Sample records for misr multiangle imaging

  1. MISR Where on Earth…? Mystery Image Quiz #29

    Atmospheric Science Data Center

    2017-09-07

    ... ready for a challenge? Become a geographical detective and solve the latest mystery quiz from NASA’s MISR (Multi-angle Imaging ... ready for a challenge? Become a geographical detective and solve the latest mystery quiz from NASA’s MISR (Multi-angle Imaging ...

  2. Mystery #28

    Atmospheric Science Data Center

    2017-06-14

    ... ready for a challenge? Become a geographical detective and solve the latest mystery quiz from NASA’s MISR (Multi-angle Imaging ... ready for a challenge? Become a geographical detective and solve the latest mystery quiz from NASA’s MISR (Multi-angle Imaging ...

  3. Multi-angle Imaging Spectro Radiometer (MISR) Design Issues Influened by Performance Requirements

    NASA Technical Reports Server (NTRS)

    Bruegge, C. J.; White, M. L.; Chrien, N. C. L.; Villegas, E. B.; Raouf, N.

    1993-01-01

    The design of an Earth Remote Sensing Sensor, such as the Multi-angle Imaging SpectroRadiometer (MISR), begins with a set of science requirements and is quickly followed by a set of instrument specifications.

  4. Mystery #11 Answer

    Atmospheric Science Data Center

    2013-04-22

    article title:  MISR Mystery Image Quiz #11: Queensland, Australia     View Larger Image These Multi-angle Imaging SpectroRadiometer (MISR) images of ... MISR Team. Text acknowledgment: Clare Averill, David J. Diner, Graham Bothwell (Jet Propulsion Laboratory). Other formats ...

  5. The application of support vector machines to analysis of global satellite data sets from MlSR

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Diner, David J.

    2005-01-01

    The Multi-angle Imaging Spectro Radiometer (MISR) is one of a suite of five instruments onboard NASA's Terra EOS satellite, launched in December 1999. Typical satellite imagers view the earth from a single direction, but MISR's cameras image the earth simultaneously from nine different directions in four spectral bands. In this way, MISR provides unique multiangle information about solar radiation scattered from clouds, aerosols and other terrestrial surfaces. One of the primary goals of the MISR mission is to improve our understanding of how clouds and aerosols affect the earth's global energy balance.

  6. Forest canopy height from Multiangle Imaging SpectroRadiometer (MISR) assessed with high resolution discrete return lidar

    Treesearch

    Mark Chopping; Anne Nolin; Gretchen G. Moisen; John V. Martonchik; Michael Bull

    2009-01-01

    In this study retrievals of forest canopy height were obtained through adjustment of a simple geometricoptical (GO) model against red band surface bidirectional reflectance estimates from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped to a 250 m grid. The soil-understory background contribution was partly isolated prior to inversion using regression...

  7. Validation of multi-angle imaging spectroradiometer aerosol products in China

    Treesearch

    J. Liu; X. Xia; Z. Li; P. Wang; M. Min; WeiMin Hao; Y. Wang; J. Xin; X. Li; Y. Zheng; Z. Chen

    2010-01-01

    Based on AErosol RObotic NETwork and Chinese Sun Hazemeter Network data, the Multi-angle Imaging SpectroRadiometer (MISR) level 2 aerosol optical depth (AOD) products are evaluated in China. The MISR retrievals depict well the temporal aerosol trend in China with correlation coefficients exceeding 0.8 except for stations located in northeast China and at the...

  8. An empirical study on the utility of BRDF model parameters and topographic parameters for mapping vegetation in a semi-arid region with MISR imagery

    USDA-ARS?s Scientific Manuscript database

    Multi-angle remote sensing has been proved useful for mapping vegetation community types in desert regions. Based on Multi-angle Imaging Spectro-Radiometer (MISR) multi-angular images, this study compares roles played by Bidirectional Reflectance Distribution Function (BRDF) model parameters with th...

  9. Development of an Aerosol Opacity Retrieval Algorithm for Use with Multi-Angle Land Surface Images

    NASA Technical Reports Server (NTRS)

    Diner, D.; Paradise, S.; Martonchik, J.

    1994-01-01

    In 1998, the Multi-angle Imaging SpectroRadiometer (MISR) will fly aboard the EOS-AM1 spacecraft. MISR will enable unique methods for retrieving the properties of atmospheric aerosols, by providing global imagery of the Earth at nine viewing angles in four visible and near-IR spectral bands. As part of the MISR algorithm development, theoretical methods of analyzing multi-angle, multi-spectral data are being tested using images acquired by the airborne Advanced Solid-State Array Spectroradiometer (ASAS). In this paper we derive a method to be used over land surfaces for retrieving the change in opacity between spectral bands, which can then be used in conjunction with an aerosol model to derive a bound on absolute opacity.

