Science.gov

Sample records for miscible flood processes

  1. Scale-up of miscible flood processes

    SciTech Connect

    Orr, F.M. Jr.

    1992-05-01

    Results of a wide-ranging investigation of the scaling of the physical mechanisms of miscible floods are reported. Advanced techniques for analysis of crude oils are considered in Chapter 2. Application of supercritical fluid chromatography is demonstrated for characterization of crude oils for equation-of-state calculations of phase equilibrium. Results of measurements of crude oil and phase compositions by gas chromatography and mass spectrometry are also reported. The theory of development of miscibility is considered in detail in Chapter 3. The theory is extended to four components, and sample solutions for a variety of gas injection systems are presented. The analytical theory shows that miscibility can develop even though standard tie-line extension criteria developed for ternary systems are not satisfied. In addition, the theory includes the first analytical solutions for condensing/vaporizing gas drives. In Chapter 4, methods for simulation of viscous fingering are considered. The scaling of the growth of transition zones in linear viscous fingering is considered. In addition, extension of the models developed previously to three dimensions is described, as is the inclusion of effects of equilibrium phase behavior. In Chapter 5, the combined effects of capillary and gravity-driven crossflow are considered. The experimental results presented show that very high recovery can be achieved by gravity segregation when interfacial tensions are moderately low. We argue that such crossflow mechanisms are important in multicontact miscible floods in heterogeneous reservoirs. In addition, results of flow visualization experiments are presented that illustrate the interplay of crossflow driven by gravity with that driven by viscous forces.

  2. Scale-up of miscible flood processes. Annual report

    SciTech Connect

    Orr, F.M. Jr.

    1992-05-01

    Results of a wide-ranging investigation of the scaling of the physical mechanisms of miscible floods are reported. Advanced techniques for analysis of crude oils are considered in Chapter 2. Application of supercritical fluid chromatography is demonstrated for characterization of crude oils for equation-of-state calculations of phase equilibrium. Results of measurements of crude oil and phase compositions by gas chromatography and mass spectrometry are also reported. The theory of development of miscibility is considered in detail in Chapter 3. The theory is extended to four components, and sample solutions for a variety of gas injection systems are presented. The analytical theory shows that miscibility can develop even though standard tie-line extension criteria developed for ternary systems are not satisfied. In addition, the theory includes the first analytical solutions for condensing/vaporizing gas drives. In Chapter 4, methods for simulation of viscous fingering are considered. The scaling of the growth of transition zones in linear viscous fingering is considered. In addition, extension of the models developed previously to three dimensions is described, as is the inclusion of effects of equilibrium phase behavior. In Chapter 5, the combined effects of capillary and gravity-driven crossflow are considered. The experimental results presented show that very high recovery can be achieved by gravity segregation when interfacial tensions are moderately low. We argue that such crossflow mechanisms are important in multicontact miscible floods in heterogeneous reservoirs. In addition, results of flow visualization experiments are presented that illustrate the interplay of crossflow driven by gravity with that driven by viscous forces.

  3. Scale-up of miscible flood processes for heterogeneous reservoirs. Quarterly report, April 1, 1994--June 30, 1994

    SciTech Connect

    Orr, F.M. Jr.

    1994-07-01

    The current project is a systematic research effort to quantify relationships between process mechanisms that can lead to improved recovery from gas injection processes performed in heterogeneous Class 1 and Class 2 reservoirs. It will provide a rational basis for the design of displacement processes that take advantage of crossflow due to capillary, gravity and viscous forces to offset partially the adverse effects of heterogeneity. In effect, the high permeability zones are used to deliver fluid by crossflow to zones that would otherwise be flooded only very slowly. Thus, the research effort is divided into five areas: (a) Development of miscibility in multicomponent systems, (b) Design estimates for nearly miscible displacements, (c) Design of miscible floods for fractured reservoirs (d), Compositional flow visualization experiments, and (e) Simulation of near-miscible flow in heterogeneous systems. The status of the research effort in each area is reviewed briefly in the following section.

  4. Scale-up of miscible flood processes. [Quarterly report], January 1--April 31, 1992

    SciTech Connect

    Orr, F.M. Jr.

    1992-08-01

    Efficient application of miscible floods to heterogeneous reservoirs requires the designer to take advantage of more than one of the physical mechanisms that act and interact to determine displacement performance. In this report, the investigators summarize the interactions of phase behavior, nonuniform flow, and crossflow and based on novel results obtained during the course of their experimental efforts. They suggest design opportunities for application of gas injection to near-miscible recovery processes, to enhanced gravity drainage, and even to fractured reservoirs. To design such processes intelligently, the quantitative scaling of the interplay of phase equilibria, reservoir heterogeneity, viscous fingering and particularly crossflow must be understood. In essence, they propose to make use of crossflow, i.e. transport in the direction transverse to the basic flow direction, to sweep portions of reservoirs that can be reached only very slowly by direct displacement. In this report, the core displacement and flow visualization experiments described suggest that the effects of low interfacial tensions (IFT`s) and gravity can be used to advantage in the design of multicontact miscible displacements for heterogeneous reservoirs, including fractured reservoirs.

  5. Scale-up of miscible flood processes for heterogeneous reservoirs. Final report

    SciTech Connect

    Orr, F.M. Jr.

    1996-04-01

    Results of a wide-ranging investigation of the scaling of gas injection processes are reported. The research examines how the physical mechanisms at work during a gas injection project interact to determine process performance. In particular, the authors examine: the interactions of equilibrium phase behavior and two-phase flow that determine local displacement efficiency and minimum miscibility pressure, the combined effects of viscous fingering, gravity segregation and heterogeneity that control sweep efficiency in 2- and 3-dimensional porous media, the use of streamtube/streamline methods to create very efficient simulation technique for multiphase compositional displacements, the scaling of viscous, capillary and gravity forces for heterogeneous reservoirs, and the effects of the thin films and spreading behavior on three-phase flow. The following key results are documented: rigorous procedures for determination of minimum miscibility pressure (MMP) or minimum miscibility enrichment (MME) for miscibility have been developed for multicomponent systems; the complex dependence of MMP`s for nitrogen/methane floods on oil and injection gas composition observed experimentally is explained for the first time; the presence of layer-like heterogeneities strongly influences the interplay of gravity segregation and viscous fingering, as viscous fingers adapt to preferential flow paths and low permeability layers restrict vertical flow; streamtube/streamline simulation techniques are demonstrated for a variety of injection processes in 2 and 3 dimensions; quantitative scaling estimates for the transitions from capillary-dominated to gravity-dominated to viscous-dominated flows are reported; experimental results are given that demonstrate that high pressure CO{sub 2} can be used to generate low IFT gravity drainage in fractured reservoirs if fractures are suitably connected; and the effect of wetting and spreading behavior on three-phase flow is described. 209 refs.

  6. Scale-up of miscible flood processes. Quarterly report, July 1, 1993--September 30, 1993

    SciTech Connect

    Orr, F.M. Jr.

    1993-12-31

    Progress is reported for a comprehensive investigation of the scaling behavior of gas injection processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series of simulations and experiments. Compositional and first-contact miscible simulations of viscous fingering and gravity segregation are compared to show that the two techniques can give very different results. Also, analyzed are two-dimensional and three-dimensional flows in which gravity segregation and viscous fingering interact. The simulations show that 2D and 3D flows can differ significantly. A comparison of analytical solutions for three-component two-phase flow with experimental results for oil/water/alcohol systems is reported. While the experiments and theory show reasonable agreement, some differences remain to be explained. The scaling behavior of the interaction of gravity segregation and capillary forces is investigated through simulations and through scaling arguments based on analysis of the differential equations. The simulations show that standard approaches do not agree well with results of low IFT displacements. The scaling analyses, however, reveal flow regimes where capillary, gravity, or viscous forces dominate the flow.

  7. Scale-up of miscible flood processes for heterogeneous reservoirs. Second annual report

    SciTech Connect

    Orr, F.M. Jr.

    1995-03-01

    Progress is reported for a comprehensive investigation of the scaling behavior of gas injection processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series of simulations and experiments. Use of streamtube to model multiphase flow is demonstrated to be a fast and accurate approach for displacements that are dominated by reservoir heterogeneity. The streamtube technique is particularly powerful for multiphase compositional displacements because it represents the effects of phase behavior with a one-dimensional flow and represents the effects of heterogeneity through the locations of streamtubes. A new approach for fast calculations of critical tie-lines directly from criticality conditions is reported. A global triangular structure solution for four-component flow systems, whose tie-lies meet at the edge of a quaternary phase diagram or lie in planes is presented. Also demonstrated is the extension of this solution to multicomponent systems under the same assumptions. The interplay of gravity, capillary and viscous forces on final residual oil saturation is examined experimentally and theoretically. The analysis of vertical equilibrium conditions for three-phase gravity drainage shows that almost all oil can be recovered from the top part of a reservoir. The prediction of spreading and stability of thin film is performed to investigate three-phase gravity drainage mechanisms. Finally, experimental results from gravity drainage of crude oil in the presence of CO{sub 2} suggest that gravity drainage could be an efficient oil recovery process for vertically fractured reservoirs.

  8. Scale-up of miscible flood processes for heterogeneous reservoirs. 1993 annual report

    SciTech Connect

    Orr, F.M. Jr.

    1994-05-01

    Progress is reported for a comprehensive investigation of the scaling behavior of gas injection processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series of simulations and experiments. Compositional and first-contact miscable simulations of viscous fingering and gravity segregation are compared to show that the two techniques can give very different results. Also, analyzed are two-dimensional and three-dimensional flows in which gravity segregation and viscous fingering interact. The simulations show that 2D and 3D flows can differ significantly. A comparison of analytical solutions for three-component two-phase flow with experimental results for oil/water/alcohol systems is reported. While the experiments and theory show reasonable agreement, some differences remain to be explained. The scaling behavior of the interaction of gravity segregation and capillary forces is investigated through simulations and through scaling arguments based on analysis of the differential equations. The simulations show that standard approaches do not agree well with results of low IFT displacements. The scaling analyses, however, reveal flow regimes where capillary, gravity, or viscous forces dominate the flow.

  9. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    SciTech Connect

    Grigg, Reid B.; Schechter, David S.

    1999-10-15

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  10. Potential Mississippi oil recovery and economic impact from CO sub 2 miscible flooding

    SciTech Connect

    Moring, J.A.; Rogers, R.E. )

    1991-01-01

    Maturing of Mississippi oil reservoirs has resulted in a steady decline in crude oil production in the state. This paper reports that, to evaluate the potential of enhanced recovery processes, particularly in the use of the state's large CO{sub 2} reserves, for arresting this trend, the subject study was performed. A computer data base of over 1315 Mississippi reservoirs was established. All reservoirs were screened for applicability of the carbon dioxide miscible process. With models developed by the National Petroleum Council and DOE, incremental oil that could be produced from the carbon dioxide miscible process was calculated. Under selected economic conditions, carbon dioxide miscible flooding with utilization of carbon dioxide from the state's Norphlet formation (3-7 tcf reserves of high-purity CO{sub 2}) could produce 120 million barrels of incremental oil in Mississippi. Incremental state revenues as a consequence of this production were calculated to be $45 million of severance taxes, $50 million of corporate income taxes, and $60 million of royalty payments, expressed as present values.

  11. The tertiary extension of the Wizard Lake D-3A pool miscible flood

    SciTech Connect

    Backmeyer, L.A.; Guise, D.R.; Mac Donell, P.E.; Nute, A.J.

    1984-09-01

    A tertiary extension of the existing secondary hydrocarbon miscible flood in the Wizard Lake D-3A Pool was implemented in October, 1983. The extension will result in the oil-water contact being lowered 22.6 meters (74.1 feet) to allow miscible displacement of the residual oil in the water flushed portion of the reef. This water flushed zone was formed when the oil-water contact rose during primary depletion of the reservoir from discovery in 1951 until the implementation of the secondary miscible flood in 1969, and also during the repressuring phase of the secondary miscible flood. Ultimate recovery from the pool is expected to be 59 539 10/sup 3/m/sup 3/ (374.49 MMSTB) or 95.95 percent of the original oil-in-place; which is 4 531 10/sup 3/m/sup 3/ (28.50 MMSTB) higher than the secondary miscible flood and 18 583 10/sup 3/m/sup 3/ (116.88 MMSTB) more than under primary depletion. This paper reviews the implementation and monitoring of the tertiary extension of the miscible flood and also the performance of the pool to January 1, 1984.

  12. Origin of Scale-Dependent Dispersivity and Its Implications For Miscible Gas Flooding

    SciTech Connect

    Steven Bryant; Russ Johns; Larry Lake; Thomas Harmon

    2008-09-30

    Dispersive mixing has an important impact on the effectiveness of miscible floods. Simulations routinely assume Fickian dispersion, yet it is well established that dispersivity depends on the scale of measurement. This is one of the main reasons that a satisfactory method for design of field-scale miscible displacement processes is still not available. The main objective of this project was to improve the understanding of the fundamental mechanisms of dispersion and mixing, particularly at the pore scale. To this end, microsensors were developed and used in the laboratory to measure directly the solute concentrations at the scale of individual pores; the origin of hydrodynamic dispersion was evaluated from first principles of laminar flow and diffusion at the grain scale in simple but geometrically completely defined porous media; techniques to use flow reversal to distinguish the contribution to dispersion of convective spreading from that of true mixing; and the field scale impact of permeability heterogeneity on hydrodynamic dispersion was evaluated numerically. This project solved a long-standing problem in solute transport in porous media by quantifying the physical basis for the scaling of dispersion coefficient with the 1.2 power of flow velocity. The researchers also demonstrated that flow reversal uniquely enables a crucial separation of irreversible and reversible contributions to mixing. The interpretation of laboratory and field experiments that include flow reversal provides important insight. Other advances include the miniaturization of long-lasting microprobes for in-situ, pore-scale measurement of tracers, and a scheme to account properly in a reservoir simulator (grid-block scale) for the contributions of convective spreading due to reservoir heterogeneity and of mixing.

  13. Scale-up of miscible flood processes

    SciTech Connect

    Orr, F.M.

    1991-06-01

    This report describes recent progress in a research effort to quantify the scaling of interactions of phase behavior of multicomponent mixtures with unstable flow in heterogeneous porous media. Results are presented in three areas: Phase behavior, fluid properties and characterization of crude oils; interactions of phase behavior and flow; viscous fingering and reservoir heterogeneity. In the first area, results of phase behavior experiments are reported for mixtures of CO{sub 2} with crude oil from the Means field. Detailed analyses of phase compositions are also reported for samples taken during the PVT experiments. Also reported are results of an investigation of crude oil compositions and phase compositions by gas chromatography combined with mass spectrometry. In the second area, the first detailed comparison is reported for displacements with and without volume change as components change phase. The solutions described were obtained by the method of characteristics. Also described is a transformation that allows radial flow solutions to be obtained from the linear solutions presented previously. Results of experiments and numerical computations that described the growth of viscous fingers are described in the third area. Results and simulations show clearly that even mild permeability heterogeneity can have a dramatic effect on the form and location of viscous fingers. They also show that the simulations reproduce with good accuracy the transition from flow dominated by viscous forces to flow dominated by the permeability distribution. The agreement between simulation and experiment is good enough that the particle-tracking simulation approach can be used with confidence to explore scaling questions. 54 refs., 126 figs., 23 tabs.

  14. Improved efficiency of miscible CO{sub 2} floods and enhanced prospects for CO{sub 2} flooding heterogeneous reservoirs. Annual report, April 14, 1994--April 13, 1995

    SciTech Connect

    Grigg, R.; Heller, J.; Schechter, D.

    1995-09-01

    The overall goal of this project is to improve the efficiency of miscible CO{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective is being accomplished by extending experimental research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) miscible CO{sub 2} flooding in fractured reservoirs. This report provides results of the first year of the three-year project for each of the three task areas.

  15. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2004-06-30

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2004, 6.26 MM lb of carbon dioxide were injected into the pilot area. Carbon dioxide injection rates averaged about 250 MCFD. Carbon dioxide was detected in one production well near the end of May. The amount of carbon dioxide produced was small during this period. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February, increasing to an average of about 2.5 B/D in May and June. Operational problems encountered during the initial stages of the flood were identified and resolved.

  16. Development of a method for evaluating carbon dioxide miscible flooding prospects. Final report

    SciTech Connect

    Green, D.W.; Swift, G.W.

    1985-03-01

    Research was undertaken to develop a method of evaluating reservoirs as prospects for carbon dioxide flooding. Evaluation was to be based on a determination of miscibility pressure and displacement efficiency under idealized conditions. To reach the objective, project work was divided into five areas: (1) conducting of phase-equilibrium studies of carbon dioxide with synthetic oils; (2) application of an equation of state to simulate the phase behavior of carbon dioxide - oil systems; (3) conducting of linear displacements of crude oils and synthetic oils by carbon dioxide in a slim-tube apparatus; (4) application of the equation of state, the phase-behavior data and slim-tube data to develop a method of screening reservoirs for carbon dioxide flooding based on determination of minimum miscibility pressure and displacement efficiency; (5) development of a one-dimensional mathematical model, based on the equation of state, for application in conjunction with the results of Parts 1 to 4. The accomplishments for these five areas are discussed in five chapters. 44 references, 90 figures, 42 tables.

  17. Improved minimum miscibility pressure correlation for CO2 flooding using various oil components and their effects

    NASA Astrophysics Data System (ADS)

    Lai, Fengpeng; Li, Zhiping; Hu, Xiaoqing

    2017-03-01

    Carbon dioxide (CO2) flooding is an effective method of enhanced oil recovery (EOR) that has become one of the most important EOR processes. One of the key factors in the design of a CO2 injection project is the minimum miscibility pressure (MMP), whereas local sweeping efficiency during gas injection is dependent on the MMP. There are many empirical correlation analyses for the MMP calculation. However, these analyses focus on the molecular weight of the C5+ or C7+ fraction, and do not emphasize the effects of various components on MMP. Our study aims to develop an improved CO2–oil MMP correlation analysis that includes parameters such as reservoir temperature and various oil mole fractions. Here, correlation analysis was performed to define the influence of various components on the MMP using various data from 45 oilfields which have experimental CO2–oil MMP and oil compositions readily available. Thirty of the data sets were used to develop an improved correlation, and the other 15 data sets were used to verify the correlation. It was found that the mole fraction of C3 and C6 were the main factors that affected MMP. There was a good quadratic polynomial relationship between the mole fraction of C3 and MMP, and the relationship also existed between the mole fraction of C6 and MMP. The results do not include the molecular weight of the C5+ or C7+ fraction like other common correlations. Nine popular correlations were then used to also predict the MMP, and the comparison showed that the improved CO2–oil MMP correlation defined here was a better estimate. The correlation was then used in Dongshisi and Fuyu oilfields to assess EOR potential, the results also indicated that MMP increased over the course of the CO2 flooding process. This increase shows that it would be more difficult to achieve a mixed phase between crude oil and CO2, therefore the oil recovery would be difficult to further improve towards the end of injection.

  18. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir, Class I

    SciTech Connect

    Bou-Mikael, Sami

    2002-02-05

    This report demonstrates the effectiveness of the CO2 miscible process in Fluvial Dominated Deltaic reservoirs. It also evaluated the use of horizontal CO2 injection wells to improve the overall sweep efficiency. A database of FDD reservoirs for the gulf coast region was developed by LSU, using a screening model developed by Texaco Research Center in Houston. The results of the information gained in this project is disseminated throughout the oil industry via a series of SPE papers and industry open forums.

  19. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir, Class I

    SciTech Connect

    Bou-Mikael, Sami

    2002-02-05

    This report demonstrates the effectiveness of the CO2 miscible process in Fluvial Dominated Deltaic reservoirs. It also evaluated the use of horizontal CO2 injection wells to improve the overall sweep efficiency. A database of FDD reservoirs for the gulf coast region was developed by LSU, using a screening model developed by Texaco Research Center in Houston. The results of the information gained in this project is disseminated throughout the oil industry via a series of SPE papers and industry open forums.

  20. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect

    Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2010-03-07

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

  1. Development and verification of simplified prediction models for enhanced oil recovery applications. CO/sub 2/ (miscible flood) predictive model. Final report

    SciTech Connect

    Paul, G.W.

    1984-10-01

    A screening model for CO/sub 2/ miscible flooding has been developed consisting of a reservoir model for oil rate and recovery and an economic model. The reservoir model includes the effects of viscous fingering, reservoir heterogeneity, gravity segregation and areal sweep. The economic model includes methods to calculate various profitability indices, the windfall profits tax, and provides for CO/sub 2/ recycle. The model is applicable to secondary or tertiary floods, and to solvent slug or WAG processes. The model does not require detailed oil-CO/sub 2/ PVT data for execution, and is limited to five-spot patterns. A pattern schedule may be specified to allow economic calculations for an entire project to be made. Models of similar architecture have been developed for steam drive, in-situ combustion, surfactant-polymer flooding, polymer flooding and waterflooding. 36 references, 41 figures, 4 tables.

  2. A simulation research on evaluation of development in shale oil reservoirs by near-miscible CO2 flooding

    NASA Astrophysics Data System (ADS)

    Lai, Fengpeng; Li, Zhiping; Fu, Yingkun; Yang, Zhihao; Li, Hong

    2015-08-01

    Shale oil is a key resource that could mitigate the impending energy shortage in the future. Despite its abundance in China, studies on shale oil are still at the preliminary stage. Shale oil development through CO2 flooding has been successfully implemented in the United States. Therefore, the mechanics of CO2 flooding in shale oil reservoirs should be investigated. This study applies a simulation method to evaluate the development efficiency of CO2 flooding in shale oil reservoirs. Near-miscible CO2 flooding can effectively develop shale oil. After 20 years, recovery could improve by up to 9.56% as a result of depletion development under near-miscible CO2 flooding with 0.5% pore volume gas injection. Horizontal well injection is better than vertical well injection in terms of sweep efficiency and recovery. Cyclic gas injection is superior to continuous gas injection because the former reduces gas channelling. Thus, the use of horizontal wells with near-miscible cyclic gas injections has the potential to effectively develop shale oil reservoirs.

  3. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfn; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2004-12-31

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. Continuous carbon dioxide injection began on December 2, 2003. By the end of December 2004, 11.39 MM lb of carbon dioxide were injected into the pilot area. Carbon dioxide injection rates averaged about 242 MCFD. Vent losses were excessive during June as ambient temperatures increased. Installation of smaller plungers in the carbon dioxide injection pump reduced the recycle and vent loss substantially. Carbon dioxide was detected in one production well near the end of May and in the second production well in August. No channeling of carbon dioxide was observed. The GOR has remained within the range of 3000-4000 for most the last six months. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February, increasing to an average of about 2.35 B/D for the six month period between July 1 and December 31. Cumulative oil production was 814 bbls. Neither well has experienced increased oil production rates expected from the arrival of the oil bank generated by carbon dioxide injection.

  4. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2006-06-30

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and two production wells on about 10 acre spacing. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February 2004, increasing to an average of about 3.78 B/D for the six month period between January 1 and June 30, 2005 before declining. By June 30, 2006, 41,566 bbls of water were injected into CO2I-1 and 2,726 bbl of oil were produced from the pilot. Injection rates into CO2I-1 declined with time, dropping to an unacceptable level for the project. The injection pressure was increased to reach a stable water injection rate of 100 B/D. However, the injection rate continued to decline with time, suggesting that water was being injected into a region with limited leakoff and production. Oil production rates remained in the range of 3-3.5 B/D following conversion to water injection. Oil rates increased from about 3.3 B/D for the period from January through March to about 4.7 B/D for the period from April through June. If the oil rate is sustained, this may be the first indication of the arrival of the oil bank mobilized by carbon dioxide injection. A sustained fluid withdrawal rate of about 200 B/D from CO2 No.12 and CO2 No.13 appears to be necessary to obtain higher oil rates. There is no evidence that the oil bank generated by injection of carbon dioxide has

  5. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2005-12-31

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and two production wells on about 10 acre spacing. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February 2004, increasing to an average of about 3.78 B/D for the six month period between January 1 and June 30, 2005 before declining. By the end of December 2005, 14,115 bbls of water were injected into CO2I-1 and 2,091 bbl of oil were produced from the pilot. Injection rates into CO2I-1 declined with time, dropping to an unacceptable level for the project. The injection pressure was increased to reach a stable water injection rate of 100 B/D. However, the injection rate continued to decline with time, suggesting that water was being injected into a region with limited leakoff and production. Oil production rates remained in the range of 3-3.5 B/D following conversion to water injection. There is no evidence that the oil bank generated by injection of carbon dioxide has reached either production well. Continued injection of water is planned to displace oil mobilized by carbon dioxide to the production wells and to maintain the pressure in the PPV region at a level that supports continued miscible displacement as the carbon dioxide is displaced by the injected water.

  6. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2007-03-07

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. By December 31, 2006, 79,072 bbls of water were injected into CO2 I-1 and 3,923 bbl of oil were produced from the pilot. Water injection rates into CO2 I-1, CO2 No.10 and CO2 No.18 were stabilized during this period. Oil production rates increased from 4.7 B/D to 5.5 to 6 B/D confirming the arrival of an oil bank at CO2 No.12. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver No.7, Colliver No.3 and possibly Graham A4 located on an adjacent property. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Our management plan is to continue water injection maintaining oil displacement by displacing the carbon dioxide remaining in the C zone,. If the decline rate of production from the Colliver Lease remains as estimated and the oil rate from the pilot region remains constant, we estimate that the oil production attributed to carbon dioxide injection will be about 12,000 bbl by December 31, 2007. Oil recovery would be equivalent to 12 MCF/bbl, which is consistent with field experience in

  7. Improved efficiency of miscible CO{sub 2} floods and enhanced prospects for CO{sub 2} flooding heterogeneous reservoirs. Annual report, April 18, 1995--April 17, 1996

    SciTech Connect

    Grigg, R.B.; Schechter, D.S.

    1996-10-01

    The overall goal of this project is to improve the efficiency of miscible CO{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective is being accomplished by extending experimental and modeling research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) low IFT processes and the possibility of CO{sub 2} flooding in fractured reservoirs. This report provides results of the second year of the three-year project for each of the three task areas. In the first task, we are investigating a desirable characteristic of CO{sub 2}-foam called Selective Mobility Reduction (SMR) that results in an improvement in displacement efficiency by reducing the effects of reservoir heterogeneity. Research on SMR of foam during the past year has focused on three subjects: (1) to verify SMR in different rock permeabilities that are in capillary contact; (2) to test additional surfactants for the SMR property; and (3) to develop a modeling approach to assess the oil recovery efficiency of SMR in CO{sub 2}-foam on a reservoir scale. The experimental results from the composite cores suggest that the rock heterogeneity has significant effect on two phase (CO{sub 2}/brine) flow behavior in porous media, and that foam can favorably control CO{sub 2} mobility. The numerical modeling results suggest that foam with SMR can substantially increase the sweep efficiency and therefore improve oil recovery.

  8. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    SciTech Connect

    Grigg, Reid B.

    1999-10-28

    Continued testing the horizontal-well capabilities of MASTER, the DOE's pseudomiscible reservoir simulator, by running simulation tests with several combinations of horizontal and vertical wells and various alternative reservoir descriptions. These sensitivity tests were compared and validated using simulation results from a commercial simulator. This sensitivity study was used in conjunction with our numerical tests on the comparison of foam injection processes and horizontal well injection processes. In addition, a preprocessor used to set up the input file to MASTER and a postprocessor for plotting the well performance were completed. Tests were progressed and the official version of MASTER will be released in the next few months.

  9. Post waterflood CO{sub 2} miscible flood in light oil, fluvial-dominated deltaic reservoir. FY 1993 annual report

    SciTech Connect

    Davis, D.W.

    1995-03-01

    The project is a Class 1 DOE-sponsored field demonstration project of a CO{sub 2} miscible flood project at the Port Neches Field in Orange County, Texas. The project will determine the recovery efficiency of CO{sub 2} flooding a waterflooded and a partial waterdrive sandstone reservoir at a depth of 5,800. The project will also evaluate the use of a horizontal CO{sub 2} injection well placed at the original oil-water contact of the waterflooded reservoir. A PC-based reservoir screening model will be developed by Texaco`s research lab in Houston and Louisiana State University will assist in the development of a database of fluvial-dominated deltaic reservoirs where CO{sub 2} flooding may be applicable. This technology will be transferred throughout the oil industry through a series of technical papers and industry open forums.

  10. Displacement front behavior of near miscible CO2 flooding in decane saturated synthetic sandstone cores revealed by magnetic resonance imaging.

    PubMed

    Liu, Yu; Teng, Ying; Jiang, Lanlan; Zhao, Jiafei; Zhang, Yi; Wang, Dayong; Song, Yongchen

    2017-04-01

    It is of great importance to study the CO2-oil two-phase flow characteristic and displacement front behavior in porous media, for understanding the mechanisms of CO2 enhanced oil recovery. In this work, we carried out near miscible CO2 flooding experiments in decane saturated synthetic sandstone cores to investigate the displacement front characteristic by using magnetic resonance imaging technique. Experiments were done in three consolidated sandstone cores with the permeabilities ranging from 80 to 450mD. The oil saturation maps and the overall oil saturation during CO2 injections were obtained from the intensity of magnetic resonance imaging. Finally the parameters of the piston-like displacement fronts, including the front velocity and the front geometry factor (the length to width ratio) were analyzed. Experimental results showed that the near miscible vertical upward displacement is instable above the minimum miscible pressure in the synthetic sandstone cores. However, low permeability can restrain the instability to some extent. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Improved efficiency of miscible CO2 floods and enhanced prospects for CO2 flooding heterogeneous reservoirs. Final report, April 17, 1991--May 31, 1997

    SciTech Connect

    Grigg, R.B.; Schechter, D.S.

    1998-02-01

    From 1986 to 1996, oil recovery in the US by gas injection increased almost threefold, to 300,000 bbl/day. Carbon dioxide (CO{sub 2}) injection projects make up three-quarters of the 191,139 bbl/day production increase. This document reports experimental and modeling research in three areas that is increasing the number of reservoirs in which CO{sub 2} can profitably enhance oil recovery: (1) foams for selective mobility reduction (SMR) in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) low interfacial tension (97) processes and the possibility of CO{sub 2} flooding in naturally fractured reservoirs. CO{sub 2} injection under miscible conditions can effectively displace oil, but due to differences in density and viscosity the mobility of CO{sub 2} is higher than either oil or water. High CO{sub 2} mobility causes injection gas to finger through a reservoir, causing such problems as early gas breakthrough, high gas production rates, excessive injection gas recycling, and bypassing of much of the reservoir oil. These adverse effects are exacerbated by increased reservoir heterogeneity, reaching an extreme in naturally fractured reservoirs. Thus, many highly heterogeneous reservoirs have not been considered for CO{sub 2} injection or have had disappointing recoveries. One example is the heterogeneous Spraberry trend in west Texas, where only 10% of its ten billion barrels of original oil in place (OOIP) are recoverable by conventional methods. CO{sub 2} mobility can be reduced by injecting water (brine) alternated with CO{sub 2} (WAG) and then further reduced by adding foaming agents-surfactants. In Task 1, we studied a unique foam property, selective mobility reduction (SMR), that effectively reduces the effects of reservoir heterogeneity. Selective mobility reduction creates a more uniform displacement by decreasing CO{sub 2} mobility in higher permeability zones more than in lower permeability zones.

  12. Improved efficiency of miscible CO{sub 2} floods and enhanced prospects for CO{sub 2} flooding heterogeneous reservoirs. Annual report, June 1, 1997--May 31, 1998

    SciTech Connect

    Grigg, R.B.; Schechter, D.S.

    1998-07-01

    The goal of this project is to improve the efficiency of miscible CO{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the first year of the three-year project that will be exploring three principle areas: (1) Fluid and matrix interactions (understanding the problems): interfacial tension (IFT), phase behavior, miscibility, capillary number, injectivity, wettability, and gravity drainage; (2) Conformance control/sweep efficiency (solving the problems): reduction of mobility using foam, diversion by selective mobility reduction (SMR) using foam, improved injectivity, alternating water and gas injection, and using horizontal wells; and (3) Reservoir simulation for improved oil recovery (predicting results): gravity drainage, SMR, CO{sub 2}-foam flooding, interfacial tension, injectivity profile, horizontal wells, and naturally fractured reservoirs. Studies of surfactant foam quality were performed during this first year. Simulation studies on a foam pilot area resulted in an acceptable history match model. The results confirm that the communication path between the foam injection well and a production well had a strong impact on the production performance. A laboratory study to aid in the development of a gravity drainage reservoir was undertaken on the Wellman Unit. Experiments were begun meant to duplicate situations of injectivity loss in WAG flooding and identify factors affecting the injectivity loss. The preliminary results indicate that for a given rock the injectivity loss depends on oil saturation in the core during WAG flooding. The injectivity loss is higher in cores with high in-situ oil saturations during WAG flooding. This effect is being verified by more experimental data.

  13. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-03-31

    Progress is reported for the period from January 1, 2002 to March 31, 2002. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. While this review process is being conducted, work is proceeding on well testing to obtain reservoir properties and on the VIP reservoir simulation model to improve model prediction and better understand the controls that certain parameters exert on predicted performance. In addition, evaluation of the economics of commercial application in the surrounding area was performed. In a meeting on January 14, 2002 the possibility of staging the demonstration, starting with a 10-acre sub-pattern flood was raised and the decision made to investigate this plan in detail. The influence of carbon dioxide on oil properties and the influence of binary interaction parameters (BIP) used in the VIP simulator were investigated. VIP calculated swelling factors are in good agreement with published values up to 65% mole-fraction CO2. Swelling factor and saturated liquid density are relatively independent of the BIP over the range of BIPs used (0.08-0.15) up to 65% mole-fraction CO2. Assuming a CO2 EOR recovery rate projected as being most likely by current modeling, commercial scale CO2 flooding at $20/BO is possible in the leases in Hall-Gurney field. Relatively small floods (240-320 acres, 4-6 patterns) are economically viable at $20/BO in areas of very high primary and secondary productivity (>14 MBO/net acre recovery). Leases with moderately high primary and secondary productivity (> 10 MBO/net acre recovery) can be economic when combined with high productivity leases to form larger floods (>640 acres, 9 or more patterns).

  14. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal - Appendix)

    SciTech Connect

    Bou-Mikael, Sami

    2002-02-05

    The main objective of the Port Neches Project was to determine the feasibility and producibility of CO2 miscible flooding techniques enhanced with horizontal drilling applied to a Fluvial Dominated Deltaic reservoir. The second was to disseminate the knowledge gained through established Technology Transfer mechanisms to support DOE's programmatic objectives of increasing domestic oil production and reducing abandonment of oil fields.

  15. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal), Class I

    SciTech Connect

    Bou-Mikael, Sami

    2002-02-05

    This project outlines a proposal to improve the recovery of light oil from waterflooded fluvial dominated deltaic (FDD) reservoir through a miscible carbon dioxide (CO2) flood. The site is the Port Neches Field in Orange County, Texas. The field is well explored and well exploited. The project area is 270 acres within the Port Neches Field.

  16. Review of miscible flood performance, intisar ''D'' field, socialist people's Libyan Arab Jamahiriya

    SciTech Connect

    Des Brisay, C.L.; Elghussein, B.F.; Holst, P.H.; Misellati, A.

    1982-08-01

    One of the largest miscible gas injection projects in the world is in its 12th year in the Intisar ''D'' field in the Socialist People's Libyan Arab Jamahiriya. As of March 31, 1981, cumulative oil production totaled 890 MMbbl (141.4 X 10/sup 6/ m/sup 3/) of oil, or 56% recovery of the estimated stock-tank original oil in place (OOIP). This past performance and recent simulation studies indicate a final recovery efficiency on the order of 70%.

  17. Improved Efficiency of Miscible CO{sub 2} Floods and Enhanced Prospects for CO{sub 2} Flooding Heterogeneous Reservoirs

    SciTech Connect

    Boyun Guo; David S. Schechter; Jyun-Syung Tsau; Reid B. Grigg; Shih-Hsien Chang

    1997-10-31

    This work will examine three major areas in which CO{sub 2} flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. The first full quarter of this project has been completed. We began examining synergistic affects of mixed surfactant versus single surfactant systems to enhance the properties of foams used for improving oil recovery in CO{sub 2} floods. The purpose is to reduce the concentration of surfactants or finding less expensive surfactants. Also, we are examining the effect of oil saturation on the development of foam in CO{sub 2}-surfactant solution systems. CO{sub 2} flooding of low permeability, vugular, and fracture reservoirs are another major thrust of this project. Work conducted this quarter involved simulating gravity stable floods using large core samples; results showed excellent recovery in a low permeability vugular core.

  18. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect

    Joe Sinner

    2002-03-26

    The objective of this project is two-fold. It will demonstrate use of nitrogen as a widely available, cost-effective and environmentally superior injectant for miscible floods. It will also demonstrate the effectiveness of horizontal wellbores in reducing gas breakthrough and cycling. It is expected that the demonstration will lead to implementation of nitrogen injection projects in areas without readily available carbon dioxide sources. Technology transfer will occur throughout the project.

  19. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2003-06-30

    Progress is reported for the period from April 1, 2003 to June 30, 2003. The pilot water injection plant became operational 4/18/03 and began long-term injection in the CO2I No.1 on 4/23/03. The CO2I No.1 exhibits sufficient injectivity for pilot requirements with average absolute permeability surrounding this well equal to {approx}85 millidarcies. Response to injection in the CO2I No.1 has established that conductivity between CO2I No.1 and CO2 No.12, No.10, No.18 and TB Carter No.5 is sufficient for the demonstration. Workovers of the CO2 No.16 and CO2 No.13 were completed in April and May, respectively. Pressure response indicates No.16 communicates with the flood pattern area but core, swab-test, and pressure response data indicate permeability surrounding No.16 is not adequate to maintain the production rates needed to support the original pattern as the well is presently completed. Decisions concerning possible further testing and stimulation have been postponed until after testing of the No.13 is complete. Production rates for the No.13 are consistent with a surrounding reservoir average absolute permeability of {approx}80 md. However, pressure and rate tests results, partially due to the nature of the testing conducted to date, have not confirmed the nature of the CO2I No.1-CO2 No.13 conductivity. A build-up test and conductivity test are planned to begin the first weeks of the next quarter to obtain reservoir properties data and establish the connectivity and conductivity between CO2 I-1 and CO2 No.13. A new geomodel of the pattern area has been developed based on core from No.16 and the new wireline logs from the No.10, No.12, No.16, and No.13. The new geomodel is currently being incorporated into the basic calculations of reservoir volume and flood design and predicted response as well as the reservoir simulators. Murfin signed a letter agreement with FLOCO2 of Odessa, TX for supply of CO2 storage and injection equipment. Technology transfer activities

  20. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect

    Alan P. Byrnes; G. Paul Willhite

    2003-01-01

    Progress is reported for the period from October 1, 2002 to December 31, 2002. On September 27, 2002 the US DOE approved the proposed modified plan to flood a 10+-acre pattern. On November 1, 2002 Murfin Drilling Company purchased the 70-acre pilot area and will continue as the operator of the pilot. Murfin is seeking working interest partners and meetings with local small independents were conducted. To date, White Eagle Resources and John O. Farmer Oil Company have committed to working interest in the project. Arrangements have been made with Rein Operating to test the Rein No. 7 water supply well on the neighboring lease. Based on review of wellbore conditions in the Colliver No. 9 and No. 16 it has been decided to use the No. 16 in the pilot. A new tank battery was installed near the Colliver No. 10 well and the existing producers plumbed to the new tank battery to isolate production from the pilot area. Reservoir simulations have indicated that the low-permeability interval in the Carter-Colliver CO2I No. 1 injection well below 2,900 ft does not exhibit sufficient injectivity to warrant special stimulation or conformance treatment programs at the present time. Discussions have been initiated with FLOCO2 and preliminary conditions have been agreed upon for the exchange of CO2 for the use of storage and pump equipment at the pilot. A short-term injection test and the well reworks have been scheduled. Proposed modifications to the project plan were reviewed in the previous quarterly technical progress report. A presentation was given at the DOE Class II Review Meeting in Midland, TX on December 12, 2002.

  1. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect

    Joe Sinner

    2004-06-30

    The DOE-sponsored project at the East Binger Unit is an investigation into the benefits of reservoir characterization and horizontal wells in this particular setting of geologic and recovery method. The geologic setting is a tight (average porosity of 7% and average permeability of less than 1 millidarcy) Pennsylvanian-age sandstone at about 10,000 feet, and the recovery method is a miscible nitrogen flood. The projected oil recovery of the East Binger Unit, prior to the initiation of this project, was about 25%. Gravity segregation of nitrogen and crude oil was believed to be the principal cause of the poor sweep efficiency, and it was envisioned that with horizontal producing wells in the lower portion of the reservoir and horizontal injection wells near the top, the process could be converted from a lateral displacement process to a vertical displacement/gravity assisted process. Through the characterization and field development work completed in Budget Periods 1 and 2, Binger Operations, LLC (BOL) has developed a different interpretation of the sweep problem as well as a different approach to improving recovery. The sweep problem is now believed to be one of an areal nature, due to a combination of natural and hydraulic fracturing. Vertical wells have provided a much better economic return than have the horizontal wells. The natural and hydraulic fracturing manifests itself as a direction of higher permeability, and the flood is being converted to a line drive flood aligned with this orientation. Consistent with this concept, horizontal wells have been drilled along the line of the fracture orientation, such that hydraulic fracturing leads to 'longitudinal' fractures, in line with the wellbore. As such, the hydraulically fractured horizontal wells are not significantly different than hydraulically fractured vertical wells - save for the potential for a much longer fracture face. This Topical Report contains data from new wells, plus new and updated production

  2. 4D seismic to image a thin carbonate reservoir during a miscible C02 flood: Hall-Gurney Field, Kansas, USA

    USGS Publications Warehouse

    Raef, A.E.; Miller, R.D.; Franseen, E.K.; Byrnes, A.P.; Watney, W.L.; Harrison, W.E.

    2005-01-01

    The movement of miscible CO2 injected into a shallow (900 m) thin (3.6-6m) carbonate reservoir was monitored using the high-resolution parallel progressive blanking (PPB) approach. The approach concentrated on repeatability during acquisition and processing, and use of amplitude envelope 4D horizon attributes. Comparison of production data and reservoir simulations to seismic images provided a measure of the effectiveness of time-lapse (TL) to detect weak anomalies associated with changes in fluid concentration. Specifically, the method aided in the analysis of high-resolution data to distinguish subtle seismic characteristics and associated trends related to depositional lithofacies and geometries and structural elements of this carbonate reservoir that impact fluid character and EOR efforts.

  3. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. [Quarterly] report, January 1, 1993--March 31, 1993

    SciTech Connect

    Sharma, G.D.

    1993-06-01

    The ultimate objective of this three-year research project is to evaluate the performance of the hydrocarbon miscible solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir. This will be accomplished through measurement of PVT and fluid properties of Schrader Bluff oil, determination of phase behavior of Schrader Bluff oil solvent mixtures, asphaltene precipitation tests, slim tube displacement tests, core flood experiments and reservoir simulation studies. The expected results from this project include: determination of optimum hydrocarbon solvent composition suitable for hydrocarbon miscible solvent slug displacement process, optimum slug sizes of solvent needed, solvent recovery factor, solvent requirements, extent and timing of solvent recycle, displacement and sweep efficiency to be achieved and oil recovery. Work performed during quarter includes preliminary reservoir fluid characterization and multiple contact test runs using equation-of-state (EOS) simulator. Reservoir fluid samples are being acquired from Conoco Inc., and the process is expected to continue through the next quarter. Also, the experimental apparatus for the displacement study was set up.

  4. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...

  5. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...

  6. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...

  7. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan approval..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...

  8. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...

  9. Improved efficiency of miscible CO{sub 2} floods and enhanced prospects for CO{sub 2} flooding heterogeneous reservoirs. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Grigg, R.B.; Heller, J.P.; Schechter, D.S.

    1995-09-01

    The objective of this experimental research is to improve the effectiveness of CO{sub 2} flooding in heterogeneous reservoirs. Activities are being conducted in three closely related areas: (1) exploring further the applicability of selective mobility reduction (SMR) in the use of foam flooding, (2) exploring the possibility of higher economic viability of floods at slightly reduced CO{sub 2} injection pressures, and (3) taking advantage of gravitational forces during low interfacial tension (IFT), CO{sub 2} flooding in tight, vertically fractured reservoirs. Progress made this quarter in the following tasks is described: Task 1 CO{sub 2}-foams for selective mobility reduction; task 2 reduction of the amount of CO{sub 2} required in CO{sub 2} flooding; and Task 3 low IFT processes and gas injection in fractured reservoirs.

  10. 4D seismic monitoring of the miscible CO2 flood of Hall-Gurney Field, Kansas, U.S

    USGS Publications Warehouse

    Raef, A.E.; Miller, R.D.; Byrnes, A.P.; Harrison, W.E.

    2004-01-01

    A cost-effective, highly repeatable, 4D-optimized, single-pattern/patch seismic data-acquisition approach with several 3D data sets was used to evaluate the feasibility of imaging changes associated with the " water alternated with gas" (WAG) stage. By incorporating noninversion-based seismic-attribute analysis, the time and cost of processing and interpreting the data were reduced. A 24-ms-thick EOR-CO 2 injection interval-using an average instantaneous frequency attribute (AIF) was targeted. Changes in amplitude response related to decrease in velocity from pore-fluid replacement within this time interval were found to be lower relative to background values than in AIF analysis. Carefully color-balanced AIF-attribute maps established the overall area affected by the injected EOR-CO2.

  11. Post waterflood CO{sub 2} miscible flood in light oil, fluvial-dominated deltaic reservoir. Annual report, October 1, 1993--September 30, 1994

    SciTech Connect

    Bou-Mikael, S.

    1995-07-01

    Texaco Exploration and Production Inc. (TEPI) and the U.S. Department of Energy (DOE) entered into a cost sharing cooperative agreement to conduct an Enhanced Oil Recovery demonstration project at Port Neches. The field is located in Orange County near Beaumont, Texas. The project will demonstrate the effectiveness of the CO{sub 2}, miscible process in Fluvial Dominated Deltaic reservoirs. It will also evaluate the use of horizontal CO{sub 2} injection wells to improve the overall sweep efficiency. A data base of FDD reservoirs for the gulf coast region will be developed by LSU, using a screening model developed by Texaco Research Center in Houston. Finally, the results and the information gained from this project will be disseminated throughout the oil industry via a series of SPE papers and industry open forums. Reservoir characterization efforts for the Marginulina sand, are in progress utilizing conventional and advanced technologies including 3-D seismic. Sidewall and conventional. cores were cut and analyzed, lab tests were conducted on reservoir fluids, reservoir BHP pressure and reservoir voidage were monitored as shown. Texaco is utilizing the above data to develop a Stratamodel to best describe and characterize the reservoir and to use it as an input for the compositional simulator. The current compositional model is being revised to integrate the new data from the 3-D seismic and field performance under CO{sub 2} injection, to ultimately develop an accurate economic model. All facilities work has been completed and placed in service including the CO{sub 2} pipeline and metering equipment, CO{sub 2} injection and production equipment, water injection equipment, well work and injection/production lines. The horizontal injection well was drilled and completed on January 15, 1994. CO{sub 2} purchases from Cardox continue at an average rate of 3600 MCFD. The CO{sub 2} is being injected at line pressure of 1350 psi.

  12. An expert system for miscible gasflooding

    SciTech Connect

    Khan, S.; Pope, G.A.; Sepehrnoori, K. )

    1993-02-01

    The input data sets for compositional simulators include a large number of parameters that must be assigned carefully to represent the petroleum reservoir with an appropriate model and to make accurate and efficient simulations. With emerging expert-system technology, The University of Texas Input Parameter Selection Expert System (UTINPUT) has been developed on a workstation using NEXPERT OBJECT, an expert-system shell. C and a hybrid approach combining rules and objects were used. A customized user interface was developed and integrated with the expert system by use of NEXPERT's delivery system, NEXPERT FORMS. The resulting expert system is interactive, user-friendly, and efficient and provides the necessary expertise to create input data sets for UTCOMP. A major part of this research was accumulating expertise through literature, simulation experts, and, to a much greater extent, detailed simulation studies with emphasis on reservoir fluid characterization, selection of timestep size, and design of miscible gasfloods. The authors research shows that expert system technology can be used effectively in conjunction with reservoir simulators to simulate such complex processes as miscible gas flooding and to preserve and transfer such expertise.

  13. An investigation into the influence of drug-polymer interactions on the miscibility, processability and structure of polyvinylpyrrolidone-based hot melt extrusion formulations.

    PubMed

    Chan, Siok-Yee; Qi, Sheng; Craig, Duncan Q M

    2015-12-30

    While hot melt extrusion is now established within the pharmaceutical industry, the prediction of miscibility, processability and structural stability remains a pertinent issue, including the issue of whether molecular interaction is necessary for suitable performance. Here we integrate the use of theoretical and experimental drug-polymer interaction assessment with determination of processability and structure of dispersions in two polyvinylpyrrolidone-based polymers (PVP and PVP vinyl acetate, PVPVA). Caffeine and paracetamol were chosen as model drugs on the basis of their differing hydrogen bonding potential with PVP. Solubility parameter and interaction parameter calculations predicted a greater miscibility for paracetamol, while ATR-FTIR confirmed the hydrogen bonding propensity of the paracetamol with both polymers, with little interaction detected for caffeine. PVP was found to exhibit greater interaction and miscibility with paracetamol than did PVPVA. It was noted that lower processing temperatures (circa 40°C below the Tg of the polymer alone and Tm of the crystalline drug) and higher drug loadings with associated molecular dispersion up to 50% w/w were possible for the paracetamol dispersions, although molecular dispersion with the non-interactive caffeine was noted at loadings up to 20% w./w. A lower processing temperature was also noted for caffeine-loaded systems despite the absence of detectable interactions. The study has therefore indicated that theoretical and experimental detection of miscibility and drug-polymer interactions may lead to insights into product processing and extrudate structure, with direct molecular interaction representing a helpful but not essential aspect of drug-polymer combination prediction.

  14. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Final report

    SciTech Connect

    1995-11-01

    The National Energy Strategy Plan (NES) has called for 900,000 barrels/day production of heavy oil in the mid-1990s to meet our national needs. To achieve this goal, it is important that the Alaskan heavy oil fields be brought to production. Alaska has more than 25 billion barrels of heavy oil deposits. Conoco, and now BP Exploration have been producing from Schrader Bluff Pool, which is part of the super heavy oil field known as West Sak Field. Schrader Bluff reservoir, located in the Milne Point Unit, North Slope of Alaska, is estimated to contain up to 1.5 billion barrels of (14 to 21{degrees}API) oil in place. The field is currently under production by primary depletion; however, the primary recovery will be much smaller than expected. Hence, waterflooding will be implemented earlier than anticipated. The eventual use of enhanced oil recovery (EOR) techniques, such as hydrocarbon miscible solvent slug injection process, is vital for recovery of additional oil from this reservoir. The purpose of this research project was to determine the nature of miscible solvent slug which would be commercially feasible, to evaluate the performance of the hydrocarbon miscible solvent slug process, and to assess the feasibility of this process for improved recovery of heavy oil from Schrader Bluff reservoir. The laboratory experimental work includes: slim tube displacement experiments and coreflood experiments. The components of solvent slug includes only those which are available on the North Slope of Alaska.

  15. Glacier lake outburst floods - modelling process chains

    NASA Astrophysics Data System (ADS)

    Schaub, Yvonne; Huggel, Christian; Haeberli, Wilfried

    2013-04-01

    New lakes are forming in high-mountain areas all over the world due to glacier recession. Often they will be located below steep, destabilized flanks and are therefore exposed to impacts from rock-/ice-avalanches. Several events worldwide are known, where an outburst flood has been triggered by such an impact. In regions such as in the European Alps or in the Cordillera Blanca in Peru, where valley bottoms are densely populated, these far-travelling, high-magnitude events can result in major disasters. For appropriate integral risk management it is crucial to gain knowledge on how the processes (rock-/ice-avalanches - impact waves in lake - impact on dam - outburst flood) interact and how the hazard potential related to corresponding process chains can be assessed. Research in natural hazards so far has mainly concentrated on describing, understanding, modeling or assessing single hazardous processes. Some of the above mentioned individual processes are quite well understood in their physical behavior and some of the process interfaces have also been investigated in detail. Multi-hazard assessments of the entire process chain, however, have only recently become subjects of investigations. Our study aims at closing this gap and providing suggestions on how to assess the hazard potential of the entire process chain in order to generate hazard maps and support risk assessments. We analyzed different types of models (empirical, analytical, physically based) for each process regarding their suitability for application in hazard assessments of the entire process chain based on literature. Results show that for rock-/ice-avalanches, dam breach and outburst floods, only numerical, physically based models are able to provide the required information, whereas the impact wave can be estimated by means of physically based or empirical assessments. We demonstrate how the findings could be applied with the help of a case study of a recent glacier lake outburst event at Laguna

  16. Gas miscible displacement enhanced oil recovery: Technology status report

    SciTech Connect

    Not Available

    1986-10-01

    Gas miscible displacement enhanced oil recovery research is conducted by the US Department of Energy's Morgantown Energy Technology Center to advance the application of miscible carbon dioxide flooding. This research is an integral part of a multidisciplinary effort to improve the technology for producing additional oil from US resources. This report summarizes the problems of the technology and the 1986 results of the ongoing research that was conducted to solve those problems. Poor reservoir volumetric sweep efficiency is the major problem associated with gas flooding and all miscible displacements. This problem results from the channeling and viscous fingering that occur due to the large differences between viscosity or density of the displacing and displaced fluids (i.e., carbon dioxide and oil, respectively). Simple modeling and core flooding studies indicate that, because of differences in fluid viscosities, breakthrough can occur after only 30% of the total pore volume (PV) of the rock has been injected with gas, while field tests have shown breakthrough occurring much earlier. The differences in fluid densities lead to gravity segregation. The lower density carbon dioxide tends to override the residual fluids in the reservoir. This process would be considerably more efficient if a larger area of the reservoir could be contacted by the gas. Current research has focused on the mobility control, computer simulation, and reservoir heterogeneity studies. Three mobility control methods have been investigated: (1) the use of polymers for direct thickening of high-density carbon dioxide, (2) mobile ''foam-like dispersions'' of carbon dioxide and an aqueous surfactant, and (3) in situ deposition of chemical precipitates. 22 refs., 14 figs., 6 tabs.

  17. Improved efficiency of miscible CO{sub 2} floods and enhanced prospects for CO{sub 2} flooding heterogeneous reservoirs. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Grigg, R.B.; Heller, J.P.; Schechter, D.S.

    1995-12-01

    The objective of this experimental research is to improve the effectiveness of CO{sub 2} flooding in heterogeneous reservoirs. Activities are being conducted in three closely related areas: (1) exploring further the applicability of selective mobility reduction (SMR) in the use of foam flooding, (2) exploring the possibility of higher economic viability of floods at slightly reduced CO{sub 2} injection pressures, and (3) taking advantage of gravitational forces during low interfacial tension (IFT), CO{sub 2} flooding in tight, vertically fractured reservoirs. Additional progress in task 1 has been made in the past quarter in both experimental and analytical directions. A new series assembly of two Berea cores has been made and is currently being investigated, and new and definitive results have been obtained from the parallel experiment, where the authors are studying the effect of capillary contact on foam effectiveness and SMR. Also, during this quarter, a program has been developed to process the results that are generated by the reservoir simulators MASTER and UTCOMP. This is a spreadsheet program containing a series of macros that can be used to plot the flooding performance of a simulation run after it is done. There are converting programs associated with MASTER and UTCOMP so that the results generated by the simulators can be converted into a specific input format to the spreadsheet program. Finally, research continues in two primary areas for task 3: (1) understanding the fundamentals of low interfacial tension behavior via theory and experiment and the influence on multiphase flow behavior and (2) modeling low IFT gravity drainage for application of gas injection in fractured reservoirs.

  18. Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells.

    PubMed

    Zhou, Erjun; Cong, Junzi; Hashimoto, Kazuhito; Tajima, Keisuke

    2013-12-23

    A power conversion efficiency of 3.6% for an all-polymer solar cell, which is the highest ever reported, is achieved by introducing a conjugated side chain into a p-type polymer to improve the miscibility of the polymer blend and by adding small amounts of 1,8-diiodooctane to increase the aggregation of n-type polymer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes

    NASA Astrophysics Data System (ADS)

    Gems, Bernhard; Mazzorana, Bruno; Hofer, Thomas; Sturm, Michael; Gabl, Roman; Aufleger, Markus

    2016-06-01

    Given the current challenges in flood risk management and vulnerability assessment of buildings exposed to flood hazards, this study presents three-dimensional numerical modelling of torrential floods and its interaction with buildings. By means of a case study application, the FLOW-3D software is applied to the lower reach of the Rio Vallarsa torrent in the village of Laives (Italy). A single-family house on the flood plain is therefore considered in detail. It is exposed to a 300-year flood hydrograph. Different building representation scenarios, including an entire impervious building envelope and the assumption of fully permeable doors, light shafts and windows, are analysed. The modelling results give insight into the flooding process of the building's interior, the impacting hydrodynamic forces on the exterior and interior walls, and further, they quantify the impact of the flooding of a building on the flow field on the surrounding flood plain. The presented study contributes to the development of a comprehensive physics-based vulnerability assessment framework. For pure water floods, this study presents the possibilities and limits of advanced numerical modelling techniques within flood risk management and, thereby, the planning of local structural protection measures.

  20. A study examining the effects of water-miscible cutting fluids for end milling process of carbon fiber reinforced plastic

    NASA Astrophysics Data System (ADS)

    Anan, Ruito; Matsuoka, Hironori; Ono, Hajime; Ryu, Takahiro; Nakae, Takashi; Shuto, Schuichi; Watanabe, Suguru; Sato, Yuta

    2017-04-01

    This study examined the improvements to the tool life and finished surface roughness by using water-miscible cutting fluids in carbon fiber reinforced plastics end milling. In cutting tests, it was found that the use of emulsion type, soluble type, and solution type cutting fluids improved tool life compared with the case of dry cutting. Specifically, significant differences in tool life were observed at a high cutting speed of 171 m/min. In addition, the finished surface exhibited a low level of roughness when the solution type cutting fluid was used, regardless of the cutting speed.

  1. Spreading of miscible liquids

    NASA Astrophysics Data System (ADS)

    Walls, Daniel J.; Haward, Simon J.; Shen, Amy Q.; Fuller, Gerald G.

    2016-05-01

    Miscible liquids commonly contact one another in natural and technological situations, often in the proximity of a solid substrate. In the scenario where a drop of one liquid finds itself on a solid surface and immersed within a second, miscible liquid, it will spread spontaneously across the surface. We show experimental findings of the spreading of sessile drops in miscible environments that have distinctly different shape evolution and power-law dynamics from sessile drops that spread in immiscible environments, which have been reported previously. We develop a characteristic time to scale radial data of the spreading sessile drops based on a drainage flow due to gravity. This time scale is effective for a homologous subset of the liquids studied. However, it has limitations when applied to significantly chemically different, yet miscible, liquid pairings; we postulate that the surface energies between each liquid and the solid surface becomes important for this other subset of the liquids studied. Initial experiments performed with pendant drops in miscible environments support the drainage flow observed in the sessile drop systems.

  2. Large Scale Processes and Extreme Floods in Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  3. Ternary Solar Cells Based on Two Small Molecule Donors with Same Conjugated Backbone: The Role of Good Miscibility and Hole Relay Process.

    PubMed

    Xiao, Liangang; Liang, Tianxiang; Gao, Ke; Lai, Tianqi; Chen, Xuebin; Liu, Feng; Russell, Thomas P; Huang, Fei; Peng, Xiaobin; Cao, Yong

    2017-09-06

    Ternary organic solar cells (OSCs) are very attractive for further enhancing the power conversion efficiencies (PCEs) of binary ones but still with a single active layer. However, improving the PCEs is still challenging because a ternary cell with one more component is more complicated on phase separation behavior. If the two donors or two acceptors have similar chemical structures, good miscibility can be expected to reduce the try-and-error work. Herein, we report ternary devices based on two small molecule donors with the same backbone but different substituents. Whereas both binary devices show PCEs about 9%, the PCE of the ternary cells is enhanced to 10.17% with improved fill factor and short-circuit current values and external quantum efficiencies almost in the whole absorption wavelength region from 440 to 850 nm. The same backbone enables the donors miscible at molecular level, and the donor with a higher HOMO level plays hole relay process to facilitate the charge transportation in the ternary devices. Since side-chain engineering has been well performed to tune the active materials' energy levels in OSCs, our results suggest that their ternary systems are promising for further improving the binary cells' performance although their absorptions are not complementary.

  4. Miscible polymer blend dynamics

    NASA Astrophysics Data System (ADS)

    Pathak, Jai Avinash

    The segmental and terminal dynamics of miscible polymer blends have been systematically investigated with pointed experiments to test dichotomous literature ideas on the origin of dynamic heterogeneity in these systems. Segmental dynamics have been studied by dielectric spectroscopy, while terminal dynamics have been studied by oscillatory shear rheology. It has been found that when composition fluctuations are suppressed, dynamic heterogeneities, such as the failure of time-temperature superposition (tTS), are also suppressed. This observation lends credence to the ideas of Fischer and Kumar that spontaneous composition fluctuations in miscible blends profoundly affect their segmental dynamics. In addition, data acquired in this study on two model weakly-interacting miscible polyolefin blends, were combined with literature data to show that breakdown of tTS worsens with increasing dynamic asymmetry (intrinsic differences in component dynamics) in weakly-interacting miscible blends. This observation is adduced as evidence for the role of dynamic asymmetry in miscible blend dynamics, in addition to the role of composition fluctuations. Finally, attempts were made to use information on component segmental dynamics, as obtained from the composition fluctuation model of Kumar, to predict terminal dynamics in miscible blends. In this regard, the composition fluctuation model was first used to model segmental dynamics in a model weakly-interacting blend. Then, experimental segmental and terminal dynamics data were used to identify a possible segmental time-scale which may control terminal relaxation of a chain in a blend. This timescale was found to lie on the long-time end of the distribution of segmental relaxation times for each component. It was calculated from the segmental relaxation time distribution for each component of a miscible blend as the average-longest segmental time experienced by the monomers of a given chain. Using the Doi-Edwards tube model, the

  5. Reduced biodegradability in a polymer flood process

    SciTech Connect

    Williams, D.; Munnecke, D. M.

    1985-05-14

    In a polymer flood, where bacterial contamination frequently causes a loss in viscosity of the polymer, the viscosity of the polymer solution is maintained by the use of a xanthan polymer modified by methylation of a portion of the subunit sugar residues of the xanthan base.

  6. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process.

