operate over the energy range of 6-30 keV, with an angular resolution of <1', a field of view of 34' and an expected energy resolution of about 12% at 14 keV. The current status of the ART-XC/SRG instrument is presented here.

  9. Design Study of an 8 Meter Monolithic Mirror UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    This paper will review a recent NASA MSFC preliminary study that demonstrated the feasibility of launching a 6 to 8 meter class monolithic primary mirror telescope to Sun-Earth L2 using an Ares V. The study started with the unique capabilities of the Ares V vehicle and examined the feasibility of launching a large aperture low cost low risk telescope based on a conventional ground based glass primary mirror. Specific technical areas studied included optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN & C, avionics, power systems and reaction wheels; operations & servicing, mass budget and system cost. The study telescope was an on-axis three-mirror anastigmatic design with a fine steering mirror. The observatory has a 100 arc-minute (8.4 X 12 arc-minutes) of diffraction limited field of view at a wavelength les than 500 nm. The study assumed that the primary mirror would be fabricated from an existing Schott Zerodur residual VLT blank edged to 6.2 meters, 175 mm thick at the edge with a mass of 11,000 kg. The entire mass budget for the observatory including primary mirror, structure, light baffle tube, instruments, space craft, avionics, etc. is less than 40,000 kg - a 33% mass margin on the Ares V's 60,000 kg Sun-Earth L2 capability. An 8 meter class observatory would have a total mass of less than 60,000 kg of which the primary mirror is the largest contributor.

  10. Electrically-controlled near-field radiative thermal modulator made of graphene-coated silicon carbide plates

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Wang, Liping

    2017-08-01

    In this work, we propose a hybrid near-field radiative thermal modulator made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. The near-field photon tunneling between the emitter and receiver is modulated by changing graphene chemical potentials with symmetrically or asymmetrically applied voltage biases. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials due to tunable near-field coupling strength between graphene plasmons across the vacuum gap. Thermal modulation and switching, which are the key functionalities required for a thermal modulator, are theoretically realized and analyzed. Newly introduced quantities of the modulation factor, the sensitivity factor and switching factor are studied quite extensively in a large parameter range for both graphene chemical potential and vacuum gap distance. This opto-electronic device with faster operating mode, which is in principle only limited by electronics and not by the thermal inertia, will facilitate the practical application of active thermal management, thermal circuits, and thermal computing with photon-based near-field thermal transport.

  11. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions.

    PubMed

    Zult, Tjerk; Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn

    2015-04-01

    Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp (2) = 0.005; ECR: P = 0.712, ηp (2) = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp (2) = 0.049; ECR: P = 0.343, ηp (2) = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions. Copyright © 2015 the American Physiological Society.

  12. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions

    PubMed Central

    Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn

    2015-01-01

    Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp2 = 0.005; ECR: P = 0.712, ηp2 = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp2 = 0.049; ECR: P = 0.343, ηp2 = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions. PMID:25632077

  13. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.

    1998-09-29

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available. 5 figs.

  14. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.

    1998-01-01

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available.

  15. Discrete control of linear distributed systems with application to the deformable primary mirror of a large orbiting telescope. Ph.D. Thesis - Rhode Island Univ.

    NASA Technical Reports Server (NTRS)

    Creedon, J. F.

    1970-01-01

    The results are presented of a detailed study of the discrete control of linear distributed systems with specific application to the design of a practical controller for a plant representative of a telescope primary mirror for an orbiting astronomical observatory. The problem of controlling the distributed plant is treated by employing modal techniques to represent variations in the optical figure. Distortion of the mirror surface, which arises primarily from thermal gradients, is countered by actuators working against a backing structure to apply a corrective force distribution to the controlled surface. Each displacement actuator is in series with a spring attached to the mirror by means of a pad intentionally introduced to restrict the excitation of high-order modes. Control is exerted over a finite number of the most significant modes.

