Science.gov

Sample records for mirror symmetry breaking

  1. Natural Electroweak Breaking from a Mirror Symmetry

    SciTech Connect

    Chacko, Z.; Goh, Hock-Seng; Harnik, Roni

    2006-06-16

    We present ''twin Higgs models,'' simple realizations of the Higgs boson as a pseudo Goldstone boson that protect the weak scale from radiative corrections up to scales of order 5-10 TeV. In the ultraviolet these theories have a discrete symmetry which interchanges each standard model particle with a corresponding particle which transforms under a twin or a mirror standard model gauge group. In addition, the Higgs sector respects an approximate global symmetry. When this global symmetry is broken, the discrete symmetry tightly constrains the form of corrections to the pseudo Goldstone Higgs potential, allowing natural electroweak symmetry breaking. Precision electroweak constraints are satisfied by construction. These models demonstrate that, contrary to the conventional wisdom, stabilizing the weak scale does not require new light particles charged under the standard model gauge groups.

  2. Mirror-symmetry breakings in human sperm rheotaxis

    NASA Astrophysics Data System (ADS)

    Stoop, Norbert; Bukatin, Anton; Kukhtevich, Igor; Dunkel, Jörn; Kantsler, Vasily

    2015-11-01

    Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream-swimming of mammalian sperm cells along solid surfaces, suggesting a robust mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself w.r.t ambient flows is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments. We present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this analysis uncovers ambidextrous flagellar waveforms and shows that the cell's turning direction is is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror-symmetry in the midpiece section, likely arising from a buckling instability.

  3. Mirror-symmetry breakings in human sperm rheotaxis

    NASA Astrophysics Data System (ADS)

    Stoop, Norbert; Bukatin, Anton; Kukhtevich, Igor; Dunkel, Joern; Kantsler, Vasily

    Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream-swimming of mammalian sperm cells along solid surfaces, suggesting a robust mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself w.r.t. ambient flows is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments. We present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this analysis uncovers ambidextrous flagellar waveforms and shows that the cell's turning direction is is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror-symmetry in the midpiece section, likely arising from a buckling instability.

  4. Magnonic Band Engineering by Intrinsic and Extrinsic Mirror Symmetry Breaking in Antidot Spin-Wave Waveguides

    PubMed Central

    Kłos, J. W.; Kumar, D.; Krawczyk, M.; Barman, A.

    2013-01-01

    We theoretically study the spin-wave spectra in magnonic waveguides periodically patterned with nanoscale square antidots. We show that structural changes breaking the mirror symmetry of the waveguide can close the magnonic bandgap. The effect of these intrinsic symmetry breaking can be compensated by adjusted asymmetric external bias magnetic field, i.e., by an extrinsic factor. This allows for the recovery of the magnonic bandgaps. The described methods can be used for developing parallel models for recovering bandgaps closed due to a fabrication defect. The model developed here is particular to magnonics, an emerging field combining spin dynamics and spintronics. However, the underlying principle of this development is squarely based upon the translational and mirror symmetries, thus, we believe that this idea of correcting an intrinsic defect by extrinsic means, should be applicable to spin-waves in both exchange and dipolar interaction regimes, as well as to other waves in general. PMID:23945663

  5. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    PubMed

    Tschierske, Carsten; Ungar, Goran

    2016-01-04

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems.

  6. Symmetry breaking: a compact disc reflected in a mirror

    NASA Astrophysics Data System (ADS)

    Lúcio Prados Ribeiro, Jair

    2016-11-01

    If a compact disc (CD) is placed in front of a plane mirror, its image displays different colours from the ones observed in the real CD. This fact occurs because a CD surface is a diffraction grating which disperses the incident wavelengths. As the object and its image are seen from different viewing angles, the observed colours are not the same, so the image cannot be considered symmetrical to the object. A theoretical discussion on the topic and a simple experimental activity, adequate to secondary school, are presented.

  7. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids

    PubMed Central

    Słomka, Jonasz; Dunkel, Jörn

    2017-01-01

    Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade. PMID:28193853

  8. Amplification of enantiomeric excess, mirror-image symmetry breaking and kinetic proofreading in Soai reaction models with different oligomeric orders.

    PubMed

    Micheau, Jean-Claude; Coudret, Christophe; Cruz, José-Manuel; Buhse, Thomas

    2012-10-14

    A comprehensive kinetic analysis of three prototypical autocatalytic cycle models based on the absolute asymmetric Soai reaction is presented. The three models, which can give rise to amplification of enantiomeric excess and mirror-image symmetry breaking, vary by their monomeric, dimeric or trimeric order of the assumed catalytic species. Our numerical approach considered the entire chiral combinatorics of the diastereomeric interactions in the models as well as the multiplicity of coupled reversible reactions without applying fast equilibration or quasi-steady state approximations. For the simplest monomeric model, an extensive range of parameters was explored employing a random grid parameter scanning method that revealed the influence of the parameter values on the product distribution, the reaction-time, the attenuation or amplification of enantiomeric excess as well as on the presence or absence of mirror-image symmetry breaking. A symmetry breaking test was imposed on the three models showing that an increase in the catalytic oligomer size from one to three leads to a higher tolerance to poorer chiral recognition between the diastereoisomers and identifies the greater impact of the diastereoisomeric energy difference over an imperfect stereoselectivity in the catalytic step. This robustness is understood as a particular case of so-called kinetic proofreading in asymmetric autocatalysis.

  9. Nonsupersymmetric Dualities from Mirror Symmetry

    NASA Astrophysics Data System (ADS)

    Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia

    2017-01-01

    We study supersymmetry breaking perturbations of the simplest dual pair of (2 +1 )-dimensional N =2 supersymmetric field theories—the free chiral multiplet and N =2 super QED with a single flavor. We find dual descriptions of a phase diagram containing four distinct massive phases. The equivalence of the intervening critical theories gives rise to several nonsupersymmetric avatars of mirror symmetry: we find dualities relating scalar QED to a free fermion and Wilson-Fisher theories to both scalar and fermionic QED. Thus, mirror symmetry can be viewed as the multicritical parent duality from which these nonsupersymmetric dualities directly descend.

  10. Models for mirror symmetry breaking via β-sheet-controlled copolymerization: (i) mass balance and (ii) probabilistic treatment.

    PubMed

    Blanco, Celia; Hochberg, David

    2012-12-06

    Experimental mechanisms that yield the growth of homochiral copolymers over their heterochiral counterparts have been advocated by Lahav and co-workers. These chiral amplification mechanisms proceed through racemic β-sheet-controlled polymerization operative in both surface crystallites as well as in solution. We develop two complementary theoretical models for these template-induced desymmetrization processes leading to multicomponent homochiral copolymers. First, assuming reversible β-sheet formation, the equilibrium between the free monomer pool and the polymer strand within the template is assumed. This yields coupled nonlinear mass balance equations whose solutions are used to calculate enantiomeric excesses and average lengths of the homochiral chains formed. The second approach is a probabilistic treatment based on random polymerization. The occlusion probabilities depend on the polymerization activation energies for each monomer species and are proportional to the concentrations of the monomers in solution in the constant pool approximation. The monomer occlusion probabilities are represented geometrically in terms of unit simplexes from which conditions for maximizing or minimizing the likelihood for mirror symmetry breaking can be determined.

  11. Isospin symmetry breaking at high spin in the mirror nuclei Ar35 and Cl35

    NASA Astrophysics Data System (ADS)

    Vedova, F. Della; Lenzi, S. M.; Ionescu-Bujor, M.; Mărginean, N.; Axiotis, M.; Bazzacco, D.; Bizzeti-Sona, A. M.; Bizzeti, P. G.; Bracco, A.; Brandolini, F.; Bucurescu, D.; Farnea, E.; Iordachescu, A.; Lunardi, S.; Martínez, T.; Mason, P.; Menegazzo, R.; Million, B.; Napoli, D. R.; Nespolo, M.; Pavan, P.; Alvarez, C. Rossi; Ur, C. A.; Venturelli, R.; Zuker, A. P.

    2007-03-01

    High-spin states in Ar35 and Cl35 have been populated in the Mg24(O16, αn) and Mg24(O16, αp) reactions, respectively, at a beam energy of 70 MeV. The comparison between the level schemes of these mirror nuclei shows a striking asymmetry in the population yield of high-spin analog states of positive parity, which indicates different intensities of E1 transitions connecting positive- and negative-parity structures in both nuclei. Large energy differences are observed between analog states of negative parity with configurations of dominant pure single-particle character. This results from the comparison with large-scale shell-model calculations in the s1/2d3/2f7/2p3/2 valence space. It is shown that important contributions to the energy differences arise from the multipole Coulomb and the relativistic electromagnetic spin-orbit interactions.

  12. BOOK REVIEW: Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Ryder, L. H.

    2005-11-01

    One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would

  13. Chiral symmetry and chiral-symmetry breaking

    SciTech Connect

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  14. Modeling spontaneous breaking of time-translation symmetry

    NASA Astrophysics Data System (ADS)

    Sacha, Krzysztof

    2015-03-01

    We show that an ultracold atomic cloud bouncing on an oscillating mirror can reveal spontaneous breaking of a discrete time-translation symmetry. In many-body simulations, we illustrate the process of the symmetry breaking that can be induced by atomic losses or by a measurement of particle positions. The results pave the way for understanding and realization of the time crystal idea where crystalline structures form in the time domain due to spontaneous breaking of continuous time-translation symmetry.

  15. Electroweak Symmetry Breaking: With Dynamics

    SciTech Connect

    Chivukula, R. Sekhar

    2005-03-22

    In this note I provide a brief description of models of dynamical electroweak symmetry breaking, including walking technicolor, top-color assisted technicolor, the top-quark seesaw model, and little higgs theories.

  16. Charge Symmetry Breaking in Light Hypernuclei

    NASA Astrophysics Data System (ADS)

    Achenbach, Patrick

    2017-01-01

    Recently precise Λ-hyperon ground-state binding energies in light hypernuclei have been determined with novel techniques, in particular with a new generation of magnetic spectrometers. The precision spectroscopy results of Λ hypernuclei isomultiplets contributed considerably to the study of charge symmetry breaking in the strong interaction. At the Mainz Microtron MAMI the high-resolution spectroscopy of decay-pions in strangeness electro-production was used to extract the ground state binding energy in ^4_ΛH. This value was compared to the value of the isospin mirror hypernucleus ^4_ΛHe to confirm a sizable breaking of the charge symmetry. A synopsis for the values in the A = 7, 8, 9, and 10 hypernuclei suggests small or vanishing effects in other isomultiplets. The full understanding of the large and spin-dependent effect in the A = 4 mirror pair remains one of the open issues of hypernuclear physics.

  17. Electrons and Mirror Symmetry

    ScienceCinema

    Kumar, Krishna

    2016-07-12

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  18. Electrons and Mirror Symmetry

    SciTech Connect

    Kumar, Krishna

    2007-04-04

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  19. Spontaneous mirror symmetry breaking in the limited enantioselective autocatalysis model: abyssal hydrothermal vents as scenario for the emergence of chirality in prebiotic chemistry.

    PubMed

    Ribó, Josep M; Crusats, Joaquim; El-Hachemi, Zoubir; Moyano, Albert; Blanco, Celia; Hochberg, David

    2013-02-01

    The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution or in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continuous internal flow. In such conditions, the system can evolve, for certain reaction and system parameters, toward a chiral stationary state; that is, the system is able to reach a bifurcation point leading to SMSB. Numerical simulations in which reasonable chemical parameters have been used suggest that an adequate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temperature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role.

  20. Charge symmetry breaking in A = 4 hypernuclei

    NASA Astrophysics Data System (ADS)

    Achenbach, P.

    2016-11-01

    Charge symmetry breaking in the A = 4 hypernuclear system is reviewed. The data on binding energies of the mirror nuclei and hypernuclei are examined. At the Mainz Microtron MAMI the high-resolution spectroscopy of decay-pions in strangeness electro-production is used to extract the Λ hyperon ground state binding energy in 4ΛH. This binding energy is used together with the 4ΛHe ground state binding energy from nuclear emulsion experiments and with energy levels of the 1+ excited state for both hypernuclei from γ-ray spectroscopy to address the charge symmetry breaking in the strong interaction. The binding energy difference of the ground states in the mirror pair is reduced from its long accepted value ΔB4Λ(0+g.s.) ≈ 0.35MeV to ≈ 0.24MeV. The energy difference of the excited states becomes ΔB4Λ(1+exc) ≈ -0.08MeV, for the first time with opposite sign. These values were not reproduced by theoretical calculations with the exception of very recent approaches, although with a large systematic dependence. The full understanding of the charge symmetry breaking in the A = 4 hypernuclei still remains one of the open issues of hypernuclear physics.

  1. Symmetry-Breaking Motility

    NASA Astrophysics Data System (ADS)

    Lee, Allen; Lee, Ha Youn; Kardar, Mehran

    2005-09-01

    Locomotion of bacteria by actin polymerization and in vitro motion of spherical beads coated with a protein catalyzing polymerization are examples of active motility. Starting from a simple model of forces locally normal to the surface of a bead, we construct a phenomenological equation for its motion. The singularities at a continuous transition between moving and stationary beads are shown to be related to the symmetries of its shape. Universal features of the phase behavior are calculated analytically and confirmed by simulations. Fluctuations in velocity are shown to be generically non-Maxwellian and correlated to the shape of the bead.

  2. Mirror symmetry for Enriques surfaces

    NASA Astrophysics Data System (ADS)

    Lakuriqi, Enkeleida

    In this thesis, we investigate three separate but related projects. In the first one, we describe the geometric backgrounds of Type II string theory which are given by Enriques surfaces and their mirrors. We also study the effect of various string dualities on such backgrounds, in particular phase change in Gauged Linear Sigma Models and mirror symmetry. In the second project, we investigate special Kahler geometry in order to find canonical coordinates on the moduli of generalised Calabi-Yau spaces and the associated (2, 2) superconformal field theories. In the third project, we develop a general technique for computing the massless spectrum of (0, 2) quantum field theory compactified on a proper stack or an orbifold. We produce general formulas for the contribution of the twisted sectors and compute specific examples of compactifications on gerbes on projective spaces and Calabi-Yau threefolds.

  3. Baryon and chiral symmetry breaking

    SciTech Connect

    Gorsky, A.; Krikun, A.

    2014-07-23

    We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.

  4. Resonantly amplified vibronic symmetry breaking

    NASA Astrophysics Data System (ADS)

    Rathbone, G. J.; Poliakoff, E. D.; Bozek, John D.; Lucchese, R. R.

    2001-05-01

    The energy dependence of the vibrational branching ratio for exciting one quantum of bending is determined for CO2 4σg-1 photoionization. This nominally forbidden transition becomes allowed for a photoionization transition as a result of instantaneous symmetry breaking due to zero point motion, and is strongly enhanced by a continuum shape resonance.

  5. Resonantly amplified vibronic symmetry breaking

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Rathbone, G. J.; Bozek, J. D.; Lucchese, R. R.

    2002-05-01

    In photoelectron spectroscopy, it is normally assumed that excitation of a single quantum of a non-totally symmetric vibrational mode is forbidden owing to symmetry constraints. Using vibrationally resolved photoelectron spectroscopy over a broad spectral range, we have shown that a previously overlooked mechanism can lead to these nominally forbidden transitions. Specifically, the photoelectron can mediate the oscillator strength for such a transition via resonantly amplified vibronic symmetry breaking, and this effect results from intrachannel rather than interchannel coupling. In our first experiments, we focused on bending excitation accompanying CO2 photoionization. Photoelectron spectroscopy on the CO_2^+(C^2Σ_g^+) state showed that the excitation of the (010) vibrational mode is mediated by a shape resonant continuum electron. The degree of vibrational excitation can be substantial, and extensions to other types of symmetry breaking are currently being investigated.

  6. Symmetry Breaking During Drosophila Oogenesis

    PubMed Central

    Roth, Siegfried; Lynch, Jeremy A.

    2009-01-01

    The orthogonal axes of Drosophila are established during oogenesis through a hierarchical series of symmetry-breaking steps, most of which can be traced back to asymmetries inherent in the architecture of the ovary. Oogenesis begins with the formation of a germline cyst of 16 cells connected by ring canals. Two of these 16 cells have four ring canals, whereas the others have fewer. The first symmetry-breaking step is the selection of one of these two cells to become the oocyte. Subsequently, the germline cyst becomes surrounded by somatic follicle cells to generate individual egg chambers. The second symmetry-breaking step is the posterior positioning of the oocyte within the egg chamber, a process mediated by adhesive interactions with a special group of somatic cells. Posterior oocyte positioning is accompanied by a par gene-dependent repolarization of the microtubule network, which establishes the posterior cortex of the oocyte. The next two steps of symmetry breaking occur during midoogenesis after the volume of the oocyte has increased about 10-fold. First, a signal from the oocyte specifies posterior follicle cells, polarizing a symmetric prepattern present within the follicular epithelium. Second, the posterior follicle cells send a signal back to the oocyte, which leads to a second repolarization of the oocyte microtubule network and the asymmetric migration of the oocyte nucleus. This process again requires the par genes. The repolarization of the microtubule network results in the transport of bicoid and oskar mRNAs, the anterior and posterior determinants, respectively, of the embryonic axis, to opposite poles of the oocyte. The asymmetric positioning of the oocyte nucleus defines a cortical region of the oocyte where gurken mRNA is localized, thus breaking the dorsal–ventral symmetry of the egg and embryo. PMID:20066085

  7. Fermion mass without symmetry breaking

    NASA Astrophysics Data System (ADS)

    Catterall, Simon

    2016-01-01

    We examine a model of reduced staggered fermions in three dimensions interacting through an SO (4) invariant four fermion interaction. The model is similar to that considered in a recent paper by Ayyer and Chandrasekharan [1]. We present theoretical arguments and numerical evidence which support the idea that the system develops a mass gap for sufficiently strong four fermi coupling without producing a symmetry breaking fermion bilinear condensate. Massless and massive phases appear to be separated by a continuous phase transition.

  8. Explaining quantum spontaneous symmetry breaking

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Emch, Gérard G.

    Two accounts of quantum symmetry breaking (SSB) in the algebraic approach are compared: the representational and the decompositional account. The latter account is argued to be superior for understanding quantum SSB. Two exactly solvable models are given as applications of our account: the Weiss-Heisenberg model for ferromagnetism and the BCS model for superconductivity. Finally, the decompositional account is shown to be more conducive to the causal explanation of quantum SSB.

  9. Symmetry in context: salience of mirror symmetry in natural patterns.

    PubMed

    Cohen, Elias H; Zaidi, Qasim

    2013-05-31

    Symmetry is a biologically relevant, mathematically involving, and aesthetically compelling visual phenomenon. Mirror symmetry detection is considered particularly rapid and efficient, based on experiments with random noise. Symmetry detection in natural settings, however, is often accomplished against structured backgrounds. To measure salience of symmetry in diverse contexts, we assembled mirror symmetric patterns from 101 natural textures. Temporal thresholds for detecting the symmetry axis ranged from 28 to 568 ms indicating a wide range of salience (1/Threshold). We built a model for estimating symmetry-energy by connecting pairs of mirror-symmetric filters that simulated cortical receptive fields. The model easily identified the axis of symmetry for all patterns. However, symmetry-energy quantified at this axis correlated weakly with salience. To examine context effects on symmetry detection, we used the same model to estimate approximate symmetry resulting from the underlying texture throughout the image. Magnitudes of approximate symmetry at flanking and orthogonal axes showed strong negative correlations with salience, revealing context interference with symmetry detection. A regression model that included the context-based measures explained the salience results, and revealed why perceptual symmetry can differ from mathematical characterizations. Using natural patterns thus produces new insights into symmetry perception and its possible neural circuits.

  10. Symmetry in context: Salience of mirror symmetry in natural patterns

    PubMed Central

    Cohen, Elias H.; Zaidi, Qasim

    2013-01-01

    Symmetry is a biologically relevant, mathematically involving, and aesthetically compelling visual phenomenon. Mirror symmetry detection is considered particularly rapid and efficient, based on experiments with random noise. Symmetry detection in natural settings, however, is often accomplished against structured backgrounds. To measure salience of symmetry in diverse contexts, we assembled mirror symmetric patterns from 101 natural textures. Temporal thresholds for detecting the symmetry axis ranged from 28 to 568 ms indicating a wide range of salience (1/Threshold). We built a model for estimating symmetry-energy by connecting pairs of mirror-symmetric filters that simulated cortical receptive fields. The model easily identified the axis of symmetry for all patterns. However, symmetry-energy quantified at this axis correlated weakly with salience. To examine context effects on symmetry detection, we used the same model to estimate approximate symmetry resulting from the underlying texture throughout the image. Magnitudes of approximate symmetry at flanking and orthogonal axes showed strong negative correlations with salience, revealing context interference with symmetry detection. A regression model that included the context-based measures explained the salience results, and revealed why perceptual symmetry can differ from mathematical characterizations. Using natural patterns thus produces new insights into symmetry perception and its possible neural circuits. PMID:23729773

  11. History of electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Kibble, T. W. B.

    2015-07-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.

  12. Symmetry breaking and wake instabilities

    NASA Astrophysics Data System (ADS)

    Sengupta, Raja

    A numerical technique has been developed in the context of spatio-temporal stability analysis. The convective/absolute nature of instability determines the time-asymptotic response of a linearly unstable flow, either in the form an oscillator or in the form of a noise amplifier. This depends on the location of pinch point singularities of the dispersion relations obtained via linear stability analyses. A new and efficient approach to locate such singularities is presented. Local analyticity of the dispersion relations was exploited via the Cauchy-Riemann equations in a quasi-Newton's root- finding procedure employing numerical Jacobians. Initial guesses provided by temporal stability analyses have been shown to converge to the pinch points even in the presence of multiple saddle points for various Falkner- Skan wedge profiles. This effort was motivated by the phenomenon of spontaneous symmetry breaking in flow over a cone. At large enough incidence, a pair of vortices develop on the leeward side of the cone which eventually become asymmetric as the angle of attack is increased further. A conical, thin-layer Navier-Stokes solver was employed to investigate the effect of flowfield saddles in this process. The approximate factorization scheme incorporated in the solver was shown analytically to be symmetric to eliminate possible sources of asymmetry. Local grid resolution studies were performed to demonstrate the importance of correctly computing the leeside saddle point and the secondary separation and reattchment points. Topological studies of the flow field as it loses symmetry agreed well with previous qualitative experimental observations. However, the original goal of this study, to settle an ongoing controversy regarding the nature of the instability responsible for symmetry breaking, could not be realized due to computational inadequacy. It is conjectured that the process is governed by an absolute instability similar to that observed in a flow over a circular

  13. Electroweak symmetry breaking via QCD.

    PubMed

    Kubo, Jisuke; Lim, Kher Sham; Lindner, Manfred

    2014-08-29

    We propose a new mechanism to generate the electroweak scale within the framework of QCD, which is extended to include conformally invariant scalar degrees of freedom belonging to a larger irreducible representation of SU(3)c. The electroweak symmetry breaking is triggered dynamically via the Higgs portal by the condensation of the colored scalar field around 1 TeV. The mass of the colored boson is restricted to be 350  GeV≲mS≲3  TeV, with the upper bound obtained from perturbative renormalization group evolution. This implies that the colored boson can be produced at the LHC. If the colored boson is electrically charged, the branching fraction of the Higgs boson decaying into two photons can slightly increase, and moreover, it can be produced at future linear colliders. Our idea of nonperturbative electroweak scale generation can serve as a new starting point for more realistic model building in solving the hierarchy problem.

  14. Supersymmetric defect models and mirror symmetry

    SciTech Connect

    Hook, Anson; Kachru, Shamit; Torroba, Gonzalo

    2013-11-01

    We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.

  15. Topological symmetry breaking by quantum wormholes

    SciTech Connect

    Mignemi, S.; Moss, I. )

    1993-10-15

    In multiply connected spacetimes which contain quantum wormholes it may be possible to break gauge symmetries without the usual Higgs fields. In a simple model, symmetry breaking is favored by the quantum effects of Dirac Fermions and leads to vector boson masses related to the wormhole separation.

  16. Electroweak symmetry breaking: Top quard condensates

    SciTech Connect

    Bardeen, W.A.

    1990-12-01

    The fundamental mechanisms for the dynamical breaking of the electroweak gauge symmetries remain a mystery. This paper examines the possible role of heavy fermions, particularly the top quark, in generating the observed electroweak symmetry breaking, the masses of the W and Z bosons and the masses of all observed quarks and leptons. 27 refs., 10 figs., 4 tabs.

  17. Symmetry Breaking for Black-Scholes Equations

    NASA Astrophysics Data System (ADS)

    Yang, Xuan-Liu; Zhang, Shun-Li; Qu, Chang-Zheng

    2007-06-01

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  18. Dynamical Symmetry Breaking of Extended Gauge Symmetries

    NASA Astrophysics Data System (ADS)

    Appelquist, Thomas; Shrock, Robert

    2003-05-01

    We construct asymptotically free gauge theories exhibiting dynamical breaking of the left-right gauge group GLR=SU(3)c×SU(2)L×SU(2)R×U(1)B-L, and its extension to the Pati-Salam gauge group G422=SU(4)PS×SU(2)L×SU(2)R. The models incorporate technicolor for electroweak breaking, and extended technicolor for the breaking of GLR and G422 and the generation of fermion masses. They include a seesaw mechanism for neutrino masses, without a grand unified theory (GUT) scale. These models explain why GLR and G422 break to SU(3)c×SU(2)L×U(1)Y, and why this takes place at a scale (˜103 TeV) large compared to the electroweak scale, but much smaller than a GUT scale.

  19. Bilateral symmetry breaking in nonlinear circular cylinders.

    PubMed

    Yuan, Lijun; Lu, Ya Yan

    2014-12-01

    Symmetry breaking is a common phenomenon in nonlinear systems, it refers to the existence of solutions that do not preserve the original symmetries of the underlying system. In nonlinear optics, symmetry breaking has been previously investigated in a number of systems, usually based on simplified model equations or temporal coupled mode theories. In this paper, we analyze the scattering of an incident plane wave by one or two circular cylinders with a Kerr nonlinearity, and show the existence of solutions that break a lateral reflection symmetry. Although symmetry breaking is a known phenomenon in nonlinear optics, it is the first time that this phenomenon was rigorously studied in simple systems with one or two circular cylinders.

  20. FJRW-Rings and Mirror Symmetry

    NASA Astrophysics Data System (ADS)

    Krawitz, Marc; Priddis, Nathan; Acosta, Pedro; Bergin, Natalie; Rathnakumara, Himal

    2010-05-01

    The Landau-Ginzburg Mirror Symmetry Conjecture states that for an invertible quasi-homogeneous singularity W and its maximal group G of diagonal symmetries, there is a dual singularity W T such that the orbifold A-model of W/ G is isomorphic to the B-model of W T . The Landau-Ginzburg A-model is the Frobenius algebra {fancyscript{H}_{W,G}} constructed by Fan, Jarvis, and Ruan, and the B-model is the orbifold Milnor ring of W T . We verify the Landau-Ginzburg Mirror Symmetry Conjecture for Arnol’d’s list of unimodal and bimodal quasi-homogeneous singularities with G the maximal diagonal symmetry group, and include a discussion of eight axioms which facilitate the computation of FJRW-rings.

  1. Gauge Theories and Spontaneous Symmetry Breaking.

    DTIC Science & Technology

    1980-11-01

    breaking spontaneous symmetric breaking , Higgs mechanism bifurcation problem RATr0ACT’fwwdhn om pea71 Ul nonmevi dumad #~lyb block Im.,) his report is a...field theories. It was felt that the symmetry breaking used by the physicists LiI (a procedure known as the Higgs mechanism) is not precisely a...feeling, after some discussions, that the symmctry breaking used by the phyalciuts (a procedure known as the Higgs mechanism) is not precisely a

  2. Spontaneous chiral symmetry breaking in metamaterials.

    PubMed

    Liu, Mingkai; Powell, David A; Shadrivov, Ilya V; Lapine, Mikhail; Kivshar, Yuri S

    2014-07-18

    Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.

  3. Symmetry breaking of quasihelical stellarator equilibria

    SciTech Connect

    Weening, R.H. )

    1993-04-01

    A mean-field Ohm's law is used to determine the effects of the bootstrap current on quasihelically symmetric stellarator equilibria. The Ohm's law leads to the conclusion that the effects of the bootstrap current break the quasihelical stellarator symmetry at second order in an inverse aspect ratio expansion of the magnetic field strength. The level of symmetry breaking suggests that good approximations to quasihelical stellarator fusion reactors may not be attainable.

  4. Symmetry breaking around a wormhole

    NASA Astrophysics Data System (ADS)

    Choudhury, A. L.

    1996-11-01

    We have modified the extended version Coule and Maeda's version (D. H. Coule and Kei-ichi Maeda, Class.Quant.Grav.7,995(1990)) of the Gidding-Strominger model (S. B. Giddings and A. Strominger, Nucl.Phys. B307, 854(l988)) of the euclidean gravitational field interacting with axion. The new model has R-symmetry in contrast to the previous model. At the lowest perturbation case the model retains a wormhole solution. We assume that the scalar expands adiabatically and satisfies ideal gas law in a crude first approximation. Under the Higg's mechanism the symmetry can be broken at the tree approximation. This mechanism, we hope, can be used to introduce the degeneracy of quark masses.

  5. Workshop on electroweak symmetry breaking: proceedings

    SciTech Connect

    Hinchliffe, I.

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  6. Mutual information and spontaneous symmetry breaking

    NASA Astrophysics Data System (ADS)

    Hamma, A.; Giampaolo, S. M.; Illuminati, F.

    2016-01-01

    We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have vanishing quantum mutual information between macroscopically separated regions and are thus the most classical ones among all possible quantum ground states. This statement is obvious only when the symmetry-breaking ground states are simple product states, e.g., at the factorization point. On the other hand, symmetry-breaking states are in general entangled along the entire ordered phase, and to show that they actually feature the least macroscopic correlations compared to their symmetric superpositions is highly nontrivial. We prove this result in general, by considering the quantum mutual information based on the two-Rényi entanglement entropy and using a locality result stemming from quasiadiabatic continuation. Moreover, in the paradigmatic case of the exactly solvable one-dimensional quantum X Y model, we further verify the general result by considering also the quantum mutual information based on the von Neumann entanglement entropy.

  7. PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard

    NASA Astrophysics Data System (ADS)

    Bittner, S.; Dietz, B.; Günther, U.; Harney, H. L.; Miski-Oglu, M.; Richter, A.; Schäfer, F.

    2012-01-01

    We demonstrate the presence of parity-time (PT) symmetry for the non-Hermitian two-state Hamiltonian of a dissipative microwave billiard in the vicinity of an exceptional point (EP). The shape of the billiard depends on two parameters. The Hamiltonian is determined from the measured resonance spectrum on a fine grid in the parameter plane. After applying a purely imaginary diagonal shift to the Hamiltonian, its eigenvalues are either real or complex conjugate on a curve, which passes through the EP. An appropriate basis choice reveals its PT symmetry. Spontaneous symmetry breaking occurs at the EP.

  8. Symmetry-breaking oscillations in membrane optomechanics

    NASA Astrophysics Data System (ADS)

    Wurl, C.; Alvermann, A.; Fehske, H.

    2016-12-01

    We study the classical dynamics of a membrane inside a cavity in the situation where this optomechanical system possesses a reflection symmetry. Symmetry breaking occurs through supercritical and subcritical pitchfork bifurcations of the static fixed-point solutions. Both bifurcations can be observed through variation of the laser-cavity detuning, which gives rise to a boomerang-like fixed-point pattern with hysteresis. The symmetry-breaking fixed points evolve into self-sustained oscillations when the laser intensity is increased. In addition to the analysis of the accompanying Hopf bifurcations we describe these oscillations at finite amplitudes with an ansatz that fully accounts for the frequency shift relative to the natural membrane frequency. We complete our study by following the route to chaos for the membrane dynamics.

  9. Charge symmetry breaking two-pion exchange

    SciTech Connect

    Niskanen, J.A. )

    1992-06-01

    Two-pion exchange (TPE) contribution to the charge symmetry breaking class IV neutron-proton interaction is examined in a potential and coupled channels approach. Based on nonrelativistic {pi}{ital NN} and {pi}{ital N}{Delta} vertices, a TPE interaction is treated in two ways, as a potential or as a part calculable by the coupled channels method plus a residual potential interaction. A practical parametrization of the TPE potentials is given, which can also be used in the case of class III charge symmetry breaking (CSB) forces as well as for charge symmetric interactions. The results show that below 300 MeV the TPE contribution to CSB in elastic {ital np} scattering is insignificant, whereas at higher energies it should not be neglected.

  10. Mechanochemical Symmetry Breaking in Hydra Aggregates

    PubMed Central

    Mercker, Moritz; Köthe, Alexandra; Marciniak-Czochra, Anna

    2015-01-01

    Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of mechanochemical symmetry breaking in Hydra. PMID:25954896

  11. Topological Symmetry Breaking in Viscous Coarsening

    NASA Astrophysics Data System (ADS)

    Bouttes, David; Gouillart, Emmanuelle; Vandembroucq, Damien

    2016-09-01

    The crucial role of hydrodynamic pinch-off instabilities is evidenced in the coarsening stage of viscous liquids. The phase separation of a barium borosilicate glass melt is studied by in situ synchrotron tomography at high temperature. The high viscosity contrast between the less viscous phase and the more viscous phase induces a topological symmetry breaking: capillary breakups occur preferentially in the less viscous phase. As a result, contrasting morphologies are obtained in the two phases. This symmetry breaking is illustrated on three different glass compositions, corresponding to different volume fractions of the two phases. In particular, a fragmentation phenomenon, reminiscent of the end-pinching mechanism proposed by Stone and co-workers is evidenced in the less viscous phase.

  12. Electroweak Symmetry Breaking in Historical Perspective

    DOE PAGES

    Quigg, Chris

    2015-10-01

    The discovery of the Higgs boson is a major milestone in our progress toward understanding the natural world. A particular aim of my review is to show how diverse ideas came together in the conception of electroweak symmetry breaking that led up to the discovery. Furthermore, I survey what we know now that we did not know before, what properties of the Higgs boson remain to be established, and what new questions we may now hope to address.

  13. Spontaneous Symmetry Breaking in Interdependent Networked Game

    NASA Astrophysics Data System (ADS)

    Jin, Qing; Wang, Lin; Xia, Cheng-Yi; Wang, Zhen

    2014-02-01

    Spatial evolution game has traditionally assumed that players interact with direct neighbors on a single network, which is isolated and not influenced by other systems. However, this is not fully consistent with recent research identification that interactions between networks play a crucial rule for the outcome of evolutionary games taking place on them. In this work, we introduce the simple game model into the interdependent networks composed of two networks. By means of imitation dynamics, we display that when the interdependent factor α is smaller than a threshold value αC, the symmetry of cooperation can be guaranteed. Interestingly, as interdependent factor exceeds αC, spontaneous symmetry breaking of fraction of cooperators presents itself between different networks. With respect to the breakage of symmetry, it is induced by asynchronous expansion between heterogeneous strategy couples of both networks, which further enriches the content of spatial reciprocity. Moreover, our results can be well predicted by the strategy-couple pair approximation method.

  14. Golden Probe of Electroweak Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Lykken, Joe; Spiropulu, Maria; Stolarski, Daniel; Vega-Morales, Roberto

    2016-12-01

    The ratio of the Higgs couplings to W W and Z Z pairs, λW Z, is a fundamental parameter in electroweak symmetry breaking as well as a measure of the (approximate) custodial symmetry possessed by the gauge boson mass matrix. We show that Higgs decays to four leptons are sensitive, via tree level or one-loop interference effects, to both the magnitude and, in particular, overall sign of λW Z. Determining this sign requires interference effects, as it is nearly impossible to measure with rate information. Furthermore, simply determining the sign effectively establishes the custodial representation of the Higgs boson. We find that h →4 ℓ (4 ℓ≡2 e 2 μ , 4 e , 4 μ ) decays have excellent prospects of directly establishing the overall sign at a high luminosity 13 TeV LHC. We also examine the ultimate LHC sensitivity in h →4 ℓ to the magnitude of λW Z. Our results are independent of other measurements of the Higgs boson couplings and, in particular, largely free of assumptions about the top quark Yukawa couplings which also enter at one loop. This makes h →4 ℓ a unique and independent probe of electroweak symmetry breaking and custodial symmetry.

  15. Charge symmetry breaking in the A = 4 hypernuclei

    NASA Astrophysics Data System (ADS)

    Gazda, Daniel; Gal, Avraham

    2016-10-01

    Charge symmetry breaking (CSB) in the Λ-nucleon strong interaction generates a charge dependence of Λ separation energies in mirror hypernuclei, which in the case of the A = 4 mirror hypernuclei 0+ ground states is sizable, ΔBΛJ=0 ≡BΛJ=0 (He4Λ) -BΛJ=0 (H4Λ) = 230 ± 90 keV, and of opposite sign to that induced by the Coulomb repulsion in light hypernuclei. Recent ab initio calculations of the (H4Λ, He4Λ) mirror hypernuclei 0g.s.+ and 1exc+ levels have demonstrated that a Λ -Σ0 mixing CSB model due to Dalitz and von Hippel (1964) is capable of reproducing this large value of ΔBΛJ=0. These calculations are discussed here with emphasis placed on the leading-order chiral EFT hyperon-nucleon Bonn-Jülich strong-interaction potential model used and the no-core shell-model calculational scheme applied. The role of one-pion exchange in producing sizable CSB level splittings in the A = 4 mirror hypernuclei is discussed.

  16. Confinement and flavor symmetry breaking via monopolecondensation

    SciTech Connect

    Murayama, Hitoshi

    2000-09-19

    We discuss dynamics of N=2 supersymmetric SU(n_c) gaugetheories with n_f quark hypermultiplets. Upon N=1 perturbation ofintroducing a finite mass for the adjoint chiral multiplet, we show thatthe flavor U(n_f) symmetry is dynamically broken to U(r) times U(n_f-r),where r\\leq [n_f/2]is an integer. This flavor symmetry breaking occursdue to the condensates of magnetic degrees of freedom which acquireflavor quantum numbers due to the quark zero modes. We briefly comment onthe USp(2n_c) gauge theories. This talk is based on works with GiuseppeCarlino and Ken Konishi, hep-th/0001036 and hep-th/0005076.

  17. Spontaneous symmetry breaking in quasi one dimension

    SciTech Connect

    Satpathi, Urbashi Deo, P. Singha

    2015-06-24

    Electronic charge and spin separation leading to charge density wave and spin density wave is well established in one dimension in the presence and absence of Coulomb interaction. We start from quasi one dimension and show the possibility of such a transition in quasi one dimension as well as in two dimensions by going to a regime where it can be shown for electrons that just interact via Fermi statistics. Such density waves arise due to internal symmetry breaking in a many fermion quantum system. We can extend this result to very wide rings with infinitely many electrons including Coulomb interaction.

  18. Electroweak symmetry breaking by extra dimensions

    SciTech Connect

    Hsin-Chia Cheng; Bogdan A. Dobrescu and Christopher T. Hill

    2000-05-25

    Electroweak symmetry breaking may be naturally induced by the observed quark and gauge fields in extra dimensions without a fundamental Higgs field. The authors show that a composite Higgs doublet can arise as a bound state of (t,b){sub L} and a linear combination of the Kaluza-Klein states of t{sub R}, due to QCD in extra dimensions. The top quark mass depends on the number of active t{sub R} Kaluza-Klein modes, and is consistent with the experimental value.

  19. Cosmology of biased discrete symmetry breaking

    NASA Technical Reports Server (NTRS)

    Gelmini, Graciela B.; Gleiser, Marcelo; Kolb, Edward W.

    1988-01-01

    The cosmological consequences of spontaneous breaking of an approximate discrete symmetry are studied. The breaking leads to formation of proto-domains of false and true vacuum separated by domain walls of thickness determined by the mass scale of the model. The cosmological evolution of the walls is extremely sensitive to the magnitude of the biasing; several scenarios are possible, depending on the interplay between the surface tension on the walls and the volume pressure from the biasing. Walls may disappear almost immediately after they form, or may live long enough to dominate the energy density of the Universe and cause power-law inflation. Limits are obtained on the biasing that characterizes each possible scenario.

  20. Can a Topological Approach Predict Spin-Symmetry Breaking in Conjugated Hydrocarbons?

    PubMed

    Malrieu, Jean-Paul; Trinquier, Georges

    2016-12-08

    The closed-shell mean-field single determinants of large alternant hydrocarbons are frequently unstable with respect to a possible spin-symmetry breaking which produces different orbitals for the α and β electrons, either in Hartree-Fock or in Kohn-Sham DFT calculations. The present work shows that one may easily predict whether such a symmetry breaking will take place from the elementary topological Hückel Hamiltonian which introduces a simple hopping integral t. The demonstration makes use of the simplest representation of the bielectronic repulsion, namely, the Hubbard bielectronic operator, reduced to an on-site repulsion U, and takes benefit of the mirror theorem. A recipe is proposed to determine the relevant t/U ratio for a given exchange-correlation potential. The symmetry-breaking phenomenon first concerns the mixing between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), but it may eventually run on other pairs of mirror orbitals. These symmetry breakings may take place while the other molecular orbitals keep a closed-shell character. The spin polarization of these MOs, appearing in typical unrestricted mean-field calculations, is an induced and amplifying effect, which has to be distinguished from the symmetry breaking itself. Special attention is paid to the possible appearance of multiple symmetry breakings, leading to a polyradical character. The model is tested on six series of polycyclic hydrocarbons. This elementary approach sheds new arguments on the debate concerning the di- or polyradical character of polyacenes.

  1. Flavor symmetry breaking and meson masses.

    SciTech Connect

    Bhagwat, M. S.; Chang, L.; Liu, Y.-X.; Roberts, C. D.; Tandy, P. C.; Physics; Peking Univ.; National Lab. of Heavy Ion Accelerator; The Key Lab. of Heavy Ion Physics; Kent State Univ.

    2007-10-01

    The axial-vector Ward-Takahashi identity is used to derive mass formulas for neutral pseudoscalar mesons. Flavor symmetry breaking entails nonideal flavor content for these states. Adding that the {eta} is not a Goldstone mode, exact chiral-limit relations are developed from the identity. They connect the dressed-quark propagator to the topological susceptibility. It is confirmed that in the chiral limit the {eta} mass is proportional to the matrix element which connects this state to the vacuum via the topological susceptibility. The implications of the mass formulas are illustrated using an elementary dynamical model, which includes an Ansatz for that part of the Bethe-Salpeter kernel related to the non-Abelian anomaly. In addition to the current-quark masses, the model involves two parameters, one of which is a mass-scale. It is employed in an analysis of pseudoscalar- and vector-meson bound-states. While the effects of SU(N{sub f}=2) and SU(N{sub f}=3) flavor symmetry breaking are emphasized, the five-flavor spectra are described. Despite its simplicity, the model is elucidative and phenomenologically efficacious; e.g., it predicts {eta}-{eta} mixing angles of {approx} -15{sup o} and {pi}{sup 0}-{eta} angles of {approx}1{sup o}.

  2. Spontaneous Symmetry Breaking in Interdependent Networked Game

    PubMed Central

    Jin, Qing; Wang, Lin; Xia, Cheng-Yi; Wang, Zhen

    2014-01-01

    Spatial evolution game has traditionally assumed that players interact with direct neighbors on a single network, which is isolated and not influenced by other systems. However, this is not fully consistent with recent research identification that interactions between networks play a crucial rule for the outcome of evolutionary games taking place on them. In this work, we introduce the simple game model into the interdependent networks composed of two networks. By means of imitation dynamics, we display that when the interdependent factor α is smaller than a threshold value αC, the symmetry of cooperation can be guaranteed. Interestingly, as interdependent factor exceeds αC, spontaneous symmetry breaking of fraction of cooperators presents itself between different networks. With respect to the breakage of symmetry, it is induced by asynchronous expansion between heterogeneous strategy couples of both networks, which further enriches the content of spatial reciprocity. Moreover, our results can be well predicted by the strategy-couple pair approximation method. PMID:24526076

  3. Exploring Symmetry Breaking at the Dicke Quantum Phase Transition

    SciTech Connect

    Baumann, K.; Mottl, R.; Brennecke, F.; Esslinger, T.

    2011-09-30

    We study symmetry breaking at the Dicke quantum phase transition by coupling a motional degree of freedom of a Bose-Einstein condensate to the field of an optical cavity. Using an optical heterodyne detection scheme, we observe symmetry breaking in real time and distinguish the two superradiant phases. We explore the process of symmetry breaking in the presence of a small symmetry-breaking field and study its dependence on the rate at which the critical point is crossed. Coherent switching between the two ordered phases is demonstrated.

  4. Applications of Symmetry Breaking in Determining PDFs of the Nucleon

    NASA Astrophysics Data System (ADS)

    Cao, Fu-Guang

    2011-12-01

    Studying the possible breaking of various parton model symmetries by the parton distribution functions of the nucleon can provide important information for the non-perturbative structure of hadrons and the strong interaction. We review theoretical calculations for the breaking of flavor symmetry, quark-antiquark symmetry and charge symmetry in the unpolarized and polarized nucleons using the meson cloud model. We report an estimation for the total distribution of strange and antistrange quarks in the nucleon by combining theoretical calculations of SU(3) flavor symmetry breaking with light antiquark distributions obtained from global analysis of available experimental data.

  5. Passive appendages generate drift through symmetry breaking

    PubMed Central

    Lācis, U.; Brosse, N.; Ingremeau, F.; Mazzino, A.; Lundell, F.; Kellay, H.; Bagheri, S.

    2014-01-01

    Plants and animals use plumes, barbs, tails, feathers, hairs and fins to aid locomotion. Many of these appendages are not actively controlled, instead they have to interact passively with the surrounding fluid to generate motion. Here, we use theory, experiments and numerical simulations to show that an object with a protrusion in a separated flow drifts sideways by exploiting a symmetry-breaking instability similar to the instability of an inverted pendulum. Our model explains why the straight position of an appendage in a fluid flow is unstable and how it stabilizes either to the left or right of the incoming flow direction. It is plausible that organisms with appendages in a separated flow use this newly discovered mechanism for locomotion; examples include the drift of plumed seeds without wind and the passive reorientation of motile animals. PMID:25354545

  6. Spontaneous Planar Chiral Symmetry Breaking in Cells

    NASA Astrophysics Data System (ADS)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  7. Breaking temporal symmetries for emission and absorption

    PubMed Central

    Hadad, Yakir; Soric, Jason C.; Alu, Andrea

    2016-01-01

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff’s law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω,θ)=a(ω,θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies. PMID:26984502

  8. Breaking temporal symmetries for emission and absorption

    NASA Astrophysics Data System (ADS)

    Hadad, Yakir; Soric, Jason C.; Alu, Andrea

    2016-03-01

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff's law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω,θ)=a(ω,θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies.

  9. Identical Wells, Symmetry Breaking, and the Near-Unitary Limit

    NASA Astrophysics Data System (ADS)

    Harshman, N. L.

    2017-03-01

    Energy level splitting from the unitary limit of contact interactions to the near unitary limit for a few identical atoms in an effectively one-dimensional well can be understood as an example of symmetry breaking. At the unitary limit in addition to particle permutation symmetry there is a larger symmetry corresponding to exchanging the N! possible orderings of N particles. In the near unitary limit, this larger symmetry is broken, and different shapes of traps break the symmetry to different degrees. This brief note exploits these symmetries to present a useful, geometric analogy with graph theory and build an algebraic framework for calculating energy splitting in the near unitary limit.

  10. Spontaneous Breaking of Lie Groups to Discrete Symmetries

    NASA Astrophysics Data System (ADS)

    Rachlin, Bradley; Kephart, Thomas

    2017-01-01

    Many models of beyond Standard Model physics connect flavor symmetry with a discrete group. Having this symmetry arise spontaneously from a gauge theory maintains compatibility with quantum gravity and prevents anomalies. We detail ways to set up Higgs potentials to break gauge groups to discrete symmetries of interest. The scalar mass spectra are examined. Research Assistantship funded by Department of Energy (DOE).

  11. Optimal Spatial Harvesting Strategy and Symmetry-Breaking

    SciTech Connect

    Kurata, Kazuhiro Shi Junping

    2008-08-15

    A reaction-diffusion model with logistic growth and constant effort harvesting is considered. By minimizing an intrinsic biological energy function, we obtain an optimal spatial harvesting strategy which will benefit the population the most. The symmetry properties of the optimal strategy are also discussed, and related symmetry preserving and symmetry breaking phenomena are shown with several typical examples of habitats.

  12. Links between flavor and electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Hou, George Wei-Shu

    2014-08-01

    Fermion mass generation in the standard model was invented by Weinberg, while it is an old notion that strong Yukawa coupling could be the agent of electroweak symmetry breaking. Observation of the 126 GeV boson has crashed the prospects for such a heavy chiral quark doublet Q. However, the dilaton possibility can only be ruled out by confirming vector boson fusion with Run 2 data at the LHC, which starts only in 2015. We recast the Q\\bar Q condensation scenario as Fermi-Yang model v2.0. A Gap Equation has been constructed, with numerical solution demonstrating dynamical mQ generation; scale invariance of this equation may be consistent with a dilaton. Other consequences to be checked are Q\\bar Q -> n VL "annihilation stars," and enhanced Bd →μ+μ-, KL →π0νν, and possibly sin ϕs. If verified in Nature, the Agent of BEH mechanism would differ from current perception, the 126 GeV boson would be the first New Physics at the LHC, and we would have enough CP violation for baryogenesis.

  13. Parametric Symmetry Breaking in a Nonlinear Resonator

    NASA Astrophysics Data System (ADS)

    Leuch, Anina; Papariello, Luca; Zilberberg, Oded; Degen, Christian L.; Chitra, R.; Eichler, Alexander

    2016-11-01

    Much of the physical world around us can be described in terms of harmonic oscillators in thermodynamic equilibrium. At the same time, the far-from-equilibrium behavior of oscillators is important in many aspects of modern physics. Here, we investigate a resonating system subject to a fundamental interplay between intrinsic nonlinearities and a combination of several driving forces. We have constructed a controllable and robust realization of such a system using a macroscopic doubly clamped string. We experimentally observe a hitherto unseen double hysteresis in both the amplitude and the phase of the resonator's response function and present a theoretical model that is in excellent agreement with the experiment. Our work unveils that the double hysteresis is a manifestation of an out-of-equilibrium symmetry breaking between parametric phase states. Such a fundamental phenomenon, in the most ubiquitous building block of nature, paves the way for the investigation of new dynamical phases of matter in parametrically driven many-body systems and motivates applications ranging from ultrasensitive force detection to low-energy computing memory units.

  14. A Molecular Model for Chiral Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Latinwo, Folarin; Stillinger, Frank; Debenedetti, Pablo

    In this work, we present a new class of molecular models for chiral phenomena in condensed matter systems. A key feature of these models is the ability of the four-site (tetramer) ``molecules'' to inter-convert between two distinct chiral forms (enantiomers). Given this feature, we use analytical theory and computer simulations to investigate the emergent chiral properties (including symmetry breaking) over a range of conditions. In particular, we consider the single-molecule level and condensed-phase behavior of our model system. Interestingly, we find that our liquid-phase predictions are in excellent agreement with recent experimental reports on chiral self-sorting in isotropic liquids. From this perspective, our model demonstrates accurate predictive capabilities, as well as a platform for understanding the microscopic origins of a variety of chiral phenomena. In a broader context, we anticipate that this class of models will be relevant to chirality-dominated areas such as the pharmaceutical industry and pre-biotic geochemistry.

  15. Dynamical Electroweak Symmetry Breaking from Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Hashimoto, Michio; Tanabashi, Masaharu; Yamawaki, Koichi

    2003-08-01

    We study the dynamical electroweak symmetry breaking (DEWSB) in the D(= 6, 8, ⋯)-dimensional bulk with compactified extra dimensions. We identify the critical binding strength for triggering the DEWSB, based on the ladder Schwinger-Dyson equation. In the top mode standard model with extra dimensions, where the standard model gauge bosons and the third generation of quarks and leptons are put in the bulk, we analyze the most attractive channel (MAC) by using renormalization group equations (RGEs) of (dimensionless) bulk gauge couplings and determine the effective cutoff where the MAC coupling exceeds the critical value. We then find that the top-condensation can take place for D = 8. Combining RGEs of top-Yukawa and Higgs-quartic couplings with compositeness conditions, we predict the top mass, mt = 173 - 180 GeV, and the Higgs mass, mH = 181 - 211 GeV, for D = 8, where we took the universal compactification scale 1/R = 1 - 100 TeV.

  16. Spontaneous breaking of the BRST symmetry in the ABJM theory

    NASA Astrophysics Data System (ADS)

    Faizal, Mir; Upadhyay, Sudhaker

    2014-09-01

    In this paper, we will analyze the ghost condensation in the ABJM theory. We will perform our analysis in N=1 superspace. We show that in the Delbourgo-Jarvis-Baulieu-Thierry-Mieg gauge the spontaneous breaking of BRST symmetry can occur in the ABJM theory. This spontaneous breaking of BRST symmetry is caused by ghost-anti-ghost condensation. We will also show that in the ABJM theory, the ghost-anti-ghost condensates remain present in the modified abelian gauge. Thus, the spontaneous breaking of BRST symmetry in ABJM theory can even occur in the modified abelian gauge.

  17. Elastoconductivity as a probe of broken mirror symmetries

    SciTech Connect

    Hlobil, Patrik; Maharaj, Akash V.; Hosur, Pavan; Shapiro, M. C.; Fisher, I. R.; Raghu, S.