    PubMed

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-08-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly used to decrease this problem. Foam which is formed on the contact of nitrogen and surfactant increases viscosity of injected gas. This increases the oil-gas contact and sweep efficiency, although adsorption of surfactant on rock surface can causes difficulties and increases costs of process. Many parameters must be considered in design of SAG process. One of the most important parameters is SAG ratio that should be in optimum value to improve the flooding efficiency. In this study, initially the concentration of surfactant was optimized due to minimization of adsorption on rock surface which results in lower cost of surfactant. So, different sodium dodecyl sulfate (SDS) concentrations of 100, 500, 1000, 2000, 3000 and 4000 ppm were used to obtain the optimum concentration at 70 °C and 144.74×10(5) Pa. A simple, clean and relatively fast spectrophotometric method was used for determination of surfactant which is based on the formation of an ion-pair. Then the effect of surfactant to gas volume ratio on oil recovery in secondary oil recovery process during execution of immiscible surfactant alternating gas injection was examined experimentally. The experiments were performed with sand pack under certain temperature, pressure and constant rate. Experiments were performed with surfactant to gas ratio of 1:1, 1:2, 1:3, 2:1 and 3:1 and 1.2 pore volume injected. Then, comparisons were made between obtained results (SAG) with water flooding, gas flooding and water alternating gas

  7. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process

    PubMed Central

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-01-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly used to decrease this problem. Foam which is formed on the contact of nitrogen and surfactant increases viscosity of injected gas. This increases the oil–gas contact and sweep efficiency, although adsorption of surfactant on rock surface can causes difficulties and increases costs of process. Many parameters must be considered in design of SAG process. One of the most important parameters is SAG ratio that should be in optimum value to improve the flooding efficiency. In this study, initially the concentration of surfactant was optimized due to minimization of adsorption on rock surface which results in lower cost of surfactant. So, different sodium dodecyl sulfate (SDS) concentrations of 100, 500, 1000, 2000, 3000 and 4000 ppm were used to obtain the optimum concentration at 70 °C and 144.74×105 Pa. A simple, clean and relatively fast spectrophotometric method was used for determination of surfactant which is based on the formation of an ion-pair. Then the effect of surfactant to gas volume ratio on oil recovery in secondary oil recovery process during execution of immiscible surfactant alternating gas injection was examined experimentally. The experiments were performed with sand pack under certain temperature, pressure and constant rate. Experiments were performed with surfactant to gas ratio of 1:1, 1:2, 1:3, 2:1 and 3:1 and 1.2 pore volume injected. Then, comparisons were made between obtained results (SAG) with water flooding, gas flooding and water alternating gas

  8. Geologic investigations in support of a proposed carbon dioxide miscible flood in the MCA unit Maljamar-Grayburg/San Andres Pool, Lea County, New Mexico. Final report

    SciTech Connect

    Foster, R.W.

    1984-03-01

    Presented are the results of a detailed geologic study of the principal oil-bearing intervals within the Grayburg and San Andres Formations at the MCA Unit of the Maljamar Field. The work includes an interpretation of the depositional environment for selected intervals as determined from core and thinsection studies. The conclusion is that the sediments were deposited along a prograding shore line and represent near shore marine, intertidal, and supratidal deposits. An evaluation of porosity and permeability as related to core interpretations led to the conclusion that conditions favorable for the accumulation of oil were almost entirely restricted to nearshore marine deposits. Intertidal and supratidal rocks were not favorable for the development of effective porosity. Although many types of porosity are present, the most important in both the dolomite and sandstone reservoirs is secondary vuggy porosity. The Grayburg includes at least 14 sandstone reservoirs and the San Andres numerous dolomite zones and one sandstone interval. The distribution and effective porosity of important zones as related to the carbon dioxide flood are shown in maps and cross sections. 14 references, 64 figures, 11 tables.

  9. Shear-stabilized emulsion flooding process

    SciTech Connect

    Carpenter, C.W.; Reed, R.L.

    1982-06-29

    Additional amounts of crude oil are recovered from a subterranean formation by flooding with a translucent emulsion comprising an upper- or middle-phase microemulsion as an external phase and a polymer-containing brine solution as an internal phase. The translucent emulsion tends to coalesce into its component phases under conditions of no shear, but is stabilized by low shears such as those imposed on fluids flowing through a subterranean formation.

  10. Gas miscible displacement enhanced oil recovery: Technology status report

    SciTech Connect

    Watts, R.J.; Komar, C.A.

    1989-01-01

    Research on gas flooding and miscible displacement, with an emphasis on improvement of CO/sub 2/ flood performance is described. Low reservoir volumetric sweep efficiency is the major problem associated with gas flooding and all miscible displacements. CO/sub 2/ flooding would be considerably more efficient if a larger area of the reservoir could be contacted by the gas. Current research has focused on mobility control, computer simulation, and reservoir heterogeneity studies. Three mobility control methods have been investigated: the use of polymers for direct thickening of high-density carbon dioxide, mobile ''foam-like dispersions'' of carbon dioxide and aqueous surfactant, and in situ deposition of chemical precipitates. 17 refs., 22 figs., 8 tabs.

  11. Correlation of minimum miscibility pressure for impure CO/sub 2/ streams

    SciTech Connect

    Sebastian, H.M.; Renner, T.A.; Wenger, R.S.

    1984-04-01

    The displacement efficiency of oil by carbon dioxide is highly pressure dependent and miscible displacement efficiency is only achieved at pressures greater than a certain minimum. This minimum miscibility pressure (MMP) is a function of temperature and composition of the injection gas. The study presented in this paper examines the effect on MMP of up to 55 mole percent impurities in the CO/sub 2/-rich injection gas. A correlation of these data was developed based on the mole average pseudocritical temperature (TCM) of the gas and the minimum miscibility pressure of pure CO/sub 2/ with the same oil at the same conditions. In general, it was found that increasing the TCM of the gas lowered the MMP and decreasing the TCM increased the MMP. Injection gases with the same TCM but very different compositions were found to have the same MMP. Various correlating parameters were tried but TCM was found to be the most suitable. This correlation is compared to others in the literature and found to be superior in the case where the drive gas contained both light and intermediate components. The correlation indicates that miscibility in a field-wide CO/sub 2/ flood may be maintained by reinjection of impure CO/sub 2/ streams if sufficient intermediate hydrocarbons are present in the produced gas to offset the effects of lighter gases. Since CO/sub 2/ cleanup is one of the major costs in fieldwide CO/sub 2/ flooding, reduction or complete elimination of produced gas cleanup will have a significant positive impact on process economics. The operational and regulatory aspects of injecting an impure CO/sub 2/ stream must be considered, however, in order to optimize the recycling scheme.

  12. Post waterflood CO2 miscible flood in light oil fluvial - dominated deltaic reservoirs. Technical progress report, October 1, 1994--December 30, 1994. 1st Quarter, fiscal year 1995

    SciTech Connect

    1994-01-15

    Production is averaging about 450 BOPD for the quarter. The fluctuation was primarily due to a temporary shutdown of CO{sub 2} delivery and maturing of the first WAG cycle. CO{sub 2} and water injection were reversed again in order to optimize changing yields and water cuts in the producing wells. Measured BHP was close to the anticipated value. A limited CO{sub 2} volume of 120 MMCF was injected to stimulate well Kuhn No. 6 to test the Huff-Puff process, since the well did not respond to CO{sub 2} injection from the main reservoir. The well will be placed on February 1, 1995. Total CO{sub 2} injection averaged this quarter about 8.8 MMCFD, including 3.6 MMCFD purchased CO{sub 2} from Cardox. The stratigraphy of the sand deposits is also discussed.

  13. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, January 1, 1994--December 31, 1994

    SciTech Connect

    Sharma, G.D.

    1995-07-01

    Alaska is the second largest oil producing state in the nation and currently contributes nearly 24% of the nations oil production. It is imperative that Alaskan heavy oil fields be brought into production. Schrader Bluff reservoir, located in the Milne Point Unit, which is part of the heavy oil field known as West Sak is estimated to contain 1.5 billion barrels of (14 to 21 degree API) oil-in-place. The field is currently under production by primary depletion. The eventual implementation of enhanced oil recovery (EOR) techniques will be vital for the recovery of additional oil from this reservoir. The availability of hydrocarbon gases (solvents) on the Alaska North Slope make the hydrocarbon miscible solvent injection process an important consideration for the EOR project in Schrader Bluff reservoir. Since Schrader Bluff oil is heavy and viscous, a water-alternating-gas (WAG) type of process for oil recovery is appropriate since such a process tends to derive synergetic benefits from both water injection (which provides mobility control and improvement in sweep efficiency) and miscible gas injection (which provides improved displacement efficiency). A miscible solvent slug injection process rather than continuous solvent injection is considered appropriate. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Coreflood experiments are also needed to determine the effect of solvent slug size, WAG ratio and solvent composition on the recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir.

  14. Linking timing, magnitude and process-controls of floods in the United States

    NASA Astrophysics Data System (ADS)

    Berghuijs, Wouter; Woods, Ross; Hutton, Christopher; Sivapalan, Murugesu

    2016-04-01

    River flooding can have severe societal, economic and environmental consequences. However, limited understanding of the regional differences in flood generating mechanisms results in poorly understood flood trends, and consequently, uncertain predictions of future flood conditions. Through systematic data analyses of 420 catchments we expose the primary drivers of flooding across the contiguous United States. This is achieved by exploring which flood-generating processes control the seasonality and magnitude of maximum annual flows. The regional patterns of seasonality and interannual variability of the magnitude of maximum annual flows are, in general, poorly explained by rainfall characteristics alone. For most catchments soil moisture dependent precipitation excess, snowmelt and rain-on-snow events are found to be much better predictors of flooding responses. The generated continental-scale classification of dominant flood generating processes emphasizes the disparity between extreme rainfall and flooding, and can assist predictions of the nature of flooding and flood risk within the continental US.

  15. Flooding and Flood Management

    USGS Publications Warehouse

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  16. What Drives Blend Miscibility?

    NASA Astrophysics Data System (ADS)

    White, Ronald; Lipson, Jane

    2014-03-01

    With no mixture data available, can one predict phase behavior in polymeric systems based on pure component information only? Due to the very weak entropic drive for large molecules to mix, predicting and understanding miscibility behavior is indeed very difficult. However, while not perfect, some a priori insight is attainable when pure component properties are analyzed within the framework of a theoretical model. A theory provides a platform, allowing one to define quantities and other measures that may not always be directly measurable, but, are physically appealing and insightful none-the-less. Are there properties that can explain for example, why a polymer like polyisobutylene (PIB) exhibits such different phase behavior compared to other polyolefins? Applying our simple lattice-based equation of state, we have recently analyzed a large number of different polymers. In this talk we will present insights from trends and patterns we have observed. Work supported by the National Science Foundation.

  17. USING PHASE DIAGRAMS TO PREDICT THE PERFORMANCE OF COSOLVENT FLOODS FOR NAPL REMEDIATION

    EPA Science Inventory

    Cosolvent flooding using water miscible solvents such as alcohols has been proposed as an in-situ NAPL remediation technique. This process is conceptually similar to enhanced oil recovery (EOR) using alcohols and some surfactant formulations. As a result of interest in the EOR ...

  18. USING PHASE DIAGRAMS TO PREDICT THE PERFORMANCE OF COSOLVENT FLOODS FOR NAPL REMEDIATION

    EPA Science Inventory

    Cosolvent flooding using water miscible solvents such as alcohols has been proposed as an in-situ NAPL remediation technique. This process is conceptually similar to enhanced oil recovery (EOR) using alcohols and some surfactant formulations. As a result of interest in the EOR ...

  19. Modelling of Major Flood Arrivals on Chinese Rivers by Switch-time Processes

    NASA Astrophysics Data System (ADS)

    Stoynov, Pavel; Zlateva, Plamena; Velev, Dimiter; Zong, Xuejun

    2017-05-01

    Nowadays, there is a considerable flood risk in China is. A brief description of major floods on Yangtze River and Huang He River is given. Both big Chinese rivers have long records of floods with severe life and property damages. Quantification of the stochastic behaviour of the largest floods is a key task in the risk assessment and mitigation. An exponential distribution of the time intervals between consecutive floods is assumed in classical study of inter-arrival times of floods. An approach for modelling of flood arrivals on both Chinese rivers by switch-time (ST) processes is proposed. These ST distributions can be considered as distributions of sums of random number exponentially distributed random variables. The proposed model specifies explicitly times of occurrence not only of floods but also of higher risk of potential floods. This approach could be useful for making prognoses of floods and for analysing changes in hydrologic behaviour of rivers.

  20. Investigations of infiltration processes from flooded areas by column experiments

    NASA Astrophysics Data System (ADS)

    Mohrlok, U.; Bethge, E.; Golalipour, A.

    2009-04-01

    In case of inundation of flood plains during flood events there is an increased risk of groundwater contamination due to infiltration of increasingly polluted river water. Specifically in densely populated regions, this groundwater may be used as source for drinking water supply. For the evaluation of this a detailed quantitative understanding of the infiltration processes under such conditions is required. In this context the infiltration related to a flood event can be described by three phases. The first phase is defined by the saturation of the unsaturated soils. Within the second phase infiltration takes place under almost saturated conditions determined by the hydraulic load of the flood water level. The drainage of the soils due to falling groundwater table is characterizing the third phase. Investigations by soil columns gave a detailed insight into the infiltration processes caused by flooding. Inflow at the soil top was established by a fixed water table fed by a Mariotte bottle. Free outflow and a groundwater table were used as lower boundary condition. Inflow and outflow volume were monitored. The evolution of the matrix pressure was observed by micro-tensiometers installed at several depths within the soil column. The flow processes during phase one and two were characterized by a tracer test. Some of the experiments were repeated in order to study the influence of preliminary events. Main results were a difference in infiltration due to the lower boundary condition with regard to inflow rate, outflow dynamics and matrix pressure evolution which is directly related to the water content evolution. Further, the influence of preliminary events was different for the different boundary conditions. A replacement of pre-event water could be observed which was confirmed by volume balances calculated for the infiltration experiments. Although these water balances were almost closed significant dynamics of the matrix pressure remained in soil column in the

  1. Floods

    MedlinePlus

    ... quickly, often have a dangerous wall of roaring water. The wall carries rocks, mud, and rubble and can sweep away most things in its path. Be aware of flood hazards no matter where you live, but especially if you live in a low-lying area, near water or downstream from a dam. Although there are ...

  2. Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS)

    NASA Technical Reports Server (NTRS)

    Pojman, John A.; Bessonov, Nicholas; Volpert, Vitaly; Wilke, Hermann

    2003-01-01

    Almost one hundred years ago Korteweg published a theory of how stresses could be induced in miscible fluids by concentration gradients, causing phenomena that would appear to be the same as with immiscible fluids. Miscible fluids could manifest a transient or effective interfacial tension (EIT). To this day, there has been no definitive experiment to confirm Korteweg's model but numerous fascinating and suggestive experiments have been reported. The goal of TIPMPS is to answer the question: Can concentration and temperature gradients in miscible materials induce stresses that cause convection? Many polymer processes involving miscible monomer and polymer systems could be affected by fluid flow and so this work could help understand miscible polymer processing, not only in microgravity, but also on earth. Demonstrating the existence of this phenomenon in miscible fluids will open up a new area of study for materials science. The science objectives of TIPMPS are: (1) Determine if convection can be induced by variation of the width of a miscible interface; (2) Determine if convection can be induced by variation of temperature along a miscible interface; (3) Determine if convection can be induced by variation of conversion along a miscible interface An interface between two miscible fluids can best be created via a spatially-selective photopolymerization of dodecyl acrylate with a photoinitiator, which allows the creation of precise and accurate concentration gradients between polymer and monomer. Optical techniques will be used to measure the refractive index variation caused by the resultant temperature and concentration fields. The viscosity of the polymer will be measured from the increase in the fluorescence of pyrene. Because the large concentration and temperature gradients cause buoyancy-driven convection that prevents the observation of the predicted flows, the experiment must be done in microgravity. In this report, we will consider our efforts to estimate

  3. Enhancing flood forecasting with the help of processed based calibration

    NASA Astrophysics Data System (ADS)

    Cullmann, Johannes; Krauße, Thomas; Philipp, Andy

    Due to the fact that the required input data are not always completely available and model structures are only a crude description of the underlying natural processes, model parameters need to be calibrated. Calibrated model parameters only reflect a small domain of the natural processes well. This imposes an obstacle on the accuracy of modelling a wide range of flood events, which, in turn is crucial for flood forecasting systems. Together with the rigid model structures of currently available rainfall-runoff models this presents a serious constraint to portraying the highly non-linear transformation of precipitation into runoff. Different model concepts (interflow, direct runoff), or rather the represented processes, such as infiltration, soil water movement etc. are more or less dominating different sections of the runoff spectrum. Most models do not account for such transient characteristics inherent to the hydrograph. In this paper we try to show a way out of the dilemma of limited model parameter validity. Exemplarily, we investigate on the model performance of WaSiM-ETH, focusing on the parameterisation strategy in the context of flood forecasting. In order to compensate for the non-transient parameters of the WaSiM model we propose a process based parameterisation strategy. This starts from a detailed analysis of the considered catchments rainfall-runoff characteristics. Based on a classification of events, WaSiM-ETH is calibrated and validated to describe all the event classes separately. These specific WaSiM-ETH event class models are then merged to improve the model performance in predicting peak flows. This improved catchment modelling can be used to train an artificial intelligence based black box forecasting tool as described in [Schmitz, G.H., Cullmann, J., Görner, W., Lennartz, F., Dröge, W., 2005. PAI-OFF: Eine neue Strategie zur Hochwasservorhersage in schnellreagierenden Einzugsgebieten. Hydrologie und Wasserbewirtschaftung 49, 226

  4. Interpretations of Polymer-Polymer Miscibility.

    ERIC Educational Resources Information Center

    Olabisi, Olagoke

    1981-01-01

    Discusses various aspects of polymeric mixtures, mixtures of structurally different homopolymers, copolymers, terpolymers, and the like. Defines concepts of polymer-polymer miscibility from practical and theoretical viewpoints, and ways of predicting such miscibility. (JN)

  5. Effect of phase behavior on bypassing in enriched gas floods

    SciTech Connect

    Burger, J.E.; Bhogeswara, R.; Mohanty, K.K. )

    1994-05-01

    Enriched gas floods incorporate a complex interaction of heterogeneity, fingering, multiphase flow, and phase behavior. Experiments and simulations indicate that the optimum solvent enrichment in high-viscosity-ratio secondary gas floods can be below minimum miscibility enrichment (MME). The compositional path and resulting mobility profile in multidimensional multiple-contact miscible (MCM) or immiscible floods are different from their 1D counterparts for high-viscosity-ratio floods in heterogeneous media.

  6. Numerical modelling of floating debris-associated flash flood processes

    NASA Astrophysics Data System (ADS)

    Mahaffey, S. H.; Liang, Q.

    2016-12-01

    Flash floods are characterised by high velocity `walls of water' and rapidly varying flow regimes, which are notoriously difficult to replicate through numerical modelling. Flow dynamics may be complicated further by the transport and subsequent build-up of a variety of floating debris arising from natural and anthropogenic sources. These may lead to blockage and potential damage of channel structures, flow rerouting and altered flood extents. However conventional modelling techniques do not intrinsically incorporate debris processes and the varied nature of debris shape, size and density make a widely applicable modelling scheme difficult to achieve. Here a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A hydrodynamic scheme has here been coupled with the discrete element method to predict the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the debris are applied to instigate its motion and an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. The methodology used in shape representation allows the modelling tool to be applied to a diverse range of debris sources. In this work the modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported in a hydraulic flume. The scheme adequately replicates water depth and depth-averaged velocity as well as the position of cylindrical wooden dowels within the flume.

  7. A process flood typology along an Alpine transect: classification based on cluster analysis

    NASA Astrophysics Data System (ADS)

    Zoccatelli, Davide; Parajka, Juraj; Gaal, Ladislav; Blöschl, Günter; Borga, Marco

    2015-04-01

    Flood classification according with their causative processes helps to understand how flood regimes change across climates. The aim of this work is to create a flood classification scheme along a longitudinal Alpine transect spanning 200 km in a North-South direction. The investigation is focused on the analysis of floods that have similar properties and can be defined as a type. After the definition of flood types we analyzed their properties, their spatial organization and the relation with the topography of the transect. Precipitation and temperature follow a sharp gradient across the transect, with both precipitation and temperature low around the main alpine ridge. Along this gradient the causative processes of floods are changing, modifying the flood regimes of catchments. The three main floods each year on 33 alpine basins (from 50 to 500 km2) are isolated from about 20 years of hourly discharge. An hydrological model simulates the catchment conditions at the begin of each event. For each flood we created a set of indexes to describe hydrograph properties, meteorological inputs and catchment conditions. A cluster analysis on these indexes defined how many flood types can be found in our data and what are their unique properties. Successively a classification tree analysis defined the best criteria to identify those clusters. Results indicate that transect floods are best divided in three clusters, that can be related with Snowmelt, Rain and Flash Floods. The successive classification tree analysis showed that a good classification can also be achieved using few criteria, but that the application of an hydrological model is useful to identify snowmelt events. The distribution of these flood types in space and time across the Alps is reported, and it is in agreement with the processes involved. This approach proved, across different climates, to be able to identify groups of floods that could be related with the driving processes, and to define and evaluate

  8. Hydro-geological process chain for building a flood scenario

    NASA Astrophysics Data System (ADS)

    Longoni, Laura; Brambilla, Davide; Papini, Monica; Ivanov, Vladislav; Radice, Alessio

    2015-04-01

    Flash-flood events in mountain environments are often related to the transport of large amounts of sediment from the slopes through the stream network. As a consequence, significant morphological changes may occur in rivers during a single, short-duration event, with possibly significant effect on the water elevation. An appropriate hazard evaluation would therefore require the thorough modelling of the flood-related phenomena and of their interconnection. In this context, this work is focused on an attempt of integrated modelling of event-scale water and sediment transport processes for a reference case-study of the Mallero basin in the Italian Alps. The area of the catchments is about 320 square km, the main stream being almost 25 km long and having slopes in the range from 1 to 40 %. A town (Sondrio) is present at the downstream end of the river. In 1987, Sondrio was at risk of inundation due to a combined effect of relatively high discharge and aggradation of the river bed up to 5 m (almost equal to the bankfull depth in the in-town reach). A 100-year flood scenario was produced including (i) a sediment supply model, (ii) a one-dimensional, hydro-morphologic model of the river bed evolution, and (iii) an estimation of the outflowing discharge at river sections where the bank elevation was exceeded by water. Rainfall-runoff transformation was not included into the modelling chain as the 100-year water hydrograph was already available from previous studies. For the sediment production model, a downscaling in time of the Gavrilovic equation was attempted using rainfall estimation from depth-duration-frequency curves, which furnished values in reasonable agreement with some available data. The hydro-morphologic model, based on the Saint-Venant and Exner equations, was preliminarily calibrated against data for bed aggradation measured in 1987. A point of separation was chosen at an appropriate location in the basin, and the sediment yield estimated upstream of this

  9. Performance analysis and optimization of the Prudhoe Bay miscible-gas project

    SciTech Connect

    McGuire, P.L.; Stalkuup, F.I

    1995-05-01

    Because EOR oil response at Prudhoe Bay has been difficult to measure directly, a number of different types of field measurements have been made to evaluate the miscible-flood displacement efficiency. These measurements include water- and solvent-injection profiles, logging data from an observation well, and single-well tracer test (SWTT) data. Despite ambiguity in these data, the measurements support the simulation nd laboratory data and generally indicate that the Prudhoe Bay Miscible Gas Project (PBMGP) is performing well. The most useful EOR surveillance data have been the separator-gas-sample database, with {approx} 4,000 compositional analyses. Separator flash analysis and allocation programs use this data-base to infer EOR performance on the basis of produced solvent. Reservoir mechanisms that adversely affect the EOR process efficiency have been identified. The project has exceeded initial expectations in terms of solvent retained within the reservoir, which has favorable implications for solvent sweep efficiency. Procedures have been developed to use the field and simulation data to determine how the solvent should be allocated to the existing patterns and when the project should be expanded into new areas. these procedures are designed to maximize the value of the PBMGP.

  10. Field Experiments Aimed To The Analysis of Flood Generation Processes

    NASA Astrophysics Data System (ADS)

    Carriero, D.; Iacobellis, V.; Oliveto, G.; Romano, N.; Telesca, V.; Fiorentino, M.

    The study of the soil moisture dynamics and of the climate-soil-vegetation interac- tion is essential for the comprehension of possible climatic change phenomena, as well as for the analysis of occurrence of extreme hydrological events. In this trend the theoretically-based distribution of floods recently derived by Fiorentino and Ia- cobellis, [ŞNew insights about the climatic and geologic control on the probability distribution of floodsT, Water Resources Research, 2001, 37: 721-730] demonstrated, by an application in some Southern Italy basins, that processes at the hillslope scale strongly influence the basin response by means of the different mechanisms of runoff generation produced by various distributions of partial area contributing. This area is considered as a stochastic variable whose pdf position parameter showed strong de- pendence on the climate as it can seen in the studied basins behavior: in dry zones, where there is the prevalence of the infiltration excess (Horton) mechanism, the basin water loss parameter decreases as basin area increases and the flood peak source area depends on the permeability of soils; in humid zones, with the prevalence of satu- ration excess (Dunne) process, the loss parameter seems independent from the basin area and very sensitive to simple climatic index while only small portion of the area invested by the storm contributes to floods. The purpose of this work is to investigate the consistency of those interpretations by means of field experiments at the hillslope scale to establish a parameterization accounting for soil physical and hydraulic prop- erties, vegetation characteristics and land-use. The research site is the catchment of River Fiumarella di Corleto, which is located in Basilicata Region, Italy, and has a drainage area of approximately 32 km2. The environment has a rather dynamic geo- morphology and very interesting features from the soil-landscape modeling viewpoint [Santini A., A. Coppola, N. Romano, and

  11. Miscibility of lubricants with refrigerants

    SciTech Connect

    Pate, M.B.; Zoz, S.C.; Berkenbosch, L.J.

    1992-07-01

    Miscibility data is being obtained for a variety of non-CFC refrigerants and their potential lubricants. Ten different refrigerants and seven different lubricants are being investigated. Experiments are being performed in two phases: Phase I focuses on performing screening tests and Phase II consists of developing miscibility plots. The miscibility tests are being performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The bath temperature can be precisely controlled over a temperature range of -50{degrees}C to 100{degrees}C. The test cells are constructed to allow for complete visibility of lubricant-refrigerant mixtures under all test conditions. Early in this reporting period, new procedures for charging the lubricant and refrigerant into the cells for testing were adopted. All of the refrigerants and all but one of the lubricants have been received from the manufacturers. Data obtained to date includes that for R-134a, R142b, R-32, R-134, R-125, and R-143a with four lubricants, namely, two esters and two polypropylene glycols.

  12. Phase separation in transparent liquid-liquid miscibility gap systems

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Bhat, B. N.; Laub, R. J.

    1979-01-01

    A program to be carried out on transparent liquid-phase miscibility gap materials was developed for the purpose of acquiring additional insight into the separation process occurring in these systems. The transparency feature allows the reaction to be viewed directly through light scattering and holographic methods.

  13. Process-based distributed hydrological modelling of annual floods in the Upper Zambezi using the Desert Flood Index

    NASA Astrophysics Data System (ADS)

    Meinhardt, Markus; Sven, Kralisch; Manfred, Fink; Daniel, Butchart-Kuhlmann; Anthony, Chabala; Melanie, Fleischer; Jörg, Helmschrot; Wilson, Phiri; Tina, Trautmann; Henry, Zimba; Imasiku, Nyambe

    2016-04-01

    Wetland areas are especially sensitive to changes in hydrological conditions. The catchment of the Luanginga River, a tributary of the Upper Zambezi which covers about 33000 km², shows this characteristic in an exemplary way. Ranging from the Angolan highlands to the Barotse floodplain of the Zambezi River , it is characterized by an annual flow regime and extensive wetland areas. Due to its annual flooding with peak times in April, the area features exceptionally fertile soils with high agricultural production and is further known for its rich cultural heritage, making it especially sensitive to changes of hydrological conditions . To identify possible changes related to projected climate and land management change, especially in the area of the floodplain, there is a need to apply a process-based distributed hydrological model of the annual floods . Remote sensing techniques have shown to be appropriate to identify the extend of the important flooding and were used to validate the model in space and time. The results of this research can be used as a basis with which to provide evidence-based advice and information for all decision-makers and stakeholders in the region. For this assessment , such a modelling approach is applied to adequately represent hydrological processes and to address key water resources management issues at sub-basin levels. Introducing a wetland simulation extension, the model allows to represent the annual flood regime of the system and thus to address the effect of climate change and upstream land use changes on flow regimes in the downstream watershed. In order to provide a basis for model validation and calibration, the inundated area was determined using the Desert Flood Index (DFI), which was generated from a time series of Landsat images. We will give a short introduction to the study area and related water resources management problems, present the intended model structure and show first simulations and model validation results

  14. Comparative hazard analysis of processes leading to remarkable flash floods (France, 1930-1999)

    NASA Astrophysics Data System (ADS)

    Boudou, M.; Lang, M.; Vinet, F.; Cœur, D.

    2016-10-01

    Flash flood events are responsible for large economic losses and lead to fatalities every year in France. This is especially the case in the Mediterranean and oversea territories/departments of France, characterized by extreme hydro-climatological features and with a large part of the population exposed to flood risks. The recurrence of remarkable flash flood events, associated with high hazard intensity, significant damage and socio-political consequences, therefore raises several issues for authorities and risk management policies. This study aims to improve our understanding of the hazard analysis process in the case of four remarkable flood events: March 1930, October 1940, January 1980 and November 1999. Firstly, we present the methodology used to define the remarkability score of a flood event. Then, to identify the factors leading to a remarkable flood event, we explore the main parameters of the hazard analysis process, such as the meteorological triggering conditions, the return period of the rainfall and peak discharge, as well as some additional factors (initial catchment state, flood chronology, cascade effects, etc.). The results contribute to understanding the complexity of the processes leading to flood hazard and highlight the importance for risk managers of taking additional factors into account.

  15. The resilience of neighborhood social processes: A case study of the 2011 Brisbane flood.

    PubMed

    Wickes, Rebecca; Britt, Chester; Broidy, Lisa

    2017-02-01

    Social disorganization theories position neighborhood social capital and collective efficacy as key social processes that should facilitate community resilience in the aftermath of disaster. Yet limited evidence demonstrates that these social processes are themselves resilient with some studies showing that disaster can fracture even once cohesive neighborhoods. In this paper we assess the stability of neighborhood level collective efficacy and social capital before and after a disaster. We use multilevel structural equation modeling and draw on census and longitudinal survey data collected from over 4000 residents living in 148 neighborhoods in Brisbane, Australia before and after a significant flood event. We examine what happens to social capital and collective efficacy in flooded and non-flooded neighborhoods and assess whether demographic shifts are associated with change and/or stability in these processes. We find strong evidence that these processes operate similarly across flooded and not flooded communities. Our findings also reveal significant stability for our measures of social capital across time, while collective efficacy increases post flood across all neighborhoods, but more so in flooded neighborhoods. Neighborhood demographics have limited effect on patterns of stability or change in these social processes. We discuss the theoretical and practical implications of these findings for our understanding of neighborhood resilience in the wake of disaster.

  16. Novel Shapes of Miscible Interfaces Observed

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, Ramaswamy; Rashidnia, Nasser

    2001-01-01

    The dynamics of miscible displacements in a cylindrical tube are being investigated experimentally and numerically, with a view to understand the complex processes that occur, for example, in enhanced oil recovery, hydrology, and filtration. We have observed complex shapes of the interface between two liquids that mix with each other when the less viscous liquid is displaced by the more viscous one in a tube. A less viscous fluid that displaces a more viscous fluid is known to propagate in the form of a "finger," and a flight experiment proposed by Maxworthy et al. to investigate the miscible-interface dynamics is currently being developed by NASA. From the current theory of miscible displacements, which was developed for a porous medium satisfying Darcy's law, it can be shown that in the absence of gravity the interface between the fluids is destabilized and thus susceptible to fingering only when a more viscous fluid is displaced by a less viscous one. Therefore, if the interface is initially flat and the more viscous fluid displaces the less viscous fluid, the interface ought to be stable and remain flat. However, numerical simulations by Chen and Meiburg for such displacement in a cylindrical tube show that the interface is unstable and a finger of the more viscous fluid is indeed formed. Preliminary experiments performed at the NASA Glenn Research Center show that not only can fingering occur when the more viscous fluid displaces a less viscous one in a cylindrical tube, but also that under certain conditions the advancing finger achieves a sinuous or snakelike shape. These experiments were performed using silicone oils in a vertical pipette of small diameter. In the initial configuration, the more viscous fluid rested on top of the less viscous one, and the interface was nominally flat. A dye was added to the upper liquid for ease of observation of the interface between the fluids. The flow was initiated by draining the lower fluid from the bottom of the

  17. Insurance against climate change and flood risk: Insurability and decision processes of insurers

    NASA Astrophysics Data System (ADS)

    Hung, Hung-Chih; Hung, Jia-Yi

    2016-04-01

    1. Background Major portions of the Asia-Pacific region is facing escalating exposure and vulnerability to climate change and flood-related extremes. This highlights an arduous challenge for public agencies to improve existing risk management strategies. Conventionally, governmental funding was majorly responsible and accountable for disaster loss compensation in the developing countries in Asia, such as Taiwan. This is often criticized as an ineffective and inefficient measure of dealing with flood risk. Flood insurance is one option within the toolkit of risk-sharing arrangement and adaptation strategy to flood risk. However, there are numerous potential barriers for insurance companies to cover flood damage, which would cause the flood risk is regarded as uninsurable. This study thus aims to examine attitudes within the insurers about the viability of flood insurance, the decision-making processes of pricing flood insurance and their determinants, as well as to examine potential solutions to encourage flood insurance. 2. Methods and data Using expected-utility theory, an insurance agent-based decision-making model was developed to examine the insurers' attitudes towards the insurability of flood risk, and to scrutinize the factors that influence their decisions on flood insurance premium-setting. This model particularly focuses on how insurers price insurance when they face either uncertainty or ambiguity about the probability and loss of a particular flood event occurring. This study considers the factors that are expected to affect insures' decisions on underwriting and pricing insurance are their risk perception, attitudes towards flood insurance, governmental measures (e.g., land-use planning, building codes, risk communication), expected probabilities and losses of devastating flooding events, as well as insurance companies' attributes. To elicit insurers' utilities about premium-setting for insurance coverage, the 'certainty equivalent,' 'probability

  18. Vistula River bed erosion processes and their influence on Warsaw's flood safety

    NASA Astrophysics Data System (ADS)

    Magnuszewski, A.; Moran, S.

    2015-03-01

    Large cities have historically been well protected against floods as a function of their importance to society. In Warsaw, Poland, located on a narrow passage of the Vistula River valley, urban flood disasters were not unusual. Beginning at the end of the 19th century, the construction of river embankment and training works caused the narrowing of the flood passage path in the downtown reach of the river. The process of bed erosion lowered the elevation of the river bed by 205 cm over the 20th century, and the consequences of bed lowering are reflected by the rating curve change. Conditions of the flood passage have been analysed by the CCHE2D hydrodynamic model both in retro-modelling and scenario simulation modelling. The high water mark of the 1844 flood and iterative calculations in retro-modelling made possible estimation of the discharge, Q = 8250 m3 s-1. This highest observed historical flood in a natural river has been compared to recent conditions of the Vistula River in Warsaw by scenario modelling. The result shows dramatic changes in water surface elevation, velocities, and shear stress. The vertical velocity in the proximity of Port Praski gauge at km 513 can reach 3.5 m s-1, a very high value for a lowland river. The average flow conveyance is improving due to channel erosion but also declining in the case of extreme floods due to high resistance from vegetation on the flood plains.

  19. The effect of pressure, isotopic (H/D) substitution, and other variables on miscibility in polymer-solvent systems. The nature of the demixing process; dynamic light scattering and small angle neutron scattering studies. Final report

    SciTech Connect

    Van Hook, W.A.

    2000-01-01

    A research program examining the effects of pressure, isotope substitution and other variables on miscibility in polymer solvent systems is described. The techniques employed included phase equilibrium measurements and dynamic light scattering and small angle neutron scattering.

  20. GIS-based flood risk model evaluated by Fuzzy Analytic Hierarchy Process (FAHP)

    NASA Astrophysics Data System (ADS)

    Sukcharoen, Tharapong; Weng, Jingnong; Teetat, Charoenkalunyuta

    2016-10-01

    Over the last 2-3 decades, the economy of many countries around the world has been developed rapidly but it was unbalanced development because of expecting on economic growth only. Meanwhile it lacked of effective planning in the use of natural resources. This can significantly induce climate change which is major cause of natural disaster. Hereby, Thailand has also suffered from natural disaster for ages. Especially, the flood which is most hazardous disaster in Thailand can annually result in the great loss of life and property, environment and economy. Since the flood management of country is inadequate efficiency. It is unable to support the flood analysis comprehensively. This paper applied Geographic Information System and Multi-Criteria Decision Making to create flood risk model at regional scale. Angthong province in Thailand was used as the study area. In practical process, Fuzzy logic technique has been used to improve specialist's assessment by implementing with Fuzzy membership because human decision is flawed under uncertainty then AHP technique was processed orderly. The hierarchy structure in this paper was categorized the spatial flood factors into two levels as following: 6 criteria (Meteorology, Geology, Topography, Hydrology, Human and Flood history) and 8 factors (Average Rainfall, Distance from Stream, Soil drainage capability, Slope, Elevation, Land use, Distance from road and Flooded area in the past). The validity of the pair-wise comparison in AHP was shown as C.R. value which indicated that the specialist judgment was reasonably consistent. FAHP computation result has shown that the first priority of criteria was Meteorology. In addition, the Rainfall was the most influencing factor for flooding. Finally, the output was displayed in thematic map of Angthong province with flood risk level processed by GIS tools. The map was classified into: High Risk, Moderate Risk and Low Risk (13.20%, 75.58%, and 11.22% of total area).

  1. Two glass transitions in miscible polymer blends?

    SciTech Connect

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-06-28

    In contrast to mixtures of two small molecule fluids, miscible binary polymer blends often exhibit two structural relaxation times and two glass transition temperatures. Qualitative explanations postulate phenomenological models of local concentration enhancements due to chain connectivity in ideal, fully miscible systems. We develop a quantitative theory that explains qualitative trends in the dynamics of real miscible polymer blends which are never ideal mixtures. The theory is a synthesis of the lattice cluster theory of blend thermodynamics, the generalized entropy theory for glass-formation in polymer materials, and the Kirkwood-Buff theory for concentration fluctuations in binary mixtures.

  2. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, December 1, 1992--December 31, 1993

    SciTech Connect

    Sharma, G.D.

    1994-01-01

    The shallow Cretaceous sands of the Schrader Bluff Reservoir occur between depths of 4,000 and 4,800 feet below surface and are estimated to contain up to 1.5 billion barrels of oil in place. The field is currently under production by primary depletion. Initial production indicated that primary recovery will fall short of earlier estimates and waterflooding will have to be employed much earlier than expected. A large portion of the oil-in-place thus would still be left behind in this reservoir after primary and secondary recovery methods have been applied. Enhanced oil recovery (EOR) techniques will be needed to recover the additional portion of remaining oil in this huge reservoir and to add significant additional reserves. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader Bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Such studies are essential because the API gravity of the crude in Schrader Bluff reservoir varies significantly from well to well. Coreflood experiments are also needed to determine effect of solvent slug size, WAG ratio and solvent composition on the oil recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir. This report contains the following: reservoir description; slim tube displacement studies; and coreflood experiments.

  3. Process-based selection of copula types for flood peak-volume relationships in Northwest Austria: a case study

    NASA Astrophysics Data System (ADS)

    Kohnová, Silvia; Gaál, Ladislav; Bacigál, Tomáš; Szolgay, Ján; Hlavčová, Kamila; Valent, Peter; Parajka, Juraj; Blöschl, Günter

    2016-12-01

    The case study aims at selecting optimal bivariate copula models of the relationships between flood peaks and flood volumes from a regional perspective with a particular focus on flood generation processes. Besides the traditional approach that deals with the annual maxima of flood events, the current analysis also includes all independent flood events. The target region is located in the northwest of Austria; it consists of 69 small and mid-sized catchments. On the basis of the hourly runoff data from the period 1976- 2007, independent flood events were identified and assigned to one of the following three types of flood categories: synoptic floods, flash floods and snowmelt floods. Flood events in the given catchment are considered independent when they originate from different synoptic situations. Nine commonly-used copula types were fitted to the flood peak - flood volume pairs at each site. In this step, two databases were used: i) a process-based selection of all the independent flood events (three data samples at each catchment) and ii) the annual maxima of the flood peaks and the respective flood volumes regardless of the flood processes (one data sample per catchment). The goodness-of-fit of the nine copula types was examined on a regional basis throughout all the catchments. It was concluded that (1) the copula models for the flood processes are discernible locally; (2) the Clayton copula provides an unacceptable performance for all three processes as well as in the case of the annual maxima; (3) the rejection of the other copula types depends on the flood type and the sample size; (4) there are differences in the copulas with the best fits: for synoptic and flash floods, the best performance is associated with the extreme value copulas; for snowmelt floods, the Frank copula fits the best; while in the case of the annual maxima, no firm conclusion could be made due to the number of copulas with similarly acceptable overall performances. The general

  4. Surface Tension and Fingering of Miscible Interfaces

    NASA Technical Reports Server (NTRS)

    Abib, Mohammed; Liu, Jian-Bang; Ronney, Paul D.

    1999-01-01

    Experiments on miscible, buoyantly unstable reaction-diffusion fronts and non-reacting displacement fronts in Hele-Shaw cells show a fingering-type instability whose wavelengths (lambda*) are consistent with an interfacial tension (sigma) at the front caused by the change in chemical composition, even though the solutions are miscible in all proportions. In conjunction with the Saffman-Taylor model, the relation sigma = K/tau, where tau is the interface thickness and K approximately equal 4 +/- 2 x 10(exp -6) dyne, enables prediction of our measured values of lambda* as well as results from prior experiments on miscible interfaces. These results indicate that even for miscible fluids, surface tension is generally a more significant factor than diffusion in interfacial stability and flow characteristics.

  5. Exploiting Synoptic-Scale Climate Processes to Develop Nonstationary, Probabilistic Flood Hazard Projections

    NASA Astrophysics Data System (ADS)

    Spence, C. M.; Brown, C.; Doss-Gollin, J.

    2016-12-01

    Climate model projections are commonly used for water resources management and planning under nonstationarity, but they do not reliably reproduce intense short-term precipitation and are instead more skilled at broader spatial scales. To provide a credible estimate of flood trend that reflects climate uncertainty, we present a framework that exploits the connections between synoptic-scale oceanic and atmospheric patterns and local-scale flood-producing meteorological events to develop long-term flood hazard projections. We demonstrate the method for the Iowa River, where high flow episodes have been found to correlate with tropical moisture exports that are associated with a pressure dipole across the eastern continental United States We characterize the relationship between flooding on the Iowa River and this pressure dipole through a nonstationary Pareto-Poisson peaks-over-threshold probability distribution estimated based on the historic record. We then combine the results of a trend analysis of dipole index in the historic record with the results of a trend analysis of the dipole index as simulated by General Circulation Models (GCMs) under climate change conditions through a Bayesian framework. The resulting nonstationary posterior distribution of dipole index, combined with the dipole-conditioned peaks-over-threshold flood frequency model, connects local flood hazard to changes in large-scale atmospheric pressure and circulation patterns that are related to flooding in a process-driven framework. The Iowa River example demonstrates that the resulting nonstationary, probabilistic flood hazard projection may be used to inform risk-based flood adaptation decisions.

  6. Viscous fingering with partial miscible fluids

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2015-11-01

    When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity destabilizes the interface between the two fluids, leading to the formation of fingers. Studies of viscous fingering have focused on fluids that are either fully miscible or perfectly immiscible. In practice, however, the miscibility of two fluids can change appreciably with temperature and pressure, and often falls into the case of partial miscibility, where two fluids have limited solubility in each other. Following our recent work for miscible (Jha et al., PRL 2011, 2013) and immiscible systems (Cueto-Felgueroso and Juanes, PRL 2012, JFM 2014), here we propose a phase-field model for fluid-fluid displacements in a Hele-Shaw cell, when the two fluids have limited (but nonzero) solubility in one another. Partial miscibility is characterized through the design of thermodynamic free energy of the two-fluid system. We elucidate the key dimensionless groups that control the behavior of the system. We present high-resolution numerical simulations of the model applied to the viscous fingering problem. On one hand, we demonstrate the effect of partial miscibility on the hydrodynamic instability. On the other, we elucidate the role of the degree of fingering on the rate of mutual fluid dissolution.

  7. Voice-enabled Knowledge Engine using Flood Ontology and Natural Language Processing

    NASA Astrophysics Data System (ADS)

    Sermet, M. Y.; Demir, I.; Krajewski, W. F.

    2015-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts, flood-related data, information and interactive visualizations for communities in Iowa. The IFIS is designed for use by general public, often people with no domain knowledge and limited general science background. To improve effective communication with such audience, we have introduced a voice-enabled knowledge engine on flood related issues in IFIS. Instead of navigating within many features and interfaces of the information system and web-based sources, the system provides dynamic computations based on a collection of built-in data, analysis, and methods. The IFIS Knowledge Engine connects to real-time stream gauges, in-house data sources, analysis and visualization tools to answer natural language questions. Our goal is the systematization of data and modeling results on flood related issues in Iowa, and to provide an interface for definitive answers to factual queries. The goal of the knowledge engine is to make all flood related knowledge in Iowa easily accessible to everyone, and support voice-enabled natural language input. We aim to integrate and curate all flood related data, implement analytical and visualization tools, and make it possible to compute answers from questions. The IFIS explicitly implements analytical methods and models, as algorithms, and curates all flood related data and resources so that all these resources are computable. The IFIS Knowledge Engine computes the answer by deriving it from its computational knowledge base. The knowledge engine processes the statement, access data warehouse, run complex database queries on the server-side and return outputs in various formats. This presentation provides an overview of IFIS Knowledge Engine, its unique information interface and functionality as an educational tool, and discusses the future plans

  8. An integrated process for the production of platform chemicals and diesel miscible fuels by acid-catalyzed hydrolysis and downstream upgrading of the acid hydrolysis residues with thermal and catalytic pyrolysis.

    PubMed

    Girisuta, Buana; Kalogiannis, Konstantinos G; Dussan, Karla; Leahy, James J; Hayes, Michael H B; Stefanidis, Stylianos D; Michailof, Chrysa M; Lappas, Angelos A

    2012-12-01

    This study evaluates an integrated process for the production of platform chemicals and diesel miscible biofuels. An energy crop (Miscanthus) was treated hydrothermally to produce levulinic acid (LA). Temperatures ranging between 150 and 200 °C, sulfuric acid concentrations 1-5 wt.% and treatment times 1-12 h were applied to give different combined severity factors. Temperatures of 175 and 200 °C and acid concentration of 5 wt.% were found to be necessary to achieve good yield (17 wt.%) and selectivities of LA while treatment time did not have an effect. The acid hydrolysis residues were characterized for their elemental, cellulose, hemicellulose and lignin contents, and then tested in a small-scale pyrolyzer using silica sand and a commercial ZSM-5 catalyst. Milder pretreatment yielded more oil (43 wt.%) and oil O(2) (37%) while harsher pretreatment and catalysis led to more coke production (up to 58 wt.%), less oil (12 wt.%) and less oil O(2) (18 wt.%).

  9. A regional look at the selection of a process-oriented model for flood peak/volume relationships

    NASA Astrophysics Data System (ADS)

    Szolgay, Ján; Gaál, Ladislav; Bacigál, Tomáš; Kohnová, Silvia; Hlavčová, Kamila; Výleta, Roman; Blöschl, Günter

    2016-05-01

    Recent research on the bivariate flood peak/volume frequency analysis has mainly focused on the statistical aspects of the use of various copula models. The interplay of climatic and catchment processes in discriminating among these models has attracted less interest. In the paper we analyse the influence of climatic and hydrological controls on flood peak and volume relationships and their models, which are based on the concept of comparative hydrology in the catchments of a selected region in Austria. Independent flood events have been isolated and assigned to one of the three types of flood processes: synoptic floods, flash floods and snowmelt floods. First, empirical copulas are regionally compared in order to verify whether any flood processes are discernible in terms of the corresponding bivariate flood-peak relationships. Next the types of copulas, which are frequently used in hydrology are fitted, and their goodness-of-fit is examined in a regional scope. The spatial similarity of copulas and their rejection rate, depending on the flood type, region, and sample size are examined, too. In particular, the most remarkable difference is observed between flash floods and the other two types of flood. It is concluded that treating flood processes separately in such an analysis is beneficial, both hydrologically and statistically, since flood processes and the relationships associated with them are discernible both locally and regionally in the pilot region. However, uncertainties inherent in the copula-based bivariate frequency analysis itself (caused, among others, also by the relatively small sample sizes for consistent copula model selection, upper tail dependence characterization and reliable predictions) may not be overcome in the scope of such a regional comparative analysis.

  10. Miscibility Studies on Polymer Blends Modified with Phytochemicals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Neelakandan; Kyu, Thein

    2009-03-01

    The miscibility studies related to an amorphous poly(amide)/poly(vinyl pyrrolidone) [PA/PVP] blend with a crystalline phytochemical called ``Mangiferin'' is presented. Phytochemicals are plant derived chemicals which intrinsically possess multiple salubrious properties that are associated with prevention of diseases such as cancer, diabetes, cardiovascular disease, and hypertension. Incorporation of phytochemicals into polymers has shown to have very promising applications in wound healing, drug delivery, etc. The morphology of these materials is crucial to applications like hemodialysis, which is governed by thermodynamics and kinetics of the phase separation process. Hence, miscibility studies of PA/PVP blends with and without mangiferin have been carried out using dimethyl sulfoxide as a common solvent. Differential scanning calorimetry studies revealed that the binary PA/PVP blends were completely miscible at all compositions. However, the addition of mangiferin has led to liquid-liquid phase separation and liquid-solid phase transition in a composition dependent manner. Fourier transformed infrared spectroscopy was undertaken to determine specific interaction between the polymer constituents and the role of possible hydrogen bonding among three constituents will be discussed.

  11. Post waterflood CO{sub 2} miscible flood in light oil, fluvial - dominated deltaic reservoirs. Technical progress report, 4th quarter, fiscal year 1994, July 1, 1994--September 30, 1994

    SciTech Connect

    Not Available

    1994-10-15

    Production from the Port Neches project has reached a new high of 500 BOPD, as shown. Production from several wells has improved after changing WAGer and CO{sub 2} injection patterns. The WAG process appears to be effective in FDD reservoirs. The WAT process has improved the oil production rates and simultaneously decreased the CO{sub 2} production rates from wells with high GOR. Material balance calculations indicate that the reservoir pressure remained relatively flat, and a new BHP will be taken this month to verify the calculations. Total CO{sub 2} injection is averaging about 9.5 MMCFD, including 3.9 MMCFD purchased from Cardox, as shown, and the balance is recycled from the producing wells. Over 50% of the gas was produced from one well, Khun No. 33. A CO{sub 2} injection line was installed to huff-puff well Khun No. 6 that did not respond yet to CO{sub 2} injection in well Khun No. 17. After injecting a limited CO{sub 2} volume in well Khun No. 6, this will be followed by a short shut-in period, then the well will be placed on production.

  12. Effects of multiscale rainfall variability on flood frequency: Comparative multisite analysis of dominant runoff processes

    NASA Astrophysics Data System (ADS)

    Samuel, Jos M.; Sivapalan, Murugesu

    2008-09-01

    We present results of a comparative modeling analysis of the effects of multiscale rainfall variability (within-event, between-event, seasonal, interannual, and interdecadal) on estimated flood frequency curves for three catchments located in Perth, Newcastle, and Darwin, Australia. The analysis is performed using the derived distribution approach by combining long-term rainfall time series generated by a stochastic rainfall model with a continuous rainfall-runoff flood model that is able to generate runoff variability over a multiplicity of timescales. Similarities and differences of the flood frequency curves (FFCs) in these rather diverse catchments are then interpreted on the basis of differences in the dominant runoff generation processes. In Newcastle, annual maximum flood peaks are caused by saturation excess overland flow over the entire range of annual exceedance probabilities (AEPs) or return periods. On the other hand, in Darwin, the shape of the FFC is determined strongly by seasonal climatic variability, which, in combination with deep soils, leads to a switch of dominant runoff mechanisms contributing to annual maximum flood peaks, from subsurface stormflow at high AEPs (low return periods) to saturation excess overland flow at low AEPs (high return periods). This leads to FFCs exhibiting a consistent break in slope in the Darwin catchment but not so in Newcastle. On the other hand, the FFCs in Perth are affected by both seasonality and long-term climate variability and produce a variety of shapes depending on the relative strengths of these climatic controls. Because of the fact that in Perth and Darwin the shapes of the flood frequency curves depend on a possible switch of the dominant runoff generation mechanisms with increasing return period, uncertainty in hydrological model parameters relating to landscape properties contributes significantly to the uncertainty in the flood frequency curves. This uncertainty is much less pronounced in Newcastle

  13. Assessment of the effects of multiple extreme floods on flow and transport processes under competing flood protection and environmental management strategies.

    PubMed

    Tu, Tongbi; Carr, Kara J; Ercan, Ali; Trinh, Toan; Kavvas, M Levent; Nosacka, John

    2017-12-31

    Extreme floods are regarded as one of the most catastrophic natural hazards and can result in significant morphological changes induced by pronounced sediment erosion and deposition processes over the landscape. However, the effects of extreme floods of different return intervals on the floodplain and river channel morphological evolution with the associated sediment transport processes are not well explored. Furthermore, different basin management action plans, such as engineering structure modifications, may also greatly affect the flood inundation, sediment transport, solute transport and morphological processes within extreme flood events. In this study, a coupled two-dimensional hydrodynamic, sediment transport and morphological model is applied to evaluate the impact of different river and basin management strategies on the flood inundation, sediment transport dynamics and morphological changes within extreme flood events of different magnitudes. The 10-year, 50-year, 100-year and 200-year floods are evaluated for the Lower Cache Creek system in California under existing condition and a potential future modification scenario. Modeling results showed that select locations of flood inundation within the study area tend to experience larger inundation depth and more sediment is likely to be trapped in the study area under potential modification scenario. The proposed two dimensional flow and sediment transport modeling approach implemented with a variety of inflow conditions can provide guidance to decision-makers when considering implementation of potential modification plans, especially as they relate to competing management strategies of large water bodies, such as the modeling area in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quantifying the effect of sea level rise and flood defence - apoint process perspective on coastal flood damage

    NASA Astrophysics Data System (ADS)

    Boettle, M.; Rybski, D.; Kropp, J. P.

    2015-10-01

    In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal the complex interplay of the involved parameters and allow conclusions of fundamental relevance. For instance, we show that the damage always increases faster than the sea level rise itself. This in turn can be of great importance for the assessment of sea level rise impacts on the global scale. Our results are accompanied by an assessment of uncertainty, which reflects the stochastic nature of extreme events. While the uncertainty of flood damage increases with rising sea levels, we find that the error of our estimations in relation to the expected damage decreases.

  15. Quantifying the effect of sea level rise and flood defence - a point process perspective on coastal flood damage

    NASA Astrophysics Data System (ADS)

    Boettle, M.; Rybski, D.; Kropp, J. P.

    2016-02-01

    In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal the complex interplay of the involved parameters and allow conclusions of fundamental relevance. For instance, we show that the damage typically increases faster than the sea level rise itself. This in turn can be of great importance for the assessment of sea level rise impacts on the global scale. Our results are accompanied by an assessment of uncertainty, which reflects the stochastic nature of extreme events. While the absolute value of uncertainty about the flood damage increases with rising mean sea levels, we find that it decreases in relation to the expected damage.

  16. Channel recovery from recent large floods in north coastal California: rates and processes

    Treesearch

    Thomas E. Lisle

    1981-01-01

    Abstract - Stream channel recovery from recent large floods in northern California involves a sequence of processes, including degradation of streambeds to stable levels, narrowing of channels, and accentuation of riffle-pool sequences. Most channels have degraded but remain widened because hillslope encroachment and establishment of riparian groves conducive to...

  17. Towards a generalized catchment flood processes simulation system with distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2015-12-01

    High resolution distributed hydrological model is regarded as to have the potential to finely simulate the catchment hydrological processes, but challenges still exist. This paper, presented a generalized catchment flood processes simulation system with Liuxihe Model, a physically-based distributed hydrological model proposed mainly for catchment flood forecasting, which is a process-based hydrological model. In this system, several cutting edge technologies have been employed, such as the supercomputing technology, PSO algorithm for parameter optimization, cloud computation, GIS and software engineering, and it is deployed on a high performance computer with free public accesses. The model structure setting up data used in this system is the open access database, so it could be used for catchments world widely. With the application of parallel computation algorithm, the model spatial resolution could be as fine as up to 100 m grid, while maintaining high computation efficiency, and could be used in large scale catchments. With the utilization of parameter optimization method, the model performance cold be improved largely. The flood events of several catchments in southern China with different drainage sizes have been simulated by this system, and the results show that this system has strong capability in simulating catchment flood events even in large river basins.

  18. Miscibility of Itraconazole-Hydroxypropyl Methylcellulose Blends: Insights with High Resolution Analytical Methodologies.

    PubMed

    Purohit, Hitesh S; Taylor, Lynne S

    2015-12-07

    Drug-polymer miscibility is considered to be a prerequisite to achieve an optimally performing amorphous solid dispersion (ASD). Unfortunately, it can be challenging to evaluate drug-polymer miscibility experimentally. The aim of this study was to investigate the miscibility of ASDs of itraconazole (ITZ) and hydroxypropyl methylcellulose (HPMC) using a variety of analytical approaches. The phase behavior of ITZ-HPMC films prepared by solvent evaporation was studied before and after heating. Conventional methodology for miscibility determination, that is, differential scanning calorimetry (DSC), was used in conjunction with emerging analytical techniques, such as fluorescence spectroscopy, fluorescence imaging, and atomic force microscopy coupled with nanoscale infrared spectroscopy and nanothermal analysis (AFM-nanoIR-nanoTA). DSC results showed a single glass transition event for systems with 10% to 50% drug loading, suggesting that the ASDs were miscible, whereas phase separation was observed for all of the films based on the other techniques. The AFM-coupled techniques indicated that the phase separation occurred at the submicron scale. When the films were heated, it was observed that the ASD components underwent mixing. The results provide new insights into the phase behavior of itraconazole-HPMC dispersions and suggest that the emerging analytical techniques discussed herein are promising for the characterization of miscibility and microstructure in drug-polymer systems. The observed differences in the phase behavior in films prepared by solvent evaporation before and after heating also have implications for processing routes and suggest that spray drying/solvent evaporation and hot melt extrusion/melt mixing can result in ASDs with varying extent of miscibility between the drug and the polymer.

  19. Processes and Geomorphological Impacts of an Extreme Flash Flood Event in SE Spain

    NASA Astrophysics Data System (ADS)

    Hooke, J.

    2015-12-01

    A major flash flood event took place on 28 September, 2012 in SE Spain, resulting in 10 fatalities and much damage to infrastructure regionally. The flood affected long-term monitoring sites in two catchments in which morphological changes and flow dynamics of these ephemeral channels were being measured. Thus detailed data on channel state prior to the flood were available. The flood event in the Nogalte catchment was extreme in its peak flow, rate of rise and unit runoff. The catchment has steep relief and much bare soil under almond groves, resulting in high sediment supply. The channel is confined in places, but mostly wide and braided, composed of loose gravel and occupying much of the valley floor. Flow was spatially continuous, with high connectivity throughout the catchment. The flood effects were net depositional in the monitored sites, with massive sedimentation on the channel bars. Vegetation was destroyed. Bank erosion and destruction of embankments took place in some locations. Hydraulic calculations indicate very high velocities, stream power and Froude numbers. Modelling and field evidence demonstrate extremely high sediment competence and sediment loadings. The influence of the event dynamics on processes and net outcomes is discussed. The impacts are compared with other events in this and neighbouring catchments. Overall, the event in the Nogalte did not alter the morphology markedly in spite of its extreme characteristics. It is suggested that these valley floors are adapted to this type of flash flood but that flows of such force and magnitude need to be allowed for in management in such an environment.

  20. Optical data processing and projected applications of the ERTS-1 imagery covering the 1973 Mississippi River Valley floods

    USGS Publications Warehouse

    Deutsch, Morris; Ruggles, Fred

    1974-01-01

    Flooding along the Mississippi River and some of its tributaries was detected by the multispectral scanner (MSS) on the Earth Resources Technology Satellite (ERTS-1) on at least three orbits during the spring of 1973. The ERTS data provided the first opportunity for mapping the regional extent of flooding at the time of the imagery. Special optical data processing techniques were used to produce a variety of multispectral color composites enhancing flood-plain details. One of these, a 2-color composite of near infrared bands 6 and 7, was enlarged and registered to 1:250,000-scale topographic maps and used as the basis for preparation of flood image maps. Two specially filtered 3-color composites of MSS bands 5, 6, and 7 and 4, 5, and 7 were prepared to aid in the interpretation of the data. The extent of the flooding was vividly depicted on a single image by 2-color temporal composites produced on the additive-color viewer using band 7 flood data superimposed on pre-flood band 7 images. On May 24, when the floodwaters at St. Louis receded to bankfull stage, imagery was again obtained by ERTS. Analysis of temporal data composites of the pre-flood and post-flood band 7 images indicate that changes in surface reflectance characteristics caused by the flooding can be delineated, thus making it possible to map the overall area flooded without the necessity of a real-time system to track and image the peak flood waves. Regional planning and disaster relief agencies such as the Corps of Engineers, Office of Emergency Preparedness, Soil Conservation Service, interstate river basin commissions and state agencies, as well as private lending and insurance institutions, have indicated strong potential applications for ERTS image-maps of flood-prone areas.

  1. Concentration-dependent diffusion instability in reactive miscible fluids

    NASA Astrophysics Data System (ADS)

    Bratsun, Dmitry; Kostarev, Konstantin; Mizev, Aleksey; Mosheva, Elena

    2015-07-01

    We report on chemoconvective pattern formation phenomena observed in a two-layer system of miscible fluids filling a vertical Hele-Shaw cell. We show both experimentally and theoretically that the concentration-dependent diffusion coupled with frontal acid-base neutralization can give rise to the formation of a local unstable zone low in density, resulting in a perfectly regular cell-type convective pattern. The described effect gives an example of yet another powerful mechanism which allows the reaction-diffusion processes to govern the flow of reacting fluids under gravity conditions.

  2. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2005-07-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  3. A Framework to Design and Optimize Chemical Flooding Processes

    SciTech Connect

    Mojdeh Delshad; Gary A. Pope Kamy Sepehrnoori

    2006-08-31

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  4. A Framework to Design and Optimize Chemical Flooding Processes

    SciTech Connect

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2006-08-31

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  5. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2004-11-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  6. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2005-09-01

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.

  7. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  8. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2006-08-31

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in an attempt to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data.

  9. Floods and Flash Flooding

    MedlinePlus

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  10. State-of-the-art review of nitrogen and flue gas flooding in enhanced oil recovery. Final report

    SciTech Connect

    Anada, H.R.

    1980-12-01

    This report provides a review of technical publications and patents in the field of nitrogen and flue gas flooding in Enhanced Oil Recovery (EOR). The physical and chemical characteristics of nitrogen and flue gas are provided with some comparisons with CO/sub 2/ related to EOR operations. Experimental research and field based activities using nitrogen and flue gas are briefly summarized. Cost data for generation of nitrogen and flue gases are provided. Nitrogen and flue gas costs are approximately one third to one half that of CO/sub 2/. The low cost of production and its non-corrosive nature are advantages of using nitrogen, whereas the higher miscibility pressure requirement is a disadvantage. Nitrogen flooding does not work well with low API gravity crudes. Miscible displacement with nitrogen seems promising for oils containing solution gas. Flue gas flooding can be applied to low API gravity crude reservoirs. However, flue gas flooding creates operating problems due to its corrosive nature. The report provides a discussion on process and reservoir parameters that affect nitrogen and/or flue gas flooding in EOR. A bibliography of related literature is provided in the appendices.

  11. Parameter regionalization for a process-oriented distributed model dedicated to flash floods

    NASA Astrophysics Data System (ADS)

    Garambois, P. A.; Roux, H.; Larnier, K.; Labat, D.; Dartus, D.