  10. Ash from Kilauea Eruption Viewed by NASA's MISR

    Atmospheric Science Data Center

    2018-06-07

    ... title:  Ash from Kilauea Eruption Viewed by NASA's MISR View Larger Image   Ash ... Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite captured this view of the island as it passed overhead. ...

  11. Florida

    Atmospheric Science Data Center

    2014-05-15

    ...     View Larger Image Multi-angle Imaging SpectroRadiometer (MISR) images of Florida ... Center Atmospheric Science Data Center in Hampton, VA. Photo credit: NASA/GSFC/LaRC/JPL, MISR Science Team Other formats ...

  12. Mystery #19 Answer

    Atmospheric Science Data Center

    2013-04-22

    ... article title:  MISR Mystery Image Quiz #19: Black Sea     View Larger Image This natural-color image of the Black Sea from the Multi-angle Imaging SpectroRadiometer (MISR) represents an area of ...

  13. James Bay

    Atmospheric Science Data Center

    2013-04-17

    ...     View Larger Image The first images taken by NASA's Multi-angle Imaging ... many of MISR's new and unique capabilities," said Dr. David J. Diner, MISR principal investigator of NASA's Jet Propulsion Laboratory, ...

  14. Vegetation canopy structure from NASA EOS multiangle imaging

    USDA-ARS?s Scientific Manuscript database

    We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjus...

  15. Physical Interpretation of the Correlation Between Multi-Angle Spectral Data and Canopy Height

    NASA Technical Reports Server (NTRS)

    Schull, M. A.; Ganguly, S.; Samanta, A.; Huang, D.; Shabanov, N. V.; Jenkins, J. P.; Chiu, J. C.; Marshak, A.; Blair, J. B.; Myneni, R. B.; hide

    2007-01-01

    Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally

  16. Where on Earth...? MISR Mystery Image Quiz #24: Shandong Province, China

    NASA Image and Video Library

    2010-11-03

    This image of the Shandong Province, China was acquired by the Multi-angle Imaging SpectroRadiometer instrument aboard NASA Terra spacecraft. This image is from the MISR Where on Earth...? Mystery Quiz #24.

  17. Sua Pan surface bidirectional reflectance: a validation experiment of the Multi-angle Imaging SpectroRadiometer (MISR) during SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Abdou, Wedad A.; Pilorz, Stuart H.; Helmlinger, Mark C.; Diner, David J.; Conel, James E.; Martonchik, John V.; Gatebe, Charles K.; King, Michael D.; Hobbs, Peter V.

    2004-01-01

    The Southern Africa Regional Science Initiative (SAFARI 2000) dray deason campaign was carried out during August and September 2000 at the peak of biomass burning. The intensive ground-based and airborne measurements in this campaign provided a unique opportunity to validate space sensors, such as the Multi-angle Imaging SpectroRadiometer (MISR), onboard NASA's EOS Terra platform.

  18. Multi-Angle View of the Canary Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A multi-angle view of the Canary Islands in a dust storm, 29 February 2000. At left is a true-color image taken by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. This image was captured by the MISR camera looking at a 70.5-degree angle to the surface, ahead of the spacecraft. The middle image was taken by the MISR downward-looking (nadir) camera, and the right image is from the aftward 70.5-degree camera. The images are reproduced using the same radiometric scale, so variations in brightness, color, and contrast represent true variations in surface and atmospheric reflectance with angle. Windblown dust from the Sahara Desert is apparent in all three images, and is much brighter in the oblique views. This illustrates how MISR's oblique imaging capability makes the instrument a sensitive detector of dust and other particles in the atmosphere. Data for all channels are presented in a Space Oblique Mercator map projection to facilitate their co-registration. The images are about 400 km (250 miles)wide, with a spatial resolution of about 1.1 kilometers (1,200 yards). North is toward the top. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  19. MISR: protection from ourselves

    NASA Technical Reports Server (NTRS)

    Nolan, T.; Varanasi, P.

    2004-01-01

    Outlines lessons learned by the Instrument Operations Team of NASA/JPL Terra's Multi-angle Imaging SpectroRadiometer mission. It narrates a story of MISR: Protection from Ourselves! and describes, in detail, how the MISR instrument survived operator errors.