    2015-07-27

    We propose the possible detection of broken mirror symmetries in correlated two-dimensional materials by elastotransport measurements. Using linear response theory we calculate the“shear conductivity” Γ x x , x y , defined as the linear change of the longitudinal conductivity σ x x due to a shear strain ε x y . This quantity can only be nonvanishing when in-plane mirror symmetries are broken and we discuss how candidate states in the cuprate pseudogap regime (e.g., various loop current or charge orders) may exhibit a finite shear conductivity. We also provide a realistic experimental protocol for detecting such a response.

  18. Symmetry breaking and the geometry of reduced density matrices

    NASA Astrophysics Data System (ADS)

    Zauner, V.; Draxler, D.; Vanderstraeten, L.; Haegeman, J.; Verstraete, F.

    2016-11-01

    The concept of symmetry breaking and the emergence of corresponding local order parameters constitute the pillars of modern day many body physics. We demonstrate that the existence of symmetry breaking is a consequence of the geometric structure of the convex set of reduced density matrices of all possible many body wavefunctions. The surfaces of these convex bodies exhibit non-analyticities, which signal the emergence of symmetry breaking and of an associated order parameter and also show different characteristics for different types of phase transitions. We illustrate this with three paradigmatic examples of many body systems exhibiting symmetry breaking: the quantum Ising model, the classical q-state Potts model in two-dimensions at finite temperature and the ideal Bose gas in three-dimensions at finite temperature. This state based viewpoint on phase transitions provides a unique novel tool for studying exotic many body phenomena in quantum and classical systems.

  19. Studies of Electroweak Symmetry Breaking at Mexican Institutions

    SciTech Connect

    Diaz Cruz, J. Lorenzo

    2006-09-25

    This paper is aimed to review the contribution made by scientists working at Mexican Institutions on the subject of Electroweak symmetry breaking. This review covers the period from the 80 up to the present.

  20. Catalysis of dynamical chiral symmetry breaking by chiral chemical potential

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.; Kotov, A. Yu.

    2016-05-01

    In this paper, we study the properties of media with chiral imbalance parametrized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus, the chiral chemical potential plays the role of the catalyst of dynamical chiral symmetry breaking. Physically, this effect results from the appearance of the Fermi surface and additional fermion states on this surface, which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  1. Research on Electroweak and Flavor Symmetry Breaking

    SciTech Connect

    Lane, Kenneth Douglas

    2013-05-01

    Abstract of Project Summary, as written in August 2012: The objective of this research is the primary one of the Large Hadron Collider (LHC) at CERN in Geneva: the discovery and study of the origin of electroweak symmetry breaking (EWSB). This is the mission of the LHC's two large general-purpose detectors, ATLAS and CMS. Lane's approach to this goal assumes that a new strong interaction at the electroweak energy scale of 100's of GeV, called ``technicolor'' (TC), is responsible for triggering EWSB. He is one of the developers of technicolor, particularly of its flavor-physics component, called extended technicolor (ETC). The TC/ETC theory of this physics provides not only the dynamics of EWSB, but also an understanding of the types (flavors) of quarks and leptons and of their masses and mixing. The main thrust of this research involves close collaboration with members of ATLAS and CMS to search for the signatures of TC/ETC that are most accessible experimentally. These are new, rather heavy, spin-one particles --- technivector bosons ($\\tro$, $\\tom$, $\\ta$) --- readily produced at the LHC and decaying into electroweak bosons, $\\gamma, W, Z$, and spin-zero bosons called technipions, $\\tpi$. If these particles exist, they hold the key to understanding flavor physics. A very important recent development at the LHC is the discovery of a new 125-GeV boson decaying into $\\gamma\\gamma$, $ZZ$ and $WW$. This particle is widely suspected to be the long-sought Higgs boson, a basic component of the so-called standard model of EWSB. But, from a purely theoretical standpoint, this resolution to the origin of EWSB is very unsatisfactory. Moreover, there are interesting and possibly significant discrepancies of the data with this interpretation. Lane and collaborators are proposing that this boson is, in fact, a special kind of technipion. He is also working with ATLAS experimentalists to test this hypothesis. The LHC data to be collected and analyzed by ATLAS and CMS over

  2. FJRW rings and Landau-Ginzburg mirror symmetry

    NASA Astrophysics Data System (ADS)

    Krawitz, Marc

    In this thesis, we study applications of the Berglund-Hubsch transpose construction to Landau-Ginzburg (LG) mirror symmetry. Given an invertible quasihomogeneous potential W, a dual potential W T is obtained by transposition of the exponent matrix of W. By the work of Fan-Jarvis-Ruan, one can associate a LG A-model to each pair consisting of a potential W and an admissible group G of symmetries of W. On the other hand, Intriligator-Vafa have produced the LG B-model state space associated to such a pair. The first step in this work is to define, given an invertible potential W and group of symmetries G, a dual group GT of symmetries of WT. We then prove that, at the level of (bi-graded) state spaces, the LG A-model of the pair (W,G) is isomorphic to the LG B-model of (WT, CT). In the case where G = Gmax is the maximal diagonal symmetry group of W, the dual group GT is trivial, and the LG B-model is just the local algebra of WT. In particular, both the A-model and the B-model are Frobenius algebras in this case, and we prove that the mirror map preserves this structure. Building on work of Kaufmann, we produce a product structure on the LG B-model orbifolded by a general diagonal symmetry group, and present examples which suggest the mirror map respects this product in non-trivial cases. As an additional application, we interpret Arnol'd strange duality of exceptional singularities in the context of LG mirror symmetry.

  3. Mirror symmetry for two-parameter models — II

    NASA Astrophysics Data System (ADS)

    Candelas, Philip; Font, Anamaría; Katz, sheldon; Morrison, David R.

    1994-11-01

    We describe in detail the space of the two Kähler parameters of the Calabi-Yau manifold P4(1,1,1,6,9)[18] by exploiting mirror symmetry. The large complex structure limit of the mirror, which corresponds to the classical large radius limit, is found by studying the monodromy of the periods about the discriminant locus, the boundary of the moduli space corresponding to singular Calabi-Yau manifolds. A symplectic basis of periods is found and the action of the Sp(6, Z) generators of the modular group is determined. From the mirror map we compute the instanton expansion of the Yukawa couplings and thes genralized N = 2 index, arriving at them numbers of instantons of genus zero and genus one of each bidegree. We find that these numbers can be negative, even in genus zero. We also investigate an SL(2, Z) symmetry that acts on a boundary of the moduli space.

  4. Personal recollections on chiral symmetry breaking

    NASA Astrophysics Data System (ADS)

    Kobayashi, Makoto

    2016-07-01

    The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.

  5. Local Activity Principle:. the Cause of Complexity and Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Mainzer, Klaus

    2013-01-01

    The principle of local activity is precisely the missing concept to explain the emergence of complex patterns in a homogeneous medium. Leon O. Chua discovered and defined this principle in the theory of nonlinear electronic circuits in a mathematically rigorous way. The local principle can be generalized and proven at least for the class of nonlinear reaction-diffusion systems in physics, chemistry, biology and brain research. Recently, it was realized by memristors for nanoelectronic device applications in technical brains. In general, the emergence of complex patterns and structures is explained by symmetry breaking in homogeneous media. The principle of local activity is the cause of symmetry breaking in homogeneous media. We argue that the principle of local activity is really fundamental in science and can even be identified in quantum cosmology as symmetry breaking of local gauge symmetries generating the complexity of matter and forces in our universe. Finally, we consider applications in economic, financial, and social systems with the emergence of equilibrium states, symmetry breaking at critical points of phase transitions and risky acting at the edge of chaos. In any case, the driving causes of symmetry breaking and the emergence of complexity are locally active elements, cells, units, or agents.

  6. Spatial symmetry breaking in rapidly rotating convective spherical shells

    NASA Technical Reports Server (NTRS)

    Zhang, Keke; Schubert, Gerald

    1995-01-01

    Many problems in geophysical and astrophysical convection systems are characterized by fast rotation and spherical shell geometry. The combined effects of Coriolis forces and spherical shell geometry produce a unique spatial symmetry for the convection pattern in a rapidly rotating spherical shell. In this paper, we first discuss the general spatial symmetries for rotating spherical shell convection. A special model, a spherical shell heated from below, is then used to illustrate how and when the spatial symmetries are broken. Symmetry breaking occurs via a sequence of spatial transitions from the primary conducting state to the complex multiple-layered columnar structure. It is argued that, because of the dominant effects of rotation, the sequence of spatial transitions identified from this particular model is likely to be generally valid. Applications of the spatial symmetry breaking to planetary convection problems are also discussed.

  7. The geometry of spontaneous symmetry breaking

    NASA Astrophysics Data System (ADS)

    Abud, M.; Sartori, G.

    1983-10-01

    The problem of classifying the theoretically allowed patterns of spontaneous symmetry breading, in theories where the ground state is determined as a minimum of a G-invariant potential ( G a compact group of transformations), is analyzed. A detailed, complete, and rigorous justification of a recently proposed approach to the determination of the minima of G-invariant potentials (M. Abud and G. Sartori, Phys. Lett. B104 (1981), 147) is presented. The results are obtained through an analysis of the geometry of the finite-dimensional representations of G, which leads to a complete characterization of the structure of orbit space and its partition in subsets (strata) formed by orbits with the same symmetry under G-transformations (orbit type), and to a new theorem stating that the gradients of complex analytic G-invariant functions annihilate on one-dimensional strata. Polynomial potentials in particular are studied. Conditions for instability of the residual symmetry (second-order phase transitions) are determined.

  8. Breaking the Symmetry in Molecular Nanorings

    PubMed Central

    2016-01-01

    Because of their unique electronic properties, cyclic molecular structures ranging from benzene to natural light-harvesting complexes have received much attention. Rigid π-conjugated templated porphyrin nanorings serve as excellent model systems here because they possess well-defined structures that can readily be controlled and because they support highly delocalized excitations. In this study, we have deliberately modified a series of six-porphyrin nanorings to examine the impact of lowering the rotational symmetry on their photophysical properties. We reveal that as symmetry distortions increase in severity along the series of structures, spectral changes and an enhancement of radiative emission strength occur, which derive from a transfer of oscillator strength into the lowest (k = 0) state. We find that concomitantly, the degeneracy of the dipole-allowed first excited (k = ±1) state is lifted, leading to an ultrafast polarization switching effect in the emission from strongly symmetry-broken nanorings. PMID:26735906

  9. Mirror symmetry in three dimensions via gauged linear quivers

    NASA Astrophysics Data System (ADS)

    Dey, Anindya; Hanany, Amihay; Koroteev, Peter; Mekareeya, Noppadol

    2014-06-01

    Starting from mirror pairs consisting only of linear (framed A-type) quivers, we demonstrate that a wide class of three-dimensional quiver gauge theories with = 4 supersymmetry and their mirror duals can be obtained by suitably gauging flavor symmetries. Infinite families of mirror pairs including various quivers of D and E-type and their affine extensions, star-shaped quivers, and quivers with symplectic gauge groups may be generated in this fashion. We present two different computational strategies to perform the aforementioned gauging procedure — one of them involves = 2* classical parameter space description, while the other one uses partition functions of the = 4 theories on S 3. The partition function, in particular, turns out to be an extremely efficient tool for implementing this gauging procedure as it readily generalizes to arbitrary size of the quiver and arbitrary rank of the gauge group at each node. For most examples of mirror pairs obtained via this procedure, we perform additional checks of mirror symmetry using the Hilbert series.

  10. Vibrational properties of quasiregular systems with mirror symmetry

    NASA Astrophysics Data System (ADS)

    Montalbán, A.; Velasco, V. R.; Tutor, J.; Fernández-Velicia, F. J.

    2005-12-01

    We have studied the vibrational frequencies and atom displacements of one-dimensional systems formed by combinations of quasiregular stackings having mirror symmetry. The materials are described by nearest-neighbor force constants and the corresponding atom masses. Fibonacci, Thue-Morse and Rudin-Shapiro sequences are considered. These systems exhibit differences in the frequency spectrum as compared to the original systems with no mirror symmetry. Localized modes are found in the wide primary gaps and near the band edges of the Fibonacci structures. In the Rudin-Shapiro structures localized modes near the band edges are also found whereas in the Thue-Morse structures no such features are found. Besides this a selective confinement of the atom displacements in one of the sequences forming the total system is found for different frequency ranges in all the systems studied.

  11. Strain-induced nonsymmorphic symmetry breaking and removal of Dirac semimetallic nodal line in an orthoperovskite iridate

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Kriegner, D.; Horak, L.; Puggioni, D.; Rayan Serrao, C.; Chen, R.; Yi, D.; Frontera, C.; Holy, V.; Vishwanath, A.; Rondinelli, J. M.; Marti, X.; Ramesh, R.

    2016-02-01

    By using a combination of heteroepitaxial growth, structure refinement based on synchrotron x-ray diffraction, and first-principles calculations, we show that the symmetry-protected Dirac line nodes in the topological semimetallic perovskite SrIrO3 can be lifted simply by applying epitaxial constraints. In particular, the Dirac gap opens without breaking the P b n m mirror symmetry. In virtue of a symmetry-breaking analysis, we demonstrate that the original symmetry protection is related to the n -glide operation, which can be selectively broken by different heteroepitaxial structures. This symmetry protection renders the nodal line a nonsymmorphic Dirac semimetallic state. The results highlight the vital role of crystal symmetry in spin-orbit-coupled correlated oxides and provide a foundation for experimental realization of topological insulators in iridate-based heterostructures.

  12. Nongeometric Calabi-Yau compactifications and fractional mirror symmetry

    NASA Astrophysics Data System (ADS)

    Israël, Dan

    2015-03-01

    We construct a wide class of nongeometric compactifications of type II superstring theories preserving N =1 space-time supersymmetry in four dimensions, starting from Calabi-Yau compactifications at Gepner points. Particular examples of this construction provide quantum equivalences between Calabi-Yau compactifications and non-Calabi-Yau ones, generalizing mirror symmetry. The associated Landau-Ginzburg models involve both chiral and twisted chiral multiplets and hence cannot be lifted to ordinary Calabi-Yau gauged linear sigma models.

  13. Radiatively induced breaking of conformal symmetry in a superpotential

    NASA Astrophysics Data System (ADS)

    Arbuzov, A. B.; Cirilo-Lombardo, D. J.

    2016-07-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  14. Symmetry breaking and hole localization in multiple core electron ionization.

    PubMed

    Carravetta, V; Ågren, H

    2013-08-08

    Motivated by recent opportunitites to study hollow molecules with multiple core holes offered by X-ray free electron lasers, we revisit the core-hole localization and symmetry breaking problem, now studying ionization of more than one core electron. It is shown, using a N2 molecule with one, two, three, and four core holes, for example, that in a multiconfigurational determination of the core ionization potentials employing a molecular point group with broken inversion symmetry, one particular configuration is sufficient to account for the symmetry breaking relaxation energy in an independent particle approximation in the case of one or three holes, whereas the choice of point group symmetry is unessential for two and four holes. The relaxation energy follows a quadratic dependence on the number of holes in both representations.

  15. Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking

    SciTech Connect

    Quigg, Chris; Shrock, Robert; /YITP, Stony Brook

    2009-01-01

    To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3){sub c} {circle_times} SU(2){sub L} {circle_times} U(1){sub Y} gauge symmetry and fermion content similar to that of the standard model. The first class--like the standard electroweak theory--contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right-symmetric SU(3){sub c} {circle_times} SU(2){sub L} {circle_times} SU(2){sub R} {circle_times} U(1)B?L gauge group. In a fourth class of models, built on SU(4){sub PS} {circle_times} SU(2){sub L} {circle_times} SU(2){sub R} gauge symmetry, lepton number is treated as a fourth color. Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world.

  16. Chiral Symmetry Breaking in Crystal Growth: Is Hydrodynamic Convection Relevant?

    NASA Technical Reports Server (NTRS)

    Martin, B.; Tharrington, A.; Wu, Xiao-Lun

    1996-01-01

    The effects of mechanical stirring on nucleation and chiral symmetry breaking have been investigated for a simple inorganic molecule, sodium chlorate (NaClO3). In contrast to earlier findings, our experiment suggests that the symmetry breaking may have little to do with hydrodynamic convection. Rather the effect can be reasonably accounted for by mechanical damage to incipient crystals. The catastrophic events, creating numerous small 'secondary' crystals, produce statistical domination of one chiral species over the other. Our conclusion is supported by a number of observations using different mixing mechanisms.

  17. Symmetry breaking of vesicle shapes in Poiseuille flow.

    PubMed

    Farutin, Alexander; Misbah, Chaouqi

    2011-07-01

    Vesicle behavior under unbounded axial Poiseuille flow is studied analytically. Our study reveals subtle features of the dynamics. It is established that there exists a stable off-centerline steady-state solution for low enough flow strength. This solution appears as a symmetry-breaking bifurcation upon lowering the flow strength and includes slipper shapes, which are characteristic of red blood cells in the microvasculature. A stable axisymmetric solution exists for any flow strength provided the excess area is small enough. It is shown that the mechanism of the symmetry breaking depends on the geometry of the flow: The bifurcation is subcritical in axial Poiseuille flow and supercritical in planar flow.

  18. Chiral Symmetry Breaking in Crystal Growth: Is Hydrodynamic Convection Relevant?

    SciTech Connect

    Martin, B.; Tharrington, A.; Wu, X.

    1996-09-01

    The effects of mechanical stirring on nucleation and chiral symmetry breaking have been investigated for a simple inorganic molecule, sodium chlorate. In contrast to earlier findings, our experiments suggest that hydrodynamic convection may have little to do with the observed symmetry breaking. Rather the effect can be reasonably accounted for by mechanical damage to incipient crystals. The catastrophic events, creating numerous small {open_quote}{open_quote}secondary{close_quote}{close_quote} crystals, produce statistical domination of one chiral species over the other. A number of observations using different mixing methods support this conclusion. {copyright} {ital 1996 The American Physical Society.}

  19. Charge-symmetry breaking {Lambda}-nucleon interaction

    SciTech Connect

    Bodmer, A.R.; Murali, M.; Usmani, Q.N.

    1995-08-01

    Some time ago we showed that the charge-symmetry-breaking interaction, as obtained from the mass four hypernuclei ({sub {Lambda}}{sup 4}H, {sub {Lambda}}{sup 4}He), was spin-independent; a result which cannot be understood with the conventional meson-exchange models. The calculations of ({sub {Lambda}}{sup 4}H, {sub {Lambda}}{sup 4}He) are currently being extended to include noncentral nuclear and hypernuclear forces which could modify this result. At a more fundamental level we intend to study quark-structure contributions to the charge-symmetry-breaking interaction.

  20. Spontaneous breaking of nilpotent symmetry in boundary BLG theory

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2015-09-01

    We exploit boundary term to preserve the supersymmetric gauge invariance of Bagger-Lambert-Gustavsson (BLG) theory. The fermionic rigid BRST and anti-BRST symmetries are studied in linear and nonlinear gauges. Remarkably, for Delbourgo-Jarvis-Baulieu-Thierry-Mieg (DJBTM) type gauge the spontaneous breaking of BRST symmetry occurs in the BLG theory. The responsible guy for such spontaneous breaking is ghost-antighost condensation. Further, we discuss the ghost-antighost condensates in the modified maximally Abelian (MMA) gauge in the BLG theory.

  1. Dynamical supersymmetry breaking and late-time R symmetry breaking as the origin of cosmic inflation

    NASA Astrophysics Data System (ADS)

    Schmitz, Kai; Yanagida, Tsutomu T.

    2016-10-01

    Spontaneously broken supersymmetry (SUSY) and a vanishingly small cosmological constant imply that R symmetry must be spontaneously broken at low energies. Based on this observation, we suppose that, in the sector responsible for low-energy R symmetry breaking, a discrete R symmetry remains preserved at high energies and only becomes dynamically broken at relatively late times in the cosmological evolution, i.e., after the dynamical breaking of SUSY. Prior to R symmetry breaking, the Universe is then bound to be in a quasi-de Sitter phase—which offers a dynamical explanation for the occurrence of cosmic inflation. This scenario yields a new perspective on the interplay between SUSY breaking and inflation, which neatly fits into the paradigm of high-scale SUSY: inflation is driven by the SUSY-breaking vacuum energy density, while the chiral field responsible for SUSY breaking, the Polonyi field, serves as the inflaton. Because R symmetry is broken only after inflation, slow-roll inflation is not spoiled by otherwise dangerous gravitational corrections in supergravity. We illustrate our idea by means of a concrete example, in which both SUSY and R symmetry are broken by strong gauge dynamics and in which late-time R symmetry breaking is triggered by a small inflaton field value. In this model, the scales of inflation and SUSY breaking are unified, the inflationary predictions are similar to those of F-term hybrid inflation in supergravity, reheating proceeds via gravitino decay at temperatures consistent with thermal leptogenesis, and the sparticle mass spectrum follows from pure gravity mediation. Dark matter consists of thermally produced winos with a mass in the TeV range.

  2. Replica symmetry breaking for anisotropic magnets with quenched disorder

    NASA Astrophysics Data System (ADS)

    Kogan, E.; Kaveh, M.

    2017-01-01

    We study critical behaviour of a magnet with cubic anisotropy and quenched scalar disorder which is taken into account by replica method. We derive to first order in ε approximation the renormalization group equations taking into account possible replica symmetry breaking. We study the stability of the replica symmetric fixed points with respect to perturbations without (in general case) replica symmetry. However, we find that if a fixed point is stable with respect to replica symmetric deviations, it is also stable with respect to deviations without replica symmetry.

  3. On the static Casimir effect with parity-breaking mirrors

    NASA Astrophysics Data System (ADS)

    Fosco, C. D.; Remaggi, M. L.

    2017-03-01

    We study the Casimir interaction energy due to the vacuum fluctuations of the electromagnetic (EM) field in the presence of two mirrors, described by 2+1-dimensional, generally nonlocal actions, which may contain both parity-conserving and parity-breaking terms. We compare the results with the ones corresponding to Chern-Simons boundary conditions and evaluate the interaction energy for several particular situations.

  4. Spontaneous Symmetry-Breaking Vortex Lattice Transitions in Pure Niobium

    SciTech Connect

    Laver, M.; Forgan, E.M.; Brown, S.P.; Bowell, C.; Ramos, S.; Lycett, R.J.; Charalambous, D.; Fort, D.; Christen, D.K.; Kohlbrecher, J.; Dewhurst, C.D.; Cubitt, R.

    2006-04-28

    We report an extensive investigation of magnetic vortex lattice (VL) structures in single crystals of pure niobium with the magnetic field applied parallel to a fourfold symmetry axis, so as to induce frustration between the cubic crystal symmetry and hexagonal VL coordination expected in an isotropic situation. We observe new VL structures and phase transitions; all the VL phases observed (including those with an exactly square unit cell) spontaneously break some crystal symmetry. One phase even has the lowest possible symmetry of a two-dimensional Bravais lattice. This is quite unlike the situation in high-T{sub c} or borocarbide superconductors, where VL structures orient along particular directions of high crystal symmetry. The causes of this behavior are discussed.

  5. Spontaneous symmetry breaking at the fluctuating level.

    PubMed

    Hurtado, Pablo I; Garrido, Pedro L

    2011-10-28

    Phase transitions not allowed in equilibrium steady states may happen, however, at the fluctuating level. We observe for the first time this striking and general phenomenon measuring current fluctuations in an isolated diffusive system. While small fluctuations result from the sum of weakly correlated local events, for currents above a critical threshold the system self-organizes into a coherent traveling wave which facilitates the current deviation by gathering energy in a localized packet, thus breaking translation invariance. This results in Gaussian statistics for small fluctuations but non-Gaussian tails above the critical current. Our observations, which agree with predictions derived from hydrodynamic fluctuation theory, strongly suggest that rare events are generically associated with coherent, self-organized patterns which enhance their probability.

  6. Symmetry breaking in low-dimensional SU(N) antiferromagnets

    SciTech Connect

    Kolezhuk, Alexei

    2008-10-01

    Consequences of explicit symmetry breaking in a physically motivated model of SU(N) antiferromagnet in spatial dimensions one and two are studied. It is shown that the case N=3, which can be realized in spin-1 cold atom systems, displays special properties distinctly different from those for N{>=}4. Qualitative form of the phase diagram depending on the model parameters is given.

  7. Mechanisms of chiral symmetry breaking in QCD: A lattice perspective

    NASA Astrophysics Data System (ADS)

    Giusti, Leonardo

    2016-01-01

    I briefly review two recent studies on chiral symmetry breaking in QCD: (a) a computation of the spectral density of the Dirac operator in QCD Lite, (b) a precise determination of the topological charge distribution in the SU(3) Yang-Mills theory as defined by evolving the fundamental gauge field with the Yang-Mills gradient flow equation.

  8. Charge symmetry breaking and parity violating electron scattering

    SciTech Connect

    Miller, Gerald A.

    2013-11-07

    I review the effects of charge symmetry breaking CSB on electromagnetic form factors and how that influences extraction of information regarding nucleon strangeness content and the weak mixing angle. It seems that CSB effects are very modest and should not impact the analysis of experiments.

  9. Isospin symmetry breaking in the chiral quark model

    NASA Astrophysics Data System (ADS)

    Song, Huiying; Zhang, Xinyu; Ma, Bo-Qiang

    2010-12-01

    We discuss the isospin symmetry breaking (ISB) of the valence- and sea-quark distributions between the proton and the neutron in the framework of the chiral quark model. We assume that isospin symmetry breaking is the result of mass differences between isospin multiplets and then analyze the effects of isospin symmetry breaking on the Gottfried sum rule and the NuTeV anomaly. We show that, although both flavor asymmetry in the nucleon sea and the ISB between the proton and the neutron can lead to the violation of the Gottfried sum rule, the main contribution is from the flavor asymmetry in the framework of the chiral quark model. We also find that the correction to the NuTeV anomaly is in an opposite direction, so the NuTeV anomaly cannot be removed by isospin symmetry breaking in the chiral quark model. It is remarkable that our results of ISB for both valence- and sea-quark distributions are consistent with the Martin-Roberts-Stirling-Thorne parametrization of quark distributions.

  10. Radiative breaking of conformal symmetry in the Standard Model

    NASA Astrophysics Data System (ADS)

    Arbuzov, A. B.; Nazmitdinov, R. G.; Pavlov, A. E.; Pervushin, V. N.; Zakharov, A. F.

    2016-02-01

    Radiative mechanism of conformal symmetry breaking in a comformal-invariant version of the Standard Model is considered. The Coleman-Weinberg mechanism of dimensional transmutation in this system gives rise to finite vacuum expectation values and, consequently, masses of scalar and spinor fields. A natural bootstrap between the energy scales of the top quark and Higgs boson is suggested.

  11. Spontaneous symmetry breaking in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kharitonov, Maxim

    2012-02-01

    Recent experiments [1-4] provided compelling evidence for the correlated electron behavior in undoped bilayer graphene at both zero and finite magnetic field. The key question concerns the nature of the broken-symmetry phases realized experimentally. I will present the phase diagram for the zero-density state in the quantum Hall regime (ν=0 state) obtained within the framerwork of quantum Hall ferromagnetism. Comparing these results with the experimental data of Refs. [1,4], I will argue that the ν=0 insulating state realized in bilayer graphene is the canted antiferromagnetic phase. I will also show that the (canted) antiferromagnetic phase can persist at all magnetic fields down to zero and argue that this is the most likely scenario for the insulating state observed in Ref. [4]. [4pt] [1] R. T. Weitz et al., Science 330, 812 (2010). [0pt] [2] F. Freitag et al., arXiv:1104.3816 (2011). [0pt] [3] A. S. Mayorov, et al., Science 333, 860 (2011). [0pt] [4] J. Velasco Jr. et al., arXiv:1108.1609 (2011). [0pt] [5] M. Kharitonov, arXiv:1103.6285, arXiv:1105.5386, arxiv:1109.1553 (2011).

  12. Black Hole Entropy, Marginal Stability and Mirror Symmetry

    SciTech Connect

    Aspinwall, Paul S.; Maloney, Alexander; Simons, Aaron

    2006-10-06

    We consider the superconformal quantum mechanics associated to BPS black holes in type IIB Calabi-Yau compactifications. This quantum mechanics describes the dynamics of D-branes in the near-horizon attractor geometry of the black hole. In many cases, the black hole entropy can be found by counting the number of chiral primaries in this quantum mechanics. Both the attractor mechanism and notions of marginal stability play important roles in generating the large number of microstates required to explain this entropy. We compute the microscopic entropy explicitly in a few different cases, where the theory reduces to quantum mechanics on the moduli space of special Lagrangians. Under certain assumptions, the problem may be solved by implementing mirror symmetry as three T-dualities: this is essentially the mirror of a calculation by Gaiotto, Strominger and Yin. In some simple cases, the calculation may be done in greater generality without resorting to conjectures about mirror symmetry. For example, the K3 x T{sub 2} case may be studied precisely using the Fourier-Mukai transform.

  13. Symmetry breaking in binary chains with nonlinear sites

    NASA Astrophysics Data System (ADS)

    Maksimov, Dmitrii N.; Sadreev, Almas F.

    2013-09-01

    We consider a system of two or four nonlinear sites coupled with binary chain waveguides. When a monochromatic wave is injected into the first (symmetric) propagation channel, the presence of cubic nonlinearity can lead to symmetry breaking, giving rise to emission of antisymmetric wave into the second (antisymmetric) propagation channel of the waveguides. We found that in the case of nonlinear plaquette, there is a domain in the parameter space where neither symmetry-preserving nor symmetry-breaking stable stationary solutions exit. As a result, injection of a monochromatic symmetric wave gives rise to emission of nonsymmetric satellite waves with energies differing from the energy of the incident wave. Thus, the response exhibits nonmonochromatic behavior.

  14. Symmetry breaking patterns for little Higgs models from strong dynamics

    SciTech Connect

    Batra, Puneet; Chacko, Z.

    2008-03-01

    We show how the symmetry breaking pattern of the simplest little Higgs model, and that of the smallest moose model that incorporates an approximate custodial SU(2), can be realized through the condensation of strongly coupled fermions. In each case a custodial SU(2) symmetry of the new strong dynamics limits the sizes of corrections to precision electroweak observables. In the case of the simplest little Higgs, there are no new light states beyond those present in the original model. However, our realization of the symmetry breaking pattern of the moose model predicts an additional scalar field with mass of order a TeV or higher that has exactly the same quantum numbers as the standard model Higgs and which decays primarily to third generation quarks.

  15. Quark and lepton mixing as manifestations of violated mirror symmetry

    SciTech Connect

    Dyatlov, I. T.

    2015-06-15

    The existence of heavy mirror analogs of ordinary fermions would provide deeper insight into the gedanken paradox appearing in the Standard Model upon direct parity violation and consisting in a physical distinguishability of left- and right-hand coordinate frames. Arguments are presented in support of the statement that such mirror states may also be involved in the formation of observed properties of the system of Standard Model quarks and leptons—that is, their mass spectra and their weak-mixing matrices: (i) In the case of the involvement of mirror generations, the quark mixing matrix assumes the experimentally observed form. It is determined by the constraints imposed by weak SU(2) symmetry and by the quark-mass hierarchy. (ii) Under the same conditions and upon the involvement of mirror particles, the lepton mixing matrix (neutrino mixing) may become drastically different from its quark analog—the Cabibbo-Kobayashi-Maskawa matrix; that is, it may acquire properties suggested by experimental data. This character of mixing is also indicative of an inverse mass spectrum of Standard Model neutrinos and their Dirac (not Majorana) nature.

  16. Mirror Symmetry and Other Miracles in Superstring Theory

    NASA Astrophysics Data System (ADS)

    Rickles, Dean

    2013-01-01

    The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam's `no miracles argument' that, I argue, many string theorists in fact espouse in some form or other. String theory has generated many surprising, useful, and well-confirmed mathematical `predictions'—here I focus on mirror symmetry and the mirror theorem. These predictions were made on the basis of general physical principles entering into string theory. The success of the mathematical predictions are then seen as evidence for the framework that generated them. I shall attempt to defend this argument, but there are nonetheless some serious objections to be faced. These objections can only be evaded at a considerably high (philosophical) price.

  17. Mirror Symmetry: FJRW-rings and Landau-Ginzburg Orbifolds

    NASA Astrophysics Data System (ADS)

    Acosta, Pedro

    2009-10-01

    For any non-degenerate, quasihomogeneous superpotential W and an admissible group of diagonal symmetries G, Fan, Jarvis and Ruan have constructed a quantum cohomological field theory (FJRW-theory) that gives, among other things, a Frobenius algebra HW,G ((a,c) ring) and correlators associated with the superpotential. This construction is analogous to a theory of the Gromov-Witten type. The FJRW- theory is a candidate for the mathematical structure behind N= 2 superconformal Landau-Ginzburg orbifolds. In this presentation I will give an overview of this theory and discuss the Berglund-H"ubsch-Krawitz mirror symmetry conjecture: For a given invertible superpotential W there exists an invertible superpotential W^T such that the Frobenius algebra HW,G is isomorphic to the (c,c) ring of W^T, and the Frobenius algebra HW^T,G^T is isomorphic to the (c,c) ring of W.

  18. Effective photon mass by Super and Lorentz symmetry breaking

    NASA Astrophysics Data System (ADS)

    Bonetti, Luca; dos Santos Filho, Luís R.; Helayël-Neto, José A.; Spallicci, Alessandro D. A. M.

    2017-01-01

    In the context of Standard Model Extensions (SMEs), we analyse four general classes of Super Symmetry (SuSy) and Lorentz Symmetry (LoSy) breaking, leading to observable imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry) odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT) or tensor (even CPT). In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive Carroll-Field-Jackiw photon term in the Lagrangian and show that the effective mass is proportional to the breaking vector and moderately dependent on the direction of observation. The breaking vector absolute value is estimated by ground measurements and leads to a photon mass upper limit of 10-19 eV or 2 ×10-55 kg, and thereby to a potentially measurable delay at low radio frequencies.

  19. Superconductivity due to soft super-symmetry breaking

    NASA Astrophysics Data System (ADS)

    S. Rajput, Balwant

    2017-03-01

    Revisiting the super-symmetric dyons in N = 2 super-symmetric theory and analyzing the possible soft breaking of N = 2 super-symmetric Yang Mills theory to N = 0 by making the dynamically generated mass scale ∧ a function of dilation spurion, it has been demonstrated that the scalar and auxiliary components of pre-potential, constructed in terms of dilation, are frozen to be constant to generate soft breaking of N = 2 theory and it has been shown that, as soon as these soft breaking terms are turned on, monopole condensation appears and we get a unique ground state and the superconducting phase. It is also shown that in this soft breaking of N = 2 super-symmetry, the superconductivity phase occurs due to condensation of monopoles only and the dyons do not condensate near the real u -plane.

  20. 3D toroidal physics: Testing the boundaries of symmetry breaking

    SciTech Connect

    Spong, Donald A.

    2015-05-15

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  1. Size-dependent symmetry breaking in models for morphogenesis

    NASA Astrophysics Data System (ADS)

    Barrio, R. A.; Maini, P. K.; Aragón, J. L.; Torres, M.

    2002-08-01

    A general property of dynamical systems is the appearance of spatial and temporal patterns due to a change of stability of a homogeneous steady state. Such spontaneous symmetry breaking is observed very frequently in all kinds of real systems, including the development of shape in living organisms. Many nonlinear dynamical systems present a wide variety of patterns with different shapes and symmetries. This fact restricts the applicability of these models to morphogenesis, since one often finds a surprisingly small variation in the shapes of living organisms. For instance, all individuals in the Phylum Echinodermata share a persistent radial fivefold symmetry. In this paper, we investigate in detail the symmetry-breaking properties of a Turing reaction-diffusion system confined in a small disk in two dimensions. It is shown that the symmetry of the resulting pattern depends only on the size of the disk, regardless of the boundary conditions and of the differences in the parameters that differentiate the interior of the domain from the outer space. This study suggests that additional regulatory mechanisms to control the size of the system are of crucial importance in morphogenesis.

  2. Experimental confirmation of the transversal symmetry breaking in laser profiles

    NASA Astrophysics Data System (ADS)

    Carvalho, Silvânia A.; De Leo, Stefano; Oliveira-Huguenin, José A.; da Silva, Ladário

    2017-02-01

    The Snell phase effects on the propagation of optical beams through dielectric blocks have been matter of recent theoretical studies. The effects of this phase on the laser profiles have been tested in our experiment. The data show an excellent agreement with the theoretical predictions confirming the axial spreading modification and the transversal symmetry breaking. The possibility to set, by rotating the dielectric blocks, different configurations allows to recover the transversal symmetry. Based on this experimental evidence, dielectric blocks can be used as alternative optical tools to control the beam profile.

  3. Nucleation and chiral symmetry breaking under controlled hydrodynamic flows

    NASA Technical Reports Server (NTRS)

    Wu, Xiao-Lun; Martin, Brian; Tharrington, Arnold

    1994-01-01

    The effects of hydrodynamic convection on nucleation and broken chiral symmetry have been investigated for a simple inorganic molecule, sodium chlorate (NaClO3). Our experiment suggests that the symmetry breaking is a result of hydrodynamic amplification of rare nucleation events. The effect is more pronounced when the primary nucleation occurs on the solute-vapor interface, where mixing in the surface sublayer becomes important. The transition from the achiral to the chiral states appears to be smooth as the hydrodynamic parameters, such as flow rate, are varied.

  4. Translational symmetry breaking and the disintegration of the Hofstadter butterfly

    NASA Astrophysics Data System (ADS)

    Mishra, Archana; Hassan, S. R.; Shankar, R.

    2017-01-01

    We study the effect of interactions on the Hofstadter butterfly of the honeycomb lattice. We show that the interactions induce charge ordering that breaks the translational and rotational symmetries of the system. These phase transitions are prolific and occur at many values of the flux and particle density. The breaking of the translational symmetry introduces a new length scale in the problem and this affects the energy-band diagram resulting in the disintegration of the fractal structure in the energy flux plot, the Hofstadter butterfly. This disintegration increases with increase in the interaction strength. Many of these phase transitions are accompanied with change in the Hall conductivity. Consequently, the disintegration of the Hofstadter butterfly is manifested in the Landau fan diagram also.

  5. Curling Liquid Crystal Microswimmers: A Cascade of Spontaneous Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Krüger, Carsten; Klös, Gunnar; Bahr, Christian; Maass, Corinna C.

    2016-07-01

    We report curling self-propulsion in aqueous emulsions of common mesogenic compounds. Nematic liquid crystal droplets self-propel in a surfactant solution with concentrations above the critical micelle concentration while undergoing micellar solubilization [Herminghaus et al., Soft Matter 10, 7008 (2014)]. We analyzed trajectories both in a Hele-Shaw geometry and in a 3D setup at variable buoyancy. The coupling between the nematic director field and the convective flow inside the droplet leads to a second symmetry breaking which gives rise to curling motion in 2D. This is demonstrated through a reversible transition to nonhelical persistent swimming by heating to the isotropic phase. Furthermore, autochemotaxis can spontaneously break the inversion symmetry, leading to helical trajectories in 3D.

  6. Spontaneous breaking of Lorentz symmetry in (2 +ɛ )-dimensional QED

    NASA Astrophysics Data System (ADS)

    Janssen, Lukas

    2016-11-01

    The phase diagram of massless quantum electrodynamics in three space-time dimensions as a function of fermion flavor number N exhibits two well-known phases: at large N >Ncconf the system is in a conformal gapless state, while for small N symmetry breaking. Using ɛ expansion near the lower critical dimension of 2, as well as the recent results on the generalization of the F theorem to continuous dimension, we show that Ncconf>Ncχ SB. There is therefore an intermediate range of values of N at which a third phase is stabilized. We demonstrate that this phase is characterized by spontaneous breaking of Lorentz symmetry, in which a composite vector boson field acquires a vacuum expectation value with the fermions and the photon remaining massless.

  7. Breaking discrete symmetries in the effective field theory of inflation

    SciTech Connect

    Cannone, Dario; Gong, Jinn-Ouk; Tasinato, Gianmassimo

    2015-08-03

    We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.

  8. Breaking discrete symmetries in the effective field theory of inflation

    SciTech Connect

    Cannone, Dario; Gong, Jinn-Ouk; Tasinato, Gianmassimo E-mail: jinn-ouk.gong@apctp.org

    2015-08-01

    We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.

  9. Stochastic recruitment leads to symmetry breaking in foraging populations

    NASA Astrophysics Data System (ADS)

    Biancalani, Tommaso; Dyson, Louise; McKane, Alan

    2014-03-01

    When an ant colony is faced with two identical equidistant food sources, the foraging ants are found to concentrate more on one source than the other. Analogous symmetry-breaking behaviours have been reported in various population systems, (such as queueing or stock market trading) suggesting the existence of a simple universal mechanism. Past studies have neglected the effect of demographic noise and required rather complicated models to qualitatively reproduce this behaviour. I will show how including the effects of demographic noise leads to a radically different conclusion. The symmetry-breaking arises solely due to the process of recruitment and ceases to occur for large population sizes. The latter fact provides a testable prediction for a real system.

  10. Calabi-Yau Geometry and Higher Genus Mirror Symmetry

    NASA Astrophysics Data System (ADS)

    Li, Si

    2011-12-01

    We study closed string mirror symmetry on compact Calabi-Yau manifolds at higher genus. String theory predicts the existence of two sets of geometric invariants, from the A-model and the B-model on Calabi-Yau manifolds, each indexed by a non-negative integer called genus. The A-model has been mathematically established at all genera by the Gromov-Witten theory, but little is known in mathematics for B-model beyond genus zero. We develop a mathematical theory of higher genus B-model from perturbative quantization techniques of gauge theory. The relevant gauge theory is the Kodaira-Spencer gauge theory, which is originally discovered by Bershadsky-Cecotti-Ooguri-Vafa as the closed string field theory of B-twisted topological string on Calabi-Yau three-folds. We generalize this to Calabi-Yau manifolds of arbitrary dimensions including also gravitational descendants, which we call BCOV theory. We give the geometric description of the perturbative quantization of BCOV theory in terms of deformation-obstruction theory. The vanishing of the relevant obstruction classes will enable us to construct the higher genus B-model. We carry out this construction on the elliptic curve and establish the corresponding higher genus B-model. Furthermore, we show that the B-model invariants constructed from BCOV theory on the elliptic curve can be identified with descendant Gromov-Witten invariants on the mirror elliptic curve. This gives the first compact Calabi-Yau example where mirror symmetry can be established at all genera.

  11. Ras activation and symmetry breaking during Dictyostelium chemotaxis.

    PubMed

    Kortholt, Arjan; Keizer-Gunnink, Ineke; Kataria, Rama; Van Haastert, Peter J M

    2013-10-01

    Central to chemotaxis is the molecular mechanism by which a shallow spatial gradient of chemoattractant induces symmetry breaking of activated signaling molecules. Previously, we have used Dictyostelium mutants to investigate the minimal requirements for chemotaxis, and identified a basal signaling module providing activation of Ras and F-actin at the leading edge. Here, we show that Ras activation after application of a pipette releasing the chemoattractant cAMP has three phases, each depending on specific guanine-nucleotide-exchange factors (GEFs). Initially a transient activation of Ras occurs at the entire cell boundary, which is proportional to the local cAMP concentrations and therefore slightly stronger at the front than in the rear of the cell. This transient Ras activation is present in gα2 (gpbB)-null cells but not in gβ (gpbA)-null cells, suggesting that Gβγ mediates the initial activation of Ras. The second phase is symmetry breaking: Ras is activated only at the side of the cell closest to the pipette. Symmetry breaking absolutely requires Gα2 and Gβγ, but not the cytoskeleton or four cAMP-induced signaling pathways, those dependent on phosphatidylinositol (3,4,5)-triphosphate [PtdIns(3,4,5)P3], cGMP, TorC2 and PLA2. As cells move in the gradient, the crescent of activated Ras in the front half of the cell becomes confined to a small area at the utmost front of the cell. Confinement of Ras activation leads to cell polarization, and depends on cGMP formation, myosin and F-actin. The experiments show that activation, symmetry breaking and confinement of Ras during Dictyostelium chemotaxis uses different G-protein subunits and a multitude of Ras GEFs and GTPase-activating proteins (GAPs).

  12. Replica symmetry breaking in cold atoms and spin glasses

    NASA Astrophysics Data System (ADS)

    Rotondo, P.; Tesio, E.; Caracciolo, S.

    2015-01-01

    We consider a system composed by N atoms trapped within a multimode cavity, whose theoretical description is captured by a disordered multimode Dicke model. We show that in the resonant, zero-field limit the system exactly realizes the Sherrington-Kirkpatrick model. Upon a redefinition of the temperature, the same dynamics is realized in the dispersive, strong-field limit. This regime also gives access to spin-glass observables which can be used to detect replica symmetry breaking.

  13. Gauge symmetry breaking in gravity and auxiliary effective action

    NASA Astrophysics Data System (ADS)

    Akhavan, Amin

    2017-02-01

    In the context of the covariant symmetry breaking in gravity, we study the quantum aspect of Chamseddine-Mukhanov model by making use of path integral method. Utilizing one of the gauge fixing constraints, we remove the specific ghost degree of freedom. In continuation, we define an auxiliary effective action. Introducing an auxiliary field, we will have a new dynamic field in addition to the fundamental field.

  14. Symmetry breaking in actin gels - Implications for cellular motility

    NASA Astrophysics Data System (ADS)

    John, Karin; Peyla, Philippe; Misbah, Chaouqi

    2007-03-01

    The physical origin of cell motility is not fully understood. Recently minimal model systems have shown, that polymerizing actin itself can produce a motile force, without the help of motor proteins. Pathogens like Shigella or Listeria use actin to propel themselves forward in their host cell. The same process can be mimicked with polystyrene beads covered with the activating protein ActA, which reside in a solution containing actin monomers. ActA induces the growth of an actin gel at the bead surface. Initially the gel grows symmetrically around the bead until a critical size is reached. Subsequently one observes a symmetry breaking and the gel starts to grow asymmetrically around the bead developing a tail of actin at one side. This symmetry breaking is accompanied by a directed movement of the bead, with the actin tail trailing behind the bead. Force generation relies on the combination of two properties: growth and elasticity of the actin gel. We study this phenomenon theoretically within the framework of a linear elasticity theory and linear flux-force relationships for the evolution of an elastic gel around a hard sphere. Conditions for a parity symmetry breaking are identified analytically and illustrated numerically with the help of a phasefield model.

  15. Frustrated topological symmetry breaking: Geometrical frustration and anyon condensation

    NASA Astrophysics Data System (ADS)

    Schulz, Marc D.; Burnell, Fiona J.

    2016-10-01

    We study the phase diagram of a topological string-net-type lattice model in the presence of geometrically frustrated interactions. These interactions drive several phase transitions that reduce the topological order, leading to a rich phase diagram including both Abelian (Z2) and non-Abelian (Ising×Ising¯ ) topologically ordered phases, as well as phases with broken translational symmetry. Interestingly, one of these phases simultaneously exhibits (Abelian) topological order and long-ranged order due to translational symmetry breaking, with nontrivial interactions between excitations in the topological order and defects in the long-ranged order. We introduce a variety of effective models, valid along certain lines in the phase diagram, which can be used to characterize both topological and symmetry-breaking order in these phases and in many cases allow us to characterize the phase transitions that separate them. We use exact diagonalization and high-order series expansion to study areas of the phase diagram where these models break down and to approximate the location of the phase boundaries.

  16. Parity-Time Symmetry Breaking in Coupled Nanobeam Cavities

    PubMed Central

    Zhang, Senlin; Yong, Zhengdong; Zhang, Yuguang; He, Sailing

    2016-01-01

    The concept of parity-time symmetry (PT symmetry) originates from the canonical quantum mechanics and has become a hot topic recently. As a versatile platform to investigate the intriguing concept, both theoretical and experimental works in optics have been implemented. In this paper, the PT symmetry breaking phenomenon is investigated in a coupled nanobeam cavity system. An exceptional point is observed during the tuning of the gain/loss level and the coupling strength of the closely placed nanobeam pair. Unidirectional light propagation is investigated, as well as enhanced sensitivity of single particle detection in the vicinity of the exceptional point. The proposed system is easy to be integrated with photonic integrated circuits and can be strongly coupled to optical waveguides. PMID:27075817

  17. Effects of rotational symmetry breaking in polymer-coated nanopores

    SciTech Connect

    Osmanović, D.; Hoogenboom, B. W.; Ford, I. J.; Kerr-Winter, M.; Eccleston, R. C.

    2015-01-21

    The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetric case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.

  18. The role of color and attention-to-color in mirror-symmetry perception.

    PubMed

    Gheorghiu, Elena; Kingdom, Frederick A A; Remkes, Aaron; Li, Hyung-Chul O; Rainville, Stéphane

    2016-07-11

    The role of color in the visual perception of mirror-symmetry is controversial. Some reports support the existence of color-selective mirror-symmetry channels, others that mirror-symmetry perception is merely sensitive to color-correlations across the symmetry axis. Here we test between the two ideas. Stimuli consisted of colored Gaussian-blobs arranged either mirror-symmetrically or quasi-randomly. We used four arrangements: (1) 'segregated' - symmetric blobs were of one color, random blobs of the other color(s); (2) 'random-segregated' - as above but with the symmetric color randomly selected on each trial; (3) 'non-segregated' - symmetric blobs were of all colors in equal proportions, as were the random blobs; (4) 'anti-symmetric' - symmetric blobs were of opposite-color across the symmetry axis. We found: (a) near-chance levels for the anti-symmetric condition, suggesting that symmetry perception is sensitive to color-correlations across the symmetry axis; (b) similar performance for random-segregated and non-segregated conditions, giving no support to the idea that mirror-symmetry is color selective; (c) highest performance for the color-segregated condition, but only when the observer knew beforehand the symmetry color, suggesting that symmetry detection benefits from color-based attention. We conclude that mirror-symmetry detection mechanisms, while sensitive to color-correlations across the symmetry axis and subject to the benefits of attention-to-color, are not color selective.

  19. In Silico Reconstitution of Actin-Based Symmetry Breaking and Motility

    PubMed Central

    Dayel, Mark J.; Akin, Orkun; Landeryou, Mark; Risca, Viviana; Mogilner, Alex; Mullins, R. Dyche

    2009-01-01

    Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system. PMID:19771152

  20. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    SciTech Connect

    Petrovici, A.; Andrei, O.

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  1. Looking for symmetry: fixational eye movements are biased by image mirror symmetry.

    PubMed

    Meso, Andrew Isaac; Montagnini, Anna; Bell, Jason; Masson, Guillaume S

    2016-09-01

    Humans are highly sensitive to symmetry. During scene exploration, the area of the retina with dense light receptor coverage acquires most information from relevant locations determined by gaze fixation. We characterized patterns of fixational eye movements made by observers staring at synthetic scenes either freely (i.e., free exploration) or during a symmetry orientation discrimination task (i.e., active exploration). Stimuli could be mirror-symmetric or not. Both free and active exploration generated more saccades parallel to the axis of symmetry than along other orientations. Most saccades were small (<2°), leaving the fovea within a 4° radius of fixation. Analysis of saccade dynamics showed that the observed parallel orientation selectivity emerged within 500 ms of stimulus onset and persisted throughout the trials under both viewing conditions. Symmetry strongly distorted existing anisotropies in gaze direction in a seemingly automatic process. We argue that this bias serves a functional role in which adjusted scene sampling enhances and maintains sustained sensitivity to local spatial correlations arising from symmetry.

  2. Self-isospectrality, mirror symmetry, and exotic nonlinear supersymmetry

    SciTech Connect

    Plyushchay, Mikhail S.; Nieto, Luis-Miguel

    2010-09-15

    We study supersymmetry of a self-isospectral one-gap Poeschl-Teller system in the light of a mirror symmetry that is based on spatial and shift reflections. The revealed exotic, partially broken, nonlinear supersymmetry admits seven alternatives for a grading operator. One of its local, first order supercharges may be identified as a Hamiltonian of an associated one-gap, nonperiodic Bogoliubov-de Gennes system. The latter possesses a nonlinear supersymmetric structure, in which any of the three nonlocal generators of a Clifford algebra may be chosen as the grading operator. We find that the supersymmetry generators for both systems are the Darboux-dressed integrals of a free spin-1/2 particle in the Schroedinger picture, or of a free massive Dirac particle. Nonlocal Foldy-Wouthuysen transformations are shown to be involved in the supersymmetric structure.

  3. Electroweak Symmetry Breaking via UV Insensitive Anomaly Mediation

    SciTech Connect

    Kitano, Ryuichiro; Kribs, Graham D.; Murayama, Hitoshi

    2004-02-19

    Anomaly mediation solves the supersymmetric flavor and CP problems. This is because the superconformal anomaly dictates that supersymmetry breaking is transmitted through nearly flavor-blind infrared physics that is highly predictive and UV insensitive. Slepton mass squareds, however, are predicted to be negative. This can be solved by adding D-terms for U(1)_Y and U(1)_{B-L} while retaining the UV insensitivity. In this paper we consider electroweak symmetry breaking via UV insensitive anomaly mediation in several models. For the MSSM we find a stable vacuum when tanbeta< 1, but in this region the top Yukawa coupling blows up only slightly above the supersymmetry breaking scale. For the NMSSM, we find a stable electroweak breaking vacuum but with a chargino that is too light. Replacing the cubic singlet term in the NMSSM superpotential with a term linear in the singlet wefind a stable vacuum and viable spectrum. Most of the parameter region with correct vacua requires a large superpotential coupling, precisely what is expected in the"Fat Higgs'" model in which the superpotential is generated dynamically. We have therefore found the first viable UV complete, UV insensitive supersymmetry breaking model that solves the flavor and CP problems automatically: the Fat Higgs model with UV insensitive anomaly mediation. Moreover, the cosmological gravitino problem is naturally solved, opening up the possibility of realistic thermal leptogenesis.