    2015-06-01

    This contribution is one of the first studies about the regionalization of parameter sets for a rainfall-runoff model process-oriented and dedicated to flash floods. MARINE model performances are tested on a large database of 117 flash floods occurred during the last two decades in the French Mediterranean region. Given the scarcity of flash flood data, the dataset used in this study represents a large sample of hydrology and landscapes from Pyrenean, Mediterranean, Cévennes-Vivarais and Provence regions. Spatial proximity and similarity approaches with several combinations of descriptors are tested. Encouraging results are obtained with two similarity approaches based on physiographic descriptors with two and three donor catchments. There is only a small decrease of performance of 10% from cal/val to regionalization for these two methods. For 13 catchments out of 16 there is at least one flood event simulated with rather good performance. This study highlights the importance of hydrological information that is available in calibration events for a gauged catchment and from donor catchment(s) for regionalization. Moreover it is found that regionalization is easier for catchments with an apparently more regular behaviour. The most sensitive parameter of MARINE model, CZ, controlling soil volume and water balance, is rather well constrained by the two similarity approaches thanks to bedrock descriptors.

  12. Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective

    NASA Astrophysics Data System (ADS)

    Worni, Raphael; Huggel, Christian; Clague, John J.; Schaub, Yvonne; Stoffel, Markus

    2014-11-01

    Glacial lake outburst floods (GLOFs) are highly mobile mixtures of water and sediment that occur suddenly and are capable of traveling tens to hundreds of kilometers with peak discharges and volumes several orders of magnitude larger than those of normal floods. They travel along existing river channels, in some instances into populated downstream regions, and thus pose a risk to people and infrastructure. Many recent events involve process chains, such as mass movements impacting glacial lakes and triggering dam breaches with subsequent outburst floods. A concern is that effects of climate change and associated increased instability of high mountain slopes may exacerbate such process chains and associated extreme flows. Modeling tools can be used to assess the hazard of potential future GLOFs, and process modeling can provide insights into complex processes that are difficult to observe in nature. A number of numerical models have been developed and applied to simulate different types of extreme flows, but such modeling faces challenges stemming from a lack of process understanding and difficulties in measuring extreme flows for calibration purposes. Here we review the state of knowledge of key aspects of modeling GLOFs, with a focus on process cascades. Analysis and simulation of the onset, propagation, and potential impact of GLOFs are based on illustrative case studies. Numerical models are presently available for simulating impact waves in lakes, dam failures, and flow propagation but have been used only to a limited extent for integrated simulations of process cascades. We present a spectrum of case studies from Patagonia, the European Alps, central Asia, and the Himalayas in which we simulate single processes and process chains of past and potential future events. We conclude that process understanding and process chain modeling need to be strengthened and that research efforts should focus on a more integrative treatment of processes in numerical models.

  13. Analysis of flash flood processes dynamics in a Mediterranean catchment using a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Roux, H.; Maubourguet, M.-M.; Castaings, W.; Dartus, D.

    2009-09-01

    The present study aims at analyzing the hydrological processes involved in flash flood generation. It focuses on small catchments located in the Mediterranean region (Southern France) and often affected by extreme events (Gaume et al., 2009; Ruin et al., 2008). The model used in this study is a spatially distributed rainfall-runoff model dedicated to extreme event simulation and developed on the basis of physical process representation. It is structured into three modules, which represent the soil component, the overland flow component and flow through the drainage network. Infiltration is described using the Green and Ampt model and the soils are assumed vertically homogeneous. Lateral subsurface flow is based on the Darcy's law for a confined aquifer. Surface runoff calculation is divided into two parts: overland flow and flow along the drainage network. Both are simulated using the 1D kinematic wave approximation of the Saint-Venant equations with the Manning friction law. In the drainage network, the friction difference between main channel and floodplain is taken into account. Determination of model parameters requires terrain measurement data, usually issued from DEM, soil survey and vegetation or land-use. Four parameters are calibrated for the entire catchment using discharge measurements. Model sensitivity to individual parameters is assessed using Monte-Carlo simulations, the model is then calibrated using these results to estimate the parameters with a data assimilation process called the adjoint state method (Bessière et al., 2008; Castaings et al., 2009). Flood events with different hydrometeorological characteristics are studied to compare the location of saturated areas, infiltration and runoff dynamics as well as importance of the subsurface flow. A better understanding of these processes is indeed necessary especially to improve the model efficiency when the simulation parameters cannot be calibrated and must therefore be transposed from gauged

  14. Viscous fingering with partially miscible fluids

    NASA Astrophysics Data System (ADS)

    Fu, X.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity destabilizes the interface between the two fluids, leading to the formation of fingers. Experimental and numerical studies of viscous fingering have focused on fluids that are either fully miscible (e.g. water and glycerol) or perfectly immiscible (e.g. water and oil). In practice, however, the miscibility of two fluids can change appreciably with temperature and pressure, and often falls into the case of partial miscibility, where two fluids have limited solubility in each other (e.g. CO2 and water). Following our recent work for miscible systems (Jha et al., PRL 2011, 2013) and immiscible systems (Cueto-Felgueroso and Juanes, PRL 2012, JFM 2014), here we propose a phase-field model for fluid-fluid displacements in a porous medium, when the two fluids have limited (but nonzero) solubility in one another. In our model, partial miscibility is characterized through the design of the thermodynamic free energy of the two-fluid system. We express the model in dimensionless form and elucidate the key dimensionless groups that control the behavior of the system. We present high-resolution numerical simulations of the model applied to the viscous fingering problem. On one hand, we demonstrate the effect of partial miscibility on the hydrodynamic instability. On the other, we elucidate the role of the degree of fingering on the rate of mutual fluid dissolution. Figure caption: final snapshots in simulations of viscous fingering with a two-fluid system mimicking that of CO2 and water. The colormap corresponds to the concentration of CO2. A band of less viscous gas phase rich in CO2 (red) displaces through the more viscous liquid phase that is undersaturated with CO2 (blue). At the fluid interface, an exchange of CO2 occurs as a result of local chemical potentials that drives the system towards thermodynamic equilibrium. This results in a shrinkage of gas phase as well as a local increase in

  15. Linkages between flood, aquatic organic matter, and food web processes in the Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Murray-Hudson, M.; Mosepele, K.; Lindholm, M.

    2004-12-01

    The Okavango Delta of Botswana is a pristine but threatened wetland that ranges in size from 15,000 - 28,000 km2. Previous research has shown that an annual flooding event exerts controls on the quantity and chemical quality of aquatic organic matter (OM) at the Delta scale. In permanently-inundated areas, the perennial water supply maintains low dissolved organic carbon (DOC) concentrations and more microbial sources of OM, as evidenced by low specific UV absorbance and high fluorescence index values. In seasonally-inundated areas, the annual flood causes a pulse of DOC (over 5 mg C/L) and a shift to vegetation-derived DOC, as a result of the inundation of vegetation and soils. Because seasonal floodplains, which encompass 10,000 - 12,000 km2 of the Okavango Delta, become productive grazing areas after the flood and because a dominant portion of fish biomass production takes place in seasonal floodplains, the productivity of these areas is significant for higher trophic levels. Planned water developments upstream of the Delta may shorten/flatten the hydrological pulse and impact the transport and mobilization of organic matter within the Delta. The impacts of reduced flows on extent and duration of flooding have been examined. However, the secondary effects on biological productivity have received less attention. We hypothesize that varying sources of OM, controlled by the hydrologic regime of the Delta, and OM transformations from bacterial and UV degradation exert an influence on floodplain productivity. This study presents results of leaching and photodegradation experiments and observations of changes in algal populations and floodplain standing stock to demonstrate important linkages between biological, ecological, and hydrological processes in the Okavango Delta. Our results support that the DOC that is mobilized by the flood supports heterotrophic microbial populations which, in turn, support the biological productivity of seasonal floodplains.

  16. How Pure Components Control Polymer Blend Miscibility

    NASA Astrophysics Data System (ADS)

    White, Ronald; Lipson, Jane; Higgins, Julia

    2012-02-01

    We present insight into some intriguing relationships revealed by our recent studies of polymer mixture miscibility. Applying our simple lattice-based equation of state, we discuss some of the patterns observed over a sample of experimental blends. We focus on the question of how much key information can one determine from a knowledge of just the pure components only, and further, on the role of separate enthalpic and entropic contributions to the miscibility behavior. One interesting correlation connects the value of the difference in pure component energetic parameters with that of the mixed segment interactions, suggesting new possibilities for predictive modeling. We also show how in some cases these two parameter groupings act as separate controls determining the entropy and enthalpy of mixing. Also discussed are the different patterns exhibited for UCST-type and LCST-type blends, these being revealed in some cases by simple examination of the underlying microscopic parameters.

  17. Using phase diagrams to predict the performance of cosolvent floods for NAPL remediation

    SciTech Connect

    Falta, R.W.

    1998-12-31

    Cosolvent flooding using water miscible solvents such as alcohols has been proposed as an in situ NAPL remediation technique. This process is conceptually similar to enhanced oil recovery (EOR) using alcohols and some surfactant formulations. As a result of interest in the EOR aspects of these systems, analytical and graphical methods based on fractional flow theory were developed in the petroleum engineering literature for modeling these floods. The existing fractional flow solutions have not been used previously in environmental applications of cosolvent flooding, but they are applicable and provide many useful insights into the process. These applications are discussed, with an emphasis on explaining the mechanisms which tend to mobilize trapped NAPL during a cosolvent flood. The theory provides a simple way to predict the general behavior of a cosolvent flood using the phase diagram. It is concluded that the one-dimensional performance of a cosolvent flood can be predicted largely by inspection of the ternary phase diagram. In particular, the nature of the cosolvent flood depends primarily on the position of the cosolvent injection concentration relative to a critical tie line extension which passes through the plait point, tangent to the binodal curve.

  18. The Dynamics of Miscible Interfaces: Simulations

    NASA Technical Reports Server (NTRS)

    Meiburg, Eckart

    2002-01-01

    The goal of this experimental/computational investigation (joint with Prof Maxworthy at USC) has been to study the dynamics of miscible interfaces, both from a scientific and a practical point of view, and to prepare a related experiment to be flown on the International Space Station. In order to address these effects, we have focused experimental and computational investigations on miscible displacements in cylindrical capillary tubes, as well as in Hele-Shaw cells. Regarding the flow in a capillary tube, the question was addressed as to whether Korteweg stresses and/or divergence effects can potentially account for discrepancies observed between conventional Stokes flow simulations and experiments for miscible flows in capillary tubes. An estimate of the vorticity and streamfunction fields induced by the Kortewegs stresses was derived, which shows these stresses to result in the formation of a vortex ring structure near the tip of the concentration front. Through this mechanism the propagation velocity of the concentration front is reduced, in agreement with the experimental observations. Divergence effects, on the other hand, were seen to be very small, and they have a negligible influence on the tip velocity. As a result, it can be concluded that they are not responsible for the discrepancies between experiments and conventional Stokes simulations. A further part of our investigation focussed on the development of high-accuracy three-dimensional spectral element simulation techniques for miscible flows in capillary tubes, including the effects of variable density and viscosity. Towards this end, the conservation equations are treated in cylindrical coordinates.

  19. Dynamics of miscible displacements in round tubes

    SciTech Connect

    Meiburg, E.; Maxworthy, T.; Chen, C.Y.; Petitjeans, P.

    1995-12-31

    A combined experimental and numerical investigation of miscible two-phase flow in a capillary tube is reported. The fraction of fluid left behind on the wall is obtained as a function of the Peclet, Atwood, and Froude numbers. Scaling arguments are presented for two distinct flow regimes, dominated by diffusion and convection, respectively. In the latter one, an effective surface tension value can be estimated.

  20. Influence of seismic processes and volcanic activity on the formation of disastrous floods

    NASA Astrophysics Data System (ADS)

    Trifonov, Dmitriy

    2014-05-01

    Traditionally, the main cause of catastrophic floods are considered prolonged heavy rains, which lead to over-saturation of soil moisture and the deposition of precipitation on the surface of the earth. And at the same time there is reason to believe that precipitation cannot be the main cause of floods. Firstly, we observe a catastrophic floods not in every case of heavy precipitation: moreover, a direct correlation between precipitation intensity and scale of the flooding is not detected. Secondly, a simple calculation shows that the quantity of water, that drops down to the ground with torrential rains, are insufficient to cover the earth's surface such layer of water, where we can talk about the flood (especially catastrophic). In particular, the intensity of normal not tropical rainfall does not exceed 60 mm per hour. Then such a downpour would have to go continuously for at least two days in a row, to cause flooding of a height of 3 m provided a complete impenetrability of the earth's surface. In reality, however, such showers last no more than half an hour. Thus, it can be argued that the source of water for catastrophic floods fed by ground water, the volume of which is comparable with the volume of all surface water on Earth [1]. Classic examples of surface and groundwater interactions are, on the one hand, springs and artesian wells, and on the other hand, the phenomenon of absorption of precipitation by soil. In normal conditions underground water is moving by aquifers, penetrating through the pores and cracks in rocks in the conditions of nonstationary/unsteady filtration, forming a 3D network of underground channels in different directions (horizontal, vertical, inclined), including the so-called underground lakes - water basins in underground cavities. Especially strongly these processes are shown in the fractured and karst rocks. It is also important that the movement of water obeys the laws of hydrostatics and hydrodynamics in terms of specific

  1. Unmanned Aerial Vehicle Systems for Remote Estimation of Flooded Areas Based on Complex Image Processing

    PubMed Central

    Popescu, Dan; Ichim, Loretta; Stoican, Florin

    2017-01-01

    Floods are natural disasters which cause the most economic damage at the global level. Therefore, flood monitoring and damage estimation are very important for the population, authorities and insurance companies. The paper proposes an original solution, based on a hybrid network and complex image processing, to this problem. As first novelty, a multilevel system, with two components, terrestrial and aerial, was proposed and designed by the authors as support for image acquisition from a delimited region. The terrestrial component contains a Ground Control Station, as a coordinator at distance, which communicates via the internet with more Ground Data Terminals, as a fixed nodes network for data acquisition and communication. The aerial component contains mobile nodes—fixed wing type UAVs. In order to evaluate flood damage, two tasks must be accomplished by the network: area coverage and image processing. The second novelty of the paper consists of texture analysis in a deep neural network, taking into account new criteria for feature selection and patch classification. Color and spatial information extracted from chromatic co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results in a real mission demonstrate the validity of the proposed methodologies and the performances of the algorithms. PMID:28241479

  2. Unmanned Aerial Vehicle Systems for Remote Estimation of Flooded Areas Based on Complex Image Processing.

    PubMed

    Popescu, Dan; Ichim, Loretta; Stoican, Florin

    2017-02-23

    Floods are natural disasters which cause the most economic damage at the global level. Therefore, flood monitoring and damage estimation are very important for the population, authorities and insurance companies. The paper proposes an original solution, based on a hybrid network and complex image processing, to this problem. As first novelty, a multilevel system, with two components, terrestrial and aerial, was proposed and designed by the authors as support for image acquisition from a delimited region. The terrestrial component contains a Ground Control Station, as a coordinator at distance, which communicates via the internet with more Ground Data Terminals, as a fixed nodes network for data acquisition and communication. The aerial component contains mobile nodes-fixed wing type UAVs. In order to evaluate flood damage, two tasks must be accomplished by the network: area coverage and image processing. The second novelty of the paper consists of texture analysis in a deep neural network, taking into account new criteria for feature selection and patch classification. Color and spatial information extracted from chromatic co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results in a real mission demonstrate the validity of the proposed methodologies and the performances of the algorithms.

  3. A review of atmospheric and land surface processes with emphasis on flood generation in the Southern Himalayan rivers.

    PubMed

    Dimri, A P; Thayyen, R J; Kibler, K; Stanton, A; Jain, S K; Tullos, D; Singh, V P

    2016-06-15

    Floods in the southern rim of the Indian Himalayas are a major cause of loss of life, property, crops, infrastructure, etc. They have long term socio-economic impacts on the habitat living along/across the Himalayas. In the recent decade extreme precipitation events have led to numerous flash floods in and around the Himalayan region. Sporadic case-based studies have tried to explain the mechanisms causing the floods. However, in some of the cases, the causative mechanisms have been elusive. Various types of flood events have been debated at different spatial and temporal scales. The present study provides an overview of mechanisms that lead to floods in and around the southern rim of the Indian Himalayas. Atmospheric processes, landuse interaction, and glacier-related outbreaks are considered in the overview. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Spatial Analysis in Determination Of Flood Prone Areas Using Geographic Information System and Analytical Hierarchy Process at Sungai Sembrong's Catchment

    NASA Astrophysics Data System (ADS)

    Bukari, S. M.; Ahmad, M. A.; Wai, T. L.; Kaamin, M.; Alimin, N.

    2016-07-01

    Floods that struck Johor state in 2006 and 2007 and the East Coastal in 2014 have triggered a greatly impact to the flood management here in Malaysia. Accordingly, this study conducted to determine potential areas of flooding, especially in Batu Pahat district since it faces terrifying experienced with heavy flood. This objective is archived by using the application of Geographic Information Systems (GIS) on study area of flood risk location at the watershed area of Sungai Sembrong. GIS functions as spatial analysis is capable to produce new information based on analysis of data stored in the system. Meanwhile the Analytical Hierarchy Process (AHP) was used as a method for setting up in decision making concerning the existing data. By using AHP method, preparation and position of the criteria and parameters required in GIS are neater and easier to analyze. Through this study, a flood prone area in the watershed of Sungai Sembrong was identified with the help of GIS and AHP. Analysis was conducted to test two different cell sizes, which are 30 and 5. The analysis of flood prone areas were tested on both cell sizes with two different water levels and the results of the analysis were displayed by GIS. Therefore, the use of AHP and GIS are effective and able to determine the potential flood plain areas in the watershed area of Sungai Sembrong.

  5. Molecular driving forces behind the tetrahydrofuran–water miscibility gap

    DOE PAGES

    Smith, Micholas Dean; Mostofian, Barmak; Petridis, Loukas; ...

    2016-01-06

    The tetrahydrofuran water binary system exhibits an unusual closed-loop miscibility gap (transitions from a miscible regime to an immiscible regime back to another miscible regime as the temperature increases). Here, using all-atom molecular dynamics simulations, we probe the structural and dynamical behavior of the binary system in the temperature regime of this gap at four different mass ratios, and we compare the behavior of bulk water and tetrahydrofuran. The changes in structure and dynamics observed in the simulations indicate that the temperature region associated with the miscibility gap is distinctive. Within the miscibility-gap temperature region, the self diffusion of watermore » is significantly altered and the second virial coefficients (pair interaction strengths) show parabolic-like behavior. Altogether, the results suggest that the gap is the result of differing trends with temperature of minor structural changes, which produces interaction virials with parabolic temperature dependence near the miscibility gap.« less

  6. Molecular driving forces behind the tetrahydrofuran–water miscibility gap

    SciTech Connect

    Smith, Micholas Dean; Mostofian, Barmak; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.

    2016-01-06

    The tetrahydrofuran water binary system exhibits an unusual closed-loop miscibility gap (transitions from a miscible regime to an immiscible regime back to another miscible regime as the temperature increases). Here, using all-atom molecular dynamics simulations, we probe the structural and dynamical behavior of the binary system in the temperature regime of this gap at four different mass ratios, and we compare the behavior of bulk water and tetrahydrofuran. The changes in structure and dynamics observed in the simulations indicate that the temperature region associated with the miscibility gap is distinctive. Within the miscibility-gap temperature region, the self diffusion of water is significantly altered and the second virial coefficients (pair interaction strengths) show parabolic-like behavior. Altogether, the results suggest that the gap is the result of differing trends with temperature of minor structural changes, which produces interaction virials with parabolic temperature dependence near the miscibility gap.

  7. Molecular Driving Forces behind the Tetrahydrofuran-Water Miscibility Gap.

    PubMed

    Smith, Micholas Dean; Mostofian, Barmak; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C

    2016-02-04

    The tetrahydrofuran-water binary system exhibits an unusual closed-loop miscibility gap (transitions from a miscible regime to an immiscible regime back to another miscible regime as the temperature increases). Here, using all-atom molecular dynamics simulations, we probe the structural and dynamical behavior of the binary system in the temperature regime of this gap at four different mass ratios, and we compare the behavior of bulk water and tetrahydrofuran. The changes in structure and dynamics observed in the simulations indicate that the temperature region associated with the miscibility gap is distinctive. Within the miscibility-gap temperature region, the self-diffusion of water is significantly altered and the second virial coefficients (pair-interaction strengths) show parabolic-like behavior. Overall, the results suggest that the gap is the result of differing trends with temperature of minor structural changes, which produces interaction virials with parabolic temperature dependence near the miscibility gap.

  8. Miscibility and dynamical properties of cellulose acetate/plasticizer systems.

    PubMed

    Bao, Cong Yu; Long, Didier R; Vergelati, Caroll

    2015-02-13

    Due to its biodegradability and renewability, a great interest has been devoted to investigating cellulose acetate in order to expand its potential applications. In addition, secondary cellulose acetate (CDA) could also be considered as a model system for strongly polar polymer system. The dynamical behavior of CDA is supposed to be governed by H-bonding and dipolar interaction network. Due to their high glass transition temperature, cellulose acetate-based systems are processed when blended with plasticizers. It is thus of utmost importance to study the miscibility and plasticizing effects of various molecules. We prepared CDA films via solvent casting method with diethyl phthalate as the plasticizer. Miscibility diagrams were established by calorimetry and thermo-mechanical (DMTA) experiments. Dynamical properties were analyzed by DMTA and broadband dielectric spectroscopy. We could identify the α-relaxation of these CDA-plasticizer systems in the frequency range from 0.06 Hz to 10(6)Hz, which allowed for describing the dynamics in the so-called Williams-Landel-Ferry/Vogel-Fulcher-Tammann regime.

  9. Hydrological processes generating flash floods at hillslope scale in a small mountainous Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Bouvier, Christophe; Brunet, Pascal; Le Bourgeois, Olivier; Nguyen, Son; Borrell, Valérie; Ayral, Pierre-Alain; Didon-Lescot, Jean-François; Domergue, Jean-Marc; Grard, Nadine

    2015-04-01

    This work deals with the understanding at the hillslope scale of the hydrological process that generate flash floods. The Valescure small catchment (4km2) is a mountainous Mediterranean catchment, with steep slopes (30°) and granitic geology. An intensive survey of the catchment was displayed along a 4-years period (2011-2014) at the local and hillslope scale, in order to grab properties of the soil such as depths, clay content, water content, hydraulic conductivity and water retention, latelal flux velocity, bedrock permeability…. A simplified physically-based model was used to simulate vertical fluxes at both atmosphere/soil and sub-surface/bedrock interfaces, as well as the lateral fluxes of both surface and sub-surface. The model combines an adapted Green&Ampt model with finite depth of the soil with a kinematic wave model for the surface routing, and a Darcy model for the sub-surface routing. Most of the parameters of the model derive from the survey of the catchment: spatial distribution of the soil depth, vertical hydraulic conductivity at saturation, spatial and temporal variability of the soil moisture at various depths…. Some others are calibrated from observed rainfall and runoff data along a 10-years monitoring period (2005-2014): bedrock permeability, lateral hydraulic conductivity, initial water content in the soil. The model simulates quite well the observed floods over 30 events, based on the following assumptions : 1/ in spite of very high rainfall rates, most of the rainfall infiltrates in highly permeable soils (Ks ~ 200-300 mm.h-1), 2/ runoff only occurs when the soil is totally saturated, 3/ saturation of soil is highly amplified due to fast lateral flow, around 1m.h-1, that converge along a dense gully network, 4/ most of the flash flood runoff is due to exfiltration of the water in those gullies, 5/ the calibrated parameters of the model are in very close agreement with their experimental estimation. In addition, the model was proved to

  10. Projecting nuisance flooding in a warming climate using generalized linear models and Gaussian processes

    NASA Astrophysics Data System (ADS)

    Vandenberg-Rodes, Alexander; Moftakhari, Hamed R.; AghaKouchak, Amir; Shahbaba, Babak; Sanders, Brett F.; Matthew, Richard A.

    2016-11-01

    Nuisance flooding corresponds to minor and frequent flood events that have significant socioeconomic and public health impacts on coastal communities. Yearly averaged local mean sea level can be used as proxy to statistically predict the impacts of sea level rise (SLR) on the frequency of nuisance floods (NFs). In this study, we use generalized linear models (GLM) and Gaussian Process (GP) models combined to (i) estimate the frequency of NF associated with the change in mean sea level, and (ii) quantify the associated uncertainties via a novel and statistically robust approach. We calibrate our models to the water level data from 18 tide gauges along the coasts of United States, and after validation, we estimate the frequency of NF associated with the SLR projections in year 2030 (under RCPs 2.6 and 8.5), along with their 90% bands, at each gauge. The historical NF-SLR data are very noisy, and show large changes in variability (heteroscedasticity) with SLR. Prior models in the literature do not properly account for the observed heteroscedasticity, and thus their projected uncertainties are highly suspect. Among the models used in this study, the Negative Binomial Distribution GLM with GP best characterizes the uncertainties associated with NF estimates; on validation data ≈93% of the points fall within the 90% credible limit, showing our approach to be a robust model for uncertainty quantification.

  11. Risk assessment of urban flood disaster in Jingdezhen City based on analytic hierarchy process and geographic information system

    NASA Astrophysics Data System (ADS)

    Sun, D. C.; Huang, J.; Wang, H. M.; Wang, Z. Q.; Wang, W. Q.

    2017-08-01

    The research of urban flood risk assessment and management are of great academic and practical importance, which has become a widespread concern throughout the world. It’s significant to understand the spatial-temporal distribution of the flood risk before making the risk response measures. In this study, the urban region of Jingdezhen City is selected as the study area. The assessment indicators are selected from four aspects: disaster-causing factors, disaster-pregnant environment, disaster-bearing body and the prevention and mitigation ability, by consideration of the formation process of urban flood risk. And then, a small-scale flood disaster risk assessment model is developed based on Analytic Hierarchy Process(AHP) and Geographic Information System(GIS), and the spatial-temporal distribution of flood risk in Jingdezhen City is analysed. The results show that the risk decreases gradually from the centre line of Changjiang River to the surrounding, and the areas of high flood disaster risk is decreasing from 2010 to 2013 while the risk areas are more concentred. The flood risk of the areas along the Changjiang River is the largest, followed by the low-lying areas in Changjiang District. And the risk is also large in Zhushan District where the population, the industries and commerce are concentrated. The flood risk in the western part of Changjiang District and the north-eastern part of the study area is relatively low. The results can provide scientific support for flood control construction and land development planning in Jingdezhen City.

  12. Flood hazards analysis based on changes of hydrodynamic processes in fluvial systems of Sao Paulo, Brazil.

    NASA Astrophysics Data System (ADS)

    Simas, Iury; Rodrigues, Cleide

    2016-04-01

    The metropolis of Sao Paulo, with its 7940 Km² and over 20 million inhabitants, is increasingly being consolidated with disregard for the dynamics of its fluvial systems and natural limitations imposed by fluvial terraces, floodplains and slopes. Events such as floods and flash floods became particularly persistent mainly in socially and environmentally vulnerable areas. The Aricanduva River basin was selected as the ideal area for the development of the flood hazard analysis since it presents the main geological and geomorphological features found in the urban site. According to studies carried out by Anthropic Geomorphology approach in São Paulo, to study this phenomenon is necessary to take into account the original hydromorphological systems and its functional conditions, as well as in which dimensions the Anthropic factor changes the balance between the main variables of surface processes. Considering those principles, an alternative model of geographical data was proposed and enabled to identify the role of different driving forces in terms of spatial conditioning of certain flood events. Spatial relationships between different variables, such as anthropogenic and original morphology, were analyzed for that purpose in addition to climate data. The surface hydrodynamic tendency spatial model conceived for this study takes as key variables: 1- The land use present at the observed date combined with the predominant lithological group, represented by a value ranging 0-100, based on indexes of the National Soil Conservation Service (NSCS-USA) and the Hydraulic Technology Center Foundation (FCTH-Brazil) to determine the resulting balance of runoff/infiltration. 2- The original slope, applying thresholds from which it's possible to determine greater tendency for runoff (in percents). 3- The minimal features of relief, combining the curvature of surface in plant and profile. Those three key variables were combined in a Geographic Information System in a series of

  13. The Dynamics of Miscible Interfaces: Simulations

    NASA Technical Reports Server (NTRS)

    Meiburg, Eckart

    2005-01-01

    This research project focuses on the dynamics of interfacial regions between miscible fluids. While much attention has focused on immiscible interfaces in the past, miscible interfaces have been explored to a much lesser degree, so that there are many open questions regarding their dynamics at this time. Among the more pressing issues is the role that nonconventional stresses can play in such interfacial regions. Such stresses are typically not accounted for in efforts to model the dynamics of miscible flows. Our research aims to clarify under which circumstances these stresses do have to be taken into account, and what quantitative approaches are most suitable in this regard. In order to address these issues, we have focused on conducting linear stability analyses and nonlinear simulations for capillary tube and Hele-Shaw flows, and to compare the results with corresponding experiments performed in the labs of our co-investigators Prof. Maxworthy at USC, and Dr. Balasubramaniam at NASA. Over the duration of the project we have, among other things, focused on the effects of variable diffusion coefficients in such flows, and specifically on their influence in the growth of instabilities. Furthermore, our three-dimensional spectral element simulations have made good progress, so that we have come to a point where we can conduct more detailed comparisons with experimental observations. We are currently focusing our efforts on reproducing the tip-splitting instability observed by Maxworthy. Finally, we have discovered a new core-annular flow instability in the Stokes flow regime during the last year. This represents a significant finding, as this instability does not have an immiscible counterpart.

  14. DEVELOPMENT OF MORE-EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS

    SciTech Connect

    William R. Rossen; Russell T. Johns; Gary A. Pope

    2003-08-21

    The objective of this research is to widen the applicability of gas flooding to shallow oil reservoirs by reducing the pressure required for miscibility using gas enrichment and increasing sweep efficiency with foam. Task 1 examines the potential for improved oil recovery with enriched gases. Subtask 1.1 examines the effect of dispersion processes on oil recovery and the extent of enrichment needed in the presence of dispersion. Subtask 1.2 develops a fast, efficient method to predict the extent of enrichment needed for crude oils at a given pressure. Task 2 develops improved foam processes to increase sweep efficiency in gas flooding. Subtask 2.1 comprises mechanistic experimental studies of foams with N2 gas. Subtask 2.2 conducts experiments with CO{sub 2} foam. Subtask 2.3 develops and applies a simulator for foam processes in field application.

  15. Pore-Scale Study of Miscible Displacements in Porous Media Using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Shi, Baochang; Huang, Changsheng; Liang, Hong

    2015-12-01

    In the past few years, the miscible displacements in porous media were usually simulated by some semiempirical models based on the volume averaging at the representative elementary volume scale. To better understand the microscopic mechanism of the viscous fingering phenomenon in porous media for miscible fluids, in this paper the miscible displacements processes in porous media are studied using the lattice Boltzmann method (LBM) at the pore scale. First, the code of LBM is tested by simulating the displacement process of two miscible fluids with the same viscosity between two parallel plates which is the well-known Taylor-Aris dispersion problem, and comparing the results with the theoretical predictions. Then, the effects of the Péclet number Pe, the viscosity ratio M and the structure of the porous media on the displacement phenomenon are investigated, and the location and velocity of the finger tip, the displacement efficiency are also studied. In this paper, the displacement efficiency is calculated by 1-m, here the quantity m is defined as m=V_M/V_T, where V_M is the volume of more viscous fluids (the displaced fluid) left behind the finger tip, V_T is the total pore volume behind the finger tip. It can be found that the "interface" of two fluids will become clearer with the increasing of the Péclet number. As Pe and M are large enough, the viscous fingering phenomenon will occur, and in the front of the finger, "mushroom-like" pattern can be observed. Besides, with the increasing of Pe or M the quantity m will be increased too, i.e., the displacement efficiency will be decreased. While Pe (or M) is greater than a certain value, the growth rate of the quantity m will slow down. The same trend was observed for the miscible displacement in capillary tubes or Hele-Shaw cells. Besides, changing the structure of the porous media makes the finger pattern different. The present simulation results provide a good understanding of the microscopic mechanism of the

  16. Prediction on miscibility of silicone and gasoline components by Monte Carlo simulation.

    PubMed

    Li, Qingyin; Liu, Dong; Song, Linhua; Wu, Pingping; Yan, Zifeng

    2014-05-01

    The miscibility behavior between silicone materials and mixed gasoline components was explored via Monte Carlo simulation. The variation of energy of mixing and Gibbs energy of mixing between silicone and gasoline components shifted with temperature was calculated. The findings indicated that the miscibility of gasoline components was exceptional in silicone 2 and the selectivity of thiophene was superior to that of other silicones, which resulted from the ester groups and methyl side chains. The density of methyl side chains in silicone 2 was significantly higher than other silicones; therefore, it could explain the lower energy of mixing and higher selectivity concerning silicone 2 and thiophene. The energy of mixing between silicone 2 and gasoline components declined with the increasing temperature (300-500 K). Nevertheless, the more increased the temperature, the more decreased the selectivity of thiophene. At 350 K, it was essential for us to research the miscibility between silicone 2 and gasoline components further. The value of Gibbs energy of mixing for silicone 2 was considerably smaller than that of the hydrocarbons at 350 K. It could be demonstrated that the miscibility between silicone 2 and thiophene was better than that of hydrocarbons. Accordingly, we should attach importance to silicone 2 in the gasoline desulfurization process.

  17. Processing Big Remote Sensing Data for Fast Flood Detection in a Distributed Computing Environment

    NASA Astrophysics Data System (ADS)

    Olasz, A.; Kristóf, D.; Nguyen Thai, B.; Belényesi, M.; Giachetta, R.

    2017-07-01

    The Earth observation (EO) missions of the space agencies and space industry (ESA, NASA, national and commercial companies) are evolving as never before. These missions aim to develop and launch next-generation series of satellites and sensors and often provide huge amounts of data, even free of charge, to enable novel monitoring services. The wide geospatial sector is targeted to handle new challenges to store, process and visualize these geospatial data, reaching the level of Big Data by their volume, variety, velocity, along with the need of multi-source spatio-temporal geospatial data processing. Handling and analysis of remote sensing data has always been a cumbersome task due to the ever-increasing size and frequency of collected information. This paper presents the achievements of the IQmulus EU FP7 research and development project with respect to processing and analysis of geospatial big data in the context of flood and waterlogging detection.

  18. Experimental study on viscous fingering with partial miscible fluids

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryuta; Nagatsu, Yuichiro; Mishra, Manoranjan; Ban, Takahiko

    2016-11-01

    Viscous fingering (VF) instability occurs when a more viscous fluid is displaced by a less viscous one in porous media or Hele-Shaw cells. So far, studies of VF have focused on fluids that are either fully miscible or immiscible. However, little attention has been paid to VF in partially miscible fluids. Here, we have experimentally investigated VF in a radial Hele-Shaw cell using an aqueous two phase system (Ban et al. Soft Matter, 2012) which is an example of partially miscible fluids system. We have found novel instabilities that are counter-intuitive in miscible and immiscible systems. These include multiple droplets formation for low flow rate and widening of fingers at intermediate flow rate. The occurrence of the new instability patterns is induced by Korteweg effect in which convection is induced during phase separation in partially miscible systems.

  19. Modeling a glacial lake outburst flood process chain: the case of Lake Palcacocha and Huaraz, Peru

    NASA Astrophysics Data System (ADS)

    Somos-Valenzuela, Marcelo A.; Chisolm, Rachel E.; Rivas, Denny S.; Portocarrero, Cesar; McKinney, Daene C.

    2016-07-01

    One of the consequences of recent glacier recession in the Cordillera Blanca, Peru, is the risk of glacial lake outburst floods (GLOFs) from lakes that have formed at the base of retreating glaciers. GLOFs are often triggered by avalanches falling into glacial lakes, initiating a chain of processes that may culminate in significant inundation and destruction downstream. This paper presents simulations of all of the processes involved in a potential GLOF originating from Lake Palcacocha, the source of a previously catastrophic GLOF on 13 December 1941, killing about 1800 people in the city of Huaraz, Peru. The chain of processes simulated here includes (1) avalanches above the lake; (2) lake dynamics resulting from the avalanche impact, including wave generation, propagation, and run-up across lakes; (3) terminal moraine overtopping and dynamic moraine erosion simulations to determine the possibility of breaching; (4) flood propagation along downstream valleys; and (5) inundation of populated areas. The results of each process feed into simulations of subsequent processes in the chain, finally resulting in estimates of inundation in the city of Huaraz. The results of the inundation simulations were converted into flood intensity and preliminary hazard maps (based on an intensity-likelihood matrix) that may be useful for city planning and regulation. Three avalanche events with volumes ranging from 0.5 to 3 × 106 m3 were simulated, and two scenarios of 15 and 30 m lake lowering were simulated to assess the potential of mitigating the hazard level in Huaraz. For all three avalanche events, three-dimensional hydrodynamic models show large waves generated in the lake from the impact resulting in overtopping of the damming moraine. Despite very high discharge rates (up to 63.4 × 103 m3 s-1), the erosion from the overtopping wave did not result in failure of the damming moraine when simulated with a hydro-morphodynamic model using excessively conservative soil

  20. Modeling a Glacial Lake Outburst Flood Process Chain: The Case of Lake Palcacocha and Huaraz, Peru

    NASA Astrophysics Data System (ADS)

    Chisolm, Rachel; Somos-Valenzuela, Marcelo; Rivas Gomez, Denny; McKinney, Daene C.; Portocarrero Rodriguez, Cesar

    2016-04-01

    One of the consequences of recent glacier recession in the Cordillera Blanca, Peru, is the risk of Glacial Lake Outburst Floods (GLOFs) from lakes that have formed at the base of retreating glaciers. GLOFs are often triggered by avalanches falling into glacial lakes, initiating a chain of processes that may culminate in significant inundation and destruction downstream. This paper presents simulations of all of the processes involved in a potential GLOF originating from Lake Palcacocha, the source of a previously catastrophic GLOF on December 13, 1941, 1800 people in the city of Huaraz, Peru. The chain of processes simulated here includes: (1) avalanches above the lake; (2) lake dynamics resulting from the avalanche impact, including wave generation, propagation, and run-up across lakes; (3) terminal moraine overtopping and dynamic moraine erosion simulations to determine the possibility of breaching; (4) flood propagation along downstream valleys; and (5) inundation of populated areas. The results of each process feed into simulations of subsequent processes in the chain, finally resulting in estimates of inundation in the city of Huaraz. The results of the inundation simulations were converted into flood intensity and hazard maps (based on an intensity-likelihood matrix) that may be useful for city planning and regulation. Three avalanche events with volumes ranging from 0.5-3 x 106 m3 were simulated, and two scenarios of 15 m and 30 m lake lowering were simulated to assess the potential of mitigating the hazard level in Huaraz. For all three avalanche events, three-dimensional hydrodynamic models show large waves generated in the lake from the impact resulting in overtopping of the damming-moraine. Despite very high discharge rates (up to 63.4 x 103 m3/s), the erosion from the overtopping wave did not result in failure of the damming-moraine when simulated with a hydro-morphodynamic model using excessively conservative soil characteristics that provide very

  1. Process-Based Modeling of Floods Through Shrub Carrs of Varying Densities

    NASA Astrophysics Data System (ADS)

    Smith, J.

    2001-12-01

    Floodplain surfaces typically are protected from erosion during deep overbank flows by vegetation of varying types and densities. Drag on stems, branches, leaves, and exposed roots of the floodplain plants reduces both the near-bed flow and the fluid forces on the sediment grains. The drag on vegetation and on topographic elements of the floodplain surface can be calculated by carefully applying fundamental fluid-mechanical principals. Doing so requires identification and appropriate approximation of the reference velocity in the drag equation, and accurate estimates of the floodplain plant geometries and spacings. For shrubs, calculations indicate that skin friction on leaves is negligible compared to form drag on stems and branches, whereas, for uncut grasses, skin friction on the fronds is of primary importance. Scaling relationships are developed for each shrub species for specific applications, so that the fluid mechanically important properties can be estimated from mean stem diameters, mean stem group diameters, and mean stem group spacings. Stem group spacings and diameters can be related to shrub-canopy spacings and diameters respectively, which are determined from aerial photographs in the applications. A process-based model incorporating the necessary principles was developed and applied to a headwater tributary of East Plum Creek, Colorado. Calculations using the estimated decrease in density of the sandbar willows along this tributary accurately postdict the site of initiation of floodplain unraveling (transformation from a narrow, sinuous stream to a wide, straight one) that occurred during an extreme flood in 1965. Details of this application are presented in an accompanying poster. The model then is applied to Clark Fork of the Columbia River in the Deer Lodge Valley, Montana. This meandering fluvial system is an EPA Superfund site, because the flood-of-record in 1908 deposited several decimeters of contaminated tailings in the meander belt. The

  2. Floodnet: a telenetwork for acquisition, processing and dissemination of earth observation data for monitoring and emergency management of floods

    NASA Astrophysics Data System (ADS)

    Blyth, Ken

    1997-08-01

    The aim of FLOODNET is to provide a communications and data distribution facility specifically designed to meet the demanding temporal requirements of flood monitoring within the European Union (EU). Currently, remotely sensed data are not fully utilized for flood applications because potential users are not familiar with the procedure for acquiring the data and do not have a defined route for obtaining help in processing and interpreting the data. FLOODNET will identify the potential user groups within the EU and will, by demonstration, education and the use of telematics, increase the awareness of users to the capabilities of earth observation (EO) and the means by which they can acquire EO data. FLOODNET will act as a filter between users and satellite operation planners to help assign priorities for data acquisition against previously agreed criteria. The network will encourage a user community and will facilitate cross-sector information transfer, particularly between flood experts and administrative decision makers. The requirement for two levels of flood mapping is identified: (1) a rapid, broad-brush approach to assess the general flood situation and identify areas at greatest risk and in need of immediate assistance; (2) a detailed mapping approach, less critical in time, suitable for input to hydrological models or for flood risk evaluation. A likely networking technology is outlined, the basic functionality of a FLOODNET demonstrator is described and some of the economic benefits of the network are identified.

  3. Miscible, porous media displacements with density stratification.

    PubMed

    Riaz, Amir; Meiburg, Eckart

    2004-11-01

    High accuracy, three-dimensional numerical simulations of miscible displacements with gravity override, in both homogeneous and heterogeneous porous media, are discussed for the quarter five-spot configuration. The influence of viscous and gravitational effects on the overall displacement dynamics is described in terms of the vorticity variable. Density differences influence the flow primarily by establishing a narrow gravity layer, in which the effective Peclet number is enhanced due to the higher flow rate. Although this effect plays a dominant role in homogeneous flows, it is suppressed to some extent in heterogeneous displacements. This is a result of coupling between the viscous and permeability vorticity fields. When the viscous wavelength is much larger than the permeability wavelength, gravity override becomes more effective because coupling between the viscous and permeability vorticity fields is less pronounced. Buoyancy forces of a certain magnitude can lead to a pinch-off of the gravity layer, thereby slowing it down.

  4. Oscillatory interfacial instability between miscible fluids

    NASA Astrophysics Data System (ADS)

    Shevtsova, Valentina; Gaponenko, Yuri; Mialdun, Aliaksandr; Torregrosa, Marita; Yasnou, Viktar

    Interfacial instabilities occurring between two fluids are of fundamental interest in fluid dynamics, biological systems and engineering applications such as liquid storage, solvent extraction, oil recovery and mixing. Horizontal vibrations applied to stratified layers of immiscible liquids may generate spatially periodic waving of the interface, stationary in the reference frame of the vibrated cell, referred to as a "frozen wave". We present experimental evidence that frozen wave instability exists between two ordinary miscible liquids of similar densities and viscosities. At the experiments and at the numerical model, two superimposed layers of ordinary liquids, water-alcohol of different concentrations, are placed in a closed cavity in a gravitationally stable configuration. The density and viscosity of these fluids are somewhat similar. Similar to the immiscible fluids this instability has a threshold. When the value of forcing is increased the amplitudes of perturbations grow continuously displaying a saw-tooth structure. The decrease of gravity drastically changes the structure of frozen waves.

  5. Towards a robust assessment of bridge clogging processes in flood risk management

    NASA Astrophysics Data System (ADS)

    Gschnitzer, T.; Gems, B.; Mazzorana, B.; Aufleger, M.

    2017-02-01

    River managers are aware that wood-clogging mechanisms frequently trigger damage-causing processes like structural damages at bridges, sudden channel outbursts, and occasionally, major displacements of the water course. To successfully mitigate flood risks related to the transport of large wood (LW), river managers need a guideline for an accurate and reliable risk assessment procedure and the design of river sections and bridges that are endangered of LW clogging. In recent years, comprehensive research dealing with the triggers of wood-clogging mechanisms at bridges and the corresponding impacts on flood risk was accomplished at the University of Innsbruck. A large set of laboratory experiments in a rectangular flume was conducted. In this paper we provide an overall view of these tests and present our findings. By applying a logistic regression analysis, the available knowledge on the influence of geometrical, hydraulic, and wood-related parameters on LW clogging probabilities is processed in a generalized form. Based on the experimental modeling results a practice-oriented guideline that supports the assessment of flood risk induced by LW clogging, is presented. In this context, two specific local structural protection measures at the bridge, aiming for a significant decrease of the entrapment probabilities, are illustrated: (i) a deflecting baffle installed on the upstream face of the bridge and (ii) a channel constriction leading to a change in flow state and a corresponding increase of the flow velocities and the freeboard at the bridge cross section. The presented guideline is based on a three-step approach: estimation of LW potential, entrainment, and transport; clogging scenario at the bridge; and the impact on channel and floodplain hydraulics. For a specific bridge susceptible to potential clogging caused by LW entrapment, it allows for a qualitative evaluation of potential LW entrainment in the upstream river segments, its transport toward the

  6. Miscible Applied Simulation Techniques for Energy Recovery

    SciTech Connect

    Zeng, Zhengwen; Chang, Shih-Hsien; Grigg, Reid B.

    2005-07-01

    During the use of MASTER at the New Mexico Petroleum Recovery Research Center (PRRC) as research division of New Mexico Institute of Mining and Technology a number of modification have been made to the original MASTER. We have worked at minimizing programming errors and incorporating a foaming option for surfactant solution (aqueous phase) injection altemating with gas (SAG) The original program checks and modifications performed at PRRC were under the direction of Dr. Shih-Hsien Chang under previous DOE contracts. The final modifications and completion of the documentation were performed by Dr. Zhengwen Zeng under DOE Contract Number DE-FG26-01BC15364. Drs. Chang and Zeng worked under Dr. Reid B. Grigg in the Gas Flooding Processes and Flow Heterogeneities Section of PRRC. This work is not intended to have any long-term support from the PRRC, but any errors should be reported to the Department of Energy for inclusion in future releases of MASTER. MASTER is an effective reservoir simulator for modeling a number of fluid flow problems and is a straight forward and economical program. We thank the Department of Energy for the original development of this program and the availability for our use.

  7. Miscible ferrofluid patterns in a radial magnetic field.

    PubMed

    Chen, Ching-Yao; Yang, Y-S; Miranda, José A

    2009-07-01

    Pattern formation in a miscible ferrofluid system is experimentally investigated. The experiment is performed by immersing a thin ferrofluid droplet in a cylindrical container, overfilling it with a nonmagnetic miscible fluid, and applying an in-plane radial magnetic field. Visually striking patterns are obtained whose morphologies change from circular at zero field to complex starburst-like structures at finite field. The evolution of miscible ferrofluid droplets of various initial diameters subjected to different magnetic-field strengths is considered. Proper rescaling of the experimental data indicates that the time evolution of the droplets' area increments obeys a universal 4/3 power-law behavior at long times.

  8. Understanding processes that generate flash floods in the arid Judean Desert to the Dead Sea - a measurement network

    NASA Astrophysics Data System (ADS)

    Hennig, Hanna; Rödiger, Tino; Laronne, Jonathan B.; Geyer, Stefan; Merz, Ralf

    2016-04-01

    Flash floods in (semi-) arid regions are fascinating in their suddenness and can be harmful for humans, infrastructure, industry and tourism. Generated within minutes, an early warning system is essential. A hydrological model is required to quantify flash floods. Current models to predict flash floods are often based on simplified concepts and/or on concepts which were developed for humid regions. To more closely relate such models to local conditions, processes within catchments where flash floods occur require consideration. In this study we present a monitoring approach to decipher different flash flood generating processes in the ephemeral Wadi Arugot on the western side of the Dead Sea. To understand rainfall input a dense rain gauge network was installed. Locations of rain gauges were chosen based on land use, slope and soil cover. The spatiotemporal variation of rain intensity will also be available from radar backscatter. Level pressure sensors located at the outlet of major tributaries have been deployed to analyze in which part of the catchment water is generated. To identify the importance of soil moisture preconditions, two cosmic ray sensors have been deployed. At the outlet of the Arugot water is sampled and level is monitored. To more accurately determine water discharge, water velocity is measured using portable radar velocimetry. A first analysis of flash flood processes will be presented following the FLEX-Topo concept .(Savenije, 2010), where each landscape type is represented using an individual hydrological model according to the processes within the three hydrological response units: plateau, desert and outlet. References: Savenije, H. H. G.: HESS Opinions "Topography driven conceptual modelling (FLEX-Topo)", Hydrol. Earth Syst. Sci., 14, 2681-2692, doi:10.5194/hess-14-2681-2010, 2010.

  9. Modeling non-stationary flood magnitude and frequency in West Africa using a hierarchical Bayesian framework conditioned on large-scale atmospheric processes

    NASA Astrophysics Data System (ADS)

    Schlef, K.; Spence, C. M.; Brown, C.

    2016-12-01

    Riverine flooding in West Africa has recently caused devastating damages, yet there is limited information on historical flooding and projections of future flooding under non-stationary climate are highly uncertain. The purpose of this study is twofold: first, to identify key oceanic-atmospheric mechanisms that drive flood events in West Africa, and second, to build a non-stationary model of future regional flooding conditioned on the expected evolution of those mechanisms under climate change. We identify climate covariates, such as the West African Monsoon Index, that are based on large-scale atmospheric processes with a demonstrated mechanistic link to flood events. We then develop a hierarchical Bayesian framework that is conditioned on climate and basin-specific covariates. A peaks-over-threshold method is used to identify flood event magnitude and frequency, which are represented by Generalized Pareto and Poisson distributions, respectively. Poor data quality is mitigated by incorporating censored information. After the model is validated using historical climate and streamflow data, projections of the climate covariates from general circulation models are used to develop estimates of future flooding and corresponding uncertainty bounds. This study improves understanding of the causes of floods, and uses novel methods to develop estimates of future flooding in West Africa, thus providing an essential step towards building flood resilience.

  10. Improved Efficiency of Miscible C02 Floods and Enhanced Prospects for C02 Flooding Heterogeneous Reservoirs

    SciTech Connect

    Boyn Guo; David S. Schechter; Jyun-Syung Tsau; Reid B. Grigg; Shih-Hsien Chang

    1996-10-10

    Surfactant and foam properties have been evaluated at high pressure using the foam durability apparatus. For a number of surfactant solutions the interfacial tension with cense CO2, critical micelle concentrations, foaming ability, and foam stability were determined. Preliminary results show that these tests correlate well to predict surfactant properties and mobility in cores. Work has also restarted in the parallel-dual permeability system.

  11. Flooded homes, broken bonds, the meaning of home, psychological processes and their impact on psychological health in a disaster.

    PubMed

    Carroll, Bob; Morbey, Hazel; Balogh, Ruth; Araoz, Gonzalo

    2009-06-01

    In 2005, Carlisle suffered severe flooding and 1600 houses were affected. A qualitative research project to study the social and health impacts was undertaken. People whose homes had been flooded and workers who had supported them were interviewed. The findings showed that there was severe disruption to people's lives and severe damage to their homes, and many suffered from psychological health issues. Phenomenological and transactional perspectives are utilised to analyse the psychological processes (identity, attachment, alienation and dialectics) underlying the meaning of home and their impact on psychological health. Proposals for policy and practice are made.

  12. Design by Nature in a Confined Flood Alleviation Scheme: Analysis of Form-Process Feedbacks and Morphological Evolution

    NASA Astrophysics Data System (ADS)

    Hetherington, D.; German, S.

    2015-12-01

    any conventional hard flood risk alleviation schemes have been detrimental to natural geomorphic processes and have damaged fluvial habitats. This is primarily due to the over-riding focus on managing flood risk by dictating channel capacity and hydraulics, which is not always conducive to the promotion of geomorphologically-healthy and diverse conditions that allow and promote natural processes. This paper explains how the principles of fluvial geomorphology had a large influence on the design, construction and post project monitoring of a flood alleviation scheme in Wales within a heavily confined river corridor that is designated as having special ecological status; without adversely impacting on flood risk. The challenge was to ensure that the physical habitat required by the important species (including Atlantic Salmon and Ranunculus) were retained and that the surrounding infrastructure and properties were not at risk of being undercut as a result of scour in the confined high energy channel. A geomorphologically-guided soft engineering approach was taken to promote local morphological diversity and flow diversity, utilising information from up and downstream natural river reaches, and general geomorphological principles. The proposed layout was modelled in 1D to understand the effects of the reprofiling on flows, allowing for a basic assessment of coarse sediment transport to be undertaken. A combination of terrestrial laser scanning and contact GPS surveys were used to monitor morphological evolution post construction, and to determine how morphological form adjusted post-construction within the confined channel. This paper will introduce the guiding principles of process restoration that influenced scheme design, and then report on the morphological evolution of the river channel that occurred as river processes produced and maintained a dynamic, diverse and healthy physical habitat. Keywords: Process Restoration; Form Process Feedbacks; Fluvial

  13. Grid infrastructure for automatic processing of SAR data for flood applications

    NASA Astrophysics Data System (ADS)

    Kussul, Natalia; Skakun, Serhiy; Shelestov, Andrii

    2010-05-01

    More and more geosciences applications are being put on to the Grids. Due to the complexity of geosciences applications that is caused by complex workflow, the use of computationally intensive environmental models, the need of management and integration of heterogeneous data sets, Grid offers solutions to tackle these problems. Many geosciences applications, especially those related to the disaster management and mitigations require the geospatial services to be delivered in proper time. For example, information on flooded areas should be provided to corresponding organizations (local authorities, civil protection agencies, UN agencies etc.) no more than in 24 h to be able to effectively allocate resources required to mitigate the disaster. Therefore, providing infrastructure and services that will enable automatic generation of products based on the integration of heterogeneous data represents the tasks of great importance. In this paper we present Grid infrastructure for automatic processing of synthetic-aperture radar (SAR) satellite images to derive flood products. In particular, we use SAR data acquired by ESA's ENVSAT satellite, and neural networks to derive flood extent. The data are provided in operational mode from ESA rolling archive (within ESA Category-1 grant). We developed a portal that is based on OpenLayers frameworks and provides access point to the developed services. Through the portal the user can define geographical region and search for the required data. Upon selection of data sets a workflow is automatically generated and executed on the resources of Grid infrastructure. For workflow execution and management we use Karajan language. The workflow of SAR data processing consists of the following steps: image calibration, image orthorectification, image processing with neural networks, topographic effects removal, geocoding and transformation to lat/long projection, and visualisation. These steps are executed by different software, and can be

  14. Process, mechanism and impacts of scale formation in alkaline flooding by a variable porosity and permeability model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Li, Jiachun

    2016-06-01

    In spite of the role of alkali in enhancing oil recovery (EOR), the formation of precipitation during alkaline-surfactant-polymer (ASP) flooding can severely do harm to the stratum of oil reservoirs, which has been observed in situ tests of oil fields such as scale deposits found in oil stratum and at the bottom of oil wells. On the other hand, remarkable variation of stratum parameters, e.g., pore radius, porosity, and permeability due to scale formation considerably affects seepage flow and alkaline flooding process in return. The objective of this study is to firstly examine these mutual influential phenomena and corresponding mechanisms along with EOR during alkaline flooding when the effects of precipitation are no longer negligible. The chemical kinetic theory is applied for the specific fundamental reactions to describe the process of rock dissolution in silica-based reservoirs. The solubility product principle is used to analyze the mechanism of alkali scale formation in flooding. Then a 3D alkaline flooding coupling model accounting for the variation of porosity and permeability is established to quantitatively estimate the impact of alkali scales on reservoir stratum. The reliability of the present model is verified in comparison with indoor experiments and field tests of the Daqing oil field. Then, the numerical simulations on a 1/4 well group in a 5-spot pattern show that the precipitation grows with alkali concentration, temperature, and injection pressure and, thus, reduces reservoir permeability and oil recovery correspondingly. As a result, the selection of alkali with a weak base is preferable in ASP flooding by tradeoff strategy.

  15. Sedimentary processes of the Kusawa Lake torrent system, Yukon, Canada, as revealed by the September 16, 1982 flood event

    NASA Astrophysics Data System (ADS)

    Lowey, Grant W.

    2002-08-01

    The Kusawa Lake torrent system is located in the northern Canadian Cordillera of southwestern Yukon. It is Holocene in age and consists of a catchment area, gorge and alluvial fan complex. The north compartment of the catchment is a third-order basin covering an area of 13.2 km 2. It is characterized by active slumping of Quaternary glacial deposits that supply sediment for the torrent system. The gorge is approximately 800 m long and distinguished by 10 m high vertical walls cut into granitic bedrock. The fan complex is semiconical in shape and covers an area of 1.52 km 2. The active part of the fan is plano-convex in longitudinal profile, covers an area of 0.75 km 2, and is subdivided into an upper, middle and lower fan, based on the occurrence of seven sedimentary facies that were deposited by a catastrophic flood in 1982. The upper fan is characterized by boulder gravel levees and boulder gravel lobes that were deposited by debris flows. It is also characterized by sandy boulder gravel that may represent a transition from debris flow to dominantly hyperconcentrated flow processes. The middle fan is distinguished by sandy cobble gravel and sandy pebble gravel that is interbedded with horizontally laminated sand. These sediments were deposited by hyperconcentrated flows. The lower fan is characterized by horizontally bedded and laminated sand that may represent a transition from hyperconcentrated flow to sheetflood dominant processes, and by sand channels that represent rechannelized waning-flood discharge. The fan displays downfan trends in grain size (boulders to sand), slope style (plano-concave), and slope value (4-1°) typical of sheetflood-dominated fans. The initiation of sedimentation in the Kusawa Lake torrent system was due to a combination of rainfall flooding and flooding related to catastrophic slope failure in the catchment area. Slope failure leads to the formation of a landslide dam and lake, and when the dam fails, the draining lake results in a

  16. Interface evolution during radial miscible viscous fingering.

    PubMed

    Chui, Jane Y Y; de Anna, Pietro; Juanes, Ruben

    2015-10-01

    We study experimentally the miscible radial displacement of a more viscous fluid by a less viscous one in a horizontal Hele-Shaw cell. For the range of tested injection rates and viscosity ratios we observe two regimes for the evolution of the fluid-fluid interface. At early times the interface length increases linearly with time, which is typical of the Saffman-Taylor instability for this radial configuration. However, as time increases, the interface growth slows down and scales as ∼t(1/2), as one expects in a stable displacement, indicating that the overall flow instability has shut down. Surprisingly, the crossover time between these two regimes decreases with increasing injection rate. We propose a theoretical model that is consistent with our experimental results, explains the origin of this second regime, and predicts the scaling of the crossover time with injection rate and the mobility ratio. The key determinant of the observed scalings is the competition between advection and diffusion time scales at the displacement front, suggesting that our analysis can be applied to other interfacial-evolution problems such as the Rayleigh-Bénard-Darcy instability.

  17. "Physically-based" numerical experiment to determine the dominant hillslope processes during floods?

    NASA Astrophysics Data System (ADS)

    Gaume, Eric; Esclaffer, Thomas; Dangla, Patrick; Payrastre, Olivier

    2016-04-01

    To study the dynamics of hillslope responses during flood event, a fully coupled "physically-based" model for the combined numerical simulation of surface runoff and underground flows has been developed. A particular attention has been given to the selection of appropriate numerical schemes for the modelling of both processes and of their coupling. Surprisingly, the most difficult question to solve, from a numerical point of view, was not related to the coupling of two processes with contrasted kinetics such as surface and underground flows, but to the high gradient infiltration fronts appearing in soils, source of numerical diffusion, instabilities and sometimes divergence. The model being elaborated, it has been successfully tested against results of high quality experiments conducted on a laboratory sandy slope in the early eighties, which is still considered as a reference hillslope experimental setting (Abdul & Guilham). The model appeared able to accurately simulate the pore pressure distributions observed in this 1.5 meter deep and wide laboratory hillslope, as well as its outflow hydrograph shapes and the measured respective contributions of direct runoff and groundwater to these outflow hydrographs. Based on this great success, the same model has been used to simulate the response of a theoretical 100-meter wide and 10% sloped hillslope, with a 2 meter deep pervious soil and impervious bedrock. Three rain events have been tested: a 100 millimeter rainfall event over 10 days, over 1 day or over one hour. The simulated responses are hydrologically not realistic and especially the fast component of the response, that is generally observed in the real-world and explains flood events, is almost absent of the simulated response. Thinking a little about the whole problem, the simulation results appears totally logical according to the proposed model. The simulated response, in fact a recession hydrograph, corresponds to a piston flow of a relatively uniformly

  18. Formation of miscible fluid microstructures by hydrodynamic focusing in plane geometries.

    PubMed

    Cubaud, Thomas; Mason, Thomas G

    2008-11-01

    We experimentally investigate the flow structures formed when two miscible fluids that have large viscosity contrasts are injected and hydrodynamically focused in plane microchannels. Parallel viscous flows composed of a central stream surrounded by symmetric sheath streams are examined as a function of the flow rates, fluid viscosities, and rates of molecular diffusion. We study miscible interfacial morphologies and show a route for manipulating viscous flow-segregation processes in plane microsystems. The diffusion layer at the boundary of an ensheathed fluid grows as function of the distance downstream and depends on the Péclet number. In particular, we observe diffusion-enhanced viscous ensheathing processes. In the presence of a constriction, we investigate the formation of a lubricated viscous thread in the converging flow and also the buckling morphologies of the thread in the diverging flow. This study, relevant to multifluid flow between a "thick" material and a "thin" solvent, demonstrates the possibility to further control steady and oscillatory miscible fluid microstructures.

  19. Flash-point prediction for binary partially miscible mixtures of flammable solvents.

    PubMed

    Liaw, Horng-Jang; Lu, Wen-Hung; Gerbaud, Vincent; Chen, Chan-Cheng

    2008-05-30

    Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of flammable solvents. To confirm the predictive efficacy of the derived flash points, the model was verified by comparing the predicted values with the experimental data for the studied mixtures: methanol+octane; methanol+decane; acetone+decane; methanol+2,2,4-trimethylpentane; and, ethanol+tetradecane. Our results reveal that immiscibility in the two liquid phases should not be ignored in the prediction of flash point. Overall, the predictive results of this proposed model describe the experimental data well. Based on this evidence, therefore, it appears reasonable to suggest potential application for our model in assessment of fire and explosion hazards, and development of inherently safer designs for chemical processes containing binary partially miscible mixtures of flammable solvents.