  20. MISR Where on Earth ...? MISR Mystery Image Quiz #29

    NASA Image and Video Library

    2017-06-21

    Are you ready for a challenge? Become a geographical detective and solve the latest mystery quiz from NASA's MISR Multi-angle Imaging SpectroRadiometer (MISR) instrument onboard the Terra satellite. Prize submissions for perfect scores accepted until Wednesday, June 28, at 4:00 p.m. PDT. Happy sleuthing! Take the quiz here http://climate.nasa.gov/quizzes/misr_quiz_29. https://photojournal.jpl.nasa.gov/catalog/PIA21762

  1. Where on Earth...? MISR Mystery Image Quiz #13: Western Uzbekistan and Northeastern Turkmenistan

    NASA Image and Video Library

    2003-03-19

    Acquired by the Multi-angle Imaging SpectroRadiometer instrument aboard NASA Terra spacecraft, this image is from the MISR Where on Earth...? Mystery Quiz #13. The location is Western Uzbekistan and Northeastern Turkmenistan.

  2. Colorado

    Atmospheric Science Data Center

    2014-05-15

    ... the Multi-angle Imaging SpectroRadiometer (MISR). On the left, a natural-color view acquired by MISR's vertical-viewing (nadir) camera ... Gunnison River at the city of Grand Junction. The striking "L" shaped feature in the lower image center is a sandstone monocline known as ...

  3. Mystery #21 Answer

    Atmospheric Science Data Center

    2013-04-22

    article title:  MISR Mystery Image Quiz #21: Actinoform Clouds ... This mystery concerns a particular type of cloud, one example of which was imaged by the Multi-angle Imaging SpectroRadiometer (MISR) ... ) These clouds are commonly tracked using propeller-driven research aircraft. Answer: C is True. The weather satellite, TIROS ...

  4. MISR Where on Earth...? MISR Mystery Image Quiz #28

    NASA Image and Video Library

    2016-11-16

    Are you ready for a challenge? Become a geographical detective and solve the latest mystery quiz from NASA's MISR (Multi-angle Imaging SpectroRadiometer) instrument onboard the Terra satellite. Prize submissions for perfect scores accepted until Wednesday, November 23, at 4:00 p.m. PST. Happy sleuthing! Take the quiz here http://climate.nasa.gov/quizzes/misr_quiz_28. http://photojournal.jpl.nasa.gov/catalog/PIA15375

  5. Mystery #21

    Atmospheric Science Data Center

    2013-04-22

    article title:  MISR Mystery Image Quiz #21   ... This mystery concerns a particular type of cloud, one example of which was imaged by the Multi-angle Imaging SpectroRadiometer (MISR) ... ) These clouds are commonly tracked using propeller-driven research aircraft. 3.   Two of these statements are false. Which one is ...

  6. Hawaii

    Atmospheric Science Data Center

    2014-05-15

    article title:  Big Island, Hawaii     View Larger ... Multi-angle Imaging SpectroRadiometer (MISR) images of the Big Island of Hawaii, April - June 2000. The images have been rotated so that ... NASA's Goddard Space Flight Center, Greenbelt, MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science ...

  7. Model-Derived Global Aerosol Climatology for MISR Analysis ("Clim-Likely" Data Set)

    Atmospheric Science Data Center

    2018-04-19

    Model-Derived Global Aerosol Climatology for MISR Analysis Multi-angle Imaging ... (MISR) monthly, global 1° x 1° "Clim-Likely" aerosol climatology, derived from 'typical-year' aerosol transport model results are available for individual 1° x 1° boxes or ...

  8. MISR INTEX-B Products

    Atmospheric Science Data Center

    2016-11-25

    ... scales and assess their impact on air quality and climate. Phase B will be performed March 1-31, 2006 and it will focus on Mexico City pollution outflow. The Multi-angle Imaging SpectroRadiometer (MISR) team ...

  9. Calibration Plans for the Multi-angle Imaging SpectroRadiometer (MISR)

    NASA Astrophysics Data System (ADS)

    Bruegge, C. J.; Duval, V. G.; Chrien, N. L.; Diner, D. J.

    1993-01-01

    The EOS Multi-angle Imaging SpectroRadiometer (MISR) will study the ecology and climate of the Earth through acquisition of global multi-angle imagery. The MISR employs nine discrete cameras, each a push-broom imager. Of these, four point forward, four point aft and one views the nadir. Absolute radiometric calibration will be obtained pre-flight using high quantum efficiency (HQE) detectors and an integrating sphere source. After launch, instrument calibration will be provided using HQE detectors in conjunction with deployable diffuse calibration panels. The panels will be deployed at time intervals of one month and used to direct sunlight into the cameras, filling their fields-of-view and providing through-the-optics calibration. Additional techniques will be utilized to reduce systematic errors, and provide continuity as the methodology changes with time. For example, radiation-resistant photodiodes will also be used to monitor panel radiant exitance. These data will be acquired throughout the five-year mission, to maintain calibration in the latter years when it is expected that the HQE diodes will have degraded. During the mission, it is planned that the MISR will conduct semi-annual ground calibration campaigns, utilizing field measurements and higher resolution sensors (aboard aircraft or in-orbit platforms) to provide a check of the on-board hardware. These ground calibration campaigns are limited in number, but are believed to be the key to the long-term maintenance of MISR radiometric calibration.