  16. Mirrors for High Resolution X-Ray Optics---Figure Preserving IR/PT Coating

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Olsen, Lawrence; Sharpe, Marton; Numata, Ai; McClelland, Ryan; Saha, Timo; Zhang, Will

    2016-01-01

    Coating stress of 10 - 20 nm of Ir is sufficiently high to distort the figure of arc-second thin lightweight mirrors. For iridium: --Stress sigma 4 GPa for 15 nm film implies 60 Nm integrated stress-- Need less than 3 N/m (or stress less than 200 MPa) for sub-arcsecond optics. Basic Approaches for Mitigation. A. Annealing the film-- Glass can be heat up to 400 C without distortion. Silicon is even more resistant.-- It was found that recovery is limited by residual thermal stress from taking the mirror down from high T. B. Coating bi-layer films with compressive stress with tensile stress. C. Front-and-back coating with magnetron sputtering or atomic layer deposition-- Sputtering involve spanning of substrates. Geometric difference in setup (convexness/concaveness of curved mirrors) does not permit precise front-and-back matching-- Atomic layer deposition can provide a uniform deposition front and back simultaneously.

  17. Method for separating FEL output beams from long wavelength radiation

    DOEpatents

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  18. NIRSpec optics development: final report

    NASA Astrophysics Data System (ADS)

    Geyl, R.; Ruch, E.; Vayssade, H.; Leplan, H.; Rodolfo, J.

    2017-11-01

    As shown and discussed on a Sagem poster presented at the ICSO 2010 conference [1], scientific or commercial earth observation space instruments are more and more taking advantage of the remarkable properties of Silicon Carbide in term of hardness, stiffness and thermal stability combined with a reasonable density which are indeed of primary importance for all space applications. Sagem-REOSC High Performance Optics Unit works on the polishing, coating and integration technologies of SiC mirrors since more than ten year through various successful space programs for various customers: INSAT 3D scan mirror, ROCSAT II and SPIRALE main telescopes, GAIA large primary mirrors and Auto-collimation flats, …). This paper aims to provide to the international space community an exhaustive vision of the work performed by Sagem-REOSC on the polishing, coating and integration of the three Three Mirror Anastigmats of the NIRSpec spectrographic instrument which is the main ESA contribution to the JWST.

  19. Development of the segment alignment maintenance system (SAMS) for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Booth, John A.; Adams, Mark T.; Ames, Gregory H.; Fowler, James R.; Montgomery, Edward E.; Rakoczy, John M.

    2000-07-01

    A sensing and control system for maintaining optical alignment of ninety-one 1-meter mirror segments forming the Hobby-Eberly Telescope (HET) primary mirror array is now under development. The Segment Alignment Maintenance System (SAMS) is designed to sense relative shear motion between each segment edge pair and calculated individual segment tip, tilt, and piston position errors. Error information is sent to the HET primary mirror control system, which corrects the physical position of each segment as often as once per minute. Development of SAMS is required to meet optical images quality specifications for the telescope. Segment misalignment over time is though to be due to thermal inhomogeneity within the steel mirror support truss. Challenging problems of sensor resolution, dynamic range, mechanical mounting, calibration, stability, robust algorithm development, and system integration must be overcome to achieve a successful operational solution.

  20. Comparing optical test methods for a lightweight primary mirror of a space-borne Cassegrain telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Yu, Zong-Ru; Lin, Yu-Chuan; Ho, Cheng-Fong; Huang, Ting-Ming; Chen, Cheng-Huan

    2014-09-01

    A Cassegrain telescope with a 450 mm clear aperture was developed for use in a spaceborne optical remote-sensing instrument. Self-weight deformation and thermal distortion were considered: to this end, Zerodur was used to manufacture the primary mirror. The lightweight scheme adopted a hexagonal cell structure yielding a lightweight ratio of 50%. In general, optical testing on a lightweight mirror is a critical technique during both the manufacturing and assembly processes. To prevent unexpected measurement errors that cause erroneous judgment, this paper proposes a novel and reliable analytical method for optical testing, called the bench test. The proposed algorithm was used to distinguish the manufacturing form error from surface deformation caused by the mounting, supporter and gravity effects for the optical testing. The performance of the proposed bench test was compared with a conventional vertical setup for optical testing during the manufacturing process of the lightweight mirror.