  4. Quantum Phase Transitions with Parity-Symmetry Breaking and Hysteresis.

    PubMed

    Trenkwalder, A; Spagnolli, G; Semeghini, G; Coop, S; Landini, M; Castilho, P; Pezzè, L; Modugno, G; Inguscio, M; Smerzi, A; Fattori, M

    2016-09-01

    Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models1-3. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report for the first time the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system is made of an ultra-cold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature4, the investigation of macroscopic quantum tunneling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points5.

  5. Quantum Phase Transitions with Parity-Symmetry Breaking and Hysteresis

    PubMed Central

    Trenkwalder, A.; Spagnolli, G.; Semeghini, G.; Coop, S.; Landini, M.; Castilho, P.; Pezzè, L.; Modugno, G.; Inguscio, M.; Smerzi, A.; Fattori, M.

    2016-01-01

    Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models1–3. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report for the first time the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system is made of an ultra-cold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature4, the investigation of macroscopic quantum tunneling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points5. PMID:27610189

  6. Spontaneous chiral symmetry breaking in early molecular networks

    PubMed Central

    2010-01-01

    Background An important facet of early biological evolution is the selection of chiral enantiomers for molecules such as amino acids and sugars. The origin of this symmetry breaking is a long-standing question in molecular evolution. Previous models addressing this question include particular kinetic properties such as autocatalysis or negative cross catalysis. Results We propose here a more general kinetic formalism for early enantioselection, based on our previously described Graded Autocatalysis Replication Domain (GARD) model for prebiotic evolution in molecular assemblies. This model is adapted here to the case of chiral molecules by applying symmetry constraints to mutual molecular recognition within the assembly. The ensuing dynamics shows spontaneous chiral symmetry breaking, with transitions towards stationary compositional states (composomes) enriched with one of the two enantiomers for some of the constituent molecule types. Furthermore, one or the other of the two antipodal compositional states of the assembly also shows time-dependent selection. Conclusion It follows that chiral selection may be an emergent consequence of early catalytic molecular networks rather than a prerequisite for the initiation of primeval life processes. Elaborations of this model could help explain the prevalent chiral homogeneity in present-day living cells. Reviewers This article was reviewed by Boris Rubinstein (nominated by Arcady Mushegian), Arcady Mushegian, Meir Lahav (nominated by Yitzhak Pilpel) and Sergei Maslov. PMID:20507625

  7. Symmetry breaking and singularity structure in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.

    2012-08-01

    We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.

  8. Peccei-Quinn symmetry from dynamical supersymmetry breaking

    NASA Astrophysics Data System (ADS)

    Harigaya, Keisuke; Ibe, Masahiro; Schmitz, Kai; Yanagida, Tsutomu T.

    2015-10-01

    The proximity of the Peccei-Quinn scale to the scale of supersymmetry breaking in models of pure gravity mediation hints at a common dynamical origin of these two scales. To demonstrate how to make such a connection manifest, we embed the Peccei-Quinn mechanism into the vectorlike model of dynamical supersymmetry breaking à la Izawa and Yanagida as well as Intriligator and Thomas (IYIT). Here, we rely on the anomaly-free discrete Z4R symmetry required in models of pure gravity mediation to solve the μ problem to protect the Peccei-Quinn symmetry from the dangerous effect of higher-dimensional operators. This results in a rich phenomenology featuring a QCD axion with a decay constant of O (1010) GeV and mixed dark matter in the form of weakly interacting massive particles and axions. In addition, exactly five pairs of extra 5 and 5* matter multiplets, directly coupled to the supersymmetry breaking sector and with masses close to the gravitino mass, m3 /2˜100 TeV , are needed to cancel the Z4R anomalies.

  9. High temperature symmetry nonrestoration and inverse symmetry breaking in the Cornwall-Jackiw-Tomboulis formalism

    SciTech Connect

    Tran Huu Phat; Le Viet Hoa; Nguyen Tuan Anh; Nguyen Van Long

    2007-12-15

    The Cornwall-Jackiw-Tomboulis (CJT) effective action at finite temperature is applied to study the symmetry nonrestoration (SNR) and inverse symmetry breaking (ISB) at high temperature in the Z{sub 2}xZ{sub 2} model. A renormalization prescription is developed for the CJT effective action in the double bubble approximation. It is shown that the triviality related feature of the model does not show up, and the temperature effects do not alter the conditions for SNR/ISB in a broad range of temperatures.

  10. Dynamical Symmetry Breaking and Phase Transitions in Driven Diffusive Systems

    NASA Astrophysics Data System (ADS)

    Baek, Yongjoo; Kafri, Yariv; Lecomte, Vivien

    2017-01-01

    We study the probability distribution of a current flowing through a diffusive system connected to a pair of reservoirs at its two ends. Sufficient conditions for the occurrence of a host of possible phase transitions both in and out of equilibrium are derived. These transitions manifest themselves as singularities in the large deviation function, resulting in enhanced current fluctuations. Microscopic models which implement each of the scenarios are presented, with possible experimental realizations. Depending on the model, the singularity is associated either with a particle-hole symmetry breaking, which leads to a continuous transition, or in the absence of the symmetry with a first-order phase transition. An exact Landau theory which captures the different singular behaviors is derived.

  11. Vibration and symmetry-breaking of boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Chowdhury, R.; Wang, C. Y.; Adhikari, S.; Scarpa, F.

    2010-09-01

    The unique features of axial, torsional, transverse and radial breathing vibrations are captured for armchair and zigzag singlewalled boron nitride nanotubes (BNNTs) based on molecular mechanics simulations and continuum mechanics theories. Equivalent Young's modulus 1 TPa and shear modulus 0.4 TPa are obtained independent of the chirality of BNNTs. In particular, a distorted optimized structure is observed for the first time for BNNTs with sufficiently large diameter and length. It is found that the deformed structures result in behaviours of BNNTs deviating from those of classical columns/beams. Such symmetry-breaking could also exert significant impacts on the structural instability (buckling) and electronic properties of BNNTs that are sensitive to the structural symmetry.

  12. Matter inflation with A{sub 4} flavour symmetry breaking

    SciTech Connect

    Antusch, Stefan; Nolde, David E-mail: david.nolde@unibas.ch

    2013-10-01

    We discuss model building in tribrid inflation, which is a framework for realising inflation in the matter sector of supersymmetric particle physics models. The inflaton is a D-flat combination of matter fields, and inflation ends by a phase transition in which some Higgs field obtains a vacuum expectation value. We first describe the general procedure for implementing tribrid inflation in realistic models of particle physics that can be applied to a wide variety of BSM particle physics models around the GUT scale. We then demonstrate how the procedure works for an explicit lepton flavour model based on an A{sub 4} family symmetry. The model is both predictive and phenomenologically viable, and illustrates how tribrid inflation connects cosmological and particle physics parameters. In particular, it predicts a relation between the neutrino Yukawa coupling and the running of the spectral index α{sub s}. We also show how topological defects from the flavour symmetry breaking can be avoided automatically.

  13. Fermion masses without symmetry breaking in two spacetime dimensions

    NASA Astrophysics Data System (ADS)

    BenTov, Yoni

    2015-07-01

    I study the prospect of generating mass for symmetry-protected fermions without breaking the symmetry that forbids quadratic mass terms in the Lagrangian. I focus on 1+1 spacetime dimensions in the hope that this can provide guidance for interacting fermions in 3+1 dimensions. I first review the SO(8) Gross-Neveu model and emphasize a subtlety in the triality transformation. Then I focus on the " m = 0" manifold of the SO(7) Kitaev-Fidkowski model. I argue that this theory exhibits a phenomenon similar to "parity doubling" in hadronic physics, and this leads to the conclusion that the fermion propagator vanishes when p μ = 0. I also briefly explore a connection between this model and the two-channel, single-impurity Kondo effect. This paper may serve as an introduction to topological superconductors for high energy theorists, and perhaps as a taste of elementary particle physics for condensed matter theorists.

  14. Lateralization as a symmetry breaking process in birdsong

    NASA Astrophysics Data System (ADS)

    Trevisan, M. A.; Cooper, B.; Goller, F.; Mindlin, G. B.

    2007-03-01

    The singing by songbirds is a most convincing example in the animal kingdom of functional lateralization of the brain, a feature usually associated with human language. Lateralization is expressed as one or both of the bird’s sound sources being active during the vocalization. Normal songs require high coordination between the vocal organ and respiratory activity, which is bilaterally symmetric. Moreover, the physical and neural substrate used to produce the song lack obvious asymmetries. In this work we show that complex spatiotemporal patterns of motor activity controlling airflow through the sound sources can be explained in terms of spontaneous symmetry breaking bifurcations. This analysis also provides a framework from which to study the effects of imperfections in the system’ s symmetries. A physical model of the avian vocal organ is used to generate synthetic sounds, which allows us to predict acoustical signatures of the song and compare the predictions of the model with experimental data.

  15. Flavor symmetry breaking in lattice QCD with a mixed action

    SciTech Connect

    Baer, Oliver; Golterman, Maarten; Shamir, Yigal

    2011-03-01

    We study the phase structure of mixed-action QCD with two Wilson sea quarks and any number of chiral valence quarks (and ghosts), starting from the chiral Lagrangian. A priori the effective theory allows for a rich phase structure, including a phase with a condensate made of sea and valence quarks. In such a phase, mass eigenstates would become admixtures of sea and valence fields, and pure-sea correlation functions would depend on the parameters of the valence sector, in contradiction with the actual setup of mixed-action simulations. Using that the spectrum of the chiral Dirac operator has a gap for nonzero quark mass we prove that spontaneous symmetry breaking of the flavor symmetries can only occur within the sea sector. This rules out a mixed condensate and implies restrictions on the low-energy constants of the effective theory.

  16. Confinement and dynamical chiral symmetry breaking in QED3

    SciTech Connect

    Bashir, A.; Raya, A.; Cloeet, I. C.; Roberts, C. D.

    2008-11-15

    We establish that QED3 can possess a critical number of flavors, N{sub f}{sup c}, associated with dynamical chiral symmetry breaking if, and only if, the fermion wave function renormalization and photon vacuum polarization are homogeneous functions at infrared momenta when the fermion mass function vanishes. The Ward identity entails that the fermion-photon vertex possesses the same property and ensures a simple relationship between the homogeneity degrees of each of these functions. Simple models for the photon vacuum polarization and fermion-photon vertex are used to illustrate these observations. The existence and value of N{sub f}{sup c} are contingent upon the precise form of the vertex but any discussion of gauge dependence is moot. We introduce an order parameter for confinement. Chiral symmetry restoration and deconfinement are coincident owing to an abrupt change in the analytic properties of the fermion propagator when a nonzero scalar self-energy becomes insupportable.

  17. Confinement and dynamical chiral symmetry breaking in QED3.

    SciTech Connect

    Bashir, A.; Raya, A.; Cloet, I. C.; Roberts, C. D.; Univ. Michoacana de San Nicolas de Hidalgo

    2008-01-01

    We establish that QED3 can possess a critical number of flavors, Nfc, associated with dynamical chiral symmetry breaking if, and only if, the fermion wave function renormalization and photon vacuum polarization are homogeneous functions at infrared momenta when the fermion mass function vanishes. The Ward identity entails that the fermion-photon vertex possesses the same property and ensures a simple relationship between the homogeneity degrees of each of these functions. Simple models for the photon vacuum polarization and fermion-photon vertex are used to illustrate these observations. The existence and value of Nfc are contingent upon the precise form of the vertex but any discussion of gauge dependence is moot. We introduce an order parameter for confinement. Chiral symmetry restoration and deconfinement are coincident owing to an abrupt change in the analytic properties of the fermion propagator when a nonzero scalar self-energy becomes insupportable.

  18. Revolving D-branes and spontaneous gauge-symmetry breaking

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Kitazawa, Noriaki

    2015-12-01

    We propose a new mechanism of spontaneous gauge-symmetry breaking in the world-volume theory of revolving D-branes around a fixed point of orbifolds. In this paper, we consider a simple model of the T^6/Z_3 orbifold on which we put D3-branes, D7-branes, and their anti-branes. The configuration breaks supersymmetry, but the Ramond-Ramond tadpole cancellation conditions are satisfied. A set of three D3-branes at an orbifold fixed point can separate from the point, but, when they move perpendicular to the anti-D7-branes put on the fixed point, they are pulled back due to an attractive interaction between the D3- and anti-D7-branes. In order to stabilize the separation of the D3-branes at nonzero distance, we consider revolution of the D3-branes around the fixed point. Then the gauge symmetry on the D3-branes is spontaneously broken, and the rank of the gauge group is reduced. The distance can be set at will by appropriately choosing the angular momentum of the revolving D3-branes, which should be determined by the initial condition of the cosmological evolution of the D-brane configurations. The distance corresponds to the vacuum expectation values of brane moduli fields in the world-volume theory and, if it is written as M/M_s^2 in terms of the string scale M_s, the scale of gauge-symmetry breaking is given by M. Angular momentum conservation of revolving D3-branes assures the stability of the scale M against M_s.

  19. Examining a possible cascade effect in chiral symmetry breaking

    NASA Astrophysics Data System (ADS)

    Fariborz, Amir H.; Jora, Renata

    2017-01-01

    We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular quantum chromodynamics (QCD) where we calculate the “four quark” vacuum condensate and a preon composite model based on QCD at higher scales. In this context, we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.

  20. Quantum transport enhancement by time-reversal symmetry breaking.

    PubMed

    Zimborás, Zoltán; Faccin, Mauro; Kádár, Zoltán; Whitfield, James D; Lanyon, Ben P; Biamonte, Jacob

    2013-01-01

    Quantum mechanics still provides new unexpected effects when considering the transport of energy and information. Models of continuous time quantum walks, which implicitly use time-reversal symmetric Hamiltonians, have been intensely used to investigate the effectiveness of transport. Here we show how breaking time-reversal symmetry of the unitary dynamics in this model can enable directional control, enhancement, and suppression of quantum transport. Examples ranging from exciton transport to complex networks are presented. This opens new prospects for more efficient methods to transport energy and information.

  1. Induced Time-Reversal Symmetry Breaking Observed in Microwave Billiards

    SciTech Connect

    Dietz, B.; Friedrich, T.; Miski-Oglu, M.; Richter, A.; Schaefer, F.; Harney, H. L.; Weidenmueller, H. A.

    2007-02-16

    Using reciprocity, we investigate the breaking of time-reversal (T) symmetry due to a ferrite embedded in a flat microwave billiard. Transmission spectra of isolated single resonances are not sensitive to T violation, whereas those of pairs of nearly degenerate resonances do depend on the direction of time. For their theoretical description a scattering matrix model from nuclear physics is used. The T-violating matrix elements of the effective Hamiltonian for the microwave billiard with the embedded ferrite are determined experimentally as functions of the magnetization of the ferrite.

  2. Induced time-reversal symmetry breaking observed in microwave billiards.

    PubMed

    Dietz, B; Friedrich, T; Harney, H L; Miski-Oglu, M; Richter, A; Schäfer, F; Weidenmüller, H A

    2007-02-16

    Using reciprocity, we investigate the breaking of time-reversal (T) symmetry due to a ferrite embedded in a flat microwave billiard. Transmission spectra of isolated single resonances are not sensitive to T violation, whereas those of pairs of nearly degenerate resonances do depend on the direction of time. For their theoretical description a scattering matrix model from nuclear physics is used. The T-violating matrix elements of the effective Hamiltonian for the microwave billiard with the embedded ferrite are determined experimentally as functions of the magnetization of the ferrite.

  3. Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes

    SciTech Connect

    Kartashov, Yaroslav V.; Vysloukh, Victor A.; Konotop, Vladimir V.

    2011-04-15

    We address one-dimensional soliton formation in a cubic nonlinear medium with two-photon absorption and transversally inhomogeneous gain landscape consisting of a single or several amplifying channels. Existence of the solitons requires certain threshold gain while the properties of solitons strongly depend on whether the number of the amplifying channels is odd or even. In the former case, an increase of the gain leads to symmetry breaking, which occurs through the pitchfork bifurcation, and to emergence of a single or several coexisting stable asymmetric modes. In the case of an even number of amplifying channels, we have found only asymmetric stable states.

  4. Spontaneous symmetry breaking and collapse in bosonic Josephson junctions

    SciTech Connect

    Mazzarella, Giovanni; Salasnich, Luca

    2010-09-15

    We investigate an attractive atomic Bose-Einstein condensate (BEC) trapped by a double-well potential in the axial direction and by a harmonic potential in the transverse directions. We obtain numerically a quantum phase diagram which includes all the three relevant phases of the system: Josephson, spontaneous symmetry breaking (SSB), and collapse. We consider also the coherent dynamics of the BEC and calculate the frequency of population-imbalance mode in the Josephson phase and in the SSB phase up to the collapse. We show that these phases can be observed by using ultracold vapors of {sup 7}Li atoms in a magneto-optical trap.

  5. Quantum Transport Enhancement by Time-Reversal Symmetry Breaking

    PubMed Central

    Zimborás, Zoltán; Faccin, Mauro; Kádár, Zoltán; Whitfield, James D.; Lanyon, Ben P.; Biamonte, Jacob

    2013-01-01

    Quantum mechanics still provides new unexpected effects when considering the transport of energy and information. Models of continuous time quantum walks, which implicitly use time-reversal symmetric Hamiltonians, have been intensely used to investigate the effectiveness of transport. Here we show how breaking time-reversal symmetry of the unitary dynamics in this model can enable directional control, enhancement, and suppression of quantum transport. Examples ranging from exciton transport to complex networks are presented. This opens new prospects for more efficient methods to transport energy and information. PMID:23917452

  6. Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas

    PubMed Central

    Yang, Jhen-Hong; Chen, Kuo-Ping

    2016-01-01

    Symmetry-breaking and scattering cancellation were observed in the dark-mode resonance of dipolar gold nanoantennas (NAs) on glass substrates coupled with oblique incidence and total internal reflection. With the assistance of evanescent waves, the coupling efficiency was twice as strong when the incidence angle was larger than the critical angle. The Hamiltonian equation and absorption spectra were used to analyze the hybridization model of symmetric dipolar gold NAs. The antibonding mode could be coupled successfully by both transverse-magnetic (TM) and transverse-electric (TE) polarizations to NAs when the dimers orientation is parallel to the propagation direction of evanescent waves. PMID:27581766

  7. Breaking the imaging symmetry in negative refraction lenses.

    PubMed

    Ma, Changbao; Liu, Zhaowei

    2012-01-30

    Optical lenses are pervasive in various areas of sciences and technologies. It is well known that conventional lenses have symmetrical imaging properties along forward and backward directions. In this letter, we show that hyperbolic plasmonic metamaterial based negative refraction lenses perform as either converging lenses or diverging lenses depending on the illumination directions. New imaging equations and properties that are different from those of all the existing optical lenses are also presented. These new imaging properties, including symmetry breaking as well as the super resolving power, significantly expand the horizon of imaging optics and optical system design.

  8. Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas

    NASA Astrophysics Data System (ADS)

    Yang, Jhen-Hong; Chen, Kuo-Ping

    2016-09-01

    Symmetry-breaking and scattering cancellation were observed in the dark-mode resonance of dipolar gold nanoantennas (NAs) on glass substrates coupled with oblique incidence and total internal reflection. With the assistance of evanescent waves, the coupling efficiency was twice as strong when the incidence angle was larger than the critical angle. The Hamiltonian equation and absorption spectra were used to analyze the hybridization model of symmetric dipolar gold NAs. The antibonding mode could be coupled successfully by both transverse-magnetic (TM) and transverse-electric (TE) polarizations to NAs when the dimers orientation is parallel to the propagation direction of evanescent waves.

  9. Minimal but non-minimal inflation and electroweak symmetry breaking

    SciTech Connect

    Marzola, Luca; Racioppi, Antonio

    2016-10-07

    We consider the most minimal scale invariant extension of the standard model that allows for successful radiative electroweak symmetry breaking and inflation. The framework involves an extra scalar singlet, that plays the rôle of the inflaton, and is compatibile with current experimental bounds owing to the non-minimal coupling of the latter to gravity. This inflationary scenario predicts a very low tensor-to-scalar ratio r≈10{sup −3}, typical of Higgs-inflation models, but in contrast yields a scalar spectral index n{sub s}≃0.97 which departs from the Starobinsky limit. We briefly discuss the collider phenomenology of the framework.

  10. Holographic instant conformal symmetry breaking by colliding conical defects

    NASA Astrophysics Data System (ADS)

    Ageev, D. S.; Aref'eva, I. Ya.

    2016-12-01

    We study instant conformal symmetry breaking as a holographic effect of ultrarelativistic particles moving in the AdS3 space-time. We give a qualitative picture of this effect based on calculating the two-point correlation functions and the entanglement entropy of the corresponding boundary theory. We show that in the geodesic approximation, because of gravitational lensing of the geodesics, the ultrarelativistic massless defect produces a zone structure for correlators with broken conformal invariance. At the same time, the holographic entanglement entropy also exhibits a transition to nonconformal behavior. Two colliding massless defects produce a more diverse zone structure for correlators and the entanglement entropy.

  11. Spontaneous Symmetry Breaking as a Basis of Particle Mass

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2007-04-01

    Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout & Englert, and by Guralnik, Hagen, & Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W{sup {+-}} and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations.

  12. Orientational glass: Full replica symmetry breaking in generalized spin glass-like models without reflection symmetry

    NASA Astrophysics Data System (ADS)

    Tareyeva, E. E.; Schelkacheva, T. I.; Chtchelkatchev, N. M.

    2013-02-01

    We investigate near the point of glass transition the expansion of the free energy corresponding to the generalized Sherrington-Kirkpatrick model with arbitrary diagonal operators Uˆ standing instead of Ising spins. We focus on the case when Uˆ is an operator with broken reflection symmetry. Such a consideration is important for understanding the behavior of spin glass-like phases in a number of real physical systems, mainly in orientational glasses in mixed molecular crystals which present just the case. We build explicitly a full replica symmetry breaking (FRSB) solution of the equations for the orientational glass order parameters when the nonsymmetric part of Uˆ is small. This particular result presents a counterexample in the context of usually adopted conjecture of the absence of FRSB solution in systems with no reflection symmetry.

  13. Intrinsic transverse momentum and dynamical chiral symmetry breaking

    SciTech Connect

    Christian Weiss, Peter Schweitzer, Mark Strikman

    2013-01-01

    We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.

  14. Bending-induced symmetry breaking of lithiation in germanium nanowires.

    PubMed

    Gu, Meng; Yang, Hui; Perea, Daniel E; Zhang, Ji-Guang; Zhang, Sulin; Wang, Chong-Min

    2014-08-13

    From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in the electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on the one hand lithiation-generated stress mediates lithiation kinetics and on the other the electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending the GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion.

  15. Bending-induced Symmetry Breaking of Lithiation in Germanium Nanowires

    SciTech Connect

    Gu, Meng; Yang, Hui; Perea, Daniel E.; Zhang, Jiguang; Zhang, Sulin; Wang, Chong M.

    2014-08-01

    From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on one hand lithiation-generated stress mediates lithiation kinetics, and on the other electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion.

  16. 3D toroidal physics: testing the boundaries of symmetry breaking

    NASA Astrophysics Data System (ADS)

    Spong, Don

    2014-10-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE

  17. Stock market speculation: Spontaneous symmetry breaking of economic valuation

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    2000-09-01

    Firm foundation theory estimates a security's firm fundamental value based on four determinants: expected growth rate, expected dividend payout, the market interest rate and the degree of risk. In contrast, other views of decision-making in the stock market, using alternatives such as human psychology and behavior, bounded rationality, agent-based modeling and evolutionary game theory, expound that speculative and crowd behavior of investors may play a major role in shaping market prices. Here, we propose that the two views refer to two classes of companies connected through a "phase transition". Our theory is based on (1) the identification of the fundamental parity symmetry of prices (p→-p), which results from the relative direction of payment flux compared to commodity flux and (2) the observation that a company's risk-adjusted growth rate discounted by the market interest rate behaves as a control parameter for the observable price. We find a critical value of this control parameter at which a spontaneous symmetry-breaking of prices occurs, leading to a spontaneous valuation in absence of earnings, similarly to the emergence of a spontaneous magnetization in Ising models in absence of a magnetic field. The low growth rate phase is described by the firm foundation theory while the large growth rate phase is the regime of speculation and crowd behavior. In practice, while large "finite-time horizon" effects round off the predicted singularities, our symmetry-breaking speculation theory accounts for the apparent over-pricing and the high volatility of fast growing companies on the stock markets.

  18. Strong Electroweak Symmetry Breaking in the Large Hadron Collider Era

    NASA Astrophysics Data System (ADS)

    Evans, Jared Andrew

    2011-12-01

    With the Large Hadron Collider collecting data, both the pursuit of novel detection techniques and the exploration of new ideas are more important than ever. Novel detection techniques are essential in order for the community to garner the most worth from the machine. New ideas are needed both to expand the boundaries of what could be observed and to foster the creative mindset of the community that moves particle physics into fascinating, and often unexpected, directions. Discovering whether electroweak symmetry is broken strongly or weakly is one of the most pressing questions to be answered. Exploring the possibility of strong electroweak symmetry breaking is the topic of this work. The first of two major sectors in this work concerns the theory of conformal technicolor. We present the low energy minimal model for conformal technicolor and verify that it can satisfy current constraints from experiment. We will also provide a UV completion for this model, which realistically extends the sector with high-energy supersymmetry. Two complete models of flavor are presented. This is the first example of a complete, consistent model of strong electroweak symmetry breaking. The second of the two sectors discusses experimental signatures arising in a large class of general technicolor models at the Large Hadron Collider. The possible existence of narrow scalar states that can be produced via gluon-gluon fusion is first discussed. These states can decay into exotic final states of multiple electroweak gauge bosons, third generation particles and even light composite Higgs particles. A two Higgs doublet model is proposed as an effective way to model these exciting states. Lastly, we discuss the array of possible final states and their possible discovery.

  19. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.

    PubMed

    Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J

    2015-10-23

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.

  20. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales

    PubMed Central

    Curran, P. J.; Desoky, W. M.; Milos̆ević, M. V.; Chaves, A.; Laloë, J.-B.; Moodera, J. S.; Bending, S. J.

    2015-01-01

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications. PMID:26492969

  1. The role of color and attention-to-color in mirror-symmetry perception

    PubMed Central

    Gheorghiu, Elena; Kingdom, Frederick A. A.; Remkes, Aaron; Li, Hyung-Chul O.; Rainville, Stéphane

    2016-01-01

    The role of color in the visual perception of mirror-symmetry is controversial. Some reports support the existence of color-selective mirror-symmetry channels, others that mirror-symmetry perception is merely sensitive to color-correlations across the symmetry axis. Here we test between the two ideas. Stimuli consisted of colored Gaussian-blobs arranged either mirror-symmetrically or quasi-randomly. We used four arrangements: (1) ‘segregated’ – symmetric blobs were of one color, random blobs of the other color(s); (2) ‘random-segregated’ – as above but with the symmetric color randomly selected on each trial; (3) ‘non-segregated’ – symmetric blobs were of all colors in equal proportions, as were the random blobs; (4) ‘anti-symmetric’ – symmetric blobs were of opposite-color across the symmetry axis. We found: (a) near-chance levels for the anti-symmetric condition, suggesting that symmetry perception is sensitive to color-correlations across the symmetry axis; (b) similar performance for random-segregated and non-segregated conditions, giving no support to the idea that mirror-symmetry is color selective; (c) highest performance for the color-segregated condition, but only when the observer knew beforehand the symmetry color, suggesting that symmetry detection benefits from color-based attention. We conclude that mirror-symmetry detection mechanisms, while sensitive to color-correlations across the symmetry axis and subject to the benefits of attention-to-color, are not color selective. PMID:27404804

  2. Perception of Mirror Symmetry in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Falter, Christine M.; Bailey, Anthony J.

    2012-01-01

    Gestalt grouping in autism spectrum disorders (ASD) is selectively impaired for certain organization principles but for not others. Symmetry is a fundamental Gestalt principle characterizing many biological shapes. Sensitivity to symmetry was tested using the Picture Symmetry Test, which requires finding symmetry lines on pictures. Individuals…

  3. Curvature-induced symmetry breaking determines elastic surface patterns

    NASA Astrophysics Data System (ADS)

    Stoop, Norbert; Lagrange, Romain; Terwagne, Denis; Reis, Pedro M.; Dunkel, Jörn

    2015-03-01

    Symmetry-breaking transitions associated with the buckling and folding of curved multilayered surfaces—which are common to a wide range of systems and processes such as embryogenesis, tissue differentiation and structure formation in heterogeneous thin films or on planetary surfaces—have been characterized experimentally. Yet owing to the nonlinearity of the underlying stretching and bending forces, the transitions cannot be reliably predicted by current theoretical models. Here, we report a generalized Swift-Hohenberg theory that describes wrinkling morphology and pattern selection in curved elastic bilayer materials. By testing the theory against experiments on spherically shaped surfaces, we find quantitative agreement with analytical predictions for the critical curves separating labyrinth, hybrid and hexagonal phases. Furthermore, a comparison to earlier experiments suggests that the theory is universally applicable to macroscopic and microscopic systems. Our approach builds on general differential-geometry principles and can thus be extended to arbitrarily shaped surfaces.

  4. Where to Go: Breaking the Symmetry in Cell Motility

    PubMed Central

    2016-01-01

    Cell migration in the “correct” direction is pivotal for many biological processes. Although most work is devoted to its molecular mechanisms, the cell’s preference for one direction over others, thus overcoming intrinsic random motility, epitomizes a profound principle that underlies all complex systems: the choice of one axis, in structure or motion, from a uniform or symmetric set of options. Explaining directional motility by an external chemo-attractant gradient does not solve but only shifts the problem of causation: whence the gradient? A new study in PLOS Biology shows cell migration in a self-generated gradient, offering an opportunity to take a broader look at the old dualism of extrinsic instruction versus intrinsic symmetry-breaking in cell biology. PMID:27196433

  5. Symmetry-Breaking Model for X-Chromosome Inactivation

    NASA Astrophysics Data System (ADS)

    Nicodemi, Mario; Prisco, Antonella

    2007-03-01

    In mammals, dosage compensation of X linked genes in female cells is achieved by inactivation of one of their two X chromosomes which is randomly chosen. The earliest steps in X-chromosome inactivation (XCI), namely, the mechanism whereby cells count their X chromosomes and choose between two equivalent X chromosomes, remain mysterious. Starting from the recent discovery of X chromosome colocalization at the onset of X-chromosome inactivation, we propose a statistical mechanics model of XCI, which is investigated by computer simulations and checked against experimental data. Our model describes how a “blocking factor” complex is self-assembled and why only one is formed out of many diffusible molecules, resulting in a spontaneous symmetry breaking in the binding to two identical chromosomes. These results are used to derive a scenario of biological implications.

  6. Universality of spontaneous chiral symmetry breaking in gauge theories

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Wetterich, Christof

    2004-01-01

    We investigate one-flavor QCD with an additional chiral scalar field. For a large domain in the space of coupling constants, this model belongs to the same universality class as QCD, and the effects of the scalar become unobservable. This is connected to a “bound-state fixed point” of the renormalization flow for which all memory of the microscopic scalar interactions is lost. The QCD domain includes a microscopic scalar potential with minima at a nonzero field. On the other hand, for a scalar mass term m2 below a critical value m2c, the universality class is characterized by perturbative spontaneous chiral symmetry breaking which renders the quarks massive. Our renormalization group analysis shows how this universality class is continuously connected with the QCD universality class.

  7. Dynamics Behind the Quark Mass Hierarchy and Electroweak Symmetry breaking

    NASA Astrophysics Data System (ADS)

    Miransky, Vladimir A.

    2011-05-01

    I review the dynamics in a new class of models describing the quark mass hierarchy, suggested recently by Michio Hashimoto and the author. In this class, the dynamics primarily responsible for electroweak symmetry breaking (EWSB) leads to the mass spectrum of quarks with no (or weak) isospin violation. Moreover, the values of these masses are of the order of the observed masses of the down-type quarks. Then, strong (although subcritical) horizontal diagonal interactions for the t quark plus horizontal flavor-changing neutral interactions between different families lead (with no fine tuning) to a realistic quark mass spectrum. In this scenario, many composite Higgs bosons occur. A concrete model with the dynamical EWSB with the fourth family is described in detail.

  8. Dynamics of the universe and spontaneous symmetry breaking

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1980-01-01

    It is shown that the presence of a phase transition early in the history of the universe, associated with spontaneous symmetry breaking (believed to take place at very high temperatures at which the various fundamental interactions unify), significantly modifies its dynamics and evolution. This is due to the energy 'pumping' during the phase transition from the vacuum to the substance, rather than the gravitating effects of the vacuum. The expansion law of the universe then differs substantially from the relation considered so far for the very early time expansion. In particular it is shown that under certain conditions this expansion law is exponential. It is further argued that under reasonable assumptions for the mass of the associated Higgs boson this expansion stage could last long enough to potentially account for the observed isotropy of the universe.

  9. Fluid force and static symmetry breaking modes of 3D bluff bodies.

    NASA Astrophysics Data System (ADS)

    Cadot, Olivier; Evrard, Antoine; DFA Team

    2015-11-01

    A cavity at the base of the squareback Ahmed model at Re =6.106 is able to reduce the base suction by 18% and the drag coefficient by 9%, while the flow at the separation remains unaffected. Instantaneous pressure measurements at the body base, fluid force measurements and wake velocity measurements are investigated varying the cavity depth from 0 to 35% of the base height. Due to the reflectional symmetry of the rectangular base, there are two Reflectional Symmetry Breaking (RSB) mirror modes present in the natural wake that switch from one to the other randomly in accordance with the recent findings of Grandemange et al. (2013). It is shown that these modes exhibit an energetic 3D static vortex system close to the base of the body. A sufficiently deep cavity is able to stabilize the wake toward a symmetry preserved wake, thus suppressing the RSB modes and leading to a weaker elliptical toric recirculation. The stabilization can be modeled with a Langevin equation. The plausible mechanism for drag reduction with the base cavity is based on the interaction of the static 3D vortex system of the RSB modes with the base and their suppression by stabilization. There are some strong evidences that this mechanism may be generalized to axisymmetric bodies with base cavity.

  10. Symmetry Breaking and the B3LYP Functional

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Hudgins, Douglas M.; Allamandola, Louis J.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The infrared spectra of six molecules, each of which contains a five-membered ring, and their cations are determined using density functional theory (DFT); both the B3LYP and BP86 functionals are used. The computed results are compared with the experimental spectra. For the neutral molecules, both methods are in good agreement with experiment. Even the Hartree-Fock (HF) approach is qualitatively correct for the neutrals. For the cations, the HF approach fails, as found for other organic ring systems. The B3LYP and BP86 approaches are in good mutual agreement for five of the six cation spectra, and in good agreement with experiment for four of the five cations where the experimental spectra are available. It is only for the fluoranthene cation, where the BP86 and B3LYP functionals yield different results; the BP86 yields the expected C2v symmetry, while the B3LYP approach breaks symmetry. The experimental spectra supports the BP86 spectra over the B3LYP, but the quality of the experimental spectra does not allow a critical evaluation of the accuracy of the BP86 approach for this difficult system.

  11. Symmetry Breaking in a Model for Nodal Cilia

    NASA Astrophysics Data System (ADS)

    Brokaw, Charles J.

    2005-03-01

    Nodal cilia are very short cilia found in the embryonic node on the ventral surface of early mammalian embryos. They create a right to left fluid flow that is responsible for determining the normal asymmetry of the internal organs of the mammalian body. To do this, the distal end of the cilium must circle in a counterclockwise sense. Computer simulations with 3-dimensional models of flagella allow examination of 3-dimensional movements such as those of nodal cilia. 3-dimensional circling motions of short cilia can be achieved with velocity controlled models, in which dynein activity is regulated by sliding velocity. If dyneins on one outer doublet are controlled by the sliding velocity experienced by that doublet, the system is symmetric, and the 3-dimensional models can show either clockwise or counterclockwise circling. My computer simulations have examined two possible symmetry breaking mechanisms: 1) dyneins on doublet N are regulated by a mixture of the sliding velocities experienced by doublets N and N+1 (numbered in a clockwise direction, looking from the base). or 2) symmetry is broken by an off-axis force that produces a right-handed twist of the axoneme, consistent with observations that some dyneins can rotate their substrate microtubules in a clockwise direction.

  12. SYZ Mirror Symmetry for Toric Calabi-Yau Manifolds

    NASA Astrophysics Data System (ADS)

    Lau, Siu Cheong

    This thesis gives a procedure to carry out SYZ construction of mirrors with quantum corrections by Fourier transform of open Gromov-Witten invariants. Applying to toric Calabi-Yau manifolds, one obtains the Hori-Iqbel-Vafa mirror together with a map from the Kahler moduli to the complex moduli of the mirror, called the SYZ map. It is conjectured that the SYZ map equals to the inverse mirror map. In dimension two this conjecture is proved, and in dimension three supporting evidences of the equality are studied in various examples. Since the SYZ map is expressed in terms of open Gromov-Witten invariants, this conjectural equality established an enumerative meaning of the inverse mirror map. Moreover a computational method of open Gromov-Witten invariants for toric Calabi-Yau manifolds is invented. As an application, the Landau-Ginzburg mirrors of compact semi-Fano toric surfaces are computed explicitly.

  13. Symmetry breaking on density in escaping ants: experiment and alarm pheromone model.

    PubMed

    Li, Geng; Huan, Di; Roehner, Bertrand; Xu, Yijuan; Zeng, Ling; Di, Zengru; Han, Zhangang

    2014-01-01

    The symmetry breaking observed in nature is fascinating. This symmetry breaking is observed in both human crowds and ant colonies. In such cases, when escaping from a closed space with two symmetrically located exits, one exit is used more often than the other. Group size and density have been reported as having no significant impact on symmetry breaking, and the alignment rule has been used to model symmetry breaking. Density usually plays important roles in collective behavior. However, density is not well-studied in symmetry breaking, which forms the major basis of this paper. The experiment described in this paper on an ant colony displays an increase then decrease of symmetry breaking versus ant density. This result suggests that a Vicsek-like model with an alignment rule may not be the correct model for escaping ants. Based on biological facts that ants use pheromones to communicate, rather than seeing how other individuals move, we propose a simple yet effective alarm pheromone model. The model results agree well with the experimental outcomes. As a measure, this paper redefines symmetry breaking as the collective asymmetry by deducing the random fluctuations. This research indicates that ants deposit and respond to the alarm pheromone, and the accumulation of this biased information sharing leads to symmetry breaking, which suggests true fundamental rules of collective escape behavior in ants.

  14. Spontaneous symmetry breaking and masses numerical results in Doplicher-Fredenhagen-Roberts noncommutative space-time

    NASA Astrophysics Data System (ADS)

    Neves, M. J.; Abreu, Everton M. C.

    2016-04-01

    With the elements of the Doplicher-Fredenhagen-Roberts (DFR) noncommutative formalism, we have constructed a standard electroweak model. We have introduced the spontaneous symmetry breaking and the hypercharge in DFR framework. The electroweak symmetry breaking was analyzed and the masses of the new bosons were computed.

  15. Extended ensemble theory, spontaneous symmetry breaking, and phase transitions

    NASA Astrophysics Data System (ADS)

    Xiao, Ming-wen

    2006-09-01

    In this paper, as a personal review, we suppose a possible extension of Gibbs ensemble theory so that it can provide a reasonable description of phase transitions and spontaneous symmetry breaking. The extension is founded on three hypotheses, and can be regarded as a microscopic edition of the Landau phenomenological theory of phase transitions. Within its framework, the stable state of a system is determined by the evolution of order parameter with temperature according to such a principle that the entropy of the system will reach its minimum in this state. The evolution of order parameter can cause a change in representation of the system Hamiltonian; different phases will realize different representations, respectively; a phase transition amounts to a representation transformation. Physically, it turns out that phase transitions originate from the automatic interference among matter waves as the temperature is cooled down. Typical quantum many-body systems are studied with this extended ensemble theory. We regain the Bardeen Cooper Schrieffer solution for the weak-coupling superconductivity, and prove that it is stable. We find that negative-temperature and laser phases arise from the same mechanism as phase transitions, and that they are unstable. For the ideal Bose gas, we demonstrate that it will produce Bose Einstein condensation (BEC) in the thermodynamic limit, which confirms exactly Einstein's deep physical insight. In contrast, there is no BEC either within the phonon gas in a black body or within the ideal photon gas in a solid body. We prove that it is not admissible to quantize the Dirac field by using Bose Einstein statistics. We show that a structural phase transition belongs physically to the BEC happening in configuration space, and that a double-well anharmonic system will undergo a structural phase transition at a finite temperature. For the O(N)-symmetric vector model, we demonstrate that it will yield spontaneous symmetry breaking and produce

  16. Translational symmetry breaking in field theories and the cosmological constant

    NASA Astrophysics Data System (ADS)

    Evans, Nick; Morris, Tim R.; Scott, Marc

    2016-01-01

    We argue, at a very basic effective field theory level, that higher dimension operators in scalar theories that break symmetries at scales close to their ultraviolet completion cutoff include terms that favor the breaking of translation (Lorentz) invariance, potentially resulting in striped, checkerboard or general crystal-like phases. Such descriptions can be thought of as the effective low energy description of QCD-like gauge theories near their strong coupling scale where terms involving higher dimension operators are generated. Our low energy theory consists of scalar fields describing operators such as q ¯q and q ¯F(2 n )q . Such scalars can have kinetic mixing terms that generate effective momentum dependent contributions to the mass matrix. We show that these can destabilize the translationally invariant vacuum. It is possible that in some real gauge theory such operators could become sufficiently dominant to realize such phases, and it would be interesting to look for them in lattice simulations. We present a holographic model of the same phenomena which includes renormalization group running. A key phenomenological motive to look at such states is recent work that shows that the nonlinear response in R2 gravity to such short-range fluctuations can mimic a cosmological constant. Intriguingly in a cosmology with such a Starobinsky inflation term, to generate the observed value of the present day acceleration would require stripes at the electroweak scale. Unfortunately, low energy phenomenological constraints on Lorentz violation in the electron-photon system appear to strongly rule out any such possibility outside of a disconnected dark sector.

  17. Full replica symmetry breaking in p-spin-glass-like systems

    NASA Astrophysics Data System (ADS)

    Schelkacheva, T. I.; Chtchelkatchev, N. M.

    2017-02-01

    It is shown that continuously changing the effective number of interacting particles in p-spin-glass-like model allows to describe the transition from the full replica symmetry breaking glass solution to stable first replica symmetry breaking glass solution in the case of non-reflective symmetry diagonal operators used instead of Ising spins. As an example, axial quadrupole moments in place of Ising spins are considered and the boundary value pc 1 2.5 is found.

  18. Symmetry breaking and un-breaking in microhydrodynamical systems: Swimming, pumping and bio-ballistics

    NASA Astrophysics Data System (ADS)

    Roper, Marcus Leigh

    This thesis describes the numerical and asymptotic analysis of symmetry breaking phenomena in three fluid dynamical systems. The first part concerns modeling of a micrometer sized swimming device, comprising a filament composed of superparamagnetic micron-sized beads and driven by an applied magnetic field. The swimming mechanics are deciphered in order to show how actuation by a spatially-homogeneous but temporally-varying torque leads to propagation of a bending wave along the filament and thence to propulsion. Absence of swimming unless the lateral symmetry of the filament is broken by tethering one end to a high drag body is explained. The model is used to determine whether, and to what extent, the micro-swimmer behaves like a flagellated eukaryotic cell. The second part concerns modeling of locomotion using a reversible stroke. Although forbidden at low Reynolds numbers, such symmetric gaits are favored by some microscopic planktonic swimmers. We analyze the constraints upon generation of propulsive force by such swimmers using a numerical model for a flapped limb. Effective locomotion is shown to be possible at arbitrarily low rates of energy expenditure, escaping a formerly postulated time-symmetry constraint, if the limb is shaped in order to exploit slow inertial-streaming eddies. Finally we consider the evolution of explosively launched ascomycete spores toward perfect projectile shapes---bodies that are designed to experience minimum drag in flight---using the variance of spore shapes between species in order to quantify the stiffness of the drag minimization constraint. A surprising observation about the persistent fore-aft symmetry of perfect projectiles, even up to Reynolds numbers great enough that the flow around the projectile is highly asymmetric, points both toward a model for spore ontogeny and to a novel linear approximation for moderate Reynolds flows.

  19. Towards mirror symmetry à la SYZ for generalized Calabi-Yau manifolds

    NASA Astrophysics Data System (ADS)

    Grange, Pascal; Schäfer-Nameki, Sakura

    2007-10-01

    Fibrations of flux backgrounds by supersymmetric cycles are investigated. For an internal six-manifold M with static SU(2) structure and mirror hat M, it is argued that the product M × hat M is doubly fibered by supersymmetric three-tori, with both sets of fibers transverse to M and hat M. The mirror map is then realized by T-dualizing the fibers. Mirror-symmetric properties of the fluxes, both geometric and non-geometric, are shown to agree with previous conjectures based on the requirement of mirror symmetry for Killing prepotentials. The fibers are conjectured to be destabilized by fluxes on generic SU(3) × SU(3) backgrounds, though they may survive at type-jumping points. T-dualizing the surviving fibers ensures the exchange of pure spinors under mirror symmetry.

  20. Robustness of replica symmetry breaking phenomenology in random laser.

    PubMed

    Tommasi, Federico; Ignesti, Emilio; Lepri, Stefano; Cavalieri, Stefano

    2016-11-16

    Random lasers are optical sources where light is amplified by stimulated emission along random paths through an amplifying scattering medium. Connections between their physics and the one of quenched disordered nonlinear systems, notably spin glasses, have been recently suggested. Here we report a first experimental study of correlations of spectral fluctuations intensity in a random laser medium where the scatterers displacement significantly changes among consecutive shots. Remarkably, our results reveal that the replica symmetry breaking (RSB) phenomenology is robust with respect to an averaging over different realizations of the disorder. Moreover, besides opening new intriguing questions about the understanding of such a phenomenon, this work aims to clarify the connection between the RSB with the onset of the Lévy regime, i.e. the fluctuations regime that is a peculiar feature of the random lasing under critical conditions. Our results suggest that the former occurs independently of the latter and then the RSB phenomenology is a generic feature linked to the random laser threshold.

  1. Robustness of replica symmetry breaking phenomenology in random laser

    NASA Astrophysics Data System (ADS)

    Tommasi, Federico; Ignesti, Emilio; Lepri, Stefano; Cavalieri, Stefano

    2016-11-01

    Random lasers are optical sources where light is amplified by stimulated emission along random paths through an amplifying scattering medium. Connections between their physics and the one of quenched disordered nonlinear systems, notably spin glasses, have been recently suggested. Here we report a first experimental study of correlations of spectral fluctuations intensity in a random laser medium where the scatterers displacement significantly changes among consecutive shots. Remarkably, our results reveal that the replica symmetry breaking (RSB) phenomenology is robust with respect to an averaging over different realizations of the disorder. Moreover, besides opening new intriguing questions about the understanding of such a phenomenon, this work aims to clarify the connection between the RSB with the onset of the Lévy regime, i.e. the fluctuations regime that is a peculiar feature of the random lasing under critical conditions. Our results suggest that the former occurs independently of the latter and then the RSB phenomenology is a generic feature linked to the random laser threshold.

  2. Parafermionic phases with symmetry breaking and topological order

    NASA Astrophysics Data System (ADS)

    Alexandradinata, A.; Regnault, N.; Fang, Chen; Gilbert, Matthew J.; Bernevig, B. Andrei

    2016-09-01

    Parafermions are the simplest generalizations of Majorana fermions that realize topological order. We propose a less restrictive notion of topological order in one-dimensional open chains, which generalizes the seminal work by Fendley [J. Stat. Mech. (2012) P11020, 10.1088/1742-5468/2012/11/P11020]. The first essential property is that the ground states are mutually indistinguishable by local, symmetric probes, and the second is a generalized notion of zero edge modes which cyclically permute the ground states. These two properties are shown to be topologically robust, and applicable to a wider family of topologically ordered Hamiltonians than has been previously considered. As an application of these edge modes, we formulate a notion of twisted boundary conditions on a closed chain, which guarantees that the closed-chain ground state is topological, i.e., it originates from the topological manifold of the open chain. Finally, we generalize these ideas to describe symmetry-breaking phases with a parafermionic order parameter. These exotic phases are condensates of parafermion multiplets, which generalize Cooper pairing in superconductors. The stability of these condensates is investigated on both open and closed chains.

  3. Sea quark transverse momentum distributions and dynamical chiral symmetry breaking

    SciTech Connect

    Schweitzer, Peter; Strikman, Mark; Weiss, Christian

    2014-01-01

    Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.

  4. Natural cold baryogenesis from strongly interacting electroweak symmetry breaking

    SciTech Connect

    Konstandin, Thomas; Servant, Géraldine E-mail: geraldine.servant@cern.ch

    2011-07-01

    The mechanism of ''cold electroweak baryogenesis'' has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on any particular UV completion but only on a stage of supercooling ended by a first-order phase transition in the evolution of the universe, which can be natural if there is nearly conformal dynamics at the TeV scale. Besides, baryon-number violation originates from the Standard Model only.

  5. Robustness of replica symmetry breaking phenomenology in random laser

    PubMed Central

    Tommasi, Federico; Ignesti, Emilio; Lepri, Stefano; Cavalieri, Stefano

    2016-01-01

    Random lasers are optical sources where light is amplified by stimulated emission along random paths through an amplifying scattering medium. Connections between their physics and the one of quenched disordered nonlinear systems, notably spin glasses, have been recently suggested. Here we report a first experimental study of correlations of spectral fluctuations intensity in a random laser medium where the scatterers displacement significantly changes among consecutive shots. Remarkably, our results reveal that the replica symmetry breaking (RSB) phenomenology is robust with respect to an averaging over different realizations of the disorder. Moreover, besides opening new intriguing questions about the understanding of such a phenomenon, this work aims to clarify the connection between the RSB with the onset of the Lévy regime, i.e. the fluctuations regime that is a peculiar feature of the random lasing under critical conditions. Our results suggest that the former occurs independently of the latter and then the RSB phenomenology is a generic feature linked to the random laser threshold. PMID:27849029

  6. Symmetry breaking in SNS junctions: edge transport and field asymmetries

    NASA Astrophysics Data System (ADS)

    Suominen, Henri; Nichele, Fabrizio; Kjaergaard, Morten; Rasmussen, Asbjorn; Danon, Jeroen; Flensberg, Karsten; Levitov, Leonid; Shabani, Javad; Palmstrom, Chris; Marcus, Charles

    We study magnetic diffraction patterns in a tunable superconductor-semiconductor-superconductor junction. By utilizing epitaxial growth of aluminum on InAs/InGaAs we obtain transparent junctions which display a conventional Fraunhofer pattern of the critical current as a function of applied perpendicular magnetic field, B⊥. By studying the angular dependence of the critical current with applied magnetic fields in the plane of the junction we find a striking anisotropy. We attribute this effect to dephasing of Andreev states in the bulk of the junction, leading to SQUID like behavior when the magnetic field is applied parallel to current flow. Furthermore, in the presence of both in-plane and perpendicular fields, asymmetries in +/-B⊥ are observed. We suggest possible origins and discuss the role of spin-orbit and Zeeman physics together with a background disorder potential breaking spatial symmetries of the junction. Research supported by Microsoft Project Q, the Danish National Research Foundation and the NSF through the National Nanotechnology Infrastructure Network.

  7. Perversions driven spontaneous symmetry breaking in heterogeneous elastic ribbons

    NASA Astrophysics Data System (ADS)

    Liu, Shuangping; Yao, Zhenwei; Olvera de La Cruz, Monica

    2015-03-01

    Perversion structures in an otherwise uniform helical structure are associated with several important concepts in fundamental physics and materials science, including the spontaneous symmetry breaking and the elastic buckling. They also have strong connections with biological motifs (e.g., bacteria shapes and plant tendrils) and have potential applications in micro-muscles and soft robotics. In this work, using a three-dimensional elastomeric bi-stripe model, we investigate the properties of perversions that are independent of the specific ribbon shapes. Several intrinsic features of perversions are revealed, including the spontaneous condensation of energy as well as the distinct energy transfer modes within the perversion region. These properties of perversions associated with the storage of elastic energies can be exploited in the design of actuator devices. We thank the financial support from the U.S. Department of Commerce, National Institute of Standards and Technology, the Office of the Director of Defense Research and Engineering (DDR&E) and the Air Force Office of Scientific Research.

  8. Isospin symmetry breaking and large-scale shell-model calculations with the Sakurai-Sugiura method

    NASA Astrophysics Data System (ADS)

    Mizusaki, Takahiro; Kaneko, Kazunari; Sun, Yang; Tazaki, Shigeru

    2015-05-01

    Recently isospin symmetry breaking for mass 60-70 region has been investigated based on large-scale shell-model calculations in terms of mirror energy differences (MED), Coulomb energy differences (CED) and triplet energy differences (TED). Behind these investigations, we have encountered a subtle problem in numerical calculations for odd-odd N = Z nuclei with large-scale shell-model calculations. Here we focus on how to solve this subtle problem by the Sakurai-Sugiura (SS) method, which has been recently proposed as a new diagonalization method and has been successfully applied to nuclear shell-model calculations.