  20. Pre- and post-processing of hydro-meteorological ensembles for the Norwegian flood forecasting system in 145 basins.

    NASA Astrophysics Data System (ADS)

    Jahr Hegdahl, Trine; Steinsland, Ingelin; Merete Tallaksen, Lena; Engeland, Kolbjørn

    2016-04-01

    Probabilistic flood forecasting has an added value for decision making. The Norwegian flood forecasting service is based on a flood forecasting model that run for 145 basins. Covering all of Norway the basins differ in both size and hydrological regime. Currently the flood forecasting is based on deterministic meteorological forecasts, and an auto-regressive procedure is used to achieve probabilistic forecasts. An alternative approach is to use meteorological and hydrological ensemble forecasts to quantify the uncertainty in forecasted streamflow. The hydrological ensembles are based on forcing a hydrological model with meteorological ensemble forecasts of precipitation and temperature. However, the ensembles of precipitation are often biased and the spread is too small, especially for the shortest lead times, i.e. they are not calibrated. These properties will, to some extent, propagate to hydrological ensembles, that most likely will be uncalibrated as well. Pre- and post-processing methods are commonly used to obtain calibrated meteorological and hydrological ensembles respectively. Quantitative studies showing the effect of the combined processing of the meteorological (pre-processing) and the hydrological (post-processing) ensembles are however few. The aim of this study is to evaluate the influence of pre- and post-processing on the skill of streamflow predictions, and we will especially investigate if the forecasting skill depends on lead-time, basin size and hydrological regime. This aim is achieved by applying the 51 medium-range ensemble forecast of precipitation and temperature provided by the European Center of Medium-Range Weather Forecast (ECMWF). These ensembles are used as input to the operational Norwegian flood forecasting model, both raw and pre-processed. Precipitation ensembles are calibrated using a zero-adjusted gamma distribution. Temperature ensembles are calibrated using a Gaussian distribution and altitude corrected by a constant gradient

  1. Reducing uncertainty in the selection of bi-variate distributions of flood peaks and volumes using copulas and hydrological process-based model selection

    NASA Astrophysics Data System (ADS)

    Szolgay, Jan; Gaál, Ladislav; Bacigál, Tomáš; Kohnová, Silvia; Blöschl, Günter

    2016-04-01

    Bi-variate distributions of flood peaks and flood event volumes are needed for a range of practical purposes including e.g. retention basin design and identifying extent and duration of flooding in flood hazard zones. However, the selection of the types of bi-variate distributions and estimating their parameters from observed peak-volume pairs are associated with far larger uncertainties compared to uni-variate distributions, since observed flood records of required length are rarely available. This poses a serious problem to reliable flood risk estimation in bi-variate design cases. The aim of this contribution was to shed light on the possibility of reducing uncertainties in the estimation of the dependence models/parameters from a regional perspective. The peak-volume relationships were modeled in terms of copulas. Flood events were classified according to their origin. In order to reduce the uncertainty in estimating flood risk, pooling and analyzing catchments of similar behavior according to flood process types was attempted. Most of the work reported in the literature so far did not direct the multivariate analysis toward discriminating certain types of models regionally according to specific runoff generation processes. Specifically, the contribution addresses these problems: - Are the peak-volume relationships of different flood types for a given catchment similar? - Are the peak-volume dependence structures between catchments in a larger region for given flood types similar? - Are some copula types more suitable for given flood process types and does this have consequences for reliable risk estimation? The target region is located in the northern parts of Austria, and consists of 72 small and mid-sized catchments. Instead of the traditional approach that deals with annual maximum floods, the current analysis includes all independent flood events in the region. 24 872 flood events from the period 1976-2007 were identified, and classified as synoptic, flash

  2. Uphill diffusion and phase separation in partially miscible multicomponent mixtures

    NASA Astrophysics Data System (ADS)

    He, Ping; Raghavan, Ashwin; Ghoniem, Ahmed

    2015-11-01

    The partially miscible multicomponent mixtures, which are frequently encountered in green chemistry processes, often exhibit complicated behaviors, and are critical to the production rate, energy efficiency, and pollution controls. Recent studies have been mainly focused on phase behaviors. However, the coupled phase equilibrium and transport process, which may be the answer to phase separations observed in experiments, is not well researched. Here, we present a numerical and theoretical study on coupled mixing of heavy oil and supercritical water, and the results of our state-of-art modeling agree with experimental measurements. We find that due to the non-ideal diffusion driving force, (1) strong uphill diffusion of heavy oil fractions occurs, (2) a new heavy oil phase is separated starting from the plait point, and heavy fractions become highly concentrated, and (3) water diffusion initially overshoots in oil, and is expelled lately. Finally, we conclude our analysis applicable to different molecules and conditions. The authors thank Saudi Aramco for supporting this work (contract number 6600023444).

  3. CO{sub 2} huff-n-puff process in a light oil shallow carbonate reservoir. Annual report, January 1, 1996--December 31, 1996

    SciTech Connect

    Prieditis, J.; Wehner, S.

    1998-01-01

    The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg and San Andres formations; a light oil, shallow shelf carbonate reservoir that exists throughout the Permian Basin. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. Miscible CO{sub 2} flooding is the process of choice for enhancing recovery of light oils and already accounts for over 12% of the Permian Basin`s daily production. There are significant probable reserves associated with future miscible CO{sub 2} projects. However, many are marginally economic at current market conditions due to large up-front capital commitments for a peak response which may be several years in the future. The resulting negative cash-flow is sometimes too much for an operator to absorb. The CO{sub 2} H-n-P process is being investigated as a near-term option to mitigate the negative cash-flow situation--allowing acceleration of inventoried miscible CO{sub 2} projects when coupled together.

  4. Flooding of lignite mines: isotope variations and processes in a system influenced by saline groundwater.

    PubMed

    Trettin, Rolf; Glässer, Walter; Lerche, Ian; Seelig, Ulrike; Treutler, Hanns-Christian

    2006-06-01

    The quality of both groundwaters and surface waters that arise during flooding of abandoned lignite open pits are influenced by regional and local factors. A typical regional factor is due to oxidised sedimentary sulfides. A more local factor is the interaction of shallow water with highly saline groundwater, which is important in Merseburg-Ost (Germany). Investigation of this system is aided by the use of many environmental isotope tracers but special problems can arise. In order to reveal processes in the mine environment (shallow groundwater, lake water) and to characterise mixtures with saline groundwater results are described using the tracers deltaD, delta18O, delta13C, delta34S, 87Sr/86Sr, 3H, 14C, 39Ar, and 222Rn. Deep highly saline groundwater had a radiocarbon concentration typically below 10 pMC. The values of delta13C(DIC) are around-5 per thousand. As delta13C of the aquifer rock samples (Permian, Zechstein carbonates) was in the range of-6...+5 per thousand, residence time corrections based on delta13C are questionable. Additional checks with 39Ar, as well as results from the variationof delta18O (or deltaD) with respect to the salinity, emphasise a Holocene age; as is also the case for most mineralised groundwaters and also for water having a low delta18O (and deltaD). For saline groundwater residing in the Zechstein aquifer the measured delta34S values of about 12 per thousand are close to those expected from the literature. In contrast, the 87Sr/86Sr ratio of dissolved strontium is far from the values anticipated for the aquifer rocks despite there being proportionality between the chloride concentration and the strontium concentration. Furthermore, the proportionality is not valid in lower mineralised water. The 87Sr/86Sr ratio can, therefore, hardly be used as a tracer for the distribution of ascending saline water. The amount of salt-water coming from below into the residual quarry basins is an essential contribution to the lake inventories

  5. Deconvolving Flood Plain Dynamical Processes from Pedogenic Processes on Ancient Floodplains

    NASA Astrophysics Data System (ADS)

    Sheldon, N. D.

    2014-12-01

    Paleosols (fossil soils) preserved in ancient floodplain systems represent one of the most widely used and potentially powerful continental paleoclimatic archives. At the same time, to apply most of the quantitative paleoclimate proxies requires the deconvolution of floodplain dynamics from pedogenic processes. For example, a paleosol could be weakly developed because of low atmospheric CO2 levels, low amounts of precipitation, or because of short formation duration due to frequent channel avulsion. The interpretation of local floodplain dynamics in paleo-floodplain systems is often simplistic, assuming both straightforward uniformitarianism and also that a single vertical section represents that lateral diversity of environments, however, these assumptions have rarely, if ever, been put to the test. Herein, a variety of paleoclimatic and paleobiological proxies will be examined in well-preserved paleo-floodplain settings in Spain, Wyoming, and Montana to test those assumptions. Multi-proxy (phytolith, stable isotope) paleovegetation studies along paleo-floodplain transects in Montana (Miocene, Eocene) indicate substantial heterogeneity at the scale of tens to hundreds of meters, floodplain dynamics-driven succession, and cryptic paludal or everwet areas that are not recognizable purely on the basis of sedimentology. Similarly, rapidly aggrading floodplains in fluvial distributary systems (Spain, Miocene) or in dryland basins (Montana) often record significant mismatches between paleosol-based and paleobotanically based estimates of paleoprecipitation, likely due to variable sediment accumulation rates. Both of those sets of results indicate that single vertical sections are unlikely to represent the breadth floodplain environments and properties operating across paleo-floodplain systems. In contrast, newly described mineralogical proxies based on rock magnetics that can be used to reconstruct paleoclimatic/paleoenvironmental properties appear to be robust at the

  6. Miscibility Study of PCBM/P3EHT Organic Photovoltaics via Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Yin, Wen; McCulloch, Bryan; Segalman, Rachel; Dadmun, Mark

    2011-03-01

    Organic photovoltaics (OPV) attracted considerable interest as lightweight, inexpensive, and easily processable replacement of inorganic photovoltaics. Current results indicate that the morphology of these photovoltaic materials is essential to their solar energy conversion efficiency but a detailed and fundamental understanding is absent. In this paper, the miscibility and structure of P3EHT/PCBM composites with varying PCBM loading level are investigated via small angle neutron scattering (SANS). With P3EHT having a melting temperature below 100°C, SANS experiments of the blends are conducted above the melting point to unequivocally determine the miscibility of PCBM and P3EHT without the added complexity of polymer crystals. Our SANS results show that blends with 20 and 50 wt% PCBM exhibit dramatically larger scattering at low-Q regime relative to 10 and 15wt% PCBM samples. This result implies that the miscibility limit of PCBM and P3EHT lies between 15:85 and 20:80. Further analysis is underway to correlate these results to OPV efficiency.

  7. Buoyant miscible displacement flows in vertical pipe

    NASA Astrophysics Data System (ADS)

    Amiri, A.; Larachi, F.; Taghavi, S. M.

    2016-10-01

    The displacement flow of two miscible Newtonian fluids is investigated experimentally in a vertical pipe of long aspect ratio (δ-1 ≈ 210). The fluids have a small density difference and they have the same viscosity. The heavy displacing fluid is initially placed above the light displaced fluid. The displacement flow is downwards. The experiments cover a wide range of the two dimensionless parameters that largely describe the flow: the modified Reynolds number (0 ≤ Ret⪅800) and the densimetric Froude number (0 ≤ Fr ≤ 24). We report on the stabilizing effect of the imposed flow and uncover the existence of two main flow regimes at long times: a stable displacement flow and an unstable displacement flow. The transition between the two regimes occurs at a critical modified Reynolds number " separators=" R et | Critical , as a function of Fr. We study in depth the stable flow regime: First, a lubrication model combined with a simple initial acceleration formulation delivers a reasonable prediction to the time-dependent penetrating displacing front velocity. Second, we find two sub-regimes for stable displacements, namely, sustained-back-flows and no-sustained-back-flows. The transition between the two sub-regimes is a marginal stationary interface flow state, which is also well predicted by the lubrication model. The unstable regime is associated to instabilities and diffusive features of the flow. In addition, particular patterns such as front detachment phenomenon appear in the unstable flow regime, for which we quantify the regions of existence versus the dimensionless groups.

  8. Climate change impacts on the seasonality and generation processes of floods in catchments with mixed snowmelt/rainfall regimes: projections and uncertainties

    NASA Astrophysics Data System (ADS)

    Vormoor, K.; Lawrence, D.; Heistermann, M.; Bronstert, A.

    2014-06-01

    Climate change is likely to impact the seasonality and generation processes of floods in the Nordic countries, which has direct implications for flood risk assessment, design flood estimation, and hydropower production management. Using a multi-model/multi-parameter approach, we analysed the projected changes in flood seasonality and its underlying generation processes in six catchments with mixed snowmelt/rainfall regimes in Norway. We found that autumn/winter events become more frequent in all catchments considered which leads to an intensification of the current autumn/winter flood regime for the coastal catchments, a reduction of the dominance of spring/summer flood regimes in a high-mountain catchment, and a possible systematic shift in the current flood regimes from spring/summer to autumn/winter in catchments in northern and south-eastern Norway. The changes in flood regimes results from increasing event magnitudes or frequencies, or a combination of both during autumn and winter. Changes towards more dominant autumn/winter events correspond to an increasing relevance of rainfall as a flood generating process (FGP) which is most pronounced in those catchments with the largest shifts in flood seasonality. Here, rainfall replaces snowmelt as the dominant FGP. We further analysed the ensemble components in contributing to overall uncertainty in the projected changes and found that the climate projections and the methods for downscaling or bias-correction tend to be the largest contributors. The relative role of hydrological parameter uncertainty, however, is highest for those catchments showing the largest changes in flood seasonality which confirms the lack of robustness in hydrological model parameterization for simulations under transient hydrometeorological conditions.

  9. Estimation of minimum miscibility pressure (MMP) of CO2 and liquid n-alkane systems using an improved MRI technique.

    PubMed

    Liu, Yu; Jiang, Lanlan; Song, Yongchen; Zhao, Yuechao; Zhang, Yi; Wang, Dayong

    2016-02-01

    Minimum miscible pressure (MMP) of gas and oil system is a key parameter for the injection system design of CO2 miscible flooding. Some industrial standard approaches such as the experiment using a rising bubble apparatus (RBA), the slim tube tests (STT), the pressure-density diagram (PDD), etc. have been applied for decades to determine the MMP of gas and oil. Some theoretical or experiential calculations of the MMP were also applied to the gas-oil miscible system. In the present work, an improved technique based on our previous research for the estimation of the MMP by using magnetic resonance imaging (MRI) was proposed. This technique was then applied to the CO2 and n-alkane binary and ternary systems to observe the mixing procedure and to study the miscibility. MRI signal intensities, which represent the proton concentration of n-alkane in both the hydrocarbon rich phase and the CO2 rich phase, were plotted as a reference for determining the MMP. The accuracy of the MMP obtained by using this improved technique was enhanced comparing with the data obtained from our previous works. The results also show good agreement with other established techniques (such as the STT) in previous published works. It demonstrates increases of MMPs as the temperature rise from 20 °C to 37.8 °C. The MMPs of CO2 and n-alkane systems are also found to be proportional to the carbon number in the range of C10 to C14. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Analysis of flash flood-triggering rainfall for a process-oriented hydrological model

    NASA Astrophysics Data System (ADS)

    Garambois, P. A.; Larnier, K.; Roux, H.; Labat, D.; Dartus, D.

    2014-02-01

    We propose an extended study of recent flood-triggering storms and resulting hydrological responses for catchments in the Pyrenean foothills up to the Aude region. For hydrometeorological sciences, it appears relevant to characterize flash floods and the storm that triggered them over various temporal and spatial scales. There are very few studies of extreme storm-caused floods in the literature covering the Mediterranean and highlighting, for example, the quickness and seasonality of this natural phenomenon. The present analysis is based on statistics that clarify the dependence between the spatial and temporal distributions of rainfall at catchment scale, catchment morphology and runoff response. Given the specific space and time scales of rainfall cell development, we show that the combined use of radar and a rain gauge network appears pertinent. Rainfall depth and intensity are found to be lower for catchments in the Pyrenean foothills than for the nearby Corbières or Montagne Noire regions. We highlight various hydrological behaviours and show that an increase in initial soil saturation tends to foster quicker catchment flood response times, of around 3 to 10 h. The hydrometeorological data set characterized in this paper constitutes a wealth of information to constrain a physics-based distributed model for regionalization purposes in the case of flash floods. Moreover, the use of diagnostic indices for rainfall distribution over catchment drainage networks highlights a unimodal trend in spatial temporal storm distributions for the entire flood dataset. Finally, it appears that floods in mountainous Pyrenean catchments are generally triggered by rainfall near the catchment outlet, where the topography is lower.

  11. Optical Studies of model binary miscibility gap system

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Witherow, W. K.; Facemire, B. R.; Nishioka, G. M.

    1982-01-01

    In order to develop a better understanding of separation processes in binary miscibility gap metal alloys, model transparent fluid systems were studied. The system selected was diethylene glycol-ethyl salicylate which has convenient working temperatures (288 to 350 K), low toxicity, and is relatively easy to purify. The system is well characterized with respect to its phase diagram, density, surface and interfacial tensions, viscosity and other pertinent physical properties. Studies of migration of the dispersed phase in a thermal gradient were performed using conventional photomicroscopy. Velocities of the droplets of the dispersed phase were measured and compared to calculated rates which included both Stokes and thermal components. A holographic microscopy system was used to study growth, coalescence, and particle motions. Sequential holograms allowed determination of particle size distribution changes with respect to time and temperature. Holographic microscopy is capable of recording particle densities up to 10 to the 7th power particles/cu cm and is able to resolve particles of the order of 2 to 3 microns in diameter throughout the entire volume of the test cell. The reconstructed hologram produces a wavefront that is identical to the original wavefront as it existed when the hologram was made. The reconstructed wavefront is analyzed using a variety of conventional optical methods.

  12. Miscible Quarter Five-Spot Flows in Porous Media

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Yao; Meiburg, Eckart

    1997-11-01

    Miscible quarter five-spot flows in both homogeneous and heterogeneous porous media were investigated by means of direct numerical simulations based on compact finite differences. Comparisons of the algebraic growth rate and the preferred wave number of the viscous fingering instability with analytical linear stability results demonstrate excellent accuracy. A series of simulations illustrate the effects of the mobility ratio R, the dimensionless flow rate Pe, and the heterogeneity on the displacement process. For sufficiently large R and Pe, the homogeneous flow gives rise to a vigorous fingering instability, along with strong nonlinear interactions among the fingers. The spatial nonuniformity of the potential base flow leads to a clear separation in space and time of the large and small scales in the flow field. Small scales occur predominantly during the early stages near the injection well, and at late times near the production well. The central domain is dominated by larger scales. Both local and integral flow features are quantified by means of concentration, vorticity, stream function, and sweep efficiency data. For heterogeneous porous media, the influence of the parameters characterizing the permeability variation was investigated. Typically, the minimal sweep efficiency was observed at intermediate values of the correlation length. Partially supported by Chevron Petroleum Technology Co.

  13. Estimating the Response of Physical Processes in the South San Francisco Bay for Flood Stage Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Andes, L.; Wu, F.; MacWilliams, M.; Lu, C.; Lo, J.

    2012-12-01

    Coastal flooding in the far south San Francisco Bay (SSFB) can be a function of astronomical tide, residual tide, in-bay wind speed and direction and fluvial discharge. These physical processes and coastal levee failure were considered as input parameters into a Monte Carlo Simulation (MCS) to estimate coastal flood stage frequency in the SSFB. Limited data is available in the SSFB to estimate the contribution of these physical processes to coastal flood statistics. Over 100 years of measured water surface elevation (WSE) is available at the San Francisco tide station which can be used as input to hydrodynamic model simulations to estimate the WSE response in the SSFB. Data sampling criteria have been developed to select significant events at the San Francisco tide station for data transfer to the project site and statistical analysis. The coincidently sampled astronomical and residual tides at the San Francisco tide station were analyzed to cover the full range of the combinations of astronomical and residual tides that contribute to coastal flood statistics at the project site. A look-up table of astronomical and residual tide in the form of WSE responses at the project site from the hydrodynamic simulations was established for the interpolation in the MCS. The hydrodynamic model simulations indicated that the higher-high astronomical tides between 5.15 and 7.25 feet MLLW amplifies with a factor of 1.40 to 1.90 as a function of tidal frequency and water depth, including tidal range. The residual tide varies minimally as it propagates into the SSFB. In-Bay wind set-up from a significant event was found to contribute on the order of one foot to the total WSE in the SSFB; however, wind events with strong magnitudes along the primary axis of the bay occur infrequently making an insignificant contribution to the overall flood statistics. The fluvial discharges of Guadalupe River and Coyote Creek were considered in the hydrodynamic simulations as they are located

  14. Assessment Approach for Identifying Compatibility of Restoration Projects with Geomorphic and Flooding Processes in Gravel Bed Rivers

    NASA Astrophysics Data System (ADS)

    DeVries, Paul; Aldrich, Robert

    2015-08-01

    A critical requirement for a successful river restoration project in a dynamic gravel bed river is that it be compatible with natural hydraulic and sediment transport processes operating at the reach scale. The potential for failure is greater at locations where the influence of natural processes is inconsistent with intended project function and performance. We present an approach using practical GIS, hydrologic, hydraulic, and sediment transport analyses to identify locations where specific restoration project types have the greatest likelihood of working as intended because their function and design are matched with flooding and morphologic processes. The key premise is to identify whether a specific river analysis segment (length ~1-10 bankfull widths) within a longer reach is geomorphically active or inactive in the context of vertical and lateral stabilities, and hydrologically active for floodplain connectivity. Analyses involve empirical channel geometry relations, aerial photographic time series, LiDAR data, HEC-RAS hydraulic modeling, and a time-integrated sediment transport budget to evaluate trapping efficiency within each segment. The analysis segments are defined by HEC-RAS model cross sections. The results have been used effectively to identify feasible projects in a variety of alluvial gravel bed river reaches with lengths between 11 and 80 km and 2-year flood magnitudes between ~350 and 1330 m3/s. Projects constructed based on the results have all performed as planned. In addition, the results provide key criteria for formulating erosion and flood management plans.

  15. Assessment Approach for Identifying Compatibility of Restoration Projects with Geomorphic and Flooding Processes in Gravel Bed Rivers.

    PubMed

    DeVries, Paul; Aldrich, Robert

    2015-08-01

    A critical requirement for a successful river restoration project in a dynamic gravel bed river is that it be compatible with natural hydraulic and sediment transport processes operating at the reach scale. The potential for failure is greater at locations where the influence of natural processes is inconsistent with intended project function and performance. We present an approach using practical GIS, hydrologic, hydraulic, and sediment transport analyses to identify locations where specific restoration project types have the greatest likelihood of working as intended because their function and design are matched with flooding and morphologic processes. The key premise is to identify whether a specific river analysis segment (length ~1-10 bankfull widths) within a longer reach is geomorphically active or inactive in the context of vertical and lateral stabilities, and hydrologically active for floodplain connectivity. Analyses involve empirical channel geometry relations, aerial photographic time series, LiDAR data, HEC-RAS hydraulic modeling, and a time-integrated sediment transport budget to evaluate trapping efficiency within each segment. The analysis segments are defined by HEC-RAS model cross sections. The results have been used effectively to identify feasible projects in a variety of alluvial gravel bed river reaches with lengths between 11 and 80 km and 2-year flood magnitudes between ~350 and 1330 m(3)/s. Projects constructed based on the results have all performed as planned. In addition, the results provide key criteria for formulating erosion and flood management plans.

  16. Effect of pseudo-gravitational acceleration on the dissolution rate of miscible drops

    NASA Astrophysics Data System (ADS)

    Viner, Gloria; La Monica, Tatiana; Lombardo, Renato; Pojman, John A.

    2017-10-01

    The effect of pseudo-gravitational acceleration on the dissolution process of two phase miscible systems has been investigated at high acceleration values using a spinning drop tensiometer with three systems: 1-butanol/water, isobutyric acid/water, and triethylamine/water. We concluded that the dissolution process involves at least three different transport phenomena: diffusion, barodiffusion, and gravitational (buoyancy-driven) convection. The last two phenomena are significantly affected by the centrifugal acceleration acting at the interface between the two fluids, and the coupling with the geometry of the dissolving drop leads to a change of the mass flux during the course of the dissolution process.

  17. Exploring storage and runoff generation processes for urban flooding through a physically based watershed model

    NASA Astrophysics Data System (ADS)

    Smith, B. K.; Smith, J. A.; Baeck, M. L.; Miller, A. J.

    2015-03-01

    A physically based model of the 14 km2 Dead Run watershed in Baltimore County, MD was created to test the impacts of detention basin storage and soil storage on the hydrologic response of a small urban watershed during flood events. The Dead Run model was created using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) algorithms and validated using U.S. Geological Survey stream gaging observations for the Dead Run watershed and 5 subbasins over the largest 21 warm season flood events during 2008-2012. Removal of the model detention basins resulted in a median peak discharge increase of 11% and a detention efficiency of 0.5, which was defined as the percent decrease in peak discharge divided by percent detention controlled area. Detention efficiencies generally decreased with increasing basin size. We tested the efficiency of detention basin networks by focusing on the "drainage network order," akin to the stream order but including storm drains, streams, and culverts. The detention efficiency increased dramatically between first-order detention and second-order detention but was similar for second and third-order detention scenarios. Removal of the soil compacted layer, a common feature in urban soils, resulted in a 7% decrease in flood peak discharges. This decrease was statistically similar to the flood peak decrease caused by existing detention. Current soil storage within the Dead Run watershed decreased flood peak discharges by a median of 60%. Numerical experiment results suggested that detention basin storage and increased soil storage have the potential to substantially decrease flood peak discharges.

  18. CO2 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir

    SciTech Connect

    Boomer, R.J.; Cole, R.; Kovar, M.; Prieditis, J.; Vogt, J.; Wehner, S.

    1999-02-24

    The application cyclic CO2, often referred to as the CO2 Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO2 Huff-n-Puff process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in capital-intensive miscible projects. Texaco Exploration and Production Inc. and the US Department of Energy have teamed up in a attempt to develop the CO2 Huff-n-Puff process in the Grayburg and San Andres formations which are light oil, shallow shelf carbonate reservoirs that exist throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir.

  19. COSOLVENCY OF PARTIALLY MISCIBLE ORGANIC SOLVENTS ON THE SOLUBILITY OF HYDROPHOBIC ORGANIC CHEMICALS

    EPA Science Inventory

    The cosolvency of completely miscible organic solvents (CMOSs) and partially miscible organic solvents (PMOSs) on the solubility of hydrophobic organic chemicals (HOCs) was examined, with an emphasis on PMOSs. Measured solubilities were compared with predictions from the log- lin...

  20. COSOLVENCY OF PARTIALLY MISCIBLE ORGANIC SOLVENTS ON THE SOLUBILITY OF HYDROPHOBIC ORGANIC CHEMICALS

    EPA Science Inventory

    The cosolvency of completely miscible organic solvents (CMOSs) and partially miscible organic solvents (PMOSs) on the solubility of hydrophobic organic chemicals (HOCs) was examined, with an emphasis on PMOSs. Measured solubilities were compared with predictions from the log- lin...

  1. Miscibility and structure-property relationships in some novel polyolefins

    NASA Astrophysics Data System (ADS)

    Kamdar, Akshay Rajprakash

    In the first chapter, miscibility of homogeneous propylene/ethylene (P/E) copolymers of relatively narrow molecular weight distribution was studied as a function of constituent comonomer content. Polymers with up to 31 mol% ethylene were blended in pairs in order to vary the comonomer content difference. Copolymers of molecular weight about 200 kg mol-1 were miscible if the difference in ethylene content was less than about 18 mol%, and immiscible if the ethylene content difference was greater than about 20 mol%. Blends with constituent composition difference in the range of 18-20 mol% exhibited partial miscibility in the melt. In the second chapter, the effect of chain microstructure on the miscibility and phase behavior of ethylene-octene (EO) copolymer blends was studied. Binary blends of two statistical copolymers (EO/EO blends) that differed in comonomer content were compared with blends of an EO with an olefinic blocky ethylene-octene copolymer, OBC (EO/OBC blends). Two EOs of molecular weight about 100 kg/mol were miscible if the difference in octene content was less than about 10 mol% and immiscible if the octene content difference was greater than about 13 mol%. The blocky nature of the OBCs reduced the miscibility and broadened the partial miscibility window of EO/OBC blends compared to EO/EO blends. The EO/OBC blends were miscible if the octene content difference was less than 7 mol% and immiscible above 13 mol% octene content difference. In the third chapter, the adhesion of some ethylene-octene copolymers to polypropylene (PP) and high density polyethylene (HDPE) was studied in order to evaluate their suitability as compatibilizers for PP/HDPE blends. A one-dimensional model of the compatibilized blend was fabricated by layer-multiplying coextrusion. The microlayered tapes consisted of many alternating layers of PP and HDPE with a thin tie-layer inserted at each interface. The thickness of the tie-layer varied from 0.1 to 14 mum, which included

  2. Application of miscible displacement for Field MTX low permeability formations

    NASA Astrophysics Data System (ADS)

    Kuntsevich, V.; Slivkin, S.; Belozerov, V.

    2015-02-01

    Miscible displacement is a very effective method of recovery efficiency improvement. It is widely used in the world, but this technology is not widely used in Russia. For this reason, it is necessary to study global experience and physical aspects of this EOR method. The most important factors and limitations of miscible displacement application from the geological point of view (heterogeneity) and from the physical point of view (properties of injected fluids and reservoir fluids) should be determined. The results of this analysis should be tested on the low permeability reservoir of field MTX with analytical, proxy calculation and simulation methods.

  3. Model parameters conditioning on regional hydrologic signatures for process-based design flood estimation in ungauged basins.

    NASA Astrophysics Data System (ADS)

    Biondi, Daniela; De Luca, Davide Luciano

    2015-04-01

    The use of rainfall-runoff models represents an alternative to statistical approaches (such as at-site or regional flood frequency analysis) for design flood estimation, and constitutes an answer to the increasing need for synthetic design hydrographs (SDHs) associated to a specific return period. However, the lack of streamflow observations and the consequent high uncertainty associated with parameter estimation, usually pose serious limitations to the use of process-based approaches in ungauged catchments, which in contrast represent the majority in practical applications. This work presents the application of a Bayesian procedure that, for a predefined rainfall-runoff model, allows for the assessment of posterior parameters distribution, using the limited and uncertain information available for the response of an ungauged catchment (Bulygina et al. 2009; 2011). The use of regional estimates of river flow statistics, interpreted as hydrological signatures that measure theoretically relevant system process behaviours (Gupta et al. 2008), within this framework represents a valuable option and has shown significant developments in recent literature to constrain the plausible model response and to reduce the uncertainty in ungauged basins. In this study we rely on the first three L-moments of annual streamflow maxima, for which regressions are available from previous studies (Biondi et al. 2012; Laio et al. 2011). The methodology was carried out for a catchment located in southern Italy, and used within a Monte Carlo scheme (MCs) considering both event-based and continuous simulation approaches for design flood estimation. The applied procedure offers promising perspectives to perform model calibration and uncertainty analysis in ungauged basins; moreover, in the context of design flood estimation, process-based methods coupled with MCs approach have the advantage of providing simulated floods uncertainty analysis that represents an asset in risk-based decision

  4. Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru

    NASA Astrophysics Data System (ADS)

    Schneider, D.; Huggel, C.; Cochachin, A.; Guillén, S.; García, J.

    2014-01-01

    Recent warming has had enormous impacts on glaciers and high-mountain environments. Hazards have changed or new ones have emerged, including those from glacier lakes that form as glaciers retreat. The Andes of Peru have repeatedly been severely impacted by glacier lake outburst floods in the past. An important recent event occurred in the Cordillera Blanca in 2010 when an ice avalanche impacted a glacier lake and triggered an outburst flood that affected the downstream communities and city of Carhuaz. In this study we evaluate how such complex cascades of mass movement processes can be simulated coupling different physically-based numerical models. We furthermore develop an approach that allows us to elaborate corresponding hazard maps according to existing guidelines for debris flows and based on modelling results and field work.

  5. D/H on Mars: Effects of floods, volcanism, impacts, and polar processes

    USGS Publications Warehouse

    Carr, M.H.

    1990-01-01

    Water in the Martian atmosphere is 5.1 times more enriched in deuterium than terrestial water. The enrichment has been previously attributed to either a massive loss of water early in the planet's history or the presence of only a very small reservoir of water that has exchanged with the atmosphere over geologic time. Both these interpretations appear inconsistent with geologic evidence of large floods and sustained volcanism. Large floods are believed to have episodically introduced large amounts of water onto the surface. During a large flood roughly 1017 g of water would almost immediately sublime into the atmospher and be frozen out on polar terrain, to form a new layer several centimeters thick. The long-term effect of a flood would depend on where the water pooled after the flood. If the water pooled at low latitudes, all the water would slowly sublime into the atmosphers and ultimately be frozen out at the poles, thereby adding several meters to the polar deposits for each flood. If the water pooled at high latitude, it would form a permanent ice deposit, largely isolated from further interchange with the atmosphere. Volcanism has also episodically introduced water into the atmosphere. Most of this water has become incorporated into the polar deposits. That released over the last 3.5 Ga could have added a few kilometers to the polar deposits, depending on the amount of dust incorporated along with the ice. Large cometary impacts would have introduced additional large amounts of water into the atmosphere. The long-term evolution of D/H in the atmosphere depends on the rate of exchange of water between the atmosphere and the polar deposits. If exchange is active, then loss rates of hydrogen from the upper atmosphere are substantially higher than those estimated by Y. L. Yung, J. Wen, J. P. Pinto, M. Allen, K. K. Pierce, and S. Paulsen [Icarus 76, 146-159 (1988)]. More plausibly, exchange of water between the atmosphere and the polar deposits is limited, so

  6. Gas-separation applications of miscible blends of isomeric polyimides

    SciTech Connect

    Coleman, M.R.; Kohn, R.; Koros, W.J. . Dept. of Chemical Engineering)

    1993-11-10

    Blends of polyimide isomers containing hexafluoroisopropylidene in the central moiety of the diamine residue have been studied. The isomers differed by having either a meta or a para linkage between the diamine and dianhydride residues. The miscibility of these materials was investigated by studying the glass transition temperature behavior using differential scanning calorimetry. Mixtures of isomer paris, such as 6FDA-6FmDA and 6FDA-6FpDA, exhibited one glass transition temperature, T[sub g], and were therefore miscible. Mixtures of nonisomer pairs exhibited two T[sub g]'s and were immiscible. The gas sorption and transport properties of the blends of the 6FDA-6FmDA and 6FDA-6FpDA isomers were characterized for a variety of gases at 35 C. for pressures up to 60 atm. The permeabilities and permselectivity in the miscible blends fell between those of the pure components and were approximately logarithmic averages of the pure component properties. The miscibility of the polyimide isomers enables one to tailor the composition of the material to optimize the gas separation and mechanical properties.

  7. Predicting miscibility of binary liquids from small cluster QCE calculations

    NASA Astrophysics Data System (ADS)

    Ingenmey, Johannes; von Domaros, Michael; Kirchner, Barbara

    2017-04-01

    The quantum cluster equilibrium method is applied to model binary systems of molecular solvents. We minimize the computational effort as well as the experimental input and present the results obtained for the completely miscible acetonitrile/acetone, benzene/acetone, and water/acetone systems, as well as for the hardly miscible water/benzene system. Only clusters of sizes up to n = 3 are applied and these are optimized employing the low-cost functional PBEh-3c. The thermodynamic functions of the pure liquids are in reasonable agreement with experiments. For both non-water containing binary systems, the Gibbs energy of mixing can be reproduced with an accuracy of ≈0.25 kJ/mol. Water containing systems are not sufficiently described by small clusters. The empirical mean-field parameter amf and exclusion volume scaling parameter bxv which depend on the experimental input are approximated by linear interpolation between their neat liquids' reference values. This makes the approach independent from the experimental data of the binary system. Despite the roughness of the approximation as well as the small size of the cluster sets, the approach is able to correctly predict the mixing behavior of all acetone systems. The benzene/water system is correctly predicted to be non-miscible at most mole fractions. A small range at high benzene concentrations (x > 0.8 ) is falsely predicted to be miscible.

  8. Phillips works on MFMG (Miscible Fluids in Microgravity) payload activities

    NASA Image and Video Library

    2005-06-02

    ISS011-E-07709 (2 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, works with the Miscible Fluids in Microgravity (MFMG) payload activities in the Destiny laboratory of the International Space Station (ISS). At the work table, Phillips slowly injected tinted water into honey, as part of a thermal experiment.

  9. Multiple flow processes accompanying a dam-break flood in a small upland watershed, Centralia, Washington

    USGS Publications Warehouse

    Costa, John E.

    1994-01-01

    On October 5, 1991, following 35 consecutive days of dry weather, a 105-meter long, 37-meter wide, 5.2-meter deep concrete-lined watersupply reservoir on a hillside in the eastern edge of Centralia, Washington, suddenly failed, sending 13,250 cubic meters of water rushing down a small, steep tributary channel into the city. Two houses were destroyed, several others damaged, mud and debris were deposited in streets, on lawns, and in basements over four city blocks, and 400 people were evacuated. The cause of failure is believed to have been a sliding failure along a weak seam or joint in the siltstone bedrock beneath the reservoir, possibly triggered by increased seepage into the rock foundation through continued deterioration of concrete panel seams, and a slight rise (0.6 meters) in the pool elevation. A second adjacent reservoir containing 18,900 cubic meters of water also drained, but far more slowly, when a 41-cm diameter connecting pipe was broken by the landslide. The maximum discharge resulting from the dam-failure was about 71 cubic meters per second. A reconstructed hydrograph based on the known reservoir volume and calculated peak discharge indicates the flood duration was about 6.2 minutes. Sedimentologic evidence, high-water mark distribution, and landforms preserved in the valley floor indicate that the dam failure flood consisted of two flow phases: an initial debris flow that deposited coarse bouldery sediment along the slope-area reach as it lost volume, followed soon after by a water-flood that achieved a stage about one-half meter higher than the debris flow. The Centralia dam failure is one of three constructed dams destroyed by rapid foundation failure that defines the upper limits of an envelope curve of peak flood discharge as a function of potential energy for failed constructed dams worldwide.

  10. Perceptions of the Decision Process though Drought and Flood in the Murray-Darling Basin, Australia

    NASA Astrophysics Data System (ADS)

    Lynch, A. H.; Adler, C.; Howard, N.

    2012-12-01

    The Murray-Darling Basin incorporates Australia's three longest rivers and spans four States and one Territory. It is important for an agricultural industry worth more than AUS$9 billion per year, but is also the life source and spirit of the Indigenous Yorta Yorta people. Persistent severe drought and extreme flooding episodes have presented new challenges in the region. The exceptionally wet conditions experienced since the break of the "Millenium Drought" beg the question as to whether key drought and flood characteristics are changing due to anthropogenic climate change. Many alternative goals for the management of the Basin answer to the requirement for an evidentiary basis. A choice cannot be made on this basis alone - interests are implicated in any alternative. Here we use Q methodology, an approach that elucidates patterns of subjectivity, to explore the perspectives of Indigenous and non-Indigenous residents, workers and decision-makers in the region. We address the inherent diversity of viewpoints on the risks from and responses to flood and drought, and identify the potential for common ground.

  11. Flood mechanisms and flood extremes in a changing climate

    NASA Astrophysics Data System (ADS)

    Berghuijs, Wouter; Woods, Ross

    2017-04-01

    River flooding can have severe societal, economic and environmental consequences. However, limited understanding of the regional differences in flood-generating mechanisms results in poorly understood historical flood trends and uncertain predictions of future flood conditions. To address this issue, we use a simple observation-based approach to decipher the dominant drivers of floods across large geographic regions. The generated process knowledge provides helpful context of the mechanisms that are of main interest when studying the (non)stationarity of flood response. Such assessments of floods trends across large regions always focus on frequently occurring events (e.g. annual peaks), whereas changes in very extreme but rare floods are only studied for a small number of locations that have exceptionally long observational records. Understanding changes in these extreme and rare floods is especially relevant as these events are often most damaging. Utilizing aggregate regional flood information, we show that during recent decades there is a strong decadal variability and an overall increase in both the frequency and magnitude of extreme floods across multiple continents. This observation-based assessment of extreme floods is broadly consistent with model predictions, but also highlights strong decadal variability. Because we mapped regional differences in flood generating mechanisms of more commonly occurring floods, there remains a need to identify the regional and hemispheric drivers that control changes in extreme floods.

  12. Molecular dynamics of binary and ternary nanodroplets with a miscibility gap

    NASA Astrophysics Data System (ADS)

    Wilemski, Gerald; Hrahsheh, Fawaz

    2012-02-01

    The structure of nanodroplets plays an important role in many natural processes including particle nucleation and aerosol formation in the atmosphere. Among other factors, chemical miscibility and surface tension strongly affect the structure of multicomponent nanodroplets at low temperature. Here, we investigate the structure of water/nonane and water/butanol/nonane nanodroplets using molecular dynamics (MD). Our MD results confirm our theoretical predictions of nonspherical nanodroplet (Russian-Doll) structures at low temperatures using density functional and lattice Monte Carlo techniques. We systematically study the variation of the droplet structure with temperature and with butanol concentration.

  13. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope-Evros region, Greece.

    PubMed

    Kazakis, Nerantzis; Kougias, Ioannis; Patsialis, Thomas

    2015-12-15

    The present study introduces a multi-criteria index to assess flood hazard areas in a regional scale. Accordingly, a Flood Hazard Index (FHI) has been defined and a spatial analysis in a GIS environment has been applied for the estimation of its value. The developed methodology processes information of seven parameters namely flow accumulation, distance from the drainage network, elevation, land use, rainfall intensity and geology. The initials of these criteria gave the name to the developed method: "FIGUSED". The relative importance of each parameter for the occurrence and severity of flood has been connected to weight values. These values are calculated following an "Analytical Hierarchy Process", a method originally developed for the solution of Operational Research problems. According to their weight values, information of the different parameters is superimposed, resulting to flood hazard mapping. The accuracy of the method has been supported by a sensitivity analysis that examines a range for the weights' values and corresponding to alternative scenarios. The presented methodology has been applied to an area in north-eastern Greece, where recurring flood events have appeared. Initially FIGUSED method resulted to a Flood Hazard Index (FHI) and a corresponding flood map. A sensitivity analysis on the parameters' values revealed some interesting information on the relative importance of each criterion, presented and commented in the Discussion section. Moreover, the sensitivity analysis concluded to a revised index FHIS (methodology named FIGUSED-S) and flood mapping, supporting the robustness of FIGUSED methodology. A comparison of the outcome with records of historical flood events confirmed that the proposed methodology provides valid results.

  14. Flow prediction using stochastic emulators of flood wave propagation process: middle Vistula case study

    NASA Astrophysics Data System (ADS)

    Romanowicz, Renata; Karamuz, Emilia; Kochanek, Krzysztof

    2014-05-01

    Flow predictions along the river reach are required for flood protection, flood risk assessment and also for the planning of water infrastructures and water management. Due to uncertainties involved in hydro-meteorological observations and mathematical modelling, the predictions are always uncertain. Their uncertainty increases with an increase of the time horizon of the prediction - e.g. when forecasts of flow are required many days ahead. Apart from the uncertainty, also the speed of forecast acquisition might also be of concern, in particular when fast preventive actions should be taken to issue flood warning to the public, or some water management actions should be performed. In these cases, the stochastic emulators of flood wave propagation might be very useful. The emulators can be based on available data but also be built using the modelled flows along the river in the absence of the required observations. The middle River Vistula reach stretches between Zawichost and Warsaw and is 100 km long. Two distributed flow routing models were built for the reach based on the detailed river channel and floodplain geometry data. These models are used for the temporal and spatial interpolation of the water level observations available at only 5 cross-sections and in the form of daily averages of water levels. The observations span over 50 years, but they are irregular, with long periods missing either flow or level data. The observed and modelled water level data were used to build stochastic emulators in the form of a nonlinear transformation of water levels at cross-sections along the river reach. The validation of the emulators and the comparison of their performance are done using the available observations of water levels at those cross-sections. A discussion is given on the uncertainty of predictions and the application of emulators to on-line forecasting. This work was partly supported by the project "Stochastic flood forecasting system (The River Vistula reach

  15. Evaluation of the low tension flood process for high-salinity reservoirs--laboratory investigation under reservoir conditions

    SciTech Connect

    Murtada, H.; Marx, C.

    1982-12-01

    In northwest Germany, oil reservoirs are characterized by high-salinity brines with up to 23% TDS. For such salinity conditions, fatty alcohol derivatives with 4.5 ethene oxide (EO) units were found to lower the interfacial tension (IFT) drastically and to mobilize residual oil almost completely. Intensive flood experiments under reservoir conditions with the use of sandpacks 2 m in length allowed optimizing the low-tension process for an oil field that was considered a possible candidate. A combination of surfactant slug followed by a tailored mobility buffer showed best results in terms of additional oil recovery and process duration. A preflush of low-concentration aqueous polymer solution brought a decisive further increase in additional oil recovery. Results obtained for the slug process indicated that variables such as IFT, surfactant concentration, flooding velocity, and pressure gradient influence the low-tension process in a combined manner. Oil produced in the oil bank showed alteration in properties, compared with the oil used to saturate the pore space.

  16. A Methodology For Flood Vulnerability Analysis In Complex Flood Scenarios

    NASA Astrophysics Data System (ADS)

    Figueiredo, R.; Martina, M. L. V.; Dottori, F.

    2015-12-01

    Nowadays, flood risk management is gaining importance in order to mitigate and prevent flood disasters, and consequently the analysis of flood vulnerability is becoming a key research topic. In this paper, we propose a methodology for large-scale analysis of flood vulnerability. The methodology is based on a GIS-based index, which considers local topography, terrain roughness and basic information about the flood scenario to reproduce the diffusive behaviour of floodplain flow. The methodology synthetizes the spatial distribution of index values into maps and curves, used to represent the vulnerability in the area of interest. Its application allows for considering different levels of complexity of flood scenarios, from localized flood defence failures to complex hazard scenarios involving river reaches. The components of the methodology are applied and tested in two floodplain areas in Northern Italy recently affected by floods. The results show that the methodology can provide an original and valuable insight of flood vulnerability variables and processes.

  17. Improvement in oil recovery using cosolvents with CO sub 2 gas floods

    SciTech Connect

    Raible, C.

    1992-01-01

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  18. Improvement in oil recovery using cosolvents with CO{sub 2} gas floods

    SciTech Connect

    Raible, C.

    1992-01-01

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  19. Calcium Carbonate Crystal Growth in Porous Media, in the presence of Water Miscible and Non-Miscible Organic Fluids

    NASA Astrophysics Data System (ADS)

    Jaho, Sofia; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    The deposition of sparingly soluble salts (scaling) within porous media is a major problem encountered in many industrial and environmental applications. In the oil industry scaling causes severe operational malfunctions and, therefore, increasing the total operating and maintenance cost [1]. The most common types of sparingly soluble salts located in oil fields include carbonate and sulfate salts of calcium, strondium and barium[1,2]. Multiple phase flow and tubing surface properties are some of the factors affecting scale formation [3]. The main purpose of the present work was the investigation of the precipitation mechanisms of calcium carbonate (CaCO3) through in situ mixing of two soluble salt solutions in a flow granular medium, in the presence of water miscible organic fluid (ethylene glycol) or non-miscible organic fluid (n-dodecane). All series of experiments were carried out in a two dimensional porous medium made of Plexiglas. For all solutions used in the experiments, the contact angles with the surface of the porous medium and the interfacial tensions were measured. During the experiments, the calcium carbonate crystal growth was continuously monitored and recorded through an optical microscope equipped with a digital programmed video camera. The snap-shots were taken within specific time intervals and their detailed procession gave information concerning the crystal growth rate and kinetics. The pH of the effluent was measured and fluids samples were collected for calcium analysis using Atomic Absorption Spectroscopy (AAS). In all experiments effluent calcium concentration decreased as a function of time, suggesting that CaCO3 precipitation took place inside the porous medium. Crystals of the precipitated salt were identified using Infrared Spectroscopy (IR) and the morphology of the crystals was examined using Scanning Electron Microscopy (SEM). The induction time for precipitation of CaCO3 crystals in the presence of n-dodecane was significantly

  20. Climate change impacts on the seasonality and generation processes of floods - projections and uncertainties for catchments with mixed snowmelt/rainfall regimes

    NASA Astrophysics Data System (ADS)

    Vormoor, K.; Lawrence, D.; Heistermann, M.; Bronstert, A.

    2015-02-01

    Climate change is likely to impact the seasonality and generation processes of floods in the Nordic countries, which has direct implications for flood risk assessment, design flood estimation, and hydropower production management. Using a multi-model/multi-parameter approach to simulate daily discharge for a reference (1961-1990) and a future (2071-2099) period, we analysed the projected changes in flood seasonality and generation processes in six catchments with mixed snowmelt/rainfall regimes under the current climate in Norway. The multi-model/multi-parameter ensemble consists of (i) eight combinations of global and regional climate models, (ii) two methods for adjusting the climate model output to the catchment scale, and (iii) one conceptual hydrological model with 25 calibrated parameter sets. Results indicate that autumn/winter events become more frequent in all catchments considered, which leads to an intensification of the current autumn/winter flood regime for the coastal catchments, a reduction of the dominance of spring/summer flood regimes in a high-mountain catchment, and a possible systematic shift in the current flood regimes from spring/summer to autumn/winter in the two catchments located in northern and south-eastern Norway. The changes in flood regimes result from increasing event magnitudes or frequencies, or a combination of both during autumn and winter. Changes towards more dominant autumn/winter events correspond to an increasing relevance of rainfall as a flood generating process (FGP) which is most pronounced in those catchments with the largest shifts in flood seasonality. Here, rainfall replaces snowmelt as the dominant FGP primarily due to increasing temperature. We further analysed the ensemble components in contributing to overall uncertainty in the projected changes and found that the climate projections and the methods for downscaling or bias correction tend to be the largest contributors. The relative role of hydrological

  1. Modelling cascading and erosional processes for glacial lake outburst floods in the Quillcay catchment, Huaraz, Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Baer, Patrick; Huggel, Christian; Frey, Holger; Chisolm, Rachel; McKinney, Daene; McArdell, Brian; Portocarrero, Cesar; Cochachin, Alejo

    2016-04-01

    Huaraz as the largest city in Cordillera Blanca has faced a major disaster in 1941, when an outburst flood from Lake Palcacocha killed several thousand people and caused widespread destruction. Recent studies on glacial lake outburst flood (GLOF) modelling and early warning systems focussed on Lake Palcacocha which has regrown after the 1941 event, from a volume of half a million m3 in 1974 to a total volume of more than 17 million m3 today. However, little research has been conducted so far concerning the situation of other lakes in the Quillcay catchment, namely Lake Tullparaju (12 mill. m3) and Cuchillacocha (2.5 mill. m3), which both also pose a threat to the city of Huaraz. In this study, we modelled the cascading processes at Lake Tullparaju and Lake Cuchillacocha including rock/ice avalanches, flood wave propagation in the lake and the resulting outburst flood and debris flows. We used the 2D model RAMMS to simulate ice avalanches. Model output was used as input for analytical 2D and 3D calculations of impact waves in the lakes that allowed us to estimate dam overtopping wave height. Since the dimension of the hanging glaciers above all three lakes is comparable, the scenarios in this study have been defined similar to the previous study at Lake Palcacocha. The flow propagation model included sediment entrainment in the steeper parts of the catchment, adding up to 50% to the initial flow volume. The results for total travel time as well as for inundated areas and flow depth and velocity in the city of Huaraz are comparable to the previous studies at Lake Palcacocha. This underlines the importance of considering also these lakes within an integral hazard analysis for the city of Huaraz. A main challenge for modelling GLOFs in the Quillcay catchment using RAMMS is the long runout distance of over 22 km combined with the very low slope gradient of the river. Further studies could improve the process understanding and could focus on more detailed investigations

  2. How Philadelphia is Integrating Climate Science and Policy: Changing Capital Planning Processes and Developing Flood-Depth Tools

    NASA Astrophysics Data System (ADS)

    Bhat, C.; Dix, B.; Choate, A.; Wong, A.; Asam, S.; Schultz, P. A.

    2016-12-01

    Policy makers can implement more effective climate change adaptation programs if they are provided with two tools: accessible information on the impacts that they need to prepare for, and clear guidance on how to integrate climate change considerations into their work. This presentation will highlight recent and ongoing efforts at the City of Philadelphia to integrate climate science into their decision-making. These efforts include developing a climate change information visualization tool, climate change risk assessments across the city, and processes to integrate climate change into routine planning and budgeting practices. The goal of these efforts is to make climate change science highly targeted to decision maker needs, non-political, easily accessible, and actionable. While sea level rise inundation maps have been available to communities for years, the maps do not effectively communicate how the design of a building or a piece of infrastructure would need to be modified to protect it. The Philadelphia Flood Risk Viewer is an interactive planning tool that allows Philadelphia to identify projected depths of flooding for any location within the City, for a variety of sea level rise and storm surge scenarios. Users can also determine whether a location is located in a FEMA floodplain. By having access to information on the projected depth of flooding at a given location, the City can determine what flood protection measures may be effective, or even inform the long-term viability of developing a particular area. With an understanding of climate vulnerabilities, cities have the opportunity to make smart, climate-resilient investments with their capital budgets that will yield multiple benefits for years to come. Few, however, have established protocols for doing so. Philadelphia, with support from ICF, developed a guidance document that identifies recommendations for integrating climate change considerations throughout the Capital Program and capital budgeting

  3. Development of a flash flood warning system based on real-time radar data and process-based erosion modelling

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Kaiser, Andreas; Buchholtz, Arno; Schmidt, Jürgen

    2017-04-01

    Extreme rainfall events and resulting flash floods led to massive devastations in Germany during spring 2016. The study presented aims on the development of a early warning system, which allows the simulation and assessment of negative effects on infrastructure by radar-based heavy rainfall predictions, serving as input data for the process-based soil loss and deposition model EROSION 3D. Our approach enables a detailed identification of runoff and sediment fluxes in agricultural used landscapes. In a first step, documented historical events were analyzed concerning the accordance of measured radar rainfall and large scale erosion risk maps. A second step focused on a small scale erosion monitoring via UAV of source areas of heavy flooding events and a model reconstruction of the processes involved. In all examples damages were caused to local infrastructure. Both analyses are promising in order to detect runoff and sediment delivering areas even in a high temporal and spatial resolution. Results prove the important role of late-covering crops such as maize, sugar beet or potatoes in runoff generation. While e.g. winter wheat positively affects extensive runoff generation on undulating landscapes, massive soil loss and thus muddy flows are observed and depicted in model results. Future research aims on large scale model parameterization and application in real time, uncertainty estimation of precipitation forecast and interface developments.

  4. Utilizing Multi-Sensor Data Products and high-resolution flood model in Analyzing North African Hydrological Processes

    NASA Astrophysics Data System (ADS)

    Thengumthara, K.; Policelli, F.; Habib, S.; David, J. L.; Melocik, K. A.; Huffman, G. J.; Anderson, M. C.; Ali, A. B.; Bacha, S.

    2013-12-01

    North Africa is an arid region characterized by isolated extreme events such as floods and droughts. Our present understanding of hydrological processes over North Africa is limited due to low rainfall, mixed response of evaporation to temperature and soil moisture gradients, and lack of high-resolution ground measurements. Remote sensing is an excellent way to obtain near real- time data of high spatial and temporal resolution. Satellite estimates of rainfall and evapotranspiration (ET) have uncertainties due to topography, land-sea contrast, complex weather, and climate variability for high-elevated regions. Generally for arid regions, the satellite precipitation instruments are sensitive to soil moisture and land surface geometry. This study analyzes different components of hydrological processes over North Africa based on remote sensing data such as precipitation (NASA-TMPA, CMORPH and PERSIANN), evaporation (ALEXI and MODIS), and elevation (SRTM) along with ground measurements and model simulations. Here we use the Coupled Routing and Excess STorage (CREST) hydrological model-version 2.0, which was originally developed by NASA-GSFC and the University of Oklahoma [Wang J et al., 2011]. The model is driven by real time TMPA and climatological PET, interpolated to model grids. The flexible simulation and calibration enables the model to provide high-resolution runoff and water depth at each time step. Our study mainly focuses on two major basins such as Medjerda over Tunisia and the Sebou basin of Morocco. Case studies of flood events over North Africa were analyzed based on CREST model simulations with respect to ground measurements. The floods are mainly modulated by rainfall associated with synoptic frontal and tropical plumes and orographic mesoscale systems. Occurrences of peak floods simulated by CREST are comparable with diagnostics such as vertically integrated moisture convergence, stratiform and convective precipitation from ECMWF reanalysis. These were

  5. Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005

    NASA Astrophysics Data System (ADS)

    Steeb, Nicolas; Rickenmann, Dieter; Badoux, Alexandre; Rickli, Christian; Waldner, Peter

    2017-02-01

    The extreme flood event that occurred in August 2005 was the most costly (documented) natural hazard event in the history of Switzerland. The flood was accompanied by the mobilization of > 69,000 m3 of large wood (LW) throughout the affected area. As recognized afterward, wood played an important role in exacerbating the damages, mainly because of log jams at bridges and weirs. The present study aimed at assessing the risk posed by wood in various catchments by investigating the amount and spatial variability of recruited and transported LW. Data regarding LW quantities were obtained by field surveys, remote sensing techniques (LiDAR), and GIS analysis and was subsequently translated into a conceptual model of wood transport mass balance. Detailed wood budgets and transport diagrams were established for four study catchments of Swiss mountain streams, showing the spatial variability of LW recruitment and deposition. Despite some uncertainties with regard to parameter assumptions, the sum of reconstructed wood input and observed deposition volumes agree reasonably well. Mass wasting such as landslides and debris flows were the dominant recruitment processes in headwater streams. In contrast, LW recruitment from lateral bank erosion became significant in the lower part of mountain streams where the catchment reached a size of about 100 km2. According to our analysis, 88% of the reconstructed total wood input was fresh, i.e., coming from living trees that were recruited from adjacent areas during the event. This implies an average deadwood contribution of 12%, most of which was estimated to have been in-channel deadwood entrained during the flood event.

  6. Stabilization of miscible viscous fingering by chemical reaction decreasing viscosity

    NASA Astrophysics Data System (ADS)

    Arai, Shuntaro; Nagatsu, Yuichiro; Shukla, Priyanka; de Wit, Anne

    2016-11-01

    Viscous fingering (VF) occurs when a more viscous fluid is displaced by a less viscous one in porous media or Hele-Shaw cells. In this study, experiment on miscible VF with chemical reaction is conducted by using a Hele-Shaw cell. Here, the chemical reaction takes place between a polymer dissolved in the more viscous solution and hydrochloric acid (HCl) dissolved in the less viscous one in the miscible interface region. The reaction decreases the viscosity of the polymer solution. The experiment shows that the reaction stabilizes VF when the flow rate is small. In the present study, the corresponding numerical simulation is also conducted. The simulation is able to reproduce the experimental results mentioned above when different diffusion coefficients are considered meaning that HCl diffuses faster than the polymer. However, the stabilization cannot be found under conditions of the same diffusivity of the reactants. These numerical results show that the different diffusivity is responsible for the stabilization of miscible VF by the chemical reaction decreasing viscosity.

  7. Aerobic biodegradation process of petroleum and pathway of main compounds in water flooding well of Dagang oil field.

    PubMed

    Cai, Minmin; Yao, Jun; Yang, Huaijun; Wang, Ruixia; Masakorala, Kanaji

    2013-09-01

    Aerobic biodegradation of crude oil and its pathways were investigated via in vitro culture and GC-MS analysis in water flooding wells of Dagang oil field. The in vitro aerobic culture lasted 90 days when 99.0% of n-alkanes and 43.03-99.9% of PAHs were degraded and the biomarkers and their ratios were changed. The spectra of components in the residual oil showed the similar biodegradation between aerobic process of 90 days and degradation in reservoir which may last for some millions years, and the potential of serious aerobic biodegradation of petroleum in reservoir. 24 Metabolites compounds were separated and identified from aerobic culture, including fatty acid, naphthenic acid, aromatic carboxylic acid, unsaturated acid, alcohols, ketones and aldehydes. The pathways of alkanes and aromatics were proposed, which suggests that oxidation of hydrocarbon to organic acid is an important process in the aerobic biodegradation of petroleum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Development of Concentration-Dependent Diffusion Instability in Reactive Miscible Fluids Under Influence of Constant or Variable Inertia

    NASA Astrophysics Data System (ADS)

    Bratsun, Dmitry A.; Stepkina, Olga S.; Kostarev, Konstantin G.; Mizev, Alexey I.; Mosheva, Elena A.

    2016-12-01

    In this work, we focus on the processes which accompany a frontal neutralization reaction occurring between two miscible fluids filling a vertical Hele-Shaw cell. We have found that chemically-induced changes of reagent concentrations coupled with concentration- dependent diffusion (CDD) can produce spatially localized low density areas which are sensitive to the external inertial field. In the case of static gravity we have demonstrated both experimentally and theoretically that it can give rise to the development of perfectly periodic convective structure. This scenario is strikingly different from the irregular density fingering, which is typically observed in the miscible systems. When the system is under the influence of the periodic low-frequency vibrations perpendicular to the reaction front, we found numerically the excitation of a mixed-mode instability combining the double-diffusion instabilities and the Rayleigh-Taylor mechanism of the convection within the low density areas.

  9. Lessons from a flooded landscape.

    Treesearch

    Sally. Duncan

    1998-01-01

    In our first issue, we describe research that reflects our responsiveness to natural events and our ability to address issues over time. Floods can bring tragedy in the wake of their destruction. Floods also are a natural process that has shaped our landscapes. We hope that our scientific information helps people make wise choices that influence floods associated with...

  10. Flooded Place

    NASA Image and Video Library

    2006-07-26

    This MOC image shows gullies a portion of a flood-carved canyon within the larger Kasei Valles system on Mars. This canyon is the result of the very last flood event that poured through the Kasei valleys, long ago

  11. Flooded Crater

    NASA Image and Video Library

    2003-04-04

    This image from NASA Mars Odyssey spacecraft shows a flooded crater in Amazonis Planitia. This crater has been either flooded with mud and or lava. The fluid then ponded up, dried and formed the surface textures we see today.

  12. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    USGS Publications Warehouse

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  13. Controlling Miscibility in Polyethylene-Polynorbornene Block Copolymers via Side-Group Chemistry

    NASA Astrophysics Data System (ADS)

    Mulhearn, William; Register, Richard

    Block copolymers containing a crystallizable block, such as polyethylene (PE), and an amorphous block with high glass transition temperature (Tg) are an interesting class of materials since the rigid glassy block can improve the mechanical response of the article under strain by reinforcing the crystal fold surface. However, to prepare an easily processable PE-containing block copolymer it is necessary to avoid microphase separation in the melt by selection of amorphous blocks with weak repulsive interactions against PE (low Flory interaction parameter χ or interaction energy density X) . Most such low- χ polymers are chemically similar to PE, such as copolymers of ethylene and a small amount of an α-olefin, and therefore exhibit similarly low glass transition temperatures. This work investigates a series of low- and high-Tg polymers based on substituted norbornene monomers, polymerized via ring-opening metathesis polymerization (ROMP). Hydrogenated polynorbornene derivatives possess a wide range of glass transition temperatures, and miscibility with PE can be readily tuned by the choice of substituents on the monomers (e.g. aromatic vs. aliphatic groups). Two species investigated, hydrogenated poly(cyclohexyl norbornene) and hydrogenated poly(norbornyl norbornene), have high Tg and also remain miscible with polyethylene to high molecular weight. Furthermore, we develop a set of mixing rules to qualitatively predict the solubility behavior of substituted ROMP polynorbornenes as a function of their side-groups.

  14. Miscibility of choline-substituted polyphosphazenes with PLGA and osteoblast activity on resulting blends.

    PubMed

    Weikel, Arlin L; Owens, Steven G; Morozowich, Nicole L; Deng, Meng; Nair, Lakshmi S; Laurencin, Cato T; Allcock, Harry R

    2010-11-01

    The preparation of phosphazene tissue engineering scaffolds with bioactive side groups has been accomplished using the biological buffer, choline chloride. Mixed-substituent phosphazene cyclic trimers (as model systems) and polymers with choline chloride and glycine ethyl ester, alanine ethyl ester, valine ethyl ester, or phenylalanine ethyl ester were synthesized. Two different synthetic protocols were examined. A sodium hydride mediated route resulted in polyphosphazenes with a low choline content, while a cesium carbonate mediated process produced polyphosphazenes with higher choline content. The phosphazene structures and physical properties were studied using multinuclear NMR, differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) techniques. The resultant polymers were then blended with PLGA (50:50) or PLGA (85:15) and characterized by DSC analysis and scanning electron microscopy (SEM). Polymer products obtained via the sodium hydride route produced miscible blends with both ratios of PLGA, while the cesium carbonate route yielded products with reduced blend miscibility. Heterophase hydrolysis experiments in aqueous media revealed that the polymer blends hydrolyzed to near-neutral pH media (∼5.8 to 6.8). The effect of different molecular structures on cellular adhesion showed osteoblast proliferation with an elevated osteoblast phenotype expression compared to PLGA over a 21-day culture period.