  1. Preparation and characterization of B4C coatings for advanced research light sources.

    PubMed

    Störmer, Michael; Siewert, Frank; Sinn, Harald

    2016-01-01

    X-ray optical elements are required for beam transport at the current and upcoming free-electron lasers and synchrotron sources. An X-ray mirror is a combination of a substrate and a coating. The demand for large mirrors with single layers consisting of light or heavy elements has increased during the last few decades; surface finishing technology is currently able to process mirror lengths up to 1 m with microroughness at the sub-nanometre level. Additionally, thin-film fabrication is able to deposit a suitable single-layer material, such as boron carbide (B4C), some tens of nanometres thick. After deposition, the mirror should provide excellent X-ray optical properties with respect to coating thickness errors, microroughness values and slope errors; thereby enabling the mirror to transport the X-ray beam with high reflectivity, high beam flux and an undistorted wavefront to an experimental station. At the European XFEL, the technical specifications of the future mirrors are extraordinarily challenging. The acceptable shape error of the mirrors is below 2 nm along the whole length of 1 m. At the Helmholtz-Zentrum Geesthacht (HZG), amorphous layers of boron carbide with thicknesses in the range 30-60 nm were fabricated using the HZG sputtering facility, which is able to cover areas up to 1500 mm long by 120 mm wide in one step using rectangular B4C sputtering targets. The available deposition area is suitable for the specified X-ray mirror dimensions of upcoming advanced research light sources such as the European XFEL. The coatings produced were investigated by means of X-ray reflectometry and interference microscopy. The experimental results for the B4C layers are discussed according to thickness uniformity, density, microroughness and thermal stability. The variation of layer thickness in the tangential and sagittal directions was investigated in order to estimate the achieved level of uniformity over the whole deposition area, which is considerably larger than the optical area of a mirror. A waisted mask was positioned during deposition between the sputtering source and substrate to improve the thickness uniformity; particularly to prevent the formation a convex film shape in the sagittal direction. Additionally the inclination of the substrate was varied to change the layer uniformity in order to optimize the position of the mirror quality deposited area during deposition. The level of mirror microroughness was investigated for different substrates before and after deposition of a single layer of B4C. The thermal stability of the B4C layers on the various substrate materials was investigated.

  2. Preparation and characterization of B4C coatings for advanced research light sources

    PubMed Central

    Störmer, Michael; Siewert, Frank; Sinn, Harald

    2016-01-01

    X-ray optical elements are required for beam transport at the current and upcoming free-electron lasers and synchrotron sources. An X-ray mirror is a combination of a substrate and a coating. The demand for large mirrors with single layers consisting of light or heavy elements has increased during the last few decades; surface finishing technology is currently able to process mirror lengths up to 1 m with microroughness at the sub-nanometre level. Additionally, thin-film fabrication is able to deposit a suitable single-layer material, such as boron carbide (B4C), some tens of nanometres thick. After deposition, the mirror should provide excellent X-ray optical properties with respect to coating thickness errors, microroughness values and slope errors; thereby enabling the mirror to transport the X-ray beam with high reflectivity, high beam flux and an undistorted wavefront to an experimental station. At the European XFEL, the technical specifications of the future mirrors are extraordinarily challenging. The acceptable shape error of the mirrors is below 2 nm along the whole length of 1 m. At the Helmholtz-Zentrum Geesthacht (HZG), amorphous layers of boron carbide with thicknesses in the range 30–60 nm were fabricated using the HZG sputtering facility, which is able to cover areas up to 1500 mm long by 120 mm wide in one step using rectangular B4C sputtering targets. The available deposition area is suitable for the specified X-ray mirror dimensions of upcoming advanced research light sources such as the European XFEL. The coatings produced were investigated by means of X-ray reflectometry and interference microscopy. The experimental results for the B4C layers are discussed according to thickness uniformity, density, microroughness and thermal stability. The variation of layer thickness in the tangential and sagittal directions was investigated in order to estimate the achieved level of uniformity over the whole deposition area, which is considerably larger than the optical area of a mirror. A waisted mask was positioned during deposition between the sputtering source and substrate to improve the thickness uniformity; particularly to prevent the formation a convex film shape in the sagittal direction. Additionally the inclination of the substrate was varied to change the layer uniformity in order to optimize the position of the mirror quality deposited area during deposition. The level of mirror microroughness was investigated for different substrates before and after deposition of a single layer of B4C. The thermal stability of the B4C layers on the various substrate materials was investigated. PMID:26698045