  9. Particle-Hole Symmetry Breaking in the Pseudogap State of Bi2201

    SciTech Connect

    Hashimoto, M.; He, R.-H.; Tanaka, K.; Testaud, J.P.; Meevasana1, W.; Moore, R.G.; Lu, D.H.; Yao, H.; Yoshida, Y.; Eisaki, H.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.; /SIMES, Stanford /Stanford U., Geballe Lab.

    2011-08-19

    In conventional superconductors, a gap exists in the energy absorption spectrum only below the transition temperature (T{sub c}), corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-T{sub c} cuprate superconductors above T{sub c}, an energy gap called the pseudogap exists, and is controversially attributed either to pre-formed superconducting pairs, which would exhibit particle-hole symmetry, or to competing phases which would typically break it. Scanning tunnelling microscopy (STM) studies suggest that the pseudogap stems from lattice translational symmetry breaking and is associated with a different characteristic spectrum for adding or removing electrons (particle-hole asymmetry). However, no signature of either spatial or energy symmetry breaking of the pseudogap has previously been observed by angle-resolved photoemission spectroscopy (ARPES). Here we report ARPES data from Bi2201 which reveals both particle-hole symmetry breaking and dramatic spectral broadening indicative of spatial symmetry breaking without long range order, upon crossing through T* into the pseudogap state. This symmetry breaking is found in the dominant region of the momentum space for the pseudogap, around the so-called anti-node near the Brillouin zone boundary. Our finding supports the STM conclusion that the pseudogap state is a broken-symmetry state that is distinct from homogeneous superconductivity.

  10. Dynamics of symmetry breaking during quantum real-time evolution in a minimal model system.

    PubMed

    Heyl, Markus; Vojta, Matthias

    2014-10-31

    One necessary criterion for the thermalization of a nonequilibrium quantum many-particle system is ergodicity. It is, however, not sufficient in cases where the asymptotic long-time state lies in a symmetry-broken phase but the initial state of nonequilibrium time evolution is fully symmetric with respect to this symmetry. In equilibrium, one particular symmetry-broken state is chosen as a result of an infinitesimal symmetry-breaking perturbation. From a dynamical point of view the question is: Can such an infinitesimal perturbation be sufficient for the system to establish a nonvanishing order during quantum real-time evolution? We study this question analytically for a minimal model system that can be associated with symmetry breaking, the ferromagnetic Kondo model. We show that after a quantum quench from a completely symmetric state the system is able to break its symmetry dynamically and discuss how these features can be observed experimentally.

  11. Symmetries and their breakings at microscopic and cosmic scales

    NASA Astrophysics Data System (ADS)

    Huo, Ran

    We organize several research projects in the author's Ph.D. career which are distinct in nature into this thesis, in the view of symmetry fulfillments and breakings. Some broken gauge symmetry may give a massive neutral gauge boson Z', and this Z' may be the mediator between the SM and the dark matter sector, forming the dark portal. We consider the scenario of a leptophobic light Z' vector boson as the mediator, and study the prospect of searching for it at the 8 TeV Large Hadron Collider (LHC). To improve the reach in the low mass region, we perform a detailed study of the processes that the Z' is produced in association with jet, photon, W+/- and Z 0. We show that in the region where the mass of Z' is between 80 and 400 GeV, the constraint from associated production can be comparable or even stronger than the known monojet and dijet constraints. We study an extension of the Minimal Supersymmetric Standard Model with a gauge group SU(2)1 ⊗ SU(2) 2 breaking to SU(2)L. The extra wino has an enhanced gauge coupling to the SM-like Higgs boson and, if light, has a relevant impact on the weak scale phenomenology. Compared with the MSSM case, the low energy Higgs quartic coupling is modified both by extra D-term corrections and by a modification of its renormalization group evolution from high energies. At low values of tan beta, the latter effect may be dominant. This leads to interesting regions of parameter space in which the model can accommodate a 125 GeV Higgs with relatively light third generation squarks and an increased h → gammagamma decay branching ratio, while still satisfying the constraints from electroweak precision data and Higgs vacuum stability. We also study some toy model towards electroweak baryogenesis, which in the wino-higgsino case can be fulfilled as the above gauge extension of the MSSM model. The fermionic component have a mixing through vector like mass terms, through which the Higgs diphoton decay branching ratio can be tuned, and

  12. Chiral symmetry breaking in QCD with two light flavors.

    PubMed

    Engel, Georg P; Giusti, Leonardo; Lottini, Stefano; Sommer, Rainer

    2015-03-20

    A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of M(π)(2)F(π)(2)/2 with respect to the quark mass m in the chiral limit, where M(π) and F(π) are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass, and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use lattices generated by the Coordinated Lattice Simulation (CLS) group at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensation agrees with the Gell-Mann-Oakes-Renner relation. For the renormalization-group-invariant ratios we obtain [Σ(RGI)](1/3)/F=2.77(2)(4) and Λ(M̅S)/F=3.6(2), which correspond to [Σ(M̅S)(2  GeV)](1/3)=263(3)(4)  MeV and F=85.8(7)(20)  MeV if F(K) is used to set the scale by supplementing the theory with a quenched strange quark.

  13. Superconformal index on R P2×S1 and mirror symmetry

    NASA Astrophysics Data System (ADS)

    Tanaka, Akinori; Mori, Hironori; Morita, Takeshi

    2015-05-01

    We study N =2 supersymmetric gauge theories on RP 2×S1 and compute the superconformal index by using the localization technique. We consider not only the round real projective plane RP 2 but also the squashed real projective plane RPb 2 which turns back to RP 2 by taking a squashing parameter b as 1. In addition, we find that the result is independent of the squashing parameter b . We apply our new superconformal index to check the simplest case of 3D mirror symmetry, i.e., the equivalence between the N =2 supersymmetric quantum electrodynamics (SQED) and the X Y Z model on RP 2×S1. We prove it by using a mathematical formula called the q -binomial theorem. We also comment on the N =4 version of mirror symmetry, mirror symmetry via generalized indices, and possibilities of generalizations from mathematical viewpoints.

  14. The role of motion and number of element locations in mirror symmetry perception.

    PubMed

    Sharman, Rebecca J; Gheorghiu, Elena

    2017-04-04

    The human visual system has specialised mechanisms for encoding mirror-symmetry and for detecting symmetric motion-directions for objects that loom or recede from the observers. The contribution of motion to mirror-symmetry perception has never been investigated. Here we examine symmetry detection thresholds for stationary (static and dynamic flicker) and symmetrically moving patterns (inwards, outwards, random directions) with and without positional symmetry. We also measured motion detection and direction-discrimination thresholds for horizontal (left, right) and symmetrically moving patterns with and without positional symmetry. We found that symmetry detection thresholds were (a) significantly higher for static patterns, but there was no difference between the dynamic flicker and symmetrical motion conditions, and (b) higher than motion detection and direction-discrimination thresholds for horizontal or symmetrical motion, with or without positional symmetry. In addition, symmetrical motion was as easy to detect or discriminate as horizontal motion. We conclude that whilst symmetrical motion per se does not contribute to symmetry perception, limiting the lifetime of pattern elements does improve performance by increasing the number of element-locations as elements move from one location to the next. This may be explained by a temporal integration process in which weak, noisy symmetry signals are combined to produce a stronger signal.

  15. The role of motion and number of element locations in mirror symmetry perception

    PubMed Central

    Sharman, Rebecca J.; Gheorghiu, Elena

    2017-01-01

    The human visual system has specialised mechanisms for encoding mirror-symmetry and for detecting symmetric motion-directions for objects that loom or recede from the observers. The contribution of motion to mirror-symmetry perception has never been investigated. Here we examine symmetry detection thresholds for stationary (static and dynamic flicker) and symmetrically moving patterns (inwards, outwards, random directions) with and without positional symmetry. We also measured motion detection and direction-discrimination thresholds for horizontal (left, right) and symmetrically moving patterns with and without positional symmetry. We found that symmetry detection thresholds were (a) significantly higher for static patterns, but there was no difference between the dynamic flicker and symmetrical motion conditions, and (b) higher than motion detection and direction-discrimination thresholds for horizontal or symmetrical motion, with or without positional symmetry. In addition, symmetrical motion was as easy to detect or discriminate as horizontal motion. We conclude that whilst symmetrical motion per se does not contribute to symmetry perception, limiting the lifetime of pattern elements does improve performance by increasing the number of element-locations as elements move from one location to the next. This may be explained by a temporal integration process in which weak, noisy symmetry signals are combined to produce a stronger signal. PMID:28374760

  16. Symmetry breaking indication for supergravity inflation in light of the Planck 2015

    SciTech Connect

    Li, Tianjun; Li, Zhijin; Nanopoulos, Dimitri V. E-mail: lizhijin@physics.tamu.edu

    2015-09-01

    Supergravity (SUGRA) theories with exact global U(1) symmetry or shift symmetry in Kähler potential provide natural frameworks for inflation. However, quadratic inflation is disfavoured by the new results on primordial tensor fluctuations from the Planck Collaboration. To be consistent with the new Planck data, we point out that the explicit symmetry breaking is needed, and study these two SUGRA inflation in detail. For SUGRA inflation with global U(1) symmetry, the symmetry breaking term leads to a trigonometric modulation on inflaton potential. Coefficient of the U(1) symmetry breaking term is of order 10{sup −2}, which is sufficient large to improve the inflationary predictions while its higher order corrections are negligible. Such models predict sizeable tensor fluctuations and highly agree with the Planck results. In particular, the model with a linear U(1) symmetry breaking term predicts the tensor-to-scalar ratio around r∼0.01 and running spectral index α{sub s∼} −0.004, which comfortably fit with the Planck observations. For SUGRA inflation with breaking shift symmetry, the inflaton potential is modulated by an exponential factor. The modulated linear and quadratic models are consistent with the Planck observations. In both types of models the tensor-to-scalar ratio can be of order 10{sup −2}, which will be tested by the near future observations.

  17. Symmetry breaking indication for supergravity inflation in light of the Planck 2015

    SciTech Connect

    Li, Tianjun; Li, Zhijin; Nanopoulos, Dimitri V.

    2015-09-01

    Supergravity (SUGRA) theories with exact global U(1) symmetry or shift symmetry in Kähler potential provide natural frameworks for inflation. However, quadratic inflation is disfavoured by the new results on primordial tensor fluctuations from the Planck Collaboration. To be consistent with the new Planck data, we point out that the explicit symmetry breaking is needed, and study these two SUGRA inflation in detail. For SUGRA inflation with global U(1) symmetry, the symmetry breaking term leads to a trigonometric modulation on inflaton potential. Coefficient of the U(1) symmetry breaking term is of order 10{sup −2}, which is sufficient large to improve the inflationary predictions while its higher order corrections are negligible. Such models predict sizeable tensor fluctuations and highly agree with the Planck results. In particular, the model with a linear U(1) symmetry breaking term predicts the tensor-to-scalar ratio around r∼0.01 and running spectral index α{sub s}∼−0.004, which comfortably fit with the Planck observations. For SUGRA inflation with breaking shift symmetry, the inflaton potential is modulated by an exponential factor. The modulated linear and quadratic models are consistent with the Planck observations. In both types of models the tensor-to-scalar ratio can be of order 10{sup −2}, which will be tested by the near future observations.

  18. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator

    PubMed Central

    Del Bino, Leonardo; Silver, Jonathan M.; Stebbings, Sarah L.; Del'Haye, Pascal

    2017-01-01

    Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors. PMID:28220865

  19. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator.

    PubMed

    Del Bino, Leonardo; Silver, Jonathan M; Stebbings, Sarah L; Del'Haye, Pascal

    2017-02-21

    Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors.

  20. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator

    NASA Astrophysics Data System (ADS)

    Del Bino, Leonardo; Silver, Jonathan M.; Stebbings, Sarah L.; Del'Haye, Pascal

    2017-02-01

    Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors.

  1. Symmetry breaking and coarsening of clusters in a prototypical driven granular gas.

    PubMed

    Livne, Eli; Meerson, Baruch; Sasorov, Pavel V

    2002-11-01

    Granular hydrodynamics predicts symmetry-breaking instability in a two-dimensional ensemble of nearly elastically colliding smooth hard disks driven, at zero gravity, by a rapidly vibrating sidewall. Supercritical and subcritical symmetry-breaking bifurcations of the stripe state are identified, and the supercritical bifurcation curve is computed. The cluster dynamics proceed as a coarsening process mediated by the gas phase. Well above the bifurcation point the final steady state, selected by coarsening, represents a single strongly localized densely packed "droplet."

  2. Projected Symmetry Breaking in Dipole-Locked ^3He-B

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hiromitsu; Kobayashi, Shingo

    2016-05-01

    We show theoretically that a collision of two superfluid droplets can effectively cause a two-dimensional symmetry breaking phase transition. Three-dimensional nucleation of quantized vortices and/or hedgehogs in the collision are considered the formation of domain walls and/or point vortices due to the Kibble-Zurek mechanism in a projected two-dimensional space. This problem is generally applicable to arbitrarily ordered media that undergo spontaneous breaking of continuous symmetries.

  3. O'Raifeartaigh models with spontaneous R-symmetry breaking

    SciTech Connect

    Ferretti, Luca

    2007-11-20

    O'Raifeartaigh models with general R-charge assignments can have vacua where both supersymmetry and R-symmetry are spontaneously broken. Most of these vacua are metastable because the potential shows a runaway behaviour. We explain the relation between runaway directions and R-symmetry.

  4. Aspects of Chiral Symmetry Breaking in Lattice QCD

    NASA Astrophysics Data System (ADS)

    Horkel, Derek P.

    In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD): first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin breaking effects, second a computational study measuring non-perturbative Greens functions. We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects necessary for understanding how a lattice computation is performed and how discretization effects can be understood. Our work in Wilson and twisted-mass fermions investigates an increasingly relevant regime where lattice simulations are performed with quarks at or near their physical masses and both the mass difference of the up and down quarks and their differing electric charges are included. Our computation of a non-perturbative Greens functions on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which they calculate Greens functions which vanish in perturbation theory, yet have a contribution from the one instanton background. In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the presence of non-degeneracy between the up and down quark and discretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory (which occurs for sufficiently large non-degeneracy) is continuously connected to the Aoki phase of the lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push simulations with physical masses closer to either the CP-violating phase or another phase not present in the continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these phases. In chapter 3, we extend the work in chapter 2 to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the

  5. From physics to biology by extending criticality and symmetry breakings.

    PubMed

    Longo, G; Montévil, M

    2011-08-01

    Symmetries play a major role in physics, in particular since the work by E. Noether and H. Weyl in the first half of last century. Herein, we briefly review their role by recalling how symmetry changes allow to conceptually move from classical to relativistic and quantum physics. We then introduce our ongoing theoretical analysis in biology and show that symmetries play a radically different role in this discipline, when compared to those in current physics. By this comparison, we stress that symmetries must be understood in relation to conservation and stability properties, as represented in the theories. We posit that the dynamics of biological organisms, in their various levels of organization, are not "just" processes, but permanent (extended, in our terminology) critical transitions and, thus, symmetry changes. Within the limits of a relative structural stability (or interval of viability), variability is at the core of these transitions.

  6. Modularity, quaternion-Kähler spaces, and mirror symmetry

    SciTech Connect

    Alexandrov, Sergei; Banerjee, Sibasish

    2013-10-15

    We provide an explicit twistorial construction of quaternion-Kähler manifolds obtained by deformation of c-map spaces and carrying an isometric action of the modular group SL(2,Z). The deformation is not assumed to preserve any continuous isometry and therefore this construction presents a general framework for describing NS5-brane instanton effects in string compactifications with N= 2 supersymmetry. In this context the modular invariant parametrization of twistor lines found in this work yields the complete non-perturbative mirror map between type IIA and type IIB physical fields.

  7. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals

    PubMed Central

    Tortora, Luana; Lavrentovich, Oleg D.

    2011-01-01

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement. PMID:21402929

  8. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals.

    PubMed

    Tortora, Luana; Lavrentovich, Oleg D

    2011-03-29

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement.

  9. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    NASA Astrophysics Data System (ADS)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  10. Chiral symmetry breaking in complex chemical systems during formation of life on earth

    NASA Astrophysics Data System (ADS)

    Konstantinova, A. F.; Konstantinov, K. K.

    2015-09-01

    The chiral symmetry in complex chemical systems containing many amino acids and characterized by many similar chemical reactions (a situation corresponding to the formation of life on Earth) is considered. It is shown that effective averaging over similar reaction channels may lead to very weak effective enantioselectivity, which does not allow for chiral symmetry breaking in most known models. A class of models with simple and catalytic synthesis of one amino acid, the formation of peptides with a length reaching three, and the precipitation of one insoluble pair of materials is analyzed. It is proven that chiral symmetry breaking may occur in one possible version from an insoluble pair of materials even in the complete absence of catalytic synthesis of amino acid. It is shown that the presence of weakly enantioselective catalytic synthesis in a model significantly increases the number of possible versions in which chiral symmetry breaks.

  11. Literacy breaks mirror invariance for visual stimuli: a behavioral study with adult illiterates.

    PubMed

    Pegado, Felipe; Nakamura, Kimihiro; Braga, Lucia W; Ventura, Paulo; Nunes Filho, Gilberto; Pallier, Christophe; Jobert, Antoinette; Morais, José; Cohen, Laurent; Kolinsky, Régine; Dehaene, Stanislas

    2014-04-01

    The ability to recognize 2 mirror images as the same picture across left-right inversions exists early on in humans and other primates. In order to learn to read, however, one must discriminate the left-right orientation of letters and distinguish, for instance, b from d. We therefore reasoned that literacy may entail a loss of mirror invariance. To evaluate this hypothesis, we asked adult literates, illiterates, and ex-illiterates to perform a speeded same-different task with letter strings, false fonts, and pictures regardless of their orientation (i.e., they had to respond "same" to mirror pairs such as "iblo oldi"). Literates presented clear difficulties with mirror invariance. This "mirror cost" effect was strongest with letter strings, but crucially, it was also observed with false fonts and even with pictures. In contrast, illiterates did not present any cost for mirror pairs. Interestingly, subjects who learned to read as adults also exhibited a mirror cost, suggesting that modest reading practice, late in life, can suffice to break mirror invariance.

  12. Performance improvements of symmetry-breaking reflector structures in nonimaging devices

    DOEpatents

    Winston, Roland

    2004-01-13

    A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.

  13. Topological Insulators and Nematic Phases from Spontaneous Symmetry Breaking in

    SciTech Connect

    Sun, K.

    2010-05-26

    We investigate the stability of a quadratic band-crossing point (QBCP) in 2D fermionic systems. At the non-interacting level, we show that a QBCP exists and is topologically stable for a Berry flux {-+}2{pi}, if the point symmetry group has either fourfold or sixfold rotational symmetries. This putative topologically stable free-fermion QBCP is marginally unstable to arbitrarily weak shortrange repulsive interactions. We consider both spinless and spin-1/2 fermions. Four possible ordered states result: a quantum anomalous Hall phase, a quantum spin Hall phase, a nematic phase, and a nematic-spin-nematic phase.

  14. Symmetry-breaking nanostructures on crystalline silicon for enhanced light trapping in thin film solar cells.

    PubMed

    Han, Seok Jun; Ghosh, Swapnadip; Abudayyeh, Omar K; Hoard, Brittany R; Culler, Ethan C; Bonilla, Jose E; Han, Sang M; Han, Sang Eon

    2016-12-26

    We introduce a new approach to systematically break the symmetry in periodic nanostructures on a crystalline silicon surface. Our focus is inverted nanopyramid arrays with a prescribed symmetry. The arrangement and symmetry of nanopyramids are determined by etch mask design and its rotation with respect to the [110] orientation of the Si(001) substrate. This approach eliminates the need for using expensive off-cut silicon wafers. We also make use of low-cost, manufacturable, wet etching steps to fabricate the nanopyramids. Our experiment and computational modeling demonstrate that the symmetry breaking can increase the photovoltaic efficiency in thin-film silicon solar cells. For a 10-micron-thick active layer, the efficiency improves from 27.0 to 27.9% by enhanced light trapping over the broad sunlight spectrum. Our computation further reveals that this improvement would increase from 28.1 to 30.0% in the case of a 20-micron-thick active layer, when the unetched area between nanopyramids is minimized with over-etching. In addition to the immediate benefit to solar photovoltaics, our method of symmetry breaking provides a useful experimental platform to broadly study the effect of symmetry breaking on spectrally tuned light absorption and emission.

  15. Taste symmetry breaking with hypercubic-smeared staggered fermions

    SciTech Connect

    Bae, Taegil; Adams, David H.; Kim, Hyung-Jin; Kim, Jongjeong; Kim, Kwangwoo; Lee, Weonjong; Jung, Chulwoo; Sharpe, Stephen R.

    2008-05-01

    We study the impact of hypercubic (HYP) smearing on the size of taste-breaking for staggered fermions, comparing to unimproved and to asqtad-improved staggered fermions. As in previous studies, we find a substantial reduction in taste-breaking compared to unimproved staggered fermions (by a factor of 4-7 on lattices with spacing a{approx_equal}0.1 fm). In addition, we observe that discretization effects of next-to-leading order in the chiral expansion (O(a{sup 2}p{sup 2})) are markedly reduced by HYP smearing. Compared to asqtad valence fermions, we find that taste-breaking in the pion spectrum is reduced by a factor of 2.5-3, down to a level comparable to the expected size of generic O(a{sup 2}) effects. Our results suggest that, once one reaches a lattice spacing of a{approx_equal}0.09 fm, taste-breaking will be small enough after HYP smearing that one can use a modified power counting in which O(a{sup 2})<

  16. Breaking an Abelian gauge symmetry near a black hole horizon

    SciTech Connect

    Gubser, Steven S.

    2008-09-15

    I argue that coupling the Abelian Higgs model to gravity plus a negative cosmological constant leads to black holes which spontaneously break the gauge invariance via a charged scalar condensate slightly outside their horizon. This suggests that black holes can superconduct.

  17. Spontaneous breaking of Lorentz symmetry with an antisymmetric tensor

    NASA Astrophysics Data System (ADS)

    Hernaski, C. A.

    2016-11-01

    This paper considers the spontaneous violation of Lorentz symmetry by the vacuum condensation of an antisymmetric two-tensor. The coset construction for nonlinear realization of spacetime symmetries is employed to build the most general low-energy effective action for the Goldstone modes interacting with photons. We analyze the model within the context of the Standard-Model extension and noncommutative QED. Experimental bounds for some parameters of the model are discussed, and we readdress the subtle issues of stability and causality in Lorentz-noninvariant scenarios. To set a sensible low-energy effective model, in addition to the two photon polarizations only one Goldstone mode must be dynamical, and the enhancement of the stability by accounting for interaction terms points to a protection against observational Lorentz violation.

  18. Symmetry breaking in a plasmonic metamaterial at optical wavelength.

    PubMed

    Christ, André; Martin, Olivier J F; Ekinci, Yasin; Gippius, Nikolai A; Tikhodeev, Sergei G

    2008-08-01

    We numerically study the effect of structural asymmetry in a plasmonic metamaterial made from gold nanowires. It is reported that optically inactive (i.e., optically dark) particle plasmon modes of the symmetric wire lattice are immediately coupled to the radiation field, when a broken structural symmetry is introduced. Such higher order plasmon resonances are characterized by their subradiant nature. They generally reveal long lifetimes and distinct absorption losses. It is shown that the near-field interaction strongly determines these modes.

  19. Simultaneously probing two ultrafast condensed-phase molecular symmetry breaking events by two-dimensional infrared spectroscopy.

    PubMed

    Yang, Fan; Yu, Pengyun; Zhao, Juan; Wang, Jianping

    2013-08-05

    In condensed phases, a highly symmetric gas-phase molecule lowers its symmetry under perturbation of the solvent, which is vital to a variety of structural chemistry related processes. However, the dynamical aspects of solvent-mediated symmetry-breaking events remain largely unknown. Herein, direct evidence for two types of solvent-mediated symmetry-breaking events that coexist on the picosecond timescale in a highly symmetric anion, namely, hexacyanocobaltate, is presented: 1) an equilibrium symmetry-breaking event in which a solvent-bound species having lowered symmetry undergoes a population exchange reaction with the symmetry-retaining species; 2) a dynamic symmetry-breaking event that is composed of many dynamic population-exchange reactions under fluctuating solvent interactions. Ultrafast two-dimensional infrared spectroscopy is used to simultaneously observe and dynamically characterize these two events. This work opens a new window into molecular symmetry and structural dynamics under equilibrium and non-equilibrium conditions.

  20. Two symmetry-breaking mechanisms for the development of orientation selectivity in a neural system

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Won; Chun, Min Young

    2015-11-01

    Orientation selectivity is a remarkable feature of the neurons located in the primary visual cortex. Provided that the visual neurons acquire orientation selectivity through activity-dependent Hebbian learning, the development process could be understood as a kind of symmetry-breaking phenomenon in the view of physics. This paper examines the key mechanisms of the orientation selectivity development process. Be found that at least two different mechanisms, which lead to the development of orientation selectivity by breaking the radial symmetry in receptive fields. The first is a simultaneous symmetry-breaking mechanism occurring based on the competition between neighboring neurons, and the second is a spontaneous one occurring based on the nonlinearity in interactions. Only the second mechanism leads to the formation of a columnar pattern whose characteristics is in accord with those observed in an animal experiment.

  1. PT-symmetry breaking with divergent potentials: Lattice and continuum cases

    NASA Astrophysics Data System (ADS)

    Joglekar, Yogesh N.; Scott, Derek D.; Saxena, Avadh

    2014-09-01

    We investigate the parity- and time-reversal (PT-) symmetry breaking in lattice models in the presence of long-ranged, non-Hermitian, PT-symmetric potentials that remain finite or become divergent in the continuum limit. By scaling analysis of the fragile PT threshold for an open finite lattice, we show that continuum loss-gain potentials Vα(x)∝i|x|αsgn(x) have a positive PT-breaking threshold for α >-2, and a zero threshold for α ≤-2. When α <0 localized states with complex (conjugate) energies in the continuum energy band occur at higher loss-gain strengths. We investigate the signatures of PT-symmetry breaking in coupled waveguides, and show that the emergence of localized states dramatically shortens the relevant time scale in the PT-symmetry broken region.

  2. Influence of symmetry breaking degrees on surface plasmon polaritons propagation in branched silver nanowire waveguides

    PubMed Central

    Hua, Jiaojiao; Wu, Fan; Xu, Zhongfeng; Wang, Wenhui

    2016-01-01

    Surface plasmon polaritons (SPPs)-based nanowire (NW) waveguides demonstrate promising potentials in the integrated nanophotonic circuits and devices. The realization of controlling SPPs propagation in NWs is significant for the performance of nanophotonic devices when employed for special function. In this work, we report the effect of symmetry breaking degrees on SPPs propagation behavior in manually fabricated branched silver NW structures. The symmetry breaking degree can be tuned by the angle between main NW and branch NW, which influences the emissions at the junction and the main NW terminal in a large extent. Our results illustrate the significance of symmetry breaking degree on SPPs propagation in NW-based waveguides which is crucial for designing the future nanophotonic circuits. PMID:27677403

  3. Influence of symmetry breaking degrees on surface plasmon polaritons propagation in branched silver nanowire waveguides

    NASA Astrophysics Data System (ADS)

    Hua, Jiaojiao; Wu, Fan; Xu, Zhongfeng; Wang, Wenhui

    2016-09-01

    Surface plasmon polaritons (SPPs)-based nanowire (NW) waveguides demonstrate promising potentials in the integrated nanophotonic circuits and devices. The realization of controlling SPPs propagation in NWs is significant for the performance of nanophotonic devices when employed for special function. In this work, we report the effect of symmetry breaking degrees on SPPs propagation behavior in manually fabricated branched silver NW structures. The symmetry breaking degree can be tuned by the angle between main NW and branch NW, which influences the emissions at the junction and the main NW terminal in a large extent. Our results illustrate the significance of symmetry breaking degree on SPPs propagation in NW-based waveguides which is crucial for designing the future nanophotonic circuits.

  4. Symmetry breaking in MAST plasma turbulence due to toroidal flow shear

    NASA Astrophysics Data System (ADS)

    Fox, M. F. J.; van Wyk, F.; Field, A. R.; Ghim, Y.-c.; Parra, F. I.; Schekochihin, A. A.; the MAST Team

    2017-03-01

    The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up–down symmetry of the magnetic equilibrium. Using experimental beam-emission-spectroscopy measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the ‘shearing’ of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.

  5. Effective field theory of emergent symmetry breaking in deformed atomic nuclei

    SciTech Connect

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2015-09-03

    Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu–Goldstone modes using symmetry arguments only. In this study, we extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu–Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. Lastly, in deformed nuclei these are vibrational modes each of which serves as band head of a rotational band.

  6. Effective field theory of emergent symmetry breaking in deformed atomic nuclei

    DOE PAGES

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2015-09-03

    Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu–Goldstone modes using symmetry arguments only. In this study, we extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu–Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. Lastly, in deformed nuclei these are vibrational modes each of whichmore » serves as band head of a rotational band.« less

  7. Cosmological baryon number domain structure from symmetry-breaking in grand unified field theories

    NASA Technical Reports Server (NTRS)

    Brown, R. W.; Stecker, F. W.

    1979-01-01

    It is suggested that grand unified field theories with spontaneous symmetry breaking in the very early big-bang can lead more naturally to a baryon symmetric cosmology with a domain structure than to a totally baryon asymmetric cosmology. The symmetry is broken in a randomized manner in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Arguments in favor of this cosmology and observational tests are discussed.

  8. Cosmological baryon-number domain structure from symmetry breaking in grand unified field theories

    NASA Technical Reports Server (NTRS)

    Brown, R. W.; Stecker, F. W.

    1979-01-01

    It is suggested that grand unified field theories with spontaneous symmetry breaking in the very early big bang can lead more naturally to a baryon-symmetric cosmology with a domain structure than to a totally baryon-asymmetric cosmology. The symmetry is broken in a randomized manner in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Arguments in favor of this cosmology and observational tests are discussed.

  9. On exceptional collections of line bundles and mirror symmetry for toric Del-Pezzo surfaces

    NASA Astrophysics Data System (ADS)

    Jerby, Yochay

    2017-03-01

    Let X be a toric Del-Pezzo surface and let C r i t (W ) ⊂(ℂ*)n be the solution scheme of the Landau-Ginzburg system of equations. Denote by X° the polar variety of X. Our aim in this work is to describe a map L :C r i t (W ) →F u kt r o p(X°) whose image under homological mirror symmetry corresponds to a full strongly exceptional collection of line bundles.

  10. Symmetry breaking in O4(+): An application of the Brueckner coupled-cluster method

    NASA Technical Reports Server (NTRS)

    Barnes, Leslie A.; Lindh, Roland

    1994-01-01

    A recent calculation of the antisymmetric stretch frequency for the rectangular structure of quartet O4(+) using the singles and doubles quadratic configuration interaction method with a perturbational estimate of connected triple excitations (QCISD(T)) method gave a value of 3710 cm(exp -1). This anomalous frequency is shown to be a consequence of symmetry breaking effects, which occur even though the QCISD(T) solution derived from a delocalized SCF reference function lies energetically well below the two localized (symmetry-broken) solutions at the equilibrium geometry. The symmetry breaking is almost eliminated at the CCSD level of theory, but the small remaining symmetry breaking effects are magnified at the CCSD(T) level of theory so that the antisymmetric stretch frequency is still significantly in error. The use of the Brueckner coupled cluster method, however, leads to a symmetrical solution which is free of symmetry breaking effects, with an antisymmetric stretch frequency of 1322 cm(exp -1), in good agreement with our earlier calculations using the complete active space self consistent field/complete active space state interaction (CASSCF/CASSI) method.

  11. Isospin Symmetry Breaking within the HLS Model: A Full (rho, omega, phi) Mixing Scheme

    SciTech Connect

    O'Connell, Heath B

    2001-07-16

    We study the way isospin symmetry violation can be generated within the Hidden Local Symmetry (HLS) Model. We show that isospin symmetry breaking effects on pseudoscalar mesons naturally induces correspondingly effects within the physics of vector mesons, through kaon loops. In this way, one recovers all features traditionally expected from {rho}-{omega} mixing and one finds support for the Orsay phase modeling of the e{sup +}e{sup -} {yields} {pi}{sup +}{pi}{sup -} amplitude. We then examine an effective procedure which generates mixing in the whole {rho}, {omega}, {phi} sector of the HLS Model. The corresponding model allows us to account for all two body decays of light mesons accessible to the HLS model in modulus and phase, leaving aside the {rho} {yields} {pi}{pi} and K* {yields} K{pi} modes only, which raise a specific problem. Comparison with experimental data is performed and covers modulus and phase information; this represents 26 physics quantities successfully described with very good fit quality within a constrained model which accounts for SU(3) breaking, nonet symmetry breaking in the pseudoscalar sector and, now, isospin symmetry breaking.

  12. Experimental validation of the largest calculated isospin-symmetry-breaking effect in a superallowed Fermi decay.

    PubMed

    Melconian, D; Triambak, S; Bordeanu, C; García, A; Hardy, J C; Iacob, V E; Nica, N; Park, H I; Tabacaru, G; Trache, L; Towner, I S; Tribble, R E; Zhai, Y

    2011-10-28

    A precision measurement of the γ yields following the β decay of (32)Cl has determined its isobaric-analogue branch to be (22.47(-0.18)(+0.21))%. Since it is an almost pure-Fermi decay, we can also determine the amount of isospin-symmetry breaking in this superallowed transition. We find a very large value, δ(C) = 5.3(9)%, in agreement with a shell-model calculation. This result sets a benchmark for isospin-symmetry-breaking calculations and lends support for similarly calculated, yet smaller, corrections that are currently applied to 0+ → 0 + transitions for tests of the standard model.

  13. Effective dissipation: Breaking time-reversal symmetry in driven microscopic energy transmission

    NASA Astrophysics Data System (ADS)

    Brown, Aidan I.; Sivak, David A.

    2016-09-01

    At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. We relate the symmetry-breaking factors found in this model to recent observations of biomolecular machines.

  14. The Szilard engine revisited: Entropy, macroscopic randomness, and symmetry breaking phase transitions

    NASA Astrophysics Data System (ADS)

    Parrondo, Juan M. R.

    2001-09-01

    The role of symmetry breaking phase transitions in the Szilard engine is analyzed. It is shown that symmetry breaking is the only necessary ingredient for the engine to work. To support this idea, we show that the Ising model behaves exactly as the Szilard engine. We design a purely macroscopic Maxwell demon from an Ising model, demonstrating that a demon can operate with information about the macrostate of the system. We finally discuss some aspects of the definition of entropy and how thermodynamics should be modified to account for the variations of entropy in second-order phase transitions.

  15. Competition between the symmetry breaking and onset of collapse in weakly coupled atomic condensates

    SciTech Connect

    Salasnich, L.; Toigo, F.; Malomed, B. A.

    2010-04-15

    We analyze the symmetry breaking of matter-wave solitons in a pair of cigar-shaped traps coupled by tunneling of atoms. The model is based on a system of linearly coupled nonpolynomial Schroedinger equations. Unlike the well-known spontaneous-symmetry-breaking (SSB) bifurcation in coupled cubic equations, in the present model the SSB competes with the onset of collapse in this system. Stability regions of symmetric and asymmetric solitons, as well as the collapse region, are identified in the system's parameter space.

  16. Excited-state symmetry breaking of linear quadrupolar chromophores: A transient absorption study

    NASA Astrophysics Data System (ADS)

    Dozova, Nadia; Ventelon, Lionel; Clermont, Guillaume; Blanchard-Desce, Mireille; Plaza, Pascal

    2016-11-01

    The photophysical properties of two highly symmetrical quadrupolar chromophores were studied by both steady-state and transient absorption spectroscopy. Their excited-state behavior is dominated by the solvent-induced Stokes shift of the stimulated-emission band. The origin of this shift is attributed to symmetry breaking that confers a non-vanishing dipole moment to the excited state of both compounds. This dipole moment is large and constant in DMSO, whereas symmetry breaking appears significantly slower and leading to smaller excited-state dipole in toluene. Time-dependant increase of the excited-state dipole moment induced by weak solvation is proposed to explain the results in toluene.

  17. Quantization due to breaking the commutativity of symmetries. Wobbling oscillator and anharmonic Penning trap

    NASA Astrophysics Data System (ADS)

    Karasev, M. V.

    2016-10-01

    We discuss two examples of classical mechanical systems which can become quantum either because of degeneracy of an integral of motion or because of tuning parameters at resonance. In both examples, the commutativity of the symmetry algebra is breaking, and noncommutative symmetries arise. Over the new noncommutative algebra, the system can reveal its quantum behavior including the tunneling effect. The important role is played by the creation-annihilation regime for the perturbation or anharmonism. Activation of this regime sometimes needs in an additional resonance deformation (Cartan subalgebra breaking).

  18. Symmetry breaking in clogging for oppositely driven particles

    NASA Astrophysics Data System (ADS)

    Glanz, Tobias; Wittkowski, Raphael; Löwen, Hartmut

    2016-11-01

    The clogging behavior of a symmetric binary mixture of colloidal particles that are driven in opposite directions through constrictions is explored by Brownian dynamics simulations and theory. A dynamical state with a spontaneously broken symmetry occurs where one species is flowing and the other is blocked for a long time, which can be tailored by the size of the constrictions. Moreover, we find self-organized oscillations in clogging and unclogging of the two species. Apart from statistical physics, our results are of relevance for fields like biology, chemistry, and crowd management, where ions, microparticles, pedestrians, or other particles are driven in opposite directions through constrictions.

  19. Axion dark matter in the post-inflationary Peccei-Quinn symmetry breaking scenario

    NASA Astrophysics Data System (ADS)

    Ringwald, Andreas; Saikawa, Ken'ichi

    2016-04-01

    We consider extensions of the Standard Model in which a spontaneously broken global chiral Peccei-Quinn (PQ) symmetry arises as an accidental symmetry of an exact ZN symmetry. For N =9 or 10, this symmetry can protect the accion—the Nambu-Goldstone boson arising from the spontaneous breaking of the accidental PQ symmetry—against semiclassical gravity effects, thus suppressing gravitational corrections to the effective potential, while it can at the same time provide for the small explicit symmetry breaking term needed to make models with domain wall number NDW>1 , such as the popular Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model (NDW=6 ), cosmologically viable even in the case where spontaneous PQ symmetry breaking occurred after inflation. We find that N =10 DFSZ accions with mass mA≈3.5 - 4.2 meV can account for cold dark matter and simultaneously explain the hints for anomalous cooling of white dwarfs. The proposed helioscope International Axion Observatory—being sensitive to solar DFSZ accions with mass above a few meV—will decisively test this scenario.

  20. Lifting the mirror symmetry of metal surfaces: decoupling the electronic and physical manifestations of surface chirality.

    PubMed

    Mulligan, Andrew; Lane, Ian; Rousseau, Gilles B D; Johnston, Shona M; Lennon, David; Kadodwala, Malcolm

    2006-01-19

    Naturally occurring metal surfaces possess planes of mirror symmetry on the nanometer-length scale. This mirror symmetry can be lifted and chirality "physically" conveyed onto a surface by adsorbing a chiral molecule. Until now, it has not been known whether the conveying of chirality is limited to just the physical structure or whether it goes deeper and permeates the electronic structure of the underlying surface. By using optically active second harmonic generation (OA-SHG), it is demonstrated that the adsorption of some, but not all, chiral molecules can reversibly, and without significant structural rearrangement, measurably lift the mirror symmetry of the surface electronic structure of a metal. It is proposed that the ability of a chiral molecule to place a significant "chiral perturbation" on the electronic structure of a surface is correlated to its adsorption geometry. The microscopic origins of the observed optical activity are also discussed in terms of classical models of chirality. The results of the study challenge current models of how chiral adsorbates induce enantioselectivity in the chemical/physical behavior of heterogeneous systems, which are based on geometric/stereochemical arguments, by suggesting that chiral electronic perturbations could play a role.

  1. On mirror symmetry for Calabi-Yau fourfolds with three-form cohomology

    NASA Astrophysics Data System (ADS)

    Greiner, Sebastian; Grimm, Thomas W.

    2016-09-01

    We study the action of mirror symmetry on two-dimensional {N} = (2, 2) effective theories obtained by compactifying Type IIA string theory on Calabi-Yau fourfolds. Our focus is on fourfold geometries with non-trivial three-form cohomology. The couplings of the massless zero-modes arising by expanding in these forms depend both on the complex structure deformations and the Kähler structure deformations of the Calabi-Yau fourfold. We argue that two holomorphic functions of the deformation moduli capture this information. These are exchanged under mirror symmetry, which allows us to derive them at the large complex structure and large volume point. We discuss the application of the resulting explicit expression to F-theory compactifications and their weak string coupling limit. In the latter orientifold settings we demonstrate compatibility with mirror symmetry of Calabi-Yau threefolds at large complex structure. As a byproduct we find an interesting relation of no-scale like conditions on Kähler potentials to the existence of chiral and twisted-chiral descriptions in two dimensions.

  2. Loop suppressed electroweak symmetry breaking and naturally heavy superpartners

    NASA Astrophysics Data System (ADS)

    Dermíšek, Radovan

    2017-01-01

    A model is presented in which O (10 TeV ) stop masses, typically required by the Higgs boson mass in supersymmetric models, do not originate from soft supersymmetry breaking terms that would drive the Higgs mass squared parameter to large negative values but rather from the mixing with vectorlike partners. Their contribution to the Higgs mass squared parameter is reduced to threshold corrections and, thus, it is one loop suppressed compared to usual scenarios. New fermion and scalar partners of the top quark with O (10 TeV ) masses are predicted.

  3. General relativity as the effective theory of GL(4,R) spontaneous symmetry breaking

    NASA Astrophysics Data System (ADS)

    Tomboulis, E. T.

    2011-10-01

    We assume a GL(4,R) space-time symmetry which is spontaneously broken to SO(3,1). We carry out the coset construction of the effective theory for the nonlinearly realized broken symmetry in terms of the Goldstone fields and matter fields transforming linearly under the unbroken Lorentz subgroup. We then identify functions of the Goldstone and matter fields that transform linearly also under the broken symmetry. Expressed in terms of these quantities the effective theory reproduces the vierbein formalism of general relativity with general coordinate invariance being automatically realized nonlinearly over GL(4,R). The coset construction makes no assumptions about any underlying theory that might be responsible for the assumed symmetry breaking. We give a brief discussion of the possibility of field theories with GL(4,R) rather than Lorentz space-time symmetry providing the underlying dynamics.

  4. General relativity as the effective theory of GL(4,R) spontaneous symmetry breaking

    SciTech Connect

    Tomboulis, E. T.

    2011-10-15

    We assume a GL(4,R) space-time symmetry which is spontaneously broken to SO(3,1). We carry out the coset construction of the effective theory for the nonlinearly realized broken symmetry in terms of the Goldstone fields and matter fields transforming linearly under the unbroken Lorentz subgroup. We then identify functions of the Goldstone and matter fields that transform linearly also under the broken symmetry. Expressed in terms of these quantities the effective theory reproduces the vierbein formalism of general relativity with general coordinate invariance being automatically realized nonlinearly over GL(4,R). The coset construction makes no assumptions about any underlying theory that might be responsible for the assumed symmetry breaking. We give a brief discussion of the possibility of field theories with GL(4,R) rather than Lorentz space-time symmetry providing the underlying dynamics.

  5. Chiral-symmetry breaking and confinement in Minkowski space

    SciTech Connect

    Biernat, Elmer P.; Pena, M. T.; Ribiero, J. E.; Stadler, Alfred; Gross, Franz

    2016-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  6. Chiral-symmetry breaking and confinement in Minkowski space

    SciTech Connect

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz

    2016-01-22

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  7. UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

    SciTech Connect

    Zurek, Wojciech H.; Del Campo, Adolfo

    2014-02-13

    In the course of a non-equilibrium continuous phase transition, the dynamics ceases to be adiabatic in the vicinity of the critical point as a result of the critical slowing down (the divergence of the relaxation time in the neighborhood of the critical point). This enforces a local choice of the broken symmetry and can lead to the formation of topological defects. The Kibble-Zurek mechanism (KZM) was developed to describe the associated nonequilibrium dynamics and to estimate the density of defects as a function of the quench rate through the transition. During recent years, several new experiments investigating formation of defects in phase transitions induced by a quench both in classical and quantum mechanical systems were carried out. At the same time, some established results were called into question. We review and analyze the Kibble-Zurek mechanism focusing in particular on this surge of activity, and suggest possible directions for further progress.

  8. Symmetry breaking in drop bouncing on curved surfaces

    PubMed Central

    Liu, Yahua; Andrew, Matthew; Li, Jing; Yeomans, Julia M.; Wang, Zuankai

    2015-01-01

    The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impinging on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions. This is a direct consequence of the cylindrical leaves that have a convex/concave architecture of size comparable to the drop. Systematic experimental investigations on mimetic surfaces and lattice Boltzmann simulations reveal that this novel phenomenon results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim. The asymmetry of the bouncing leads to ∼40% reduction in contact time. PMID:26602170

  9. Spontaneous Time Symmetry Breaking in System with Mixed Strategy Nash Equilibrium: Evidences in Experimental Economics Data

    NASA Astrophysics Data System (ADS)

    Wang, Zhijian; Xu, Bin; Zhejiang Collaboration

    2011-03-01

    In social science, laboratory experiment with human subjects' interaction is a standard test-bed for studying social processes in micro level. Usually, as in physics, the processes near equilibrium are suggested as stochastic processes with time-reversal symmetry (TRS). To the best of our knowledge, near equilibrium, the breaking time symmetry, as well as the existence of robust time anti-symmetry processes, has not been reported clearly in experimental economics till now. By employing Markov transition method to analysis the data from human subject 2x2 Games with wide parameters and mixed Nash equilibrium, we study the time symmetry of the social interaction process near Nash equilibrium. We find that, the time symmetry is broken, and there exists a robust time anti-symmetry processes. We also report the weight of the time anti-symmetry processes in the total processes of each the games. Evidences in laboratory marketing experiments, at the same time, are provided as one-dimension cases. In these cases, time anti-symmetry cycles can also be captured. The proposition of time anti-symmetry processes is small, but the cycles are distinguishable.

  10. PT symmetry breaking and nonlinear optical isolation in coupled microcavities.

    PubMed

    Zhou, Xin; Chong, Y D

    2016-04-04

    We perform a theoretical study of the nonlinear dynamics of nonlinear optical isolator devices based on coupled microcavities with gain and loss. This reveals a correspondence between the boundary of asymptotic stability in the nonlinear regime, where gain saturation is present, and the PT -breaking transition in the underlying linear system. For zero detuning and weak input intensity, the onset of optical isolation can be rigorously derived, and corresponds precisely to the transition into the PT -broken phase of the linear system. When the couplings to the external ports are unequal, the isolation ratio exhibits an abrupt jump at the transition point, whose magnitude is given by the ratio of the couplings. This phenomenon could be exploited to realize an actively controlled nonlinear optical isolator, in which strong optical isolation can be turned on and off by tiny variations in the inter-resonator separation.

  11. Mirror symmetry of ions and electron temperature variations within the dusty dynamo layer of the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Timofeev, Evgeny; Kangas, Jorma; Vallinkoski, Matti

    Quasi-periodic (consisting of a dozen electro-thermal structures, ETS) variations of ionospheric parameters during April, 10 and March, 23 1988 substorms were investigated using the data of EISCAT radars in Tromso. These variations were measured at the lower edge of dynamo-layer 106 km and include the ion and electron temperature, electron density and ionospheric electric field; all data were smoothed out using moving average with optimal lag window. It was shown that: 1) ETS clusters are observed when value of the electric field is < 10 mV/m and average electron density is about (5-10)*10 (4) /sm (3) , 2) For each ETS the envelop demonstrate the so called mirror symmetry, that is antiphased variations of the ion and electron temperature (when Ti increases and Te decreases), 3) The symmetry breaks when the electric field is larger than FB instability threshold (15-20 mVm), 4) The periods of these variations is in the range of 3-10 min, 5) The self-similarity of the scales is observed: smaller scales are included into the larger scales, 6) Temperature variations were accompanied by the electric field variations with amplitude of 4-7 mV/m, 7) Large scale structures (and sometimes dyads formed by two subsequent structures) were accompanied by the electric field rotation up to the whole circle. Specific ETS and plasma parameters variations can be interpreted as a result of Ekman-type instability in the dusty plasma of the dynamo layer. The mirror symmetry of plasma temperature variations is an evidence of a partial blocking of energy transfer between the ions and electrons at low values of the external electric field (below FB instability threshold) because the main energy in such a kind of plasma is attributed to dusty macro-particles (Fortov et al., 2010). Under these conditions the time scale of the dust particle energy variations are considerably larger than the corresponding scales of the temperature variations. According to our previous results (Timofeev et al

  12. Change of Electroweak Nuclear Reaction Rates by CP- and Isospin Symmetry Breaking - A Model Calculation

    NASA Astrophysics Data System (ADS)

    Stumpf, Harald

    2006-09-01

    Based on the assumption that electroweak bosons, leptons and quarks possess a substructure of elementary fermionic constituents, in previous papers the effect of CP-symmetry breaking on the effective dynamics of these particles was calculated. Motivated by the phenomenological procedure in this paper, isospin symmetry breaking will be added and the physical consequences of these calculations will be discussed. The dynamical law of the fermionic constituents is given by a relativistically invariant nonlinear spinor field equation with local interaction, canonical quantization, selfregularization and probability interpretation. The corresponding effective dynamics is derived by algebraic weak mapping theorems. In contrast to the commonly applied modifications of the quark mass matrices, CP-symmetry breaking is introduced into this algebraic formalism by an inequivalent vacuum with respect to the CP-invariant case, represented by a modified spinor field propagator. This leads to an extension of the standard model as effective theory which contains besides the "electric" electroweak bosons additional "magnetic" electroweak bosons and corresponding interactions. If furthermore the isospin invariance of the propagator is broken too, it will be demonstrated in detail that in combination with CP-symmetry breaking this induces a considerable modification of electroweak nuclear reaction rates.

  13. Up and down cascade in a dynamo model: spontaneous symmetry breaking.

    PubMed

    Blanter, E M; Narteau, C; Shnirman, M G; Le Mouël, J L

    1999-05-01

    A multiscale turbulent model of dynamo is proposed. A secondary magnetic field is generated from a primary field by a flow made of turbulent helical vortices (cyclones) of different ranges, and amplified by an up and down cascade mechanism. The model displays symmetry breakings of different ranges although the system construction is completely symmetric. Large-scale symmetry breakings for symmetric conditions of the system evolution are investigated for all kinds of cascades: pure direct cascade, pure inverse cascade, and up and down cascade. It is shown that long lived symmetry breakings of high scales can be obtained only in the case of the up and down cascade. The symmetry breakings find expression in intervals of constant polarity of the secondary field (called chrons of the geomagnetic field). Long intervals of constant polarity with quick reversals are obtained in the model; conditions for such a behavior are investigated. Strong variations of the generated magnetic field during intervals of constant polarity are also observed in the model. Possible applications of the model to geodynamo modeling and various directions of future investigation are briefly discussed.

  14. Eta(') mass and chiral symmetry breaking at large N(c) and N(f).

    PubMed

    Girlanda, L; Stern, J; Talavera, P

    2001-06-25

    We propose a method for implementing the large- N(c), large-N(f) limit of QCD at the effective Lagrangian level. Depending on the value of the ratio N(f)/N(c), different patterns of chiral symmetry breaking can arise, leading in particular to different behaviors of the eta(') mass in the combined large-N limit.

  15. Strong coupling of gold dipolar nanoantennas by symmetry-breaking in evanescent wave

    NASA Astrophysics Data System (ADS)

    Yang, Jhen-Hong; Chen, Kuo-Ping

    2016-09-01

    Observing the resonance wavelengths of nanoantennas (NAs) with changing incident angles in TM and TE polarization. Extinction cross section shows the dark and bright coupling modes at resonance wavelength of NAs with symmetry breaking oblique incidence. The plasmonic enhancement is stronger under evanescent wave in total internal reflection.

  16. Symmetry breaking of decaying magnetohydrodynamic Taylor-Green flows and consequences for universality

    NASA Astrophysics Data System (ADS)

    Dallas, V.; Alexakis, A.

    2013-12-01

    We investigate the evolution and stability of a decaying magnetohydrodynamic Taylor-Green flow, using pseudospectral simulations with resolutions up to 20483. The chosen flow has been shown to result in a steep total energy spectrum with power law behavior k-2. We study the symmetry breaking of this flow by exciting perturbations of different amplitudes. It is shown that for any finite amplitude perturbation there is a high enough Reynolds number for which the perturbation will grow enough at the peak of dissipation rate resulting in a nonlinear feedback into the flow and subsequently break the Taylor-Green symmetries. In particular, we show that symmetry breaking at large scales occurs if the amplitude of the perturbation is σcrit˜Re-1 and at small scales occurs if σcrit˜Re-3/2. This symmetry breaking modifies the scaling laws of the energy spectra at the peak of dissipation rate away from the k-2 scaling and towards the classical k-5/3 and k-3/2 power laws.

  17. A Study of Confinement and Dynamical Chiral Symmetry Breaking in QED3

    SciTech Connect

    Sanchez, Saul; Raya, Alfredo; Bashir, Adnan

    2009-04-20

    We study the gauge invariance of physical observables related to confinement and dynamical chiral symmetry breaking in unquenched QED3 for a simple truncation of the corresponding Schwinger-Dyson equations in arbitrary covariant gauges. An explicit implementation of Landau-Khalatnikov-Fradkin transformations renders these observables gauge independent.