  15. Serpentine diffusion trajectories and the Ouzo effect in partially miscible ternary liquid mixtures.

    PubMed

    Krishna, Rajamani

    2015-11-07

    This work investigates the transient equilibration process when partially miscible ternary liquid mixtures of two different compositions are brought into contact with each other. Diffusional coupling effects are shown to become increasingly significant as the mixture compositions approach the meta-stable regions of the phase equilibrium diagrams. The proper modelling of coupled diffusion phenomena requires the use of a Fick diffusivity matrix [D], with inclusion of non-zero off-diagonal elements. The primary objective of this article is to develop a simple, robust, procedure for the estimation of the matrix [D], using the Maxwell-Stefan (M-S) formulation as a convenient starting point. In the developed simplified approach, the Fick diffusivity matrix [D] is expressed as the product of a scalar diffusivity and the matrix of thermodynamic correction factors [Γ]. By detailed examination of experimental data for the matrix [D] in a wide variety of ternary mixtures, it is deduced that the major contribution of diffusional coupling arises from the contributions of non-ideal solution thermodynamics, quantified by the matrix of thermodynamic correction factors [Γ]. An important consequence of strong thermodynamic coupling is that equilibration trajectories are serpentine in shape and may exhibit incursions into meta-stable zones opening up the possibility of spontaneous emulsification and the Ouzo effect. If diffusional coupling effects are ignored, the equilibration trajectory is linear in composition space. For a wide variety of partially miscible ternary mixtures, it is demonstrated that the corresponding linear equilibration trajectories do not anticipate the possibility of emulsification.

  16. Miscibility and Morphology of Poly(lactic ACID)/POLY(Β-HYDROXYBUTYRATE) Blends

    NASA Astrophysics Data System (ADS)

    Tri Phuong, Nguyen; Guinault, Alain; Sollogoub, Cyrille

    2011-01-01

    The miscibility and morphology of poly(lactic)acid (PLA)/polyβ-hydroxybutyrate (PHB) prepared by melt blending method were investigated by Fourier transform infrared (FTIR), Differential scanning calorimetry (DSC), melt rheology and scanning electron microscopy (SEM) observations. FTIR and DSC methods present some limits to examine the miscibility state of PLA/PHB blends. This drawback can be overcome with the Cole-Cole method by observing the η" = f(η') curves to confirm the miscibility of semicrystalline PLA/ semicrystalline PHB blends. MEB micrographs of fractured surface of blends were also used to investigate the miscibility of these blends.

  17. Comparing bottom-up and top-down parameterisations of a process-based runoff generation model tailored on floods

    NASA Astrophysics Data System (ADS)

    Antonetti, Manuel; Scherrer, Simon; Margreth, Michael; Zappa, Massimiliano

    2016-04-01

    Information about the spatial distribution of dominant runoff processes (DRPs) can improve flood predictions on ungauged basins, where conceptual rainfall-runoff models usually appear to be limited due to the need for calibration. For example, hydrological classifications based on DRPs can be used as regionalisation tools assuming that, once a model structure and its parameters have been identified for each DRP, they can be transferred to other areas where the same DRP occurs. Here we present a process-based runoff generation model as an event-based spin-off of the conceptual hydrological model PREVAH. The model is grid-based and consists of a specific storage system for each DRP. To unbind the parameter values from catchment-related characteristics, the runoff concentration and the flood routing are uncoupled from the runoff generation routine and simulated separately. For the model parameterisation, two contrasting approaches are applied. First, in a bottom-up approach, the parameters of the runoff generation routine are determined a priori based on the results of sprinkling experiments on 60-100 m2 hillslope plots at several grassland locations in Switzerland. The model is, then, applied on a small catchment (0.5 km2) on the Swiss Plateau, and the parameters linked to the runoff concentration are calibrated on a single heavy rainfall-runoff event. The whole system is finally verified on several nearby catchments of larger sizes (up to 430 km2) affected by different heavy rainfall events. In a second attempt, following a top-down approach, all the parameters are calibrated on the largest catchment under investigation and successively verified on three sub-catchments. Simulation results from both parameterisation techniques are finally compared with results obtained with the traditional PREVAH.

  18. Distillation Column Flooding Predictor

    SciTech Connect

    2002-02-01

    This factsheet describes a research project whose goal is to develop the flooding predictor, an advanced process control strategy, into a universally useable tool that will maximize the separation yield of a distillation column.

  19. Dissolution behavior of a miscible polymer blend

    SciTech Connect

    Rodriguez, F.

    1996-12-31

    The orderly dissolution process with minimal swelling exhibited by poly(methyl methacrylate), PMMA, also is preserved in some blends of PMMA with other polymers. In the present work, dissolution rates for blends with up to 30 % poly(epichlorohydrin), PECH, have been measured in 4-methyl-2-pentanone at temperatures of 20 to 40{degrees}C. For films in the thickness range of 0.5 to 1 {mu}m, a laser interferometer yielded both the rate and the presence or absence of a transition layer at the polymer-solvent interface. The dissolution rate increases monotonically as the amount of PECH is increased. Beyond about 40% PECH, the dissolution process becomes less orderly. When a laser beam is reflected from a flat polymer film on a reflecting substrate like silicon, the reflected light intensity takes the form of a sinusoidal (or nearly sinusoidal) oscillation. The period of the oscillation can be related to the rate of dissolution. The amplitude of the oscillations gives a direct measure of refractive index of the polymer film. Changes in the amplitude (and, sometimes, the rate) give information about swelling. The offset between the maximum in the oscillations during dissolution compared to the reflectance of the bare wafer can be converted into a transition layer thickness although it is necessary to interpose a mathematical model for the concentration gradient in the layer. The most investigated {open_quotes}well-ordered{close_quotes} polymer is poly(methylmethacrylate), PMMA. Although primarily limited to lithography using electron beams or x-rays, PMMA continues to be a valuable reference polymer for dissolution studies.

  20. Theory of the Miscibility of Fullerenes in Random Copolymer Melts

    SciTech Connect

    Dadmun, Mark D; Sumpter, Bobby G; Schweizer, Kenneth; Banerjee, Debapriya

    2013-01-01

    We combine polymer integral equation theory and computational chemistry methods to study the interfacial structure, effective interactions, miscibility and spatial dispersion mechanism of fullerenes dissolved in specific random AB copolymer melts characterized by strong non-covalent electron donor-acceptor interactions with the nanofiller. A statistical mechanical basis is developed for designing random copolymers to optimize fullerene dispersion at intermediate copolymer compositions. Pair correlation calculations reveal a strong sensitivity of interfacial packing near the fullerene to copolymer composition and adsorption energy mismatch. The potential of mean force between fullerenes displays rich trends, often non-monotonic with copolymer composition, reflecting a non-additive competition between direct filler attractions and polymer-mediated bridging and steric stabilization. The spinodal phase diagrams are in qualitative agreement with recent solubility limit experimental observations on three systems, and testable predictions are made for other random copolymers. The distinctive non-monotonic variation of miscibility with copolymer composition is found to be primarily a consequence of composition-dependent, spatially short-range attractions between the A and B monomers with the fullerene. A remarkably rich, polymer-specific temperature dependence of the spinodal diagram is predicted which reflects the thermal sensitivity of spatial correlations which can result in fullerene miscibility either increasing or decreasing with cooling. The calculations are contrasted with a simpler effective homopolymer model and the random structure Flory-Huggins model. The former appears to be qualitatively reasonable but can incur large quantitative errors since it misses preferential packing of monomers near nanoparticles, while the latter appears to fail qualitatively due to its neglect of all spatial correlations.

  1. On the instabilities in miscible fluids under horizontal oscillating forcing

    NASA Astrophysics Data System (ADS)

    Shevtsova, Valentina; Gaponenko, Yuri; Mialdun, Aliaksandr

    2012-07-01

    In this research the attention is focused on the mass transfer under vibrations. The pure vibrational effect can be observed in weightlessness only. However, experimental studies addressing vibrational phenomena in weightlessness are very limited. This study was initiated by preparation of VIPIL proposal in the response of ESA AO-2009 call and will continue in the frame of the preparation the experiment VIPIL on the ISS. The current research is an attempt to provide experimental and numerical evidence for the instability in miscible fluids in the case of horizontal vibrations parallel to the interface. We present the results of the pioneer experiment SOVICON on the observation of the interface behavior between miscible liquids and vibrational convection in reduced gravity, conducted in the 49th Parabolic Flight Campaigns organized by the European Space Agency. Two miscible liquid mixtures, water and isopropanol of different concentrations, are placed in a closed cell, submitted to horizontal and sinusoidal oscillations at different frequencies and amplitudes. For the certain set of control parameters the localized mean convective flows are emerged in the vicinity of the triple points: the contact point between solid vertical wall and two liquids. These localized convective patterns spread along the solid walls and provide a local mixing along the walls. This type of instability was studied numerically in the averaged approach for high frequency vibrations [1], [2]. During the microgravity experiments we observed another type of instability in the form of standing waves. Above a threshold, a relief appears at the interface between the two fluids. This instability occurs when the vibration amplitude and frequency are above a critical value which is set by the level of viscous dissipation in the liquid. In general, this viscous dissipation will have a few sources: motion in the bulk of the liquid, motion near the boundaries of the liquid container, motion of any

  2. Miscibility Phase Diagrams of Giant Vesicles Containing Sphingomyelin

    NASA Astrophysics Data System (ADS)

    Veatch, Sarah L.; Keller, Sarah L.

    2005-04-01

    Saturated sphingomyelin (SM) lipids are implicated in lipid rafts in cell plasma membranes. Here we use fluorescence microscopy to observe coexisting liquid domains in vesicles containing SM, an unsaturated phosphatidylcholine lipid (either DOPC or POPC), and cholesterol. We note similar phase behavior in a model membrane mixture without SM (DOPC/DPPC/Chol), but find no micron-scale liquid domains in membranes of POPC/PSM/Chol. We delineate the onset of solid phases below the miscibility transition temperature, and detail indirect evidence for a three-phase coexistence of one solid and two liquid phases.

  3. Interfacial pattern selection in miscible liquids under vibration.

    PubMed

    Gaponenko, Y; Torregrosa, M M; Yasnou, V; Mialdun, A; Shevtsova, V

    2015-11-14

    We explore the peculiar behaviour of an interface between two miscible liquids of similar (but non-identical) viscosities and densities under horizontal vibration with a frequency less than 25 Hz. Significant differences in the structure of the formed patterns were found between microgravity and ground experiments. In a gravity field, a spatially periodic saw-tooth frozen structure is generated in the interface which dissipates at long times. By contrast, under the low gravity conditions of a parabolic flight, the long lived pattern consists of a series of vertical columns of alternating liquids.

  4. Rheological behaviors and miscibility of mixture solution of polyaniline and cellulose dissolved in an aqueous system.

    PubMed

    Shi, Xingwei; Lu, Ang; Cai, Jie; Zhang, Lina; Zhang, Hongming; Li, Ji; Wang, Xianhong

    2012-08-13

    In our previous work, supramolecular films composed of hydrophilic cellulose and hydrophobic polyaniline (PANI) dissolved in NaOH/urea aqueous solution at low temperature through rearrangement of hydrogen bonds have been constructed. To further understand the miscibility and processability of the complex solution, the dynamic rheological behaviors of the PANI/cellulose complex solution were investigated, for the first time, in the present work. Transmission electron microscope (TEM) results demonstrated that the inclusion complexes consisted of PANI and cellulose, existed in the aqueous solution, showing a good miscibility. Time-temperatures superposition (tTs) results indicated that the PANI/cellulose solution exhibited a homogeneous system, and the complex solution was more stable than the cellulose solution in the temperature range from 5 to 25 °C. Winter-Chambon theory was proved to be capable of describing the gelation behavior of the PANI/cellulose complex solution. The relaxation exponent at the gel point was calculated to be 0.74, lower than the cellulose solution, indicating strong interactions between PANI and cellulose chains. Relatively larger flow activation energy of the PANI/cellulose solution suggested the formation and rupture of linkages in "junction zones" during the gelation processes. Furthermore, PANI/cellulose gels could form at elevated temperature as a result of the physical cross-linking and chain entanglement, and it was a thermoirreversible process. Moreover, the PANI/cellulose solution remained a liquid state for a long time at the temperature range from 0 to 8 °C, which is important for the industry process.

  5. Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: Regional modelling study and process understanding

    NASA Astrophysics Data System (ADS)

    Vannier, Olivier; Anquetin, Sandrine; Braud, Isabelle

    2016-10-01

    In this study, a regional distributed hydrological model is used to perform long-term and flash-flood event simulations, over the Cévennes-Vivarais region (south of France). The objective is to improve our understanding on the role played by geology on the hydrological processes of catchments during two past flash-flood events. This modelling work is based on Vannier et al. ("Regional estimation of catchment-scale soil properties by means of streamflow recession analysis for use in distributed hydrological models", Hydrological Processes, 2014), where streamflow recessions are analysed to estimate the thickness and hydraulic conductivity of weathered rock layers, depending on the geological nature of catchments. Weathered rock layers are thus implemented into the hydrological model CVN-p, and the contribution of these layers is assessed during flash-flood events simulations as well as during inter-event periods. The model is used without any calibration, to test hypotheses on the active hydrological processes. The results point out two different hydrological behaviours, depending on the geology: on crystalline rocks (granite and gneiss), the addition of a weathered rock layer considerably improves the simulated discharges, during flash-flood events as well as during recession periods, and makes the model able to remarkably reproduce the observed streamflow dynamics. For other geologies (schists especially), the benefits are real, but not sufficient to properly simulate the observed streamflow dynamics. These results probably underline the existence of poorly known processes (flow paths, non-linear spilling process) associated with the planar structure of schisty rocks. On a methodological point of view, this study proposes a simple way to account for the additional storage associated with each geological entity, through the addition of a weathered porous rock layer situated below the traditionally-considered upper soil horizons, and shows its applicability and

  6. Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2010-11-23

    /vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.

  7. The Dynamics of Miscible Fluids: A Space Flight Experiment (MIDAS)

    NASA Technical Reports Server (NTRS)

    Maxworthy, T.; Meiburg, E.; Balasubramaniam, R.; Rashidnia, N.; Lauver, R.

    2001-01-01

    We propose a space flight experiment to study the dynamics of miscible interfaces. A less viscous fluid displaces one of higher viscosity within a tube. The two fluids are miscible in all proportions. An intruding "finger" forms that occupies a fraction of the tube. As time progresses diffusion at the interface combined with flow induced straining between the two fluids modifies the concentration and velocity distributions within the whole tube. Also, under such circumstances it has been proposed that the interfacial stresses could depend on the local concentration gradients (Korteweg stresses) and that the divergence of the velocity need not be zero, even though the flow is incompressible. We have obtained reasonable agreement for the tip velocity between numerical simulations (that ignored the Korteweg stress and divergence effects) and physical experiments only at high Peclet Numbers. However at moderate to low Pe agreement was poor. As one possibility we attributed this lack of agreement to the disregard of these effects. We propose a space experiment to measure the finger shape, tip velocity, and the velocity and concentration fields. From intercomparisons between the experiment and the calculations we can then extract values for the coefficients of the Korteweg stress terms and confirm or deny the importance of these stresses.

  8. Self-similarity of Boussinesq Miscible Thermals: an Experimental Study

    NASA Astrophysics Data System (ADS)

    Zhao, Bing; Lai, Adrian; Law, Adrian; Adams, Eric

    2012-11-01

    The gross characteristics of fully-developed round miscible thermals have been well studied and reported to be self-similar (e.g. Scorer, 1957). However, there have been very few studies (Bond & Johari, 2005; Hart, 2008) concerning the internal structures of the thermal. Many important questions related to the interior fluid dynamics inside the thermal, including the self-similarity of the internal velocity and scalar distributions, remain outstanding. In the present study, detailed PIV and PLIF measurements were conducted in the axisymmetric plane (i.e. side view) of a negatively buoyant Boussinesq thermal to reveal the detailed internal structures, with CCD cameras that synchronized with a unique release mechanism that minimized the initial variations. Synchronized simultaneous flow visualization (with spotlights and a video camera) were also made to monitor the developmental shape of the thermal through a bottom view. The simultaneous information enabled an objective assessment of the experimental quality. The results showed that the maximum radius of the miscible thermal grows linearly with travel distance, which agrees with previous studies using dimensional analysis with self-similarity. The radius of the vortex ring is found to be expanding linearly, but surprising at a smaller growth rate that the overall thermal size. This raises a critical question whether the self-similarity with thermals truly exists or not. The results will be presented at the meeting.

  9. The Dynamics of Miscible Fluids: A Space Flight Experiment (MIDAS)

    NASA Technical Reports Server (NTRS)

    Maxworthy, T.; Meiburg, E.; Balasubramaniam, R.; Rashidnia, N.; Lauver, R.

    2001-01-01

    We propose a space flight experiment to study the dynamics of miscible interfaces. A less viscous fluid displaces one of higher viscosity within a tube. The two fluids are miscible in all proportions. An intruding "finger" forms that occupies a fraction of the tube. As time progresses diffusion at the interface combined with flow induced straining between the two fluids modifies the concentration and velocity distributions within the whole tube. Also, under such circumstances it has been proposed that the interfacial stresses could depend on the local concentration gradients (Korteweg stresses) and that the divergence of the velocity need not be zero, even though the flow is incompressible. We have obtained reasonable agreement for the tip velocity between numerical simulations (that ignored the Korteweg stress and divergence effects) and physical experiments only at high Peelet Numbers. However at moderate to low Pe agreement was poor. As one possibility we attributed this lack of agreement to the disregard of these effects. We propose a space experiment to measure the finger shape, tip velocity, and the velocity and concentration fields. From intercomparisons between the experiment and the calculations we can then extract values for the coefficients of the Korteweg stress terms and confirm or deny the importance of these stresses.

  10. How the Image Processing Pipeline Handles the Flood of Data from Pan-STARRS 1

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather

    2012-05-01

    Pan-STARRS 1 (PS-1) is a 1.8 meter telescope with a 1.4 Gigapixel camera, located in Haleakala, Hawaii. PS1's science mission began in May 2010, and roughly 500 exposures are taken each night. There are several surveys, with different requirements for image processing. The Image Processing Pipeline (IPP) is the group responsible for processing the PS1 data. The requirements to process this data is staggering. We have 138 machines, 2.3 TB of storage, and 4.4T of ram. The data is processed each night as it is taken, and is distributed to the consortium. This poster will show the different stages of processing, with various metrics showing the quality of data, time and resources needed. The PS1 Science Consortium consists of The Institute for Astronomy at the University of Hawai'i in Manoa, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, the University of Durham, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Los Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, and NASA.

  11. Radioactive tracers monitor solvent spreading in rainbow vertical hydrocarbon miscible flood

    SciTech Connect

    McIntyre, F.J.; Polkowski, G.A.; Bron, J.; Pow, M.J.

    1988-02-01

    This paper describes the design, implementation, and results of a tracer project. Three different radioactive tracers (tritiated methane, ethane, and butane) were used to monitor the initial phase of solvent spreading. As a result, adjustments were made to the distribution of injected solvent, ensuring the placement of a stable solvent bank.

  12. Post Waterflood C02 Miscible Flood in Light Oil Fluvial-Dominated Deltaic Reservoirs

    SciTech Connect

    Tim Tipton

    1998-05-13

    The only remaining active well, Kuhn #14, in the Port Neches CO2 project went off production in October 1997. Production from this project is reached economic limit and the project termination began in the last quarter of 1997.

  13. Post Waterflood CO{sub 2} Miscible Flood in Light Oil Fluvial-Dominated Deltaic Reservoirs

    SciTech Connect

    1996-04-30

    Texaco terminated the CO{sub 2} purchase agreement with Cardox due to the declining production from the project during 1995. This decision was supported by the DOE and the Exploration and Production Technology Department (EPTD) who developed the model to simulate reservoir performance. Texaco is planning to continue recycling produced CO{sub 2} to recover the remaining 400 MBO from the Marg Area 1 reservoir. Currently one well is remaining on production Kuhn {number_sign}15R after the second producing well Kuhn {number_sign}38 sanded up. Changing the water and CO{sub 2} injection patterns should improve the sweep efficiency and restore production from other existing wells.

  14. Improving Gas Flooding Efficiency

    SciTech Connect

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability

  15. Urban RoGeR: Merging process-based high-resolution flash flood model for urban areas with long-term water balance predictions

    NASA Astrophysics Data System (ADS)

    Weiler, M.

    2016-12-01

    Heavy rain induced flash floods are still a serious hazard and generate high damages in urban areas. In particular in the spatially complex urban areas, the temporal and spatial pattern of runoff generation processes at a wide spatial range during extreme rainfall events need to be predicted including the specific effects of green infrastructure and urban forests. In addition, the initial conditions (soil moisture pattern, water storage of green infrastructure) and the effect of lateral redistribution of water (run-on effects and re-infiltration) have to be included in order realistically predict flash flood generation. We further developed the distributed, process-based model RoGeR (Runoff Generation Research) to include the relevant features and processes in urban areas in order to test the effects of different settings, initial conditions and the lateral redistribution of water on the predicted flood response. The uncalibrated model RoGeR runs at a spatial resolution of 1*1m² (LiDAR, degree of sealing, landuse), soil properties and geology (1:50.000). In addition, different green infrastructures are included into the model as well as the effect of trees on interception and transpiration. A hydraulic model was included into RoGeR to predict surface runoff, water redistribution, and re-infiltration. During rainfall events, RoGeR predicts at 5 min temporal resolution, but the model also simulates evapotranspiration and groundwater recharge during rain-free periods at a longer time step. The model framework was applied to several case studies in Germany where intense rainfall events produced flash floods causing high damage in urban areas and to a long-term research catchment in an urban setting (Vauban, Freiburg), where a variety of green infrastructures dominates the hydrology. Urban-RoGeR allowed us to study the effects of different green infrastructures on reducing the flood peak, but also its effect on the water balance (evapotranspiration and groundwater

  16. Looking at flood trends with different eyes: the value of a fuzzy flood classification scheme

    NASA Astrophysics Data System (ADS)

    Sikorska, A. E.; Viviroli, D.; Brunner, M. I.; Seibert, J.

    2016-12-01

    Natural floods can be governed by several processes such as heavy rainfall or intense snow- or glacier-melt. These processes result in different flood characteristics in terms of flood shape and magnitude. Pooling floods of different types might therefore impair the analyses of flood frequencies and trends. Thus, the categorization of flood events into different flood type classes and the determination of their respective frequencies is essential for a better understanding and for the prediction of floods. In reality however most flood events are caused by a mix of processes and a unique determination of a flood type per event often becomes difficult. This study proposes an innovative method for a more reliable categorization of floods according to similarities in flood drivers. The categorization of floods into subgroups relies on a fuzzy decision tree. While the classical (crisp) decision tree allows for the identification of only one flood type per event, the fuzzy approach enables the detection of mixed types. Hence, events are represented as a spectrum of six possible flood types, while a degree of acceptance attributed to each of them specifies the importance of each type during the event formation. Considered types are flash, short rainfall, long rainfall, snow-melt, rainfall-on-snow, and, in high altitude watersheds, also glacier-melt floods. The fuzzy concept also enables uncertainty present in the identification of flood processes and in the method to be incorporated into the flood categorization process. We demonstrate, for a set of nine Swiss watersheds and 30 years of observations, that this new concept provides more reliable flood estimates than the classical approach as it allows for a more dedicated flood prevention technique adapted to a specific flood type.

  17. Flow and sediment processes in a cutoff meander of the Danube Delta during 100-year recurrent flood

    NASA Astrophysics Data System (ADS)

    Jugaru Tiron, L.; Le Coz, J.; Provansal, M.; Dutu, F.

    2009-04-01

    River training operations, such as meander cutoff, initiated for navigational purposes often lead to dramatic changes in the streamwise profiles (Hooke, 1986, Kesel, 2003; Kiss et al., 2007). Meander correction affects both the hydraulic and morphodynamical behavior of the modified branches that sedimentation occurs in time, while newly built canals usually experience degradation (Jugaru et. al, 2006). This study reports and analyzes new data on the hydrological and sedimentary processes at work during a morphogenic flood in a large modified meander (the Mahmudia meander) of the St. George branch, the southern branch of the Danube Delta. The 100-year recurrent flood that occurred in 2006 offered an exceptional opportunity for scanning different cross sections of the Mahmudia meander system by means of the emerging Doppler profiler (aDcp) technology in order to analyze the impact on sedimentation and dynamic processes in the study area. The Mahmudia study site corresponds to a vast natural meander which was cut off in 1984-1988 by an artificial canal opened to shipping. The meander correction accelerated fluxes through the artificial canal and dramatically enhanced deposition in the former meander. After his formation, the cutoff meander acted as sediment storage locations, essentially removing channel and point bar sediments from the active sediment budget of the main channel (Popa, 1997). During the one-hundred-year recurrent flood in April 2006, bathymetry, flow velocity and discharge data were acquired across several sections of both natural and artificial channels with an acoustic Doppler current profiler (aDcp Workhorse Sentinel 600 kHz, Teledyne RDI) in order to investigate the distribution of the flow and sediment and his impact on sedimentation in a channelized reach and its adjacent cutoff. The contrasting hydro-sedimentary processes at work in both channels and bifurcation/confluence nodal points are analyzed from the measured flux distribution

  18. Data Processing Methods for 3D Seismic Imaging of Subsurface Volcanoes: Applications to the Tarim Flood Basalt.

    PubMed

    Wang, Lei; Tian, Wei; Shi, Yongmin

    2017-08-07

    The morphology and structure of plumbing systems can provide key information on the eruption rate and style of basalt lava fields. The most powerful way to study subsurface geo-bodies is to use industrial 3D reflection seismological imaging. However, strategies to image subsurface volcanoes are very different from that of oil and gas reservoirs. In this study, we process seismic data cubes from the Northern Tarim Basin, China, to illustrate how to visualize sills through opacity rendering techniques and how to image the conduits by time-slicing. In the first case, we isolated probes by the seismic horizons marking the contacts between sills and encasing strata, applying opacity rendering techniques to extract sills from the seismic cube. The resulting detailed sill morphology shows that the flow direction is from the dome center to the rim. In the second seismic cube, we use time-slices to image the conduits, which corresponds to marked discontinuities within the encasing rocks. A set of time-slices obtained at different depths show that the Tarim flood basalts erupted from central volcanoes, fed by separate pipe-like conduits.

  19. Monitoring and Risk Identification Caused by High Water, Floods and Erosion Processes in Urban Part of Sava Riverbed

    NASA Astrophysics Data System (ADS)

    Oskoruš, D.; Miković, N.; Ljevar, I.

    2012-04-01

    Riverbed erosion and bottom deepening are part of natural fluvial processes in the upper stream of Sava River. The increasing gradient of those changes is interconnected with the level of human influence in the river basin and riverbed as well. In time period of last forty years the consequences of riverbed erosion are become serious as well as dangerous and they threaten the stability of hydro technical structures. The increasing value of flow velocity in riverbed in urban part of river section during high water level, mud and debris flow during the floods as well, is especially dangerous for old bridges. This paper contains result of velocity measurements during high waters taken by Hydrological Service of Republic Croatia, load transport monitoring during such events and cross sections in some vulnerable location. In this paper is given one example of Jakuševac railway bridge in Zagreb, heavily destroyed during high water event on the 30 March 2009., recently reconstructed by "Croatian Railways" company. Keywords: Riverbed erosion, flow velocity, mud and debris flow, risk identification, stability of bridges

  20. k-t Acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs

    NASA Astrophysics Data System (ADS)

    Xiao, Dan; Balcom, Bruce J.

    2014-06-01

    Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems.

  1. Miscibility critical pressures in monolayers of ternary lipid mixtures.

    PubMed Central

    Keller, S L; Anderson, T G; McConnell, H M

    2000-01-01

    When phospholipids are mixed with cholesterol in a monolayer at an air-water interface, coexisting 2-dimensional liquid phases can be observed if the surface pressure, pi, is lower than the miscibility critical pressure, pi(c). Ternary mixtures of two phospholipid species with dihydrocholesterol have been reported to have critical pressures that are linearly proportional to the relative composition of the phospholipids. However, we report here that, if the acyl chains of the two phospholipids differ significantly in length or unsaturation, the behavior is markedly different. In this case, the critical pressure of the ternary mixture can be remarkably high, exceeding the critical pressures of the corresponding binary mixtures. High critical pressures are also seen in binary mixtures of phospholipid and dihydrocholesterol when the two acyl chains of the phospholipid differ sufficiently in length. Using regular solution theory, we interpret the elevated critical pressures of these mixtures as an attractive interaction between the phospholipid components. PMID:11023907

  2. Miscible viscous fingering with a chemical reaction involving precipitation.

    PubMed

    Nagatsu, Yuichiro; Bae, Si-Kyun; Kato, Yoshihito; Tada, Yutaka

    2008-06-01

    We experimentally investigated the effects of a chemical reaction involving precipitation on the miscible viscous fingering pattern formed in a Hele-Shaw cell. The precipitation concentration, the ratio of the reactant concentrations initially included in the more- and less-viscous liquids, and the Péclet number were varied. For a Péclet number at the stoichiometric ratio the precipitation had significant effects on the fingering pattern when its concentration exceeded a threshold value. Interestingly, the type of effect of the precipitation on the pattern depended on its concentration. At moderate concentration, a straight-shaped finger was observed. At high concentration, the finger was bent in an almost perpendicular direction. The effect of precipitation on the pattern also depended on the ratio of reactant concentrations.

  3. Miscible viscous fingering involving production of gel by chemical reactions

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Hoshino, Kenichi

    2015-11-01

    We have experimentally investigated miscible viscous fingering with chemical reactions producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and aluminum ion (Al3 +) solution were used as the more and less viscous liquids, respectively. In another system, SPA solution and ferric ion (Fe3 +) solution were used as the more and less viscous liquids, respectively. In the case of Al3 +, displacement efficiency was smaller than that in the non-reactive case, whereas in the case of Fe3 +, the displacement efficiency was larger. We consider that the difference in change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We discuss relationship between the VF patterns and the rheological measurement.

  4. Confinement effects on the miscibility of block copolymer blends.

    PubMed

    Spencer, Russell K W; Matsen, Mark W

    2016-04-01

    Thin films of long and short symmetric AB diblock copolymers are examined using self-consistent field theory (SCFT). We focus on hard confining walls with a preference for the A component, such that the lamellar domains orient parallel to the film with an even number ν of monolayers. For neat melts, confinement causes the lamellar period, D, to deviate from its bulk value, Db, in order to be commensurate with the film thickness, i.e., L = νD/2. For blends, however, the melt also has the option of macrophase separating into ν(l) large and ν((s)) small monolayers so as to provide a better fit, where L = ν(l)D(l)/2 + ν(s)D((s))/2. In addition to performing full SCFT calculations of the entire film, we develop a semi-analytical calculation for the coexistence of thick and thin monolayers that helps explain the complicated interplay between miscibility and commensurability.

  5. Role of Conformation in - Interactions and Polymer/Fullerene Miscibility

    SciTech Connect

    Sumpter, Bobby G; Bucknall, David G.; Thio, Yonathan S; Gurun, Bilge; Campbell, Katie

    2011-01-01

    The origin of the miscibility between C60 fullerene and a series of phenylic vinyl polymers has been investigate using a combination of wide-angle x-ray (WAXS) and neutron (WANS) scattering and density functional theory (DFT) computational modeling. The solubility limit of the C60 in the polymers was found to increase non-linearly with increasing phenylic groups in the side-chain from 1 wt% in polystyrene (PS) to 12 wt% in poly(9-vinyl phenanthrene) (P9VPh). The DFT calculations showed that the polymer interacts with the fullerene preferentially with the phenylic groups in these vinyl polymers. However, due to the backbone these phenyl groups are unable to form the energetically favorable T-junction or planar - stacks with the fullerene, and are randomly oriented to the cage. The non-linear increase in solubility is believed to be associated with shape conformity of the three ring phenanthrene to the curvature of the fullerene.

  6. Chemical control of hydrodynamic instabilities in partially miscible two-layer systems

    NASA Astrophysics Data System (ADS)

    de Wit, A.; Riolfo, L. A.; Lemaigre, L.; Rossi, F.; Rustici, M.; Budroni, M. A.

    2013-11-01

    Hydrodynamic instabilities at the interface between two partially miscible liquids impact numerous applications including sequestration of supercritical liquid CO2 in old petroleum reservoirs or saline aquifers. As an alternative to difficult in situ studies of the related mixing dynamics, we introduce a new laboratory-scale model system on which buoyancy- and Marangoni-driven convective instabilities of partially miscible two-layer systems can easily be studied and controlled in presence or not of chemical reactions. This system consists in the stratification of a pure ester on top of a denser partially miscible aqueous solution in the gravitational field. The rich convective dynamics observed upon partial dissolution of the ester in the water followed by its hydrolysis highlight the specificity of partially miscible systems as compared to fully miscible or immiscible ones, i.e. the possibility to control the convective pattern and the mixing properties by tuning (i) the intrinsic miscibility of the ester in water, (ii) the feedback of the dissolved species on its own miscibility as well as (iii) the composition and reactivity of the aqueous solution with the ester phase.

  7. Temporal scales of rainfall-runoff processes and spatial scaling of flood peaks: space-time connection through catchment water balance

    NASA Astrophysics Data System (ADS)

    Jothityangkoon, Chatchai; Sivapalan, Murugesu

    This paper investigates the scaling behaviour of annual flood peaks, exhibited through what is taken to be a power law relationship between mean annual flood and catchment size, E[ Qp]= cAθ. We also study the dependence on catchment size of the coefficient of variation of annual flood peaks, CV[ Qp]. We attempt to interpret these relationships in terms of the interactions between the land surface and the atmosphere - in particular, the effects of temporal variability of rainfall (within-storm patterns, multiple storms and seasonality) and runoff processes (overland flow, subsurface flow and channel flow). The spatial scaling of flood peaks, as expressed by the coefficients c, θ and CV, has been analysed based on, initially, simulated runoff fields produced by a simple linear rainfall-runoff model for hypothetical catchments, and later by a more realistic, distributed model for an actual catchment in the semi-arid, south-west of Western Australia. It is found that the main controls on c and θ are runoff processes, soil depth and mean annual rainfall, with additional controls on c including temporal rainfall variability, the underlying water balance, and the spatial variability of rainfall. Runoff generation at catchment scales can be specified as being fast or slow according to a relative catchment travel time. The scaling exponent θ is high and almost constant with A for slow catchments, where deep soils combined with low annual rainfall leads to domination by subsurface flow. Conversely, θ is lower in fast catchments, where shallow soils combined with high annual rainfall leads to dominance by surface runoff processes with relatively short travel times. The interaction between within-storm patterns and fast runoff processes is the important control on c, clearly shown in small catchments, while multiple storms and seasonality are crucial in large catchments. The presence of multiple runoff processes with a broad spectrum of time scales leads to an increase of

  8. Tunable miscibility and thermalization in a spin-orbit coupled BEC

    NASA Astrophysics Data System (ADS)

    Wang, Su-Ju; Niffenegger, Robert J.; Chen, Yong P.; Greene, Chris H.

    2014-05-01

    The commonly used relation for the miscible-immiscible transition for two-component Bose-Einstein condensates is reconsidered. Our study goes beyond the Thomas-Fermi approximation by considering the kinetic energy term in mean field theory. Numerical solution of the time-dependent and time-independent Gross-Pitaevskii equations in the spin-orbit coupled BEC suggests a new phase boundary for the miscible-immiscible transition when kinetic energy becomes important. The possible implications of this kinetic energy effect on the thermalization of a binary BEC based on this miscibility transition are also discussed. This work was supported by NSF.

  9. Polymer flooding

    SciTech Connect

    Littmann, W.

    1988-01-01

    This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10-15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. An indispensable book for reservoir engineers, production engineers and lab. technicians within the petroleum industry.

  10. Flood Resilient Technological Products

    NASA Astrophysics Data System (ADS)

    Diez Gonzalez, J. J.; Monnot, J. V.; Marquez Paniagua, P.; Pámpanas, P.; Paz Abuín, S.; Prendes, P.; Videra, O.; U. P. M. Smartest Team

    2012-04-01

    As a consequence of the paradigm shift of the EU water policy (Directive 2007/60/EC, EC 2003) from defense to living with flood, floods shall be faced in the future through resilient solutions, seeking to improve the permanence of flood protection, and getting thus beyond traditional temporary and human-relying solutions. But the fact is that nowadays "Flood Resilient (FRe) Building Technological Products" is an undefined concept, and concerned FRe solutions cannot be even easily identified. "FRe Building Technological materials" is a wide term involving a wide and heterogeneous range of solutions. There is an interest in offering an identification and classification of the referred products, since it will be useful for stakeholders and populations at flood risk for adopting the most adequate protections when facing floods. Thus, a previous schematic classification would enable us at least to identify most of them and to figure out autonomous FRe Technological Products categories subject all of them to intense industrial innovative processes. The flood resilience enhancement of a given element requires providing it enough water-repelling capacity, and different flood resilient solutions can be sorted out: barriers, waterproofing and anticorrosive. Barriers are palliative solutions that can be obtained either from traditional materials, or from technological ones, offering their very low weight and high maneuverability. Belonging barriers and waterproofing systems to industrial branches clearly different, from a conceptual point of view, waterproofing material may complement barriers, and even be considered as autonomous barriers in some cases. Actually, they do not only complement barriers by their application to barriers' singular weak points, like anchors, joints, but on the other hand, waterproofing systems can be applied to enhance the flood resilience of new building, as preventive measure. Anticorrosive systems do belong to a clearly different category

  11. Evolution of flood typology across Europe

    NASA Astrophysics Data System (ADS)

    Hundecha, Yeshewatesfa; Parajka, Juraj; Viglione, Alberto

    2016-04-01

    Following the frequent occurrence of severe flood events in different parts of Europe in the recent past, there has been a rise in interest in understanding the mechanisms by which the different events have been triggered and how they have been evolving over time. This study was carried out to establish the characteristics of observed flood events in the past across Europe in terms of their spatial extent and the processes leading up to the events using a process based hydrological model. To this end, daily discharge data from more than 750 stations of the Global Runoff Data Center were used to identify flood events at the stations based on a threshold method for the period 1961-2010. The identified events at the different stations were further analyzed to determine whether they form the same flood event, thereby delineating the spatial extent of the flood events. The pan-European hydrological model, E-HYPE, which runs at a daily time step, was employed to estimate a set of catchment hydrological and hydro-meteorological state variables that are relevant in the flood generating process for each of the identified spatially delineated flood events. A subsequent clustering of the events based on the simulated state variables, together with the spatial extent of the flood events, was used to identify the flood generating mechanism of each flood event. Four general flood generation mechanisms were identified: long-rain flood, short-rain flood, snowmelt flood, and rain-on-snow flood. A trend analysis was performed to investigate how the frequency of each of the flood types has changed over time. In order to investigate whether there is a regional and seasonal pattern in the dominant flood generating mechanisms, this analysis was performed separately for winter and summer seasons and three different regions of Europe: Northern, Western, and Eastern Europe. The results show a regional difference both in the dominant flood generating mechanism and the corresponding trends.

  12. Aspects of organic matter transport and processing within Savannah River Plant streams and the Savannah River flood plain swamp

    SciTech Connect

    Hauer, F.R.

    1985-06-01

    The studies were directed toward understanding; (1) the transport dynamics, storage, and retention of organic matter, (2) the processing of leaf material that enters the streams and swamp habitats of the SRP, and (3) how these factors are influenced by current or previous reactor operations at the SRP. Suspended particulate organic matter, benthic organic matter, and in-stream wood were investigated along selected reaches of Steel Creek from April 1983 to April 1984. Concentrations of organic seston ranged from 0.4 to 5.7 mg l/sup -1/. Steel Creek transported significantly higher concentrations of particulate organic matter than did either Meyers Branch or the waters at the swamp site. Seston and dissolved organic matter were investigated on Four Mile Creek, a thermal stream on the SRP, within three different reactor cycles; reactor not operating (cold flow), reactor operating in early portion of cycle (early hot flow), and reactor operating in late portion of cycle (late hot flow). Significantly higher concentrations of particulate organic matter were transported at all study sites during hot flow than during cold flow. Particulate organic matter and dissolved organic matter concentrations were investigated at twelve sampling sites to quantify input and output dynamics of organic matter to the flood plain swamp. Samples were taken biweekly from February 1983 to March 1984. Dissolved organic matter concentrations ranged from 1.3 to 9.9 mg l/sup -1/ and particulate organic matter concentrations ranged from 0.3 to 5.1 mg l/sup -1/. Leaf decomposition of three bottomland tree species was studied at six stream and four swamp sites under various temperature regimes.

  13. Flood Hazards - A National Threat

    USGS Publications Warehouse

    ,

    2006-01-01

    In the late summer of 2005, the remarkable flooding brought by Hurricane Katrina, which caused more than $200 billion in losses, constituted the costliest natural disaster in U.S. history. However, even in typical years, flooding causes billions of dollars in damage and threatens lives and property in every State. Natural processes, such as hurricanes, weather systems, and snowmelt, can cause floods. Failure of levees and dams and inadequate drainage in urban areas can also result in flooding. On average, floods kill about 140 people each year and cause $6 billion in property damage. Although loss of life to floods during the past half-century has declined, mostly because of improved warning systems, economic losses have continued to rise due to increased urbanization and coastal development.

  14. Comparative hemolytic activity of undiluted organic water-miscible solvents for intravenous and intra-arterial injection.

    PubMed

    Mottu, F; Stelling, M J; Rüfenacht, D A; Doelker, E

    2001-01-01

    In humans, nonaqueous solvents are administered intravascularly in two kinds of situations. They have been used in subcutaneous or intramuscular pharmaceutical formulations to dissolve water-insoluble drugs. The need for these vehicles had increased in recent years, since the drug development process has yielded many poorly water-soluble drugs. The use of water-miscible nonaqueous solvents in therefore one of the approaches for administering these products as reference solutions useful in formulation bioequivalence studies. The intravascular use of organic solvents has also gained importance owing to a new approach for the treatment of cerebral malformations using precipitating polymers dissolved in water-miscible organic solvents. At present, the solvent most commonly used for the liquid embolics to solubilize the polymers is dimethyl sulfoxide, which exhibits some local and hemodynamic toxicities. In order to find new, less toxic vehicles for pharmaceutical formulations for the intravenous and intra-arterial routes and for embolic materials, 13 water-miscible organic solvents currently used (diluted with water) for pharmaceutical applications, were evaluated in this study. Their hemolytic activity and the morphological changes induced when mixed with blood (1:99, 5:95, 10:90 solvent:blood) were estimated in vitro. From these data, the selected organic solvents could be subdivided into four groups depending on their hemolytic activity: very highly hemolytic solvents (ethyl lactate, dimethyl sulfoxide), highly hemolytic solvents (polyethylene glycol 200, acetone), moderately hemolytic solvents (tetrahydrofurfuryl alcohol, N-methyl-2-pyrrolidone, glycerol formal, ethanol, Solketal, glycofurol) and solvents with low hemolytic activity (propylene glycol, dimethyl isosorbide, diglyme).

  15. Magnetic resonance imaging analysis on the in-situ mixing zone of CO2 miscible displacement flows in porous media

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Yang, Wenzhe; Wang, Dayong; Yang, Mingjun; Jiang, Lanlan; Liu, Yu; Zhao, Yuechao; Dou, Binlin; Wang, Zhiguo

    2014-06-01

    The in-situ mixing zone represents dynamic characteristics of CO2 miscible displacement flows, which is important for carbon dioxide enhanced oil recovery (CO2-EOR) projects. However, the migration characteristics of the in-situ mixing zone under reservoir conditions has been neither well studied nor fully understood. The in-situ mixing zone with the flowing mixture of supercritical CO2 and n-decane (nC10) was investigated by using a magnetic resonance imaging apparatus at a reservoir condition of 8.5 MPa and 37.8 °C in porous media. The experimental results showed that the CO2-frontal velocity was larger than the mixing-frontal velocity. The mixing zone length was linearly declined in the miscible displacement process. And the declining rate of the mixing zone length was increased with injection rate. It indicates that the mixing zone length is not constant in a vertically stable CO2 misible displacement and a volume contraction due to phase behavior effects may occur. Then, an error function based on the convection-dispersion equation was fitted with CO2 miscible displacement experiments. The error function was well fitted both at a series of fixed core positions and a series of fixed displacement times. Furthermore, the longitudinal dispersion coefficients (Klx and Klt) and the longitudinal Peclet numbers (Ped and PeL) were quantified from the fitting results. The evolutions of the longitudinal dispersion coefficient were reduced along the displacement time. And the declining rate was increased with injection rate. And with proceeding, the longitudinal dispersion coefficient was tending towards stability and constant. But the evolutions of the longitudinal Peclet numbers were increased along the displacement time. And the increasing rate was increased with injection rate.

  16. Flood Risk and Global Change: Future Prospects

    NASA Astrophysics Data System (ADS)

    Serra-Llobet, A.

    2014-12-01

    Global flood risk is increasing in response to population growth in flood-prone areas, human encroachment into natural flood paths (exacerbating flooding in areas formerly out of harm's way), and climate change (which alters variables driving floods). How will societies respond to and manage flood risk in coming decades? Analysis of flood policy evolution in the EU and US demonstrates that changes occurred in steps, in direct response to disasters. After the flood produced by the collapse of Tous Dam in 1982, Spain initiated a systematic assessment of areas of greatest flood risk and civil protection response. The devastating floods on the Elbe and elsewhere in central Europe in 2002 motivated adoption of the EU Floods Directive (2007), which requires member states to develop systematic flood risk maps (now due) and flood risk management plans (due in 2015). The flooding of New Orleans by Hurricane Katrina in 2005 resulted in a nationwide levee-safety assessment and improvements in communicating risk, but overall less fundamental change in US flood management than manifest in the EU since 2007. In the developing world, large (and increasing) concentrations of populations in low-lying floodplains, deltas, and coasts are increasingly vulnerable, and governments mostly ill-equipped to implement fundamental changes in land use to prevent future increases in exposure, nor to develop responses to the current threats. Even in the developed world, there is surprisingly little research on how well residents of flood-prone lands understand their true risk, especially when they are 'protected' by '100-year' levees. Looking ahead, researchers and decision makers should prioritize improvements in flood risk perception, river-basin-scale assessment of flood runoff processes (under current and future climate and land-use conditions) and flood management alternatives, and bridging the disconnect between national and international floodplain management policies and local land

  17. MISCIBILITY, SOLUBILITY, AND VISCOSITY MEASUREMENTS FOR R-236EA WITH POTENTIAL LUBRICANTS

    EPA Science Inventory

    The report gives results of miscibility, solubility, and viscosity measurements of refrigerant R-236ea with three potential lubricants. (NOTE: The data were needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The lubricants...

  18. MISCIBILITY, SOLUBILITY, AND VISCOSITY MEASUREMENTS FOR R-236EA WITH POTENTIAL LUBRICANTS

    EPA Science Inventory

    The report gives results of miscibility, solubility, and viscosity measurements of refrigerant R-236ea with three potential lubricants. (NOTE: The data were needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The lubricants...

  19. The Effects of Recent Floods and Geomorphic Processes on Red Ash Populations, Upper St Lawrence Estuary, Québec

    NASA Astrophysics Data System (ADS)

    Langlais, Dominique; Bégin, Yves

    1993-11-01

    Effects of recent floods on red ash ( Fraxinus pennsylvanica Marsh.) forest margins were studied along the upper St Lawrence Estuary in eastern Canada. Major floods amplified by tides left many injuries on riparian red ash trees, which allows dating of past disturbances based on stand structure and dendrochronological analysis. The formation of ice scars on stems, the development of basal sprouts, and the inhibition of population regeneration on shore, provide evidence of a recent increase in shore disturbance. Since the 1950s and especially the 1970s, a landward displacement of the tree line occurred as a result of increasing shore erosion. Usually the ice foot on the shore disintegrates in situ in April, but since the 1950s, early snow-melts in mid-winter have been causing sudden floods that raise the ice foot to the edge of the backshore forest, leaving many signs of damage. Increasing winter climatic variability since the 1950s seems responsible for such variations in flood regime.

  20. Influence of Miscibility of Protein-Sugar Lyophilizates on Their Storage Stability.

    PubMed

    Mensink, Maarten A; Nethercott, Matthew J; Hinrichs, Wouter L J; van der Voort Maarschalk, Kees; Frijlink, Henderik W; Munson, Eric J; Pikal, Michael J

    2016-09-01

    For sugars to act as successful stabilizers of proteins during lyophilization and subsequent storage, they need to have several characteristics. One of them is that they need to be able to form interactions with the protein and for that miscibility is essential. To evaluate the influence of protein-sugar miscibility on protein storage stability, model protein IgG was lyophilized in the presence of various sugars of different molecular weight. By comparing solid-state nuclear magnetic resonance spectroscopy relaxation times of both protein and sugar on two different timescales, i.e., (1)H T1 and (1)H T1ρ, miscibility of the two components was established on a 2-5- and a 20-50-nm length scale, respectively, and related to protein storage stability. Smaller sugars showed better miscibility with IgG, and the tendency of IgG to aggregate during storage was lower for smaller sugars. The largest sugar performed worst and was phase separated on both length scales. Additionally, shorter protein (1)H T1 relaxation times correlated with higher aggregation rates during storage. The enzyme-linked immunosorbent assay (ELISA) assay showed overlapping effects of aggregation and chemical degradation and did not correspond as well with the miscibility. Because of the small scale at which miscibility was determined (2-5 nm) and the size of the protein domains (∼2.5 × 2.5 × 5 nm), the miscibility data give an indirect measure of interaction between protein and sugar. This reduced interaction could be the result of steric hindrance, providing a possible explanation as to why smaller sugars show better miscibility and storage stability with the protein.

  1. The Dynamics of Miscible Interfaces: A Space Flight Experiment

    NASA Technical Reports Server (NTRS)

    Maxworthy, Tony; Meiburg, Eckart

    2000-01-01

    Experiments as well as accompanying simulations are described that serve in preparation of a space flight experiment to study the dynamics of miscible interfaces. The investigation specifically addresses the importance of both nonsolenoidal effects as well as nonconventional Korteweg stresses in flows that give rise to steep but finite concentration gradients. The investigation focuses on the flow in which a less viscous fluid displaces one of higher viscosity and different density within a narrow capillary tube. The fluids are miscible in all proportions. An intruding finger forms that occupies a fraction of the total tube diameter. Depending on the flow conditions, as expressed by the Peclet number, a dimensionless viscosity ratio, and a gravity parameter, this fraction can vary between approximately 0.9 and 0.2. For large Pe values, a quasi-steady finger forms, which persists for a time of O(Pe) before it starts to decay, and Poiseuille flow and Taylor dispersion are approached asymptotically. Depending on the specific flow conditions, we observe a variety of topologically different streamline patterns, among them some that leak fluid from the finger tip. For small Pe values, the flow decays from the start and asymptotically reaches Taylor dispersion after a time of O(Pe). Comparisons between experiments and numerical simulations based on the 'conventional' assumption of solenoidal velocity fields and without Korteweg stresses yield poor agreement as far as the Pe value is concerned that distinguishes these two regimes. As one possibility, we attribute this lack of agreement to the disregard of these terms. An attempt is made to use scaling arguments in order to evaluate the importance of the Korteweg stresses and of the assumption of solenoidality. While these effects should be strongest in absolute terms when steep concentration fronts exist, i.e., at large Pe, they may be relatively most important at lower values of Pe. We subsequently compare these

  2. Don't ignore the elephant in the room: How the intangible concept of place influences the decision-making process for flood resettlement in the Danube catchment

    NASA Astrophysics Data System (ADS)

    Thaler, Thomas; Seebauer, Sebastian; Babcicky, Philipp

    2017-04-01

    Flood risk management has developed a large inventory of adaptive responses to climate-induced and socio-economic driven hazards. This inventory comprises a wide array of structural and non-structural measures. Yet, one of the most effective responses is planned resettlement of people at risk, were largely ignored as a possible adaptation option towards climate changes in the national flood risk management policies. The study investigates current developments of flood relocation projects and introduces the theoretical concept of place attachment and identity to analyse the challenges when putting flood resettlement initiatives into practice. Two study sites in Austria (Eferdinger Basin and Machland region) illustrate the social and individual dynamics as relocation schemes unfold over time. The relocation scheme is voluntary with the authorities offering to buy out buildings at 80% of their estimated market values, but without compensating for devaluation of the building plot. Legal and administrative processes for executing relocations are well institutionalized. From an engineering standpoint, relocation is the most effective and cost-efficient adaptive response to flood risk in the study areas. However, the measure is socially and politically highly contested. For residents in relocation zones, many profound changes they are confronted with are linked to their place of living, such as iterms of their livelihood, e.g. by no longer passing the family agricultural business to the next generation; in terms of their self-identity, e.g. when tasked to reformulate everyday practices tied to the home left behind; or in terms of rebuilding social networks, e.g. when those who remain have to cope with the thinning out of trusted neighbours. To explore the role of place attachment and identity in individual decision-making, we conducted semi-structured interviews with residents. Our results show that place attachment and identity is a key factor guiding individual

  3. Blend miscibility of cellulose propionate with poly(N-vinyl pyrrolidone-co-methyl methacrylate).

    PubMed

    Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2013-10-15

    The blend miscibility of cellulose propionate (CP) with poly(N-vinyl pyrrolidone-co-methyl methacrylate) (P(VP-co-MMA)) was investigated. The degree of substitution (DS) of CP used ranged from 1.6 to >2.9, and samples for the vinyl polymer component were prepared in a full range of VP:MMA compositions. Through DSC analysis and solid-state (13)C NMR and FT-IR measurements, we revealed that CPs of DS<2.7 were miscible with P(VP-co-MMA)s of VP≥~10mol% on a scale within a few nanometers, in virtue of hydrogen-bonding interactions between CP-hydroxyls and VP-carbonyls. When the DS of CP exceeded 2.7, the miscibility was restricted to the polymer pairs using P(VP-co-MMA)s of VP=ca. 10-40 mol%; the scale of mixing in the blends concerned was somewhat larger (ca. 5-20 nm), however. The appearance of such a "miscibility window" was interpretable as an effect of intramolecular repulsion in the copolymer component. Results of DMA and birefringence measurements indicated that the miscible blending of CP with the vinyl polymer invited synergistic improvements in thermomechanical and optical properties of the respective constituent polymers. Additionally, it was found that the VP:MMA composition range corresponding to the miscibility window was expanded by modification of the CP component into cellulose acetate propionate.

  4. Phase-field modelling of a miscible system in spinning droplet tensiometer.

    PubMed

    Vorobev, Anatoliy; Boghi, Andrea

    2016-11-15

    The spinning drop tensiometry is used for measurements of surface tension coefficients, especially, when interfaces are characterised by low and ultra-low interfacial stresses. A droplet of lighter liquid is introduced into a rotating capillary that was initially saturated with another heavier liquid. The tube is subject to axial rotation that results in droplet's elongation along the tube's axis. The equilibrium shape of the droplet is used to determine the surface tension coefficient. In this work, the evolution of a slowly miscible droplet introduced into a spinning capillary is investigated. This technique is frequently employed for studies of the dynamics of miscible systems, even despite the fact that a strict equilibrium is never achieved in a mixture of fully miscible liquids. The numerical modelling of a miscible droplet is fulfilled on the basis of the phase-field (Cahn-Hilliard) approach. The numerical results are compared against the experimental data pursuing two objectives: (i) to verify the use of the phase-field approach as a consistent physics-based approach capable of accurate tracking of the short- and long-term evolution of miscible systems, and (ii) to estimate the values of the phenomenological parameters introduced within the phase-field approach, so making this approach a practical tool for modelling of thermohydrodynamic changes in miscible systems within various configurations.

  5. A database on flood and debris-flow processes in alluvial fans: a preliminary analysis aimed at evaluation of the damage

    NASA Astrophysics Data System (ADS)

    Vennari, Carmela; Santangelo, Nicoletta; Santo, Antonio; Parise, Mario

    2015-04-01

    Debris-flow and flood events cause yearly wide damages to buildings and infrastructures, and produce many casualties and fatalities. These processes are very common in Italy, affecting mainly torrential stream basins with different geological and morphological settings: in the Alpine mountain areas they are quite well analysed, whilst much less attention is generally paid in contexts such as those of the Apennines mostly due to the minor frequency of the events. Nevertheless, debris-flows and flood processes occur along many alluvial fans, have greatly contributed to their building up, and are therefore worth to be studied. Along many areas of the Southern Apennines, coalescent alluvial fans are a widespread geomorphic unit, typically located at the foot of steep slopes. In most cases these areas correspond to the more highly urbanised sectors, generally considered to be safer than the bottom valley, as concerns the direct effects from flooding. During intense storms, villages and towns built on alluvial fans may be affected by flooding and/or debris flow processes originated in the above catchment, and rapidly transferred downslope due to the steep slopes and the torrential character of the streams. This creates a very high hazard to the population and is at the origin of the severe and recurrent damage to urban settlements. Starting from the above considerations, we compiled a catalogue of flood and debris-flow events occurred in Campania Region, southern Italy, by consulting very different information sources: national and local newspapers and journals, regional historical archives, scientific literature, internet blogs. More than 350 events, occurred in Campania from 1700 to present, were collected. Information on time of occurrence and location are available for each event, with different level of accuracy, that is typically lower going back to the oldest events for which only the year or the month of occurrence of the event was identified; nevertheless, for

  6. Summer and Fall Sea Ice Processes in the Amundsen Sea: Bottom melting, surface flooding and snow ice formation

    NASA Astrophysics Data System (ADS)

    Ackley, S. F.; Perovich, D. K.; Weissling, B.; Elder, B. C.

    2011-12-01

    Two ice mass balance buoys were deployed on the Amundsen Sea, Antarctica, ice pack near January 1, 2011. Below freezing air and snow temperatures and sea ice and seawater temperatures at the freezing point at this time indicated that summer melt had not yet commenced. Over the next two months, however, while snow depths changed by less than 0.1m, ice thickness decreased, from bottom melting, by 0.9-1.0m. As snow temperature records did not show temperatures ever reaching the melting point, no surface melt was recorded during the summer period and the small snow depth changes were presumed to occur by consolidation or wind scouring. Water temperatures above the freezing point caused the observed bottom melting from mid January to late February. During the ice loss periods, progressive flooding by sea water at the base of the snow pack was recorded by temperature sensors, showing an increase in the depth of flooded snow pack of 0.4m by the end of the summer period in late February. We hypothesize that progressive flooding of the surface snow pack gives a mechanism for nutrient replenishment in these upper layers, and continuous high algal growth can therefore occur in the flooded snow layer during summer. An underice radiometer recorded light transmission through the ice and snow at selective wavelengths sensitive to chlorophyll. These radiometric results will be presented to examine this algal growth hypothesis. This flooded layer then refroze from the top down into snow ice as air temperatures dropped during March and April, showing that the layer had refrozen as snow ice on the top surface of the ice. Refreezing of the flooded layer gives an ice growth mechanism at the end of summer of 0.2 m to 0.4m of new ice growth over the majority of the ice pack. The snow ice growth in areas covered with pack ice gives salt fluxes commensurate with new ice growth in the autumn expansion of the ice edge over open water. These high salt fluxes therefore represent a marked

  7. Alcohol drops on miscible liquid: mixing or spreading?

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard

    2016-11-01

    We studied how a sessile drop of alcohol behaves when placed on a fully miscible liquid. The dynamics of the subsequent mixing and spreading were captured by using a high-speed camera and investigated by varying parameters (e.g., surface tension, density, and viscosity). We observed that a deposited alcohol drop on a liquid bath remains as a floating lens shape, the alcohol liquid leaks out along the rim of the droplet, and it spreads axi-symmetrically along the bottom liquid interface. To visualize spreading and mixing features, we used time-resolved Particle Tacking Velocimetry and a Schlieren method. We observed a localized mixing flow at the rim of the floating droplet where the maximum flow speed is obtained, driven by a solutal Marangoni effect. Underneath the interface of the bath liquid, a viscous boundary layer develops while the alcohol liquid spreads along the radial direction. We also observed a finite quasi-steady interfacial flow velocity regime after the alcohol droplet touched the bottom liquid surface. In this regime, the flow speed linearly increases inside the floating lens, and outside the lens the flow speed decays along the r-direction with a power-law slope, Ur r - 1 / 2 . Physical arguments to support the observations will be discussed.

  8. Combustion of two-component miscible droplets in reduced gravity

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.; Aharon, Israel; Gage, James W.; Jenkins, Andrew J.; Kahoe, Thomas J.

    1995-01-01

    This research focuses on the combustion of binary miscible droplets initially in the mm size range. Experiments are performed using the NASA Lewis 2.2 sec drop tower in Cleveland, Ohio, where mixtures of alkanes and/or alcohols are studied. The fuel components are selected to have significantly different volatilities. Initial oxygen mole fractions from about 0.15-0.5 and initial pressures from 0.2-2 atm are employed. Different inerts are used (He, CO2, Ar, N2) to change burning rates and sooting behaviors. Objectives are to observe the following: (1) Transient droplet diameters (including three-staged combustion behaviors and microexplosion; (2) Transient flow behaviors (sudden flame contraction, luminosity, extinction); and (3) Behaviors of observable soot particles. theoretical and computational research in support of this program has also been undertaken. This research includes analytical studies to determine the effects of small but nonzero gravitational levels on droplet gasification, analytical studies of hydrodynamic stability of spherically-symmetrical droplet gasification (to address the question as to whether spherically-symmetrical droplet gasification may be destabilized from capillary, i.e., Marangoni effects), and computational modeling of effects of capillary stresses on droplet gasification.

  9. Damping of Quasi-stationary Waves Between Two Miscible Liquids

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    2002-01-01

    Two viscous miscible liquids with an initially sharp interface oriented vertically inside a cavity become unstable against oscillatory external forcing due to Kelvin-Helmholtz instability. The instability causes growth of quasi-stationary (q-s) waves at the interface between the two liquids. We examine computationally the dynamics of a four-mode q-s wave, for a fixed energy input, when one of the components of the external forcing is suddenly ceased. The external forcing consists of a steady and oscillatory component as realizable in a microgravity environment. Results show that when there is a jump discontinuity in the oscillatory excitation that produced the four-mode q-s wave, the interface does not return to its equilibrium position, the structure of the q-s wave remains imbedded between the two fluids over a long time scale. The damping characteristics of the q-s wave from the time history of the velocity field show overdamped and critically damped response; there is no underdamped oscillation as the flow field approaches steady state. Viscous effects serve as a dissipative mechanism to effectively damp the system. The stability of the four-mode q-s wave is dependent on both a geometric length scale as well as the level of background steady acceleration.

  10. Laminar flow of two miscible fluids in a simple network

    NASA Astrophysics Data System (ADS)

    Karst, Casey M.; Storey, Brian D.; Geddes, John B.

    2013-03-01

    When a fluid comprised of multiple phases or constituents flows through a network, nonlinear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of nonlinear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by diffusion. This fluid system has the advantage that it is easily controlled and modeled, yet contains the key ingredients for network nonlinearities. Experiments and 3D simulations are first used to explore how phases distribute at a single T-junction. Once the phase separation at a single junction is known, a network model is developed which predicts multiple equilibria in the simplest of networks. The existence of multiple stable equilibria is confirmed experimentally and a criterion for existence is developed. The network results are generic and could be applied to or found in different physical systems.