  3. Performance of The Far Ultraviolet Spectroscopic Explorer Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Ohi, Raymond G.; Barkhouser, Robert H.; Conard, Steven J.; Friedman, Scott D.; Hampton, Jeffery; Moos, H. Warren; Nikulla, Paul; Oliveira, Cristina M.; Saha, Timo T.; Obenschain, Arthur (Technical Monitor)

    2000-01-01

    The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5-118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four coaligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 x 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50 percent and 95 percent slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The far-ultraviolet reflectivity of the SiC- and AlLiF-coated mirrors decreased about six percent and three percent, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.

  4. Performance of the Far Ultraviolet Spectroscopic Explorer mirror assemblies

    NASA Astrophysics Data System (ADS)

    Ohl, Raymond G.; Barkhouser, Robert H.; Conard, Steven J.; Friedman, Scott D.; Hampton, Jeffrey; Moos, H. Warren; Nikulla, Paul; Oliveira, Cristina M.; Saha, Timo T.

    2000-12-01

    The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5 - 118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four co- aligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 X 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50% and 95% slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The FUV reflectivity of the SiC- and Al:LiF-coated mirrors decreased about 6% and 3%, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.

  5. Focal Point Inside the Vacuum Chamber for Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This photograph is a close-up view of a 4-in focal point inside the vacuum chamber at the MSFC Solar Thermal Propulsion Test facility. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  6. Thermal Energy for Lunar In Situ Resource Utilization: Technical Challenges and Technology Opportunities

    NASA Technical Reports Server (NTRS)

    Gordon, Pierce E. C.; Colozza, Anthony J.; Hepp, Aloysius F.; Heller, Richard S.; Gustafson, Robert; Stern, Ted; Nakamura, Takashi

    2011-01-01

    Oxygen production from lunar raw materials is critical for sustaining a manned lunar base but is very power intensive. Solar concentrators are a well-developed technology for harnessing the Sun s energy to heat regolith to high temperatures (over 1375 K). The high temperature and potential material incompatibilities present numerous technical challenges. This study compares and contrasts different solar concentrator designs that have been developed, such as Cassegrains, offset parabolas, compound parabolic concentrators, and secondary concentrators. Differences between concentrators made from lenses and mirrors, and between rigid and flexible concentrators are also discussed. Possible substrate elements for a rigid mirror concentrator are selected and then compared, using the following (target) criteria: (low) coefficient of thermal expansion, (high) modulus of elasticity, and (low) density. Several potential lunar locations for solar concentrators are compared; environmental and processing-related challenges related to dust and optical surfaces are addressed. This brief technology survey examines various sources of thermal energy that can be utilized for materials processing on the lunar surface. These include heat from nuclear or electric sources and solar concentrators. Options for collecting and transporting thermal energy to processing reactors for each source are examined. Overall system requirements for each thermal source are compared and system limitations, such as maximum achievable temperature are discussed.