  18. Supersolid formation in a quantum gas breaking a continuous translational symmetry

    NASA Astrophysics Data System (ADS)

    Léonard, Julian; Morales, Andrea; Zupancic, Philip; Esslinger, Tilman; Donner, Tobias

    2017-03-01

    The concept of a supersolid state combines the crystallization of a many-body system with dissipationless flow of the atoms from which it is built. This quantum phase requires the breaking of two continuous symmetries: the phase invariance of a superfluid and the continuous translational invariance to form the crystal. Despite having been proposed for helium almost 50 years ago, experimental verification of supersolidity remains elusive. A variant with only discrete translational symmetry breaking on a preimposed lattice structure—the ‘lattice supersolid’—has been realized, based on self-organization of a Bose–Einstein condensate. However, lattice supersolids do not feature the continuous ground-state degeneracy that characterizes the supersolid state as originally proposed. Here we report the realization of a supersolid with continuous translational symmetry breaking along one direction in a quantum gas. The continuous symmetry that is broken emerges from two discrete spatial symmetries by symmetrically coupling a Bose–Einstein condensate to the modes of two optical cavities. We establish the phase coherence of the supersolid and find a high ground-state degeneracy by measuring the crystal position over many realizations through the light fields that leak from the cavities. These light fields are also used to monitor the position fluctuations in real time. Our concept provides a route to creating and studying glassy many-body systems with controllably lifted ground-state degeneracies, such as supersolids in the presence of disorder.

  19. Symmetry Breaking in the Hidden-Order Phase of URu2Si2

    NASA Astrophysics Data System (ADS)

    Shibauchi, Takasada

    2013-03-01

    In the heavy fermion compound URu2Si2, the hidden-order transition occurs at 17.5 K, whose nature has posed a long-standing mystery. A second-order phase transition is characterized by spontaneous symmetry breaking, and thus the nature of the hidden order cannot be determined without understanding which symmetry is being broken. Our magnetic torque measurements in small pure crystals reveal the emergence of an in-plane anisotropy of the magnetic susceptibility below the transition temperature, indicating the spontaneous breaking of four-fold rotational symmetry of the tetragonal URu2Si2. In addition, our recent observation of cyclotron resonance allows the full determination of the electron-mass structure of the main Fermi-surface sheets, which implies an anomalous in-plane mass anisotropy consistent with the rotational symmetry breaking. These results impose strong constraints on the symmetry of the hidden order parameter. This work has been done in collaboration with R. Okazaki, S. Tonegawa, K. Hashimoto, K. Ikada, Y. H. Lin, H. Shishido, H. J. Shi, Y. Haga, T. D. Matsuda, E. Yamamoto, Y. Onuki, H. Ikeda, and Y. Matsuda.

  20. Probing symmetry and symmetry breaking in resonant soft-x-ray fluorescence spectra of molecules

    SciTech Connect

    Glans, P.; Gunnelin, K.; Guo, J.

    1997-04-01

    Conventional non-resonant soft X-ray emission brings about information about electronic structure through its symmetry and polarization selectivity, the character of which is governed by simple dipole rules. For centro-symmetric molecules with the emitting atom at the inversion center these rules lead to selective emission through the required parity change. For the more common classes of molecules which have lower symmetry or for systems with degenerate core orbitals (delocalized over identical sites), it is merely the local symmetry selectivity that provides a probe of the local atomic orbital contribution to the molecular orbital. For instance, in X-ray spectra of first row species the intensities essentially map the p-density at each particular atomic site, and, in a molecular orbital picture, the contribution of the local p-type atomic orbitals in the LCAO description of the molecular orbitals. The situation is different for resonant X-ray fluorescence spectra. Here strict parity and symmetry selectivity gives rise to a strong frequency dependence for all molecules with an element of symmetry. In addition to symmetry selectivity the strong frequency dependence of resonant X-ray emission is caused by the interplay between the shape of a narrow X-ray excitation energy function and the lifetime and vibrational broadenings of the resonantly excited core states. This interplay leads to various observable effects, such as linear dispersion, resonance narrowing and emission line (Stokes) doubling. Also from the point of view of polarization selectivity, the resonantly excited X-ray spectra are much more informative than the corresponding non-resonant spectra. Examples are presented for nitrogen, oxygen, and carbon dioxide molecules.

  1. The Effective Kahler Potential, Metastable Vacua and R-Symmetry Breaking in O'Raifeartaigh Models

    NASA Astrophysics Data System (ADS)

    Kain, Ben; Benjamin, Shermane; Freund, Christopher

    2010-02-01

    Much has been learned about metastable vacua and R-symmetry breaking in O'Raifeartaigh models. Such work has largely been done from the perspective of the superpotential and by including Coleman-Weinberg corrections to the scalar potential. Instead, we consider these ideas from the perspective of the one loop effective K"ahler potential. We translate known ideas to this framework and then construct convenient formulas for computing individual terms in the expanded effective K"ahler potential. We do so for arbitrary R-charge assignments and allow for small R-symmetry violating terms so that both spontaneous an explicit R-symmetry breaking is included in our analysis. )

  2. Laser-induced spatial symmetry breaking in quantum and classical mechanics.

    PubMed

    Franco, Ignacio; Brumer, Paul

    2006-07-28

    Phase-controllable transport in laser-irradiated spatially symmetric systems is shown to arise both quantum mechanically and classically from a common field-driven interference mechanism. Specifically, the quantum-to-classical transition for symmetry breaking in a quartic oscillator driven by an omega+2omega field is studied. For this, a double perturbation theory in the oscillator anharmonicity and external field strength, that admits an analytic classical limit, is carried out in the Heisenberg picture. The interferences responsible for the symmetry breaking are shown to survive in the classical limit and are the origins of classical control. Differences between reflection symmetry that plays a key role in the analysis, and parity that does not, are discussed.

  3. On gauge independence for gauge models with soft breaking of BRST symmetry

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Alexander

    2014-12-01

    A consistent quantum treatment of general gauge theories with an arbitrary gauge-fixing in the presence of soft breaking of the BRST symmetry in the field-antifield formalism is developed. It is based on a gauged (involving a field-dependent parameter) version of finite BRST transformations. The prescription allows one to restore the gauge-independence of the effective action at its extremals and therefore also that of the conventional S-matrix for a theory with BRST-breaking terms being additively introduced into a BRST-invariant action in order to achieve a consistency of the functional integral. We demonstrate the applicability of this prescription within the approach of functional renormalization group to the Yang-Mills and gravity theories. The Gribov-Zwanziger action and the refined Gribov-Zwanziger action for a many-parameter family of gauges, including the Coulomb, axial and covariant gauges, are derived perturbatively on the basis of finite gauged BRST transformations starting from Landau gauge. It is proved that gauge theories with soft breaking of BRST symmetry can be made consistent if the transformed BRST-breaking terms satisfy the same soft BRST symmetry breaking condition in the resulting gauge as the untransformed ones in the initial gauge, and also without this requirement.

  4. Symmetry breaking and generational mixing in top-color-assisted technicolor

    SciTech Connect

    Lane, K.

    1996-08-01

    Top-color-assisted technicolor provides a dynanamical explanation for electroweak and flavor symmetry breaking and for the large mass of the top quark without unnatural fine-tuning. A major challenge is to generate the observed mixing between heavy and light generations while breaking the strong top-color interactions near 1 TeV. I argue that these phenomena, as well as electroweak symmetry breaking, are intimately connected and I present a scenario for them based on nontrivial patterns of technifermion condensation. I also exhibit a class of models realizing this scenario. This picture leads to a rich phenomenology, especially in hadron and lepton collider experiments in the few hundred GeV to few TeV region and in precision electroweak tests at the {ital Z}{sup 0}, atomic parity violation, and polarized Mo/ller scattering. {copyright} {ital 1996 The American Physical Society.}

  5. Symmetry breaking and generational mixing in top-color-assisted technicolor

    NASA Astrophysics Data System (ADS)

    Lane, Kenneth

    1996-08-01

    Top-color-assisted technicolor provides a dynanamical explanation for electroweak and flavor symmetry breaking and for the large mass of the top quark without unnatural fine-tuning. A major challenge is to generate the observed mixing between heavy and light generations while breaking the strong top-color interactions near 1 TeV. I argue that these phenomena, as well as electroweak symmetry breaking, are intimately connected and I present a scenario for them based on nontrivial patterns of technifermion condensation. I also exhibit a class of models realizing this scenario. This picture leads to a rich phenomenology, especially in hadron and lepton collider experiments in the few hundred GeV to few TeV region and in precision electroweak tests at the Z0, atomic parity violation, and polarized Mo/ller scattering.

  6. More on cosmological constraints on spontaneous R-symmetry breaking models

    SciTech Connect

    Hamada, Yuta; Kobayashi, Tatsuo; Kamada, Kohei; Ookouchi, Yutaka E-mail: kohei.kamada@epfl.ch E-mail: yutaka.ookouchi@artsci.kyushu-u.ac.jp

    2014-01-01

    We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the U(1){sub R} breaking scale f{sub a} is constrained as f{sub a} < 10{sup 12−14} GeV regardless of the value of R-axion mass.

  7. Confinement/deconfinement transition from symmetry breaking in gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    Čubrović, Mihailo

    2016-10-01

    We study the confinement/deconfinement transition in a strongly coupled system triggered by an independent symmetry-breaking quantum phase transition in gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS near-boundary behavior and soft wall interior at zero scalar condensate. We study the cases of neutral and charged condensate separately. In the former case the condensation breaks the discrete {Z}_2 symmetry while a charged condensate breaks the continuous U(1) symmetry. After the condensation of the order parameter, the non-zero vacuum expectation value of the scalar couples to the dilaton, changing the soft wall geometry into a non-confining and anisotropically scale-invariant infrared metric. In other words, the formation of long-range order is immediately followed by the deconfinement transition and the two critical points coincide. The confined phase has a scale — the confinement scale (energy gap) which vanishes in the deconfined case. Therefore, the breaking of the symmetry of the scalar ( {Z}_2 or U(1)) in turn restores the scaling symmetry in the system and neither phase has a higher overall symmetry than the other. When the scalar is charged the phase transition is continuous which goes against the Ginzburg-Landau theory where such transitions generically only occur discontinuously. This phenomenon has some commonalities with the scenario of deconfined criticality. The mechanism we have found has applications mainly in effective field theories such as quantum magnetic systems. We briefly discuss these applications and the relation to real-world systems.

  8. 750 GeV messenger of dark conformal symmetry breaking

    NASA Astrophysics Data System (ADS)

    Davoudiasl, Hooman; Zhang, Cen

    2016-03-01

    The tentative hints for a diphoton resonance at a mass of ˜750 GeV from the ATLAS and CMS experiments at the LHC may be interpreted as first contact with a "dark" sector with a spontaneously broken conformal symmetry. The implied TeV scale of the dark sector may be motivated by the interaction strength required to accommodate a viable thermal relic dark matter (DM) candidate. We model the conformal dynamics using a Randall-Sundrum-type five-dimensional geometry whose IR boundary is identified with the dynamics of the composite dark sector, while the Standard Model (SM) matter content resides on the UV boundary, corresponding to "elementary" fields. We allow the gauge fields to reside in the five-dimensional bulk, which can be minimally chosen to be S U (3 )c×U (1 )Y. The "dark" radion is identified as the putative 750 GeV resonance. Heavy vectorlike fermions, often invoked to explain the diphoton excess, are not explicitly present in our model and are not predicted to appear in the spectrum of TeV scale states. Our minimal setup favors scalar DM of O (TeV ) mass. A generic expectation in this scenario, suggested by DM considerations, is the appearance of vector bosons at ˜ few TeV, corresponding to the gluon and hypercharge Kaluza-Klein (KK) modes that couple to UV boundary states with strengths that are suppressed uniformly compared to their SM values. Our analysis suggests that these KK modes could be within the reach of the LHC in the coming years.

  9. Coleman-Weinberg symmetry breaking in SU(8) induced by a third rank antisymmetric tensor scalar field

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2016-08-01

    We study SU(8) symmetry breaking induced by minimizing the Coleman-Weinberg effective potential for a third rank antisymmetric tensor scalar field in the 56 representation. Instead of breaking {SU}(8)\\supset {SU}(3)× {SU}(5), we find that the stable minimum of the potential breaks the original symmetry according to {SU}(8)\\supset {SU}(3)× {Sp}(4). Using both numerical and analytical methods, we present results for the potential minimum, the corresponding Goldstone boson structure and BEH mechanism, and the group-theoretic classification of the residual states after symmetry breaking.

  10. 3d {N} = 2 mirror symmetry, pq-webs and monopole superpotentials

    NASA Astrophysics Data System (ADS)

    Benvenuti, Sergio; Pasquetti, Sara

    2016-08-01

    D3 branes stretching between webs of (p,q) 5branes provide an interesting class of 3 d {N} = 2 theories. For generic pq-webs however the low energy field theory is not known. We use 3d mirror symmetry and Type IIB S-duality to construct Abelian gauge theories corresponding to D3 branes ending on both sides of a pq-web made of many coincident N S5's intersecting one D5. These theories contain chiral monopole operators in the superpotential and enjoy a non trivial pattern of global symmetry enhancements. In the special case of the pq-web with one D5 and one N S5, the 3d low energy SCFT admits three dual formulations. This triality can be applied locally inside bigger quiver gauge theories. We prove our statements using partial mirror symmetry à la Kapustin-Strassler, showing the equality of the S b 3 partition functions and studying the quantum chiral rings.

  11. 3D-partition functions on the sphere: exact evaluation and mirror symmetry

    NASA Astrophysics Data System (ADS)

    Benvenuti, Sergio; Pasquetti, Sara

    2012-05-01

    We study {N} = {4} quiver theories on the three-sphere. We compute partition functions using the localisation method by Kapustin et al. solving exactly the matrix integrals at finite N, as functions of mass and Fayet-Iliopoulos parameters. We find a simple explicit formula for the partition function of the quiver tail T(SU( N)). This formula opens the way for the analysis of star-shaped quivers and their mirrors (that are the Gaiotto-type theories arising from M5 branes on punctured Riemann surfaces). We provide non-perturbative checks of mirror symmetry for infinite classes of theories and find the partition functions of the T N theory, the building block of generalised quiver theories.

  12. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking.

    PubMed

    Fujita, K; Kim, Chung Koo; Lee, Inhee; Lee, Jinho; Hamidian, M H; Firmo, I A; Mukhopadhyay, S; Eisaki, H; Uchida, S; Lawler, M J; Kim, E-A; Davis, J C

    2014-05-09

    The existence of electronic symmetry breaking in the underdoped cuprates and its disappearance with increased hole density p are now widely reported. However, the relation between this transition and the momentum-space (k-space) electronic structure underpinning the superconductivity has not yet been established. Here, we visualize the Q = 0 (intra-unit-cell) and Q ≠ 0 (density-wave) broken-symmetry states, simultaneously with the coherent k-space topology, for Bi₂Sr₂CaCu₂O(8+δ) samples spanning the phase diagram 0.06 ≤ p ≤ 0.23. We show that the electronic symmetry-breaking tendencies weaken with increasing p and disappear close to a critical doping p(c) = 0.19. Concomitantly, the coherent k-space topology undergoes an abrupt transition, from arcs to closed contours, at the same p(c). These data reveal that the k-space topology transformation in cuprates is linked intimately with the disappearance of the electronic symmetry breaking at a concealed critical point.

  13. Observation of Ni54: Cross-Conjugate Symmetry in f7/2 Mirror Energy Differences

    NASA Astrophysics Data System (ADS)

    Gadea, A.; Lenzi, S. M.; Lunardi, S.; Mărginean, N.; Zuker, A. P.; de Angelis, G.; Axiotis, M.; Martínez, T.; Napoli, D. R.; Farnea, E.; Menegazzo, R.; Pavan, P.; Ur, C. A.; Bazzacco, D.; Venturelli, R.; Kleinheinz, P.; Bednarczyk, P.; Curien, D.; Dorvaux, O.; Nyberg, J.; Grawe, H.; Górska, M.; Palacz, M.; Lagergren, K.; Milechina, L.; Ekman, J.; Rudolph, D.; Andreoiu, C.; Bentley, M. A.; Gelletly, W.; Rubio, B.; Algora, A.; Nacher, E.; Caballero, L.; Trotta, M.; Moszyński, M.

    2006-10-01

    Gamma decays from excited states up to Jπ=6+ in the N=Z-2 nucleus Ni54 have been identified for the first time. Level energies are compared with those of the isobars Co54 and Fe54 and of the cross-conjugate nuclei of mass A=42. The good but puzzling f7/2 cross-conjugate symmetry in mirror and triplet energy differences is analyzed. Shell model calculations reproduce the new data but the necessary nuclear charge-dependent phenomenology is not fully explained by modern nucleon-nucleon potentials.

  14. Observation of 54Ni: cross-conjugate symmetry in f7/2 mirror energy differences.

    PubMed

    Gadea, A; Lenzi, S M; Lunardi, S; Mărginean, N; Zuker, A P; de Angelis, G; Axiotis, M; Martínez, T; Napoli, D R; Farnea, E; Menegazzo, R; Pavan, P; Ur, C A; Bazzacco, D; Venturelli, R; Kleinheinz, P; Bednarczyk, P; Curien, D; Dorvaux, O; Nyberg, J; Grawe, H; Górska, M; Palacz, M; Lagergren, K; Milechina, L; Ekman, J; Rudolph, D; Andreoiu, C; Bentley, M A; Gelletly, W; Rubio, B; Algora, A; Nacher, E; Caballero, L; Trotta, M; Moszyński, M

    2006-10-13

    Gamma decays from excited states up to Jpi=6+ in the N=Z-2 nucleus 54Ni have been identified for the first time. Level energies are compared with those of the isobars 54Co and 54Fe and of the cross-conjugate nuclei of mass A=42. The good but puzzling f7/ cross-conjugate symmetry in mirror and triplet energy differences is analyzed. Shell model calculations reproduce the new data but the necessary nuclear charge-dependent phenomenology is not fully explained by modern nucleon-nucleon potentials.

  15. Breaking inversion symmetry induces excitonic peak in optical absorption of topological semimetal

    NASA Astrophysics Data System (ADS)

    Dadsetani, Mehrdad; Ebrahimian, Ali

    2017-01-01

    In this work we present ab initio study on linear optical properties of Dirac and Weyl semimetals and tried to find the consequences of inversion symmetry breaking in the optical properties of topological semimetal. The real and imaginary part of dielectric function in addition to energy loss spectra of topological semimetal with and without inversion symmetry have been calculated within Random phase approximation (RPA) then the electron-hole interaction is included by solving the Bethe-Salpeter Equation (BSE) for the electron-hole Green's function. We find that the lack of inversion symmetry and spin-orbit interaction increases the density of states at Fermi level, giving rise to excitonic peak in optical absorption of topological semimetal. It is remarkable that the excitonic effects in high energy range of the spectrum are stronger than in the lower one. To explore the breaking of inversion symmetry related optical properties, we have investigated the optical properties of Dirac semimetals Na3Bi and BaPt and compared them to corresponding ones in Weyl semimetals NbP and Na3Bi0.75Sb0.25. Our calculations show that NbP, which lacks inversion symmetry, has high energy exciton at 10 and 10.8 eV. In contrast with Na3Bi, electron-hole interactions give rise to several weak peaks at different energy in the optical absorption of Na3Bi0.75Sb0.25 while its red shift is less pronounced.

  16. Independent particle model of spontaneous symmetry breaking in planar π-electron systems

    NASA Astrophysics Data System (ADS)

    Thiamová, G.; Paldus, J.

    2008-03-01

    The singlet stability of symmetry adapted (SA), restricted Hartree-Fock (RHF) solutions, and the implied symmetry breaking for several planar, π-electron systems, is investigated using the semiempirical Pariser-Parr-Pople Hamiltonian in the whole range of the coupling constant. We focus here on highly symmetric cyclic polyenes C10H10 and C14H14 and their various distorted analogues of lower symmetry, in particular on the perimeter models of naphthalene and anthracene (p-naphthalene and p-anthracene) modeling the so-called [n]-annulenes. Relying on earlier results for general systems with conjugated double-bonds, we explore the character and properties of both the SA and broken-symmetry (BS) RHF solutions for these systems and relate their behavior to those of highly symmetric cyclic polyenes and corresponding polyacenes. In this way we are able to provide a better understanding of the spontaneous symmetry breaking in these systems at the Hartree-Fock level of approximation.

  17. Origin and impact of sublattice symmetry breaking in nitrogen-doped graphene

    NASA Astrophysics Data System (ADS)

    Deretzis, I.; La Magna, A.

    2014-03-01

    We use the density functional theory to demonstrate that the chemical reactivity of nitrogen atoms with a propagating zigzag edge during the nucleation of graphene grains can give rise to persistent sublattice symmetry breaking phenomena. Their effect on the electronic structure of a formed two-dimensional graphene sheet is studied by unfolding the bands obtained from large supercell calculations. We argue that the loss of inversion symmetry enhances the creation of a band gap when assisted by dopant agglomeration. At higher concentrations of graphitic nitrogen the conduction band gets strongly suppressed, paving the way for the use of nitrogen-doped graphene as a valley-filter component.

  18. Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Schemm, E. R.; Levenson-Falk, E. M.; Kapitulnik, A.

    2017-04-01

    The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of 3He-B, all of the known or suspected chiral - that is to say time-reversal symmetry-breaking (TRSB) - superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.

  19. Replica symmetry breaking transition of the weakly anisotropic Heisenberg spin glass in magnetic fields.

    PubMed

    Imagawa, Daisuke; Kawamura, Hikaru

    2004-02-20

    The spin and the chirality orderings of the three-dimensional Heisenberg spin glass with the weak random anisotropy are studied under applied magnetic fields by equilibrium Monte Carlo simulations. A replica symmetry breaking transition occurs in the chiral sector accompanied by the simultaneous spin-glass order. The ordering behavior differs significantly from that of the Ising spin glass, despite the similarity in the global symmetry. Our observation is consistent with the spin-chirality decoupling-recoupling scenario of a spin-glass transition.

  20. Globally baryon symmetric cosmology, GUT spontaneous symmetry breaking, and the structure of the universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Brown, R. W.

    1979-01-01

    Grand unified theories (GUT) such as SU(5), with spontaneous symmetry breaking, can lead more naturally to a globally baryon symmetric big bang cosmology with a domain structure than to a totally asymmetric cosmology. The symmetry is broken at random in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Because of the additional freedom in the high-energy physics allowed by such GUT gauge theories, new observational tests may be possible. Arguments in favor of this cosmology and various observational tests are discussed.

  1. Monopole operators and mirror symmetry in three-dimensional gauge theories

    NASA Astrophysics Data System (ADS)

    Borokhov, Vadim A.

    Many gauge theories in three dimensions flow to interacting conformal field theories in the infrared. We define a new class of local operators in these conformal field theories that are not polynomial in the fundamental fields and create topological disorder. They can be regarded as higher-dimensional analogs of twist and winding-state operators in free 2-D CFTs. We call them monopole operators for reasons explained in the text. The importance of monopole operators is that in the Higgs phase, they create Abrikosov-Nielsen-Olesen vortices. We study properties of these operators in three-dimensional gauge theories using large Nf expansion. For non-supersymmetric gauge theories we show that monopole operators belong to representations of the conformal group whose primaries have dimension of order N f. We demonstrate that these monopole operators transform non-trivially under the flavor symmetry group. We also consider topology-changing operators in the infrared limits of N = 2 and N = 4 supersymmetric QED as well as N = 4 SU(2) gauge theory in three dimensions. Using large N f expansion and operator-state isomorphism of the resulting superconformal field theories, we construct monopole operators that are primaries of short representation of the superconformal algebra and compute their charges under the global symmetries. Predictions of three-dimensional mirror symmetry for the quantum numbers of these monopole operators are verified. Furthermore, we argue that some of our large-Nf results are exact. This implies, in particular, that certain monopole operators in N = 4 d = 3 SQED with Nf = 1 are free fields. This amounts to a proof of 3-D mirror symmetry in these special cases.

  2. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state.

    PubMed

    Young, A F; Sanchez-Yamagishi, J D; Hunt, B; Choi, S H; Watanabe, K; Taniguchi, T; Ashoori, R C; Jarillo-Herrero, P

    2014-01-23

    Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires and graphene. Recently, a new method has emerged with the recognition that symmetry-protected topological (SPT) phases, which occur in systems with an energy gap to quasiparticle excitations (such as insulators or superconductors), can host robust surface states that remain gapless as long as the relevant global symmetry remains unbroken. The nature of the charge carriers in SPT surface states is intimately tied to the symmetry of the bulk, resulting in one- and two-dimensional electronic systems with novel properties. For example, time reversal symmetry endows the massless charge carriers on the surface of a three-dimensional topological insulator with helicity, fixing the orientation of their spin relative to their momentum. Weakly breaking this symmetry generates a gap on the surface, resulting in charge carriers with finite effective mass and exotic spin textures. Analogous manipulations have yet to be demonstrated in two-dimensional topological insulators, where the primary example of a SPT phase is the quantum spin Hall state. Here we demonstrate experimentally that charge-neutral monolayer graphene has a quantum spin Hall state when it is subjected to a very large magnetic field angled with respect to the graphene plane. In contrast to time-reversal-symmetric systems, this state is protected by a symmetry of planar spin rotations that emerges as electron spins in a half-filled Landau level are polarized by the large magnetic field. The properties of the resulting helical edge states can be modulated by balancing the applied field against an intrinsic antiferromagnetic instability, which tends to spontaneously break the spin-rotation symmetry. In the resulting canted antiferromagnetic state, we observe transport signatures of gapped edge states

  3. Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale

    NASA Astrophysics Data System (ADS)

    Gorbunov, Dmitry S.; Sibiryakov, Sergei M.

    2005-09-01

    We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.

  4. Soft A4→Z3 symmetry breaking and cobimaximal neutrino mixing

    DOE PAGES

    Ma, Ernest

    2016-03-28

    In this study, I propose a model of radiative charged-lepton and neutrino masses with A4 symmetry. The soft breaking of A4 to Z3 lepton triality is accomplished by dimension-three terms. The breaking of Z3 by dimension-two terms allows cobimaximal neutrino mixing (θ13 ≠ 0, θ23 = π/4, δcp=π/2) to be realized with only very small finite calculable deviations from the residual Z3 lepton triality. This construction solves a long-standing technical problem inherent in renormalizable A4 models since their inception.

  5. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    NASA Astrophysics Data System (ADS)

    Lu, L.; Song, M.; Liu, W.; Reyes, A. P.; Kuhns, P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.

    2017-02-01

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba2NaOsO6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba2NaOsO6 provide such tests. Here we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.

  6. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    PubMed Central

    Lu, L.; Song, M.; Liu, W.; Reyes, A. P.; Kuhns, P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.

    2017-01-01

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba2NaOsO6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba2NaOsO6 provide such tests. Here we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions. PMID:28181502

  7. Mean-Field Theory of the Symmetry Breaking Model for X Chromosome Inactivation

    NASA Astrophysics Data System (ADS)

    Scialdone, A.; Barbieri, M.; Pallotti, D.; Nicodemi, M.

    X Chromosome Inactivation (XCI) is the process in mammal femalecells whereby one of the X chromosomes is silenced to compensate dosage with respect to males. It is still mysterious how precisely one X chromosome is randomly chosen for inactivation. We discuss here a mean-field theory of the Symmetry Breaking (SB) model of XCI, a Statistical Mechanics model introduced to explain that process. The SB model poses that a single regulatory factor, an aggregate of molecules, is produced which acts to preserve from inactivation one of the X's. The model illustrates a physical mechanism, originating from a thermodynamic phase transition, for the self-assembling of such a single super-molecular aggregate which can spontaneously break the binding symmetry of equivalent targets. This results in a sharp, yet stochastic, regulatory mechanism of XCI. In particular, we focus here on how the model can predict the effects of genetic deletions.

  8. Spatial control of plasma membrane domains: ROP GTPase-based symmetry breaking.

    PubMed

    Yang, Zhenbiao; Lavagi, Irene

    2012-12-01

    Breaking of the cell membrane symmetry to form polarized or localized domains/regions of the plasma membrane (PM) is a fundamental cellular process that occurs in essentially all cellular organisms, and is required for a wide variety of cellular functions/behaviors including cell morphogenesis, cell division and cell differentiation. In plants, the development of localized or polarized PM domains has been linked to a vast array of cellular and developmental processes such as polar cell expansion, asymmetric cell division, cell morphogenesis, the polarization of auxin transporters (and thus auxin polar transport), secondary cell wall patterning, cell type specification, and tissue pattern formation. Rho GTPases from plants (ROPs) are known to be involved in many of these processes. Here, we review the current knowledge on ROP involvement in breaking symmetry and propose that ROP-based self-organizing signaling may provide a common mechanism for the spatial control of PM domains required in various cellular and developmental processes in plants.

  9. Breaking time-reversal symmetry in interacting photon lattices using a superconducting on-chip circulator

    NASA Astrophysics Data System (ADS)

    Koch, Jens; Houck, A. A.; Girvin, S. M.; Le Hur, Karyn

    2010-03-01

    Recently, theoretical studies have advertised EM resonator arrays, coherently coupled to artificial atoms (e.g., superconducting qubits) as a new venue for constructing quantum simulators for strongly correlated states of matter [1]. Here, we explore the possibilities of breaking time-reversal symmetry in such interacting photon systems by coupling transmission line resonators via a superconducting circuit. We demonstrate that, given an external magnetic field and a mechanism for breaking particle-hole symmetry, such a circuit can produce complex phases in the hopping amplitudes for photons. Finally, we address the prospects of this scheme for studying new quantum phase transitions in interacting photon systems, and the realization of novel 2D lattices for photons, such as the Kagome lattice. [4pt] [1] M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, Laser & Photonics Review 2, 527 (2008), and references therein.

  10. Dynamical Electroweak Symmetry Breaking with a Heavy Fermion in Light of Recent LHC Results

    DOE PAGES

    Hung, Pham Q.

    2013-01-01

    The recent announcement of a discovery of a possible Higgs-like particle—its spin and parity are yet to be determined—at the LHC with a mass of 126 GeV necessitates a fresh look at the nature of the electroweak symmetry breaking, in particular if this newly-discovered particle will turn out to have the quantum numbers of a Standard Model Higgs boson. Even if it were a 0 + scalar with the properties expected for a SM Higgs boson, there is still the quintessential hierarchy problem that one has to deal with and which, by itself, suggests a new physics energy scale aroundmore » 1 TeV. This paper presents a minireview of one possible scenario: the formation of a fermion-antifermion condensate coming from a very heavy fourth generation, carrying the quantum number of the SM Higgs field, and thus breaking the electroweak symmetry.« less

  11. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions.

    PubMed

    Lu, L; Song, M; Liu, W; Reyes, A P; Kuhns, P; Lee, H O; Fisher, I R; Mitrović, V F

    2017-02-09

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba2NaOsO6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba2NaOsO6 provide such tests. Here we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.

  12. Nonlinear modes and symmetry breaking in rotating double-well potentials

    NASA Astrophysics Data System (ADS)

    Li, Yongyao; Pang, Wei; Malomed, Boris A.

    2012-08-01

    We study modes trapped in a rotating ring carrying the self-focusing (SF) or self-defocusing (SDF) cubic nonlinearity and double-well potential cos2θ, where θ is the angular coordinate. The model, based on the nonlinear Schrödinger (NLS) equation in the rotating reference frame, describes the light propagation in a twisted pipe waveguide, as well as in other optical settings, and also a Bose-Einstein condensate (BEC) trapped in a torus and dragged by the rotating potential. In the SF and SDF regimes, five and four trapped modes of different symmetries are found, respectively. The shapes and stability of the modes and the transitions between them are studied in the first rotational Brillouin zone. In the SF regime, two symmetry-breaking transitions are found, of subcritical and supercritical types. In the SDF regime, an antisymmetry-breaking transition occurs. Ground states are identified in both the SF and SDF systems.

  13. Symmetry breaking and onset of cosmic acceleration in scalar field models

    NASA Astrophysics Data System (ADS)

    Mohseni Sadjadi, H.; Honardoost, M.; Sepangi, H. R.

    2016-12-01

    We propose a new scenario for the onset of positive acceleration of our Universe based on symmetry breaking in coupled dark energy scalar field model. In a symmetry breaking process where the scalar field rolls down its own potential, the potential reduction is not in favor of acceleration. In our model, when dark matter density becomes less than a critical value, the shape of the effective potential is changed and, the quintessence field climbs up along its own potential while rolls down the effective potential. We show that this procedure may establish the positivity of the potential required for the Universe to accelerate. In addition, we show that by choosing an appropriate interaction between dark sectors there is the possibility that the scalar field resides in a new vacuum giving rise to a positive cosmological constant which is responsible for a permanent late time acceleration.

  14. Symmetry breaking and pattern selection in far-from-equilibrium systems

    PubMed Central

    Nicolis, G.; Prigogine, I.

    1981-01-01

    A mechanism enabling nonequilibrium systems to select spatially asymmetric solutions is outlined. It operates when a macroscopic mode undergoing a symmetry-breaking bifurcation can interact with a polar or a chiral field not explicitly involved in the bifurcation. The perturbation of the bifurcation induced by the field allows the system to capture the external asymmetry and build patterns of preferred polarity or preferred chirality. The chemical and biological implications of forming such an asymmetric medium are discussed. PMID:16592966

  15. High-Performance Photovoltaic Polymers Employing Symmetry-Breaking Building Blocks.

    PubMed

    Liu, Deyu; Zhu, Qianqian; Gu, Chunyang; Wang, Junyi; Qiu, Meng; Chen, Weichao; Bao, Xichang; Sun, Mingliang; Yang, Renqiang

    2016-10-01

    Two 1D-2D asymmetric benzodithiophenes (BDTs) as donor building blocks are designed and synthesized, combining the advantages of both 1D and 2D symmetric BDTs. The photovoltaic properties of the asymmetric BDT-based polymers are improved greatly in comparison with corresponding symmetric BDT-based polymers. This work provides a new approach to design prospective organic optoelectronic materials employing the symmetry-breaking strategy.

  16. Dibaryon octet strong decay coupling constants sum rules with first-order SU(3) symmetry breaking

    NASA Astrophysics Data System (ADS)

    Polanco-Euán, E. N.; Sánchez-Colón, G.; Gupta, V.

    2017-03-01

    The SU(3) octet states with baryon number B = 2, hexaquark dibaryons, are considered. We extend previous work and determine strong decay coupling constants sum rules with first-order SU(3) symmetry breaking for dibaryon octet into two ordinary baryon octets and into a baryon octet plus a baryon decuplet. Possibilities for the experimental observation of multibaryon and anti-multibaryon states are pointed out.

  17. Spontaneous symmetry breaking in static Robertson-Walker space-time with background charge

    NASA Astrophysics Data System (ADS)

    Majumdar, Bimal Kumar; Roychoudhury, Rajkumar

    1992-01-01

    The finite-temperature λφ 4 theory of static Robertson-Walker (RW) space-time is extended to a case with background charge. In contrast to earlier work on static RW space-time, the curvature term is retained and its effect on the effective potential and phase transition are explicitly calculated. The spontaneous symmetry breaking aspects and its dependence on various factors are discussed.

  18. QCD diffraction: a critical phenomenon reflecting both confinement and chiral-symmetry breaking

    SciTech Connect

    White, A.R.

    1982-07-01

    Arguments are presented for studying soft diffractive physics at anti p-p colliders in terms of Critical Pomeron Reggeon Field Theory. It is emphasized that both confinement and chiral-symmetry breaking play a vital role in the occurrence of the Critical Pomeron in QCD. SU(3) is the unique strong-interaction gauge group giving the Critical Pomeron and the maximum number of quarks allowed by asymptotic freedom is required for criticality.

  19. Charge symmetry breaking in the np->dpi{sup 0} reaction

    SciTech Connect

    Bolton, Daniel R.; Miller, Gerald A.

    2010-01-15

    The asymmetry in the angular distribution of np->dpi{sup 0} attributable to charge symmetry breaking is calculated using heavy baryon chiral perturbation theory. Recent developments in power counting have proven successful in describing total cross sections, and we apply them to the asymmetry calculation. Reducibility in one of the leading-order diagrams is examined. We compare the updated theory with experimental results for a range of physically reasonable parameters and find overprediction for the entire range.

  20. Sphericity and symmetry breaking in the formation of Frank–Kasper phases from one component materials

    SciTech Connect

    Lee, Sangwoo; Leighton, Chris; Bates, Frank S.

    2014-11-05

    Frank–Kasper phases are tetrahedrally packed structures occurring in numerous materials, from elements to intermetallics to self-assembled soft materials. They exhibit complex manifolds of Wigner–Seitz cells with many-faceted polyhedra, forming an important bridge between the simple close-packed periodic and quasiperiodic crystals. The recent discovery of the Frank–Kasper σ-phase in diblock and tetrablock polymers stimulated the experiments reported here on a poly(isoprene-b-lactide) diblock copolymer melt. Thus, analysis of small-angle X-ray scattering and mechanical spectroscopy exposes an undiscovered competition between the tendency to form self-assembled particles with spherical symmetry, and the necessity to fill space at uniform density within the framework imposed by the lattice. We thus deduce surprising analogies between the symmetry breaking at the body-centered cubic phase to σ-phase transition in diblock copolymers, mediated by exchange of mass, and the symmetry breaking in certain metals and alloys (such as the elements Mn and U), mediated by exchange of charge. Similar connections are made between the role of sphericity in real space for polymer systems, and the role of sphericity in reciprocal space for metallic systems such as intermetallic compounds and alloys. These findings establish new links between disparate materials classes, provide opportunities to improve the understanding of complex crystallization by building on synergies between hard and soft matter, and, perhaps most significantly, challenge the view that the symmetry breaking required to form reduced symmetry structures (possibly even quasiperiodic crystals) requires particles with multiple predetermined shapes and/or sizes.

  1. Sphericity and symmetry breaking in the formation of Frank-Kasper phases from one component materials.

    PubMed

    Lee, Sangwoo; Leighton, Chris; Bates, Frank S

    2014-12-16

    Frank-Kasper phases are tetrahedrally packed structures occurring in numerous materials, from elements to intermetallics to self-assembled soft materials. They exhibit complex manifolds of Wigner-Seitz cells with many-faceted polyhedra, forming an important bridge between the simple close-packed periodic and quasiperiodic crystals. The recent discovery of the Frank-Kasper σ-phase in diblock and tetrablock polymers stimulated the experiments reported here on a poly(isoprene-b-lactide) diblock copolymer melt. Analysis of small-angle X-ray scattering and mechanical spectroscopy exposes an undiscovered competition between the tendency to form self-assembled particles with spherical symmetry, and the necessity to fill space at uniform density within the framework imposed by the lattice. We thus deduce surprising analogies between the symmetry breaking at the body-centered cubic phase to σ-phase transition in diblock copolymers, mediated by exchange of mass, and the symmetry breaking in certain metals and alloys (such as the elements Mn and U), mediated by exchange of charge. Similar connections are made between the role of sphericity in real space for polymer systems, and the role of sphericity in reciprocal space for metallic systems such as intermetallic compounds and alloys. These findings establish new links between disparate materials classes, provide opportunities to improve the understanding of complex crystallization by building on synergies between hard and soft matter, and, perhaps most significantly, challenge the view that the symmetry breaking required to form reduced symmetry structures (possibly even quasiperiodic crystals) requires particles with multiple predetermined shapes and/or sizes.

  2. Sphericity and symmetry breaking in the formation of Frank–Kasper phases from one component materials

    DOE PAGES

    Lee, Sangwoo; Leighton, Chris; Bates, Frank S.

    2014-11-05

    Frank–Kasper phases are tetrahedrally packed structures occurring in numerous materials, from elements to intermetallics to self-assembled soft materials. They exhibit complex manifolds of Wigner–Seitz cells with many-faceted polyhedra, forming an important bridge between the simple close-packed periodic and quasiperiodic crystals. The recent discovery of the Frank–Kasper σ-phase in diblock and tetrablock polymers stimulated the experiments reported here on a poly(isoprene-b-lactide) diblock copolymer melt. Thus, analysis of small-angle X-ray scattering and mechanical spectroscopy exposes an undiscovered competition between the tendency to form self-assembled particles with spherical symmetry, and the necessity to fill space at uniform density within the framework imposed bymore » the lattice. We thus deduce surprising analogies between the symmetry breaking at the body-centered cubic phase to σ-phase transition in diblock copolymers, mediated by exchange of mass, and the symmetry breaking in certain metals and alloys (such as the elements Mn and U), mediated by exchange of charge. Similar connections are made between the role of sphericity in real space for polymer systems, and the role of sphericity in reciprocal space for metallic systems such as intermetallic compounds and alloys. These findings establish new links between disparate materials classes, provide opportunities to improve the understanding of complex crystallization by building on synergies between hard and soft matter, and, perhaps most significantly, challenge the view that the symmetry breaking required to form reduced symmetry structures (possibly even quasiperiodic crystals) requires particles with multiple predetermined shapes and/or sizes.« less

  3. Sphericity and symmetry breaking in the formation of Frank–Kasper phases from one component materials

    PubMed Central

    Lee, Sangwoo; Leighton, Chris; Bates, Frank S.

    2014-01-01

    Frank–Kasper phases are tetrahedrally packed structures occurring in numerous materials, from elements to intermetallics to self-assembled soft materials. They exhibit complex manifolds of Wigner–Seitz cells with many-faceted polyhedra, forming an important bridge between the simple close-packed periodic and quasiperiodic crystals. The recent discovery of the Frank–Kasper σ-phase in diblock and tetrablock polymers stimulated the experiments reported here on a poly(isoprene-b-lactide) diblock copolymer melt. Analysis of small-angle X-ray scattering and mechanical spectroscopy exposes an undiscovered competition between the tendency to form self-assembled particles with spherical symmetry, and the necessity to fill space at uniform density within the framework imposed by the lattice. We thus deduce surprising analogies between the symmetry breaking at the body-centered cubic phase to σ-phase transition in diblock copolymers, mediated by exchange of mass, and the symmetry breaking in certain metals and alloys (such as the elements Mn and U), mediated by exchange of charge. Similar connections are made between the role of sphericity in real space for polymer systems, and the role of sphericity in reciprocal space for metallic systems such as intermetallic compounds and alloys. These findings establish new links between disparate materials classes, provide opportunities to improve the understanding of complex crystallization by building on synergies between hard and soft matter, and, perhaps most significantly, challenge the view that the symmetry breaking required to form reduced symmetry structures (possibly even quasiperiodic crystals) requires particles with multiple predetermined shapes and/or sizes. PMID:25378703

  4. The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations

    NASA Astrophysics Data System (ADS)

    Weber, Norbert; Galindo, Vladimir; Stefani, Frank; Weier, Tom

    2015-11-01

    The Tayler instability is a kink-type, current driven instability that plays an important role in plasma physics but might also be relevant in liquid metal applications with high electrical currents. In the framework of the Tayler-Spruit dynamo model of stellar magnetic field generation (Spruit 2002 Astron. Astrophys. 381 923-32), the question of spontaneous helical (chiral) symmetry breaking during the saturation of the Tayler instability has received considerable interest (Zahn et al 2007 Astron. Astrophys. 474 145-54 Gellert et al 2011 Mon. Not. R. Astron. Soc. 414 2696-701 Bonanno et al 2012 Phys. Rev. E 86 016313). Focusing on fluids with low magnetic Prandtl numbers, for which the quasistatic approximation can be applied, we utilize an integro-differential equation approach (Weber et al 2013 New J. Phys.15 043034) in order to investigate the saturation mechanism of the Tayler instability. Both the exponential growth phase and the saturated phase are analysed in terms of the action of the α and β effects of mean-field magnetohydrodynamics. In the exponential growth phase we always find a spontaneous chiral symmetry breaking which, however, disappears in the saturated phase. For higher degrees of supercriticality, we observe helicity oscillations in the saturated regime. For Lundquist numbers in the order of one we also obtain chiral symmetry breaking of the saturated magnetic field.

  5. Intrinsic Axial Flows in CSDX and Dynamical Symmetry Breaking in ITG Turbulence

    NASA Astrophysics Data System (ADS)

    Li, Jiacong; Diamond, P. H.; Hong, R.; Thakur, S. C.; Xu, X. Q.; Tynan, G. R.

    2016-10-01

    Toroidal plasma rotation can enhance confinement when combined with weak magnetic shear. Also, external rotation drive in future fusion devices (e.g. ITER) will be weak. Together, these two considerations drive us to study intrinsic rotations with weak magnetic shear. In particular, a global transition is triggered in CSDX when magnetic field B exceeds a critical strength threshold. At the transition an ion feature emerges in the core turbulence. Recent studies show that a dynamical symmetry breaking mechanism in drift wave turbulence can drive intrinsic axial flows in CSDX, as well as enhance intrinsic rotations in tokamaks. Here, we focus on what happens when ion features emerge in CSDX, and how ion temperature gradient (ITG) driven turbulence drives intrinsic rotations with weak magnetic shear. The effect of dynamical symmetry breaking in ITG turbulence depends on the stability regime. In a marginally stable regime, dynamical symmetry breaking results in an augmented turbulence viscosity (chi-phi). However, when ITG is far from the stability boundary, a negative increment in turbulent viscosity is induced. This material is based upon work supported by the U.S. Department of Energy, Office of Fusion Energy Sciences, under Award No. DE-FG02-04ER54738.

  6. Symmetry Breaking Criteria in Electrostatically Loaded Bistable Curved/Prebuckled Micro Beams

    NASA Astrophysics Data System (ADS)

    Medina, Lior; Gilat, Rivka; Krylov, Slava

    The symmetric and asymmetric buckling of micro beams subjected to distributed electrostatic force is studied. The analysis is carried out for two separate cases: a case of a stress-free beam, which is initially curved by fabrication and a case of a pre-stressed beam buckled due to an axial force. The analysis is based on a reduced order (RO) model resulting from the Galerkin decomposition with vibrational or buckling modes of a straight beam used as the base functions. The criteria of symmetric, limit point, buckling and of non-symmetric bifurcation are derived in terms of the geometric parameters of the beams. While the necessary symmetry breaking criterion establishes the conditions for the appearance of bifurcation points on the unstable branch of the symmetric limit point buckling curve, the sufficient criterion assures a realistic asymmetric buckling bifurcating from the stable branches of the symmetric equilibrium path. It is shown that while the symmetry breaking conditions are affected by the nonlinearity of the electrostatic force, its influence is less pronounced than in the case of the symmetric snap-through. A comparison between the results provided by the reduced order model, and those obtained by other numerical analyses confirms the accuracy of the symmetry breaking criteria and their applicability for the analysis and design of micro beams.

  7. Dynamical instability induced by the zero mode under symmetry breaking external perturbation

    SciTech Connect

    Takahashi, J. Nakamura, Y. Yamanaka, Y.

    2014-08-15

    A complex eigenvalue in the Bogoliubov–de Gennes equations for a stationary Bose-Einstein condensate in the ultracold atomic system indicates the dynamical instability of the system. We also have the modes with zero eigenvalues for the condensate, called the zero modes, which originate from the spontaneous breakdown of symmetries. Although the zero modes are suppressed in many theoretical analyses, we take account of them in this paper and argue that a zero mode can change into one with a pure imaginary eigenvalue by applying a symmetry breaking external perturbation potential. This emergence of a pure imaginary mode adds a new type of scenario of dynamical instability to that characterized by the complex eigenvalue of the usual excitation modes. For illustration, we deal with two one-dimensional homogeneous Bose–Einstein condensate systems with a single dark soliton under a respective perturbation potential, breaking the invariance under translation, to derive pure imaginary modes. - Highlights: • Zero modes are important but ignored in many theories for the cold atomic system. • We discuss the zero mode under symmetry breaking potential in this system. • We consider the zero mode of translational invariance for a single dark soliton. • We show that it turns into an anomalous or pure imaginary mode.

  8. Vacuum stability and radiative electroweak symmetry breaking in an SO(10) dark matter model

    NASA Astrophysics Data System (ADS)

    Mambrini, Yann; Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming

    2016-06-01

    Vacuum stability in the Standard Model is problematic as the Higgs quartic self-coupling runs negative at a renormalization scale of about 1010 GeV . We consider a nonsupersymmetric SO(10) grand unification model for which gauge coupling unification is made possible through an intermediate scale gauge group, Gint=SU (3 )C⊗SU (2 )L⊗SU (2 )R⊗U (1 )B -L . Gint is broken by the vacuum expectation value of a 126 of SO(10) which not only provides for neutrino masses through the seesaw mechanism but also preserves a discrete Z2 that can account for the stability of a dark matter candidate, here taken to be the Standard Model singlet component of a bosonic 16 . We show that in addition to these features the model insures the positivity of the Higgs quartic coupling through its interactions to the dark matter multiplet and 126 . We also show that the Higgs mass squared runs negative, triggering electroweak symmetry breaking. Thus, the vacuum stability is achieved along with radiative electroweak symmetry breaking and captures two more important elements of supersymmetric models without low-energy supersymmetry. The conditions for perturbativity of quartic couplings and for radiative electroweak symmetry breaking lead to tight upper and lower limits on the dark matter mass, respectively, and this dark matter mass region (1.35-2 TeV) can be probed in future direct detection experiments.

  9. Clarification of symmetry breaking mechanism in intrinsic rotation of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Yi, S.; Kwon, J. M.; Rhee, T.; Diamond, P. H.; Kim, J. Y.

    2010-11-01

    Intrinsic rotation of tokamak plasmas is considered to be generated by non-diffusive stress (i.e. residual stress) induced by asymmetric k|| turbulence spectrum. To study the symmetry breaking mechanisms in intrinsic rotation, we have performed numerical simulations of intrinsic rotation by ITG turbulence using the gKPSP code, a delta-f global PIC code for tokamak. It is found that not only distortion of turbulence spectrum by ExB shear but also spatial diffusion of wave momentum driven by turbulence intensity gradient play an important role in the symmetry breaking mechanism, as expected from a theory [1]. It is hard to recognize individual contribution of ExB shear and turbulence intensity gradient to the residual stress because their evolution is strongly coupled with the prey-predator feature [2]. To clarify their role, a comprehensive analysis including their nonlinear coupling is performed. The key symmetry breaking mechanism is identified for various physics situations. [4pt] [1] P.H. Diamond, et al., Phys. of Plasmas 15, 012303 (2008). [0pt] [2] P.H. Diamond, et al., PRL 72, 2565 (1994).

  10. Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breaking

    NASA Astrophysics Data System (ADS)

    Ohanian, Hans C.

    2016-03-01

    Instead of the scalar "dilaton" field that is usually adopted to construct conformally invariant Lagrangians for gravitation, we here propose a hybrid construction, involving both a complex dilaton scalar and a Weyl gauge-vector, in accord with Weyl's original concept of a non-Riemannian conformal geometry with a transport law for length and time intervals, for which this gauge vector is required. Such a hybrid construction permits us to avoid the wrong sign of the dilaton kinetic term (the ghost problem) that afflicts the usual construction. The introduction of a Weyl gauge-vector and its interaction with the dilaton also has the collateral benefit of providing an explicit mechanism for spontaneous breaking of the conformal symmetry, whereby the dilaton and the Weyl gauge-vector acquire masses somewhat smaller than {m}_{P} by the Coleman-Weinberg mechanism. Conformal symmetry breaking is assumed to precede inflation, which occurs later by a separate GUT or electroweak symmetry breaking, as in inflationary models based on the Higgs boson.

  11. Suppression of martensitic transformation in Fe50Mn23Ga27 by local symmetry breaking

    NASA Astrophysics Data System (ADS)

    Ma, Tianyu; Liu, Xiaolian; Yan, Mi; Wu, Chen; Ren, Shuai; Li, Huiying; Fang, Minxia; Qiu, Zhiyong; Ren, Xiaobing

    2015-05-01

    Defects-induced local symmetry breaking has led to unusual properties in nonferromagnetic ferroelastic materials upon suppressing their martensitic transformation. Thus, it is of interest to discover additional properties by local symmetry breaking in one important class of the ferroelastic materials, i.e., the ferromagnetic shape memory alloys. In this letter, it is found that local symmetry breaking including both tetragonal nano-inclusions and anti-phase boundaries (APBs), suppresses martensitic transformation of a body-centered-cubic Fe50Mn23Ga27 alloy, however, does not affect the magnetic ordering. Large electrical resistivity is retained to the low temperature ferromagnetic state, behaving like a half-metal ferromagnet. Lower ordering degree at APBs and local stress fields generated by the lattice expansion of tetragonal nanoparticles hinder the formation of long-range-ordered martensites. The half-metal-like conducting behavior upon suppressing martensitic transformation extends the regime of ferromagnetic shape memory materials and may lead to potential applications in spintronic devices.

  12. Symmetry breaking of localized discrete matter waves induced by spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Salerno, M.; Abdullaev, F. Kh.

    2015-10-01

    We study localized nonlinear excitations of a dilute Bose-Einstein condensate (BEC) with spin-orbit coupling in a deep optical lattice (OL). For this we introduce a tight-binding model that includes the spin-orbit coupling (SOC) at the discrete level in the form of a generalized discrete nonlinear Schrödinger equation. Existence and stability of discrete solitons of different symmetry types is demonstrated. Quite interestingly, we find three distinctive regions in which discrete solitons undergo spontaneously symmetry breaking, passing from on-site to inter-site and to asymmetric, simply by varying the interatomic interactions. Existence ranges of discrete solitons with inter-site symmetry depend on SOC and shrink to zero as the SOC parameter is increased. Asymmetric discrete solitons appear as novel excitations specific of the SOC. Possible experimental implementation of these results is briefly discussed.