  11. Temporal clustering of floods in Germany: Do flood-rich and flood-poor periods exist?

    NASA Astrophysics Data System (ADS)

    Merz, Bruno; Nguyen, Viet Dung; Vorogushyn, Sergiy

    2016-10-01

    The repeated occurrence of exceptional floods within a few years, such as the Rhine floods in 1993 and 1995 and the Elbe and Danube floods in 2002 and 2013, suggests that floods in Central Europe may be organized in flood-rich and flood-poor periods. This hypothesis is studied by testing the significance of temporal clustering in flood occurrence (peak-over-threshold) time series for 68 catchments across Germany for the period 1932-2005. To assess the robustness of the results, different methods are used: Firstly, the index of dispersion, which quantifies the departure from a homogeneous Poisson process, is investigated. Further, the time-variation of the flood occurrence rate is derived by non-parametric kernel implementation and the significance of clustering is evaluated via parametric and non-parametric tests. Although the methods give consistent overall results, the specific results differ considerably. Hence, we recommend applying different methods when investigating flood clustering. For flood estimation and risk management, it is of relevance to understand whether clustering changes with flood severity and time scale. To this end, clustering is assessed for different thresholds and time scales. It is found that the majority of catchments show temporal clustering at the 5% significance level for low thresholds and time scales of one to a few years. However, clustering decreases substantially with increasing threshold and time scale. We hypothesize that flood clustering in Germany is mainly caused by catchment memory effects along with intra- to inter-annual climate variability, and that decadal climate variability plays a minor role.

  12. Multifractal Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2007-12-01

    Hydrology and more generally sciences involved in water resources management, researches and technological or operational development face a fundamental difficulty: the extreme variability of hydrological fields. It clearly appears today that this variability is a function of the observation scale and yield natural hazards such as floods or droughts. The estimation of return periods for extreme precipitation and flooding events requires a model of the natural (unperturbed) statistical behaviour of the probability tails and the possible clustering (including possible long-range dependencies) of the extremes. Appropriate approaches for handling such non classical variability over wide ranges of time and space scale do exist. They are based on a fundamental property of the non-linear equations: scale invariance. Its specific framework is that of multifractals. In this framework hydrological variability builds up scale by scale leading to non-classical statistics; this provides the key element needed to better understand and predict floods. Scaling is a verifiable physical principle which can be exploited to model hydrological processes and estimate their statistics over wide ranges of space-time scales. We first present the Multifractal Flood Frequency Analysis (MFFA) tool and illustrate some results of its application to a large database (for more than 16000 selected stations over USA and Canada). We then discuss its efficiency by showing how the mean flow information - coupled with universal multifractal parametrizations with power law tails - can be used to estimate return times for extreme flood events.

  13. Flood Risk and Flood hazard maps - Visualisation of hydrological risks

    NASA Astrophysics Data System (ADS)

    Spachinger, Karl; Dorner, Wolfgang; Metzka, Rudolf; Serrhini, Kamal; Fuchs, Sven

    2008-11-01

    Hydrological models are an important basis of flood forecasting and early warning systems. They provide significant data on hydrological risks. In combination with other modelling techniques, such as hydrodynamic models, they can be used to assess the extent and impact of hydrological events. The new European Flood Directive forces all member states to evaluate flood risk on a catchment scale, to compile maps of flood hazard and flood risk for prone areas, and to inform on a local level about these risks. Flood hazard and flood risk maps are important tools to communicate flood risk to different target groups. They provide compiled information to relevant public bodies such as water management authorities, municipalities, or civil protection agencies, but also to the broader public. For almost each section of a river basin, run-off and water levels can be defined based on the likelihood of annual recurrence, using a combination of hydrological and hydrodynamic models, supplemented by an analysis of historical records and mappings. In combination with data related to the vulnerability of a region risk maps can be derived. The project RISKCATCH addressed these issues of hydrological risk and vulnerability assessment focusing on the flood risk management process. Flood hazard maps and flood risk maps were compiled for Austrian and German test sites taking into account existing national and international guidelines. These maps were evaluated by eye-tracking using experimental graphic semiology. Sets of small-scale as well as large-scale risk maps were presented to test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented risk communication. A cognitive survey asking for negative and positive aspects and complexity of each single map complemented the experimental graphic semiology. The results indicate how risk maps can be improved to fit the needs of different user

  14. Experimental Measurements of Longitudinal and Transverse Dispersion in Miscible Fluids with a High Viscosity and Density Contrast

    NASA Astrophysics Data System (ADS)

    Alkindi, A.; Bijeljic, B.; Muggeridge, A.

    2008-12-01

    Diffusion and advective dispersion may have a significant influence on the mixing between miscible fluids during displacement processes in porous media. This is particularly important when intimate mixing may result in important changes to the fluid behaviour. For example in oil recovery, mixing between injected and connate water will tend to reduce the efficiency of low salinity water injection. On the other hand recovery may be increased if injected gas mixes with high viscosity oil increasing its mobility. Most experimental data for longitudinal and transverse dispersion have been obtained using fluid pairs with very similar viscosities and densities. The traditional description (Perkins and Johnston, 1963) suggests that longitudinal dispersion decreases as mobility ratio increases. It also suggests that gravity will tend to reduce transverse dispersion. We provide experimental measurements of longitudinal (KL) and transverse (KT) dispersion at low Reynolds number as a function of Peclet number for the first contact miscible ethanol- glycerol fluid system flowing in a porous media formed from glass beads. These fluids have a high viscosity ratio of over 1000 and a significant density difference of 470 kg m-3. We show that both KL and KT are similar to values measured for a water-brine system but that KT is reduced when the less dense ethanol is flowing above the denser glycerol.

  15. Fast fluorescence-based microfluidic method for measuring minimum miscibility pressure of CO2 in crude oils.

    PubMed

    Nguyen, Phong; Mohaddes, Danyal; Riordon, Jason; Fadaei, Hossein; Lele, Pushan; Sinton, David

    2015-03-17

    Carbon capture, storage, and utilization has emerged as an essential technology for near-term CO2 emission control. The largest CO2 projects globally combine storage and oil recovery. The efficiency of this process relies critically on the miscibility of CO2 in crude oils at reservoir conditions. We present a microfluidic approach to quantify the minimum miscibility pressure (MMP) that leverages the inherent fluorescence of crude oils, is faster than conventional technologies, and provides quantitative, operator-independent measurements. To validate the approach, synthetic oil mixtures of known composition (pentane, hexadecane) are tested and MMP values are compared to reported values. Results differ by less than 0.5 MPa on average, in contrast to comparison between conventional methods with variations on the order of 1-2 MPa. In terms of speed, a pressure scan for a single MMP measurement required less than 30 min (with potential to be sub-10 min), in stark contrast to days or weeks with existing approaches. The method is applied to determine the MMP for Pennsylvania, West Texas, and Saudi crudes. Importantly, our fluorescence-based approach enables rapid, automated, operator-independent measurement of MMP as needed to inform the world's largest CO2 projects.

  16. Dominant flood generating mechanisms across the United States

    NASA Astrophysics Data System (ADS)

    Berghuijs, Wouter R.; Woods, Ross A.; Hutton, Christopher J.; Sivapalan, M.

    2016-05-01

    River flooding can have severe societal, economic, and environmental consequences. However, limited understanding of the regional differences in flood-generating mechanisms results in poorly understood historical flood trends and uncertain predictions of future flood conditions. Through systematic data analyses of 420 catchments we expose the primary drivers of flooding across the contiguous United States. This is achieved by exploring which flood-generating processes control the seasonality and magnitude of maximum annual flows. The regional patterns of seasonality and interannual variabilities of maximum annual flows are, in general, poorly explained by rainfall characteristics alone. For most catchments soil moisture dependent precipitation excess, snowmelt, and rain-on-snow events are found to be much better predictors of the flooding responses. The continental-scale classification of dominant flood-generating processes we generate here emphasizes the disparity in timing and variability between extreme rainfall and flooding and can assist predictions of flooding and flood risk within the continental U.S.

  17. Flood information for flood-plain planning

    USGS Publications Warehouse

    Bue, Conrad D.

    1967-01-01

    Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.

  18. Measuring miscible fluid displacement in porous media with magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Muir, Colleen E.; Petrov, Oleg V.; Romanenko, Konstantin V.; Balcom, Bruce J.

    2014-03-01

    The development of new quantitative magnetic resonance imaging (MRI) technologies open new opportunities for measurements of mass transport in porous media. The current work examines a simple miscible displacement process of H2O and D2O in porous media samples. Laboratory measurements of dispersion in porous media traditionally monitor the effluent intensity of an injected tracer. We employ MRI to obtain quantitative water saturation profiles, and to measure dispersion in rock core plugs. The saturation profiles are modeled with PHREEQC, a fluid transport modeling program. We demonstrate how independent magnetic resonance measurements can be employed to estimate three important input parameters for PHREEQC, mobile porosity, immobile porosity, and dispersivity. Bulk Carr Purcell Meiboom Gill (CPMG) T2 distribution measurements were undertaken to estimate mobile and immobile porosity. Bulk alternating-pulsed-gradient-stimulated-echo (APGSTE) measurements were undertaken to measure dispersivity. The imaging method employed, T2 mapping Spin Echo Single Point Imaging (SE-SPI), also provides information about the pore size distributions in the rock cores, and how the fluid occupancy of the pores changes during the displacement process.

  19. Study of rheological behavior and miscibility of epoxidized natural rubber modified neoprene

    NASA Astrophysics Data System (ADS)

    Chiu, Hsien-Tang; Tsai, Peir-An; Cheng, Tzu-Chi

    2006-02-01

    The Mooney viscosity, curing rates, vulcanization behavior, and the relationship between molecular motion of epoxidized natural rubber (ENR) and neoprene (CR) blends at different blending ratios have been studied. The experimental results of ENR/CR blends show that the Mooney viscosity decreased gradually. Plasticization was most pronounced at an ENR/CR ratio of 75/25 and is thus the easiest to process. Owing to the ring opening of the epoxy group of ENR, the rate of crosslink formation is much faster than that of CR at higher temperature. The vulcanized rate increased with increasing ENR content. The results indicated that 175 °C and 5 min were the optimum processing conditions for ENR/CR blends. The DMA spectra showed a single damping peak for the ENR/CR blends, which suggests that ENR and CR are miscible. As seen in the Arrhenius plot of frequency against T g, the activation energy increased with increasing ENR contents. This suggests the existence of interpenetration of these two rubber molecular networks.

  20. The quest for consistent representation of rainfall and realistic simulation of process interactions in flood risk assessment

    NASA Astrophysics Data System (ADS)

    Efstratiadis, Andreas; Papalexiou, Simon-Michael

    2010-05-01

    We present a methodological framework for the estimation of flood risk in the Boeoticos Kephisos river basin, in Greece, draining an area of 1850 km2. This is a challenging task since the basin has many peculiarities. Due to the dominance of highly-permeable geologic formations, significant portion of runoff derives from karst springs, which rapidly contribute to the streamflow, in contrast to the unusually low contribution of direct (flood) runoff. In addition, due to the combined abstractions from surface and groundwater recourses and the existence of an artificial drainage network in the lower part of the basin (where slopes are noticeably low), the system is heavily modified. To evaluate the probability of extreme floods, especially in such complex basins, it is essential to provide both a statistically consistent description of forcing (precipitation) and a realistic simulation of the runoff mechanisms. Typically, flood modelling is addressed through event-based tools that use deterministic design storms and empirical formulas for the estimation of the "effective" rainfall and its transformation to runoff. Yet, there are several shortcomings in such approaches, especially when employed to large-scale systems. First, the widely-used methodologies for constructing design storms fail to properly represent the variability of rainfall, since they do not account for the temporal and spatial correlations of the historical records. For instance, it is assumed that the input storms to all sub-basins correspond to the same return period. On the other hand, "event-based" models do not allow for interpreting flood risk as joint probabilities of all hydrological variables that interrelate in runoff generation (rainfall, stream-aquifer interactions, soil moisture accounting). Finally, for the estimation of model parameters, the typical approach is to calibrate them against normally few historical flood events, which is at least questionable - the information embedded within

  1. Effect of pH on the physico-mechanical properties and miscibility of methyl cellulose/poly(acrylic acid) blends.

    PubMed

    Negim, E S M; Nurpeissova, Zh A; Mangazbayeva, R A; Khatib, J M; Williams, C; Mun, G A

    2014-01-30

    The miscibility behavior and physico-mechanical properties between methyl cellulose (MC) of different molecular weights (4 × 10(4) and 8.3 × 10(4)g/mol) and poly(acrylic acid) (PAA) were studied by viscometry, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), tensile strength and scanning electron microscopy (SEM) using water as a solvent. Various formulations were designed to investigate the effects of process variables such as pH on the physico-mechanical and miscibility properties of MC/PAA blends. The rheological features for the obtained blends are strongly dependent on the molecular weight of the MC used and pH. The viscosity measurements showed that all blends have non-Newtonian shear thinning (pseudoplastic) behavior. These blends have a single glass transition indicating that these blends are able to form a miscible phase due to the formation of hydrogen bonds between the hydroxyl group of MC and the carboxyl group of PAA. The MC/PAA blends exhibit good mechanical properties, thermal stability, characteristics of a MC-PAA polymer network. SEM of the blends showed no phase separation, when compared with the pure MC and PAA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Respiratory exposure to components of water-miscible metalworking fluids.

    PubMed

    Suuronen, Katri; Henriks-Eckerman, Maj-Len; Riala, Riitta; Tuomi, Timo

    2008-10-01

    Water-miscible metalworking fluids (MWFs) are capable of causing respiratory symptoms and diseases. Recently, much emphasis has been put on developing new methods for assessing respiratory exposure to MWF emulsions. The air concentrations of ingredients and contaminants of MWF and inhalable dust were measured in 10 metal workshops in southern Finland. Oil mist was determined by infra red spectroscopy analysis after tetrachloroethylene extraction from the filter. Aldehydes were collected on Sep-Pak chemosorbents and analysed by liquid chromatography. Volatile organic compounds (VOCs) were collected on Tenax adsorbents and analysed by gas chromatography with mass spectrometric detection after thermal desorption. Endotoxins were collected on glass fibre filter and analysed by enzyme-based spectrophotometry, and viable microbes were collected on polycarbonate filter and cultured. Inhalable dust was collected on cellulose acetate filter and quantified gravimetrically. Associations between the different exposures were calculated with Spearman's correlations. The mean concentration of oil mist was 0.14 (range <0.010-0.60) mg m(-3). The mean total concentration of aldehydes was 0.095 (0.026-0.38) mg m(-3), with formaldehyde as the main aldehyde. The average total concentration of VOC was 1.9 (0.34-4.5) mg m(-3) consisting mainly of high-boiling aliphatic hydrocarbons. Several potential sensitizing chemicals such as terpenes were found in small quantities. The concentration of microbial contaminants was low. All the measured air concentrations were below the Finnish occupational exposure limits. The exposure in machine shops was quantitatively dominated by volatile compounds. Additional measurements of MWF components such as aldehydes, alkanolamines and VOCs are needed to get more information on the chemical composition of workshops' air. New air cleaning methods should be introduced, as oil mist separators are insufficient to clean the air of small molecular impurities.

  3. Flood resilience urban territories. Flood resilience urban territories.

    NASA Astrophysics Data System (ADS)

    Beraud, Hélène; Barroca, Bruno; Hubert, Gilles

    2010-05-01

    The flood's impact during the last twenty years on French territory reveals our lack of preparation towards large-extended floods which might cause the stopping of companies' activity, services, or lead to housing unavailability during several months. New Orleans' case has to exemplify us: four years after the disaster, the city still couldn't get back its dynamism. In France, more than 300 towns are flood-exposed. While these towns are the mainspring of territory's development, it is likely that the majority of them couldn't get up quickly after a large-extended flood. Therefore, to understand and improve the urban territory's resilience facing floods is a real stake for territory's development. Urban technical networks supply, unify and irrigate all urban territories' constituents. Characterizing their flood resilience can be interesting to understand better urban resilience. In this context, waste management during and after floods is completely crucial. During a flood, the waste management network can become dysfunctional (roads cut, waste storage installations or waste treatment flooded). How can the mayor respect his obligation to guarantee salubrity and security in his city? In post flood the question is even more problematic. The waste management network presents a real stake for territory's restart. After a flood, building materials, lopped-of branches, furniture, business stocks, farm stocks, mud, rubbles, animal cadavers are wet, mixed, even polluted by hydrocarbons or toxic substances. The waste's volume can be significant. Sanitary and environmental risks can be crucial. In view of this situation, waste's management in post crisis period raises a real problem. What to make of this waste? How to collect it? Where to stock it? How to process it? Who is responsible? Answering these questions is all the more strategic since this waste is the mark of disaster. Thus, cleaning will be the first population's and local actor's reflex in order to forget the

  4. Geomorphological factors of flash floods

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Yulia

    2016-04-01

    Growing anthropogenic load, rise of extreme meteorological events frequency and total precipitation depth often lead to increasing danger of catastrophic fluvial processes worldwide. Flash floods are one of the most dangerous and less understood types of them. Difficulties of their study are mainly related to short duration of single events, remoteness and hard access to origin areas. Most detailed researches of flash floods focus on hydrological parameters of the flow itself and its meteorological factors. At the same time, importance of the basin geological and geomorphological structure for flash floods generation and the role they play in global sediment redistribution is yet poorly understood. However, understanding and quantitative assessment of these features is a real basis for a complete concept of factors, characteristics and dynamics of flash floods. This work is a review of published data on flash floods, and focuses on the geomorphological factors of the phenomenon. We consider both individual roles and interactions between different geomorphological features (the whole basin parameters, characteristics of the single slopes and valley bottom). Special attention is paid to critical values of certain factors. This approach also highlights the gaps or less studied factors of flash floods. Finally, all data is organized into a complex diagram that may be used for flash floods modeling. This also may help to reach a new level of flash flood predictions and risk assessment.

  5. The Miscibility of PCBM in Low Band-Gap Conjugated Polymers in Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Chen, Huipeng; You, Wei; Peet, Jeff; Azoulay, Jason; Bazan, Guillermo; Dadmun, Mark

    2012-02-01

    Understanding the morphology of the photoactive layer in organic photovoltaics (OPVs) is essential to optimizing conjugated polymer-based solar cells to meet the targeted efficiency of 10%. The miscibility and interdiffusion of components are among the key elements that impact the development of morphology and structure in OPV active layers. This study uses neutron reflectivity to correlate the structure of low band gap polymers to their miscibility with PCBM. Several low band gap polymers that exhibit power conversion efficiencies exceeding 7%, including PBnDT-DTffBT were examined. The intermixing of low band-gap polymer and PCBM bilayers was monitored by neutron reflectivity before and after thermal annealing, providing quantification of the miscibility and interdiffusion of PCBM within the low band gap polymer layer. These results indicate that the miscibility of PCBM ranges from 3% to 26% with the low band-gap polymers studied. The correlation between low band gap polymer structure and miscibility of PCBM will also be discussed.

  6. An informatics guided classification of miscible and immiscible binary alloy systems.

    PubMed

    Zhang, R F; Kong, X F; Wang, H T; Zhang, S H; Legut, D; Sheng, S H; Srinivasan, S; Rajan, K; Germann, T C

    2017-08-29

    The classification of miscible and immiscible systems of binary alloys plays a critical role in the design of multicomponent alloys. By mining data from hundreds of experimental phase diagrams, and thousands of thermodynamic data sets from experiments and high-throughput first-principles (HTFP) calculations, we have obtained a comprehensive classification of alloying behavior for 813 binary alloy systems consisting of transition and lanthanide metals. Among several physics-based descriptors, the slightly modified Pettifor chemical scale provides a unique two-dimensional map that divides the miscible and immiscible systems into distinctly clustered regions. Based on an artificial neural network algorithm and elemental similarity, the miscibility of the unknown systems is further predicted and a complete miscibility map is thus obtained. Impressively, the classification by the miscibility map yields a robust validation on the capability of the well-known Miedema's theory (95% agreement) and shows good agreement with the HTFP method (90% agreement). Our results demonstrate that a state-of-the-art physics-guided data mining can provide an efficient pathway for knowledge discovery in the next generation of materials design.

  7. Miscibility of eudragit/chitosan polymer blend in water determined by physical property measurements.

    PubMed

    Haque, Sk Ershadul; Sheela, A

    2013-01-30

    The interest in the preparation and application of polymeric blends is growing since they can exhibit properties of great industrial interest. The current study focuses on the preparation of polymeric blends of varying compositions of eudragit and chitosan and their miscibility studies. The preparation was carried out by using ethanol and 1% acetic acid in water. FT-IR spectra reveal the possibilities of chemical interactions between eudragit/chitosan. The miscibility of polymeric blend at different composition has been investigated by viscosity, ultrasonic velocity, density, refractive index and adiabatic compressibility values measured at two different temperatures 30 °C and 40 °C. The interaction parameters ΔB, μ and α, were determined from viscosity data. From the values observed, it is found that the blend is miscible in all compositions at 30 °C whereas at 40 °C, it seems to be immiscible in certain compositions. It is found that the blend is miscible, when the chitosan concentration is more than 70% (v/v) at both the temperatures and also observed that variation of temperature has no effect on the miscibility of eudragit/chitosan blend.

  8. A diffuse interface approach to injection-driven flow of different miscibility in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Yao; Yan, Pei-Yu

    2015-08-01

    Miscible and immiscible injection flows in heterogeneous porous media, for which the permeability is characterized by a log Gaussian distribution, are simulated by a robust diffuse-interface formulation. The robust numerical method enables direct qualitative and quantitative comparisons regarding pattern formations in various fluid miscibility conditions. For miscible injections, the typical size of fingering structures depends strongly on the correlation length and forms tapered fingers with sharper tips. On the other hand, the typical size of immiscible fingers is affected less significantly by the permeability heterogeneity, and wide spreading tips are retained in the fingering patterns. Prominence of fingering instability is quantitatively evaluated by the channeling width and the interfacial length. The channeling width shows strong and monotonic dependences on the heterogeneous variance. On the contrary, maximum channeling width occurs at intermediate correlation length due to local resonant effect between the faster penetrating fingers and permeability heterogeneity. On the other hand, effects of the correlation length and the permeability variance on the interfacial lengths are generally consistent. Longer interfacial length is perturbed by smaller correlation length or higher variance. Interesting invariant evolutions of interfacial lengths are revealed regardless of the permeability variance in sufficiently large correlation length under all miscibility conditions. In addition, the regime of slower growth of interfacial length at later times experimentally observed in homogeneous miscible injection is verified in heterogeneous porous media as well.

  9. Effects of Land-Cover Change, Floods, and Stream Position on Geomorphic Processes - Implications for Restoration Activities

    USGS Publications Warehouse

    Fitzpatrick, F.A.; ,

    2001-01-01

    A geomorphic study for North Fish Creek, a northern Wisconsin tributary to Lake Superior was analyzed to determine the hydrologic and geomorphic changes caused by clear-cut logging and agricultural activity. Discharge magnitude estimated with HEC-2 for full-channel capacities indicate that modern full-channel discharges are about twice as large as pre-1946 full-channel discharges. Flood-plain deposition rates were high along the transitional main stem after European settlement. Restoration and protection activities would be most effective if focused on watershed practices to reduce runoff and on channel restoration that reduce buff and bank erosion in the upper and transitional main stems.

  10. Quantifying Floods of a Flood Regime in Space and Time

    NASA Astrophysics Data System (ADS)

    Whipple, A. A.; Fleenor, W. E.; Viers, J. H.

    2015-12-01

    Interaction between a flood hydrograph and floodplain topography results in spatially and temporally variable conditions important for ecosystem process and function. Individual floods whose frequency and dimensionality comprise a river's flood regime contribute to that variability and in aggregate are important drivers of floodplain ecosystems. Across the globe, water management actions, land use changes as well as hydroclimatic change associated with climate change have profoundly affected natural flood regimes and their expression within the floodplain landscape. Homogenization of riverscapes has degraded once highly diverse and productive ecosystems. Improved understanding of the range of flood conditions and spatial variability within floodplains, or hydrospatial conditions, is needed to improve water and land management and restoration activities to support the variable conditions under which species adapted. This research quantifies the flood regime of a floodplain site undergoing restoration through levee breaching along the lower Cosumnes River of California. One of the few lowland alluvial rivers of California with an unregulated hydrograph and regular floodplain connectivity, the Cosumnes River provides a useful test-bed for exploring river-floodplain interaction. Representative floods of the Cosumnes River are selected from previously-established flood types comprising the flood regime and applied within a 2D hydrodynamic model representing the floodplain restoration site. Model output is analyzed and synthesized to quantify and compare conditions in space and time, using metrics such as depth and velocity. This research establishes methods for quantifying a flood regime's floodplain inundation characteristics, illustrates the role of flow variability and landscape complexity in producing heterogeneous floodplain conditions, and suggests important implications for managing more ecologically functional floodplains.

  11. Evaluation of some water-miscible organic solvents for spray-drying enzymes and carbohydrates.

    PubMed

    Sass, Anke; Lee, Geoffrey

    2014-06-01

    The spray-drying behaviour of 16 water-miscible organic solvents on a bench-scale machine (Büchi B290 with inert loop) was determined under mild-to-moderate process conditions, namely inlet gas temperature of 130 °C and liquid feed flow rate of ≤3 mL/min. The solvents with boiling points below the inlet gas temperature could be fully dried (Group 1 solvents). The two exceptions were DMSO and DMF which despite their higher boiling points could be fully dried. The remaining solvents with boiling points above the inlet gas temperature were not fully dried during passage through the spray-dryer (Group 2 solvents). Trypsin and lysozyme when spray-dried from Group 1 solvent binary mixtures with water showed similar inactivation and residual water content, independent of solvent. The level of residual solvent was, however, strongly dependent on solvent. Trehalose (20%) and mannitol (10%) could be spray-dried from DMSO/water binary mixtures, but the amorphous disaccharide required higher inlet gas temperature. Trehalose/trypsin and mannitol/trypsin formulations showed differing degrees of protection against enzyme inactivation when spray-dried from Group 1 solvent binary mixtures with water. In all solvents the mannitol protected as well, if not better, than the trehalose. This study identifies some suitable organic solvents for spray-drying protein formulations, but also shows the difficulties of remaining organic solvent under the moderate inlet gas temperature used.

  12. Tsunami flooding

    USGS Publications Warehouse

    Geist, Eric; Jones, Henry; McBride, Mark; Fedors, Randy

    2013-01-01

    Panel 5 focused on tsunami flooding with an emphasis on Probabilistic Tsunami Hazard Analysis (PTHA) as derived from its counterpart, Probabilistic Seismic Hazard Analysis (PSHA) that determines seismic ground-motion hazards. The Panel reviewed current practices in PTHA and determined the viability of extending the analysis to extreme design probabilities (i.e., 10-4 to 10-6). In addition to earthquake sources for tsunamis, PTHA for extreme events necessitates the inclusion of tsunamis generated by submarine landslides, and treatment of the large attendant uncertainty in source characterization and recurrence rates. Tsunamis can be caused by local and distant earthquakes, landslides, volcanism, and asteroid/meteorite impacts. Coastal flooding caused by storm surges and seiches is covered in Panel 7. Tsunamis directly tied to earthquakes, the similarities with (and path forward offered by) the PSHA approach for PTHA, and especially submarine landslide tsunamis were a particular focus of Panel 5.

  13. The Effects of Branching and Deuterium Labeling on Polymer Blend Miscibility

    NASA Astrophysics Data System (ADS)

    Defelice, Jeffrey; Higgins, Julia; Lipson, Jane

    Local structural or chemical changes made to one component of a polymer blend can have a significant impact on miscibility. In this talk we will focus on several blends involving linear and 4-arm star polystyrene (PS), both hydrogenous and deuterated, and poly(vinylmethylether) (PVME). We consider the effect of the structural change on the miscibility of PS/PVME, then turn to the added effect of deuterium labeling, both on this blend and for isotopic PS mixtures. Using our Locally Correlated Lattice (LCL) model we are able to identify trends in the physical properties of pure components, such as: free volume, thermal expansion coefficient, and cohesive energy density. We find that branching and labeling, both independently and cumulatively, affect pure component properties. Our ability to correlate structural and chemical changes with trends in physical properties leads to predictions about the compatibility of pure components, and thus their blend miscibility. The authors gratefully acknowledge support from NSF DMR-1403757 and GAANN.

  14. Effect of using miscible and immiscible healing agent on solid state self-healing system

    NASA Astrophysics Data System (ADS)

    Makenan, Siti Mastura; Jamil, Mohd Suzeren Md.

    2014-09-01

    The aim of this study is to identify the effect of using various healing agent which are miscible; poly(bisphenol-A-co-epichlorohydrin), and immiscible; poly(ethylene-co-acetate) and poly(ethylene-co-acrylic acid), on self-healing resin system. The specimens were analysed by Fourier-transform Infrared Spectrometer (FTIR), Dynamic Mechanical Thermal Analysis (DMTA), and izod test. Optical image of the sample morphology was observed using optical microscope. Healing efficiencies (HE) were evaluated using izod test. The concept of healing recovery was proved based on the use of miscible and immiscible healing agent. From the results, it can be concluded that the healable resin with miscible healing agent has the highest HE within the third healing cycle.

  15. Shift in membrane miscibility transition temperature upon addition of short-chain alcohols

    NASA Astrophysics Data System (ADS)

    Schick, M.

    2016-12-01

    I consider the effect of a small concentration of a molecule, such as a short-chain alcohol, on the miscibility transition temperature of a giant plasma membrane vesicle. For concentrations sufficiently small such that the system can be treated as a dilute solution, the change in transition temperature is known to depend upon the extent of the molecule's partition into the coexisting liquid-disordered and liquid-ordered phases. Preferential partitioning into the former decreases the miscibility temperature, while preferential partitioning into the latter causes an increase. The analysis, combined with calculated values of the partition coefficient of saturated chains, illuminates the results of recent experiments on the change in miscibility transition temperatures with changing alcohol chain length, and makes several testable predictions.

  16. Miscibility gap in fluid dimyristoylphosphatidylcholine:cholesterol as "seen" by x rays.

    PubMed

    Richter, F; Rapp, G; Finegold, L

    2001-05-01

    A binary mixture of dimyristoylphosphatidylcholine (DMPC) and cholesterol displays a fluid miscibility gap under excess water conditions. Effects due to the imperfect miscibility of the two amphiphiles are studied near to and far from thermodynamic equilibrium by time-resolved small angle x-ray diffraction. The experiment discloses that this mixture phase separates when leaving the miscibility gap upon heating, a transition that is not included in current phase diagrams. This transition appears to be reversible and shows a temperature hysteresis of only a few degrees. We suggest a model in which the transition is driven with increasing temperature by a movement of the cholesterol away from the hydrophilic-hydrophobic interface toward the hydrophobic core of the bilayer.

  17. Drug-polymer solubility and miscibility: Stability consideration and practical challenges in amorphous solid dispersion development.

    PubMed

    Qian, Feng; Huang, Jun; Hussain, Munir A

    2010-07-01

    Drug-polymer solid dispersion has been demonstrated as a feasible approach to formulate poorly water-soluble drugs in the amorphous form, for the enhancement of dissolution rate and bioperformance. The solubility (for crystalline drug) and miscibility (for amorphous drug) in the polymer are directly related to the stabilization of amorphous drug against crystallization. Therefore, it is important for pharmaceutical scientists to rationally assess solubility and miscibility in order to select the optimal formulation (e.g., polymer type, drug loading, etc.) and recommend storage conditions, with respect to maximizing the physical stability. This commentary attempts to discuss the concepts and implications of the drug-polymer solubility and miscibility on the stabilization of solid dispersions, review recent literatures, and propose some practical strategies for the evaluation and development of such systems utilizing a working diagram.

  18. Regional flood probabilities

    USGS Publications Warehouse

    Troutman, B.M.; Karlinger, M.R.

    2003-01-01

    The T-year annual maximum flood at a site is defined to be that streamflow, that has probability 1/T of being exceeded in any given year, and for a group of sites the corresponding regional flood probability (RFP) is the probability that at least one site will experience a T-year flood in any given year. The RFP depends on the number of sites of interest and on the spatial correlation of flows among the sites. We present a Monte Carlo method for obtaining the RFP and demonstrate that spatial correlation estimates used in this method may be obtained with rank transformed data and therefore that knowledge of the at-site peak flow distribution is not necessary. We examine the extent to which the estimates depend on specification of a parametric form for the spatial correlation function, which is known to be nonstationary for peak flows. It is shown in a simulation study that use of a stationary correlation function to compute RFPs yields satisfactory estimates for certain nonstationary processes. Application of asymptotic extreme value theory is examined, and a methodology for separating channel network and rainfall effects on RFPs is suggested. A case study is presented using peak flow data from the state of Washington. For 193 sites in the Puget Sound region it is estimated that a 100-year flood will occur on the average every 4,5 years.

  19. Data mining of solubility parameters for computational prediction of drug-excipient miscibility.

    PubMed

    Alhalaweh, Amjad; Alzghoul, Ahmad; Kaialy, Waseem

    2014-07-01

    Abstract Computational data mining is of interest in the pharmaceutical arena for the analysis of massive amounts of data and to assist in the management and utilization of the data. In this study, a data mining approach was used to predict the miscibility of a drug and several excipients, using Hansen solubility parameters (HSPs) as the data set. The K-means clustering algorithm was applied to predict the miscibility of indomethacin with a set of more than 30 compounds based on their partial solubility parameters [dispersion forces (δd), polar forces (δp) and hydrogen bonding (δh)]. The miscibility of the compounds was determined experimentally, using differential scanning calorimetry (DSC), in a separate study. The results of the K-means algorithm and DSC were compared to evaluate the K-means clustering prediction performance using the HSPs three-dimensional parameters, the two-dimensional parameters such as volume-dependent solubility (δv) and hydrogen bonding (δh) and selected single (one-dimensional) parameters. Using HSPs, the prediction of miscibility by the K-means algorithm correlated well with the DSC results, with an overall accuracy of 94%. The prediction accuracy was the same (94%) when the two-dimensional parameters or the hydrogen-bonding (one-dimensional) parameter were used. The hydrogen-bonding parameter was thus a determining factor in predicting miscibility in such set of compounds, whereas the dispersive and polar parameters had only a weak correlation. The results show that data mining approach is a valuable tool for predicting drug-excipient miscibility because it is easy to use, is time and cost-effective, and is material sparing.

  20. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao

    2003-10-01

    This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and

  1. Fingering patterns in the lifting flow of a confined miscible ferrofluid.

    PubMed

    Chen, Ching-Yao; Wu, S-Y; Miranda, José A

    2007-03-01

    Miscible flow displacements of a ferrofluid droplet subjected to various magnetic field configurations and confined in a time-dependent gap Hele-Shaw cell are examined through highly accurate numerical simulations. The interplay between lifting, miscibility, and applied magnetic fields resulted in complex interfacial pattern formation. By varying the symmetry properties of the applied magnetic fields and by considering the action of Korteweg stresses, a number of interesting droplet morphologies are identified and characterized. The possibility of controlling the degree of fluid mixing and the ultimate shape of the emerging patterns by appropriately adjusting the strength of the applied magnetic fields is also discussed.

  2. Tuning the phase diagrams: the miscibility studies of multilactate liquid crystalline compounds

    NASA Astrophysics Data System (ADS)

    Bubnov, Alexej; Tykarska, Marzena; Hamplová, Věra; Kurp, Katarzyna

    2016-09-01

    Design of binary and multicomponent liquid crystalline mixtures is a very powerful tool to reach the desired self-assembling properties. Beyond many advantages, this method has a distinct negativity - it is very material-consuming. While working with unique chiral materials in the research laboratory, this problem can be solved by applying miscibility study by the contact preparation method. In this work, the miscibility studies of lactic acid derivatives and non-chiral/chiral liquid crystalline molecules of different structure have been done in order to establish the phase diagrams. Special attention is focused on the ferro(antiferro)electric smectic phases.

  3. Method of forming carbon dioxide mixtures miscible with formation crude oils

    SciTech Connect

    Froning, H. R.; Yellig Jr., W. F.

    1985-07-16

    A method is disclosed for forming a carbon dioxide-containing mixture which is miscible with crude oil. The method comprises maintaining a mixture of crude oil and carbon dioxide in an extraction zone at a temperature and pressure such that multiple phase equilibrium is achieved therebetween. A carbon dioxide-rich phase that includes a mixture of carbon dioxide and hydrocarbons is withdrawn and is miscible with the reservoir crude oil when injected into the reservoir from which the crude oil was produced.

  4. Miscibility study of hexanoyl chitosan in blend with epoxidized natural rubber by viscometric analysis

    NASA Astrophysics Data System (ADS)

    Jamal, Asheila; Chan, C. H.; Muhammad, F. H.; Winie, Tan

    2015-08-01

    Miscibility of blends of hexanoyl chitosan and epoxidized natural rubber with 25 mol% epoxidation level (ENR25) was investigated by dilute solution viscometry (DSV). Experimental results obey the Huggins' equation in the concentration range under investigation. Intrinsic viscosities are found to vary linearly with blend composition. The difference between experimental and ideal Huggins coefficients, κ =K12-√{K1ṡK2 } is proposed to evaluate the miscibility behavior of the blends. Negative deviations from the ideal behavior indicated immiscibility between hexanoyl chitosan and ENR25.

  5. Hydraulic and geomorphic processes in an overbank flood along a gravel-bed, meandering river: implications for chute formation

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Dunne, T.; Fisher, G. B.

    2014-12-01

    Hydraulic interactions between rivers and floodplains produce off-channel chutes, whose presence can increase the ecological diversity of the valley floor. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel-bedded, meandering river as a laboratory for studying these mechanisms at field scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and riparian vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off-channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer-grained floodplains. The controls on chute formation at these locations include the river curvature, cross-stream position of the high velocity core, erodibility of the floodplain sediment, and the density of riparian vegetation.

  6. Socio-hydrological flood models

    NASA Astrophysics Data System (ADS)

    Barendrecht, Marlies; Viglione, Alberto; Blöschl, Günter

    2017-04-01

    Long-term feedbacks between humans and floods may lead to complex phenomena such as coping strategies, levee effects, call effects, adaptation effects, and poverty traps. Such phenomena cannot be represented by traditional flood risk approaches that are based on scenarios. Instead, dynamic models of the coupled human-flood interactions are needed. These types of models should include both social and hydrological variables as well as other relevant variables, such as economic, environmental, political or technical, in order to adequately represent the feedbacks and processes that are of importance in human-flood systems. These socio-hydrological models may play an important role in integrated flood risk management by exploring a wider range of possible futures, including unexpected phenomena, than is possible by creating and studying scenarios. New insights might come to light about the long term effects of certain measures on society and the natural system. Here we discuss a dynamic framework for flood risk and review the models that are presented in literature. We propose a way forward for socio-hydrological modelling of the human-flood system.

  7. Modelling Miscible Fluid Displacements in Porous Media Using Karhunen-Loéve Decomposition and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Smaoui, Nejib; Gharbi, Ridha

    2000-11-01

    An approach to model fluid displacements in porous media that combines two powerful techniques, namely Karhunen-Loéve (KL) decomposition and artificial neural networks (ANNs) is descibed. KL decomposition known, for data compression and feature identification, is used to extract coherent structures or eigenfunctions using fluid concentration maps obtained from fine-mesh numerical simulations of miscible fluid displacements of oil by solvent in a two-dimensional vertical cross-section. Twenty KL eigenfunctions that capture 98.8% of the total energy are extracted. Corresponding data coefficients are constructed by projecting the fluid concentration maps of the numerical simulations onto the KL eigenfunctions. Processing these data coefficients through an ANN is found to be a powerful tool in predicting the fluid displacements of the fine-mesh numerical simulations without actually performing these simulations.

  8. Understanding cratonic flood basalts

    NASA Astrophysics Data System (ADS)

    Silver, Paul G.; Behn, Mark D.; Kelley, Katherine; Schmitz, Mark; Savage, Brian

    2006-05-01

    The origin of continental flood basalts has been debated for decades. These eruptions often produce millions of cubic kilometers of basalt on timescales of only a million years. Although flood basalts are found in a variety of settings, no locale is more puzzling than cratonic areas such as southern Africa or the Siberian craton, where strong, thick lithosphere is breached by these large basaltic outpourings. Conventionally, flood basalts have been interpreted as melting events produced by one of two processes: 1) elevated temperatures associated with mantle plumes and/or 2) adiabatic-decompression melting associated with lithospheric thinning. In southern Africa, however, there are severe problems with both of these mechanisms. First, the rifting circumstances of several well-known basaltic outpourings clearly reflect lithospheric control rather than the influence of a deep-seated plume. Specifically, rift timing and magmatism are correlated with stress perturbations to the lithosphere associated with the formation of collisional rifts. Second, the substantial lithospheric thinning required for adiabatic decompression melting is inconsistent with xenolith evidence for the continued survival of thick lithosphere beneath flood basalt domains. As an alternative to these models, we propose a new two-stage model that interprets cratonic flood basalts not as melting events, but as short-duration drainage events that tap previously created sublithospheric reservoirs of molten basalt formed over a longer time scale. Reservoir creation/existence (Stage I) requires long-term (e.g. ≫ 1 Ma) supersolidus conditions in the sublithospheric mantle that could be maintained by an elevated equilibrium geotherm (appropriate for the Archean), a slow thermal perturbation (e.g. thermal blanketing or large-scale mantle upwelling), or a subduction-related increase in volatile content. The drainage event (Stage II) occurs in response to an abrupt stress change in the lithosphere, which

  9. Floods and climate: emerging perspectives for flood risk assessment and management

    NASA Astrophysics Data System (ADS)

    Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L. M.; Brauer, A.; Cioffi, F.; Delgado, J. M.; Gocht, M.; Guzzetti, F.; Harrigan, S.; Hirschboeck, K.; Kilsby, C.; Kron, W.; Kwon, H.-H.; Lall, U.; Merz, R.; Nissen, K.; Salvatti, P.; Swierczynski, T.; Ulbrich, U.; Viglione, A.; Ward, P. J.; Weiler, M.; Wilhelm, B.; Nied, M.

    2014-02-01

    Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches have abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of local, catchment-specific characteristics, such as meteorology, topography and geology. These traditional views have been beneficial, but they have a narrow framing. In this paper we contrast traditional views with broader perspectives that are emerging from an improved understanding of the climatic context of floods. We conclude: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical approaches in flood estimation need to be complemented by the search for the causal mechanisms and dominant processes in the atmosphere, catchment and river system that leave their fingerprints on flood characteristic. (3) Natural climate variability leads to time-varying flood characteristics, and this variation may be partially quantifiable and predictable, with the perspective of a dynamic, climate informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability), and to better understand the interactions between society and floods. (5) Given the global scale and societal importance, we call for the organization of an international multidisciplinary collaboration and data sharing initiative to understand further the links between climate and flooding and to advance flood research.

  10. Floods and climate: emerging perspectives for flood risk assessment and management

    NASA Astrophysics Data System (ADS)

    Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L. M.; Brauer, A.; Cioffi, F.; Delgado, J. M.; Gocht, M.; Guzzetti, F.; Harrigan, S.; Hirschboeck, K.; Kilsby, C.; Kron, W.; Kwon, H.-H.; Lall, U.; Merz, R.; Nissen, K.; Salvatti, P.; Swierczynski, T.; Ulbrich, U.; Viglione, A.; Ward, P. J.; Weiler, M.; Wilhelm, B.; Nied, M.

    2014-07-01

    Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of local, catchment-specific characteristics, such as meteorology, topography and geology. These traditional views have been beneficial, but they have a narrow framing. In this paper we contrast traditional views with broader perspectives that are emerging from an improved understanding of the climatic context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical approaches in flood estimation need to be complemented by the search for the causal mechanisms and dominant processes in the atmosphere, catchment and river system that leave their fingerprints on flood characteristics. (3) Natural climate variability leads to time-varying flood characteristics, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand the interactions between society and floods. (5) Given the global scale and societal importance, we call for the organization of an international multidisciplinary collaboration and data-sharing initiative to further understand the links between climate and flooding and to advance flood research.

  11. Flood model for Brazil

    NASA Astrophysics Data System (ADS)

    Palán, Ladislav; Punčochář, Petr

    2017-04-01

    Looking on the impact of flooding from the World-wide perspective, in last 50 years flooding has caused over 460,000 fatalities and caused serious material damage. Combining economic loss from ten costliest flood events (from the same period) returns a loss (in the present value) exceeding 300bn USD. Locally, in Brazil, flood is the most damaging natural peril with alarming increase of events frequencies as 5 out of the 10 biggest flood losses ever recorded have occurred after 2009. The amount of economic and insured losses particularly caused by various flood types was the key driver of the local probabilistic flood model development. Considering the area of Brazil (being 5th biggest country in the World) and the scattered distribution of insured exposure, a domain covered by the model was limited to the entire state of Sao Paolo and 53 additional regions. The model quantifies losses on approx. 90 % of exposure (for regular property lines) of key insurers. Based on detailed exposure analysis, Impact Forecasting has developed this tool using long term local hydrological data series (Agencia Nacional de Aguas) from riverine gauge stations and digital elevation model (Instituto Brasileiro de Geografia e Estatística). To provide most accurate representation of local hydrological behaviour needed for the nature of probabilistic simulation, a hydrological data processing focused on frequency analyses of seasonal peak flows - done by fitting appropriate extreme value statistical distribution and stochastic event set generation consisting of synthetically derived flood events respecting realistic spatial and frequency patterns visible in entire period of hydrological observation. Data were tested for homogeneity, consistency and for any significant breakpoint occurrence in time series so the entire observation or only its subparts were used for further analysis. The realistic spatial patterns of stochastic events are reproduced through the innovative use of d-vine copula

  12. Drivers of flood damage on event level

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi

    2016-04-01

    Flood risk is dynamic and influenced by many processes related to hazard, exposure and vulnerability. Flood damage increased significantly over the past decades, however, resulting overall economic loss per event is an aggregated indicator and it is difficult to attribute causes to this increasing trend. Much has been learned about damaging processes during floods at the micro-scale, e.g. building level. However, little is known about the main factors determining the amount of flood damage on event level. Thus, we analyse and compare paired flood events, i.e. consecutive, similar damaging floods that occurred in the same area. In analogy to 'Paired catchment studies' - a well-established method in hydrology to understand how changes in land use affect streamflow - we will investigate how and why resulting flood damage in a region differed between the first and second consecutive flood events. One example are the 2002 and 2013 floods in the Elbe and Danube catchments in Germany. The 2002 flood caused the highest economic damage (EUR 11600 million) due to a natural hazard event in Germany. Damage was so high due to extreme flood hazard triggered by extreme precipitation and a high number of resulting dyke breaches. Additionally, exposure hotspots like the city of Dresden at the Elbe river as well as some smaller municipalities at the river Mulde (e.g. Grimma, Eilenburg, Bitterfeld, Dessau) were severely impacted. However, affected parties and authorities learned from the extreme flood in 2002, and many governmental flood risk programs and initiatives were launched. Considerable improvements since 2002 occurred on many levels that deal with flood risk reduction and disaster response, in particular in 1) increased flood prevention by improved spatial planning, 2) an increased number of property-level mitigation measures, 3) more effective early warning and improved coordination of disaster response and 4) a more targeted maintenance of flood defence systems and their

  13. Floods, flood control, and bottomland vegetation

    USGS Publications Warehouse

    Friedman, Jonathan M.; Auble, Gregor T.

    2000-01-01

    Bottomland plant communities are typically dominated by the effects of floods. Floods create the surfaces on which plants become established, transport seeds and nutrients, and remove establish plants. Floods provide a moisture subsidy that allows development of bottomland forests in arid regions and produce anoxic soils, which can control bottomland plant distribution in humid regions. Repeated flooding produces a mosaic of patches of different age, sediment texture, and inundation duration; this mosaic fosters high species richness.

  14. Miscibility of Quillaja Saponins with other Co-surfactants under Different pH Values.

    PubMed

    Reichert, Corina L; Salminen, Hanna; Leuenberger, Bruno H; Hinrichs, Jörg; Weiss, Jochen

    2015-11-01

    The miscibility behavior of mixed surfactant systems and the influence of extrinsic parameters are crucial for their application as emulsifiers. Therefore, the objective of this study was to evaluate the miscibility behavior of mixed systems composed of commercial Quillaja saponin and a co-surfactant, namely sodium caseinate, pea protein, rapeseed lecithin, or egg lecithin. These mixtures were evaluated macro- and microscopically at different concentration ratios (maximum concentration 5% w/v) at pH 3, 5, and 7 at 25 °C. The individual ingredients were also assessed for their charge properties and surface hydrophobicity. The results showed that Quillaja saponin-caseinate mixtures were miscible only at pH 7, and showed aggregation and precipitation at lower pH due to increasing electrostatic attraction forces. Rheological measurements showed that Quillaja saponin-pea protein mixtures formed gelled structures at all tested pH values mainly via association of hydrophobic patches. Quillaja saponins mixed with rapeseed lecithin were miscible at all tested pH values due to electrostatic repulsion. Quillaja saponin-egg lecithin mixtures aggregated independent of pH and concentration ratio. The microscopic analysis revealed that the lower the pH and the higher the Quillaja saponin ratio, the denser were the formed Quillaja saponin-egg lecithin aggregates. The results are summarized in ternary phase diagrams that provide a useful tool in selecting a surfactant system for food applications. © 2015 Institute of Food Technologists®

  15. Galerkin Methods for Miscible Displacement Problems with Point Sources and Sinks - Unit Mobility Ratio Case,

    DTIC Science & Technology

    In most cases of reservoir simulation , the size of the well-bore is extremely small in comparison with the size of the reservoir. For this reason...the invading and displaced fluids are equal. Keywords include: Galerkin methods, time-stepping procedures, reservoir simulation . treatment of singularities, asymptotic analysis, miscible displacement.

  16. MISCIBILITY, SOLUBILITY, VISCOSITY, AND DENSITY MEASUREMENTS FOR R-236FA WITH POTENTIAL LUBRICANTS

    EPA Science Inventory

    The report gives results of miscibility, solubility, viscosity, and density measurements for refrigerant R-236fa and two potential lubricants . (The data are needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The tested oi...

  17. MISCIBILITY, SOLUBILITY, VISCOSITY, AND DENSITY MEASUREMENTS FOR R-236EA WITH FOUR DIFFERENT EXXON LUBRICANTS

    EPA Science Inventory

    The report discusses miscibility, solubility, viscosity, and density data for the refrigerant hydrofluorocarbon (HFC)-236ea (or R-236ea) and four lubricants supplied by Exxon Corporation. Such data are needed to determine the suitability of refrigerant/lubricant combinations for ...

  18. MISCIBILITY, SOLUBILITY, VISCOSITY, AND DENSITY MEASUREMENTS FOR R-236FA WITH POTENTIAL LUBRICANTS

    EPA Science Inventory

    The report gives results of miscibility, solubility, viscosity, and density measurements for refrigerant R-236fa and two potential lubricants . (The data are needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The tested oi...

  19. MISCIBILITY, SOLUBILITY, VISCOSITY, AND DENSITY MEASUREMENTS FOR R-236EA WITH FOUR DIFFERENT EXXON LUBRICANTS

    EPA Science Inventory

    The report discusses miscibility, solubility, viscosity, and density data for the refrigerant hydrofluorocarbon (HFC)-236ea (or R-236ea) and four lubricants supplied by Exxon Corporation. Such data are needed to determine the suitability of refrigerant/lubricant combinations for ...

  20. Implementing the EU Floods Directive (2007/60/EC) in Austria: Flood Risk Management Plans

    NASA Astrophysics Data System (ADS)

    Neuhold, Clemens

    2013-04-01

    he Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks (EFD) aims at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with floods in the Community. This task is to be achieved based on three process steps (1) preliminary flood risk assessment (finalised by the end of 2011), (2) flood hazard maps and flood risk maps (due 2013) and (3) flood risk management plans (due 2015). Currently, an interdisciplinary national working group is defining the methodological framework for flood risk management plans in Austria supported by a constant exchange with international bodies and experts. Referring to the EFD the components of the flood risk management plan are (excerpt): 1. conclusions of the preliminary flood risk assessment 2. flood hazard maps and flood risk maps and the conclusions that can be drawn from those maps 3. a description of the appropriate objectives of flood risk management 4. a summary of measures and their prioritisation aiming to achieve the appropriate objectives of flood risk management The poster refers to some of the major challenges in this process, such as the legal provisions, coordination of administrative units, definition of public relations, etc. The implementation of the EFD requires the harmonisation of legal instruments of various disciplines (e.g. water management, spatial planning, civil protection) enabling a coordinated - and ideally binding - practice of flood risk management. This process is highly influenced by the administrative organisation in Austria - federal, provincial and municipality level. The Austrian approach meets this organisational framework by structuring the development of the flood risk management plan into 3 time-steps: (a) federal blueprint, (b) provincial editing and (c) federal finishing as well as reporting to the European Commission. Each time

  1. Spatial hydrological flow processes, water quality, sediment and vegetation community distributions in a natural floodplain fen - implication for the Flood Pulse Concept

    NASA Astrophysics Data System (ADS)

    Keizer, Floris; Schot, Paul; Wassen, Martin; Kardel, Ignacy; Okruszko, Tomasz

    2017-04-01

    We studied spatial patterns in inundation water quality, sediment and vegetation distribution in a floodplain fen in Poland to map interacting peatland hydrological processes. Using PCA and K-means cluster analysis, we identified four water types, related to river water inundation, discharge of clean and polluted groundwater, and precipitation and snowmelt dilution. Spatially, these hydrochemical water types are related to known water sources in the floodplain and occupy distinctive zones. River water is found along the river, clean and polluted groundwater at the valley margins and groundwater diluted with precipitation and snowmelt water in the central part of the floodplain. This implies that, despite the floodplain being completely inundated, nutrient input from river flooding occurs only in a relatively narrow zone next to the river. Our findings question the relevance of the edge of inundation, as presented in the Flood Pulse Concept, as delineating the zone of input and turnover of nutrients. Secondly, we studied rich-fen and freshwater vegetation community distributions in relation to the presented inundation water quality types. We successfully determined inundation water quality preference for 14 out of 17 studied rich-fen and freshwater communities in the floodplain. Spatial patterns in preference show vegetation with attributed river water preference to occur close to the river channel, with increasing distance to the river followed by communities with no preference, diluted groundwater preference in the central part, and clean and polluted groundwater preference at the valley margins. In inundation water, nutrients are known to be transported mainly as attached to sediment, besides in dissolved state. This means that in the zone where sediment deposition occurs, nutrient input can be a relevant contribution to the nutrient input of the floodplain. We found a significant decrease in sediment-attached nutrient deposition with distance from the river

  2. Constraints on the Cretaceous thermal event in the Transantarctic Mountains from alteration processes in Ferrar flood basalts

    NASA Astrophysics Data System (ADS)

    Molzahn, M.; Wörner, G.; Henjes-Kunst, F.; Rocholl, A.

    1999-12-01

    K-Ar and 40Ar/ 39Ar incremental-heating analyses on apophyllite formed during hydrothermal alteration of volcanic rocks from the Ferrar Supergroup in North Victoria Land, Antarctica, provide strong evidence for hydrothermal events during mid-Cretaceous time. A last event has been dated at 96.7±0.6 Ma. Variable older ages between 112 and 125 Ma are interpreted as mixed ages of hydrothermal events or may be caused by disturbances of the Ar-Ar system. The Rb-Sr isotope system of the apophyllites is not applicable to dating because a large portion of the Sr is radiogenic and because of Rb-mobility in the crystal structure. Secondary mineralogy suggests a temperature for alteration between 300° and 400°C. Assuming a normal thermal gradient, this temperature implies a burial depth of about 10 km. However, there is no evidence for such a burial of the Ferrar flood basalts. Therefore, an elevated thermal gradient in mid-Cretaceous time in combination with circulating fluids is proposed for the origin of the alteration phenomena.

  3. Scales of Natural Flood Management

    NASA Astrophysics Data System (ADS)

    Nicholson, Alex; Quinn, Paul; Owen, Gareth; Hetherington, David; Piedra Lara, Miguel; O'Donnell, Greg

    2016-04-01

    The scientific field of Natural flood Management (NFM) is receiving much attention and is now widely seen as a valid solution to sustainably manage flood risk whilst offering significant multiple benefits. However, few examples exist looking at NFM on a large scale (>10km2). Well-implemented NFM has the effect of restoring more natural catchment hydrological and sedimentological processes, which in turn can have significant flood risk and WFD benefits for catchment waterbodies. These catchment scale improvements in-turn allow more 'natural' processes to be returned to rivers and streams, creating a more resilient system. Although certain NFM interventions may appear distant and disconnected from main stem waterbodies, they will undoubtedly be contributing to WFD at the catchment waterbody scale. This paper offers examples of NFM, and explains how they can be maximised through practical design across many scales (from feature up to the whole catchment). New tools to assist in the selection of measures and their location, and to appreciate firstly, the flooding benefit at the local catchment scale and then show a Flood Impact Model that can best reflect the impacts of local changes further downstream. The tools will be discussed in the context of our most recent experiences on NFM projects including river catchments in the north east of England and in Scotland. This work has encouraged a more integrated approach to flood management planning that can use both traditional and novel NFM strategies in an effective and convincing way.

  4. Physical Processes Associated with Heavy Flooding Rainfall in Nashville, Tennessee, and Vicinity during 1-2 May 2010: The Role of an Atmospheric River and Mesoscale Convective Systems

    NASA Astrophysics Data System (ADS)

    Moore, B. J.; Neiman, P. J.; Ralph, F. M.; Barthold, F. E.

    2011-12-01

    A multi-scale analysis is conducted in order to examine the physical processes that resulted in prolonged heavy rainfall and devastating flash flooding across western and central Tennessee and Kentucky on 1-2 May 2010, during which Nashville, Tennessee, received 344.7 mm of rainfall and incurred 11 flood-related fatalities. On the synoptic scale, heavy rainfall was supported by a persistent corridor of strong water vapor transport rooted in the Tropics that was manifested as an atmospheric river (AR). This AR developed as water vapor was extracted from the eastern tropical Pacific and the Caribbean Sea and transported into the central Mississippi Valley by a strong southerly low-level jet (LLJ) positioned between a persistent lee trough along the eastern Mexico coast and a broad, stationary subtropical ridge positioned over the southeastern U.S. and the subtropical Atlantic. The AR, associated with substantial water vapor content and moderate convective available potential energy, supported the successive development of two quasi-stationary mesoscale convective systems (MCSs) on 1 May and 2 May, respectively. These MCSs were both linearly organized and exhibited back building and echo training, processes which afforded the repeated movement of convective cells over the same area of western and central Tennessee and Kentucky, resulting in a narrow band of rainfall totals of 200-400 mm. Mesoscale analyses reveal that the MCSs developed on the warm side of a slow-moving cold front and that the interaction between the southerly LLJ and convectively generated surface outflow boundaries was fundamental for repeatedly generating convection.

  5. What are the hydro-meteorological controls on flood characteristics?

    NASA Astrophysics Data System (ADS)

    Nied, Manuela; Schröter, Kai; Lüdtke, Stefan; Nguyen, Viet Dung; Merz, Bruno

    2017-02-01

    Flood events can be expressed by a variety of characteristics such as flood magnitude and extent, event duration or incurred loss. Flood estimation and management may benefit from understanding how the different flood characteristics relate to the hydrological catchment conditions preceding the event and to the meteorological conditions throughout the event. In this study, we therefore propose a methodology to investigate the hydro-meteorological controls on different flood characteristics, based on the simulation of the complete flood risk chain from the flood triggering precipitation event, through runoff generation in the catchment, flood routing and possible inundation in the river system and floodplains to flood loss. Conditional cumulative distribution functions and regression tree analysis delineate the seasonal varying flood processes and indicate that the effect of the hydrological pre-conditions, i.e. soil moisture patterns, and of the meteorological conditions, i.e. weather patterns, depends on the considered flood characteristic. The methodology is exemplified for the Elbe catchment. In this catchment, the length of the build-up period, the event duration and the number of gauges undergoing at least a 10-year flood are governed by weather patterns. The affected length and the number of gauges undergoing at least a 2-year flood are however governed by soil moisture patterns. In case of flood severity and loss, the controlling factor is less pronounced. Severity is slightly governed by soil moisture patterns whereas loss is slightly governed by weather patterns. The study highlights that flood magnitude and extent arise from different flood generation processes and concludes that soil moisture patterns as well as weather patterns are not only beneficial to inform on possible flood occurrence but also on the involved flood processes and resulting flood characteristics.

  6. Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nanofibers of GT/PCL.

    PubMed

    Feng, Bei; Tu, Hongbin; Yuan, Huihua; Peng, Hongju; Zhang, Yanzhong

    2012-12-10

    In tissue engineering research, there has recently been considerable interest in using electrospun biomimetic nanofibers of hybrids, in particular, from natural and synthetic polymers for engineering different tissues. However, phase separation between a pair of much dissimilar polymers might give rise to detrimental influences on both the electrospinning process and the resultant fiber performance. A representative natural-synthetic hybrid of gelatin (GT) and polycaprolactone (PCL) (50:50) was employed to study the phase separation behavior in electrospinning of the GT/PCL composite fibers. Using trifluoroethanol (TFE) as the cosolvent of the two polymers, observation of visible sedimentation and flocculation from dynamic light scattering analysis of the GT/PCL/TFE mixture both showed that phase separation does occur in just a few hours. This consequently led to gradually deteriorated fiber morphologies (e.g., splash, fiber bonding, and varied fiber size) over time during electrospinning GT/PCL. Quantitative analysis also indicated that the ratio of GT to PCL in the resultant GT/PCL fibers was altered over time. To address the phase separation related issues, a tiny amount (<0.3%) of acetic acid was introduced to improve the miscibility, which enabled the originally turbid solution to become clear immediately and to be single-phase stable for more than 1 week. Nanofibers thus obtained also appeared to be thinner, smooth, and homogeneous with enhanced performance in wettability and mechanical properties. Given the versatility and widely uses of the electrospun GT/PCL and other similar natural-synthetic hybrid systems in constructing tissue-engineered scaffolds, this work may offer a facile and effective approach to achieve finer and compositionally homogeneous hybrid nanofibers for effective applications.

  7. The Impact of Fullerene Structure on its Miscibility with P3HT and its Correlation of Performance in Organic Photovoltaics.

    SciTech Connect

    Chen, Huipeng; Hsiao, Yu-Che; Hu, Bin; Dadmun, Mark D

    2014-01-01

    Neutron reflectivity experiments are utilized to obtain the miscibility limit of four different fullerenes, bis-PCBM, ICBA, thio-PCBM, and PC70BM, in poly(3-hexylthiophene) (P3HT). The intermixing of P3HT and fullerene bilayers is monitored by neutron reflectivity before and after thermal annealing, providing quantification of the miscibility and interdiffusion of the fullerene within P3HT. These results indicate that the miscibility limit of these fullerenes in P3HT ranges from 11% to 26%, where the bis-adduct fullerenes exhibit lower miscibility in P3HT, which is also verified by small angle neutron scatting (SANS). The in-plane morphology of the P3HT:fullerene mixtures was also examined by SANS, which shows a decrease in domain size and an increase in the specific interfacial area between the fullerene and the polymer with the bis-fullerenes. Correlation of miscibility and morphology to device performance indicates that polymer/fullerene miscibility is crucial to rationally optimize the design of fullerenes for use in organic photovoltaics. Bis-PCBM has a higher open circuit voltage (Voc) than PC60BM with P3HT; however, device performance of bis-PCBM based devices is lower than that of PC60BM based devices. This decrease in performance is attributed to the lower miscibility of bis-PCBM in P3HT, which decreases the probability of exciton dissociation and enhances the recombination of free charge carriers in the miscible region. Moreover, the minimum distance between fullerenes in the miscible region to facilitate intermolecular transport is identified as 11 .