  10. Low Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Indian Ocean Clouds     View Larger ... Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's polar-orbiting Terra spacecraft. The area covered by the image is 247.5 ... during the last decade. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...

  11. Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer

    Treesearch

    Mark Chopping; Gretchen G. Moisen; Lihong Su; Andrea Laliberte; Albert Rango; John V. Martonchik; Debra P. C. Peters

    2008-01-01

    A rapid canopy reflectance model inversion experiment was performed using multi-angle reflectance data from the NASA Multi-angle Imaging Spectro-Radiometer (MISR) on the Earth Observing System Terra satellite, with the goal of obtaining measures of forest fractional crown cover, mean canopy height, and aboveground woody biomass for large parts of south-eastern Arizona...

  12. Closed Large Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Closed Large Cell Clouds in the South Pacific ... the Multi-angle Imaging SpectroRadiometer (MISR) provide an example of very large scale closed cells, and can be contrasted with the  ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  13. Pine Island Glacier, Antarctica, MISR Multi-angle Composite

    Atmospheric Science Data Center

    2013-12-17

    ...     View Larger Image (JPEG) A large iceberg has finally separated from the calving front ... next due to stereo parallax. This parallax is used in MISR processing to retrieve cloud heights over snow and ice. Additionally, a plume ...

  14. MISR Multi-angle Views of Sunday Morning Fires

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Hot, dry Santa Ana winds began blowing through the Los Angeles and San Diego areas on Sunday October 21, 2007. Wind speeds ranging from 30 to 50 mph were measured in the area, with extremely low relative humidities. These winds, coupled with exceptionally dry conditions due to lack of rainfall resulted in a number of fires in the Los Angeles and San Diego areas, causing the evacuation of more than 250,000 people.

    These two images show the Southern California coast from Los Angeles to San Diego from two of the nine cameras on the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the NASA EOS Terra satellite. These images were obtained around 11:35 a.m. PDT on Sunday morning, October 21, 2007 and show a number of plumes extending out over the Pacific ocean. In addition, locations identified as potential hot spots from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the same satellite are outlined in red.

    The left image is from MISR's nadir looking camera and the plumes appear very faint. The image on the right is from MISR's 60o forward looking camera, which accentuates the amount of light scattered by aerosols in the atmosphere, including smoke and dust. Both these images are false color and contain information from MISR's red, green, blue and near-infrared wavelengths, which makes vegetated land appear greener than it would naturally. Notice in the right hand image that the color of the plumes associated with the MODIS hot spots is bluish, while plumes not associated with hot spots appear more yellow. This is because the latter plumes are composed of dust kicked up by the strong Santa Ana winds. In some locations along Interstate 5 on this date, visibility was severely reduced due to blowing dust. MISR's multiangle and multispectral capability give it the ability to distinguish smoke from dust in this situation.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These images were generated from a portion of the imagery acquired during Terra orbit 41713, and use data from blocks 63 to 66 within World Reference System-2 path 40.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. JPL is a division of the California Institute of Technology.

  15. California Fires

    Atmospheric Science Data Center

    2014-05-15

    ...     View Larger Image Lightning strikes sparked more than a thousand fires in northern California. This image was captured by the Multi-angle Imaging SpectroRadiometer (MISR) instrument's nadir ...

  16. WindCam and MSPI: two cloud and aerosol instrument concepts derived from Terra/MISR heritage

    NASA Astrophysics Data System (ADS)

    Diner, David J.; Mischna, Michael; Chipman, Russell A.; Davis, Ab; Cairns, Brian; Davies, Roger; Kahn, Ralph A.; Muller, Jan-Peter; Torres, Omar

    2008-08-01

    The Multi-angle Imaging SpectroRadiometer (MISR) has been acquiring global cloud and aerosol data from polar orbit since February 2000. MISR acquires moderately high-resolution imagery at nine view angles from nadir to 70.5°, in four visible/near-infrared spectral bands. Stereoscopic parallax, time lapse among the nine views, and the variation of radiance with angle and wavelength enable retrieval of geometric cloud and aerosol plume heights, height-resolved cloud-tracked winds, and aerosol optical depth and particle property information. Two instrument concepts based upon MISR heritage are in development. The Cloud Motion Vector Camera, or WindCam, is a simplified version comprised of a lightweight, compact, wide-angle camera to acquire multiangle stereo imagery at a single visible wavelength. A constellation of three WindCam instruments in polar Earth orbit would obtain height-resolved cloud-motion winds with daily global coverage, making it a low-cost complement to a spaceborne lidar wind measurement system. The Multiangle SpectroPolarimetric Imager (MSPI) is aimed at aerosol and cloud microphysical properties, and is a candidate for the National Research Council Decadal Survey's Aerosol-Cloud-Ecosystem (ACE) mission. MSPI combines the capabilities of MISR with those of other aerosol sensors, extending the spectral coverage to the ultraviolet and shortwave infrared and incorporating high-accuracy polarimetric imaging. Based on requirements for the nonimaging Aerosol Polarimeter Sensor on NASA's Glory mission, a degree of linear polarization uncertainty of 0.5% is specified within a subset of the MSPI bands. We are developing a polarization imaging approach using photoelastic modulators (PEMs) to accomplish this objective.