  13. Phase transition from the symmetry breaking of charged Klein-Gordon fields

    NASA Astrophysics Data System (ADS)

    Matos, T.; Castellanos, E.

    2014-01-01

    We analyze the phase transition associated with the U(1) symmetry breaking of the complex Klein-Gordon (KG) equation with a Mexican-hat scalar field potential up to one loop in perturbations immersed in a thermal bath. We show that the KG equation reduces to a Gross-Pitaevskii like-equation (GP), which also contains the entire information of the phase transition. Indeed, the thermal bath contributions, together with the corresponding U(1) local symmetry, allow us to interpret the resulting GP equation as a charged and finite temperature version of the system. Finally, we obtain the hydrodynamics and consequently, the corresponding thermodynamics, and show that breakdown of the U(1) local symmetry of the KG field into the new version of the GP equation corresponds, under certain circumstances, to a phase transition of the gas into a condensate, superfluid, and/or superconductor.

  14. Transport of parallel momentum induced by current-symmetry breaking in toroidal plasmas.

    PubMed

    Camenen, Y; Peeters, A G; Angioni, C; Casson, F J; Hornsby, W A; Snodin, A P; Strintzi, D

    2009-03-27

    The symmetry of a physical system strongly impacts on its properties. In toroidal plasmas, the symmetry along a magnetic field line usually constrains the radial flux of parallel momentum to zero in the absence of background flows. By breaking the up-down symmetry of the toroidal currents, this constraint can be relaxed. The parallel asymmetry in the magnetic configuration then leads to an incomplete cancellation of the turbulent momentum flux across a flux surface. The magnitude of the subsequent toroidal rotation increases with the up-down asymmetry and its sign depends on the direction of the toroidal magnetic field and plasma current. Such a mechanism offers new insights in the interpretation and control of the intrinsic toroidal rotation in present day experiments.

  15. Rotational Symmetry Breaking in a Trigonal Superconductor Nb-doped Bi2 Se3

    NASA Astrophysics Data System (ADS)

    Asaba, Tomoya; Lawson, B. J.; Tinsman, Colin; Chen, Lu; Corbae, Paul; Li, Gang; Qiu, Y.; Hor, Y. S.; Fu, Liang; Li, Lu

    2017-01-01

    The search for unconventional superconductivity has been focused on materials with strong spin-orbit coupling and unique crystal lattices. Doped bismuth selenide (Bi2 Se3 ) is a strong candidate, given the topological insulator nature of the parent compound and its triangular lattice. The coupling between the physical properties in the superconducting state and its underlying crystal symmetry is a crucial test for unconventional superconductivity. In this paper, we report direct evidence that the superconducting magnetic response couples strongly to the underlying trigonal crystal symmetry in the recently discovered superconductor with trigonal crystal structure, niobium (Nb)-doped Bi2 Se3 . As a result, the in-plane magnetic torque signal vanishes every 60°. More importantly, the superconducting hysteresis loop amplitude is enhanced along one preferred direction, spontaneously breaking the rotational symmetry. This observation indicates the presence of nematic order in the superconducting ground state of Nb-doped Bi2 Se3 .

  16. Phase transition from the symmetry breaking of charged Klein–Gordon fields

    SciTech Connect

    Matos, T.; Castellanos, E.

    2014-01-14

    We analyze the phase transition associated with the U(1) symmetry breaking of the complex Klein–Gordon (KG) equation with a Mexican–hat scalar field potential up to one loop in perturbations immersed in a thermal bath. We show that the KG equation reduces to a Gross–Pitaevskii like–equation (GP), which also contains the entire information of the phase transition. Indeed, the thermal bath contributions, together with the corresponding U(1) local symmetry, allow us to interpret the resulting GP equation as a charged and finite temperature version of the system. Finally, we obtain the hydrodynamics and consequently, the corresponding thermodynamics, and show that breakdown of the U(1) local symmetry of the KG field into the new version of the GP equation corresponds, under certain circumstances, to a phase transition of the gas into a condensate, superfluid, and/or superconductor.

  17. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    SciTech Connect

    Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi

    2016-01-22

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.

  18. Studies of strong electroweak symmetry breaking at future e{sup +}e{sup {minus}} linear colliders

    SciTech Connect

    Barklow, T.L.

    1994-08-01

    Methods of studying strong electroweak symmetry breaking at future e{sup +}e{sup {minus}} linear colliders are reviewed. Specifically, we review precision measurements of triple gauge boson vertex parameters and the rescattering of longitudinal W bosons in the process e{sup +}e{sup {minus}} {yields} W{sup +}W{sup {minus}}. Quantitative estimates of the sensitivity of each technique to strong electroweak symmetry breaking are included.

  19. Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking

    SciTech Connect

    Peter Schweitzer, Mark Strikman, Christian Weiss

    2013-01-01

    The dynamical breaking of chiral symmetry in QCD is caused by nonperturbative interactions on a distance scale rho ~ 0.3 fm, much smaller than the typical hadronic size R ~ 1 fm. These short-distance interactions influence the intrinsic transverse momentum distributions of partons and their correlations at a low normalization point. We study this phenomenon in an effective description of the low-energy dynamics in terms of chiral constituent quark degrees of freedom, which refers to the large-N_c limit of QCD. The nucleon is obtained as a system of constituent quarks and antiquarks moving in a self-consistent classical chiral field (relativistic mean-field approximation, or chiral quark-soliton model). The calculated transverse momentum distributions of constituent quarks and antiquarks are matched with QCD quarks, antiquarks and gluons at the chiral symmetry--breaking scale rho^{-2}. We find that the transverse momentum distribution of valence quarks is localized at p_T^2 ~ R^{-2} and roughly of Gaussian shape. The distribution of unpolarized sea quarks exhibits a would-be power-like tail ~1/p_T^2 extending up to the chiral symmetry-breaking scale. Similar behavior is observed in the flavor-nonsinglet polarized sea. The high-momentum tails are the result of short-range correlations between sea quarks in the nucleon's light-cone wave function, which are analogous to short-range NN correlations in nuclei. We show that the nucleon's light-cone wave function contains correlated pairs of transverse size rho << R with scalar-isoscalar (Sigma) and pseudoscalar-isovector (Pi) quantum numbers, whose internal wave functions have a distinctive spin structure and become identical at p_T^2 ~ rho^{-2} (restoration of chiral symmetry). These features are model-independent and represent an effect of dynamical chiral symmetry breaking on the nucleon's partonic structure. Our results have numerous implications for the transverse momentum distributions of particles produced in hard

  20. Symmetry breaking in the second harmonic field of self-assembled metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Belardini, A.; Benedetti, A.; Centini, M.; Fazio, E.; Bertolotti, M.; Sibilia, C.; Haus, Joseph W.; Sarangan, Andrew

    2015-05-01

    Here we present both an overview of different nonlinear optical phenomena occurring in nanopatterned materials and new results on the symmetry induced second harmonic generation (SHG) signal from metallic nanowires. A discussion about symmetry breaking in artificial chiral metamaterials is presented, while the experimental evidence was given by second order nonlinear optical measurements on different samples. Here, new SHG measurements on regular array of tilted nanowires (NWs) produced by grazing evaporating gold on a silicon substrate were presented and discussed. The surface composed by tilted wires can induce an optical chiral response of the whole sample when the light impinges on the sample on an out-of-normal incidence angle (extrinsic chirality). The measurements were performed by using circular polarised laser excitation at the wavelength of 800nm and by observing the second harmonic response at the wavelength of 400nm in different polarization states. The second harmonic generation process results to be very sensitive to the symmetry breaking at the interfaces of investigated samples.

  1. Symmetry breaking in nematic liquid crystals: analogy with cosmology and magnetism.

    PubMed

    Repnik, R; Ranjkesh, A; Simonka, V; Ambrozic, M; Bradac, Z; Kralj, S

    2013-10-09

    Universal behavior related to continuous symmetry breaking in nematic liquid crystals is studied using Brownian molecular dynamics. A three-dimensional lattice system of rod-like objects interacting via the Lebwohl-Lasher interaction is considered. We test the applicability of predictions originally derived in cosmology and magnetism. In the first part we focus on coarsening dynamics following the temperature driven isotropic-nematic phase transition for different quench rates. The behavior in the early coarsening regime supports predictions made originally by Kibble in cosmology. For fast enough quenches, symmetry breaking and causality give rise to a dense tangle of defects. When the degree of orientational ordering is large enough, well defined protodomains characterized by a single average domain length are formed. With time subcritical domains gradually vanish and supercritical domains grow with time, exhibiting a universal scaling law. In the second part of the paper we study the impact of random-field-type disorder on a range of ordering in the (symmetry broken) nematic phase. We demonstrate that short-range order is observed even for a minute concentration of impurities, giving rise to disorder in line with the Imry-Ma theorem prediction only for the appropriate history of systems.

  2. Unconventional superconductivity in generalized Hubbard model: role of electron-hole symmetry breaking terms

    NASA Astrophysics Data System (ADS)

    Wysokiński, Marcin M.; Kaczmarczyk, Jan

    2017-03-01

    We investigate the effect of the electron-hole (e-h) symmetry breaking on d-wave superconductivity induced by non-local effects of correlations in the generalized Hubbard model. The symmetry breaking is introduced in a two-fold manner: by the next-to-nearest neighbor hopping of electrons and by the charge-bond interaction—the off-diagonal term of the Coulomb potential. Both terms lead to a pronounced asymmetry of the superconducting order parameter. The next-to-nearest neighbor hopping enhances superconductivity for h-doping, while diminishes it for e-doping. The charge-bond interaction alone leads to the opposite effect and, additionally, to the kinetic-energy gain upon condensation in the underdoped regime. With both terms included, with similar amplitudes, the height of the superconducting dome and the critical doping remain in favor of h-doping. The influence of the charge-bond interaction on deviations from {{d}{{x2}-{{y}2}}} symmetry of the shape of the gap at the Fermi surface in the momentum space is briefly discussed.

  3. The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry

    SciTech Connect

    Hinterbichler, Kurt; Khoury, Justin E-mail: jkhoury@sas.upenn.edu

    2012-04-01

    We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves.

  4. Chirality-related interactions and a mirror symmetry violation in handed nano structures

    SciTech Connect

    Gabuda, S. P.; Kozlova, S. G.

    2014-07-28

    Hindering of inversion transitions and a violation of mirror symmetry of the right- and left-handed configurations of diazabizyclooctane (dabco, N{sub 2}C{sub 6}H{sub 12}) enantiomers has been studied with low-temperature adiabatic calorimetry. The dabco molecules were sandwiched in a high-porous layered structure of a metal organic framework (MOF) compound. We show from the data of low-temperature adiabatic calorimetry and {sup 1}H NMR spin relaxation method that hindering of inversion transitions of dabco molecules cannot be associated with the influence of the intracrystalline self-consistent molecular field as a continuously monitoring environment within the quantum Zeno effect. In addition, lack of another manifestation of this effect associated with the collisional suppression of the inversion transitions in MOF samples impregnated by helium has been shown. These results lead to the conclusion that chiral polarization is related to the fundamental effect of parity nonconservation.

  5. Criteria for the absence of quantum fluctuations after spontaneous symmetry breaking

    SciTech Connect

    Beekman, Aron J.

    2015-10-15

    The lowest-energy state of a macroscopic system in which symmetry is spontaneously broken, is a very stable wavepacket centered around a spontaneously chosen, classical direction in symmetry space. However, for a Heisenberg ferromagnet the quantum groundstate is exactly the classical groundstate, there are no quantum fluctuations. This coincides with seven exceptional properties of the ferromagnet, including spontaneous time-reversal symmetry breaking, a reduced number of Nambu–Goldstone modes and the absence of a thin spectrum (Anderson tower of states). Recent discoveries of other non-relativistic systems with fewer Nambu–Goldstone modes suggest these specialties apply there as well. I establish precise criteria for the absence of quantum fluctuations and all the other features. In particular, it is not sufficient that the order parameter operator commutes with the Hamiltonian. It leads to a measurably larger coherence time of superpositions in small but macroscopic systems. - Highlights: • Precise criteria for absence of quantum fluctuations in symmetry-broken states are established. • It is not sufficient that the order parameter commutes with the Hamiltonian. • Clarifies relation between quantum fluctuations and type-B Nambu–Goldstone modes. • Testable through absence of fundamental limit on maximum coherence time of macroscopic superpositions.

  6. Symmetry breaking and restoring wave transmission in diode-antidiode double chains.

    PubMed

    Lepri, Stefano; Malomed, Boris A

    2013-04-01

    We introduce a system of two parallel-coupled discrete nonlinear Schrödinger inhomogeneous chains. Each one favors the unidirectional transmission of incident packets, in the opposite directions with respect to each other. Two different configurations of the diode-antidiode pair are considered, i.e., a ladder and a plaquette. They feature, respectively, the uniform transverse linear coupling or the coupling limited to the central nonlinear segment of the system. In the case of weak linear coupling, the symmetry breaking is observed (i.e., the pair still features the diode behavior), while the moderately strong coupling restores the symmetry, making the transmission effectively bidirectional. In the case of the ladder, an oscillatory dependence of the transmission on the strength of the coupling is observed and qualitatively explained.

  7. Bilayer graphene under pressure: Electron-hole symmetry breaking, valley Hall effect, and Landau levels

    NASA Astrophysics Data System (ADS)

    Munoz, F.; Collado, H. P. Ojeda; Usaj, Gonzalo; Sofo, Jorge O.; Balseiro, C. A.

    2016-06-01

    The electronic structure of bilayer graphene under pressure develops very interesting features with an enhancement of the trigonal warping and a splitting of the parabolic touching bands at the K point of the reciprocal space into four Dirac cones, one at K and three along the T symmetry lines. As pressure is increased, these cones separate in reciprocal space and in energy, breaking the electron-hole symmetry. Due to their energy separation, their opposite Berry curvature can be observed in valley Hall effect experiments and in the structure of the Landau levels. Based on the electronic structure obtained by density functional theory, we develop a low energy Hamiltonian that describes the effects of pressure on measurable quantities such as the Hall conductivity and the Landau levels of the system.

  8. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wolynes, Peter G.

    2016-06-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.

  9. Dual-Band Perfect Absorption by Breaking the Symmetry of Metamaterial Structure

    NASA Astrophysics Data System (ADS)

    Hai, Le Dinh; Qui, Vu Dinh; Dinh, Tiep Hong; Hai, Pham; Giang, Trinh Thị; Cuong, Tran Manh; Tung, Bui Son; Lam, Vu Dinh

    2017-02-01

    Since the first proposal of Landy et al. (Phys Rev Lett 100:207402, 2008), the metamaterial perfect absorber (MPA) has rapidly become one of the most crucial research trends. Recently, dual-band, multi-band and broadband MPA have been highly desirable in electronic applications. In this paper, we demonstrate and evaluate a MPA structure which can generate dual-band absorption operating at the microwave frequency by breaking the symmetry of structure. There is an agreement between simulation and experimental results. The results can be explained by using the equivalent LC circuit and the electric field distribution of this structure. In addition, various structures with different symmetry configurations were studied to gain greater insight into the absorption.

  10. Is the Higgs boson associated with Coleman-Weinberg dynamical symmetry breaking?

    SciTech Connect

    Hill, Christopher T.

    2014-04-01

    The Higgs mechanism may be a quantum phenomenon, i.e., a Coleman-Weinberg potential generated by the explicit breaking of scale symmetry in Feynman loops. We review the relationship of scale symmetry, trace anomalies, and emphasize the role of the renormalization group in determining Coleman- Weinberg potentials. We propose a simple phenomenological model with "maximal visibility" at the LHC containing a "dormant" Higgs doublet (no VEV, coupled to standard model gauge interactions $SU(2)\\times U(1)$) with a mass of $\\sim 380$ GeV. We discuss the LHC phenomenology and UV challenges of such a model. We also give a schematic model in which new heavy fermions, with masses $\\sim 230$ GeV, can drive a Coleman-Weinberg potential at two-loops. The role of the "improved stress tensor" is emphasized, and we propose a non-gravitational term, analogous to the $\\theta$-term in QCD, which generates it from a scalar action.

  11. Spontaneous symmetry breaking in cosmos: the hybrid symmetron as a dark energy switching device

    SciTech Connect

    Bamba, K.; Nojiri, S.; Gannouji, R.; Kamijo, M.; Sami, M. E-mail: gannouji@rs.kagu.tus.ac.jp E-mail: nojiri@phys.nagoya-u.ac.jp

    2013-07-01

    We consider symmetron model in a generalized background with a hope to make it compatible with dark energy. We observe a ''no go'' theorem at least in case of a conformal coupling. Being convinced of symmetron incapability to be dark energy, we try to retain its role for spontaneous symmetry breaking and assign the role of dark energy either to standard quintessence or F(R) theory which are switched on by symmetron field in the symmetry broken phase. The scenario reduces to standard Einstein gravity in the high density region. After the phase transition generated by symmetron field, either the F(R) gravity or the standard quintessence are induced in the low density region. we demonstrate that local gravity constraints and other requirements are satisfied although the model could generate the late-time acceleration of Universe.

  12. Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters

    SciTech Connect

    Oka, Yurie Yanao, Tomohiro; Koon, Wang Sang

    2015-04-07

    This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.

  13. A framework towards understanding mesoscopic phenomena: Emergent unpredictability, symmetry breaking and dynamics across scales

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Ao, Ping; Tu, Yuhai; Wang, Jin

    2016-11-01

    By integrating four lines of thoughts: symmetry breaking originally advanced by Anderson, bifurcation from nonlinear dynamical systems, Landau's phenomenological theory of phase transition, and the mechanism of emergent rare events first studied by Kramers, we introduce a possible framework for understanding mesoscopic dynamics that links (i) fast microscopic (lower level) motions, (ii) movements within each basin-of-attraction at the mid-level, and (iii) higher-level rare transitions between neighboring basins, which have slow rates that decrease exponentially with the size of the system. In this mesoscopic framework, the fast dynamics is represented by a rapidly varying stochastic process and the mid-level by a nonlinear dynamics. Multiple attractors arise as emergent properties of the nonlinear systems. The interplay between the stochastic element and nonlinearity, the essence of Kramers' theory, leads to successive jump-like transitions among different basins. We argue each transition is a dynamic symmetry breaking, with the potential of exhibiting Thom-Zeeman catastrophe as well as phase transition with the breakdown of ergodicity (e.g., cell differentiation). The slow-time dynamics of the nonlinear mesoscopic system is not deterministic, rather it is a discrete stochastic jump process. The existence of these discrete states and the Markov transitions among them are both emergent phenomena. This emergent stochastic jump dynamics then serves as the stochastic element for the nonlinear dynamics of a higher level aggregates on an even larger spatial and slower time scales (e.g., evolution). This description captures the hierarchical structure outlined by Anderson and illustrates two distinct types of limit of a mesoscopic dynamics: A long-time ensemble thermodynamics in terms of time t → ∞ followed by the size of the system N → ∞ , and a short-time trajectory steady state with N → ∞ followed by t → ∞ . With these limits, symmetry breaking and cusp

  14. Bose-Einstein condensate and spontaneous breaking of conformal symmetry on Killing horizons II

    SciTech Connect

    Moretti, Valter

    2006-03-15

    In the paper cited in the title [J. Math. Phys. 46, 062303 (2005)] local scalar QFT (in Weyl algebraic approach) has been constructed on degenerate semi-Riemannian manifolds S{sup 1}x{sigma} corresponding to the extension of Killing horizons by adding points at infinity to the null geodesic forming the horizon. It has been proved that the theory admits a natural representation of PSL(2,R) in terms of *-automorphisms and this representation is unitarily implementable if referring to a certain invariant state {lambda}. Among other results it has been proved that the theory admits a class of inequivalent algebraic (coherent) states {l_brace}{lambda}{sub {zeta}}{r_brace}, with {zeta} set-membership sign L{sup 2}({sigma}), which break part of the symmetry, in the sense that each of them is not invariant under the full group PSL(2,R) and so there is no unitary representation of whole group PSL(2,R) which leaves fixed the cyclic GNS vector. These states, if restricted to suitable portions of M are invariant and extremal KMS states with respect to a surviving one-parameter group symmetry. In this paper we clarify the nature of symmetry breakdown. We show that, in fact, spontaneous symmetry breaking occurs in the natural sense of algebraic quantum field theory: if {zeta}{ne}0, there is no unitary representation of whole group PSL(2,R) which implements the *-automorphism representation of PSL(2,R) itself in the GNS representation of {lambda}{sub {zeta}} (leaving fixed or not the state)

  15. Effect of vertical-strain-induced symmetry breaking on transport properties of zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Zou, Dongqing; Zhao, Wenkai; Fang, Changfeng; Cui, Bin; Liu, Desheng

    2017-02-01

    Using density functional theory combined with nonequilibrium Green's function formalism, we investigate the transport properties of zigzag graphene nanoribbons (ZGNRs) under vertical strain. Our calculations show that localized state induced by vertical strain will inhibit the electronic transport of the systems at zero bias, but at nonzero bias, the localized state can enhance the electronic transport behavior if ZGNRs are symmetry with respect to the mid-plane between two edges. This is because the localized state produces an asymmetry electron density distribution which break the current suppression. These findings may be useful for the application of strain-induced ZGNR based molecular devices.

  16. The phenomenon of spontaneous replica symmetry breaking in complex statistical mechanics systems

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco

    2013-06-01

    We analyze the main aspects of the phenomenon of spontaneous replica symmetry breaking, introduced by Giorgio Parisi. We work in the frame of real replicas, by taking into account the simple case of the random energy model. In particular, we study the phase space diagram for systems of coupled replicas, and the connected phase transitions. Our considerations can be generalized to the more complicated models of mean field spin glasses and neural networks. We report also about a letter of Ettore Majorana, written in December 1937 to his uncle Dante, very interesting for its methodological content.

  17. Competing mechanisms of chiral symmetry breaking in a generalized Gross-Neveu model

    SciTech Connect

    Boehmer, Christian; Thies, Michael

    2010-05-15

    Chiral symmetry of the 2-dimensional chiral Gross-Neveu model is broken explicitly by a bare mass term as well as a splitting of scalar and pseudoscalar coupling constants. The vacuum and light hadrons--mesons and baryons which become massless in the chiral limit--are explored analytically in leading order of the derivative expansion by means of a double sine-Gordon equation. Depending on the parameters, this model features new phenomena as compared to previously investigated 4-fermion models: spontaneous breaking of parity, a nontrivial chiral vacuum angle, twisted kinklike baryons whose baryon number reflects the vacuum angle, crystals with alternating baryons, and appearance of a false vacuum.

  18. Annular ballast resistor: Symmetry breaking, pinning, and coarsening in a globally constrained reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Tsori, Yoav

    1998-01-01

    The wire ballast resistor (BR) is one of the simplest physical systems that exhibit bistability and pattern formation. An annular BR is suggested as a simple two-dimensional extension of the wire BR. The nonuniformity of the electric current density in the annular BR leads to translational symmetry breaking in the temperature domain dynamics. As a result, the steady-state position of the domain wall is ``pinned'' and the system exhibits coarsening. The two-phase steady-state relaxation towards it and coarsening in the annular BR are investigated analytically and numerically.

  19. Spontaneously Symmetry-Breaking States in the Attractive SU(N) Hubbard Model

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Yanatori, Hiromasa

    2017-03-01

    We investigate spontaneously symmetry-breaking states in the attractive SU(N) Hubbard model at half filling. Combining dynamical mean-field theory with the continuous-time quantum Monte Carlo method, we obtain finite-temperature phase diagrams for the superfluid state. When N > 2, a second-order phase transition occurs in the weak coupling region, while a first-order phase transition with hysteresis appears in the strong coupling region. We also discuss the stability of the density wave state and clarify the component dependence of the maximum critical temperature.

  20. Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index

    NASA Astrophysics Data System (ADS)

    Burokur, Shah Nawaz; Sellier, Alexandre; Kanté, Boubacar; de Lustrac, André

    2009-05-01

    Metamaterials made of exclusively metallic cut wire pairs have been experimentally demonstrated to exhibit a negative refractive index at optical frequencies. However, other related works have not shown a negative index. In this paper, we propose an easy way to manipulate the magnetic and electric resonances of these metamaterials to produce a negative index. We show that judiciously breaking the symmetry of the structure allows tuning of both resonances leading to an overlapping between the negative permeability and negative permittivity regions. Numerical and experimental parametric studies of several cut wire pairs metamaterials are presented to validate our method at microwave frequencies.

  1. Charge transfer in time-dependent density-functional theory via spin-symmetry breaking

    SciTech Connect

    Fuks, Johanna I.; Maitra, Neepa T.

    2011-04-15

    Long-range charge-transfer excitations pose a major challenge for time-dependent density-functional approximations. We show that spin-symmetry breaking offers a simple solution for molecules composed of open-shell fragments, yielding accurate excitations at large separations when the acceptor effectively contains one active electron. Unrestricted exact-exchange and self-interaction-corrected functionals are performed on one-dimensional models and on the real LiH molecule within the pseudopotential approximation to demonstrate our results.

  2. Light bullets in waveguide arrays: spacetime-coupling, spectral symmetry breaking and superluminal decay [Invited].

    PubMed

    Eilenberger, Falk; Minardi, Stefano; Szameit, Alexander; Röpke, Ulrich; Kobelke, Jens; Schuster, Kay; Bartelt, Hartmut; Nolte, Stefan; Tünnermann, Andreas; Pertsch, Thomas

    2011-11-07

    We investigate the effects of the space-time coupling (STC) on the nonlinear formation and propagation of Light Bullets, spatiotemporal solitons in which dispersion and diffraction along all dimensions are balanced by nonlinearity, through periodic media with a weak transverse modulation of the refractive index, i.e. waveguide arrays. The STC arises from wavelength dependence of the strength of inter-waveguide coupling and can be tuned by variation of the array geometry. We show experimentally and numerically that the STC breaks the spectral symmetry of Light Bullets to a considerable degree and modifies their group velocity, leading to superluminal propagation when the Light Bullets decay.

  3. Charge independence, charge symmetry breaking in the S-wave nucleon-nucleon interaction, and renormalization

    SciTech Connect

    Alvaro Calle Cordon,Manuel Pavon Valderrama,Enrique Ruiz Arriola

    2012-02-01

    We study the interplay between charge symmetry breaking and renormalization in the NN system for S-waves. We find a set of universality relations which disentangle explicitly the known long distance dynamics from low energy parameters and extend them to the Coulomb case. We analyze within such an approach the One-Boson-Exchange potential and the theoretical conditions which allow to relate the proton-neutron, proton-proton and neutron-neutron scattering observables without the introduction of extra new parameters and providing good phenomenological success.

  4. Symmetry breaking polymerization: one-pot synthesis of plasmonic hybrid Janus nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Yanming; Ding, Tao; Baumberg, Jeremy J.; Smoukov, Stoyan K.

    2015-06-01

    Asymmetric hybrid nanoparticles have many important applications in catalysis, nanomotion, sensing, and diagnosis, however ways to generate the asymmetric hybrid nanoparticles are quite limited and inefficient. Most current methods rely on interfacial adhesion and modification of already formed particles. In this article we report a one-pot, facile and scalable synthesis of anisotropic Au-polymer hybrid nanoparticles via interfacial oxidative dispersion polymerization. The interfacial nucleation and polymerization lead to spontaneous symmetry breaking and formation of the Janus particles. The reaction is initiated by monomer radicals generated by the strong oxidant HAuCl4, which is itself later reduced by the electron-rich monomers to self-nucleate and form Au nanoparticles (NPs). The competition between divinylbenzene adsorption and the PVP capping agent results in effective partial surface wetting, forming asymmetric Au-PDVB hybrid nanoparticles, by confining growth of each material to its own phase. Such spontaneous symmetry breaking, important in morphogenesis, with control over the subsequent growth processes should lead to significant advances in the synthesis of asymmetric nanostructures.Asymmetric hybrid nanoparticles have many important applications in catalysis, nanomotion, sensing, and diagnosis, however ways to generate the asymmetric hybrid nanoparticles are quite limited and inefficient. Most current methods rely on interfacial adhesion and modification of already formed particles. In this article we report a one-pot, facile and scalable synthesis of anisotropic Au-polymer hybrid nanoparticles via interfacial oxidative dispersion polymerization. The interfacial nucleation and polymerization lead to spontaneous symmetry breaking and formation of the Janus particles. The reaction is initiated by monomer radicals generated by the strong oxidant HAuCl4, which is itself later reduced by the electron-rich monomers to self-nucleate and form Au nanoparticles

  5. Inflation and reheating in theories with spontaneous scale invariance symmetry breaking

    NASA Astrophysics Data System (ADS)

    Rinaldi, Massimiliano; Vanzo, Luciano

    2016-07-01

    We study a scale-invariant model of quadratic gravity with a nonminimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with nearly the same observational predictions of Starobinsky's model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations and the usual Einstein-Hilbert action is recovered. The oscillations around the fixed point can reheat the Universe in various ways, and we study in detail some of these possibilities.

  6. Comparative tests of isospin-symmetry-breaking corrections to superallowed 0+→0+ nuclear β decay

    NASA Astrophysics Data System (ADS)

    Towner, I. S.; Hardy, J. C.

    2010-12-01

    We present a test with which to evaluate the calculated isospin-symmetry-breaking corrections to superallowed 0+→0+ nuclear β decay. The test is based on the corrected experimental Ft values being required to satisfy conservation of the vector current (CVC). When applied to six sets of published calculations, the test demonstrates quantitatively that only one set, the one based on the shell model with Saxon-Woods radial wave functions, provides satisfactory agreement with CVC. This test can easily be applied to any sets of calculated correction terms that are produced in future.

  7. Chiral-glass transition and replica symmetry breaking of a three-dimensional heisenberg spin glass

    PubMed

    Hukushima; Kawamura

    2000-02-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the chiral-glass ordered state.

  8. Interfacial exchange-coupling induced chiral symmetry breaking of spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Perna, P.; Ajejas, F.; Maccariello, D.; Fernandez Cuñado, J. L.; Guerrero, R.; Niño, M. A.; Bollero, A.; Miranda, R.; Camarero, J.

    2015-12-01

    We demonstrate that the interfacial exchange coupling in ferromagnetic/antiferromagnetic (FM/AFM) systems induces symmetry breaking of the spin-orbit (SO) effects. This has been done by studying the field and angle dependencies of anisotropic magnetoresistance and vectorial-resolved magnetization hysteresis loops, measured simultaneously and reproduced with numerical simulations. We show how the induced unidirectional magnetic anisotropy at the FM/AFM interface results in strong asymmetric transport behaviors, which are chiral around the magnetization hard-axis direction. Similar asymmetric features are anticipated in other SO-driven phenomena.

  9. Chiral symmetry breaking and confinement effects on dilepton and photon production around Tc

    NASA Astrophysics Data System (ADS)

    Satow, Daisuke; Weise, Wolfram

    2015-09-01

    Production rates of dileptons and photons from the quark-gluon (QGP) phase are calculated taking into account effects of confinement and spontaneous chiral symmetry breaking (χ SB ) not far from the transition temperature Tc. We find that the production rates of dileptons with large momenta and of photons originating from the QGP around Tc are suppressed by the χ SB effect. We also discuss to what extent information about details of the chiral transition, such as its characteristic temperature range and the steepness of the crossover, are reflected in these quantities.

  10. Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations

    SciTech Connect

    Dascaliuc, Radu; Thomann, Enrique; Waymire, Edward C.; Michalowski, Nicholas

    2015-07-15

    The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturally arise as a result of this investigation.

  11. BREAKING OF AXIAL AND REFLECTION SYMMETRIES IN SPONTANEOUS FISSION OF FERMIUM ISOTOPES

    SciTech Connect

    Staszczak, A.; Nazarewicz, Witold; Baran, Andrzej K

    2011-01-01

    The nuclear fission phenomenon is a magnificent example of a quantal collective motion during which the nucleus evolves in a multidimensional space representing shapes with different geometries. The triaxial degrees of freedom are usually important around the inner fission barrier, and reduce the fission barrier height by several MeV. Beyond the inner barrier, reflection-asymmetric shapes corresponding to asymmetric elongated fragments come into play. We discuss the interplay between different symmetry breaking mechanisms in the case of even-even fermium isotopes using the Skyrme HFB formalism.

  12. Breaking of Axial and Reflection Symmetries in Spontaneous Fission of Fermium Isotopes

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Baran, A.; Nazarewicz, W.

    The nuclear fission phenomenon is a magnificent example of a quantal collective motion during which the nucleus evolves in a multidimensional space representing shapes with different geometries. The triaxial degrees of freedom are usually important around the inner fission barrier, and reduce the fission barrier height by several MeV. Beyond the inner barrier, reflection-asymmetric shapes corresponding to asymmetric elongated fragments come into play. We discuss the interplay between different symmetry breaking mechanisms in the case of even-even fermium isotopes using the Skyrme HFB formalism.

  13. Symmetry breaking in a few-body system with magnetocapillary interactions

    NASA Astrophysics Data System (ADS)

    Vandewalle, N.; Clermont, L.; Terwagne, D.; Dorbolo, S.; Mersch, E.; Lumay, G.

    2012-04-01

    We have experimentally investigated the interactions between floating magnetic spheres which are submitted to a vertical magnetic field, ensuring a tunable repulsion, while capillary forces induce attraction. We emphasize the complex arrangements of floating bodies. The equilibrium distance between particles exhibits hysteresis when the applied magnetic field is modified. Irreversible processes are evidenced. Symmetry breaking is also found for three identical floating bodies when the strength of the magnetic repulsion is tuned. We propose a Dejarguin-Landau-Verwey-Overbeek (DLVO)-like potential, i.e., an interaction potential with a primary and a secondary minimum, capturing the main physical features of the magnetocapillary interaction, which is relevant for self-assembly.

  14. Density profiles of Ar adsorbed in slits of CO2: Spontaneous symmetry breaking revisited

    NASA Astrophysics Data System (ADS)

    Szybisz, Leszek; Sartarelli, Salvador A.

    2008-03-01

    A recently reported symmetry breaking of density profiles of fluid argon confined by two parallel solid walls of carbon dioxide is studied. The calculations are performed in the framework of a nonlocal density functional theory. It is shown that the existence of such asymmetrical solutions is restricted to a special choice for the adsorption potential, where the attraction of the solid-fluid interaction is reduced by the introduction of a hard-wall repulsion. The behavior as a function of the slit's width is also discussed. All the results are placed in the context of the current knowledge on this matter.

  15. Density profiles of Ar adsorbed in slits of CO2: spontaneous symmetry breaking revisited.

    PubMed

    Szybisz, Leszek; Sartarelli, Salvador A

    2008-03-28

    A recently reported symmetry breaking of density profiles of fluid argon confined by two parallel solid walls of carbon dioxide is studied. The calculations are performed in the framework of a nonlocal density functional theory. It is shown that the existence of such asymmetrical solutions is restricted to a special choice for the adsorption potential, where the attraction of the solid-fluid interaction is reduced by the introduction of a hard-wall repulsion. The behavior as a function of the slit's width is also discussed. All the results are placed in the context of the current knowledge on this matter.

  16. Dimer motion on a periodic substrate: spontaneous symmetry breaking and absolute negative mobility.

    PubMed

    Speer, David; Eichhorn, Ralf; Evstigneev, Mykhaylo; Reimann, Peter

    2012-06-01

    We consider two coupled particles moving along a periodic substrate potential with negligible inertia effects (overdamped limit). Even when the particles are identical and the substrate spatially symmetric, a sinusoidal external driving of appropriate amplitude and frequency may lead to spontaneous symmetry breaking in the form of a permanent directed motion of the dimer. Thermal noise restores ergodicity and thus zero net velocity, but entails arbitrarily fast diffusion of the dimer for sufficiently weak noise. Moreover, upon application of a static bias force, the dimer exhibits a motion opposite to that force (absolute negative mobility). The key requirement for all these effects is a nonconvex interaction potential of the two particles.

  17. Off-shell behavior of relativistic NN effective interactions and charge symmetry breaking

    NASA Astrophysics Data System (ADS)

    Gersten, A.; Thomas, A. W.; Weyrauch, M.

    1990-04-01

    We examine in detail the suggestion of Iqbal et al. for calculating the class-four charge symmetry breaking amplitude in n-p scattering. By simplifying to a model problem, we show explicitly that the approximation scheme is unreliable if a phenomenological, effective nucleon-nucleon T matrix is used. Our results have wider implications for observables calculated in relativistic impulse approximation calculations. They reinforce the observation made in the literature that the procedure of fitting only positive energy matrix elements can lead to an NN interaction whose off-shell behavior is incorrect.

  18. Hyperbolic symmetry breaking and its role in the establishment of the body plan of vertebrates.

    PubMed

    Fleury, Vincent; Boryskina, Olena P; Al-Kilani, Alia

    2011-07-01

    This Note presents experimental evidence that a hyperbolic tissue flow plays an important role in the establishment of the organization plan of vertebrates. We have followed the development of chicken embryos from the gastrula stage up to the moment when the body plan is recognizable. We have found that establishment of this plan occurs in the presence of a uniform tissue flow which at all stages presents a hyperbolic pattern. The flow is bidirectional in the antero-posterior direction, with a fixed point (stagnation point of the flow) which is a point of zero speed in all directions, in the reference frame of the egg. This stagnation point of the flow is located at the level of the presumptive yolk stalk of the chicken (analogous to the mammal navel). On either sides (left and right) of the body, the flow is also bidirectional. The antero-posterior bidirectionality and the left-right bidirectionality result in splitting of the embryo into four domains with vortex-like flow, with partial mirror symmetry between the left/right halves and top/bottom ones. The center of symmetry is the stagnation point. The broken symmetry of the flow is up-scaled in the adult animal. Areas with straightforward tissue movement are the ones where axial structures develop. The lateral domains with vortex-like flow colocalize with the future limb plates.

  19. Symmetries in Physics

    NASA Astrophysics Data System (ADS)

    Brading, Katherine; Castellani, Elena

    2010-01-01

    Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.

  20. TYPE Ia SUPERNOVAE: CAN CORIOLIS FORCE BREAK THE SYMMETRY OF THE GRAVITATIONAL CONFINED DETONATION EXPLOSION MECHANISM?

    SciTech Connect

    García-Senz, D.; Cabezón, R. M.; Thielemann, F. K.; Domínguez, I. E-mail: ruben.cabezon@unibas.ch

    2016-03-10

    Currently the number of models aimed at explaining the phenomena of type Ia supernovae is high and distinguishing between them is a must. In this work we explore the influence of rotation on the evolution of the nuclear flame that drives the explosion in the so-called gravitational confined detonation models. Assuming that the flame starts in a pointlike region slightly above the center of the white dwarf (WD) and adding a moderate amount of angular velocity to the star we follow the evolution of the deflagration using a smoothed particle hydrodynamics code. We find that the results are very dependent on the angle between the rotational axis and the line connecting the initial bubble of burned material with the center of the WD at the moment of ignition. The impact of rotation is larger for angles close to 90° because the Coriolis force on a floating element of fluid is maximum and its principal effect is to break the symmetry of the deflagration. Such symmetry breaking weakens the convergence of the nuclear flame at the antipodes of the initial ignition volume, changing the environmental conditions around the convergence region with respect to non-rotating models. These changes seem to disfavor the emergence of a detonation in the compressed volume at the antipodes and may compromise the viability of the so-called gravitational confined detonation mechanism.

  1. Coalescence of resonances in dissipationless resonant tunneling structures and PT-symmetry breaking

    NASA Astrophysics Data System (ADS)

    Gorbatsevich, A. A.; Shubin, N. M.

    2017-01-01

    We study the phenomenon of spontaneous symmetry breaking in dissipationless resonant tunneling structures (RTS). To describe the quantum transport in this system we apply both the nonequilibrium Green function formalism based on a tight-binding model and a numerical solution of the Schrödinger equation within the envelope wavefunction formalism. An auxiliary non-Hermitian Hamiltonian is introduced. Its eigenvalues determine exactly the transparency peak positions. In spatially symmetric RTS the corresponding auxiliary non-Hermitian Hamiltonian becomes PT-symmetric and possesses real eigenvalues, which can coalesce at exceptional points of this Hamiltonian. A coalescence of the auxiliary non-Hermitian Hamiltonian eigenvalues means a coalescence of perfect resonances in RTS, which can be accompanied be symmetry breaking of the electron wavefunction probability distribution (at a given direction of the particle flow). Also we construct a classification of different types of the coalescence of resonances in terms of the catastrophe theory and investigate the impact of small imperfections (scattering and asymmetry) on these phenomena.

  2. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    PubMed Central

    Cathcart, Nicole; Kitaev, Vladimir

    2016-01-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design. PMID:27605125

  3. Resonances of the Electroweak Symmetry Breaking Sector in unitarized Higgs-EFT

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe J.; Delgado, Rafael L.; Dobado, Antonio

    2017-01-01

    Because of the gap between the known 100 GeV scale and any new physics, it is natural to formulate an effective Lagrangian (HEFT) with the particles of the Electroweak Symmetry Breaking Sector (WL,ZL and h). To use it with any new particles and resonances that may be found at the LHC we extend it by means of dispersion relations that yield unitarized amplitudes valid even in the presence of new strong interactions. We have studied several such methods (Inverse Amplitude, N/D, Improved K-matrix, etc.) to assess the systematics, and find that they give qualitatively similar results and succesfully produce unitary amplitudes in the nonperturbative regime. We have computed all the necessary one-loop amplitudes in the HEFT and unitarized them numerically with those methods. We are thus in a position to describe new physics in the 0.5 TeV-3 TeV (region of validity of our approximations: the effective theory and the equivalence theorem to substitute WL, ZL by the Goldstone bosons of electroweak symmetry breaking). We have also computed the coupling of the EWSBS to the top-antitop and two-photon channels to describe resonances that decay through them or to study their photon-photon production, for example. The approach is universal and useful for many BSM theories at low energy. Funded by spanish grant MINECO:FPA2014-53375-C2-1-P.

  4. The complex Langevin analysis of spontaneous symmetry breaking induced by complex fermion determinant

    NASA Astrophysics Data System (ADS)

    Ito, Yuta; Nishimura, Jun

    2016-12-01

    In many interesting physical systems, the determinant which appears from integrating out fermions becomes complex, and its phase plays a crucial role in the deter-mination of the vacuum. An example of this is QCD at low temperature and high density, where various exotic fermion condensates are conjectured to form. Another example is the Euclidean version of the type IIB matrix model for 10d superstring theory, where spontaneous breaking of the SO(10) rotational symmetry down to SO(4) is expected to occur. When one applies the complex Langevin method to these systems, one encounters the singular-drift problem associated with the appearance of nearly zero eigenvalues of the Dirac operator. Here we propose to avoid this problem by deforming the action with a fermion bilinear term. The results for the original system are obtained by extrapolations with respect to the deformation parameter. We demonstrate the power of this approach by applying it to a simple matrix model, in which spontaneous symmetry breaking from SO(4) to SO(2) is expected to occur due to the phase of the complex fermion determinant. Unlike previous work based on a reweighting-type method, we are able to determine the true vacuum by calculating the order parameters, which agree with the prediction by the Gaussian expansion method.

  5. Finite size scaling of the spontaneous symmetry breaking model of X-chromosome inactivation

    NASA Astrophysics Data System (ADS)

    Barker, D.; Griffiths, A.

    2009-03-01

    X-Chromosome inactivation is the process whereby one of the two X-chromosomes in female cells is silenced to prevent the cell producing too much of any X-linked proteins and RNA. The proposed blocking-factor mechanism of X-inactivation is not well understood and hence is the subject of much current research. In this paper we investigated the nature of the phase transition predicted to exist in the spontaneous symmetry breaking model of X-inactivation proposed by Nicodemi and Prisco [Mario Nicodemi, Antonella Prisco, Symmetry breaking model for x-chromosome inactivation, Phs. Rev. Lett. 98 (2007) 108104]. Finite size effects were investigated by using an on lattice Monte Carlo simulation. From the scaling it is concluded that the transition is in general abrupt. The critical temperature of the system was determined to be 1.68±0.01E0/kB in the thermodynamic limit when the concentration C=0.025 blocking-factors per lattice site.

  6. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    NASA Astrophysics Data System (ADS)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-09-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design.

  7. Time-reversal symmetry breaking type II Weyl state in YbMnBi2

    NASA Astrophysics Data System (ADS)

    Borisenko, Sergey

    Detection of Dirac, Majorana and Weyl fermions in real materials may significantly strengthen the bridge between high-energy and condensed-matter physics. While the presence of Dirac fermions is well established in graphene and topological insulators, Majorana particles have been reported recently and evidence for Weyl fermions in non-centrosymmetric crystals has been found only a couple of months ago, the ``magnetic'' Weyl fermions are still elusive despite numerous theoretical predictions and intense experimental search. In order to detect a time-reversal symmetry breaking Weyl state we designed two materials with Fermi velocities superior to that of graphene and I will present the experimental evidence of realization of such a state in one of them, YbMnBi2. We model the time reversal symmetry breaking observed by magnetization measurements by a canted antiferromagnetic state and find a number of Weyl points both above and below the Fermi level. Using angle-resolved photoemission, we directly observe these latter Weyl points and a hallmark of the exotic state - the arc of the surface states which connects these points. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.

  8. Tadpole-Induced Electroweak Symmetry Breaking and pNGB Higgs Models

    SciTech Connect

    Harnik, Roni; Howe, Kiel; Kearney, John

    2016-03-11

    We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales, $v_H \\ll f_H$. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least $\\sim v_H^2/f_H^2$. We show that if Higgs EWSB is induced by a tadpole arising from an auxiliary sector at scale $f_\\Sigma \\ll v_H$, this tuning is significantly ameliorated or can even be removed. We present explicit examples both in Twin Higgs models and in Composite Higgs models based on $SO(5)/SO(4)$. For the Twin case, the result is a fully natural model with $f_H \\sim 1$ TeV and the lightest colored top partners at 2 TeV. These models also have an appealing mechanism to generate the scales of the auxiliary sector and Higgs EWSB directly from the scale $f_H$, with a natural hierarchy $f_\\Sigma \\ll v_H \\ll f_H \\sim{\\rm TeV}$. The framework predicts modified Higgs coupling as well as new Higgs and vector states at LHC13.

  9. Heat-induced symmetry breaking in ant (Hymenoptera: Formicidae) escape behavior

    PubMed Central

    Chung, Yuan-Kai

    2017-01-01

    The collective egress of social insects is important in dangerous situations such as natural disasters or enemy attacks. Some studies have described the phenomenon of symmetry breaking in ants, with two exits induced by a repellent. However, whether symmetry breaking occurs under high temperature conditions, which are a common abiotic stress, remains unknown. In our study, we deposited a group of Polyrhachis dives ants on a heated platform and counted the number of escaping ants with two identical exits. We discovered that ants asymmetrically escaped through two exits when the temperature of the heated platform was >32.75°C. The degree of asymmetry increased linearly with the temperature of the platform. Furthermore, the higher the temperature of heated platform was, the more ants escaped from the heated platform. However, the number of escaping ants decreased for 3 min when the temperature was higher than the critical thermal limit (39.46°C), which is the threshold for ants to endure high temperature without a loss of performance. Moreover, the ants tended to form small groups to escape from the thermal stress. A preparatory formation of ant grouping was observed before they reached the exit, indicating that the ants actively clustered rather than accidentally gathered at the exits to escape. We suggest that a combination of individual and grouping ants may help to optimize the likelihood of survival during evacuation. PMID:28355235

  10. Tadpole-induced electroweak symmetry breaking and pNGB Higgs models

    DOE PAGES

    Harnik, Roni; Howe, Kiel; Kearney, John

    2017-03-22

    We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales,more » $$v_H \\ll f_H$$. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least $$\\sim v_H^2/f_H^2$$. We show that if Higgs EWSB is induced by a tadpole arising from an auxiliary sector at scale $$f_\\Sigma \\ll v_H$$, this tuning is significantly ameliorated or can even be removed. We present explicit examples both in Twin Higgs models and in Composite Higgs models based on $SO(5)/SO(4)$. For the Twin case, the result is a fully natural model with $$f_H \\sim 1$$ TeV and the lightest colored top partners at 2 TeV. These models also have an appealing mechanism to generate the scales of the auxiliary sector and Higgs EWSB directly from the scale $$f_H$$, with a natural hierarchy $$f_\\Sigma \\ll v_H \\ll f_H \\sim{\\rm TeV}$$. Finally, the framework predicts modified Higgs coupling as well as new Higgs and vector states at LHC13.« less

  11. Conditions for the emergence of gauge bosons from spontaneous Lorentz symmetry breaking

    NASA Astrophysics Data System (ADS)

    Escobar, C. A.; Urrutia, L. F.

    2015-07-01

    The emergence of gauge particles (e.g., photons and gravitons) as Goldstone bosons arising from spontaneous symmetry breaking is an interesting hypothesis which would provide a dynamical setting for the gauge principle. We investigate this proposal in the framework of a general SO (N ) non-Abelian Nambu model (NANM), effectively providing spontaneous Lorentz symmetry breaking in terms of the corresponding Goldstone bosons. Using a nonperturbative Hamiltonian analysis, we prove that the SO (N ) Yang-Mills (YM) theory is equivalent to the corresponding NANM, after both current conservation and the Gauss laws are imposed as initial conditions for the latter. This equivalence is independent of any gauge fixing in the YM theory. A substantial conceptual and practical improvement in the analysis arises by choosing a particular parametrization that solves the nonlinear constraint defining the NANM. This choice allows us to show that the relation between the NANM canonical variables and the corresponding ones of the YM theory, Aia and Eb j , is given by a canonical transformation. In terms of the latter variables, the NANM Hamiltonian has the same form as the YM Hamiltonian, except that the Gauss laws do not arise as first-class constraints. The dynamics of the NANM further guarantees that it is sufficient to impose them only as initial conditions, in order to recover the full equivalence. It is interesting to observe that this particular parametrization exhibits the NANM as a regular theory, thus providing a substantial simplification in the calculations.

  12. A computational investigation of attrition-enhanced chiral symmetry breaking in conglomerate crystals

    NASA Astrophysics Data System (ADS)

    Ricci, Francesco; Stillinger, Frank H.; Debenedetti, Pablo G.

    2013-11-01

    Attrition-enhanced chiral symmetry breaking in crystals, also known as Viedma ripening, is a remarkable phenomenon from a variety of perspectives. By providing a direct route to solid-phase homochirality in a controllable manner, it is of inherent interest to those who study chiral symmetry-breaking/amplification mechanisms. When applied to intrinsically chiral molecules, Viedma ripening may have implications for the origin of biological homochirality, as well as applications in chiral drug resolution. Despite an abundance of research, the mechanistic details underlying this phenomenon have not been unambiguously elucidated. We employ a Monte Carlo algorithm to study this driven system, in order to gain further insights into the mechanisms capable of reproducing key experimental signatures. We provide a comprehensive numerical investigation of how the model parameters (attrition rate, liquid-phase racemization kinetics, and the relative rates of growth and dissolution kinetics) impact the system's overall behavior. It is shown that size-dependent crystal solubility alone is insufficient to reproduce most of the experimental signatures of Viedma ripening, and that some form of a solid-phase chiral feedback mechanism must be invoked in order to reproduce experimentally observed behavior. In this work, such feedback mechanisms can take the form of agglomeration, or of artificial modification of the size dependent growth kinetics.

  13. Type Ia Supernovae: Can Coriolis Force Break the Symmetry of the Gravitational Confined Detonation Explosion Mechanism?

    NASA Astrophysics Data System (ADS)

    García-Senz, D.; Cabezón, R. M.; Domínguez, I.; Thielemann, F. K.

    2016-03-01

    Currently the number of models aimed at explaining the phenomena of type Ia supernovae is high and distinguishing between them is a must. In this work we explore the influence of rotation on the evolution of the nuclear flame that drives the explosion in the so-called gravitational confined detonation models. Assuming that the flame starts in a pointlike region slightly above the center of the white dwarf (WD) and adding a moderate amount of angular velocity to the star we follow the evolution of the deflagration using a smoothed particle hydrodynamics code. We find that the results are very dependent on the angle between the rotational axis and the line connecting the initial bubble of burned material with the center of the WD at the moment of ignition. The impact of rotation is larger for angles close to 90° because the Coriolis force on a floating element of fluid is maximum and its principal effect is to break the symmetry of the deflagration. Such symmetry breaking weakens the convergence of the nuclear flame at the antipodes of the initial ignition volume, changing the environmental conditions around the convergence region with respect to non-rotating models. These changes seem to disfavor the emergence of a detonation in the compressed volume at the antipodes and may compromise the viability of the so-called gravitational confined detonation mechanism.

  14. Strange quark matter in the presence of explicit symmetry breaking interactions

    NASA Astrophysics Data System (ADS)

    Moreira, J.; Morais, J.; Hiller, B.; Osipov, A. A.; Blin, A. H.

    2015-06-01

    It is shown that a first-order transition associated with a jump in the strange-quark mass appears in a generalized three-flavor Nambu-Jona-Lasinio treatment of quark matter. The generalization of the Lagrangian displays the complete set of spin-0 interactions at leading and subleading orders (LO and NLO) in 1/Nc counting, including the recently derived NLO explicit chiral symmetry breaking interactions which are of the same order as the 't Hooft flavor determinant. The parameters of the model are tightly constrained by the low-energy characteristics in both the pseudoscalar and scalar meson sectors. The transition occurs in a moderate chemical potential region (μ ≃400 MeV for zero temperature) in addition to the usual chiral transition associated with the light-quark sector. This feature has at its root the inclusion of the explicit chiral symmetry breaking interactions, which therefore can be seen to act as a catalyst in the production of strange-quark matter when compared to the conventional version of the model that takes only into account the 't Hooft interaction in the NLO. It can be traced back to the effect of the interactions which do not violate the Okubo-Zweig-Iizuka rule, without which the empirical ordering of the scalars (mK⋆

  15. Dynamical chiral symmetry breaking and confinement with an infrared-vanishing gluon propagator

    SciTech Connect

    Roberts, C.D.; Hawes, F.T.; Williams, A.G.