  7. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  8. Mirror neurons encode the subjective value of an observed action

    PubMed Central

    Caggiano, Vittorio; Fogassi, Leonardo; Rizzolatti, Giacomo; Casile, Antonino; Giese, Martin A.; Thier, Peter

    2012-01-01

    Objects grasped by an agent have a value not only for the acting agent, but also for an individual observing the grasping act. The value that the observer attributes to the object that is grasped can be pivotal for selecting a possible behavioral response. Mirror neurons in area F5 of the monkey premotor cortex have been suggested to play a crucial role in the understanding of action goals. However, it has not been addressed if these neurons are also involved in representing the value of the grasped object. Here we report that observation-related neuronal responses of F5 mirror neurons are indeed modulated by the value that the monkey associates with the grasped object. These findings suggest that during action observation F5 mirror neurons have access to key information needed to shape the behavioral responses of the observer. PMID:22753471

  9. X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1991-01-01

    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.

  10. Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Shengyan; Liu, Zhe; Xia, Xiaoxiang; E, Yiwen; Tang, Chengchun; Wang, Yujin; Li, Junjie; Wang, Li; Gu, Changzhi

    2016-06-01

    We experimentally demonstrate a metamaterial structure composed of two mirror-symmetric joint split ring resonators (JSRRs) that support extremely sharp trapped-mode resonance with a large modulation depth in the terahertz region. Contrary to the regular mirror-arranged SRR arrays in which both the subradiant inductive-capacitive (LC) resonance and quadrupole-mode resonance can be excited, our designed structure features a metallic microstrip bridging the adjacent SRRs, which leads to the emergence of an otherwise inaccessible ultrahigh-quality-factor resonance. The ultrasharp resonance occurs near the Wood-Rayleigh anomaly frequency, and the underlying mechanism can be attributed to the strong coupling between the in-plane propagating collective lattice surface mode originating from the array periodicity and localized surface plasmon resonance in mirror-symmetric coupled JSRRs, which dramatically reduces radiative damping. The ultrasharp resonance shows great potential for multifunctional applications such as plasmonic switching, low-power nonlinear processing, and chemical and biological sensing.

  11. NASA Tech Briefs, January 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Tech Briefs are short announcements of innovations originating from research and development activities of the National Aeronautics and Space Administration. They emphasize information considered likely to be transferable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. Topics covered include: The Radio Frequency Health Node Wireless Sensor System; Effects of Temperature on Polymer/Carbon Chemical Sensors; Small CO2 Sensors Operate at Lower Temperature; Tele-Supervised Adaptive Ocean Sensor Fleet; Synthesis of Submillimeter Radiation for Spectroscopy; 100-GHz Phase Switch/Mixer Containing a Slot-Line Transition; Generating Ka-Band Signals Using an X-Band Vector Modulator; SiC Optically Modulated Field-Effect Transistor; Submillimeter-Wave Amplifier Module with Integrated Waveguide Transitions; Metrology System for a Large, Somewhat Flexible Telescope; Economical Implementation of a Filter Engine in an FPGA; Improved Joining of Metal Components to Composite Structures; Machined Titanium Heat-Pipe Wick Structure; Gadolinia-Doped Ceria Cathodes for Electrolysis of CO2; Utilizing Ocean Thermal Energy in a Submarine Robot; Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators; Alternative OTEC Scheme for a Submarine Robot; Sensitive, Rapid Detection of Bacterial Spores; Adenosine Monophosphate-Based Detection of Bacterial Spores; Silicon Microleaks for Inlets of Mass Spectrometers; CGH Figure Testing of Aspherical Mirrors in Cold Vacuums; Series-Coupled Pairs of Silica Microresonators; Precise Stabilization of the Optical Frequency of WGMRs; Formation Flying of Components of a Large Space Telescope; Laser Metrology Heterodyne Phase-Locked Loop; Spatial Modulation Improves Performance in CTIS; High-Performance Algorithm for Solving the Diagnosis Problem; Truncation Depth Rule-of-Thumb for Convolutional Codes; Efficient Method for Optimizing Placement of Sensors.