  17. Russia

    Atmospheric Science Data Center

    2013-04-16

    article title:  Smoke and Clouds over Russia     View Larger Image ... of Multi-angle Imaging SpectroRadiometer (MISR) images of Russia's far east Khabarovsk region. The images were acquired on May 13, 2001 ...

  18. MISR - Science Data Validation Plan

    NASA Technical Reports Server (NTRS)

    Conel, J.; Ledeboer, W.; Ackerman, T.; Marchand, R.; Clothiaux, E.

    2000-01-01

    This Science Data Validation Plan describes the plans for validating a subset of the Multi-angle Imaging SpectroRadiometer (MISR) Level 2 algorithms and data products and supplying top-of-atmosphere (TOA) radiances to the In-flight Radiometric Calibration and Characterization (IFRCC) subsystem for vicarious calibration.

  19. What We are Learning from (and About) the 10 Plus Year MISR Aerosol Data Record

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2010-01-01

    Having a 10+ year data record from the Multi-angle Imaging SpectroRadiometer (MISR) significantly improves our opportunities to validate the retrieved aerosol optical depth (AOD) and especially particle microphysical property products. It also begins to raise the possibility of using the data to look for changes or even trends, at least on a regional basis. Further, we have had the opportunity to expand the database of wildfire smoke plume heights derived from the multiangle observations. This presentation will review the latest aerosol validation results and algorithm upgrades under consideration by the MISR team, and will summarize the current status of MISR global aerosol air mass type, and regional dust transport and smoke injection height products. The strengths and limitations of these data for constraining aerosol transport model simulations will receive special emphasis.

  20. Advances in Satellite Remote Sensing of Particulate Air Pollution: From MISR to MAIA

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Burke, K.; Xu, F.; Garay, M. J.; Kalashnikova, O. V.; Liu, Y.; Meng, X.; Wang, J.; Martin, R.; Ostro, B.

    2017-12-01

    Airborne particulate matter (PM) is a well-known cause of cardiovascular and respiratory disease. To estimate human exposure to PM pollution, satellite instruments such as the Terra Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate resolution Imaging Spectroradiometer (MODIS) have been used in conjunction with surface monitors to map near-surface PM concentrations. The relative toxicity of different size and compositional mixtures of PM is not well understood. To address this, we are developing the Multi-Angle Imager for Aerosols (MAIA) investigation. The satellite instrument extends MISR's multiangular visible and near-infrared (VNIR) spectral coverage to 14 bands in the ultraviolet, VNIR, and shortwave IR; three of the bands are polarimetric to enhance sensitivity to aerosol size and composition. To constrain the retrievals, the observations will be combined with data from surface monitors and the WRF-Chem and GEOS-Chem chemical transport models. Existing surface PM speciation monitors will be supplemented by adding new stations to the Surface PARTiculate mAtter Network (SPARTAN). Unlike MISR, MAIA is a targeting instrument. Primary areas of interest include metropolitan areas in North and South America, Europe, the Middle East, Africa, India, and East Asia. PM retrieval algorithms are being developed using data from MISR and the high-altitude Airborne Multiangle SpectroPolarimetric Imager (AirMSPI). Epidemiologists on the MAIA science team will use the derived PM data products and birth, death, and hospital records to investigate adverse health impacts of different types of airborne particulates. MAIA's earliest possible launch date is mid-2020, making it possible for the data to be complemented by global observations from Terra as well as high temporal resolution atmospheric chemistry measurements from TEMPO (Tropospheric Emissions: Monitoring Pollution), GEMS (Geostationary Environment Monitoring Spectrometer), and Sentinel-4.

  1. A Spectralon BRF Data Base for MISR Calibration Application

    NASA Technical Reports Server (NTRS)

    Bruegge, C.; Chrien, N.; Haner, D.

    1999-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) is an Earth observing sensor which will provide global retrievals of aerosols, clouds, and land surface parameters. Instrument specifications require high accuracy absolute calibration, as well as accurate camera-to-camera, band-to-band and pixel-to-pixel relative response determinations.