    1995-08-01

    We have studied a model Dyson-Schwinger equation for the quark propagator, constructed using an Ansatz for the gluon propagator of the form D(q) {approximately} q{sup 2}/[(q{sup 2}){sup 2} + b{sup 4}] and two Ansatze for the quark-gluon vertex: the minimal Ball-Chiu and the modified form suggested by Curtis and Pennington. The aim was to determine whether such a form of the gluon propagator, which was suggested by a number of authors and which recent lattice simulations of QCD suggest may be plausible, can support dynamical chiral symmetry breaking and ensure quark confinement. The form of the gluon propagator at small space-like momenta is crucial to the nature of the strong interaction spectrum but is presently unknown and information gathered in such studies is invaluable in supporting or invalidating given hypotheses. It was found that there is a critical value of b = b{sub c} such that the model does not support dynamical chiral symmetry breaking for b > b{sub c}. Further, it was shown that this form of gluon propagator cannot confine quarks. As a consequence this form represents a physically unreasonable model. In addition, these results formed the basis for an invited presentation at a workshop on quantum infrared physics and will be published in the proceedings.

  16. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    DOE PAGES

    Lu, L.; Song, M.; Liu, W.; ...

    2017-02-09

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba2NaOsO6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin andmore » orbital/lattice degrees of freedom of Ba2NaOsO6 provide such tests. As a result, we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.« less

  17. Symmetry breaking induced by charge density and the entropy of interacting fields

    NASA Astrophysics Data System (ADS)

    Bekenstein, Jacob D.; Guendelman, E. I.

    1987-01-01

    We study interacting complex scalar field theories with global U(1) symmetry and concave potentials. It is usually assumed that spontaneous symmetry breaking is excluded for such interaction. However, we show that degenerate ground states appear when the system is considered as a charged medium, which we take to be so large that it makes sense to speak of a uniform, finite, charge density. This of course implies that we are considering as ground states solutions that select a particular Lorentz frame. The consequent symmetry breaking is accompanied by the usual Goldstone modes. It makes topological solitons possible in 1+1 dimensions. Further, a new kind of nontopological solitons appears, again in 1+1 dimensions. These are embedded in a uniformly charged background. Unlike the Friedberg-Lee-Sirlin solitons, those studied here do not require a complicatedly shaped potential to exist. Although Derrick's theorem, which forbids higher-dimensional solitons, cannot be proved in the present context, it appears that such solitons are still forbidden in the presence of finite charge density. When the field is confined to a box, the frequency spectrum is, classically, a continuum. This is in sharp contrast to the situation for linear fields. However, semiclassical quantization, or the requirement that charge be quantized, both make the spectrum discrete. We show by general arguments that the energy spectrum (distinct from the frequency spectrum for nonlinear fields) for the interacting field in a box must have widely spaced levels. For the case of a quartic potential we compute the energy levels exactly in 1+1 dimensions, and verify this conclusion directly. The interacting scalar field thus complies in detail with the bound on specific entropy proposed by one of us earlier as applicable to all finite physical systems.

  18. Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators.

    PubMed

    Zeljkovic, Ilija; Okada, Yoshinori; Serbyn, Maksym; Sankar, R; Walkup, Daniel; Zhou, Wenwen; Liu, Junwei; Chang, Guoqing; Wang, Yung Jui; Hasan, M Zahid; Chou, Fangcheng; Lin, Hsin; Bansil, Arun; Fu, Liang; Madhavan, Vidya

    2015-03-01

    The tunability of topological surface states and controllable opening of the Dirac gap are of fundamental and practical interest in the field of topological materials. In the newly discovered topological crystalline insulators (TCIs), theory predicts that the Dirac node is protected by a crystalline symmetry and that the surface state electrons can acquire a mass if this symmetry is broken. Recent studies have detected signatures of a spontaneously generated Dirac gap in TCIs; however, the mechanism of mass formation remains elusive. In this work, we present scanning tunnelling microscopy (STM) measurements of the TCI Pb1-xSnxSe for a wide range of alloy compositions spanning the topological and non-topological regimes. The STM topographies reveal a symmetry-breaking distortion on the surface, which imparts mass to the otherwise massless Dirac electrons-a mechanism analogous to the long sought-after Higgs mechanism in particle physics. Interestingly, the measured Dirac gap decreases on approaching the trivial phase, whereas the magnitude of the distortion remains nearly constant. Our data and calculations reveal that the penetration depth of Dirac surface states controls the magnitude of the Dirac mass. At the limit of the critical composition, the penetration depth is predicted to go to infinity, resulting in zero mass, consistent with our measurements. Finally, we discover the existence of surface states in the non-topological regime, which have the characteristics of gapped, double-branched Dirac fermions and could be exploited in realizing superconductivity in these materials.

  19. Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators

    SciTech Connect

    Zeljkovic, Ilija; Okada, Yoshinori; Serbyn, Maksym; Sankar, R.; Walkup, Daniel; Zhou, Wenwen; Liu, Junwei; Chang, Guoqing; Wang, Yung Jui; Hasan, M. Zahid; Chou, Fangcheng; Lin, Hsin; Bansil, Arun; Fu, Liang; Madhavan, Vidya

    2015-02-16

    The tunability of topological surface states and controllable opening of the Dirac gap are of fundamental and practical interest in the field of topological materials. In the newly discovered topological crystalline insulators (TCIs), theory predicts that the Dirac node is protected by a crystalline symmetry and that the surface state electrons can acquire a mass if this symmetry is broken. Recent studies have detected signatures of a spontaneously generated Dirac gap in TCIs; however, the mechanism of mass formation remains elusive. In this work, we present scanning tunnelling microscopy (STM) measurements of the TCI Pb1-xSnxSe for a wide range of alloy compositions spanning the topological and non-topological regimes. The STM topographies reveal a symmetry-breaking distortion on the surface, which imparts mass to the otherwise massless Dirac electrons—a mechanism analogous to the long sought-after Higgs mechanism in particle physics. Interestingly, the measured Dirac gap decreases on approaching the trivial phase, whereas the magnitude of the distortion remains nearly constant. Our data and calculations reveal that the penetration depth of Dirac surface states controls the magnitude of the Dirac mass. At the limit of the critical composition, the penetration depth is predicted to go to infinity, resulting in zero mass, consistent with our measurements. Lastly, we discover the existence of surface states in the non-topological regime, which have the characteristics of gapped, double-branched Dirac fermions and could be exploited in realizing superconductivity in these materials.

  20. Mirror-symmetry protected non-TRIM surface state in the weak topological insulator Bi2TeI

    NASA Astrophysics Data System (ADS)

    Rusinov, I. P.; Menshchikova, T. V.; Isaeva, A.; Eremeev, S. V.; Koroteev, Yu. M.; Vergniory, M. G.; Echenique, P. M.; Chulkov, E. V.

    2016-02-01

    Strong topological insulators (TIs) support topological surfaces states on any crystal surface. In contrast, a weak, time-reversal-symmetry-driven TI with at least one non-zero v1, v2, v3 ℤ2 index should host spin-locked topological surface states on the surfaces that are not parallel to the crystal plane with Miller indices (v1 v2 v3). On the other hand, mirror symmetry can protect an even number of topological states on the surfaces that are perpendicular to a mirror plane. Various symmetries in a bulk material with a band inversion can independently preordain distinct crystal planes for realization of topological states. Here we demonstrate the first instance of coexistence of both phenomena in the weak 3D TI Bi2TeI which (v1 v2 v3) surface hosts a gapless spin-split surface state protected by the crystal mirror-symmetry. The observed topological state has an even number of crossing points in the directions of the 2D Brillouin zone due to a non-TRIM bulk-band inversion. Our findings shed light on hitherto uncharted features of the electronic structure of weak topological insulators and open up new vistas for applications of these materials in spintronics.

  1. Mirror-symmetry protected non-TRIM surface state in the weak topological insulator Bi2TeI

    PubMed Central

    Rusinov, I. P.; Menshchikova, T. V.; Isaeva, A.; Eremeev, S. V.; Koroteev, Yu. M.; Vergniory, M. G.; Echenique, P. M.; Chulkov, E. V.

    2016-01-01

    Strong topological insulators (TIs) support topological surfaces states on any crystal surface. In contrast, a weak, time-reversal-symmetry-driven TI with at least one non-zero v1, v2, v3 ℤ2 index should host spin-locked topological surface states on the surfaces that are not parallel to the crystal plane with Miller indices (v1 v2 v3). On the other hand, mirror symmetry can protect an even number of topological states on the surfaces that are perpendicular to a mirror plane. Various symmetries in a bulk material with a band inversion can independently preordain distinct crystal planes for realization of topological states. Here we demonstrate the first instance of coexistence of both phenomena in the weak 3D TI Bi2TeI which (v1 v2 v3) surface hosts a gapless spin-split surface state protected by the crystal mirror-symmetry. The observed topological state has an even number of crossing points in the directions of the 2D Brillouin zone due to a non-TRIM bulk-band inversion. Our findings shed light on hitherto uncharted features of the electronic structure of weak topological insulators and open up new vistas for applications of these materials in spintronics. PMID:26864814

  2. An investigation of parity and time-reversal symmetry breaking in tight-binding lattices

    NASA Astrophysics Data System (ADS)

    Scott, Derek Douglas

    More than a decade ago, it was shown that non-Hermitian Hamiltonians with combined parity (P) and time-reversal (T) symmetry exhibit real eigenvalues over a range of parameters. Since then, the field of PT symmetry has seen rapid progress on both the theoretical and experimental fronts. These effective Hamiltonians are excellent candidates for describing open quantum systems with balanced gain and loss. Nature seems to be replete with examples of PT-symmetric systems; in fact, recent experimental investigations have observed the effects of PT symmetry breaking in systems as diverse as coupled mechanical pendula, coupled optical waveguides, and coupled electrical circuits. Recently, PT-symmetric Hamiltonians for tight-binding lattice models have been extensively investigated. Lattice models, in general, have been widely used in physics due to their analytical and numerical tractability. Perhaps one of the best systems for experimentally observing the effects of PT symmetry breaking in a one-dimensional lattice with tunable hopping is an array of evanescently-coupled optical waveguides. The tunneling between adjacent waveguides is tuned by adjusting the width of the barrier between them, and the imaginary part of the local refractive index provides the loss or gain in the respective waveguide. Calculating the time evolution of a wave packet on a lattice is relatively straightforward in the tight-binding model, allowing us to make predictions about the behavior of light propagating down an array of PT-symmetric waveguides. In this thesis, I investigate the the strength of the PT-symmetric phase (the region over which the eigenvalues are purely real) in lattices with a variety of PT-symmetric potentials. In Chapter 1, I begin with a brief review of the postulates of quantum mechanics, followed by an outline of the fundamental principles of PT-symmetric systems. Chapter 2 focuses on one-dimensional uniform lattices with a pair of PT-symmetric impurities in the case of

  3. Mirror symmetry and vibrational structure in optical spectra of chlorophyll a.

    PubMed

    Rätsep, Margus; Linnanto, Juha; Freiberg, Arvi

    2009-05-21

    The absorption and fluorescence emission spectra of chlorophyll a in different organic solvents where the central Mg atom is either penta- or hexacoordinated have been studied using conventional and selective spectroscopy methods at ambient and cryogenic temperatures. A breakdown of the basic model mirror-symmetry rule in relation to the lowest-energy Q(y) transitions was observed due to Franck-Condon and Hertzberg-Teller interactions. Detailed vibrational structure in the ground electronic state, virtually independent of the Mg coordination state, was revealed by hole-burning fluorescence line-narrowing technique. The total Huang-Rhys factor associated with the linear vibronic coupling strength of the solvent collective vibrations and the local chlorophyll a intramolecular vibrations is equal to 0.53+/-0.07 in fluorescence and to 0.39+/-0.05 in absorption. The electron-phonon coupling part was also found to depend on the excitation wavelength within the inhomogeneously broadened absorption origin band, its average value being S(ph) approximately = 0.38. All these numbers qualify for the weak vibronic coupling. A comparison of the conjugate Q(y) absorption and fluorescence emission spectra as well as the temperature dependence of the absorption spectra allowed unambiguous locating of the still controversial Q(x) absorption band position for penta- and hexacoordinated chlorophyll a species. The basic experimental findings have been qualitatively supported by semiempirical quantum chemical calculations.

  4. Boundaries, mirror symmetry, and symplectic duality in 3d N=4 gauge theory

    NASA Astrophysics Data System (ADS)

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; Hilburn, Justin

    2016-10-01

    We introduce several families of N=(2, 2) UV boundary conditions in 3d N=4 gaugetheoriesandstudytheirIRimagesinsigma-modelstotheHiggsandCoulomb branches. In the presence of Omega deformations, a UV boundary condition defines a pair of modules for quantized algebras of chiral Higgs- and Coulomb-branch operators, respec-tively, whose structure we derive. In the case of abelian theories, we use the formalism of hyperplane arrangements to make our constructions very explicit, and construct a half-BPS interface that implements the action of 3d mirror symmetry on gauge theories and boundary conditions. Finally, by studying two-dimensional compactifications of 3d N=4 gauge theories and their boundary conditions, we propose a physical origin for symplectic duality — an equivalence of categories of modules associated to families of Higgs and Coulomb branches that has recently appeared in the mathematics literature, and generalizes classic results on Koszul duality in geometric representation theory. We make several predictions about the structure of symplectic duality, and identify Koszul duality as a special case of wall crossing.

  5. Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2

    PubMed Central

    Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun

    2016-01-01

    Transition metal dichalcogenide MoTe2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric Td phase from vibrational spectroscopy, and suggest MoTe2 as an ideal candidate for investigating the temperature-induced topological phase transition. PMID:27934874

  6. Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2

    NASA Astrophysics Data System (ADS)

    Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun

    2016-12-01

    Transition metal dichalcogenide MoTe2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric Td phase from vibrational spectroscopy, and suggest MoTe2 as an ideal candidate for investigating the temperature-induced topological phase transition.

  7. Mirrors are hard to break: A critical review and behavioral evidence on mirror-image processing in developmental dyslexia.

    PubMed

    Fernandes, Tânia; Leite, Isabel

    2017-03-09

    The relation between reversal errors (e.g., d for b, Я for R) and developmental dyslexia has been elusive. In this study, we investigated the roles of reading level, visual category, and orientation processing in this relation. Children with developmental dyslexia, chronological-age-matched controls, and reading-level-matched controls performed two "same-different" matching tasks on reversible (e.g., b) and nonreversible (e.g., e) letters and on geometric shapes (e.g., ). In the orientation-based task, orientation processing was explicitly required; in the shape-based task, orientation processing would be automatic inasmuch as it was task irrelevant and would hinder successful performance. Two orientation contrasts were examined: mirror images (e.g., d-b) and plane rotations (e.g., d-p). For the latter, dyslexics behaved as controls; all were worse on shape-based judgments of plane rotation than on identical (e.g., d-d) pairs and were better able to attend to orientation than to shape. In contrast, for mirror images and across visual categories, dyslexics showed an advantage over typical readers on shape-based judgments. Both control groups had worse performance on shape-based judgments of mirror images than of identical pairs and exhibited similar magnitudes of mirror interference. Dyslexic children were the only group whose shape-based judgments were immune to mirror-image differences because they failed to automatize mirror discrimination during visual object processing. This deficit is not a consequence of reading level, is found across visual categories, and is specific to mirror images.

  8. Symmetry Breaking and Fine Structure Splitting in Zincblende Quantum Dots: Atomistic Simulations of Long-Range Strain and Piezoelectric Field

    NASA Astrophysics Data System (ADS)

    Ahmed, Shaikh; Usman, Muhammad; Heitzinger, Clemens; Rahman, Rajib; Schliwa, Andrei; Klimeck, Gerhard

    2007-04-01

    Electrons and holes captured in self-assembled quantum dots (QDs) are subject to symmetry breaking that cannot be represented in with continuum material representations. Atomistic calculations reveal symmetry lowering due to effects of strain and piezo-electric fields. These effects are fundamentally based on the crystal topology in the quantum dots. This work studies these two competing effects and demonstrates the fine structure splitting that has been demonstrated experimentally can be attributed to the underlying atomistic structure of the quantum dots.

  9. Observation of Spin-Dependent Charge Symmetry Breaking in ΛN Interaction: Gamma-Ray Spectroscopy of _{Λ}^{4}He.

    PubMed

    Yamamoto, T O; Agnello, M; Akazawa, Y; Amano, N; Aoki, K; Botta, E; Chiga, N; Ekawa, H; Evtoukhovitch, P; Feliciello, A; Fujita, M; Gogami, T; Hasegawa, S; Hayakawa, S H; Hayakawa, T; Honda, R; Hosomi, K; Hwang, S H; Ichige, N; Ichikawa, Y; Ikeda, M; Imai, K; Ishimoto, S; Kanatsuki, S; Kim, M H; Kim, S H; Kinbara, S; Koike, T; Lee, J Y; Marcello, S; Miwa, K; Moon, T; Nagae, T; Nagao, S; Nakada, Y; Nakagawa, M; Ogura, Y; Sakaguchi, A; Sako, H; Sasaki, Y; Sato, S; Shiozaki, T; Shirotori, K; Sugimura, H; Suto, S; Suzuki, S; Takahashi, T; Tamura, H; Tanabe, K; Tanida, K; Tsamalaidze, Z; Ukai, M; Yamamoto, Y; Yang, S B

    2015-11-27

    The energy spacing between the spin-doublet bound state of _{Λ}^{4}He(1^{+},0^{+}) was determined to be 1406±2±2  keV, by measuring γ rays for the 1^{+}→0^{+} transition with a high efficiency germanium detector array in coincidence with the ^{4}He(K^{-},π^{-})_{Λ}^{4}He reaction at J-PARC. In comparison to the corresponding energy spacing in the mirror hypernucleus _{Λ}^{4}H, the present result clearly indicates the existence of charge symmetry breaking (CSB) in ΛN interaction. By combining the energy spacings with the known ground-state binding energies, it is also found that the CSB effect is large in the 0^{+} ground state but is vanishingly small in the 1^{+} excited state, demonstrating that the ΛN CSB interaction has spin dependence.

  10. Clusters of solutions and replica symmetry breaking in random k-satisfiability

    NASA Astrophysics Data System (ADS)

    Montanari, Andrea; Ricci-Tersenghi, Federico; Semerjian, Guilhem

    2008-04-01

    We study the set of solutions of random k-satisfiability formulas through the cavity method. It is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential number of pure states (clusters). We refine substantially this picture by: (i) determining the precise location of the clustering transition; (ii) uncovering a second 'condensation' phase transition in the structure of the solution set for k>=4. These results both follow from computing the large deviation rate of the internal entropy of pure states. From a technical point of view our main contributions are a simplified version of the cavity formalism for special values of the Parisi replica symmetry breaking parameter m (in particular for m = 1 via a correspondence with the tree reconstruction problem) and new large-k expansions.

  11. Noether identities in gravity theories with nondynamical backgrounds and explicit spacetime symmetry breaking

    NASA Astrophysics Data System (ADS)

    Bluhm, Robert; Šehić, Amar

    2016-11-01

    Gravitational effective field theories with nondynamical backgrounds explicitly break diffeomorphism and local Lorentz invariance. At the same time, to maintain observer independence the action describing these theories is required to be mathematically invariant under general coordinate transformations and changes of local Lorentz bases. These opposing effects of having broken spacetime symmetries but invariance under mathematical observer transformations can result in theoretical inconsistency unless certain conditions hold. The consistency constraints that must hold originate from Noether identities associated with the mathematical observer invariances in the action. These identities are examined in detail and are used to investigate gravity theories with nondynamical backgrounds, including when a Stückelberg approach is used. Specific examples include gravity theories with fixed scalar or tensor backgrounds, Einstein-Maxwell theory with a fixed external current, and massive gravity.

  12. First-Principles Calculation of Femtosecond Symmetry-Breaking Atomic Forces in Photoexcited Bismuth

    NASA Astrophysics Data System (ADS)

    Murray, Éamonn D.; Fahy, Stephen

    2015-02-01

    We present a first-principles method for the calculation of the polarization-dependent atomic forces resulting from optical excitation in a solid. We calculate the induced force driving the Eg phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c axis is absorbed, the photoexcited charge density breaks the threefold rotational symmetry, leading to an atomic force component perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting atomic force components parallel and perpendicular to the axis. The magnitude of the calculated force is in excellent agreement with that derived from recent measurements of the amplitude of Eg atomic motion and the decay time of several femtoseconds for the driving force.

  13. The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra

    PubMed Central

    Antenucci, Fabrizio; Crisanti, Andrea; Leuzzi, Luca

    2015-01-01

    The behavior of a newly introduced overlap parameter, measuring the correlation between intensity fluctuations of waves in random media, is analyzed in different physical regimes, with varying amount of disorder and non-linearity. This order parameter allows to identify the laser transition in random media and describes its possible glassy nature in terms of emission spectra data, the only data so far accessible in random laser measurements. The theoretical analysis is performed in terms of the complex spherical spin-glass model, a statistical mechanical model describing the onset and the behavior of random lasers in open cavities. Replica Symmetry Breaking theory allows to discern different kinds of randomness in the high pumping regime, including the most complex and intriguing glassy randomness. The outcome of the theoretical study is, eventually, compared to recent intensity fluctuation overlap measurements demonstrating the validity of the theory and providing a straightforward interpretation of qualitatively different spectral behaviors in different random lasers. PMID:26616194

  14. Phase diagrams of charged colloidal rods: Can a uniaxial charge distribution break chiral symmetry?

    NASA Astrophysics Data System (ADS)

    Drwenski, Tara; Dussi, Simone; Hermes, Michiel; Dijkstra, Marjolein; van Roij, René

    2016-03-01

    We construct phase diagrams for charged rodlike colloids within the second-virial approximation as a function of rod concentration, salt concentration, and colloidal charge. Besides the expected isotropic-nematic transition, we also find parameter regimes with a coexistence between a nematic and a second, more highly aligned nematic phase including an isotropic-nematic-nematic triple point and a nematic-nematic critical point, which can all be explained in terms of the twisting effect. We compute the Frank elastic constants to see if the twist elastic constant can become negative, which would indicate the possibility of a cholesteric phase spontaneously forming. Although the twisting effect reduces the twist elastic constant, we find that it always remains positive. In addition, we find that for finite aspect-ratio rods the twist elastic constant is also always positive, such that there is no evidence of chiral symmetry breaking due to a uniaxial charge distribution.

  15. Time-reversal symmetry breaking superconductivity in the coexistence phase with magnetism in Fe pnictides.

    PubMed

    Hinojosa, Alberto; Fernandes, Rafael M; Chubukov, Andrey V

    2014-10-17

    We argue that superconductivity in the coexistence region with spin-density-wave (SDW) order in weakly doped Fe pnictides erdiffers qualitatively from the ordinary s(+-) state outside the coexistence region as it develops an additional gap component which is a mixture of intrapocket singlet (s(++)) and interpocket spin-triplet pairings (the t state). The coupling constant for the t channel is proportional to the SDW order and involves interactions that do not contribute to superconductivity outside of the SDW region. We argue that the s(+-)- and t-type superconducting orders coexist at low temperatures, and the relative phase between the two is, in general, different from 0 or π, manifesting explicitly the breaking of the time-reversal symmetry promoted by long-range SDW order. We argue that time reversal may get broken even before true superconductivity develops.

  16. Renormalization group improvement and dynamical breaking of symmetry in a supersymmetric Chern-Simons-matter model

    NASA Astrophysics Data System (ADS)

    Quinto, A. G.; Ferrari, A. F.; Lehum, A. C.

    2016-06-01

    In this work, we investigate the consequences of the Renormalization Group Equation (RGE) in the determination of the effective superpotential and the study of Dynamical Symmetry Breaking (DSB) in an N = 1 supersymmetric theory including an Abelian Chern-Simons superfield coupled to N scalar superfields in (2 + 1) dimensional spacetime. The classical Lagrangian presents scale invariance, which is broken by radiative corrections to the effective superpotential. We calculate the effective superpotential up to two-loops by using the RGE and the beta functions and anomalous dimensions known in the literature. We then show how the RGE can be used to improve this calculation, by summing up properly defined series of leading logs (LL), next-to-leading logs (NLL) contributions, and so on... We conclude that even if the RGE improvement procedure can indeed be applied in a supersymmetric model, the effects of the consideration of the RGE are not so dramatic as it happens in the non-supersymmetric case.

  17. Hard {ital m}{sub {ital t}} Corrections as a Probe of the Symmetry Breaking Sector

    SciTech Connect

    Bernabeu, J.; Comelli, D.; Pich, A.; Santamaria, A.

    1997-04-01

    Nondecoupling effects related to a large m{sub t} affecting nonoblique radiative corrections in vertices (Z{bar b}b) and boxes (B-{bar B} mixing and {epsilon}{sub K}) are sensitive to the mechanism of spontaneous symmetry breaking. In the framework of the effective chiral electroweak standard model there is only one O(p{sup 4}) operator which modifies the longitudinal part of the W{sup +} boson without touching the oblique corrections. This operator affects the Z{bar b}b vertex, the B-{bar B} mixing, and the CP-violating parameter {epsilon}{sub K}, generating interesting correlations among the hard m{sup 4}{sub t}lnm{sup 2}{sub t} corrections to these observables. {copyright} {ital 1997} {ital The American Physical Society}

  18. Shear modulus of glasses: results from the full replica-symmetry-breaking solution.

    PubMed

    Yoshino, Hajime; Zamponi, Francesco

    2014-08-01

    We compute the shear modulus of amorphous hard and soft spheres, using the exact solution in infinite spatial dimensions that has been developed recently. We characterize the behavior of this observable in the whole phase diagram, and in particular around the glass and jamming transitions. Our results are consistent with other theoretical approaches, which are unified within this general picture, and they are also consistent with numerical and experimental results. Furthermore, we discuss some properties of the out-of-equilibrium dynamics after a deep quench close to the jamming transition, and we show that a combined measure of the shear modulus and of the mean square displacement allows one to probe experimentally the complex structure of phase space predicted by the full replica-symmetry-breaking solution.

  19. Experimental Guidance for Isospin Symmetry Breaking Calculations via Single Neutron Pickup Reactions

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Garrett, P. E.; Bangay, J. C.; Bianco, L.; Demand, G. A.; Finlay, P.; Green, K. L.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Ball, G.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.; Towner, I. S.

    2013-03-01

    Recent activity in superallowed isospin-symmetry-breaking correction calculations has prompted interest in experimental confirmation of these calculation techniques. The shellmodel set of Towner and Hardy (2008) include the opening of specific core orbitals that were previously frozen. This has resulted in significant shifts in some of the δC values, and an improved agreement of the individual corrected {F}t values with the adopted world average of the 13 cases currently included in the high-precision evaluation of Vud. While the nucleus-to-nucleus variation of {F}t is consistent with the conserved-vector-current (CVC) hypothesis of the Standard Model, these new calculations must be thoroughly tested, and guidance must be given for their improvement. Presented here are details of a 64Zn(ěcd, t)63Zn experiment, undertaken to provide such guidance.

  20. Mode Conversion of Propagating Surface Plasmons in Nanophotonic Networks Induced by Structural Symmetry Breaking

    PubMed Central

    Pan, Deng; Wei, Hong; Jia, Zhili; Xu, Hongxing

    2014-01-01

    Nanophotonic plasmon circuits may play important roles in next-generation information technology as semiconductor-based electronics is approaching the physical limit. The functions of such circuits rely on the rigorous control of plasmon propagation. One important aspect of such control is controlling the conversion of different plasmon modes for designed plasmon routing in complex nanophotonic networks. Here, for the first time, we experimentally prove that the conversion of plasmon modes occurs widely in metallic nanowire waveguides, the basic components of plasmonic circuits, by introducing local structural symmetry breaking. In further simulations for the structure of a nanowire with a particle in its proximity, it is shown that the mode conversions originate from the redistribution of electric field on the wave front which is caused by the scattering of localized modes in the nanogap and on the nanoparticle. This mode conversion effect can be applied to flexibly control the plasmon propagation behavior in plasmonic nanowire networks.

  1. Spontaneous PT symmetry breaking and quantum phase transitions in dimerized spin chains

    SciTech Connect

    Giorgi, Gian Luca

    2010-08-01

    The occurrence of parity-time reversal (PT) symmetry breaking is discussed in a non-Hermitian spin chain. The Hermiticity of the model is broken by the presence of an alternating, imaginary, transverse magnetic field. A full real spectrum, which occurs if and only if all the eigenvectors are PT symmetric, can appear only in presence of dimerization, i.e., only if the hopping amplitudes between nearest-neighbor spins assume alternate values along the chain. In order to make a connection between such system and the Hermitian world, we study the critical magnetic properties of the model and look for the conditions that would allow to observe the same phase diagram in the absence of the imaginary field. Such procedure amounts to renormalizing the spin-spin coupling amplitudes.

  2. Parity-symmetry breaking and topological phases in a superfluid ring

    NASA Astrophysics Data System (ADS)

    Zhang, Xiurong; Piazza, Francesco; Li, WeiDong; Smerzi, Augusto

    2016-12-01

    We study analytically the superfluid flow of a Bose-Einstein condensate in a ring geometry in the presence of a rotating barrier. We show that a phase transition breaking a parity symmetry among two topological phases occurs at a critical value of the height of the barrier. Furthermore, a discontinuous (accompanied by hysteresis) phase transition is observed in the ordered phase when changing the angular velocity of the barrier. At the critical point where the hysteresis area vanishes, the chemical potential of the ground state develops a cusp (a discontinuity in the first derivative). Along this path, the jump between the two corresponding states having a different winding number shows analogies with a topological phase transition. We finally study the current-phase relation of the system and compare some of our calculations with published experimental results.

  3. Transient anomalous diffusion in periodic systems: ergodicity, symmetry breaking and velocity relaxation

    PubMed Central

    Spiechowicz, Jakub; Łuczka, Jerzy; Hänggi, Peter

    2016-01-01

    We study far from equilibrium transport of a periodically driven inertial Brownian particle moving in a periodic potential. As detected for a SQUID ratchet dynamics, the mean square deviation of the particle position from its average may involve three distinct intermediate, although extended diffusive regimes: initially as superdiffusion, followed by subdiffusion and finally, normal diffusion in the asymptotic long time limit. Even though these anomalies are transient effects, their lifetime can be many, many orders of magnitude longer than the characteristic time scale of the setup and turns out to be extraordinarily sensitive to the system parameters like temperature or the potential asymmetry. In the paper we reveal mechanisms of diffusion anomalies related to ergodicity of the system, symmetry breaking of the periodic potential and ultraslow relaxation of the particle velocity towards its steady state. Similar sequences of the diffusive behaviours could be detected in various systems including, among others, colloidal particles in random potentials, glass forming liquids and granular gases. PMID:27492219

  4. Conformal symmetry breaking and thermodynamics of near-extremal black holes

    NASA Astrophysics Data System (ADS)

    Almheiri, Ahmed; Kang, Byungwoo

    2016-10-01

    It has been argued recently by Almheiri and Polchinski that the near-horizon conformal symmetry of extremal black holes must be broken due to gravitational backreaction at an IR scale linear in G N . In this paper, we show that this scale coincides with the so-called `thermodynamic mass gap' of near-extremal black holes, a scale which signals the breakdown of their thermodynamic description. We also develop a method which extends the analysis of Almheiri and Polchinski to more complicated models with extremal throats by studying the bulk linearized quantum field theory. Moreover, we show how their original model correctly captures the universal physics of the near-horizon region of near-extremal black holes at tree level, and conclude that this equivalence of the conformal breaking and mass gap scale is general.

  5. Peroxyacetyl radical: Electronic excitation energies, fundamental vibrational frequencies, and symmetry breaking in the first excited state

    SciTech Connect

    Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay

    2015-02-07

    Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.

  6. Symmetry-Breaking Charge Transfer of Visible Light Absorbing Systems: Zinc Dipyrrins

    PubMed Central

    2015-01-01

    Zinc dipyrrin complexes with two identical dipyrrin ligands absorb strongly at 450–550 nm and exhibit high fluorescence quantum yields in nonpolar solvents (e.g., 0.16–0.66 in cyclohexane) and weak to nonexistent emission in polar solvents (i.e., <10–3, in acetonitrile). The low quantum efficiencies in polar solvents are attributed to the formation of a nonemissive symmetry-breaking charge transfer (SBCT) state, which is not formed in nonpolar solvents. Analysis using ultrafast spectroscopy shows that in polar solvents the singlet excited state relaxes to the SBCT state in 1.0–5.5 ps and then decays via recombination to the triplet or ground states in 0.9–3.3 ns. In the weakly polar solvent toluene, the equilibrium between a localized excited state and the charge transfer state is established in 11–22 ps. PMID:25270268

  7. Symmetry breaking gives rise to energy spectra of three states of matter

    PubMed Central

    Bolmatov, Dima; Musaev, Edvard T.; Trachenko, K.

    2013-01-01

    A fundamental task of statistical physics is to start with a microscopic Hamiltonian, predict the system's statistical properties and compare them with observable data. A notable current fundamental challenge is to tell whether and how an interacting Hamiltonian predicts different energy spectra, including solid, liquid and gas phases. Here, we propose a new idea that enables a unified description of all three states of matter. We introduce a generic form of an interacting phonon Hamiltonian with ground state configurations minimising the potential. Symmetry breaking SO(3) to SO(2), from the group of rotations in reciprocal space to its subgroup, leads to emergence of energy gaps of shear excitations as a consequence of the Goldstone theorem, and readily results in the emergence of energy spectra of solid, liquid and gas phases. PMID:24077388

  8. Breaking of symmetries for stabilization of rotating continua in frictional contact

    NASA Astrophysics Data System (ADS)

    Spelsberg-Korspeter, Gottfried

    2009-05-01

    Rotating structures subject to frictional contact are susceptible to self-excited vibrations that are responsible for noise problems. In previous work the underlying mechanism has been explained through mathematical-mechanical models. From practical experience it is known that breaking the symmetry of a rotor can have a stabilizing effect. The present paper is devoted to a mathematical justification of this phenomenon. At the same time a method for a quantitative investigation of the influence of asymmetries on the stability behavior is outlined. As an example a rotating annular Kirchhoff plate in contact with friction pads is studied serving as a minimal model for brake squeal. A possible application of the results is the support of the design process for squeal free brake rotors where currently only experimental methods yield information about the tendency of an asymmetric brake rotor to squeal.

  9. Columnar shifts as symmetry-breaking degrees of freedom in molecular perovskites.

    PubMed

    Boström, Hanna L B; Hill, Joshua A; Goodwin, Andrew L

    2016-11-23

    We introduce columnar shifts-collective rigid-body translations-as a structural degree of freedom relevant to the phase behaviour of molecular perovskites ABX3 (X = molecular anion). Like the well-known octahedral tilts of conventional perovskites, shifts also preserve the octahedral coordination geometry of the B-site cation in molecular perovskites, and so are predisposed to influencing the low-energy dynamics and displacive phase transitions of these topical systems. We present a qualitative overview of the interplay between shift activation and crystal symmetry breaking, and introduce a generalised terminology to allow characterisation of simple shift distortions, drawing analogy to the "Glazer notation" for octahedral tilts. We apply our approach to the interpretation of a representative selection of azide and formate perovskite structures, and discuss the implications for functional exploitation of shift degrees of freedom in negative thermal expansion materials and hybrid ferroelectrics.

  10. Non-minimal CW inflation, electroweak symmetry breaking and the 750 GeV anomaly

    NASA Astrophysics Data System (ADS)

    Marzola, L.; Racioppi, A.; Raidal, M.; Urban, F. R.; Veermäe, H.

    2016-03-01

    We study whether the hinted 750 GeV resonance at the LHC can be a Coleman-Weinberg inflaton which is non-minimally coupled to gravity. Since the inflaton must couple to new charged and coloured states to reproduce the LHC diphoton signature, the same interaction can generate its effective potential and trigger the electroweak symmetry breaking via the portal coupling to the Higgs boson. This inflationary scenario predicts a lower bound on the tensor-to-scalar ratio of r ≳ 0.006, where the minimal value corresponds to the measured spectral index n s ≃ 0.97. However, we find that the compatibility with the LHC diphoton signal requires exotic new physics at energy scales accessible at the LHC. We study and quantify the properties of the predicted exotic particles.

  11. A model for the implementation of symmetry breaking from B-to-Z-DNA configurations

    NASA Astrophysics Data System (ADS)

    Reséndiz-Antonio, M.; Godina-Nava, J. J.

    2012-02-01

    Supported in the helicoidal model performed by M. Barbi et al, we propose a extended Morse potential version to study the symmetry breaking in a simple non-linear DNA model based in two plane base rotors. The intention is study the development of the intermediate states appearing in the junction B-to-Z DNA, useful for understanding its biological function, once is characterized the phase transition involved. With this model, we make a comparison between the non-linear dynamics of a handedness homogeneous base-pair winding in a right-handed sense and a left handed sense. Numerical results determine that the right-handed sense is the preferential direction of winding of our spring's model that can emulate the common DNA behavior.

  12. Retrosynthetic Analysis-Guided Breaking Tile Symmetry for the Assembly of Complex DNA Nanostructures.

    PubMed

    Wang, Pengfei; Wu, Siyu; Tian, Cheng; Yu, Guimei; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2016-10-11

    Current tile-based DNA self-assembly produces simple repetitive or highly symmetric structures. In the case of 2D lattices, the unit cell often contains only one basic tile because the tiles often are symmetric (in terms of either the backbone or the sequence). In this work, we have applied retrosynthetic analysis to determine the minimal asymmetric units for complex DNA nanostructures. Such analysis guides us to break the intrinsic structural symmetries of the tiles to achieve high structural complexities. This strategy has led to the construction of several DNA nanostructures that are not accessible from conventional symmetric tile designs. Along with previous studies, herein we have established a set of four fundamental rules regarding tile-based assembly. Such rules could serve as guidelines for the design of DNA nanostructures.

  13. Electroweak Symmetry Breaking from the Soft Portal into Dark Matter and Prediction for Direct Detection

    SciTech Connect

    Kadastik, Mario; Kannike, Kristjan; Racioppi, Antonio; Raidal, Martti

    2010-05-21

    Scalar dark matter (DM) can have dimensionful coupling to the Higgs boson - the soft portal into DM - which is predicted to be unsuppressed by the underlying SO(10) grand unified theory (GUT). The dimensionful coupling can be large, {mu}/v>>1, without spoiling the perturbativity of low energy theory up to the GUT scale. We show that the soft portal into DM naturally triggers radiative electroweak symmetry breaking (EWSB) via large 1-loop DM corrections to the effective potential. In this scenario, EWSB, the DM thermal freeze-out cross section, and DM scattering on nuclei are all dominated by the same coupling, predicting the DM mass range to be 700 GeV

  14. Complex patterns arise through spontaneous symmetry breaking in dense homogeneous networks of neural oscillators

    NASA Astrophysics Data System (ADS)

    Singh, Rajeev; Menon, Shakti N.; Sinha, Sitabhra

    2016-02-01

    There has been much interest in understanding collective dynamics in networks of brain regions due to their role in behavior and cognitive function. Here we show that a simple, homogeneous system of densely connected oscillators, representing the aggregate activity of local brain regions, can exhibit a rich variety of dynamical patterns emerging via spontaneous breaking of permutation or translational symmetries. Upon removing just a few connections, we observe a striking departure from the mean-field limit in terms of the collective dynamics, which implies that the sparsity of these networks may have very important consequences. Our results suggest that the origins of some of the complicated activity patterns seen in the brain may be understood even with simple connection topologies.

  15. Coherence of two-dimensional electron-hole systems: Spontaneous breaking of continuous symmetries: A review

    NASA Astrophysics Data System (ADS)

    Moskalenko, S. A.; Liberman, M. A.; Moskalenko, E. S.; Dumanov, E. V.; Podlesny, I. V.

    2013-08-01

    The spontaneous breaking of the continuous symmetries of a two-dimensional electron-hole system in a strong magnetic field perpendicular to the plane leads to the formation of new ground states and determines the energy spectrum of collective elementary excitations that appear above these new ground states. In this review, the main attention is paid to the electron-hole system formed from coplanar magnetoexcitons under conditions of Bose-Einstein condensation in the ground state with the wave vector k = 0 taking into account the influence of excited Landau levels, when exciton-type elementary excitations coexist with plasmon-type oscillations. At the same time, the properties of a two-component system consisting of a two-dimensional electron gas and a two-dimensional hole gas spatially separated in a double quantum well under conditions of the fractional quantum Hall effect are of great interest, because these properties can affect the quantum states of magnetic excitons that are formed when the distance between the layers tends to zero. Bilayer electron systems are also considered under conditions of the fractional quantum Hall effect with the one-half filling factor for each layer and the total filling factor equal to unity for both layers. The coherence between the electron states in the two layers is equivalent to the formation of excitons in a macroscopic coherent state. This makes it possible to compare the energy spectrum of collective elementary excitations of Bose-Einstein condensed excitons under conditions of the quantum Hall effect and coplanar magnetoexcitons. The breaking of the global gauge symmetry or of the continuous rotational symmetry leads to the formation of a gapless spectrum of the Nambu-Goldstone type, whereas the breaking of the local gauge symmetry is accompanied by the appearance of a gap in the energy spectrum (Higgs phenomenon). These phenomena are equivalent to the formation of massless and massive particles in the relativistic

  16. Symmetry breaking, phase separation and anomalous fluctuations in driven granular gas

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Pöschel, Thorsten; Sasorov, Pavel V.; Schwager, Thomas

    2003-03-01

    What is the role of noise, caused by the discrete nature of particles, in granular dynamics? We address this question by considering a simple driven granular system: an ensemble of nearly elastically colliding hard spheres in a rectangular box, driven by a rapidly vibrating side wall at zero gravity. The elementary state of this system is a strip of enhanced particle density away from the driving wall. Granular hydrodynamics (GHD) predicts a symmetry breaking instability of this state, when the aspect ratio of the confining box exceeds a threshold value, while the average density of the gas is within a ``spinodal interval". At large aspect ratios this instability leads to phase separation similar to that in van der Waals gas. In the present work (see cond-mat/0208286) we focus on the system behavior around the threshold of the symmetry-breaking instability. We put GHD into a quantitative test by performing extensive event-driven molecular dynamic simulations in 2D. Please watch the movies of the simulations at http://summa.physik.hu-berlin.de/ kies/HD/. We found that the supercritical bifurcation curve, predicted by GHD, agrees with the simulations well below and well above the instability threshold. In a wide region of aspect ratios around the threshold the system is dominated by fluctuations. We checked that the fluctuation strength goes down when the number of particles increases. However, fluctuations remain strong (and the critical region wide) even for as many as 4 ot 10^4 particles. We conclude by suggesting that fluctuations may put a severe limitation on the validity of continuum theories of granular flow in systems with a moderately large number of particles.

  17. Spontaneous symmetry breaking of Bose-Fermi mixtures in double-well potentials

    SciTech Connect

    Adhikari, S. K.; Malomed, B. A.; Salasnich, L.; Toigo, F.

    2010-05-15

    We study the spontaneous symmetry breaking (SSB) of a superfluid Bose-Fermi (BF) mixture in a double-well potential (DWP). The mixture is described by the Gross-Pitaevskii equation (GPE) for the bosons, coupled to an equation for the order parameter of the Fermi superfluid, which is derived from the respective density functional in the unitarity limit (a similar model applies to the BCS regime, too). Straightforward SSB in the degenerate Fermi gas loaded into a DWP is impossible, as it requires an attractive self-interaction, and the intrinsic nonlinearity in the Fermi gas is repulsive. Nonetheless, we demonstrate that the symmetry breaking is possible in the mixture with attraction between fermions and bosons, like {sup 40}K and {sup 87}Rb. Numerical results are represented by dependencies of asymmetry parameters for both components on particle numbers of the mixture, N{sub F} and N{sub B}, and by phase diagrams in the (N{sub F},N{sub B}) plane, which displays regions of symmetric and asymmetric ground states. The dynamical picture of the SSB, induced by a gradual transformation of the single-well potential into the DWP, is reported too. An analytical approximation is proposed for the case when the GPE for the boson wave function may be treated by means of the Thomas-Fermi (TF) approximation. Under a special linear relationship between N{sub F} and N{sub B}, the TF approximation allows us to reduce the model to a single equation for the fermionic function, which includes competing repulsive and attractive nonlinear terms. The latter one directly displays the mechanism of the generation of the effective attraction in the Fermi superfluid, mediated by the bosonic component of the mixture.

  18. Symmetry breaking of solitons in two-component Gross-Pitaevskii equations.

    PubMed

    Sakaguchi, Hidetsugu; Malomed, Boris A

    2011-03-01

    We revisit the problem of the spontaneous symmetry breaking (SSB) of solitons in two-component linearly coupled nonlinear systems, adding the nonlinear interaction between the components. With this feature, the system may be realized in new physical settings, in terms of optics and the Bose-Einstein condensate (BEC). SSB bifurcation points are found analytically, for both symmetric and antisymmetric solitons (the symmetry between the two components is meant here). Asymmetric solitons, generated by the bifurcations, are described by means of the variational approximation (VA) and numerical methods, demonstrating good accuracy of the variational results. In the space of the self-phase-modulation (SPM) parameter and soliton's norm, a border separating stable symmetric and asymmetric solitons is identified. The nonlinear coupling may change the character of the SSB bifurcation, from subcritical to supercritical. Collisions between moving asymmetric and symmetric solitons are investigated too. Antisymmetric solitons are destabilized by a supercritical bifurcation, which gives rise to self-confined modes featuring Josephson oscillations, instead of stationary states with broken antisymmetry. An additional instability against delocalized perturbations is also found for the antisymmetric solitons.

  19. Symmetry breaking of solitons in two-component Gross-Pitaevskii equations

    SciTech Connect

    Sakaguchi, Hidetsugu; Malomed, Boris A.

    2011-03-15

    We revisit the problem of the spontaneous symmetry breaking (SSB) of solitons in two-component linearly coupled nonlinear systems, adding the nonlinear interaction between the components. With this feature, the system may be realized in new physical settings, in terms of optics and the Bose-Einstein condensate (BEC). SSB bifurcation points are found analytically, for both symmetric and antisymmetric solitons (the symmetry between the two components is meant here). Asymmetric solitons, generated by the bifurcations, are described by means of the variational approximation (VA) and numerical methods, demonstrating good accuracy of the variational results. In the space of the self-phase-modulation (SPM) parameter and soliton's norm, a border separating stable symmetric and asymmetric solitons is identified. The nonlinear coupling may change the character of the SSB bifurcation, from subcritical to supercritical. Collisions between moving asymmetric and symmetric solitons are investigated too. Antisymmetric solitons are destabilized by a supercritical bifurcation, which gives rise to self-confined modes featuring Josephson oscillations, instead of stationary states with broken antisymmetry. An additional instability against delocalized perturbations is also found for the antisymmetric solitons.

  20. Moving vortex phases, dynamical symmetry breaking, and jamming for vortices in honeycomb pinning arrays

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia

    2008-01-01

    We show using numerical simulations that vortices in honeycomb pinning arrays can exhibit a remarkable variety of dynamical phases that are distinct from those found for triangular and square pinning arrays. In the honeycomb arrays, it is possible for the interstitial vortices to form dimer or higher n-mer states which have an additional orientational degree of freedom that can lead to the formation of vortex molecular crystals. For filling fractions where dimer states appear, a dynamical symmetry breaking can occur when the dimers flow in one of two possible alignment directions. This leads to transport in the direction transverse to the applied drive. We show that dimerization produces distinct types of moving phases which depend on the direction of the driving force with respect to the pinning lattice symmetry. When the dimers are driven along certain directions, a reorientation of the dimers can produce a jamming phenomenon which results in a strong enhancement in the critical depinning force. The jamming can also cause unusual effects such as an increase in the critical depinning force when the size of the pinning sites is reduced.

  1. Bose-Einstein condensate and spontaneous breaking of conformal symmetry on Killing horizons

    SciTech Connect

    Moretti, Valter; Pinamonti, Nicola

    2005-06-01

    Local scalar quantum field theory (in Weyl algebraic approach) is constructed on degenerate semi-Riemannian manifolds corresponding to Killing horizons in spacetime. Covariance properties of the C*-algebra of observables with respect to the conformal group PSL(2,R) are studied. It is shown that, in addition to the state studied by Guido, Longo, Roberts, and Verch for bifurcated Killing horizons, which is conformally invariant and KMS at Hawking temperature with respect to the Killing flow and defines a conformal net of von Neumann algebras, there is a further wide class of algebraic (coherent) states representing spontaneous breaking of PSL(2,R) symmetry. This class is labeled by functions in a suitable Hilbert space and their GNS representations enjoy remarkable properties. The states are nonequivalent extremal KMS states at Hawking temperature with respect to the residual one-parameter subgroup of PSL(2,R) associated with the Killing flow. The KMS property is valid for the two local subalgebras of observables uniquely determined by covariance and invariance under the residual symmetry unitarily represented. These algebras rely on the physical region of the manifold corresponding to a Killing horizon cleaned up by removing the unphysical points at infinity [necessary to describe the whole PSL(2,R) action]. Each of the found states can be interpreted as a different thermodynamic phase, containing Bose-Einstein condensate, for the considered quantum field. It is finally suggested that the found states could describe different black holes.

  2. Inducing chaos by breaking axial symmetry in a black hole magnetosphere

    SciTech Connect

    Kopáček, O.; Karas, V.

    2014-06-01

    While the motion of particles near a rotating, electrically neutral (Kerr), and charged (Kerr-Newman) black hole is always strictly regular, a perturbation in the gravitational or the electromagnetic field generally leads to chaos. The transition from regular to chaotic dynamics is relatively gradual if the system preserves axial symmetry, whereas non-axisymmetry induces chaos more efficiently. Here we study the development of chaos in an oblique (electro-vacuum) magnetosphere of a magnetized black hole. Besides the strong gravity of the massive source represented by the Kerr metric, we consider the presence of a weak, ordered, large-scale magnetic field. An axially symmetric model consisting of a rotating black hole embedded in an aligned magnetic field is generalized by allowing an oblique direction of the field having a general inclination with respect to the rotation axis of the system. The inclination of the field acts as an additional perturbation to the motion of charged particles as it breaks the axial symmetry of the system and cancels the related integral of motion. The axial component of angular momentum is no longer conserved and the resulting system thus has three degrees of freedom. Our primary concern within this contribution is to find out how sensitive the system of bound particles is to the inclination of the field. We employ the method of the maximal Lyapunov exponent to distinguish between regular and chaotic orbits and to quantify their chaoticity. We find that even a small misalignment induces chaotic motion.

  3. Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Hashino, Katsuya; Kanemura, Shinya; Orikasa, Yuta

    2016-01-01

    Classical scale invariance (CSI) may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman-Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h (125), we obtain an upper bound on the mass of the lightest additional scalar boson (≃ 543 GeV), which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon-photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h (125). Finally, for the triple Higgs boson coupling a large deviation (∼ + 70%) from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.

  4. Relativistic Anandan quantum phase and the Aharonov-Casher effect under Lorentz symmetry breaking effects in the cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Bakke, K.; Furtado, C.; Belich, H.

    2016-09-01

    From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov-Casher geometric quantum phase in the nonrelativistic limit.

  5. Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators

    DOE PAGES

    Zeljkovic, Ilija; Okada, Yoshinori; Serbyn, Maksym; ...

    2015-02-16

    The tunability of topological surface states and controllable opening of the Dirac gap are of fundamental and practical interest in the field of topological materials. In the newly discovered topological crystalline insulators (TCIs), theory predicts that the Dirac node is protected by a crystalline symmetry and that the surface state electrons can acquire a mass if this symmetry is broken. Recent studies have detected signatures of a spontaneously generated Dirac gap in TCIs; however, the mechanism of mass formation remains elusive. In this work, we present scanning tunnelling microscopy (STM) measurements of the TCI Pb1-xSnxSe for a wide range ofmore » alloy compositions spanning the topological and non-topological regimes. The STM topographies reveal a symmetry-breaking distortion on the surface, which imparts mass to the otherwise massless Dirac electrons—a mechanism analogous to the long sought-after Higgs mechanism in particle physics. Interestingly, the measured Dirac gap decreases on approaching the trivial phase, whereas the magnitude of the distortion remains nearly constant. Our data and calculations reveal that the penetration depth of Dirac surface states controls the magnitude of the Dirac mass. At the limit of the critical composition, the penetration depth is predicted to go to infinity, resulting in zero mass, consistent with our measurements. Lastly, we discover the existence of surface states in the non-topological regime, which have the characteristics of gapped, double-branched Dirac fermions and could be exploited in realizing superconductivity in these materials.« less

  6. Natural little hierarchy for SUSY from radiative breaking of the Peccei-Quinn symmetry

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan

    2015-01-01

    While LHC8 Higgs mass and sparticle search constraints favor a multi-TeV value of soft SUSY breaking terms, electroweak naturalness favors a superpotential Higgsino mass μ ˜100 - 200 GeV : the mismatch results in an apparent little hierarchy characterized by μ ≪msoft (with msoft˜m3 /2 in gravity mediation). It has been suggested that the little hierarchy arises from a mismatch between Peccei-Quinn (PQ) and hidden sector intermediate scales vPQ≪mhidden . We examine the Murayama-Suzuki-Yanagida model of radiatively driven PQ symmetry breaking which not only generates a weak scale value of μ but also produces intermediate scale Majorana masses for right-hand neutrinos. For this model, we show ranges of parameter choices with multi-TeV values of m3 /2 which can easily generate values of μ ˜100 - 200 GeV so that the apparent little hierarchy suggested from data emerges quite naturally. In such a scenario, dark matter would be comprised of an axion plus a Higgsino-like weakly-interacting massive particle admixture where the axion mass and Higgsino masses are linked by the value of the PQ scale. The required light Higgsinos should ultimately be detected at a linear e+e- collider with √{s }>2 m (Higgsino) .