  8. The Impact of Fullerene Structure on Its Miscibility with P3HT and Its Correlation of Performance in Organic Photovoltaics

    SciTech Connect

    Chen, Huipeng; Peet, Jeff; Hsiao, Yu-Che; Hu, Bin; Dadmun, Mark D

    2014-01-01

    Neutron reflectivity experiments are utilized to obtain the miscibility limit of four different fullerenes, bis-PCBM, ICBA, thio-PCBM, and PC70BM, in poly(3-hexylthiophene) (P3HT). The intermixing of P3HT and fullerene bilayers is monitored by neutron reflectivity before and after thermal annealing, providing quantification of the miscibility and interdiffusion of the fullerene within P3HT. These results indicate that the miscibility limit of these fullerenes in P3HT ranges from 11% to 26%, where the bis-adduct fullerenes exhibit lower miscibility in P3HT, which is also verified by small angle neutron scatting (SANS). The in-plane morphology of the P3HT:fullerene mixtures was also examined by SANS, which shows a decrease in domain size and an increase in the specific interfacial area between the fullerene and the polymer with the bis-fullerenes. Correlation of miscibility and morphology to device performance indicates that polymer/ fullerene miscibility is crucial to rationally optimize the design of fullerenes for use in organic photovoltaics. Bis-PCBM has a higher open circuit voltage (Voc) than PC60BM with P3HT; however, device performance of bis-PCBM based devices is lower than that of PC60BM based devices. This decrease in performance is attributed to the lower miscibility of bis-PCBM in P3HT, which decreases the probability of exciton dissociation and enhances the recombination of free charge carriers in the miscible region. Moreover, the minimum distance between fullerenes in the miscible region to facilitate intermolecular transport is identified as 11 .

  9. Flooding and Schools

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  10. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir.

    PubMed

    Rabiei, Arash; Sharifinik, Milad; Niazi, Ali; Hashemi, Abdolnabi; Ayatollahi, Shahab

    2013-07-01

    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency.

  11. Designing a Flood-Risk Education Program in the Netherlands

    ERIC Educational Resources Information Center

    Bosschaart, Adwin; van der Schee, Joop; Kuiper, Wilmad

    2016-01-01

    This study focused on designing a flood-risk education program to enhance 15-year-old students' flood-risk perception. In the flood-risk education program, learning processes were modeled in such a way that the arousal of moderate levels of fear should prompt experiential and analytical information processing. In this way, understanding of flood…

  12. Designing a Flood-Risk Education Program in the Netherlands

    ERIC Educational Resources Information Center

    Bosschaart, Adwin; van der Schee, Joop; Kuiper, Wilmad

    2016-01-01

    This study focused on designing a flood-risk education program to enhance 15-year-old students' flood-risk perception. In the flood-risk education program, learning processes were modeled in such a way that the arousal of moderate levels of fear should prompt experiential and analytical information processing. In this way, understanding of flood…

  13. Visual Sensing for Urban Flood Monitoring

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201

  14. Cyber surveillance for flood disasters.

    PubMed

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-22

    Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective.

  15. Cyber Surveillance for Flood Disasters

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective. PMID:25621609

  16. Flood Resilient Systems and their Application for Flood Resilient Planning

    NASA Astrophysics Data System (ADS)

    Manojlovic, N.; Gabalda, V.; Antanaskovic, D.; Gershovich, I.; Pasche, E.

    2012-04-01

    Following the paradigm shift in flood management from traditional to more integrated approaches, and considering the uncertainties of future development due to drivers such as climate change, one of the main emerging tasks of flood managers becomes the development of (flood) resilient cities. It can be achieved by application of non-structural - flood resilience measures, summarised in the 4As: assistance, alleviation, awareness and avoidance (FIAC, 2007). As a part of this strategy, the key aspect of development of resilient cities - resilient built environment can be reached by efficient application of Flood Resilience Technology (FReT) and its meaningful combination into flood resilient systems (FRS). FRS are given as [an interconnecting network of FReT which facilitates resilience (including both restorative and adaptive capacity) to flooding, addressing physical and social systems and considering different flood typologies] (SMARTeST, http://www.floodresilience.eu/). Applying the system approach (e.g. Zevenbergen, 2008), FRS can be developed at different scales from the building to the city level. Still, a matter of research is a method to define and systematise different FRS crossing those scales. Further, the decision on which resilient system is to be applied for the given conditions and given scale is a complex task, calling for utilisation of decision support tools. This process of decision-making should follow the steps of flood risk assessment (1) and development of a flood resilience plan (2) (Manojlovic et al, 2009). The key problem in (2) is how to match the input parameters that describe physical&social system and flood typology to the appropriate flood resilient system. Additionally, an open issue is how to integrate the advances in FReT and findings on its efficiency into decision support tools. This paper presents a way to define, systematise and make decisions on FRS at different scales of an urban system developed within the 7th FP Project

  17. Large-scale Flood Monitoring: Where is the most exposed to large flood in Asia?

    NASA Astrophysics Data System (ADS)

    Kwak, Y.; PARK, J.; Iwami, Y.

    2015-12-01

    Flood mapping and monitoring (particularly flood areas, locations, and durations) are an imperative process and are the fundamental part of risk management as well as emergency response. We have found that Bangladesh is the highest risk country among 14 Asian developing countries from flood risk assessment under climate change scenarios because of its largest vulnerable population to cyclic 50-year flood events. This study shows a methodological possibility to be used as a standard approach for continental-scale flood hazard and risk assessment with the use of multi-temporal Moderate Resolution Imaging Spectrometer (MODIS), a big contributor to progress in real-time hazard mapping. The purpose of this study is to detect flood inundation areas considering the flood propagation even with limitations of optical and multispectral images. We improved a water detection algorithm to achieve a better discrimination capacity to discern flood areas by using amodified land surface water index (MLSWI), and estimated flood extent areas, coupled with the water level and an optimal threshold ofMLSWI based on the spectral characteristics. In Bangladesh, the FFWC warns people that floods occur when the water level exceeds the danger level. We clearly confirmed that the flood propagation was in good agreement with the timing of the water level exceeding the water danger level in the case of the cyclic 10-year flood event. The flooding was also found to be proportional to theflood extent (areas) and duration. The results showed the novel approach's capability of providing instant,comprehensive nationwide flood mapping over the entire Bangladesh by using multi-temporal MODIS data. The ambiguities of rapid flood mapping from satellite-derived products were verified in the Brahmaputra River by using high-resolution images (ALOS AVNIR2, spatial resolution 10m), ground truth and field survey data.

  18. Radar Based Precipitation Forecasting for Flood Warning

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2007-12-01

    Precipitation is one of the most important inputs for flood warning. The accuracy of the measured precipitation controls the effectiveness of flood warning, while the forecasted precipitation increases the lead time of flood warning, this is vital for catastrophically flood warning as it provides time for flood management, such as the emergency evacuation of the people and properties within the flood prone area, so to avoid flood damages. This paper presents an algorithm for forecasting precipitation based on Chinese next generation weather radar- CINRAD for catastrophically flood warning. This algorithm includes radar data quality control, precipitation estimation and forecasting, result correction. The radar data, received at every 5-6 minutes, is quality controlled first to delete the data noises, the pre-processed radar data then is used to estimate the precipitation, which will be employed to calibrate the radar equation parameters, then the pre-processed radar data and calibrated radar equation parameters will be input to the precipitation procedure to forecast precipitation. A software based on the above algorithm is developed that can be used to forecast precipitation on real ¡§Ctime. The radar in Guangzhou city, the biggest city in southern China is studied and the precipitation in 2005 and 2006 in Liuxihe River Basin in southern China were forecasted to validate the effectiveness, the results show this algorithm is encouraging and will be put into real-time operation in the flood warning of Liuxihe River in 2007.

  19. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir

    SciTech Connect

    1998-06-01

    The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration and Production Inc. and the US Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg and San Andres formations, a light oil, shallow shelf carbonate reservoir that exists throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. The goals of the project are the development of guidelines for cost-effective selection of candidate reservoirs and wells, along with estimating recovery potential. This project has two defined budget periods. The first budget period primarily involves tasks associated with reservoir analysis and characterization, characterizing existing producibility problems, and reservoir simulation of the proposed technology. The final budget period covers the actual field demonstration of the proposed technology. Technology transfer spans the entire course of the project. This report covers the concluding tasks performed under the second budget period.

  20. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    P. Somasundaran

    2004-11-20

    The aim of the project is to develop a knowledge base to help the design of enhanced processes for mobilizing and extracting untrapped oil. We emphasize evaluation of novel surfactant mixtures and obtaining optimum combinations of the surfactants for efficient chemical flooding EOR processes. In this regard, an understanding of the aggregate shape, size and structure is crucial since these properties govern the crude oil removal efficiency. During the three-year period, the adsorption and aggregation behavior of sugar-based surfactants and their mixtures with other types of surfactants have been studied. Sugar-based surfactants are made from renewable resources, nontoxic and biodegradable. They are miscible with water and oil. These environmentally benign surfactants feature high surface activity, good salinity, calcium and temperature tolerance, and unique adsorption behavior. They possess the characteristics required for oil flooding surfactants and have the potential for replacing currently used surfactants in oil recovery. A novel analytical ultracentrifugation technique has been successfully employed for the first time, to characterize the aggregate species present in mixed micellar solution due to its powerful ability to separate particles based on their size and shape and monitor them simultaneously. Analytical ultracentrifugation offers an unprecedented opportunity to obtain important information on mixed micelles, structure-performance relationship for different surfactant aggregates in solution and their role in interfacial processes. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. Four softwares: OptimaTM XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity

  1. Modeling of coalescence, agglomeration, and phase segregation in microgravity processing of bimetallic composite materials

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    1992-01-01

    The overall objective of this research is to develop models to predict drop-size-distribution evolutions due to droplet collisions and coalescence during processing within the miscibility gap of bimetallic liquid-phase-miscibility-gap materials. The individual and collective action of gravitational and nongravitational mechanisms on the relative motion and coalescence of drops are considered.

  2. Miscibility gap in the U-Nd-O phase diagram: a new approach of nuclear oxides in the environment?

    PubMed

    Desgranges, L; Pontillon, Y; Matheron, P; Marcet, M; Simon, P; Guimbretière, G; Porcher, F

    2012-09-03

    To some extent, rare-earth-doped UO(2) is representative of an irradiated nuclear fuel. The two phases we observed previously in neodymium-doped UO(2) are now interpreted as the existence of a miscibility gap in the U-Nd-O phase diagram using new results obtained with Raman spectroscopy. Extrapolating the miscibility gap in the U-Nd-O phase diagram to irradiated UO(2) opens the path to a new understanding of nuclear oxides in the environment.

  3. Flood type specific construction of synthetic design hydrographs

    NASA Astrophysics Data System (ADS)

    Brunner, Manuela I.; Viviroli, Daniel; Sikorska, Anna E.; Vannier, Olivier; Favre, Anne-Catherine; Seibert, Jan

    2017-02-01

    Accurate estimates of flood peaks, corresponding volumes, and hydrographs are required to design safe and cost-effective hydraulic structures. In this paper, we propose a statistical approach for the estimation of the design variables peak and volume by constructing synthetic design hydrographs for different flood types such as flash-floods, short-rain floods, long-rain floods, and rain-on-snow floods. Our approach relies on the fitting of probability density functions to observed flood hydrographs of a certain flood type and accounts for the dependence between peak discharge and flood volume. It makes use of the statistical information contained in the data and retains the process information of the flood type. The method was tested based on data from 39 mesoscale catchments in Switzerland and provides catchment specific and flood type specific synthetic design hydrographs for all of these catchments. We demonstrate that flood type specific synthetic design hydrographs are meaningful in flood-risk management when combined with knowledge on the seasonality and the frequency of different flood types.

  4. Fluid-fluid interaction during miscible and immiscible displacement under ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Hamida, T.; Babadagli, T.

    2007-12-01

    This paper aims at identifying and analyzing the influence of high-frequency, high-intensity ultrasonic radiation at the interface between immiscible (different types of oils and aqueous solutions) and miscible (different types of oil and solvent) fluids. An extensive set of Hele-Shaw type experiments were performed for several viscosity ratios, and interfacial tension. Fractal analysis techniques were applied to quantify the degree of fingering and branching. This provided a rough assessment of the degree of perturbation generated at the interface when the capillary forces along with the viscous forces are effective. Miscible Hele-Shaw experiments were also presented to isolate the effect of viscous forces. We found that ultrasound acts to stabilize the interfacial front, and that such effect is most pronounced at low viscosity ratios.

  5. Morphological-evolution pathway during phase separation in polymer solutions with highly asymmetrical miscibility gap

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Yang, Tao; Yang, Sen; Wang, Yunzhi

    2017-09-01

    Microstructural evolution during thermally induced phase separation in a polymer solution with a highly asymmetrical miscibility gap is analyzed using Flory-Huggins thermodynamics and nonlinear Cahn-Hilliard kinetics. Computer simulation results demonstrate that, in contrast to systems with symmetric miscibility gaps, interesting morphological-evolution pathways (MEPs) including cluster-to-percolation and percolation-to-cluster transitions are identified. These MEPs are rationalized according to asynchronous evolution of the two product phases. For a highly asymmetric polymer system, the initial solution composition is also found to play a critical role in determining the MEPs. According to the simulation results a map of MEPs in terms of initial solution composition and aging time of phase separation is established to guide future microstructural design in asymmetrical polymer solutions.

  6. Miscibility and Thermophysical Properties of Blend of Poly methyl methacrylate with Polyvinylchloride

    NASA Astrophysics Data System (ADS)

    Dixit, Manasvi; Mathur, Vishal; Baboo, Mahesh; Sharma, Kananbala; Saxena, N. S.

    2010-06-01

    The present paper reports the investigations on miscibility and thermophysical properties of blend of Poly methyl methacrylate with Polyvinylchloride, prepared by solution casting method. The miscibility of the samples is examined by dynamic mechanical analyzer (DMA) and the thermophysical properties (thermal conductivity (λ) and thermal diffusivity (χ)) have been measured using the transient plane source (TPS) technique from room temperature to 100 °C. The results of thermal transport properties of PMMA/PVC blend show an increasing trend of λ and χ upto Tg, beyond which they show a decreasing trend. The variation of thermal conductivity and diffusivity of PMMA, PVC and PMMA/PVC blend with temperature is explained on the basis of structural changes of the sample and mean free path of the phonons.

  7. Analytical and variational numerical methods for unstable miscible displacement flows in porous media

    NASA Astrophysics Data System (ADS)

    Scovazzi, Guglielmo; Wheeler, Mary F.; Mikelić, Andro; Lee, Sanghyun

    2017-04-01

    The miscible displacement of one fluid by another in a porous medium has received considerable attention in subsurface, environmental and petroleum engineering applications. When a fluid of higher mobility displaces another of lower mobility, unstable patterns - referred to as viscous fingering - may arise. Their physical and mathematical study has been the object of numerous investigations over the past century. The objective of this paper is to present a review of these contributions with particular emphasis on variational methods. These algorithms are tailored to real field applications thanks to their advanced features: handling of general complex geometries, robustness in the presence of rough tensor coefficients, low sensitivity to mesh orientation in advection dominated scenarios, and provable convergence with fully unstructured grids. This paper is dedicated to the memory of Dr. Jim Douglas Jr., for his seminal contributions to miscible displacement and variational numerical methods.

  8. Comparison of two- and three-dimensional simulations of miscible Rayleigh-Taylor instability

    SciTech Connect

    Cabot, W

    2006-02-23

    A comparison of two-dimensional and three-dimensional high-resolution numerical large-eddy simulations of planar, miscible Rayleigh-Taylor instability flows are presented. The resolution of the three-dimensional simulation is sufficient to attain a fully turbulent state. A number of different statistics from the mixing region (e.g., growth rates, PDFs, mixedness measures, and spectra) are used to demonstrate that two-dimensional flow simulations differ substantially from the three-dimensional one. It is found that the two-dimensional flow grows more quickly than its three-dimensional counterpart at late times, develops larger structures, and is much less well mixed. These findings are consistent with the concept of inverse cascade in two-dimensional flow, as well as the influence of a reduced effective Atwood number on miscible flow.

  9. Effect of Chain Structure on the Miscibility of Cellulose Acetate Blends. A Small-Angle Neutron Scattering Study

    SciTech Connect

    Dyer, Caleb W.; Jiang, Zhe; Bozell, Joseph J.; Rials, Timothy G.; Heller, William T.; Dadmun, Mark D.

    2013-02-12

    The miscibility of cellulose ester blends with varying degree of substitution (DS) of acetates along the chain backbone has been investigated using small-angle neutron scattering. The difference in degree of substitution (ΔDS) between the two components in the blend was systematically varied from 0.06 to 0.63 where each blend was found to be a partially miscible, two-phase system. Miscibility between the two components initially decreases as ΔDS of the blends increases. The Flory interaction parameter, χ, concurrently increases with increasing ΔDS as a result of diminishing van der Waals forces between components. The cellulose acetates with lower degree of substitution, which contain more hydroxyl substituents, however, demonstrate greater miscibility even at higher ΔDS. This is interpreted to be the result of favorable hydrogen bonding between blend components that are possible in the presence of more hydroxyl groups. FT-IR data support this interpretation, indicating an increase in hydrogen bonding in a blend having a lower DS component. These results indicate that while an increase in structural differences between cellulose acetate blend components limits miscibility, the presence of hydroxyl groups on the chain promotes mixing. This competition accentuates the significant impact specific interactions have on blend miscibility for these copolymers.

  10. Special challenges in assessing and mapping flood risk following a flood-debris flow event

    NASA Astrophysics Data System (ADS)

    Aggett, Graeme

    2016-04-01

    Severe rainfall along the Colorado front range in 2013 delivered flood and debris flows to many mountain communities, causing millions of dollars of damage as well as taking several lives. Phase changes in clear-hyperconcentrated-debris flows during the event created challenges in recreating the hydrology post-flood and in estimating and mapping new regulatory floodplains to support ongoing flood recovery efforts. This presentation highlights approaches used to overcome these challenges and to adequately represent the different processes and their uncertainties in updated flood hazard and risk assessments. It also considers the need to educate and involve the community in this process.

  11. Ceramide acyl chain length markedly influences miscibility with palmitoyl sphingomyelin in bilayer membranes.

    PubMed

    Westerlund, Bodil; Grandell, Pia-Maria; Isaksson, Y Jenny E; Slotte, J Peter

    2010-07-01

    Ceramides are precursors of major sphingolipids and can be important cellular effectors. The biological effects of ceramides have been suggested to stem from their biophysical effects on membrane structure affecting the lateral and transbilayer organization of other membrane components. In this study we investigated the effect of acyl chain composition in ceramides (C4-C24:1) on their miscibility with N-palmitoyl-sphingomyelin (PSM) using differential scanning calorimetry. We found that short-chain (C4 and C8) ceramides induced phase separation and lowered the T (m) and enthalpy of the PSM endotherm. We conclude that short-chain ceramides were more miscible in the fluid-phase than in the gel-phase PSM bilayers. Long-chain ceramides induced apparent heterogeneity in the bilayers. The main PSM endotherm decreased in cooperativity and enthalpy with increasing ceramide concentration. New ceramide-enriched components could be seen in the thermograms at all ceramide concentrations above X (Cer) = 0.05. These broad components had higher T (m) values than pure PSM. C24:1 ceramide exhibited complex behavior in the PSM bilayers. The miscibility of C24:1 ceramide with PSM at low (X (Cer) = 0.05-0.10) concentrations was exceptionally good according to the cooperativity of the transition. At higher concentrations, multiple components were detected, which might have arisen from interdigitated gel-phases formed by this very asymmetric ceramide. The results of this study indicate that short-chain and long-chain ceramides have very different effects on the sphingomyelin bilayers. There also seems to be a correlation between their miscibility in binary systems and the effect of ceramides of different hydrophobic length on sphingomyelin-rich domains in multicomponent membranes.

  12. Gravity waves at the interface between miscible fluids and at the top of a settling suspension.

    PubMed

    Gauthier, Georges; Martin, Jérôme; Salin, Dominique

    2005-05-27

    Gravity waves were generated at the interface between miscible fluids, or at the top of a settling suspension or a fluidized bed. For these three systems the dispersion relation was measured and compared to the theory and calculated between two buoyant viscous fluids without surface tension. The experimental findings are found to be in good agreement with theory when effective viscosity and volume-averaged density values are used.

  13. Effect of TNT Miscible Additives on the Mechanical Behavior and Shock Sensitivity of Composition B

    DTIC Science & Technology

    1989-01-01

    observed by Machacek. when chlorowaxes were added to Composition B (ref 3). Chlorowaxes are a family of compounds, among others, that are miscible with...13o grerated ad where the vro<IuCt is healt : EYE Face ahield and goqglen Or c.’icl ogles jg"ýOkuid be We I wr-’etrew mist. spray 0-- tisu1 Mlay Le

  14. Flash flood awareness in southwest Virginia.

    PubMed

    Knocke, Ethan T; Kolivras, Korine N

    2007-02-01

    Flash floods are one of the most dangerous weather-related natural disasters in the world. These events develop less than six hours after a rainfall event and create hazardous situations for people and extensive damage to property. It is critical for flash flood conditions to be warned of in a timely manner to minimize impacts. There is currently a knowledge gap between flood experts and the general public about the level of perceived risk that the latter has toward the powerful flood waters and how events should be warned of, which affects the communication capabilities and efficiency of the warning process. Prior research has addressed risk perception of natural disasters, but there is little emphasis on flash floods within flood-prone regions of the United States. This research utilizes an online survey of 300 respondents to determine the current state of flash flood awareness and preparation in southwest Virginia. Analysis of trends involved the use of chi-squared tests (chi2) and simple frequency and percentage calculations. Results reveal that a knowledge base of flash floods does exist, but is not advanced enough for proper awareness. Young adults have a lower understanding and are not as concerned about flood impacts. Increased exposure and perceived risk play a key role in shaping the way a person approaches flash floods. People do monitor flood events, but they are unaware of essential guidance and communication mechanisms. Finally, results suggest that the current method of warning about flash floods is not provided at an appropriate level of detail for effective communication.

  15. Reconstruction of the 1945 Wieringermeer Flood

    NASA Astrophysics Data System (ADS)

    Hoes, O. A. C.; Hut, R. W.; van de Giesen, N. C.; Boomgaard, M.

    2013-03-01

    The present state-of-the-art in flood risk assessment focuses on breach models, flood propagation models, and economic modelling of flood damage. However, models need to be validated with real data to avoid erroneous conclusions. Such reference data can either be historic data, or can be obtained from controlled experiments. The inundation of the Wieringermeer polder in the Netherlands in April 1945 is one of the few examples for which sufficient historical information is available. The objective of this article is to compare the flood simulation with flood data from 1945. The context, the breach growth process and the flood propagation are explained. Key findings for current flood risk management addresses the importance of the drainage canal network during the inundation of a polder, and the uncertainty that follows from not knowing the breach growth parameters. This case study shows that historical floods provide valuable data for the validation of models and reveal lessons that are applicable in current day flood risk management.

  16. Partial entrainment of gravel bars during floods

    USGS Publications Warehouse

    Konrad, C.P.; Booth, D.B.; Burges, S.J.; Montgomery, D.R.

    2002-01-01

    Spatial patterns of bed material entrainment by floods were documented at seven gravel bars using arrays of metal washers (bed tags) placed in the streambed. The observed patterns were used to test a general stochastic model that bed material entrainment is a spatially independent, random process where the probability of entrainment is uniform over a gravel bar and a function of the peak dimensionless shear stress ??*0 of the flood. The fraction of tags missing from a gravel bar during a flood, or partial entrainment, had an approximately normal distribution with respect to ??*0 with a mean value (50% of the tags entrained) of 0.085 and standard deviation of 0.022 (root-mean-square error of 0.09). Variation in partial entrainment for a given ??*0 demonstrated the effects of flow conditioning on bed strength, with lower values of partial entrainment after intermediate magnitude floods (0.065 < ??*0 < 0.08) than after higher magnitude floods. Although the probability of bed material entrainment was approximately uniform over a gravel bar during individual floods and independent from flood to flood, regions of preferential stability and instability emerged at some bars over the course of a wet season. Deviations from spatially uniform and independent bed material entrainment were most pronounced for reaches with varied flow and in consecutive floods with small to intermediate magnitudes.

  17. Simulating Catchment Scale Afforestation for Mitigating Flooding

    NASA Astrophysics Data System (ADS)

    Barnes, M. S.; Bathurst, J. C.; Quinn, P. F.; Birkinshaw, S.

    2016-12-01

    After the 2013-14, and the more recent 2015-16, winter floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. However, the role of forests as a natural flood management practice remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. This project aims to improve the understanding of the impacts of upland afforestation on flood risk at the sub-catchment and full catchment scales. This will be achieved through an integrated fieldwork and modelling approach, with the use of a series of process based hydrological models to scale up and examine the effects forestry can have on flooding. Furthermore, there is a need to analyse the extent to which land management practices, catchment system engineering and the installation of runoff attenuation features (RAFs), such as engineered log jams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. Additionally, the proportion of a catchment or riparian reach that would need to be forested in order to achieve a significant impact on reducing downstream flooding will be defined. The consequential impacts of a corresponding reduction in agriculturally productive farmland and the potential decline of water resource availability will also be considered in order to safeguard the UK's food security and satisfy the global demand on water resources.

  18. Calcium nitrate miscible displacement at different concentrations in packed soil columns

    NASA Astrophysics Data System (ADS)

    Previatello da Silva, Livia; Alves de Oliveira, Luciano; Honorio de Miranda, Jarbas

    2015-04-01

    Studies on miscible displacement provide us with rational means to understand the important physical phenomena involved leaching in soils, fertilizers, movement of ions and other similar processes. With current environmental concerns and the need to understand the processes that govern movement of water and solutes in soil, studies are needed to allow increasing the efficiency of input use in agriculture that somehow can mitigate the impact of activities of this sector on groundwater contamination. Contamination of soil and groundwater and surface water in areas with fertilizer application and reuse of effluent is closely linked to materials chemical characteristics, and retention and transmission of water and soil solutes. Solute mobility in soil is inversely related to their adsorption to solid fraction or to environmental conditions that favor ions precipitation. Ion adsorption to soil exchange complex makes ion maintains exchange with the soil solution, providing once their retention by the solid fraction, another its availability in aqueous medium. Nitrate leaching is a physical phenomenon, favored by low energy involved in adsorption to soil particles and also by its high solubility in water. This high solubility and the weak interaction with soil matrix to allow anion follow the wetting front. Therefore, the objective was determine nitrate transport parameters in soil, through Breakthrough Curves (BTC) development under conditions of disturbed soil samples (saturated soil and steady state conditions) in columns (20.0 cm in height and 5 cm in diameter), by calcium nitrate solution application at two concentrations, 50 and 130 g m-3 NO3-, in two tropical soil types, Yellow Oxisol (S1) and Anfisol (S2). Research was carried out in laboratory. Transport parameters for both soils and nitrate concentrations were obtained by numerical fit using STANMOD software, by the inverse modelling. Results showed predominance of convective transport in S1, which had a higher

  19. Solid state drug-polymer miscibility studies using the model drug ABT-102.

    PubMed

    Jog, Rajan; Gokhale, Rajeev; Burgess, Diane J

    2016-07-25

    Amorphous solid dispersions typically suffer storage stability issues due to: their amorphous nature, high drug loading, uneven drug:stabilizer ratio and plasticization effects as a result of hygroscopic excipients. An extensive solid state miscibility study was conducted to aid in understanding the mechanisms involved in drug/stabilizer interactions. ABT-102 (model drug) and nine different polymers with different molecular weights and viscosities were selected to investigate drug/polymer miscibility. Three different polymer:drug ratios (1:3, 1:1 and 3:1, w/w) were analyzed using: DSC, FTIR and PXRD. Three different techniques were used to prepare the amorphous solid dispersions: serial dilution, solvent evaporation and spray drying. Spray drying was the best method to obtain amorphous solid dispersions. However, under certain conditions amorphous formulations could be obtained using solvent evaporation. Melting point depression was used to calculate interaction parameters and free energy of mixing for the various drug polymer mixtures. The spray dried solid dispersions yielded a negative free energy of mixing which indicated strong drug-polymer miscibility compared to the solvent evaporation and serial dilution method. Soluplus was the best stabilizer compared to PVP and HPMC, which is probably a consequence of strong hydrogen bonding between the two CO moieties of soluplus and the drug NH moieities. Copyright © 2016. Published by Elsevier B.V.

  20. Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed film and aggregate.

    PubMed

    Iyota, Hidemi; Krastev, Rumen

    2009-04-01

    The adsorption, micelle formation, and salting out of sodium dodecyl sulfate in the presence of sodium chloride were studied from the viewpoint of their mixed adsorption and aggregate formation. The surface tension of aqueous solutions of a sodium chloride-sodium dodecyl sulfate mixture was measured as a function of the total molality and composition of the mixture. Phase diagrams of adsorption and aggregate formation were obtained by applying thermodynamic equations to the surface tension. Judging from the phase diagrams, sodium chloride and sodium dodecyl sulfate are miscible in the adsorbed film at very large composition of sodium chloride and in the salted-out crystalline particle, while they are immiscible in the micelle. The miscibilities in the adsorbed film, micelle, and crystalline particle increase in the following order: particle > adsorbed film > micelle. The difference in miscibility among the oriented states was ascribed to the difference in geometry between the adsorbed film and micelle and to the interaction between bilayer surfaces in the particle.

  1. Buoyancy-driven instability of a miscible horizontal displacement in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Haudin, F.; Riolfo, L. A.; Knaepen, B.; de Wit, A.

    2012-11-01

    In Hele-Shaw cells, viscous fingers are forming when a fluid is injected into a more viscous one. If the two fluids are reversed, with the less mobile fluid injected into the low viscosity one, the situation is expected to be stable from a viscous point of view. Nevertheless, a destabilization of the interface can be observed due to a buoyancy-driven effect if a density difference exists between the two miscible fluids. As a result, the Poiseuille profile established in the gap of the cell locally destabilizes and convection rolls are forming. In a view from above, a striped pattern is observed at the miscible interface between the two fluids. To characterize the development of this instability, we have performed an experimental study of viscously stable miscible displacements in a Hele-Shaw cell with radial injection. The displacing fluids are aqueous solutions of glycerol and the displaced ones are either dyed water or dyed glycerol solutions. The way the relative properties of the two fluids is influencing the onset time of the instability and the characteristic size of the pattern is studied. The influence of the gap width and of the flow rate on the buoyantly unstable dynamics is also characterized.

  2. Miscibility of lubricants with refrigerants. Quarterly report, 1 April 1992--30 June 1992

    SciTech Connect

    Pate, M.B.; Zoz, S.C.; Berkenbosch, L.J.

    1992-07-01

    Miscibility data is being obtained for a variety of non-CFC refrigerants and their potential lubricants. Ten different refrigerants and seven different lubricants are being investigated. Experiments are being performed in two phases: Phase I focuses on performing screening tests and Phase II consists of developing miscibility plots. The miscibility tests are being performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The bath temperature can be precisely controlled over a temperature range of -50{degrees}C to 100{degrees}C. The test cells are constructed to allow for complete visibility of lubricant-refrigerant mixtures under all test conditions. Early in this reporting period, new procedures for charging the lubricant and refrigerant into the cells for testing were adopted. All of the refrigerants and all but one of the lubricants have been received from the manufacturers. Data obtained to date includes that for R-134a, R142b, R-32, R-134, R-125, and R-143a with four lubricants, namely, two esters and two polypropylene glycols.

  3. A New Approach to Flood Protection Design and Riparian Management

    Treesearch

    Philip B. Williams; Mitchell L. Swanson

    1989-01-01

    Conventional engineering methods of flood control design focus narrowly on the efficient conveyance of water, with little regard for environmental resource planning and natural geomorphic processes. Consequently, flood control projects are often environmentally disastrous, expensive to maintain, and even inadequate to control floods. In addition, maintenance programs...

  4. Flooding the Zone: A Ten-Point Approach to Assessing Critical Thinking as Part of the AACSB Accreditation Process

    ERIC Educational Resources Information Center

    Cavaliere, Frank; Mayer, Bradley W.

    2012-01-01

    Undergoing the accreditation process of the Association to Advance Collegiate Schools of Business (AACSB) can be quite daunting and stressful. It requires prodigious amounts of planning, record-keeping, and document preparation. It is not something that can be thrown together at the last minute. The same is true of the five-year reaccreditation…

  5. Flood mapping with multitemporal MODIS data

    NASA Astrophysics Data System (ADS)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2014-05-01

    Flood is one of the most devastating and frequent disasters resulting in loss of human life and serve damage to infrastructure and agricultural production. Flood is phenomenal in the Mekong River Delta (MRD), Vietnam. It annually lasts from July to November. Information on spatiotemporal flood dynamics is thus important for planners to devise successful strategies for flood monitoring and mitigation of its negative effects. The main objective of this study is to develop an approach for weekly mapping flood dynamics with the Moderate Resolution Imaging Spectroradiometer data in MRD using the water fraction model (WFM). The data processed for 2009 comprises three main steps: (1) data pre-processing to construct smooth time series of the difference in the values (DVLE) between land surface water index (LSWI) and enhanced vegetation index (EVI) using the empirical mode decomposition (EMD), (2) flood derivation using WFM, and (3) accuracy assessment. The mapping results were compared with the ground reference data, which were constructed from Envisat Advanced Synthetic Aperture Radar (ASAR) data. As several error sources, including mixed-pixel problems and low-resolution bias between the mapping results and ground reference data, could lower the level of classification accuracy, the comparisons indicated satisfactory results with the overall accuracy of 80.5% and Kappa coefficient of 0.61, respectively. These results were reaffirmed by a close correlation between the MODIS-derived flood area and that of the ground reference map at the provincial level, with the correlation coefficients (R2) of 0.93. Considering the importance of remote sensing for monitoring floods and mitigating the damage caused by floods to crops and infrastructure, this study eventually leads to the realization of the value of using time-series MODIS DVLE data for weekly flood monitoring in MRD with the aid of EMD and WFM. Such an approach that could provide quantitative information on

  6. Flooding: Prioritizing protection?

    NASA Astrophysics Data System (ADS)

    Peduzzi, Pascal

    2017-09-01

    With climate change, urban development and economic growth, more assets and infrastructures will be exposed to flooding. Now research shows that investments in flood protection are globally beneficial, but have varied levels of benefit locally.

  7. CO2 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir

    SciTech Connect

    Kovar, Mark; Wehner, Scott

    1998-01-13

    The application of cyclic CO2, often referred to as the CO2 Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO2 Huff-n-Puff process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital-intensive miscible projects. Texaco Exploration & Production Inc. and the U. S. Department of Energy have teamed up in an attempt to develop the CO2 Huff-n-Puff process in the Grayburg and San Andres formations which are light oil, shallow shelf carbonate reservoirs that exist throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected sites for this demonstration project are the Central Vacuum Unit waterflood in Lea County, New Mexico and the Sundown Slaughter Field in Hockley County, Texas. Miscible CO2 flooding is the process of choice for enhancing recovery of light oils and already accounts for over 12% of the Permian Basin's daily production. There are significant probable reserves associated with future miscible CO2 projects. However, many are marginally economic at current market conditions due to large up-front capital commitments for a peak response, which may be several years in the future. The resulting negative cash-flow is sometimes too much for an operator to absorb. The CO2 Huff-n-Puff process is being investigated as a near

  8. Local Flood Proofing Programs

    DTIC Science & Technology

    2005-02-01

    projects. Some Federal agencies, notably the U.S. Army Corps of Engineers and the Department of Homeland Security’s Federal Emergency Management Agency...the contractor. Comprehensive planning: Some communities have prepared comprehensive watershed, flood plain management , or flood damage reduction...damages; 2.) reduction of environmental impacts of flood control; and 3.) reduction of the long-term costs of flood control and floodplain management

  9. Uncertainty in flood risk mapping

    NASA Astrophysics Data System (ADS)

    Gonçalves, Luisa M. S.; Fonte, Cidália C.; Gomes, Ricardo

    2014-05-01

    A flood refers to a sharp increase of water level or volume in rivers and seas caused by sudden rainstorms or melting ice due to natural factors. In this paper, the flooding of riverside urban areas caused by sudden rainstorms will be studied. In this context, flooding occurs when the water runs above the level of the minor river bed and enters the major river bed. The level of the major bed determines the magnitude and risk of the flooding. The prediction of the flooding extent is usually deterministic, and corresponds to the expected limit of the flooded area. However, there are many sources of uncertainty in the process of obtaining these limits, which influence the obtained flood maps used for watershed management or as instruments for territorial and emergency planning. In addition, small variations in the delineation of the flooded area can be translated into erroneous risk prediction. Therefore, maps that reflect the uncertainty associated with the flood modeling process have started to be developed, associating a degree of likelihood with the boundaries of the flooded areas. In this paper an approach is presented that enables the influence of the parameters uncertainty to be evaluated, dependent on the type of Land Cover Map (LCM) and Digital Elevation Model (DEM), on the estimated values of the peak flow and the delineation of flooded areas (different peak flows correspond to different flood areas). The approach requires modeling the DEM uncertainty and its propagation to the catchment delineation. The results obtained in this step enable a catchment with fuzzy geographical extent to be generated, where a degree of possibility of belonging to the basin is assigned to each elementary spatial unit. Since the fuzzy basin may be considered as a fuzzy set, the fuzzy area of the basin may be computed, generating a fuzzy number. The catchment peak flow is then evaluated using fuzzy arithmetic. With this methodology a fuzzy number is obtained for the peak flow

  10. Characterization of remarkable floods in France, a transdisciplinary approach applied on generalized floods of January 1910

    NASA Astrophysics Data System (ADS)

    Boudou, Martin; Lang, Michel; Vinet, Freddy; Coeur, Denis

    2014-05-01

    The 2007 Flood Directive promotes the integration and valorization of historical and significant floods in flood risk management (Flood Directive Text, chapter II, and article 4). Taking into account extreme past floods analysis seems necessary in the mitigation process of vulnerability face to flooding risk. In France, this aspect of the Directive was carried out through the elaboration of Preliminary Flood Risk Assessment (PFRA) and the establishment of a 2000 floods list. From this first list, a sample of 176 floods, considered as remarkable has been selected. These floods were compiled in discussion with local authorities in charge of flood management (Lang et al., 2012) and have to be integrated in priority in local risk management policies. However, a consideration emerges about this classification: how a remarkable flood can be defined? According which criteria can it be considered as remarkable? To answer these questions, a methodology has been established by building an evaluation grid of remarkable floods in France. The primary objective of this grid is to analyze the remarkable flood's characteristics (hydrological and meteorological characteristics, sociological- political and economic impacts), and secondly to propose a classification of significant floods selected in the 2011 PFRA. To elaborate this evaluation grid, several issues had to be taken into account. First, the objective is to allow the comparison of events from various periods. These temporal disparities include the integration of various kinds of data and point out the importance of historical hydrology. It is possible to evaluate accurately the characteristics of recent floods by interpreting quantitative data (for example hydrological records. However, for floods that occurred before the 1960's it is necessary resorting to qualitative information such as written sources is necessary (Coeur, Lang, 2008). In a second part the evaluation grid requires equitable criteria in order not to

  11. CO2 Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Annual report, January 1, 1995--December 31, 1995

    SciTech Connect

    Wehner, S.C.; Boomer, R.J.; Cole, R.; Preiditus, J.; Vogt, J.

    1996-09-01

    The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg/San Andres formation; a light oil, shallow shelf carbonate reservoir within the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico.

  12. The Hydroclimatology of Extreme Flooding in the Lower Mississippi River

    NASA Astrophysics Data System (ADS)

    Smith, James; Baeck, Mary Lynn

    2015-04-01

    The 1927 flood in the lower Mississippi River was the most destructive flood in American history, inundating more than 68,000 square kilometers of land, resulting in approximately 500 fatalities and leaving more than 700,000 people homeless. Despite the prominence of the 1927 flood, hard details on the flood, and the storms that produced the flood, are sparse. We examine the hydrometeorology, hydroclimatolgy and hydrology of the 1927 flood in the lower Mississippi River through empirical analyses of rainfall and streamflow records and through downscaling simulations of the storms that were responsible for cata-strophic flooding. We use 20th Century Reanalysis fields as boundary conditions and initial conditions for downscaling simulations with the Weather Research and Forecasting (WRF) model. We place the hydrometeorological analyses of the 1927 storms in a hydroclimatolog-ical context through analyses of the 20th Century Reanalysis fields. Analyses are designed to assess the physical processes that control the upper tail of flooding in the lower Missis-sippi River. We compare the 1927 flood in the Lower Mississippi River to floods in 2011, 1937 and 1973 that represent the most extreme flooding in the Lower Mississippi River. Our results show that extreme flooding is tied to anomalous water vapor transport linked to strength and position of the North Atlantic Subtropical High. More generally, the results are designed to provide insights to the hydroclimatology of flooding in large rivers.

  13. NR/EPDM elastomeric rubber blend miscibility evaluation by two-level fractional factorial design of experiment

    NASA Astrophysics Data System (ADS)

    Razak, Jeefferie Abd; Ahmad, Sahrim Haji; Ratnam, Chantara Thevy; Mahamood, Mazlin Aida; Yaakub, Juliana; Mohamad, Noraiham

    2014-09-01

    Fractional 25 two-level factorial design of experiment (DOE) was applied to systematically prepare the NR/EPDM blend using Haake internal mixer set-up. The process model of rubber blend preparation that correlates the relationships between the mixer process input parameters and the output response of blend compatibility was developed. Model analysis of variance (ANOVA) and model fitting through curve evaluation finalized the R2 of 99.60% with proposed parametric combination of A = 30/70 NR/EPDM blend ratio; B = 70°C mixing temperature; C = 70 rpm of rotor speed; D = 5 minutes of mixing period and E = 1.30 phr EPDM-g-MAH compatibilizer addition, with overall 0.966 desirability. Model validation with small deviation at +2.09% confirmed the repeatability of the mixing strategy with valid maximum tensile strength output representing the blend miscibility. Theoretical calculation of NR/EPDM blend compatibility is also included and compared. In short, this study provides a brief insight on the utilization of DOE for experimental simplification and parameter inter-correlation studies, especially when dealing with multiple variables during elastomeric rubber blend preparation.

  14. Application of film-casting technique to investigate drug-polymer miscibility in solid dispersion and hot-melt extrudate.

    PubMed

    Parikh, Tapan; Gupta, Simerdeep Singh; Meena, Anuprabha K; Vitez, Imre; Mahajan, Nidhi; Serajuddin, Abu T M

    2015-07-01

    Determination of drug-polymer miscibility is critical for successful development of solid dispersions. This report details a practical method to predict miscibility and physical stability of drug with various polymers in solid dispersion and, especially, in melt extrudates by applying a film-casting technique. Mixtures of itraconazole (ITZ) with hydroxypropylmethylcellulose phthalate (HPMCP), Kollidon(®) VA 64, Eudragit(®) E PO, and Soluplus(®) were film-casted, exposed to 40°C/75% RH for 1 month and then analyzed using differential scanning calorimetry (DSC), powder X-ray diffractometry, and polarized light microscopy (PLM). ITZ had the highest miscibility with HPMCP, being miscible at drug to polymer ratio of 6:4 (w/w). There was a downward trend of lower miscibility with Soluplus(®) (miscible at 3:7, w/w, and a few microcrystals present at 4:6, w/w), Kollidon(®) VA 64 (2:8, w/w) and Eudragit(®) E PO (<1:9, w/w). PLM was found more sensitive to detect drug crystallization than DSC and powder X-ray diffractometry. There was general correlation between results of film casting and hot-melt extrusion (HME) using a twin screw extruder. For ITZ-Soluplus(®) mixtures, HME at 4:6 (w/w) resulted in a single phase, whereas drug crystallization was observed at higher drug load. HME of ITZ-Kollidon(®) VA 64 mixtures also correlated well with the miscibility predicted by film casting. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Floods in mountain environments: A synthesis

    NASA Astrophysics Data System (ADS)

    Stoffel, Markus; Wyżga, Bartłomiej; Marston, Richard A.

    2016-11-01

    Floods are a crucial agent of geomorphic change in the channels and valley floors of mountains watercourses. At the same time, they can be highly damaging to property, infrastructure, and life. Because of their high energy, mountain watercourses are highly vulnerable to environmental changes affecting their catchments and channels. Many factors have modified and frequently still tend to modify the environmental conditions in mountain areas, with impacts on geomorphic processes and the frequency, magnitude, and timing of floods in mountain watercourses. The ongoing climate changes vary between regions but may affect floods in mountain areas in many ways. In many mountain regions of Europe, widespread afforestation took place over the twentieth century, considerably increasing the amounts of large wood delivered to the channels and the likelihood of jamming bridges. At the same time, deforestation continues in other mountain areas, accelerating runoff and amplifying the magnitude and frequency of floods in foreland areas. In many countries, in-channel gravel mining has been a common practice during recent decades; the resultant deficit of bed material in the affected channels may suddenly manifest during flood events, resulting in the failure of scoured bridges or catastrophic channel widening. During the past century many rivers in mountain and foreland areas incised deeply; the resultant loss of floodplain water storage has decreased attenuation of flood waves, hence increasing flood hazard to downstream river reaches. On the other hand, a large amount of recent river restoration activities worldwide may provide examples of beneficial changes to flood risk, attained as a result of increased channel storage or reestablished floodplain water storage. Relations between geomorphic processes and floods operate in both directions, which means that changes in flood probability or the character of floods (e.g., increased wood load) may significantly modify the morphology

  16. Flood loss assessment in Can Tho City, Vietnam

    NASA Astrophysics Data System (ADS)

    Do, T. C.; Kreibich, H.

    2012-04-01

    Floods are recurring events in the Lower Mekong Basin resulting in loss of life and property, causing damage to agriculture and rural infrastructure, and disrupting social and economic activities. Flood management and mitigation has become a priority issue at the national and regional levels. Besides, it is expected that large areas of the Mekong delta, the Red River delta and the central coast will be flooded by sea-level rise due to climate change. Can Tho City is ranked under the five most flood-tide-influenced cities of Vietnam. It is the biggest city in the Mekong delta and it is located near the Hau river. Like other region of the Mekong delta, Can Tho suffers due to floods from upstream and flood tides from the sea. In the flood season large rural areas of the city are flooded, particularly during tidal days. Flood risk management policy includes preparative measures for living with floods and to minimise the damage caused by floods as well as to take advantage of floods for sustainable development. An intensive literature review, including administrative reports as well as expert interviews have been undertaken to gain more insight into flood characteristics, their consequences and risk mitigation. Therefore, flood damaging processes and trends have been reviewed for Can Tho City and the Mekong Basin in Vietnam. Additionally, suitable flood damage estimation methodologies have been collected as important input for flood risk analyses. On this basis it has been investigated which flood risk mitigation and management strategies promise to be effective in Can Tho City, Vietnam.

  17. Flood Impact Modelling and Natural Flood Management

    NASA Astrophysics Data System (ADS)

    Owen, Gareth; Quinn, Paul; ODonnell, Greg

    2016-04-01

    Local implementation of Natural Flood Management methods are now being proposed in many flood schemes. In principal it offers a cost effective solution to a number of catchment based problem as NFM tackles both flood risk and WFD issues. However within larger catchments there is the issue of which subcatchments to target first and how much NFM to implement. If each catchment has its own configuration of subcatchment and rivers how can the issues of flood synchronisation and strategic investment be addressed? In this study we will show two key aspects to resolving these issues. Firstly, a multi-scale network water level recorder is placed throughout the system to capture the flow concentration and travel time operating in the catchment being studied. The second is a Flood Impact Model (FIM), which is a subcatchment based model that can generate runoff in any location using any hydrological model. The key aspect to the model is that it has a function to represent the impact of NFM in any subcatchment and the ability to route that flood wave to the outfall. This function allows a realistic representation of the synchronisation issues for that catchment. By running the model in interactive mode the user can define an appropriate scheme that minimises or removes the risk of synchornisation and gives confidence that the NFM investment is having a good level of impact downstream in large flood events.

  18. Flood damage modelling: ambition and reality

    NASA Astrophysics Data System (ADS)

    Gerl, Tina; Kreibich, Heidi; Franco, Guillermo; Marechal, David; Schröter, Kai

    2015-04-01

    Flood damage modelling is of increasing importance for reliable risk assessment and management. Research efforts have improved the understanding of damaging processes and more sophisticated flood damage models have been developed. However, research seems to focus on a limited number of sectors and regions and validation of models still receives too little attention. We present a global inventory of flood damage models which is compiled from a review of scientific papers and research reports on flood damage models. The models are catalogued according to model specifications, geographical characteristics, sectors addressed, input variables used, model validation, transferability and model functions. The inventory is evaluated to position the current state of science and technology in flood damage modelling as well as to derive requirements for benchmarking damage models.

  19. Miscibility of hydrogen and helium mixtures at megabar pressures

    SciTech Connect

    Klepeis, J.E.; Schafer, K.J.; Barbee, T.W. III; Ross, M.

    1991-09-01

    Models of Jupiter and Saturn postulate a central rock core surrounded by a fluid mixture of hydrogen and helium. These models suggest that the mixture is undergoing phase separation in Saturn but not Jupiter. State-of-the-art total energy calculations of the enthalpy of mixing for ordered alloys of hydrogen and helium confirm that at least partial phase separation has occurred in Saturn and predict that this process has also begun in Jupiter. 15 refs., 2 figs.

  20. Phase transitions and phase miscibility of mixed particles of ammonium sulfate, toluene-derived secondary organic material, and water.

    PubMed

    Smith, Mackenzie L; You, Yuan; Kuwata, Mikinori; Bertram, Allan K; Martin, Scot T

    2013-09-12

    The phase states of atmospheric particles influence their roles in physicochemical processes related to air quality and climate. The phases of particles containing secondary organic materials (SOMs) are still uncertain, especially for SOMs produced from aromatic precursor gases. In this work, efflorescence and deliquescence phase transitions, as well as phase separation, in particles composed of toluene-derived SOM, ammonium sulfate, and water were studied by hygroscopic tandem differential mobility analysis (HTDMA) and optical microscopy. The SOM was produced in the Harvard Environmental Chamber by photo-oxidation of toluene at chamber relative humidities of <5 and 40%. The efflorescence and deliquescence relative humidities (ERH and DRH, respectively, studied by HTDMA) of ammonium sulfate decreased as the SOM organic fraction ε in the particle increased, dropping from DRH = 80% and ERH = 31% for ε = 0.0 to DRH = 58% and ERH = 0% for ε = 0.8. For ε < 0.2, the DRH and ERH to first approximation did not change with the organic volume fraction. This observation is consistent with independent behaviors for ε < 0.2 of water-infused toluene-derived SOM and aqueous ammonium sulfate, suggesting phase immiscibility between the two. Optical microscopy of particles prepared for ε = 0.12 confirmed phase separation for RH < 85%. For ε from 0.2 to 0.8, the DRH and ERH values steadily decreased, as studied by HTDMA. This result is consistent with one-phase mixing of ammonium sulfate, SOM, and water. Optical microscopy for particles of ε = 0.8 confirmed this result. Within error, increased exposure times of the aerosol in the HTDMA from 0.5 to 30 s affected neither the ERH(ε) nor DRH(ε) curves, implying an absence of kinetic effects on the observations over the studied time scales. For ε > 0.5, the DRH values of ammonium sulfate in mixtures with SOM produced at <5% RH were offset by -3 to -5% RH compared to the results for SOM produced at 40% RH, suggesting differences

  1. 78 FR 43906 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    .... Additional information regarding the SRP process can be found online at http://floodsrp.org/pdfs/srp_fact... Riverside Riverside County Flood Control County. and Water Conservation District, 1995 Market...

  2. Severe Flooding in India

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Floods devestated parts of eastern India along the Brahmaputra River in June 2000. In some tributaries of the Brahmaputra, the water reached more than 5 meters (16.5 feet) above flood stage. At least 40 residents died, and the flood waters destroyed a bridge linking the region to the rest of India. High water also threatened endangered Rhinos in Kaziranga National Park. Flooded areas are shown in red in the above image. The map was derived from Advanced Very High Resolution Radiometer (AVHRR) data taken on June 15, 2000. For more information on observing floods with satellites, see: Using Satellites to Keep our Head above Water and the Dartmouth Flood Observatory Image by the Dartmouth Flood Observatory

  3. Severe Flooding in India

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Floods devestated parts of eastern India along the Brahmaputra River in June 2000. In some tributaries of the Brahmaputra, the water reached more than 5 meters (16.5 feet) above flood stage. At least 40 residents died, and the flood waters destroyed a bridge linking the region to the rest of India. High water also threatened endangered Rhinos in Kaziranga National Park. Flooded areas are shown in red in the above image. The map was derived from Advanced Very High Resolution Radiometer (AVHRR) data taken on June 15, 2000. For more information on observing floods with satellites, see: Using Satellites to Keep our Head above Water and the Dartmouth Flood Observatory Image by the Dartmouth Flood Observatory

  4. CO/sub 2/ flooding: its time has come

    SciTech Connect

    Holm, L.W.

    1982-12-01

    Significant increases in enhanced oil recovery projects utilizing CO/sub 2/ have been noted in the past 2 years, and CO/sub 2/ pipeline completions will bring on large field applications. Factors in selection of reservoirs for CO/sub 2/ miscible flooding are summarized. The potential for immiscible flooding can be determined by simple laboratory CO/sub 2/ solubility, swelling, and viscosity tests at reservoir conditions. Single-well minitests with logging and coring and single-well huff-n-puff field tests will provide a direct evaluation of CO/sub 2/ in a reservoir where geology, rock permeability, and other properties are not well known. CO/sub 2/ huff-n-puff has produced large quantities of heavy oil at low water-oil ratio in many field projects. It probably will be limited to relatively few fields because steam is usually more available and cheaper, and can be effective in several injection/production cycles. However, use of CO/sub 2/ huff-n-puff as a precursor to an immiscible CO/sub 2/ flood could be an efficient application of CO/sub 2/. 50 references.

  5. Thermodynamics and Phase Behavior of Miscible Polymer Blends in the Presence of Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Young, Nicholas Philip

    The design of environmentally-benign polymer processing techniques is an area of growing interest, motivated by the desire to reduce the emission of volatile organic compounds. Recently, supercritical carbon dioxide (scCO 2) has gained traction as a viable candidate to process polymers both as a solvent and diluent. The focus of this work was to elucidate the nature of the interactions between scCO2 and polymers in order to provide rational insight into the molecular interactions which result in the unexpected mixing thermodynamics in one such system. The work also provides insight into the nature of pairwise thermodynamic interactions in multicomponent polymer-polymer-diluent blends, and the effect of these interactions on the phase behavior of the mixture. In order to quantify the strength of interactions in the multicomponent system, the binary mixtures were characterized individually in addition to the ternary blend. Quantitative analysis of was made tractable through the use of a model miscible polymer blend containing styrene-acrylonitrile copolymer (SAN) and poly(methyl methacrylate) (dPMMA), a mixture which has been considered for a variety of practical applications. In the case of both individual polymers, scCO2 is known to behave as a diluent, wherein the extent of polymer swelling depends on both temperature and pressure. The solubility of scCO 2 in each polymer as a function of temperature and pressure was characterized elsewhere. The SAN-dPMMA blend clearly exhibited lower critical solution temperature behavior, forming homogeneous mixtures at low temperatures and phase separating at elevated temperature. These measurements allowed the determination of the Flory-Huggins interaction parameter chi23 for SAN (species 2) and dPMMA (species 3) as a function of temperature at ambient pressure, in the absence of scCO2 (species 1). Characterization of the phase behavior of the multicomponent (ternary) mixture was also carried out by SANS. An in situ SANS

  6. Enhancing flood resilience through improved risk communications

    NASA Astrophysics Data System (ADS)

    O'Sullivan, J. J.; Bradford, R. A.; Bonaiuto, M.; De Dominicis, S.; Rotko, P.; Aaltonen, J.; Waylen, K.; Langan, S. J.

    2012-07-01

    A framework of guiding recommendations for effective pre-flood and flood warning communications derived from the URFlood project (2nd ERA-Net CRUE Research Funding Initiative) from extensive quantitative and qualitative research in Finland, Ireland, Italy and Scotland is presented. Eleven case studies in fluvial, pluvial, coastal, residual and "new" flood risk locations were undertaken. The recommendations were developed from questionnaire surveys by exploring statistical correlations of actions and understandings of individuals in flood risk situations to low, moderate and high resilience groupings. Groupings were based on a conceptual relationship of self-assessed levels of awareness, preparedness and worry. Focus groups and structured interviews were used to discuss barriers in flood communications, explore implementation of the recommendations and to rank the recommendations in order of perceived importance. Results indicate that the information deficit model for flood communications that relies on the provision of more and better information to mitigate risk in flood-prone areas is insufficient, and that the communications process is very much multi-dimensional. The recommendations are aimed at addressing this complexity and their careful implementation is likely to improve the penetration of flood communications. The recommendations are applicable to other risks and are transferrable to jurisdictions beyond the project countries.

  7. Final Report, Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2003-05-31

    The Flooding Predictor is an advanced process control strategy comprising a patented pattern-recognition methodology that identifies pre-flood patterns discovered to precede flooding events in distillation columns. The grantee holds a U.S. patent on the modeling system. The technology was validated at the Separations Research Program, The University of Texas at Austin under a grant from the U. S. Department of Energy, Inventions & Innovation Program. Distillation tower flooding occurs at abnormally high vapor and/or liquid rates. The loss in tray efficiencies is attributed to unusual behavior of liquid inventories inside the column leading to conditions of flooding of the space in between trays with liquid. Depending on the severity of the flood condition, consequences range from off spec products to equipment damage and tower shutdown. This non-intrusive pattern recognition methodology, processes signal data obtained from existing column instrumentation. Once the pattern is identified empirically, it is modeled and coded into the plant's distributed control system. The control system is programmed to briefly "unload" the tower each time the pattern appears. The unloading takes the form of a momentary reduction in column severity, e.g., decrease bottom temperature, reflux or tower throughput. Unloading the tower briefly at the pre-flood state causes long-term column operation to become significantly more stable - allowing an increase in throughput and/or product purity. The technology provides a wide range of value between optimization and flooding. When a distillation column is not running at capacity, it should be run in such a way ("pushed") that optimal product purity is achieved. Additional benefits include low implementation and maintenance costs, and a high level of console operator acceptance. The previous commercial applications experienced 98% uptime over a four-year period. Further, the technology is unique in its ability to distinguish between different

  8. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy.

    PubMed

    Yuan, Xiaoda; Sperger, Diana; Munson, Eric J

    2014-01-06

    Solid-state NMR (SSNMR) (1)H T1 and T1ρ relaxation times were used to evaluate the miscibility of amorphous solid dispersions of nifedipine (NIF) and polyvinylpyrrolidone (PVP) prepared by three different methods: melt quenching in the typical lab setting, spray drying and melt quenching in the NMR rotor while spinning. Of the five compositions prepared by melt quenching in the lab setting, the 95:5 and 90:10 NIF:PVP (w:w) amorphous solid dispersions were not miscible while 75:25, 60:40, and 50:50 NIF:PVP dispersions were miscible by the (1)H T1ρ measurements. The domain size of the miscible systems was estimated to be less than 4.5 nm. Amorphous solid dispersions with composition of 90:10 NIF:PVP prepared by spray drying and melt quenching in the NMR rotor showed miscibility by (1)H T1ρ values. Variable-temperature SSNMR (1)H T1ρ relaxation measurements revealed a change in relaxation time at approximately 20 °C below Tg, suggesting increased molecular mobility above that temperature.

  9. Capillary imbibition of aqueous foams by miscible and nonmiscible liquids

    NASA Astrophysics Data System (ADS)

    Mensire, Rémy; Piroird, Keyvan; Lorenceau, Elise

    2015-11-01

    When put in contact with a large liquid drop, dry foams wick owing to surface-tension-driven flows until reaching equilibrium. This work is devoted to the dynamics of this imbibition process. We consider imbibition of both wetting or nonwetting liquid, by putting the dry foam into contact either with the foaming solution that constitutes the foam or with organic oils. Indeed, with the appropriate choice of surfactants, oil spontaneously invades the liquid network of the foam without damaging it. Our experiments show an early-time dynamics in t1 /2 followed by a late-time dynamics in t1 /4. These features, which differ from theoretical works predicting a t1 /3 dynamics, are rationalized considering the influence of the initial liquid fraction of the foam in the driving capillary force and the impact of gravity through the capillary-gravity equilibrium.

  10. Using of Hydrodynamic Model for the Support of Decision Making Process in Water Management and Flood Risk Assessment of Lower Kuban River, Russia

    NASA Astrophysics Data System (ADS)

    Ermolaeva, O.; Zeiliguer, A.; Buber, A.

    2009-04-01

    Hydrological conditions of Lower Kuban River watershed are extremely variable. Frequently arising floods, alternated with the periods of water shortage. The catastrophic flood events occur promptly and, commonly, there is not enough time to manage flooding by normal operation of reservoirs. The management of water releases using standard rules during high waters is not effective. There is a need to use the imitation hydrodynamic model of the river network for the flood forecasting to check all possible variants of flood development and to take the efficient decision in short time. The model of the water object, validated and calibrated on the data of observations, allows to determine the basic river parameters (discharges, levels, velocities etc.) in the operative mode and to solve the following tasks: - Protection of the settlements and agricultural areas in the floodplain; - Management of water resources during the period of water deficit. The object of modeling is the basin of Lower Kuban River, including the following parts: Krasnodarskoe, Shapsugskoe, Krjukovskoe, Varnavinskoe reservoirs, Fedorovskij and Tikhovskij hydrounits, Lower Kuban River and it's branch Protoka from Krasnodar hydrosystem up to the Azov Sea, Krjukovsky connecting channel and Varnavinskij release channel, adjusted to left tributaries of Zakubanskij area together with Krjukovskoe and Varnavinskoe reservoirs. The multipurpose hydrodynamic model of system of interconnected rivers and channels at Lower Kuban River was developed with MIKE 11 package (Danish Hydraulic Institute). On its basis the special technique of water system regulation to protect agricultural areas in floodplain zone was developed. Developed approach along with authentic and regularly peer hour monitored data provide us with necessary tool for qualitative management of regulating hydraulic structures during the passage of high waters. Keywords: Flood risk assessment, MIKE 11, hydrodynamic model

  11. Surface effects on phase distributions of a fast-quenched miscibility gap type system - Succinonitrile-water

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Fanning, U. S.

    1986-01-01

    If a binary homogeneous melt is cooled into an immiscible region, the newly formed second phase will generally have a density different from the parent phase, and will separate readily by sedimentation. Observation of solidification processes in microgravity indicates that outside of sedimentation, at least two other important effets can separate the phases: (1) preferential wetting, and (2) thermal migration of second-phase droplets due to interfacial tension gradients. The latter effect would drive the minority phase along the thermal gradient toward the hottest part (assuming the interfacial tension decreases with increasing temperature), which is usually away from the crucible wall. On the other hand, if the minority phase preferentially wets the crucible, a minority phase layer which thickens as initial solution compositions approach critical, will form adjacent to the solid surface and remain in the coldest region of the ingot. This study presents compelling preliminary evidence that these two effects do exist and that they compete with one another. However, the temperature dependence of preferential wetting below T(c) for the current system of study is, as yet, undetermined. These effects are sensitive to the initial concentration of a hypermonotectic solution cooling through a miscibility gap.

  12. Surface effects on phase distributions of a fast-quenched miscibility gap type system - Succinonitrile-water

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Fanning, U. S.

    1986-01-01

    If a binary homogeneous melt is cooled into an immiscible region, the newly formed second phase will generally have a density different from the parent phase, and will separate readily by sedimentation. Observation of solidification processes in microgravity indicates that outside of sedimentation, at least two other important effets can separate the phases: (1) preferential wetting, and (2) thermal migration of second-phase droplets due to interfacial tension gradients. The latter effect would drive the minority phase along the thermal gradient toward the hottest part (assuming the interfacial tension decreases with increasing temperature), which is usually away from the crucible wall. On the other hand, if the minority phase preferentially wets the crucible, a minority phase layer which thickens as initial solution compositions approach critical, will form adjacent to the solid surface and remain in the coldest region of the ingot. This study presents compelling preliminary evidence that these two effects do exist and that they compete with one another. However, the temperature dependence of preferential wetting below T(c) for the current system of study is, as yet, undetermined. These effects are sensitive to the initial concentration of a hypermonotectic solution cooling through a miscibility gap.