  2. A Radiative Analysis of Angular Signatures and Oblique Radiance Retrievals over the Polar Regions from the Multi-Angle Imaging Spectroradiometer

    ERIC Educational Resources Information Center

    Wilson, Michael Jason

    2009-01-01

    This dissertation studies clouds over the polar regions using the Multi-angle Imaging SpectroRadiometer (MISR) on-board EOS-Terra. Historically, low thin clouds have been problematic for satellite detection, because these clouds have similar brightness and temperature properties to the surface they overlay. However, the oblique angles of MISR…

  3. Reflections on current and future applications of multiangle imaging to aerosol and cloud remote sensing

    NASA Astrophysics Data System (ADS)

    Diner, David

    2010-05-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global Earth data from NASA's Terra satellite since February 2000. With its 9 along-track view angles, 4 spectral bands, intrinsic spatial resolution of 275 m, and stable radiometric and geometric calibration, no instrument that combines MISR's attributes has previously flown in space, nor is there is a similar capability currently available on any other satellite platform. Multiangle imaging offers several tools for remote sensing of aerosol and cloud properties, including bidirectional reflectance and scattering measurements, stereoscopic pattern matching, time lapse sequencing, and potentially, optical tomography. Current data products from MISR employ several of these techniques. Observations of the intensity of scattered light as a function of view angle and wavelength provide accurate measures of aerosol optical depths (AOD) over land, including bright desert and urban source regions. Partitioning of AOD according to retrieved particle classification and incorporation of height information improves the relationship between AOD and surface PM2.5 (fine particulate matter, a regulated air pollutant), constituting an important step toward a satellite-based particulate pollution monitoring system. Stereoscopic cloud-top heights provide a unique metric for detecting interannual variability of clouds and exceptionally high quality and sensitivity for detection and height retrieval for low-level clouds. Using the several-minute time interval between camera views, MISR has enabled a pole-to-pole, height-resolved atmospheric wind measurement system. Stereo imagery also makes possible global measurement of the injection heights and advection speeds of smoke plumes, volcanic plumes, and dust clouds, for which a large database is now available. To build upon what has been learned during the first decade of MISR observations, we are evaluating algorithm updates that not only refine retrieval accuracies but also include enhancements (e.g., finer spatial resolution) that would have been computationally prohibitive just ten years ago. In addition, we are developing technological building blocks for future sensors that enable broader spectral coverage, wider swath, and incorporation of high-accuracy polarimetric imaging. Prototype cameras incorporating photoelastic modulators have been constructed. To fully capitalize on the rich information content of the current and next-generation of multiangle imagers, several algorithmic paradigms currently employed need to be re-examined, e.g., the use of aerosol look-up tables, neglect of 3-D effects, and binary partitioning of the atmosphere into "cloudy" or "clear" designations. Examples of progress in algorithm and technology developments geared toward advanced application of multiangle imaging to remote sensing of aerosols and clouds will be presented.

  4. Smoke from Station Fire Blankets Southern California

    NASA Image and Video Library

    2009-09-01

    The Multi-angle Imaging SpectroRadiometer MISR instrument on NASA Terra satellite captured this Aug. 30 image of smoke plumes from the Station and other wildfires burning throughout Southern California.

  5. New 4.4 km-resolution aerosol product from NASA's Multi-angle Imaging SpectroRadiometer: A user's guide

    NASA Astrophysics Data System (ADS)

    Nastan, A.; Garay, M. J.; Witek, M. L.; Seidel, F.; Bull, M. A.; Kahn, R. A.; Diner, D. J.

    2017-12-01

    The NASA Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has provided an 18-year-and-growing aerosol data record. MISR's V22 aerosol product has been used extensively in studies of regional and global climate and the health effects of particulate air pollution. The MISR team recently released a new version of this product (V23), which increases the spatial resolution from 17.6 km to 4.4 km, improves performance versus AERONET, and provides better spatial coverage, more accurate cloud screening, and improved radiometric conditioning relative to V22. The product formatting was also completely revamped to improve clarity and usability. Established and prospective users of the MISR aerosol product are invited to learn about the features and performance of the new product and to participate in one-on-one demonstrations of how to obtain, visualize, and analyze the new product. Because the aerosol product is used in generating atmospherically-corrected surface bidirectional reflectance factors, improvements in MISR's 1.1 km resolution land surface product are a by-product of the updated aerosol retrievals. Illustrative comparisons of the V22 and V23 aerosol and surface products will be shown.

  6. Development and assessment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data

    NASA Astrophysics Data System (ADS)

    Garay, Michael J.; Kalashnikova, Olga V.; Bull, Michael A.