  7. Twisted Spectral Triple for the Standard Model and Spontaneous Breaking of the Grand Symmetry

    NASA Astrophysics Data System (ADS)

    Devastato, Agostino; Martinetti, Pierre

    2017-03-01

    Grand symmetry models in noncommutative geometry, characterized by a non-trivial action of functions on spinors, have been introduced to generate minimally (i.e. without adding new fermions) and in agreement with the first order condition an extra scalar field beyond the standard model, which both stabilizes the electroweak vacuum and makes the computation of the mass of the Higgs compatible with its experimental value. In this paper, we use a twist in the sense of Connes-Moscovici to cure a technical problem due to the non-trivial action on spinors, that is the appearance together with the extra scalar field of unbounded vectorial terms. The twist makes these terms bounded and - thanks to a twisted version of the first-order condition that we introduce here - also permits to understand the breaking to the standard model as a dynamical process induced by the spectral action, as conjectured in [24]. This is a spontaneous breaking from a pre-geometric Pati-Salam model to the almost-commutativegeometryofthestandardmodel,withtwoHiggs-likefields: scalar and vector.

  8. PVLAS experiment, star cooling and big bang nucleosynthesis constraints: Possible interpretation with temperature dependent gauge symmetry breaking

    SciTech Connect

    Kim, Jihn E.

    2007-09-01

    It is known that the kinetic mixing of a photon and another U(1){sub ex} gauge boson can introduce millicharged particles. Millicharged particles f of mass 0.1 eV can explain the PVLAS experiment. I suggest a temperature dependent gauge symmetry breaking of U(1){sub ex} for this idea to be consistent with astrophysical and cosmological constraints.

  9. Spontaneous symmetry breaking in a two-lane model for bidirectional overtaking traffic

    NASA Astrophysics Data System (ADS)

    Appert-Rolland, C.; Hilhorst, H. J.; Schehr, G.

    2010-08-01

    Firstly, we consider a unidirectional flux \\bar {\\omega } of vehicles, each of which is characterized by its 'natural' velocity v drawn from a distribution P(v). The traffic flow is modeled as a collection of straight 'world lines' in the time-space plane, with overtaking events represented by a fixed queuing time τ imposed on the overtaking vehicle. This geometrical model exhibits platoon formation and allows, among many other things, for the calculation of the effective average velocity w\\equiv \\phi (v) of a vehicle of natural velocity v. Secondly, we extend the model to two opposite lanes, A and B. We argue that the queuing time τ in one lane is determined by the traffic density in the opposite lane. On the basis of reasonable additional assumptions we establish a set of equations that couple the two lanes and can be solved numerically. It appears that above a critical value \\bar {\\omega }_{\\mathrm {c}} of the control parameter \\bar {\\omega } the symmetry between the lanes is spontaneously broken: there is a slow lane where long platoons form behind the slowest vehicles, and a fast lane where overtaking is easy due to the wide spacing between the platoons in the opposite direction. A variant of the model is studied in which the spatial vehicle density \\bar {\\rho } rather than the flux \\bar {\\omega } is the control parameter. Unequal fluxes \\bar {\\omega }_{\\mathrm {A}} and \\bar {\\omega }_{\\mathrm {B}} in the two lanes are also considered. The symmetry breaking phenomenon exhibited by this model, even though no doubt hard to observe in pure form in real-life traffic, nevertheless indicates a tendency of such traffic.

  10. Chirality and its spontaneous symmetry breaking in two liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Kang, Louis

    Chirality, or handedness, is a key concept spanning all fields of natural science, from biology to mathematics. Chiral structures can arise from achiral building blocks that lack a handedness if their assembly is unstable to chiral deformations, a phenomenon called spontaneous symmetry breaking. We theoretically study the role of chirality in two systems composed of liquid crystals dissolved or suspended in water, and our results match those obtained experimentally by our collaborators. In the first system, we study achiral liquid crystals whose Frank twist modulus is much lower than their splay and bend Frank moduli and which are confined in capillaries. Under homeotropic anchoring, their ground state configuration undergoes spontaneous chiral symmetry breaking when the twist modulus decreases enough relative to the splay and bend moduli. Under degenerate planar anchoring, a small twist-to-saddle-splay ratio of elastic moduli leads to degenerate twisted configurations even though an undeformed configuration is possible. Measuring the twist profile of an experimental system produces a value for the saddle-splay constant, which has been difficult to achieve previously. Under either boundary condition, domain walls and point defects, whose topological charges depend on chirality, separate domains with different degenerate configurations, and certain ones are energetically preferred over others. In the second system, we study filamentous viruses acting as colloidal liquid crystals under the influence of depletion, which promotes condensation of the viruses into 2D colloidal monolayers. These membranes have tunable chirality and show a rich array of emergent behaviors, including a transition from a circular shape to a striking starfish shape upon changing the chirality of constituent viruses, partial coalescence via domain walls through which the viruses twist by 180 degrees, and phase-separated rafts of a particular size when two virus species with different lengths

  11. Breaking time reversal symmetry, quantum anomalous Hall state and dissipationless chiral conduction in topological insulators

    NASA Astrophysics Data System (ADS)

    Moodera, Jagadeesh

    Breaking time reversal symmetry (TRS) in a topological insulator (TI) with ferromagnetic perturbation can lead to many exotic quantum phenomena exhibited by Dirac surface states including the quantum anomalous Hall (QAH) effect and dissipationless quantized Hall transport. The realization of the QAH effect in realistic materials requires ferromagnetic insulating materials and topologically non-trivial electronic band structures. In a TI, the ferromagnetic order and TRS breaking is achievable by conventional way, through doping with a magnetic element, or by ferromagnetic proximity coupling. Our experimental studies by both approaches will be discussed. In doped TI van Vleck ferromagnetism was observed. The proximity induced magnetism at the interface was stable, beyond the expected temperature range. We shall describe in a hard ferromagnetic TI system a robust QAH state and dissipationless edge current flow is achieved,1,2 a major step towards dissipationless electronic applications with no external fields, making such devices more amenable for metrology and spintronics applications. Our study of the gate and temperature dependences of local and nonlocal magnetoresistance, may elucidate the causes of the dissipative edge channels and the need for very low temperature to observe QAH. In close collaboration with: CuiZu Chang,2,3 Ferhat Katmis, 1 . 2 , 3 Peng Wei. 1 , 2 , 3 ; From Nuclear Eng. Dept. MIT, M. Li, J. Li; From Penn State U, W-W. Zhao, D. Y. Kim, C-x. Liu, J. K. Jain, M. H. W. Chan; From Oakridge National Lab, V. Lauter; From Northeastern U., B. A. Assaf, M. E. Jamer, D. Heiman; From Argonne Lab, J. W. Freeland; From Ruhr-Universitaet Bochum (Germany), F. S. Nogueira, I. Eremin; From Saha Institute of Nuclear Physics (India), B. Satpati. Work supported by NSF Grant DMR-1207469, the ONR Grant N00014-13-1-0301, and the STC Center for Integrated Quantum Materials under NSF Grant DMR-1231319.

  12. Mermin-Wagner theorem, flexural modes, and degraded carrier mobility in two-dimensional crystals with broken horizontal mirror symmetry

    NASA Astrophysics Data System (ADS)

    Fischetti, Massimo V.; Vandenberghe, William G.

    2016-04-01

    We show that the electron mobility in ideal, free-standing two-dimensional "buckled" crystals with broken horizontal mirror (σh) symmetry and Dirac-like dispersion (such as silicene and germanene) is dramatically affected by scattering with the acoustic flexural modes (ZA phonons). This is caused both by the broken σh symmetry and by the diverging number of long-wavelength ZA phonons, consistent with the Mermin-Wagner theorem. Non-σh-symmetric, "gapped" 2D crystals (such as semiconducting transition-metal dichalcogenides with a tetragonal crystal structure) are affected less severely by the broken σh symmetry, but equally seriously by the large population of the acoustic flexural modes. We speculate that reasonable long-wavelength cutoffs needed to stabilize the structure (finite sample size, grain size, wrinkles, defects) or the anharmonic coupling between flexural and in-plane acoustic modes (shown to be effective in mirror-symmetric crystals, like free-standing graphene) may not be sufficient to raise the electron mobility to satisfactory values. Additional effects (such as clamping and phonon stiffening by the substrate and/or gate insulator) may be required.

  13. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells.

    PubMed

    van den Brink, Susanne C; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A; Martinez Arias, Alfonso

    2014-11-01

    Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call 'gastruloids'.

  14. Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics

    SciTech Connect

    Neuenschwander, D.E. Jr.

    1983-01-01

    Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g..-->..infinity; x..-->..infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x/sup 2/ much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g/sup 2//x/sup 2/ much less than 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.

  15. Order statistics inference for describing topological coupling and mechanical symmetry breaking in multidomain proteins

    NASA Astrophysics Data System (ADS)

    Kononova, Olga; Jones, Lee; Barsegov, V.

    2013-09-01

    Cooperativity is a hallmark of proteins, many of which show a modular architecture comprising discrete structural domains. Detecting and describing dynamic couplings between structural regions is difficult in view of the many-body nature of protein-protein interactions. By utilizing the GPU-based computational acceleration, we carried out simulations of the protein forced unfolding for the dimer WW - WW of the all-β-sheet WW domains used as a model multidomain protein. We found that while the physically non-interacting identical protein domains (WW) show nearly symmetric mechanical properties at low tension, reflected, e.g., in the similarity of their distributions of unfolding times, these properties become distinctly different when tension is increased. Moreover, the uncorrelated unfolding transitions at a low pulling force become increasingly more correlated (dependent) at higher forces. Hence, the applied force not only breaks "the mechanical symmetry" but also couples the physically non-interacting protein domains forming a multi-domain protein. We call this effect "the topological coupling." We developed a new theory, inspired by order statistics, to characterize protein-protein interactions in multi-domain proteins. The method utilizes the squared-Gaussian model, but it can also be used in conjunction with other parametric models for the distribution of unfolding times. The formalism can be taken to the single-molecule experimental lab to probe mechanical cooperativity and domain communication in multi-domain proteins.

  16. PolyQ-dependent RNA–protein assemblies control symmetry breaking

    PubMed Central

    Lee, ChangHwan; Occhipinti, Patricia

    2015-01-01

    Dendritic growth in fungi and neurons requires that multiple axes of polarity are established and maintained within the same cytoplasm. We have discovered that transcripts encoding key polarity factors including a formin, Bni1, and a polarisome scaffold, Spa2, are nonrandomly clustered in the cytosol to initiate and maintain sites of polarized growth in the fungus Ashbya gossypii. This asymmetric distribution requires the mRNAs to interact with a polyQ-containing protein, Whi3, and a Pumilio protein with a low-complexity sequence, Puf2. Cells lacking Whi3 or Puf2 had severe defects in establishing new sites of polarity and failed to localize Bni1 protein. Interaction of mRNAs with Whi3 and Puf2 promotes enrichment of transcripts at established sites of polarized growth and clustering of polarity transcripts throughout the cell body. Thus, aggregation-prone proteins make functional assemblies to position polarity transcripts, and nonrandom positioning of transcripts is required for symmetry-breaking events. This reveals a physiological function for polyQ-driven assemblies in regulating cell polarity. PMID:25713414

  17. Spontaneous particle-hole symmetry breaking of correlated fermions on the Lieb lattice

    NASA Astrophysics Data System (ADS)

    Bercx, Martin; Hofmann, Johannes S.; Assaad, Fakher F.; Lang, Thomas C.

    2017-01-01

    We study spinless fermions with nearest-neighbor repulsive interactions (t -V model) on the two-dimensional three-band Lieb lattice. At half-filling, the free electronic band structure consists of a flat band at zero energy and a single cone with linear dispersion. The flat band is expected to be unstable upon inclusion of electronic correlations, and a natural channel is charge order. However, due to the three-orbital unit cell, commensurate charge order implies an imbalance of electron and hole densities and therefore doping away from half-filling. Our numerical results show that below a finite-temperature Ising transition a charge density wave with one electron and two holes per unit cell and its partner under particle-hole transformation are spontaneously generated. Our calculations are based on recent advances in auxiliary-field and continuous-time quantum Monte Carlo simulations that allow sign-free simulations of spinless fermions at half-filling. It is argued that particle-hole symmetry breaking provides a route to access levels of finite doping, without introducing a sign problem.

  18. Ultrafast Photoinduced Symmetry-Breaking Charge Separation and Electron Sharing in Perylenediimide Molecular Triangles.

    PubMed

    Wu, Yilei; Young, Ryan M; Frasconi, Marco; Schneebeli, Severin T; Spenst, Peter; Gardner, Daniel M; Brown, Kristen E; Würthner, Frank; Stoddart, J Fraser; Wasielewski, Michael R

    2015-10-21

    We report on a visible-light-absorbing chiral molecular triangle composed of three covalently linked 1,6,7,12-tetra(phenoxy)perylene-3,4:9,10-bis(dicarboximide) (PDI) units. The rigid triangular architecture reduces the electronic coupling between the PDIs, so ultrafast symmetry-breaking charge separation is kinetically favored over intramolecular excimer formation, as revealed by femtosecond transient absorption spectroscopy. Photoexcitation of the PDI triangle dissolved in CH2Cl2 gives PDI(+•)-PDI(-•) in τCS = 12.0 ± 0.2 ps. Fast subsequent intramolecular electron/hole hopping can equilibrate the six possible energetically degenerate ion-pair states, as suggested by electron paramagnetic resonance/electron-nuclear double resonance spectroscopy, which shows that one-electron reduction of the PDI triangle results in complete electron sharing among the three PDIs. Charge recombination of PDI(+•)-PDI(-•) to the ground state occurs in τCR = 1.12 ± 0.01 ns with no evidence of triplet excited state formation.

  19. Diodelike asymmetric transmission in hybrid plasmonic waveguides via breaking polarization symmetry

    NASA Astrophysics Data System (ADS)

    Zhang, Heran; Zhang, Fengchun; Liang, Yao; Huang, Xu-Guang; Jia, Baohua

    2017-04-01

    The ability to control the asymmetric propagation of light in nanophotonic waveguides is of fundamental importance to optical communications and on-chip signal processing. However, in most studies so far, the design of such structures has been based on asymmetric mode conversion where multi-mode waveguides are involved. Here we propose a hybrid plasmonic structure that performs optical diode behavior via breaking polarization symmetry in single mode waveguides. The exploited physical mechanism is based on the combination of polarization rotation and selection. The whole device is ultra-compact with a footprint of 2.95  ×  14.18 µm2, and whose dimension is much smaller than the device previously proposed for a similar function. The extinction ratio is greater than 11.8 dB for both forward and backward propagation at λ  =  1550 nm (19.43 dB for forward propagation and 11.8 dB for the backward one). The operation bandwidth of the device is as great as 70 nm (form 1510 to 1580 nm) for extinction  >10 dB. These results may find important applications in the integrated devices where polarization handling or unidirectional propagation is required.

  20. Two-measure theory with third-rank antisymmetric tensor for local scale symmetry breaking

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo; Nishino, Hitoshi; Rajpoot, Subhash

    2017-03-01

    We present a new mechanism of local scale symmetry breaking based on the scalar density Φ ≡(1 /3 !)ɛμ ν ρ σ∂μAν ρ σ≡(1 /4 !)ɛμ ν ρ σFμν ρ σ (0 ) with an independent third-rank tensor Aμ ν ρ , which replaces the scalar density Φ ≡ɛμ ν ρ σɛa b c d(∂μφa)(∂νφb)(∂ρφc)(∂σφd) used in "two-measure theory." We apply this function both to globally and locally scale-invariant systems. For local scale invariance, we modify Fμν ρ σ (0 ) by a certain Chern-Simons term, based on the recently developed tensor-hierarchy formulation. For a locally scale-invariant system with multiple scalars, the minimum value of the potential is realized at exactly zero value, while local scale invariance is broken by some nonzero vacuum expectation values: ∃⟨σi⟩≠0 , ∃⟨Fm n r s⟩=f0ɛm n r s≠0 . For these values, the cosmological constant is maintained to be zero, despite the broken local scale invariance.

  1. Symmetry breaking in graphene layers on SiC-substrate—an ab-initio study

    NASA Astrophysics Data System (ADS)

    Agrawal, B. K.; Agrawal, S.

    2013-05-01

    A comprehensive detailed ab-initio study of the electronic structure of 1-7 graphene layers on the polar SiC (0 0 0 1) substrate systems has been performed for the first time. We observe a symmetry-breaking in all the graphene-SiC (0 0 0 1) substrate systems leading to an opening of band gap in contrast to the existence of zero band gap seen in the isolated graphene layer. The planar lattice parameter in graphene-SiC system decreases with the number of graphene layers from 3.051 Å to 2.948 Å showing an overall decrease of 3.5% and it approaches toward the bulk graphite. The electronic structure of the graphene layer-SiC system depends crucially on the planar lattice parameter and both the band gap and the location of the Dirac point are affected drastically. The band gap and the depth of the Dirac point below the Fermi level decrease with the number of graphene layers in conformity with the recent ARPES experiments of Zhou et al. The present results in some graphene-SiC systems are seen to be different from the earlier theoretical results reported in the literature.

  2. On the binding energy and the charge symmetry breaking in A ≤ 16 Λ-hypernuclei

    NASA Astrophysics Data System (ADS)

    Botta, E.; Bressani, T.; Feliciello, A.

    2017-04-01

    In recent years, several experiments using magnetic spectrometers provided high precision results in the field of Hypernuclear Physics. In particular, the accurate determination of the Λ-binding energy, BΛ, contributed to stimulate considerably the discussion about the Charge Symmetry Breaking effect in Λ-hypernuclei isomultiplets. We have reorganized the results from the FINUDA experiment and we have obtained a series of BΛ values for Λ-hypernuclei with A≤ 16 by taking into account data only from magnetic spectrometers implementing an absolute calibration of the energy scale (FINUDA at DAΦNE and electroproduction experiments at JLab and at MaMi). We have then critically revisited the results obtained at KEK by the SKS Collaboration in order to make possible a direct comparison between data from experiments with and without such an absolute energy scale. A synopsis of recent spectrometric measurements of BΛ is presented, including also emulsion experiment results. Several interesting conclusions are drawn, among which the equality within the errors of BΛ for the A = 7 , 12 , 16 isomultiplets, based only on recent spectrometric data. This observation is in nice agreement with a recent theoretical prediction. Ideas for possible new measurements which should improve the present experimental knowledge are finally put forward.

  3. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators

    NASA Astrophysics Data System (ADS)

    Chang, Cui-Zu; Li, Mingda

    2016-03-01

    The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity {σyx}=\\frac{{{e}2}}{h} without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.

  4. Marangoni-induced symmetry-breaking pattern selection on viscous fluids

    NASA Astrophysics Data System (ADS)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2016-11-01

    Symmetry breaking transitions on curved surfaces are found in a wide range of dissipative systems, ranging from asymmetric cell divisions to structure formation in thin films. Inherent within the nonlinearities are the associated curvilinear geometry, the elastic stretching, bending and the various fluid dynamical processes. We present a generalised Swift-Hohenberg pattern selection theory on a thin, curved and viscous films in the presence of non-trivial Marangoni effect. Testing the theory with experiments on soap bubbles, we observe the film pattern selection to mimic that of the elastic wrinkling morphology on a curved elastic bilayer in regions of slow viscous flow. By examining the local state of damping of surface capillary waves we attempt to establish an equivalence between the Marangoni fluid dynamics and the nonlinear elastic shell theory above the critical wavenumber of the instabilities and propose a possible explanation for the perceived elastic-fluidic duality. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  5. Cationic cyanine dyes: impact of symmetry-breaking on optical absorption and third-order polarizabilities.

    PubMed

    Yesudas, Kada

    2013-11-28

    A systematic study is carried out to find the exact crossover point from symmetric to asymmetric configurations (symmetry-breaking) in a series of cationic cyanine dyes. Hybrid density functional with varying exact-exchange admixture has been used to understand the impact of HF exchange both in the gas phase and in the presence of dielectric medium. This approach provides a basis for understanding the electronic structure and photophysical properties of cyanine dyes. The crossover points predicted using this method are in good agreement with the experiment. The SAC-CI method is used to evaluate the lowest S0 → S1 transition energies in the gas phase. These transitions are preferably dominated by the promotion of an electron from HOMO → LUMO. The average static third-order polarizabilities, [γ], are obtained within the three-state model approximation. The analysis showed that for symmetric cyanines, the calculated [γ] values are large and negative, mainly originated from the large S0 → S1 transition moments and small S0 → S1 transition energies. For asymmetric cyanines, the [γ] values are positive and mainly originate from the large change in the ground and first excited state dipole moments. However, both configurations do not include contributions from the two-photon absorption. Further, the localization of charge densities in the HOMO and LUMO indicates that the symmetric and asymmetric cyanines act as promising materials for molecular wires and molecular switches which are fundamental building blocks for molecular electronic devices.

  6. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators.

    PubMed

    Chang, Cui-Zu; Li, Mingda

    2016-03-31

    The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity σ(yx) = e2/h without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.

  7. Symmetry breaking and (pseudo)spin polarization in Veselago lenses for massless Dirac fermions

    NASA Astrophysics Data System (ADS)

    Reijnders, K. J. A.; Katsnelson, M. I.

    2017-03-01

    We study Veselago lensing of massless Dirac fermions by n-p junctions for electron sources with a certain polarization. This polarization corresponds to pseudospin for graphene and to real spin for topological insulators. Both for a point source and for injection into a sample through a narrow lead, we find that polarization leads to spatial symmetry breaking. For the Green's function, this results in a vertical displacement, or even complete vanishing of the main focus, depending on the exact polarization. For injection through a lead, it leads to a difference between the amounts of current emitted with positive and negative transversal momenta. We study both systems in detail using the semiclassical approximation. By comparing the results to the exact solutions, we establish that semiclassical methods provide a very effective way to study these systems. For the Green's function, we derive an easy-to-use analytical formula for the vertical displacement of the main focus. For current injection through a lead, we use semiclassical methods to identify two different scattering regimes.

  8. Feedback Control of an Ahmed Body Flow Exhibiting Symmetry-Breaking Regimes

    NASA Astrophysics Data System (ADS)

    Evstafyeva, Olga; Morgans, Aimee

    2016-11-01

    At motorway speeds two-thirds of usable engine energy of square-back vehicles is spent overcoming the aerodynamic drag. The main source of drag is the bi-stable low pressure wake which forms at the back of the body as the boundary layers separate over the rear edges of the vehicle. Identifying large coherent structures and describing the physics of the wake is, therefore, of great practical importance for understanding the sources of drag and informing drag-reduction strategies. Present work investigates numerically the flow past the Ahmed body- a commonly used test-case for a simplified vehicle geometry, at Reynolds numbers 310 < ReH < 435 . Previously reported experimental results on the bifurcation scenario for symmetry breaking of the Ahmed body wake (Grandemange et al., 2012) are reproduced in Large Eddy Simulations and using data from the full 3D flow-field, the destabilising dynamics of the wake and vortex systems are investigated further. Dynamic Mode Decomposition is performed to identify the main coherent structures and their frequencies and growth rates. A practical feedback control strategy is then implemented to achieve base pressure recovery yielding a concomitant drag reduction.

  9. Symmetry breaking and training from incomplete data with Radial Basis Boltzmann Machines.

    PubMed

    Nijman, M J; Kappen, H J

    1997-06-01

    A Radial Basis Boltzmann Machine (RBBM) is a specialized Boltzmann Machine architecture that combines feed-forward mapping with probability estimation in the input space, and for which very efficient learning rules exist. The hidden representation of the network displays symmetry breaking as a function of the noise in the dynamics. Thus, generalization can be studied as a function of the noise in the neuron dynamics instead of as a function of the number of hidden units. We show that the RBBM can be seen as an elegant alternative of k-nearest neighbor, leading to comparable performance without the need to store all data. We show that the RBBM has good classification performance compared to the MLP. The main advantage of the RBBM is that simultaneously with the input-output mapping, a model of the input space is obtained which can be used for learning with missing values. We derive learning rules for the case of incomplete data, and show that they perform better on incomplete data than the traditional learning rules on a 'repaired' data set.

  10. Observation of {sup 54}Ni: Cross-Conjugate Symmetry in f{sub 7/2} Mirror Energy Differences

    SciTech Connect

    Gadea, A.; De Angelis, G.; Axiotis, M.; Martinez, T.; Napoli, D. R.; Lenzi, S. M.; Lunardi, S.; Farnea, E.; Menegazzo, R.; Pavan, P.; Bazzacco, D.; Venturelli, R.; Marginean, N.; Zuker, A. P.; Curien, D.; Dorvaux, O.; Ur, C. A.; Kleinheinz, P.; Bednarczyk, P.; Nyberg, J.

    2006-10-13

    Gamma decays from excited states up to J{sup {pi}}=6{sup +} in the N=Z-2 nucleus {sup 54}Ni have been identified for the first time. Level energies are compared with those of the isobars {sup 54}Co and {sup 54}Fe and of the cross-conjugate nuclei of mass A=42. The good but puzzling f{sub 7/2} cross-conjugate symmetry in mirror and triplet energy differences is analyzed. Shell model calculations reproduce the new data but the necessary nuclear charge-dependent phenomenology is not fully explained by modern nucleon-nucleon potentials.

  11. Interacting topological phases in thin films of topological mirror Kondo insulators

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-Xing; Xu, Cenke; Liu, Chao-Xing

    2016-12-01

    We study interaction effects on thin films of topological mirror Kondo insulators (TMKIs), where the strong interaction is expected to play an important role. Our study has led to the following results: (i) We identify a rich phase diagram of noninteracting TMKIs with different mirror Chern numbers in the monolayer and bilayer thin films; (ii) we obtain the phase diagram with interaction and identify the regimes of interaction parameters to mimic bosonic symmetry-protected topological phases with either gapless bosonic modes or spontaneous mirror symmetry breaking at the boundary; and (iii) for the spontaneous mirror symmetry-breaking boundary, we also study various domain-wall defects between different mirror symmetry-breaking order parameters at the boundary. Our results reveal that the thin-film TMKI serves as an intriguing platform for experimental studies of interacting topological phases.

  12. Breaking of spherical symmetry in electronic structure, free and immersed atoms in an electron gas

    NASA Astrophysics Data System (ADS)

    Dorsett, Skye Forrest

    Total electronic energies are calculated numerically for free and singly-ionized He, Li, C, and Ne atoms using density functional theory. Immersion energies are calculated for a single C impurity atom embedded or absorbed into a charge-neutral system composed of a free-electron gas with uniform positive background, also called 'jellium'. Nonspherical effects resulting from the breaking of angular momentum symmetry are taken into account. Previous work has been limited to spherical approximations to these effects. Spin-polarization effects are incorporated through the local spin-density approximation. Solving the resulting coupled equations allows for a direct calculation of the total energy and the dielectric response of the charge cloud to an applied electric field. For a free carbon atom, we show that the ground state configuration predicted by the local spin density approximation violates Hund's 2nd rule. For free He, C, and Ne atoms in the presence of an applied electric field, we show that the polarizabilities calculated directly are in good agreement with previous results of perturbation theory and with experiment. For a carbon impurity system, phase shifts of the free-electron states are examined. Friedel oscillations and the Friedel sum rule are used for physical verification of the solutions. In the limit of low background density, we show that the impurity atom is affected by the presence of the electron gas and does not necessarily approach the free atom solution. Particularly, we show that the orbital magnetic quantum number is quenched for a neutral C impurity atom, even at very low background densities, which is again in violation of Hund's 2nd rule. For a neutral carbon impurity system, we show that the immersion energy changes from negative to postive value as the orbital magnetic quantum number is varied from 0 -- 1.

  13. Trapped internal waves over topography: Non-Boussinesq effects, symmetry breaking and downstream recovery jumps

    NASA Astrophysics Data System (ADS)

    Soontiens, Nancy; Stastna, Marek; Waite, Michael L.

    2013-06-01

    It is well-known that in certain parameter regimes, the steady flow of a density stratified fluid over topography can yield large amplitude internal waves. We discuss an embedded boundary method to solve the Dubreil-Jacotin-Long (DJL) equation for steady-state, supercritical flows over topography in an inviscid, stratified fluid. The DJL equation is equivalent to the full set of stratified steady Euler equations and thus the waves we compute are exact nonlinear solutions. The numerical method presented yields far better scaling with increase in grid size than other iterative methods that have been used to solve this equation, and this in turn allows for a more thorough exploration of parameter space. For waves under the Boussinesq approximation, we contrast the properties of trapped waves over hill-like and valley-like topography, finding that the symmetry of freely propagating solitary waves when the stratification is reflected across the middepth is not present for trapped waves. We extend the derivation of the DJL equation to the non-Boussinesq case and discuss the effect of the new, non-Boussinesq terms on the structure of the trapped waves, finding that the sharp transition between large and small amplitude waves observed under the Boussinesq approximation is much more gradual when the Boussinesq approximation is relaxed. Finally, we demonstrate the existence of asymmetric steady states over hill-like topography where the flow is subcritical upstream of the topography but transitions to supercritical somewhere over the hill. Waves in this new class of exact solutions are related to so-called downstream recovery jumps predicted on the basis of hydrostatic (shallow water) theories, but when breaking does not occur the recovery jump does not stop propagating downstream and an asymmetric state across the topography maximum is reached for long times.

  14. A novel approach for the study of near conformal theories for electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Weinberg, Evan

    The discovery of a light scalar at the Large Hadron Collider is in basic agreement with the predictions of an elementary Higgs in the Standard Model (SM). Nonetheless, a light, fundamental scalar is difficult to accommodate in the SM because quantum corrections suggest its mass should be much higher than the scale of electroweak symmetry breaking (EWSB). A natural possibility is to replace the Higgs by a strongly coupled composite. Composite dynamics also gives a natural explanation to the origin of EWSB. Phenomenologically viable composite models of EWSB are constrained by experiment to feature approximate scale invariance. This behavior may follow from near conformal dynamics. At present, lattice gauge theory (LGT) provides the only quantitative method to study near conformal composite Higgs dynamics in a fully consistent strongly coupled relativistic quantum field theory. As a novel approach to the question of finding and studying near conformal theories, I will apply LGT to the study of a generalization of Quantum ChromoDynamics (QCD) with four chiral fermion flavors plus eight flavors of finite, tunable mass. By continuously varying the mass of the eight heavy flavors, I can tune between the four flavor chirally broken theory, which exhibits features similar to QCD, and the twelve flavor theory, which is known to have a conformal fixed point. This is the "4+8 Model" for directly studying near-conformal behavior. In this dissertation, I will review modern composite phenomenology, followed by outlining a study of the 4+8 Model over a range of heavy flavor masses. As a check of near-conformal behavior, I will measure the scale dependent coupling with the method of the Wilson Flow. After verifying the existence of controllable, approximate scale invariance, I will measure the low energy particle spectrum of the 4+8 Model. This includes a Higgs-like light composite scalar. Throughout this dissertation I will make reference to LGT measurement code I wrote and

  15. Symmetry breaking in the opinion dynamics of a multi-group project organization

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Tao; Zhou, Jing; Li, Ping; Chen, Xing-Guang

    2012-10-01

    A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces: (i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture; and (ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness. Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes, i.e., a deadlock regime, a convergence regime, and a bifurcation regime in opinion dynamics. The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to. In the case of a three-group project with a symmetric social network, both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord, instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result (Physica A 378 (2007) p. 125 Fig. 5), project organization (PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations, which urges that apart from divergence in participants' interests, nonlinear interaction can also make conflict inevitable in the PO. The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO. It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.

  16. Viable Dark Matter via Radiative Symmetry Breaking in a Scalar Singlet Higgs Portal Extension of the Standard Model

    NASA Astrophysics Data System (ADS)

    Steele, T. G.; Wang, Zhi-Wei; Contreras, D.; Mann, R. B.

    2014-05-01

    We consider the generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal standard model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass Ms>80 GeV. However, in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking, we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%-100% with 106 GeV80 GeV detection region of the next generation XENON experiment.

  17. Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model.

    PubMed

    Steele, T G; Wang, Zhi-Wei; Contreras, D; Mann, R B

    2014-05-02

    We consider the generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal standard model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass M(s)>80 GeV. However, in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking, we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%-100% with 106 GeV80 GeV detection region of the next generation XENON experiment.

  18. Detection of time-reversal symmetry breaking in the noncentrosymmetric superconductor Re6Zr using muon-spin spectroscopy.

    PubMed

    Singh, R P; Hillier, A D; Mazidian, B; Quintanilla, J; Annett, J F; Paul, D McK; Balakrishnan, G; Lees, M R

    2014-03-14

    We have investigated the superconducting state of the noncentrosymmetric compound Re6Zr using magnetization, heat capacity, and muon-spin relaxation or rotation (μSR) measurements. Re6Zr has a superconducting transition temperature, Tc=6.75±0.05  K. Transverse-field μSR experiments, used to probe the superfluid density, suggest an s-wave character for the superconducting gap. However, zero and longitudinal-field μSR data reveal the presence of spontaneous static magnetic fields below Tc indicating that time-reversal symmetry is broken in the superconducting state and an unconventional pairing mechanism. An analysis of the pairing symmetries identifies the ground states compatible with time-reversal symmetry breaking.

  19. On the Lorentz symmetry breaking effects on a Dirac neutral particle inside a two-dimensional quantum ring

    NASA Astrophysics Data System (ADS)

    Bakke, K.; Belich, H.

    2014-07-01

    We study the effects of the Lorentz symmetry violation in the nonrelativistic quantum dynamics of a spin-1/2 neutral particle interacting with external fields confined to a two-dimensional quantum ring (W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)). We show a possible scenario for the Lorentz symmetry breaking that permits us to make an analogy with the Landau-Aharonov-Casher system (M. Ericsson, E. Sjöqvist, Phys. Rev. A 65, 013607 (2001)), where a change in the angular frequency characteristic of the confinement of a quantum particle to a two-dimensional ring is obtained. Then, we show that an upper bound for the Lorentz symmetry breaking parameters may be set up. Besides, we analyse another possible scenario of the Lorentz symmetry violation by showing the presence of an analogue of the Coulomb potential. We obtain the bound states solutions to the Schrödinger-Pauli equation and discuss a quantum effect characterized by the dependence of the angular frequency on the quantum numbers of the system.

  20. Mirrored Fragmentation Reactions--A New Technique for Probing Isospin Symmetry in Exotic Nuclei

    SciTech Connect

    Brown, J. R.; Bentley, M. A.; Taylor, M. J.; Aldrich, P.; Bazin, D.; Cook, J. M.; Diget, C. A.; Gade, A.; Glasmacher, T.; McDaniel, S. M.; Ratkiewicz, A.; Siwek, K.; Weisshaar, D.; Pritychenko, B.

    2008-05-12

    Gamma decays have been observed for the first time in the T{sub z} = -3/2 nucleus {sup 53}Ni. This represents the first gamma-spectroscopy of a T{sub z} = -3/2 nucleus heavier than A = 33. The nucleus was produced via a two-step fragmentation process, along with its mirror {sup 53}Mn. Differences in excitation energy between isobaric analogue states have been calculated and a preliminary interpretation attempted; shell model calculations are required to further understand these results. This work represents the first study of isobaric analogue states via mirrored fragmentation reactions and demonstrates the power of this new technique.

  1. Proceedings of the 1992 workshops on high-energy physics with colliding beams. Volume 3, Electroweak symmetry breaking at colliding-beam facilities

    SciTech Connect

    Rogers, J.

    1992-12-31

    This report contains viewgraphs on the following topics: Introduction to Electroweak Symmetry Breaking: Intermediate-Mass Higgs Bosons; Extended Higgs Sectors and Novel Searches; and Heavy Higgs Bosons and Strong WW Scattering.

  2. Short-range Ising spin glasses: The metastate interpretation of replica symmetry breaking

    NASA Astrophysics Data System (ADS)

    Read, N.

    2014-09-01

    Parisi's formal replica-symmetry-breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwards-Anderson model, runs into problems because as shown by Newman and Stein (NS) it does not allow for chaotic size dependence, and predicts non-self-averaging that cannot occur. NS proposed the concept of the metastate (a probability distribution over infinite-size Gibbs states in a given sample that captures the effects of chaotic size dependence) and a nonstandard interpretation of the RSB results in which the metastate is nontrivial and is responsible for what was called non-self-averaging. In this picture, each state drawn from the metastate has the ultrametric properties of the old theory, but when the state is averaged using the metastate, the resulting mixed state has little structure. This picture was constructed so as to agree both with the earlier RSB results and with rigorous results. Here we use the effective field theory of RSB, in conjunction with the rigorous definitions of pure states and the metastate in infinite-size systems, to show that the nonstandard picture follows directly from the RSB mean-field theory. In addition, the metastate-averaged state possesses power-law correlations throughout the low-temperature phase; the corresponding exponent ζ takes the value 4 according to the field theory in high dimensions d, and describes the effective fractal dimension of clusters of spins. Further, the logarithm of the number of pure states in the decomposition of the metastate-averaged state that can be distinguished if only correlations in a window of size W can be observed is of order Wd -ζ. These results extend the nonstandard picture quantitatively; we show that arguments against this scenario are inconclusive. More generally, in terms of Parisi's function q (x), if q(0)≠∫01dxq(x ), then the

  3. The search for new resonances in strong symmetry breaking scenarios with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Davies, Merlin

    Using the most recent data collected by the ATLAS detector in pp collisions delivered by the LHC at 7 and 8 TeV, this thesis shall establish severe constraints on a variety of models going beyond the Standard Model (SM) of particle physics. More particularly, two types of hypothetical particles, existing in various theoretical models shall be studied and probed. The first type will be the search for vector-like quarks (VLQ) produced in pp collisions through electroweak couplings with the u and d quarks. The quest for these particles will be made as they decay into either W(ℓnu)+jet or Z(ℓℓ)+jet. There exist theoretical arguments that establish that, under certain reasonable conditions, single production of VLQ dominates over production in pairs. The particular topology of such events enables the implementation of effective techniques to extract signal over electroweak background. The second type is the search for resonant particles decaying to WZ when the gauge bosons W and Z decay leptonically. The final states detected by ATLAS therefore contain three leptons (e, or mu) and missing transverse energy. The distribution of the invariant mass of these objects will then be examined to determine the presence or absence of new resonances that manifest themselves as localized excesses in m(WZ). Despite the fact that, at first glance, these two new types of particles have very little in common, they are in fact both closely linked to electroweak symmetry breaking. In many theoretical models, the hypothetical existence of VLQ is put forward to counteract the top quark's contribution to radiative loop corrections of the Higgs mass, a calculation which assumes that the Higgs is an elementary particle. Concurrently, other models foretelling the existence WZ resonances alternatively suggest that the Higgs is a composite particle, completely rewriting the whole Higgs sector of the SM. In this perspective, the two analyses presented in this thesis have a fundamental link

  4. Imaging chiral symmetry breaking from Kekulé bond order in graphene

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Christopher; Kim, Cheol-Joo; Brown, Lola; Schiros, Theanne; Nordlund, Dennis; Lochocki, Edward B.; Shen, Kyle M.; Park, Jiwoong; Pasupathy, Abhay N.

    2016-10-01

    Chirality--or `handedness’--is a symmetry property crucial to fields as diverse as biology, chemistry and high-energy physics. In graphene, chiral symmetry emerges naturally as a consequence of the carbon honeycomb lattice. This symmetry can be broken by interactions that couple electrons with opposite momenta in graphene. Here we directly visualize the formation of Kekulé bond order, one such phase of broken chiral symmetry, in an ultraflat graphene sheet grown epitaxially on a copper substrate. We show that its origin lies in the interactions between individual vacancies in the copper substrate that are mediated electronically by the graphene. We show that this interaction causes the bonds in graphene to distort, creating a phase with broken chiral symmetry. The Kekulé ordering is robust at ambient temperature and atmospheric conditions, indicating that intercalated atoms may be harnessed to drive graphene and other two-dimensional materials towards electronically desirable and exotic collective phases.

  5. Breaking pseudo-twofold symmetry in the poliovirus 3'-UTR Y-stem by restoring Watson-Crick base pairs.

    PubMed

    Zoll, Jan; Tessari, Marco; Van Kuppeveld, Frank J M; Melchers, Willem J G; Heus, Hans A

    2007-05-01

    The previously described NMR structure of a 5'-CU-3'/5'-UU-3' motif, which is highly conserved within the 3'-UTR Y-stem of poliovirus-like enteroviruses, revealed striking regularities of the local helix geometry, thus retaining the pseudo-twofold symmetry of the RNA helix. A mutant virus with both pyrimidine base pairs changed into Watson-Crick replicated as wild type, indicating the functional importance of this symmetry relation in viral RNA replication. Here we investigated the effect of changing only one of the two pyrimidine base pairs to Watson-Crick. We determined the NMR structures of two Y-stem variants: one containing the 5'-CU-3'/5'-AU-3' motif, which has been found in wild-type virus isolates as well, and the other containing a 5'-CU-3'/5'-UG-3' motif, which is not present in any enterovirus sequenced to date. Both structures show single pyrimidine mismatches with intercalated bases. In the 5'-CU-3'/5'-AU-3' motif a C-U Watson-Crick-type base pair is formed that retains the pseudo-twofold symmetry, while in the 5'-CU-3'/5'-UG-3' motif a single asymmetric U-U mismatch breaks the twofold symmetry. Surprisingly, for the nonnatural variant no effect of the single base-pair replacement was observed on polioviral RNA replication using an in vitro replicon assay.

  6. Indications of a possible symmetry and its breaking in a many-agent model obeying quantum statistics

    NASA Astrophysics Data System (ADS)

    Ezhov, Alexandr A.; Khrennikov, Andrei Yu.; Terentyeva, Svetlana S.

    2008-03-01

    The results of computer simulations are presented which give evidence for the existence of an interesting symmetry in a many-agent model which demonstrates, in special cases, both Bose-Einstein and Fermi-Dirac statistics. This symmetry is expressed in the close vicinity of the mean values of the degree of ultrametricity and the fraction of isosceles of the sets of agent memories (histories) coded by two different information-loss coding schemes. It is shown that this (in some sense) approximate statistical supersymmetry is probably broken at low temperatures—below some condensation limit. This breaking leads to the appearance of specific coding schemes for boson and fermion histories. The meaning of this specificity is revealed by applying the interpretation of the many-agent model described earlier [A. A. Ezhov and A. Yu. Khrennikov, Phys. Rev. E 71, 016138 (2005)].

  7. PT -breaking threshold in spatially asymmetric Aubry-André and Harper models: Hidden symmetry and topological states

    NASA Astrophysics Data System (ADS)

    Harter, Andrew K.; Lee, Tony E.; Joglekar, Yogesh N.

    2016-06-01

    Aubry-André-Harper lattice models, characterized by a reflection-asymmetric sinusoidally varying nearest-neighbor tunneling profile, are well known for their topological properties. We consider the fate of such models in the presence of balanced gain and loss potentials ±i γ located at reflection-symmetric sites. We predict that these models have a finite PT -breaking threshold only for specific locations of the gain-loss potential and uncover a hidden symmetry that is instrumental to the finite threshold strength. We also show that the topological edge states remain robust in the PT -symmetry-broken phase. Our predictions substantially broaden the possible experimental realizations of a PT -symmetric system.

  8. Spontaneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron layers in silicon and germanium.

    PubMed

    Shamim, S; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, A

    2014-06-13

    We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

  9. Emergence of Long-Range Order in BaTiO3 from Local Symmetry-Breaking Distortions

    NASA Astrophysics Data System (ADS)

    Senn, M. S.; Keen, D. A.; Lucas, T. C. A.; Hriljac, J. A.; Goodwin, A. L.

    2016-05-01

    By using a symmetry motivated basis to evaluate local distortions against pair distribution function data, we show without prior bias, that the off-center Ti displacements in the archetypal ferroelectric BaTiO3 are zone centered and rhombohedral-like across its known ferroelectric and paraelectric phases. We construct a simple Monte Carlo model that captures our main experimental findings and demonstrate how the rich crystallographic phase diagram of BaTiO3 emerges from correlations of local symmetry-breaking distortions alone. Our results strongly support the order-disorder picture for these phase transitions, but can also be reconciled with the soft-mode theory of BaTiO3 that is supported by some spectroscopic techniques.

  10. Comparative tests of isospin-symmetry-breaking corrections to superallowed 0{sup +}{yields}0{sup +} nuclear {beta} decay

    SciTech Connect

    Towner, I. S.; Hardy, J. C.

    2010-12-15

    We present a test with which to evaluate the calculated isospin-symmetry-breaking corrections to superallowed 0{sup +}{yields}0{sup +} nuclear {beta} decay. The test is based on the corrected experimental Ft values being required to satisfy conservation of the vector current (CVC). When applied to six sets of published calculations, the test demonstrates quantitatively that only one set, the one based on the shell model with Saxon-Woods radial wave functions, provides satisfactory agreement with CVC. This test can easily be applied to any sets of calculated correction terms that are produced in future.

  11. Gerade-ungerade symmetry breaking in HD: bound states supported by the I' (1)Pi(g) outer potential well.

    PubMed

    Grozdanov, T P; McCarroll, R

    2008-03-21

    Gerade-ungerade symmetry breaking in HD for the bound states supported by the shallow outer I' (1)Pi(g) potential is studied theoretically. By clarifying the asymptotic behavior of the relevant nonadiabatic couplings among the stats correlating to the n=2 dissociation limit, simple two-state (for f-parity) and three-state (for e-parity) approximations are formulated. They reproduce binding energies in very good agreement with recent spectroscopic measurements. Comparisons with the calculations based on a single model potential are presented and the dependence of the results on the used ab initio Born-Oppenheimer (clamped nuclei) potentials is discussed.

  12. Quantum entanglement in the spatial-symmetry-breaking phase transition of a driven-dissipative Bose-Hubbard dimer

    NASA Astrophysics Data System (ADS)

    Casteels, Wim; Ciuti, Cristiano

    2017-01-01

    We theoretically explore the quantum correlation properties of a dissipative Bose-Hubbard dimer in the presence of a coherent drive. In particular, we focus on the regime where the semiclassical theory predicts a bifurcation with a spontaneous spatial symmetry breaking. The critical behavior in a well-defined thermodynamical limit of large excitation numbers is considered and analyzed within a Gaussian approach. The case of a finite boson density is also examined by numerically integrating the Lindblad master equation for the density matrix. We predict the critical behavior around the bifurcation points accompanied by large quantum correlations of the mixed steady state, in particular, exhibiting a peak in the logarithmic entanglement negativity.

  13. Soft A4→Z3 symmetry breaking and cobimaximal neutrino mixing

    SciTech Connect

    Ma, Ernest

    2016-03-28

    In this study, I propose a model of radiative charged-lepton and neutrino masses with A4 symmetry. The soft breaking of A4 to Z3 lepton triality is accomplished by dimension-three terms. The breaking of Z3 by dimension-two terms allows cobimaximal neutrino mixing (θ13 ≠ 0, θ23 = π/4, δcp=π/2) to be realized with only very small finite calculable deviations from the residual Z3 lepton triality. This construction solves a long-standing technical problem inherent in renormalizable A4 models since their inception.

  14. Unusual Isospin-Breaking and Isospin-Mixing Effects in the A=35 Mirror Nuclei

    NASA Astrophysics Data System (ADS)

    Ekman, J.; Rudolph, D.; Fahlander, C.; Zuker, A. P.; Bentley, M. A.; Lenzi, S. M.; Andreoiu, C.; Axiotis, M.; de Angelis, G.; Farnea, E.; Gadea, A.; Kröll, Th.; Mărginean, N.; Martinez, T.; Mineva, M. N.; Rossi-Alvarez, C.; Ur, C. A.

    2004-04-01

    Excited states have been studied in 35Ar following the 16O(24Mg,1α1n)35Ar fusion-evaporation reaction at 60MeV using the Ge-detector array GASP. A comparison with the mirror nucleus 35Cl shows two remarkable features: (i)A surprisingly large energy difference for the 13/2- states, in which the hitherto overlooked electromagnetic spin-orbit term is shown to play a major role, and (ii)a very different decay pattern for the 7/2- states, which provides direct evidence of isospin mixing.

  15. Unusual isospin-breaking and isospin-mixing effects in the A=35 mirror nuclei.

    PubMed

    Ekman, J; Rudolph, D; Fahlander, C; Zuker, A P; Bentley, M A; Lenzi, S M; Andreoiu, C; Axiotis, M; de Angelis, G; Farnea, E; Gadea, A; Kröll, Th; Mărginean, N; Martinez, T; Mineva, M N; Rossi-Alvarez, C; Ur, C A

    2004-04-02

    Excited states have been studied in 35Ar following the 16O(24Mg,1alpha1n)35Ar fusion-evaporation reaction at 60 MeV using the Ge-detector array GASP. A comparison with the mirror nucleus 35Cl shows two remarkable features: (i) A surprisingly large energy difference for the 13/2(-) states, in which the hitherto overlooked electromagnetic spin-orbit term is shown to play a major role, and (ii) a very different decay pattern for the 7/2(-) states, which provides direct evidence of isospin mixing.

  16. Spontaneous symmetry breaking by charge stripes in the high pressure phase of superconducting La1.875Ba0.125CuO4.

    PubMed

    Hücker, M; Zimmermann, M V; Debessai, M; Schilling, J S; Tranquada, J M; Gu, G D

    2010-02-05

    In those cases where charge-stripe order has been observed in cuprates, the crystal structure is such that the average rotational symmetry of the CuO2 planes is reduced from fourfold to twofold. As a result, one could argue that the reduced lattice symmetry is essential to the existence of stripe order. We use pressure to restore the average fourfold symmetry in a single crystal of La1.875Ba0.125CuO4, and show by x-ray diffraction that charge-stripe order still occurs. Thus, electronically driven stripe order can spontaneously break the lattice symmetry.

  17. Spontaneous Symmetry Breaking by Charge Stripes in the High Pressure Phase of Superconducting La1.875Ba0.125CuO4

    NASA Astrophysics Data System (ADS)

    Hücker, M.; v. Zimmermann, M.; Debessai, M.; Schilling, J. S.; Tranquada, J. M.; Gu, G. D.

    2010-02-01

    In those cases where charge-stripe order has been observed in cuprates, the crystal structure is such that the average rotational symmetry of the CuO2 planes is reduced from fourfold to twofold. As a result, one could argue that the reduced lattice symmetry is essential to the existence of stripe order. We use pressure to restore the average fourfold symmetry in a single crystal of La1.875Ba0.125CuO4, and show by x-ray diffraction that charge-stripe order still occurs. Thus, electronically driven stripe order can spontaneously break the lattice symmetry.

  18. Higgs bosons, electroweak symmetry breaking, and the physics of the Large Hadron Collider

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2007-02-01

    The Large Hadron Collider, a 7 {circle_plus} 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electroweak symmetry? Why do particle physicists anticipate a great harvest of discoveries within reach of the LHC?

  19. Spontaneous breaking of the BRST symmetry in the presence of the Gribov horizon: Renormalizability

    SciTech Connect

    Capri, M.A.L.; Dudal, D.; Guimaraes, M.S.; Justo, I.F.; Palhares, L.F.; and others

    2013-12-15

    An all orders algebraic proof of the multiplicative renormalizability of the novel formulation of the Gribov–Zwanziger action proposed in Dudal (2012) [39], and allowing for an exact but spontaneously broken BRST symmetry, is provided. -- Highlights: •We study a novel formulation of the Gribov–Zwanziger action. •This formulation displays spontaneously broken BRST symmetry. •This model was presented in Phys. Rev. D 86, 045005 (2012) [arXiv:1205.3934]. •We provide an all orders algebraic proof of the renormalizability of this model.

  20. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Wang, Eryin; Lu, Xiaobo; Ding, Shijie; Yao, Wei; Yan, Mingzhe; Wan, Guoliang; Deng, Ke; Wang, Shuopei; Chen, Guorui; Ma, Liguo; Jung, Jeil; Fedorov, Alexei V.; Zhang, Yuanbo; Zhang, Guangyu; Zhou, Shuyun

    2016-12-01

    Graphene/hexagonal boron nitride (h-BN) has emerged as a model van der Waals heterostructure as the superlattice potential, which is induced by lattice mismatch and crystal orientation, gives rise to various novel quantum phenomena, such as the self-similar Hofstadter butterfly states. Although the newly generated second-generation Dirac cones (SDCs) are believed to be crucial for understanding such intriguing phenomena, fundamental knowledge of SDCs, such as locations and dispersion, and the effect of inversion symmetry breaking on the gap opening, still remains highly debated due to the lack of direct experimental results. Here we report direct experimental results on the dispersion of SDCs in 0°-aligned graphene/h-BN heterostructures using angle-resolved photoemission spectroscopy. Our data unambiguously reveal SDCs at the corners of the superlattice Brillouin zone, and at only one of the two superlattice valleys. Moreover, gaps of approximately 100 meV and approximately 160 meV are observed at the SDCs and the original graphene Dirac cone, respectively. Our work highlights the important role of a strong inversion-symmetry-breaking perturbation potential in the physics of graphene/h-BN, and fills critical knowledge gaps in the band structure engineering of Dirac fermions by a superlattice potential.