  12. Absorber for solar power.

    PubMed

    Powell, W R

    1974-10-01

    A simple, economical absorber utilizing a new principle of operation to achieve very low reradiation losses while generating temperatures limited by material properties of quartz is described. Its performance is analyzed and indicates approximately 90% thermal efficiency and 73% conversion efficiency for an earth based unit with moderately concentrated (~tenfold) sunlight incident. It is consequently compatible with the most economic of concentrator mirrors (stamped) or mirrors deployable in space. Space applications are particularly attractive, as temperatures significantly below 300 K are possible and permit even higher conversion efficiency.

  13. Thermal design and test of a high power spacecraft transponder platform

    NASA Technical Reports Server (NTRS)

    Stipandic, E. A.; Gray, A. M.; Gedeon, L.

    1975-01-01

    The high power transponder subsystem on board the Communications Technology Satellite (CTS) requires some unique thermal control techniques to maintain the required temperature limits throughout all mission phases. The transponder subsystem includes redundant 20-W output travelling wave tubes and a single 200-W output TWT with highly concentrated thermal dissipations of 70 W and 143 W, respectively. A thermal control system which maintains all components within the required temperature ranges has been designed and verified in thermal balance testing. Included in the design are second surface quartz mirrors on an aluminum honeycomb platform, high thermal conductivity aluminum doubler plates, commandable thermal control heaters and a Variable Conductance Heat Pipe System (VCHPS).

  14. Diffraction-Based Optical Switching with MEMS

    DOE PAGES

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin; ...

    2017-04-19

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  15. Diffraction-Based Optical Switching with MEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  16. Influence of thermal deformation in cavity mirrors on beam propagation characteristics of high-power slab lasers

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui

    2018-01-01

    Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.

  17. Lightweighted ZERODUR for telescopes

    NASA Astrophysics Data System (ADS)

    Westerhoff, T.; Davis, M.; Hartmann, P.; Hull, T.; Jedamzik, R.

    2014-07-01

    The glass ceramic ZERODUR® from SCHOTT has an excellent reputation as mirror blank material for earthbound and space telescope applications. It is known for its extremely low coefficient of thermal expansion (CTE) at room temperature and its excellent CTE homogeneity. Recent improvements in CNC machining at SCHOTT allow achieving extremely light weighted substrates up to 90% incorporating very thin ribs and face sheets. In 2012 new ZERODUR® grades EXPANSION CLASS 0 SPECIAL and EXTREME have been released that offer the tightest CTE grades ever. With ZERODUR® TAILORED it is even possible to offer ZERODUR® optimized for customer application temperature profiles. In 2013 SCHOTT started the development of a new dilatometer setup with the target to drive the industrial standard of high accuracy thermal expansion metrology to its limit. In recent years SCHOTT published several paper on improved bending strength of ZERODUR® and lifetime evaluation based on threshold values derived from 3 parameter Weibull distribution fitted to a multitude of stress data. ZERODUR® has been and is still being successfully used as mirror substrates for a large number of space missions. ZERODUR® was used for the secondary mirror in HST and for the Wolter mirrors in CHANDRA without any reported degradation of the optical image quality during the lifetime of the missions. Some years ago early studies on the compaction effects of electron radiation on ZERODUR® were re analyzed. Using a more relevant physical model based on a simplified bimetallic equation the expected deformation of samples exposed in laboratory and space could be predicted in a much more accurate way. The relevant ingredients for light weighted mirror substrates are discussed in this paper: substrate material with excellent homogeneity in its properties, sufficient bending strengths, space radiation hardness and CNC machining capabilities.

  18. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Keski-Kuha, R.; McKay, A.; Chaney, D.; Gallagher, B.; Ha, K.

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The .70x.51m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  19. Solar Thermal Propulsion Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  20. Research Technology

    NASA Image and Video Library

    1999-11-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

Top