    2017-04-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been acquiring data that have been used to produce aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution. Capitalizing on the capabilities provided by multi-angle viewing, the current operational (Version 22) MISR algorithm performs well, with about 75 % of MISR AOD retrievals globally falling within 0.05 or 20 % × AOD of paired validation data from the ground-based Aerosol Robotic Network (AERONET). This paper describes the development and assessment of a prototype version of a higher-spatial-resolution 4.4 km MISR aerosol optical depth product compared against multiple AERONET Distributed Regional Aerosol Gridded Observations Network (DRAGON) deployments around the globe. In comparisons with AERONET-DRAGON AODs, the 4.4 km resolution retrievals show improved correlation (r = 0. 9595), smaller RMSE (0.0768), reduced bias (-0.0208), and a larger fraction within the expected error envelope (80.92 %) relative to the Version 22 MISR retrievals.

  7. Yugoslavia

    Atmospheric Science Data Center

    2013-04-17

    ... Image These Multi-angle Imaging SpectroRadiometer (MISR) nadir camera images of Yugoslavia were acquired on July 28, 2000 during ... typically bright as a result of reflection from the plants' cell walls, to the brightness in the red. In the middle "false color" image, ...

  8. Climatology of the Aerosol Optical Depth by Components from the Multi-Angle Imaging Spectroradiometer (MISR) and Chemistry Transport Models

    NASA Technical Reports Server (NTRS)

    Lee, Huikyo; Kalashnikova, Olga V.; Suzuki, Kentaroh; Braverman, Amy; Garay, Michael J.; Kahn, Ralph A.

    2016-01-01

    The Multi-angle Imaging Spectroradiometer (MISR) Joint Aerosol (JOINT_AS) Level 3 product has provided a global, descriptive summary of MISR Level 2 aerosol optical depth (AOD) and aerosol type information for each month over 16+ years since March 2000. Using Version 1 of JOINT_AS, which is based on the operational (Version 22) MISR Level 2 aerosol product, this study analyzes, for the first time, characteristics of observed and simulated distributions of AOD for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical - near or downwind of their major source regions. The statistical moments (means, standard deviations, and skew-nesses) and distributions of AOD by components derived from the JOINT_AS are compared with results from two chemistry transport models (CTMs), the Goddard Chemistry Aerosol Radiation and Transport (GOCART) and SPectral RadIatioN-TrAnSport (SPRINTARS). Overall, the AOD distributions retrieved from MISR and modeled by GOCART and SPRINTARS agree with each other in a qualitative sense. Marginal distributions of AOD for each aerosol type in both MISR and models show considerable high positive skewness, which indicates the importance of including extreme AOD events when comparing satellite retrievals with models. The MISR JOINT_AS product will greatly facilitate comparisons between satellite observations and model simulations of aerosols by type.

  9. Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Limbacher, James

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.

  10. Hurricanes Frances and Ivan

    Atmospheric Science Data Center

    2014-05-15

    ... Image NASA's Multi-angle Imaging SpectroRadiometer (MISR) captured these images and cloud-top height retrievals of Hurricane ... especially on the 24 to 48 hour timescale vital for disaster planning. To improve the operational models used to make hurricane ...

  11. Vegetation Canopy Structure from NASA EOS Multiangle Imaging

    NASA Astrophysics Data System (ADS)

    Chopping, M.; Martonchik, J. V.; Bull, M.; Rango, A.; Schaaf, C. B.; Zhao, F.; Wang, Z.

    2008-12-01

    We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjustment of the mean radius and mean crown aspect ratio parameters of an hybrid geometric-optical (GO) model. We used a technique to rapidly obtain MISR surface reflectance estimates at 275 m resolution through regression on 1 km MISR land surface estimates previously corrected for atmospheric attenuation using MISR aerosol estimates. MISR data were used to make end of dry season maps from 2000-2007 for parts of southern New Mexico, while MODIS data were used to replicate previous results obtained using MISR for June 2002 over large parts of New Mexico and Arizona. We also examined the applicability of this method in Alaskan tundra and forest by adjusting the GO model against MISR data for winter (March 2000) and summer (August 2008) scenes. We found that the GO model crown aspect ratio from MISR followed dominant shrub species distributions in the USDA, ARS Jornada Experimental Range, enabling differentiation of the more spherical crowns of creosotebush (Larrea tridentata) from the more prolate crowns of honey mesquite (Prosopis glandulosa). The measurement limits determined from 2000-2007 maps for a large part of southern New Mexico are ~0.1 in fractional shrub crown cover and ~3 m in mean canopy height (results obtained using data acquired shortly after precipitation events that radically darkened and altered the structure and angular response of the background). Typical standard deviations over the period for 12 sites covering a range of cover types are on the order of 0.05 in crown cover and 2 m in mean canopy height. We found that the GO model can be inverted to retrieve reasonable distributions of canopy parameters in southwestern environments using MODIS V005 red band surface reflectance estimates at ~250 m spatial resolution accumulated over 16 day periods. The MODIS (N=895) and MISR (N=576) estimates of forest height and cover both showed agreement with USDA, Forest Service estimates, with MODIS mean absolute errors (MAE) of 0.09 and 8.4 m respectively; and MISR MAE of 0.10 and 2.2 m, respectively, noting that a sub-optimal background was used for the MODIS inversions. The MODIS and MISR MAE for estimates of aboveground woody biomass via regression against Forest Service estimates were both 10.1 Mg.ha-1. We found that red band MISR data for central Alaska can be used to obtain first-order estimates of forest cover and height using a snow-free summer scene and shrub cover using a winter scene with full snow cover. The GO model inversion results are often physically unrealistic but spatial distributions correspond to high resolution images and reflect the potential for the multiangle/GO method to retrieve meaningful information that is qualitatively different to that obtained using vegetation indices.