  13. Miscible gravitational instability of initially stable horizontal interface in a porous medium: Non-monotonic density profiles

    NASA Astrophysics Data System (ADS)

    Kim, Min Chan

    2014-11-01

    To simulate a CO2 sequestration process, some researchers employed a water/propylene glycol (PPG) system which shows a non-monotonic density profile. Motivated by this fact, the stability of the diffusion layer of two miscible fluids saturated in a porous medium is analyzed. For a non-monotonic density profile system, linear stability equations are derived in a global domain, and then transformed into a system of ordinary differential equations in an infinite domain. Initial growth rate analysis is conducted without the quasi-steady state approximation (QSSA) and shows that initially the system is unconditionally stable for the least stable disturbance. For the time evolving case, the ordinary differential equations are solved applying the eigen-analysis and numerical shooting scheme with and without the QSSA. To support these theoretical results, direct numerical simulations are conducted using the Fourier spectral method. The results of theoretical linear stability analyses and numerical simulations validate one another. The present linear and nonlinear analyses show that the water/PPG system is more unstable than the CO2/brine one, and the flow characteristics of these two systems are quite different from each other.

  14. Historic-flood evaluation and research needs in mountainous areas

    USGS Publications Warehouse

    Jarrett, Robert D.

    1994-01-01

    An evaluation of historic flood estimates in mountainous areas in Colorado was made to assess their accuracy. The purpose of this evaluation is to enhance awareness of the need to assess the accuracy of historic flood peaks, particularly floods of record, because they are such a critical factor in flood-plain management, design of hydraulic structures in flood plains, and related environmental studies. Research needs based on a proposed river-system-process approach are suggested. A critical need exists for interdisciplinary documentation of extreme-flood processes, particularly to improve methods to directly measure extreme floods and quantify total energy losses. Such research will benefit the public through improved engineering designs and environmental investigations.

  15. αs-Casein-PE6400 mixtures: surface properties, miscibility and self-assembly.

    PubMed

    Kessler, Anne; Menéndez-Aguirre, Orquidéa; Hinrichs, Jörg; Stubenrauch, Cosima; Weiss, Jochen

    2014-06-01

    Surface properties, miscibility and self-assembly of mixtures of a food-grade αs-casein and the triblock copolymer PE6400 (PEO13-PPO30-PEO13) were examined. The properties at the surface were determined by surface pressure measurements for a 1:1 molar mixture. Comparison of the measured with the calculated isotherms show attractive interactions at surface pressures above 9mN/m. The miscibility gaps of solutions containing 0.004-0.2mmol/l αs-casein and 0.02-0.1mol/l polymer were examined. It was found that a one-phase region exists at distinct mixing ratios and temperatures. Comparison of the cloud points of mixtures of αs-casein and PE6400 with pure αs-casein showed that the presence of the triblock copolymer enhanced the solubility of the protein. The ζ-potential of the αs-casein solution decreased by addition of PE6400 to zero. Our results thus suggest that αs-casein and PE6400 are miscible. The results of the cloud point and ζ-potential measurements were explained by formation of a mixed aggregate where the PPO chains are anchored inside the hydrophobic part of the αs-casein while the PEO chains cover the charged hydrophilic part of the αs-casein thereby leading to an increase of the cloud point and a decrease in ζ-potential. This is in agreement with the attractive interactions between αs-casein and PE6400 as observed via surface pressure measurements at the surface.

  16. Enhanced sampling simulation analysis of the structure of lignin in the THF–water miscibility gap

    SciTech Connect

    Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; Mostofian, Barmak; Smith, Jeremy C.

    2016-01-26

    Using temperature replica-exchange molecular dynamics, we characterize a globule-to-coil transition for a softwood-like lignin biopolymer in a tetrahydrofuran (THF)-water cosolvent system at temperatures at which the cosolvent undergoes a de-mixing transition. The lignin is found to be in a coil state, similar to that in the high-temperature miscible region. Analysis of the transition kinetics indicates that THF acts in a surfactant-like fashion. In conclusion, the present study thus suggests that THF-water based pretreatments may efficiently remove lignin from biomass even at relatively low (non-water boiling) temperatures.

  17. Microstructural Evolution of Alloy Powder for Electronic Materials with Liquid Miscibility Gap

    NASA Astrophysics Data System (ADS)

    Ohnuma, I.; Saegusa, T.; Takaku, Y.; Wang, C. P.; Liu, X. J.; Kainuma, R.; Ishida, K.

    2009-01-01

    The microstructure of powders that are applicable for electronic materials were studied for some systems in which there is a liquid miscibility gap. The characteristic morphologies of an egg-like core type and a uniform second-phase dispersion are shown in relation to the phase diagram, where thermodynamic calculations are a powerful tool for alloy design and the prediction of microstructure. Typical examples of microstructural evolution and properties of Pb-free solders and Ag-based micropowders with high electrical conductivity produced by a gas-atomizing method are presented.

  18. Enhanced sampling simulation analysis of the structure of lignin in the THF-water miscibility gap.

    PubMed

    Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; Mostofian, Barmak; Smith, Jeremy C

    2016-03-07

    Using temperature replica-exchange molecular dynamics, we characterize a globule-to-coil transition for a softwood-like lignin biopolymer in a tetrahydrofuran (THF)-water cosolvent system at temperatures at which the cosolvent undergoes a de-mixing transition. The lignin is found to be in a coil state, similar to that in the high-temperature miscible region. Analysis of the transition kinetics indicates that THF acts in a surfactant-like fashion. The present study thus suggests that THF-water based pretreatments may efficiently remove lignin from biomass even at relatively low (non-water boiling) temperatures.

  19. Enhanced sampling simulation analysis of the structure of lignin in the THF–water miscibility gap

    DOE PAGES

    Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; ...

    2016-01-26

    Using temperature replica-exchange molecular dynamics, we characterize a globule-to-coil transition for a softwood-like lignin biopolymer in a tetrahydrofuran (THF)-water cosolvent system at temperatures at which the cosolvent undergoes a de-mixing transition. The lignin is found to be in a coil state, similar to that in the high-temperature miscible region. Analysis of the transition kinetics indicates that THF acts in a surfactant-like fashion. In conclusion, the present study thus suggests that THF-water based pretreatments may efficiently remove lignin from biomass even at relatively low (non-water boiling) temperatures.

  20. Video of Miscible Fluid Experiment Conducted on NASA Low Gravity Airplane

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a video of dyed water being injected into glycerin in a 2.2 centimeter (cm) diameter test tube. The experiment was conducted on the KC-135 aircraft, a NASA plane that creates microgravity and 2g conditions as it maneuvers through multiple parabolas. The water is less dense and so it rises to the top of the glycerin. The goal of the experiment was to determine if a blob of a miscible fluid would spontaneously become spherical in a microgravity environment.

  1. CO2 miscible displacement enhanced oil recovery in Dutch North Sea

    SciTech Connect

    Alkemade, P.J.C.

    1995-12-31

    In the Dutch sector of the North Sea several relatively small oil deposits are present. Their locations are spread and only few oil fields are being produced. An attempt is made to investigate the feasibility of EOR application i.e. CO2 miscible displacement by a commonly available pressurized CO2 supply system. This feasibility study is based on an utilizes as much as possible past and present data bout existing oil fields, CO2 availability, compression and distribution pipelines to be installed and injection methods at existing production facilities.

  2. Seasonal characteristics of flood regimes across the Alpine–Carpathian range

    PubMed Central

    Parajka, J.; Kohnová, S.; Bálint, G.; Barbuc, M.; Borga, M.; Claps, P.; Cheval, S.; Dumitrescu, A.; Gaume, E.; Hlavčová, K.; Merz, R.; Pfaundler, M.; Stancalie, G.; Szolgay, J.; Blöschl, G.

    2010-01-01

    Summary The aim of this paper is to analyse the differences in the long-term regimes of extreme precipitation and floods across the Alpine–Carpathian range using seasonality indices and atmospheric circulation patterns to understand the main flood-producing processes. This is supported by cluster analyses to identify areas of similar flood processes, both in terms of precipitation forcing and catchment processes. The results allow to isolate regions of similar flood generation processes including southerly versus westerly circulation patterns, effects of soil moisture seasonality due to evaporation and effects of soil moisture seasonality due to snow melt. In many regions of the Alpine–Carpathian range, there is a distinct shift in flood generating processes with flood magnitude as evidenced by a shift from summer to autumn floods. It is argued that the synoptic approach proposed here is valuable in both flood analysis and flood estimation. PMID:25067854

  3. Seasonal characteristics of flood regimes across the Alpine-Carpathian range.

    PubMed

    Parajka, J; Kohnová, S; Bálint, G; Barbuc, M; Borga, M; Claps, P; Cheval, S; Dumitrescu, A; Gaume, E; Hlavčová, K; Merz, R; Pfaundler, M; Stancalie, G; Szolgay, J; Blöschl, G

    2010-11-17

    The aim of this paper is to analyse the differences in the long-term regimes of extreme precipitation and floods across the Alpine-Carpathian range using seasonality indices and atmospheric circulation patterns to understand the main flood-producing processes. This is supported by cluster analyses to identify areas of similar flood processes, both in terms of precipitation forcing and catchment processes. The results allow to isolate regions of similar flood generation processes including southerly versus westerly circulation patterns, effects of soil moisture seasonality due to evaporation and effects of soil moisture seasonality due to snow melt. In many regions of the Alpine-Carpathian range, there is a distinct shift in flood generating processes with flood magnitude as evidenced by a shift from summer to autumn floods. It is argued that the synoptic approach proposed here is valuable in both flood analysis and flood estimation.

  4. Past and present floods in South Moravia

    NASA Astrophysics Data System (ADS)

    Brázdil, Rudolf; Chromá, Kateřina; Řezníčková, Ladislava; Valášek, Hubert; Dolák, Lukáš; Stachoň, Zdeněk; Soukalová, Eva; Dobrovolný, Petr

    2015-04-01

    Floods represent the most destructive natural phenomena in the Czech Republic, often causing great material damage or loss of human life. Systematic instrumental measurements of water levels in Moravia (the eastern part of the Czech Republic) started mainly in the 1880s-1890s, while for discharges it was in the 1910s-1920s. Different documentary evidence allows extension of our knowledge about floods prior the instrumental period. The paper presents long-term flood chronologies for four South Moravian rivers: the Jihlava, the Svratka, the Dyje and the Morava. Different documentary data are used to extract floods. Taxation records are of particular importance among them. Since the mid-17th century, damage to property and land (fields, meadows, pastures or gardens) entitled farmers and landowners to request a tax relief. Related documents of this administration process kept mainly in Moravian Land Archives in Brno allow to obtain detail information about floods and their impacts. Selection of floods in the instrumental period is based on calculation of N-year return period of peak water levels and/or peak discharges for selected hydrological stations of the corresponding rivers (with return period of two years and more). Final flood chronologies combine floods derived from both documentary data and hydrological measurements. Despite greater inter-decadal variability, periods of higher flood frequency are c. 1821-1850 and 1921-1950 for all four rivers; for the Dyje and Morava rivers also 1891-1900. Flood frequency fluctuations are further compared with other Central European rivers. Uncertainties in created chronologies with respect to data and methods used for compilation of long-term series and anthropogenic changes in river catchments are discussed. The study is a part of the research project "Hydrometeorological extremes in Southern Moravia derived from documentary evidence" supported by the Grant Agency of the Czech Republic, reg. no. 13-19831S.

  5. Climate-informed flood risk estimation

    NASA Astrophysics Data System (ADS)

    Troy, T.; Devineni, N.; Lima, C.; Lall, U.

    2013-12-01

    Currently, flood risk assessments are typically tied to a peak flow event that has an associated return period and inundation extent. This method is convenient: based on a historical record of annual maximum flows, a return period can be calculated with some assumptions about the probability distribution and stationarity. It is also problematic in its stationarity assumption, reliance on relatively short records, and treating flooding as a random event disconnected from large-scale climate processes. Recognizing these limitations, we have developed a new approach to flood risk assessment that connects climate variability, precipitation dynamics, and flood modeling to estimate the likelihood of flooding. To provide more robust, long time series of precipitation, we used stochastic weather generator models to simulate the rainfall fields. The method uses a k-nearest neighbor resampling algorithm in conjunction with a non-parametric empirical copulas based simulation strategy to reproduce the temporal and spatial dynamics, respectively. Climate patterns inform the likelihood of heavy rainfall in the model. For example, ENSO affects the likelihood of wet or dry years in Australia, and this is incorporated in the model. The stochastic simulations are then used to drive a cascade of models to predict flood inundation. Runoff is generated by the Variable Infiltration Capacity (VIC) model, fed into a full kinematic wave routing model at high resolution, and the kinematic wave is used as a boundary condition to predict flood inundation using a coupled storage cell model. Combining the strengths of a stochastic model for rainfall and a physical model for flood prediction allows us to overcome the limitations of traditional flood risk assessment and provide robust estimates of flood risk.

  6. Mapping technological and biophysical capacities of watersheds to regulate floods

    USGS Publications Warehouse

    Mogollon, Beatriz; Villamagna, Amy M.; Frimpong, Emmanuel A.; Angermeier, Paul

    2016-01-01

    Flood regulation is a widely valued and studied service provided by watersheds. Flood regulation benefits people directly by decreasing the socio-economic costs of flooding and indirectly by its positive impacts on cultural (e.g., fishing) and provisioning (e.g., water supply) ecosystem services. Like other regulating ecosystem services (e.g., pollination, water purification), flood regulation is often enhanced or replaced by technology, but the relative efficacy of natural versus technological features in controlling floods has scarcely been examined. In an effort to assess flood regulation capacity for selected urban watersheds in the southeastern United States, we: (1) used long-term flood records to assess relative influence of technological and biophysical indicators on flood magnitude and duration, (2) compared the widely used runoff curve number (RCN) approach for assessing the biophysical capacity to regulate floods to an alternative approach that acknowledges land cover and soil properties separately, and (3) mapped technological and biophysical flood regulation capacities based on indicator importance-values derived for flood magnitude and duration. We found that watersheds with high biophysical (via the alternative approach) and technological capacities lengthened the duration and lowered the peak of floods. We found the RCN approach yielded results opposite that expected, possibly because it confounds soil and land cover processes, particularly in urban landscapes, while our alternative approach coherently separates these processes. Mapping biophysical (via the alternative approach) and technological capacities revealed great differences among watersheds. Our study improves on previous mapping of flood regulation by (1) incorporating technological capacity, (2) providing high spatial resolution (i.e., 10-m pixel) maps of watershed capacities, and (3) deriving importance-values for selected landscape indicators. By accounting for technology that enhances

  7. The use of rheology to elucidate the granulation mechanisms of a miscible and immiscible system during continuous twin-screw melt granulation.

    PubMed

    Monteyne, Tinne; Heeze, Liza; Mortier, Séverine Thérèse F C; Oldörp, Klaus; Nopens, Ingmar; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-08-20

    Twin-screw hot melt granulation (TS HMG) is a valuable, but still unexplored alternative to granulate temperature and moisture sensitive drugs in a continuous way. Recently, the material behavior of an immiscible drug-binder blend during TS HMG was unraveled by using a rheometer and differential scanning calorimetry (DSC). Additionally, vibrational spectroscopic techniques proved the link between TS HMG and rheology since equal interactions at molecular level did occur in both processes. This allowed to use a rheometer to gain knowledge of the material behavior during hot melt processing of an immiscible drug-binder blend. However, miscibility of a drug-binder formulation and drug-binder interactions appear to influence the rheological properties and, hence conceivably also the granulation mechanism. The aim of this research was to examine if the TS HMG process of a miscible formulation system is comparable with the mechanism of an immiscible system and to evaluate whether rheology still serves as a useful tool to understand and optimize the hot melt granulation (HMG) process. The executed research (thermal analysis, rheological parameters and spectroscopic data) demonstrated the occurrence of a high and broad tan(δ) curve without a loss peak during the rheological temperature ramp which implies a higher material deformability without movement of the softened single polymer chains. Spectroscopic analysis revealed drug-polymer interactions which constrain the polymer to flow independently. As a result, the binder distribution step, which generally follows the immersion step, was hindered. This insight assisted the understanding of the granule properties. Inhomogeneous granules were produced due to large initial nuclei or adhesion of multiple smaller nuclei. Consequently, a higher granulation temperature was required in order to get the binder more homogeneously distributed within the granules.

  8. Understanding Flood Hazards and Vulnerabilities: New Approaches To Comprehensive Flood Risk Assessment In The U.k.

    NASA Astrophysics Data System (ADS)

    Kelman, I.; Spence, R.

    Flood risk assessment in the U.K. has traditionally considered the hazard to be princi- pally flood depth and the vulnerability to be principally damage resulting from water contact with property for a specified but arbitrary duration. Some efforts have factored in velocity and salinity at a superficial level while other research has recently exam- ined the danger of flood hazard parameters to human life. This work is valuable, but it has tended to ignore both the physical and conceptual processes which lead from flood hazards such as rainfall and sewage to a flood disaster with consequences such as property damage, casualties, and societal disruption. The work presented here uses a detailed analysis to propose a framework describing which flood vulnerabilities are susceptible to which flood hazards and how this fundamental knowledge translates into an understanding of the creation of flood risks. A flood damage scale is produced and a conceptual map of flood risk is drawn through categorising flood hazards and vulnerabilities and exploring their interaction. The physical description of flood haz- ard parameters and the parametersS potential effects form the basis for communication strategies focused on risk and vulnerability reduction.

  9. Flooding: A unique year

    USGS Publications Warehouse

    Putnam, A.L.

    1984-01-01

    Floods have been and continue to be one of the most destructive hazards facing the people of the United States. Of all the natural hazards, floods are the most widespread and the most ruinous to life and property. Today, floods are a greater menace to our welfare than ever before because we live in large numbers near water and have developed a complex reliance upon it. From large rivers to country creeks, from mountain rills to the trickles that occasionally dampen otherwise arid wastelands, every stream in the United States is subject to flooding at some time. Floods strike in myriad forms, including sea surges driven by wild winds or tsunamis churned into fury by seismic activity. By far the most frequent, however, standing in a class by themselves, are the inland, freshwater floods that are caused by rain, by melting snow and ice, or by the bursting of structures that man has erected to protect himself and his belongings from angry waters.

  10. Paleohydraulics and hydrodynamics of Scabland floods

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1978-01-01

    The last major episode of scabland flooding (approx. 18,000-13,000 years B.P.) left considerable high-water mark evidence in the form of: (1) eroded channel margins; (2) depositional features; (3) ice-rafter erratics; and (4) divide crossings. These were used to reconstruct maximum flood stages and water-surface gradients. Engineering hydraulic calculation procedures allowed the analyses of flood discharges and mean velocities from these data. Secondary flow phenomena, including various forms of vortices and flow separations, are considered to have been the principal erosive processes. The intense pressure and velocity gradients of vortices along the irregular channel boundaries produced the plucking-type erosion.

  11. Large Floods in Narrow Valleys and Wide Floodplains: The Hydro-Climatology and Geomorphology of Flooding in Atlantic Slope Watersheds

    NASA Astrophysics Data System (ADS)

    Plank, C.; Prestegaard, K. L.

    2016-12-01

    The risks posed by extreme hydrologic events, including large floods, are increasing due to climate changes, land use changes, and increasing populations in vulnerable areas. Integrative approaches that leverage large datasets of hydrologic, climatic and geomorphic information can be used to identify key processes that control these difficult to predict hydrological extreme events. In order to investigate the processes influencing flood frequency and magnitude in major river basins, we used a data-intensive top-down approach modeling the relationship of flood discharge (Q) to drainage basin area (DA) as a power law: Q=α(DA)θ. These flood scaling relationships were developed by evaluating flood probabilities from observed flood data at a given stream gauge site, and then examining the spatial scaling of flood statistics (e.g. 100-year flood) within individual large drainage basins. Results show that the scaling coefficients (α) are higher, and large magnitude floods are proportionally larger, in southern watersheds with hurricane-dominated flood records. Scaling exponents (θ) are lowest for large floods in southern coastal plain rivers with wide floodplains, indicating downstream attenuation of flood peaks. In order to evaluate the flood scaling results, we use USGS stream gauge and other data to quantify the channel and floodplain hydraulics of floods. We develop and compare at-a-station and downstream channel hydraulic geometry relationships; these are combined with flow duration analyses to determine the distributions of hydraulic variables (width, depth, velocity) over a range of discharge values. Frequency of overbank flooding at the study gauge sites are evaluated from rating curves and flood frequency analyses and used with spatial analyses to quantify downstream changes in flooded and floodplain width. These results are used to compare channel and floodplain hydraulic differences both within and among the study watersheds. Results suggest that rivers

  12. Flood regimes in a changing world: What do we know?

    NASA Astrophysics Data System (ADS)

    Bloeschl, G.

    2015-12-01

    There has been a surprisingly large number of major floods in the last years around the world which suggests that floods may have increased and will continue to increase in the next decades. However, the realism of such changes is still hotly discussed in the literature. In this presentation I will argue that a fresh look is needed at the flood change problem in terms of the causal factors including river training, land use changes and climate variability. Analysing spatial patterns of dynamic flood characteristics helps learn form the rich diversity of flood processes across the landscape. I will present a number of examples across Europe to illustrate the range of flood generation processes and the causal factors of changes in the flood regime. On the basis of these examples, I will demonstrate how comparative hydrology can assist in learning from the differences of flood characteristics between catchments both for present and future conditions. Focus on the interactions of the natural and human water system will be instrumental in making meaningful statements about future floods in a changing world. References Hall et al. (2014) Understanding Flood Regime Changes in Europe: A state of the art assessment. Hydrol. Earth Sys. Sc., 18, 2735-2772. Blöschl et al. (2015) Increasing river floods: fiction or reality? Wiley Interdisciplinary Reviews: Water. doi: 10.1002/wat2.1079

  13. Investigating the Correlation between Miscibility and Physical Stability of Amorphous Solid Dispersions Using Fluorescence-Based Techniques.

    PubMed

    Tian, Bin; Tang, Xing; Taylor, Lynne S

    2016-11-07

    The purpose of this study was to investigate the feasibility of using a fluorescence-based technique to evaluate drug-polymer miscibility and to probe the correlation between miscibility and physical stability of amorphous solid dispersions (ASDs). Indomethacin-hydroxypropyl methylcellulose (IDM-HPMC), indomethacin-hydroxypropyl methylcellulose acetate succinate, and indomethacin-polyvinylpyrrolidone (IDM-PVP) were used as model systems. The miscibility of the IDM-polymer systems was evaluated by fluorescence spectroscopy, fluorescence imaging, differential scanning calorimetry (DSC), and infrared (IR) spectroscopy. The physical stability of IDM-polymer ASDs stored at 40 °C was evaluated using fluorescence imaging and X-ray diffraction (XRD). The experimentally determined miscibility limit of IDM with the polymers was 50-60%, 20-30%, and 70-80% drug loading for HPMC, HPMCAS, and PVP, respectively. The X-ray results showed that for IDM-HPMC ASDs, samples with a drug loading of less than 50% were maintained in amorphous form during the study period, while samples with drug loadings higher than 50% crystallized within 15 days. For IDM-HPMCAS ASDs, samples with drug loading less than 30% remained amorphous, while samples with drug loadings higher than 30% crystallized within 10 days. IDM-PVP ASDs were found to be resistant to crystallization for all compositions. Thus, a good correlation was observed between phase separation and reduced physical stability, suggesting that miscibility is indeed an important ASDs characteristic. In addition, fluorescence-based techniques show promise in the evaluation of drug-polymer miscibility.

  14. RASOR flood modelling

    NASA Astrophysics Data System (ADS)

    Beckers, Joost; Buckman, Lora; Bachmann, Daniel; Visser, Martijn; Tollenaar, Daniel; Vatvani, Deepak; Kramer, Nienke; Goorden, Neeltje

    2015-04-01

    Decision making in disaster management requires fast access to reliable and relevant information. We believe that online information and services will become increasingly important in disaster management. Within the EU FP7 project RASOR (Rapid Risk Assessment and Spatialisation of Risk) an online platform is being developed for rapid multi-hazard risk analyses to support disaster management anywhere in the world. The platform will provide access to a plethora of GIS data that are relevant to risk assessment. It will also enable the user to run numerical flood models to simulate historical and newly defined flooding scenarios. The results of these models are maps of flood extent, flood depths and flow velocities. The RASOR platform will enable to overlay historical event flood maps with observations and Earth Observation (EO) imagery to fill in gaps and assess the accuracy of the flood models. New flooding scenarios can be defined by the user and simulated to investigate the potential impact of future floods. A series of flood models have been developed within RASOR for selected case study areas around the globe that are subject to very different flood hazards: • The city of Bandung in Indonesia, which is prone to fluvial flooding induced by heavy rainfall. The flood hazard is exacerbated by land subsidence. • The port of Cilacap on the south coast of Java, subject to tsunami hazard from submarine earthquakes in the Sunda trench. • The area south of city of Rotterdam in the Netherlands, prone to coastal and/or riverine flooding. • The island of Santorini in Greece, which is subject to tsunamis induced by landslides. Flood models have been developed for each of these case studies using mostly EO data, augmented by local data where necessary. Particular use was made of the new TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) product from the German Aerospace centre (DLR) and EADS Astrium. The presentation will describe the flood models and the

  15. Stochastic trigger model for flood peaks: 2. Application of the model to the flood peaks of Goksu-Karahacili

    NASA Astrophysics Data System (ADS)

    Kavvas, M. L.

    1982-04-01

    In order to assess the suitability of the stochastic trigger process in modeling flood peak occurrences in the time-discharge plane, the trigger process is applied to the flood peaks data of the Karahacili gaging station on the Goksu River, Turkey, in each of the flood seasons which are defined in the paper. The flood peak process in each flood season is treated as a transient stochastic process which starts at the beginning of the season and ends at the end of the season. Consequently, time-discharge nonhomogeneous trigger processes are used to model these seasonal flood peak processes. In each flood season the two-dimensional nonhomogeneous stochastic trigger (TDNST) model is calibrated by fitting its first theoretical time-discharge moment and its second theoretical time moment to the corresponding estimated moments of the observed flood peak counts at Goksu-Karahacili. Then in each flood season the theoretical two-dimensional probability mass function (pmf) of the variable discharge exceedence level (DEL) is calculated from the calibrated TDNST model for that flood season. The goodness of fit of the theoretical two-dimensional pmf to the empirical two-dimensional pmf of the Goksu-Karahacili flood peak counts in each flood season is tested by the chi-square goodness-of-fit (CSGQF) test. In all of the flood seasons the TDNST model passes the CSGOF test at discharge levels above the 500-m3/s DEL. This DEL corresponds to a river stage that is 1 m above the river bank stage at Goksu-Karahacili.

  16. Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting.

    PubMed

    Djuris, Jelena; Nikolakakis, Ioannis; Ibric, Svetlana; Djuric, Zorica; Kachrimanis, Kyriakos

    2013-05-01

    Hot-melt extrusion (HME) is a dust- and solvent-free continuous process enabling the preparation of a variety of solid dosage forms containing solid dispersions of poorly soluble drugs into thermoplastic polymers. Miscibility of drug and polymer is a prerequisite for stable solid dispersion formation. The present study investigates the feasibility of forming solid dispersions of carbamazepine (CBZ) into polyethyleneglycol-polyvinyl caprolactam-polyvinyl acetate grafted copolymer (Soluplus) by hot-melt extrusion. Physicochemical properties of the raw materials, extrudates, co-melted products, and corresponding physical mixtures were characterized by thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflectance infrared (ATR-FTIR) spectroscopy and hot stage microscopy (HSM), while miscibility of CBZ and Soluplus was estimated on the basis of the Flory-Huggins theory, Hansen solubility parameters, and solid-liquid equilibrium equation. It was found that hot-melt extrusion of carbamazepine and Soluplus is feasible on a single-screw hot-melt extruder without the addition of plasticizers. DSC analysis and FTIR spectroscopy revealed that a molecular dispersion is formed when the content of CBZ does not exceed ∼5% w/w while higher CBZ content results in a microcrystalline dispersion of CBZ form III crystals, with the molecularly dispersed percentage increasing with extrusion temperature, at the risk of inducing transformation to the undesirable form I of CBZ. Thermodynamic modeling elucidated potential limitations and temperature dependence of solubility/dispersibility of carbamazepine in Soluplus hot-melt extrudates. The results obtained by thermodynamic models are in agreement with the findings of the HME processing, encouraging therefore their further application in the HME process development.

  17. Low temperature synthesis of Ru–Cu alloy nanoparticles with the compositions in the miscibility gap

    SciTech Connect

    Martynova, S.A.; Filatov, E.Yu.; Korenev, S.V.; Kuratieva, N.V.; Sheludyakova, L.A.; Plusnin, P.E.; Shubin, Yu.V.; Slavinskaya, E.M.; Boronin, A.I.

    2014-04-01

    A complex salt [Ru(NH{sub 3}){sub 5}Cl][Cu(C{sub 2}O{sub 4}){sub 2}H{sub 2}O]—the precursor of nanoalloys combining ruthenium and copper was prepared. It crystallizes in the monoclinic space group P2{sub 1}/n. Thermal properties of the prepared salt were examined in different atmospheres (helium, hydrogen, oxygen). Thermal decomposition of the precursor in inert atmosphere was thoroughly examined and the intermediate products were characterized. Experimental conditions for preparation of copper-rich (up to 12 at% of copper) metastable solid solution Cu{sub x}Ru{sub 1−x} (based on Ru structure) were optimized, what is in sharp contrast to the bimetallic miscibility gap known for the bulk counterparts in a wide composition range. Catalytic properties of copper–ruthenium oxide composite were tested in catalytic oxidation of CO. - Highlights: • We synthesized new precursor of CuRu metastable nanoalloys. • Thermal properties of the prepared salt were examined in different atmospheres. • Thermodestruction mechanism of precursor are studied. • Cu{sub 0.12}Ru{sub 0.88} nanoalloy with the compositions in the miscibility gap is obtained. • Catalytic conversion of CO on copper–ruthenium oxide composite were examined.

  18. Flow and Reactive Transport of Miscible and Immiscible Solutions in Fractured & Porous Media

    NASA Astrophysics Data System (ADS)

    Ryerson, F. J.; Ezzedine, S. M.; Antoun, T.

    2012-12-01

    Miscible and immiscible flows are important phenomena encountered in many industrial and engineering applications such as hydrothermal systems, oil and gas reservoirs, salt/water intrusion, geological carbon sequestration etc… Under the influence of gravity, the flow of fluids with sufficiently large density ratios may become unstable leading to instabilities, mixing and in some instances reactions at the interfacial contact between fluids. Flow is governed by a combination of momentum and mass conservation equations that describe the flow of the fluid phase and a convection-diffusion equation describing the change of concentration in the fluid phase. When hydrodynamic instabilities develop it may be difficult to use standard grid-based methods to model miscible/immiscible flow because the domains occupied by fluids evolve constantly with time. In the current study, adaptive mesh refinement finite elements method has been used to solve for flow and transport equations. Furthermore, a particle tracking scheme has also been implemented to track the kinematics of swarm of particles injected into the porous fractured media to quantify surface area, sweeping zones, and their impact on porosity changes. Spatial and temporal moments of the fingering instabilities and the development of reaction zones and the impact of kinetic reaction at the fluid/solution interfaces have also been analyzed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Assessing the Strength Enhancement of Heterogeneous Networks of Miscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Giller, Carl; Roland, Mike

    2013-03-01

    At the typical crosslink densities of elastomers, the failure properties vary inversely with mechanical stiffness, so that compounding entails a compromise between stiffness and strength. Our approach to circumvent this conventional limitation is by forming networks of two polymers that: (i) are thermodynamically miscible, whereby the chemical composition is uniform on the segmental level; and (ii) have markedly different reactivities for network formation. The resulting elastomer consists of one highly crosslinked component and one that is lightly or uncrosslinked. This disparity in crosslinking causes their respective contributions to the network mechanical response to differ diametrically. Earlier results showed some success with this approach for thermally crosslinked blends of 1,2-polybutadiene (PVE) and polyisoprene (PI), as well as ethylene-propylene copolymer (EPM) and ethylene-propylene-diene random terpolymer (EPDM), taking advantage of their differing reactivities to sulfur. In this work we demonstrate the miscibility of polyisobutylene (PIB) with butyl rubber (BR) (a copolymer of PIB and polyisoprene) and show that networks in which only the BR is crosslinked possess greater tensile strengths than neat BR over the same range of moduli. Office of Naval Research

  20. Entanglement Length in Miscible Blends of cis-Polyisoprene and Poly(ptert-butylstyrene)

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Matsumiya, Yumi

    In miscible polymer blends, the entanglement length is common for the components, but its changes with the composition w remain unclear. For this problem, this study analyzed viscoelastic data for miscible blends of cis-polyisoprene (PI) and poly(ptert-butylstyrene) (PtBS), considering the basic feature that the local relaxation is determined only by wPI. On the basis of this feature, a series of unentangled low- M PI/PtBS blends having various M and a given wPI were utilized as references for well-entangled high- M PI/PtBS blends having the same wPI, and the modulus data of the references were subtracted from the high- M blend data. For an optimally chosen reference, the storage modulus Ge'of the high- M blends obtained after the subtraction exhibited a clear entanglement plateau GN and the corresponding Ge' ' decreased in proportion to 1/ ω at high frequencies ω. Thus, the onset of entanglement relaxation was detected. The GN values were well described by a linear mixing rule of the entanglement length with the number fraction of Kuhn segments of the components being utilized as the averaging weight. This result, not explained by a mean-field picture of entanglement, is discussed in relation to local packing of bulky PtBS chains and skinny PI chains.

  1. Quantum Turbulence Arising from Countersuperflow Instability in Miscible Two-component Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hiromitsu; Ishino, Shungo; Tsubota, Makoto

    2014-05-01

    Turbulence is one of the great unsolved problems in physics. Quantum turbulence (QT) in superfluids is expected to give a prototype of turbulence much simpler than usual classical turbulence and has recently become one of the most important fields in low-temperature physics. Recent development of experimental technique enable us to study QT in atomic Bose-Einstein condensates (BECs). Recently, we proposed that countersuperflow, a flow state of miscible superfluids with a relative velocity, can lead to turbulence after the characteristic instability development of vortex nucleation and vortex reconnection in miscible two-component BECs. QT of two-component BECs can provide another prototype of turbulence because eddies in classical turbulence may be mimicked by vorticity distribution without singularity in this system. In this presentation, we will report on our numerical analysis of the parameter dependence of the statistical property, such as energy spectrum and enstrophy distribution, of the QT arising from countersuperflow instability (CSI) in two-component condensates. This work was supported by JSPS KAKENHI Grant Numbers 25887042, 26870500 and the MEXT KAKENHI (No. 22103003).

  2. Miscible and immiscible experiments on the Rayleigh-Taylor instability using planar laser induced fluorescence visualization

    NASA Astrophysics Data System (ADS)

    Mokler, Matthew; Roberts, Michael; Jacobs, Jeffrey

    2013-11-01

    Incompressible Rayleigh-Taylor instability experiments are presented in which two stratified liquids having Atwood number of 0.2 are accelerated in a vertical linear induction motor driven drop tower. A test sled having only vertical freedom of motion contains the experiment tank and visualization equipment. The sled is positioned at the top of the tower within the linear induction motors and accelerated downward causing the initially stable interface to be unstable and allowing the Rayleigh-Taylor instability to develop. Forced and unforced experiments are conducted using both immiscible and miscible liquid combinations. Forced initial perturbations are produced by vertically oscillating the test sled prior to the start of acceleration. The interface is visualized using a 445 nm laser light source that illuminates a fluorescent dye mixed in one of the fluids. The resulting fluorescent images are recorded using a monochromatic high speed video camera. The laser beam is synchronously swept across the fluorescent fluid, at the frame rate of the camera, exposing a single plane of the interface allowing for the measurement of spike and bubble growth. Comparisons between miscible and immiscible mixing layer distributions are made from the resulting interface concentration profiles.

  3. Characterization of Physical and Mechanical Properties of Miscible Lactose-Sugars Systems.

    PubMed

    Li, Runjing; Roos, Yrjö H; Miao, Song

    2017-09-01

    Lactose-sugars systems were produced by spray drying. They were lactose, lactose-glucose (4:1) mixtures, lactose-maltose (4:1) mixtures, lactose-sucrose (4:1) mixtures, lactose-trehalose (4:1) mixtures, and lactose-corn syrup solids (CSS) (4:1) mixtures. The physical characteristics, water sorption behavior, glass transition, and mechanical properties of miscible lactose-sugars systems were investigated. Lactose-glucose mixtures had larger particle size than other lactose-sugars systems after spray drying. The presence of glucose or sucrose in lactose-sugars mixtures decreased the glass transition temperatures of amorphous systems, while the presence of maltose and trehalose had only minor impact on the glass transition temperatures. Moreover, glucose accelerated the crystallization of amorphous system at 0.44 aw , but its presence delayed the loss of sorbed water at higher water activities (≥0.54 aw ). Mechanical property study indicated that glucose and sucrose in amorphous system could result in an increase of molecular mobility, while the presence of CSS could decrease the free volume and maintain the stiffness of the miscible systems. © 2017 Institute of Food Technologists®.

  4. Oil-Miscible and Non-Corrosive Phosphonium Ionic Liquids as Candidate Lubricant Additives

    SciTech Connect

    Yu, Bo; Bansal, Dinesh G; Qu, Jun; Sun, Xiaoqi; Luo, Huimin; Dai, Sheng; Blau, Peter Julian; Bunting, Bruce G; Mordukhovich, Gregory; Smolenski, Donald

    2012-01-01

    Ionic liquids (ILs) have been receiving considerable attention from the lubricants industry as potential friction and wear-reducing additives, but their solubility in oils is an issue. Unlike most ionic liquids that are insoluble in non-polar hydrocarbon oils, this study reports phosphonium-based ILs (PP-ILs) that are fully miscible with both mineral oil-based and synthetic lubricants. Both the cation and anion in quaternary structures, long alkyl chains, and capability of pairing the cation and the anion via a H-O bond are hypothesized to improve the compatibility between ions and neutral oil molecules. The measured viscosities of the oil-IL blends agree well with the Refutas equation that is for solutions containing multiple components. High thermal stability and non-corrosiveness were observed for the PP-ILs. Effective friction reduction and anti-wear functionality have been demonstrated in tribological tests when adding 5 wt% of a PP-IL into a base oil, suggesting potential applications for using the oil-miscible PP-ILs as lubricant additives.

  5. Cellulose acetate butyrate/poly(caprolactonetriol) blends: Miscibility, mechanical properties, and in vivo inflammatory response.

    PubMed

    Kanis, Luiz A; Marques, Ellen L; Zepon, Karine M; Pereira, Jefferson R; Pamato, Saulo; de Oliveira, Marcelo T; Danielski, Lucinéia G; Petronilho, Fabricia C

    2014-11-01

    This study reports the results of the characterization of cellulose acetate butyrate and polycaprolactone-triol blends in terms of miscibility, swelling capacity, mechanical properties, and inflammatory response in vivo. The cellulose acetate butyrate film was opaque and rigid, with glass transition (T g ) at 134℃ and melting temperature of 156℃. The cellulose acetate butyrate/polycaprolactone-triol films were transparent up to a polycaprolactone-triol content of 60%. T g of the cellulose acetate butyrate films decreased monotonically as polycaprolactone-triol was added to the blend, thus indicating miscibility. FTIR spectroscopy revealed a decrease in intramolecular hydrogen bonding in polycaprolactone-triol, whereas no hydrogen bonding was observed between cellulose acetate butyrate and -OH from polycaprolactone-triol. The increase in polycaprolactone-triol content in the blend decreased the water uptake. An increase in polycaprolactone-triol content decreased the modulus of elasticity and increased the elongation at break. A cellulose acetate butyrate/polycaprolactone-triol 70/30 blend implanted in rats showed only an acute inflammatory response 7 days after surgery. No change in inflammation mediators was observed.

  6. Buoyancy driven mixing of miscible fluids by volumetric energy deposition of microwaves.

    PubMed

    Wachtor, Adam J; Mocko, Veronika; Williams, Darrick J; Goertz, Matthew P; Jebrail, Farzaneh F

    2013-01-01

    An experiment that seeks to investigate buoyancy driven mixing of miscible fluids by microwave volumetric energy deposition is presented. The experiment involves the use of a light, non-polar fluid that initially rests on top of a heavier fluid which is more polar. Microwaves preferentially heat the polar fluid, and its density decreases due to thermal expansion. As the microwave heating continues, the density of the lower fluid eventually becomes less than that of the upper, and buoyancy driven Rayleigh-Taylor mixing ensues. The choice of fluids is crucial to the success of the experiment, and a description is given of numerous fluid combinations considered and characterized. After careful consideration, the miscible pair of toluene/tetrahydrofuran (THF) was determined as having the best potential for successful volumetric energy deposition buoyancy driven mixing. Various single fluid calibration experiments were performed to facilitate the development of a heating theory. Thereafter, results from two-fluid mixing experiments are presented that demonstrate the capability of this novel Rayleigh-Taylor driven experiment. Particular interest is paid to the onset of buoyancy driven mixing and unusual aspects of the experiment in the context of typical Rayleigh-Taylor driven mixing.

  7. Experimental study of 3D Rayleigh-Taylor convection between miscible fluids in a porous medium

    NASA Astrophysics Data System (ADS)

    Nakanishi, Yuji; Hyodo, Akimitsu; Wang, Lei; Suekane, Tetsuya

    2016-11-01

    The natural convection of miscible fluids in porous media has applications in several fields, such as geoscience and geoengineering, and can be employed for the geological storage of CO2. In this study, we used X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appeared at the interface. As the wavelength and amplitude increased, descending fingers formed on the interface and extended vertically downward; in addition, ascending and highly symmetric fingers formed. The adjacent fingers were cylindrical in shape and coalesced to form large fingers. The fingers appearing on the interface tended to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. When the Péclet number exceeded 10, transverse dispersion increased the finger diameter and enhanced the finger coalescence, strongly impacting the decrease in finger number density. When mechanical dispersion was negligible, the finger-extension velocity and the dimensionless mass-transfer rate scaled with the characteristic velocity and the Rayleigh number with an appropriate length scale. Mechanical dispersion not only reduced the onset time but also enhanced the mass transport.

  8. Forming Nanoparticle Monolayers at Liquid-Air Interfaces by Using Miscible Liquids.

    PubMed

    Zhang, Datong; Hu, Jiayang; Kennedy, Kathleen M; Herman, Irving P

    2016-08-23

    One standard way of forming monolayers (MLs) of nanoparticles (NPs) is to drop-cast a NP dispersion made using one solvent onto a second, immiscible solvent; after this upper solvent evaporates, the NP ML can be transferred to a solid substrate by liftoff. We show that this previously universal use of only immiscible solvent pairs can be relaxed and close-packed, hexagonally ordered NP monolayers can self-assemble at liquid-air interfaces when some miscible solvent pairs are used instead. We demonstrate this by drop-casting an iron oxide NP dispersion in toluene on a dimethyl sulfoxide (DMSO) liquid substrate. The NPs are energetically stable at the DMSO surface and remain there even with solvent mixing. Excess NPs coagulate and precipitate in the DMSO, and this limits NPs at the surface to approximately 1 ML. The ML domains at the surface nucleate independently, which is in contrast to ML growth at the receding edge of the drying drop, as is common in immiscible solvent pair systems and seen here for the toluene/diethylene glycol immiscible solvent pair system. This new use of miscible solvent pairs can enable the formation of MLs for a wider range of NPs.

  9. SERVIR-Africa: Developing an Integrated Platform for Floods Disaster Management in Africa

    NASA Technical Reports Server (NTRS)

    Macharia, Daniel; Korme, Tesfaye; Policelli, Fritz; Irwin, Dan; Adler, Bob; Hong, Yang

    2010-01-01

    SERVIR-Africa is an ambitious regional visualization and monitoring system that integrates remotely sensed data with predictive models and field-based data to monitor ecological processes and respond to natural disasters. It aims addressing societal benefits including floods and turning data into actionable information for decision-makers. Floods are exogenous disasters that affect many parts of Africa, probably second only to drought in terms of social-economic losses. This paper looks at SERVIR-Africa's approach to floods disaster management through establishment of an integrated platform, floods prediction models, post-event flood mapping and monitoring as well as flood maps dissemination in support of flood disaster management.

  10. Climate change impacts on future flooding in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mirza, M.

    2003-04-01

    Bangladesh is located at the tail end of the three large river systems- the Ganges, Brahmaputra and Meghna. About 92.5% of the basin area is located outside of its boundary. The country is frequently devastated by floods and can engulf up to 70% of the country. Economic damage could be as high as 10% of the GDP. Cross border and local precipitation plays a major role in generating floods in Bangladesh. However, precipitation over some cross border areas is really crucial for the flooding process. Any change in precipitation regime in those areas in future may aggravate flooding in Bangladesh. In this paper future flooding situation in Bangladesh has been assessed in a three-step procedure. First, stepwise regression method was applied to identify climatologically important regions those contribute to flooding. Second, precipitation scenarios were constructed. Third, the scenarios were applied in the regression models to determine future flood discharges in the Ganges, Brahmaputra and Meghna rivers in Bangladesh.

  11. Communicating Flood Risk with Street-Level Data

    NASA Astrophysics Data System (ADS)

    Sanders, B. F.; Matthew, R.; Houston, D.; Cheung, W. H.; Karlin, B.; Schubert, J.; Gallien, T.; Luke, A.; Contreras, S.; Goodrich, K.; Feldman, D.; Basolo, V.; Serrano, K.; Reyes, A.

    2015-12-01

    Coastal communities around the world face significant and growing flood risks that require an accelerating adaptation response, and fine-resolution urban flood models could serve a pivotal role in enabling communities to meet this need. Such models depict impacts at the level of individual buildings and land parcels or "street level" - the same spatial scale at which individuals are best able to process flood risk information - constituting a powerful tool to help communities build better understandings of flood vulnerabilities and identify cost-effective interventions. To measure understanding of flood risk within a community and the potential impact of street-level models, we carried out a household survey of flood risk awareness in Newport Beach, California, a highly urbanized coastal lowland that presently experiences nuisance flooding from high tides, waves and rainfall and is expected to experience a significant increase in flood frequency and intensity with climate change. Interviews were completed with the aid of a wireless-enabled tablet device that respondents could use to identify areas they understood to be at risk of flooding and to view either a Federal Emergency Management Agency (FEMA) flood map or a more detailed map prepared with a hydrodynamic urban coastal flood model (UCI map) built with grid cells as fine as 3 m resolution and validated with historical flood data. Results indicate differences in the effectiveness of the UCI and FEMA maps at communicating the spatial distribution of flood risk, gender differences in how the maps affect flood understanding, and spatial biases in the perception of flood vulnerabilities.

  12. Increasing river floods: fiction or reality?

    PubMed

    Blöschl, Günter; Gaál, Ladislav; Hall, Julia; Kiss, Andrea; Komma, Jürgen; Nester, Thomas; Parajka, Juraj; Perdigão, Rui A P; Plavcová, Lenka; Rogger, Magdalena; Salinas, José Luis; Viglione, Alberto

    2015-01-01

    There has been a surprisingly large number of major floods in the last years around the world, which suggests that floods may have increased and will continue to increase in the next decades. However, the realism of such changes is still hotly discussed in the literature. This overview article examines whether floods have changed in the past and explores the driving processes of such changes in the atmosphere, the catchments and the river system based on examples from Europe. Methods are reviewed for assessing whether floods may increase in the future. Accounting for feedbacks within the human-water system is important when assessing flood changes over lead times of decades or centuries. It is argued that an integrated flood risk management approach is needed for dealing with future flood risk with a focus on reducing the vulnerability of the societal system. WIREs Water 2015, 2:329-344. doi: 10.1002/wat2.1079 For further resources related to this article, please visit the WIREs website.

  13. Microwave remote sensing of flood inundation

    NASA Astrophysics Data System (ADS)

    Schumann, Guy J.-P.; Moller, Delwyn K.

    Flooding is one of the most costly natural disasters and thus mapping, modeling and forecasting flood events at various temporal and spatial scales is important for any flood risk mitigation plan, disaster relief services and the global (re-)insurance markets. Both computer models and observations (ground-based, airborne and Earth-orbiting) of flood processes and variables are of great value but the amount and quality of information available varies greatly with location, spatial scales and time. It is very well known that remote sensing of flooding, especially in the microwave region of the electromagnetic spectrum, can complement ground-based observations and be integrated with flood models to augment the amount of information available to end-users, decision-makers and scientists. This paper aims to provide a concise review of both the science and applications of microwave remote sensing of flood inundation, focusing mainly on synthetic aperture radar (SAR), in a variety of natural and man-made environments. Strengths and limitations are discussed and the paper will conclude with a brief account on perspectives and emerging technologies.

  14. NASA Global Flood Mapping System

    NASA Technical Reports Server (NTRS)

    Policelli, Fritz; Slayback, Dan; Brakenridge, Bob; Nigro, Joe; Hubbard, Alfred

    2017-01-01

    Product utility key factors: Near real time, automated production; Flood spatial extent Cloudiness Pixel resolution: 250m; Flood temporal extent; Flash floods short duration on ground?; Landcover--Water under vegetation cover vs open water

  15. Evaluation of various modelling approaches in flood routing simulation and flood area mapping

    NASA Astrophysics Data System (ADS)

    Papaioannou, George; Loukas, Athanasios; Vasiliades, Lampros; Aronica, Giuseppe

    2016-04-01

    An essential process of flood hazard analysis and mapping is the floodplain modelling. The selection of the modelling approach, especially, in complex riverine topographies such as urban and suburban areas, and ungauged watersheds may affect the accuracy of the outcomes in terms of flood depths and flood inundation area. In this study, a sensitivity analysis implemented using several hydraulic-hydrodynamic modelling approaches (1D, 2D, 1D/2D) and the effect of modelling approach on flood modelling and flood mapping was investigated. The digital terrain model (DTMs) used in this study was generated from Terrestrial Laser Scanning (TLS) point cloud data. The modelling approaches included 1-dimensional hydraulic-hydrodynamic models (1D), 2-dimensional hydraulic-hydrodynamic models (2D) and the coupled 1D/2D. The 1D hydraulic-hydrodynamic models used were: HECRAS, MIKE11, LISFLOOD, XPSTORM. The 2D hydraulic-hydrodynamic models used were: MIKE21, MIKE21FM, HECRAS (2D), XPSTORM, LISFLOOD and FLO2d. The coupled 1D/2D models employed were: HECRAS(1D/2D), MIKE11/MIKE21(MIKE FLOOD platform), MIKE11/MIKE21 FM(MIKE FLOOD platform), XPSTORM(1D/2D). The validation process of flood extent achieved with the use of 2x2 contingency tables between simulated and observed flooded area for an extreme historical flash flood event. The skill score Critical Success Index was used in the validation process. The modelling approaches have also been evaluated for simulation time and requested computing power. The methodology has been implemented in a suburban ungauged watershed of Xerias river at Volos-Greece. The results of the analysis indicate the necessity of sensitivity analysis application with the use of different hydraulic-hydrodynamic modelling approaches especially for areas with complex terrain.

  16. Flood management: prediction of microbial contamination in large-scale floods in urban environments.

    PubMed

    Taylor, Jonathon; Lai, Ka Man; Davies, Mike; Clifton, David; Ridley, Ian; Biddulph, Phillip

    2011-07-01

    With a changing climate and increased urbanisation, the occurrence and the impact of flooding is expected to increase significantly. Floods can bring pathogens into homes and cause lingering damp and microbial growth in buildings, with the level of growth and persistence dependent on the volume and chemical and biological content of the flood water, the properties of the contaminating microbes, and the surrounding environmental conditions, including the restoration time and methods, the heat and moisture transport properties of the envelope design, and the ability of the construction material to sustain the microbial growth. The public health risk will depend on the interaction of these complex processes and the vulnerability and susceptibility of occupants in the affected areas. After the 2007 floods in the UK, the Pitt review noted that there is lack of relevant scientific evidence and consistency with regard to the management and treatment of flooded homes, which not only put the local population at risk but also caused unnecessary delays in the restoration effort. Understanding the drying behaviour of flooded buildings in the UK building stock under different scenarios, and the ability of microbial contaminants to grow, persist, and produce toxins within these buildings can help inform recovery efforts. To contribute to future flood management, this paper proposes the use of building simulations and biological models to predict the risk of microbial contamination in typical UK buildings. We review the state of the art with regard to biological contamination following flooding, relevant building simulation, simulation-linked microbial modelling, and current practical considerations in flood remediation. Using the city of London as an example, a methodology is proposed that uses GIS as a platform to integrate drying models and microbial risk models with the local building stock and flood models. The integrated tool will help local governments, health authorities

  17. ON EFFECT OF HAZARD MAP ON CONS CIOUSNESS OF FLOOD DISASTER PREVENSION OF RESIDENTS WHO EXPERIENCED FLOOD RECENTLY

    NASA Astrophysics Data System (ADS)

    Asai, Koji; Koga, Syota; Sakakibara, Hiroyuki

    In this paper, the effect of the flood hazard map distributed to the residents who experienced flood disasters recently and an effective method for improving consciousness of flood di saster prevention are discussed. The questionnaire surveys were conducted on the residents living in the middle basin of the Nishiki River, Iwakuni city, Yamaguchi Prefecture, before and after the distribution of the hazard map. It is found from this investigation that "knowledge", "att achment", and "crisis", are the main factors in the psychological process related to the flood prevention behavior. The effect of the distribution of the hazard map is judged from the probability of the flood prevention behavior. In addition, it is also found that "knowledge", "flood experiment of T0514", "crisis", "eff ectiveness", "load", and "easy reading of the hazard map", are keys to improve the cons ciousness of flood di saster prevention.

  18. High resolution mapping of flood hazard for South Korea

    NASA Astrophysics Data System (ADS)

    Ghosh, Sourima; Nzerem, Kechi; Zovi, Francesco; Li, Shuangcai; Mei, Yi; Assteerawatt, Anongnart; Hilberts, Arno; Tillmanns, Stephan; Mitas, Christos

    2015-04-01

    Floods are one of primary natural hazards that affect South Korea. During the past 15 years, catastrophic flood events which mainly have occurred during the rainy and typhoon seasons - especially under condition where soils are already saturated, have triggered substantial property damage with an average annual loss of around US1.2 billion (determined from WAter Management Information System's flood damage database for years 2002-2011) in South Korea. According to Seoul Metropolitan Government, over 16,000 households in the capital city Seoul were inundated during 2010 flood events. More than 10,000 households in Seoul were apparently flooded during one major flood event due to torrential rain in July 2011. Recently in August 2014, a serious flood event due to heavy rainfall hit the Busan region in the south east of South Korea. Addressing the growing needs, RMS has recently released country-wide high resolution combined flood return period maps for post-drainage local "pluvial" inundation and undefended large-scale "fluvial" inundation to aid the government and the insurance industry in the evaluation of comprehensive flood risk. RMS has developed a flood hazard model for South Korea to generate inundation depths and extents for a range of flood return periods. The model is initiated with 30 years of historical meteorological forcing data and calibrated to daily observations at over 100 river gauges across the country. Simulations of hydrologic processes are subsequently performed based on a 2000 year set of stochastic forcing. Floodplain inundation processes are modelled by numerically solving the shallow water equations using finite volume method on GPUs. Taking into account the existing stormwater drainage standards, economic exposure densities, etc., reasonable flood maps are created from inundation model output. Final hazard maps at one arcsec grid resolution can be the basis for both evaluating and managing flood risk, its economic impacts, and insured flood

  19. Necessity of Flood Early Warning Systems in India

    NASA Astrophysics Data System (ADS)

    Kurian, C.; Natesan, U.; Durga Rao, K. H. V.

    2014-12-01

    India is one of the highly flood prone countries in the world. National flood commission has reported that 400,000 km² of geographical area is prone to floods, constituting to twelve percent of the country's geographical area. Despite the reoccurrences of floods, India still does not have a proper flood warning system. Probably this can be attributed to the lack of trained personnel in using advanced techniques. Frequent flood hazards results in damage to livelihood, infrastructure and public utilities. India has a potential to develop an early warning system since it is one of the few countries where satellite based inputs are regularly used for monitoring and mitigating floods. However, modeling of flood extent is difficult due to the complexity of hydraulic and hydrologic processes during flood events. It has been reported that numerical methods of simulations can be effectively used to simulate the processes correctly. Progress in computational resources, data collection and development of several numerical codes has enhanced the use of hydrodynamic modeling approaches to simulate the flood extent in the floodplains. In this study an attempt is made to simulate the flood in one of the sub basins of Godavari River in India using hydrodynamic modeling techniques. The modeling environment includes MIKE software, which simulates the water depth at every grid cell of the study area. The runoff contribution from the catchment was calculated using Nebdor Afstromnings model. With the hydrodynamic modeling approach, accuracy in discharge and water level computations are improved compared to the conventional methods. The results of the study are proming to develop effective flood management plans in the basin. Similar studies could be taken up in other flood prone areas of the country for continuous modernisation of flood forecasting techniques, early warning systems and strengthening decision support systems, which will help the policy makers in developing management

  20. Validation of a Global Hydrodynamic Flood Inundation Model

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  1. "Prophetic vision, vivid imagination": The 1927 Mississippi River flood

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Baeck, Mary Lynn

    2015-12-01

    The 1927 flood in the Lower Mississippi River was the most destructive flood in American history, inundating more than 70,000 km2 of land, resulting in approximately 500 fatalities and leaving more than 700,000 people homeless. Despite the prominence of the 1927 flood, details on the flood, and the storms that produced the flood, are sparse. We examine the hydrometeorology and hydroclimatology of the 1927 flood in the Lower Mississippi River through downscaling simulations of the storms that were responsible for catastrophic flooding and through empirical analyses of rainfall and streamflow records. We use Twentieth Century Reanalysis fields as boundary conditions and initial conditions for downscaling simulations using the Weather Research and Forecasting (WRF) model. We place the hydrometeorological analyses of the 1927 storms in a hydroclimatological context through analyses of the Twentieth Century Reanalysis fields. Analyses are designed to assess the physical processes that control the upper tail of flooding in the Lower Mississippi River. We compare the 1927 flood in the Lower Mississippi River to floods in 1937 and 2011 that represent the most extreme flooding in the Lower Mississippi River.

  2. Glacier generated floods

    USGS Publications Warehouse

    Walder, J.S.; Fountain, A.G.; ,

    1997-01-01

    Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.

  3. Discover Floods Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2009

    2009-01-01

    Now available as a Download! This valuable resource helps educators teach students about both the risks and benefits of flooding through a series of engaging, hands-on activities. Acknowledging the different roles that floods play in both natural and urban communities, the book helps young people gain a global understanding of this common--and…

  4. Integrated flood management.

    PubMed

    Grabs, W; Tyagi, A C; Hyodo, M

    2007-01-01

    While there have been a number of international initiatives centred around hydrological sciences and technical approaches, the social, economic, environmental, and legal and institutional aspects of flood management have been dealt with sporadically and in a limited manner. WMO and the Global Water Partnership have established the Associated Programme on Flood Management (APFM) to address these issues and developed a concept of Integrated Flood Management (IFM) in 2002. This article is the result of the integrated flood management approaches through pilot projects and multi-disciplinary approaches launched by the initiative since the establishment of the IFM concept. This approach seeks to integrate land- and water-resources development in a river basin, within the context of Integrated Water Resources Management (IWRM) and aims at maximizing the benefits from floodplains and at the same time reducing loss of life from flooding. This approach identified the key elements of IFM and recommended that these can be put in place by: adopting a basin approach to flood management; adopting a multi-disciplinary approach in flood management; reducing vulnerability to and risks from flooding; enabling community participation; and preserving ecosystems; and addressing climate change and variability, supported by enabling mechanism through appropriate legislation and regulations.

  5. The Spokane flood controversy

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1978-01-01

    An enormous plexus of proglacial channels that eroded into the loess and basalt of the Columbia Plateau, eastern Washington is studied. This channeled scabland contained erosional and depositional features that were unique among fluvial phenomena. Documentation of the field relationships of the region explains the landforms as the product of a relatively brief, but enormous flood, then so-called the Spokane flood.

  6. Discover Floods Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2009

    2009-01-01

    Now available as a Download! This valuable resource helps educators teach students about both the risks and benefits of flooding through a series of engaging, hands-on activities. Acknowledging the different roles that floods play in both natural and urban communities, the book helps young people gain a global understanding of this common--and…

  7. Machine Learning Predictions of Flash Floods

    NASA Astrophysics Data System (ADS)

    Clark, R. A., III; Flamig, Z.; Gourley, J. J.; Hong, Y.

    2016-12-01

    This study concerns the development, assessment, and use of machine learning (ML) algorithms to automatically generate predictions of flash floods around the world from numerical weather prediction (NWP) output. Using an archive of NWP outputs from the Global Forecast System (GFS) model and a historical archive of reports of flash floods across the U.S. and Europe, we developed a set of ML models that output forecasts of the probability of a flash flood given a certain set of atmospheric conditions. Using these ML models, real-time global flash flood predictions from NWP data have been generated in research mode since February 2016. These ML models provide information about which atmospheric variables are most important in the flash flood prediction process. The raw ML predictions can be calibrated against historical events to generate reliable flash flood probabilities. The automatic system was tested in a research-to-operations testbed enviroment with National Weather Service forecasters. The ML models are quite successful at incorporating large amounts of information in a computationally-efficient manner and and result in reasonably skillful predictions. The system is largely successful at identifying flash floods resulting from synoptically-forced events, but struggles with isolated flash floods that arise as a result of weather systems largely unresolvable by the coarse resolution of a global NWP system. The results from this collection of studies suggest that automatic probabilistic predictions of flash floods are a plausible way forward in operational forecasting, but that future research could focus upon applying these methods to finer-scale NWP guidance, to NWP ensembles, and to forecast lead times beyond 24 hours.

  8. Deriving global flood hazard maps of fluvial floods through a physical model cascade

    NASA Astrophysics Data System (ADS)

    Pappenberger, F.; Dutra, E.; Wetterhall, F.; Cloke, H.

    2012-05-01

    Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (re)insurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF) land surface model is coupled to ERA-Interim reanalysis meteorological forcing data, and resultant runoff is passed to a river routing algorithm which simulates floodplains and flood flow across the global land area. The global hazard map is based on a 30 yr (1979-2010) simulation period. A Gumbel distribution is fitted to the annual maxima flows to derive a number of flood return periods. The return periods are calculated initially for a 25 × 25 km grid, which is then reprojected onto a 1 × 1 km grid to derive maps of higher resolution and estimate flooded fractional area for the individual 25 × 25 km cells. Several global and regional maps of flood return periods ranging from 2 to 500 yr are presented. The results compare reasonably to a benchmark data set of global flood hazard. The developed methodology can be applied to other datasets on a global or regional scale.

  9. Deriving global flood hazard maps of fluvial floods through a physical model cascade

    NASA Astrophysics Data System (ADS)

    Pappenberger, F.; Dutra, E.; Wetterhall, F.; Cloke, H. L.

    2012-11-01

    Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (re)insurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF) land surface model is coupled to ERA-Interim reanalysis meteorological forcing data, and resultant runoff is passed to a river routing algorithm which simulates floodplains and flood flow across the global land area. The global hazard map is based on a 30 yr (1979-2010) simulation period. A Gumbel distribution is fitted to the annual maxima flows to derive a number of flood return periods. The return periods are calculated initially for a 25 × 25 km grid, which is then reprojected onto a 1 × 1 km grid to derive maps of higher resolution and estimate fl