  12. Arizona Fires

    Atmospheric Science Data Center

    2014-05-15

    ... Image This image and accompanying animation from NASA's Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra ... and is currently the second largest fire in Arizona history. More than 2,000 people are working to contain the fire, which is being ...

  13. Mystery #14

    Atmospheric Science Data Center

    2013-04-22

    ... play geographical detective! This natural-color image from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra ... type of clouds pictured here are often associated with lightning and sustained rainstorms lasting several hours or more. 5. ...

  14. Comparison of Coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer Aerosol Optical Depths over Land and Ocean Scenes Containing Aerosol Robotic Network Sites

    NASA Technical Reports Server (NTRS)

    Abdou, Wedad A.; Diner, David J.; Martonchik, John V.; Bruegge, Carol J.; Kahn, Ralph A.; Gaitley, Barbara J.; Crean, Kathleen A.; Remer, Lorraine A.; Holben, Brent

    2005-01-01

    The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), launched on 18 December 1999 aboard the Terra spacecraft, are making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical depths and particle properties are independently retrieved from these radiances using methodologies and algorithms that make use of the instruments corresponding designs. This paper compares instantaneous optical depths retrieved from simultaneous and collocated radiances measured by the two instruments at locations containing sites within the Aerosol Robotic Network (AERONET). A set of 318 MISR and MODIS images, obtained during the months of March, June, and September 2002 at 62 AERONET sites, were used in this study. The results show that over land, MODIS aerosol optical depths at 470 and 660 nm are larger than those retrieved from MISR by about 35% and 10% on average, respectively, when all land surface types are included in the regression. The differences decrease when coastal and desert areas are excluded. For optical depths retrieved over ocean, MISR is on average about 0.1 and 0.05 higher than MODIS in the 470 and 660 nm bands, respectively. Part of this difference is due to radiometric calibration and is reduced to about 0.01 and 0.03 when recently derived band-to-band adjustments in the MISR radiometry are incorporated. Comparisons with AERONET data show similar patterns.

  15. Hurricane Earl Multi-level Winds

    NASA Image and Video Library

    2010-09-02

    NASA Multi-angle Imaging SpectroRadiometer instrument captured this image of Hurricane Earl Aug. 30, 2010. At this time, Hurricane Earl was a Category 3 storm. The hurricane eye is just visible on the right edge of the MISR image swath.

  16. California: San Joaquin Valley

    Atmospheric Science Data Center

    2014-05-15

    ...     View Larger Image This illustration features Multi-angle Imaging SpectroRadiometer ... quadrant is a map of haze amount determined from automated processing of the MISR imagery. Low amounts of haze are shown in blue, and a ...

  17. MISR High-Resolution, Cross-Track Winds for Hurricane Ida

    NASA Image and Video Library

    2009-11-10

    This image shows JPL Multi-angle Imaging SpectroRadiometer instrument onboard NASA Terra satellite on Sunday, Nov. 8, 2009 as it passed over Hurricane Ida while situated between western Cuba and the Yucatan Peninsula.

  18. Near Real Time MISR Wind Observations for Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Mueller, K. J.; Protack, S.; Rheingans, B. E.; Hansen, E. G.; Jovanovic, V. M.; Baker, N.; Liu, J.; Val, S.

    2014-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) project, in association with the NASA Langley Atmospheric Science Data Center (ASDC), has this year adapted its original production software to generate near-real time (NRT) cloud-motion winds as well as radiance imagery from all nine MISR cameras. These products are made publicly available at the ASDC with a latency of less than 3 hours. Launched aboard the sun-synchronous Terra platform in 1999, the MISR instrument continues to acquire near-global, 275 m resolution, multi-angle imagery. During a single 7 minute overpass of any given area, MISR retrieves the stereoscopic height and horizontal motion of clouds from the multi-angle data, yielding meso-scale near-instantaneous wind vectors. The ongoing 15-year record of MISR height-resolved winds at 17.6 km resolution has been validated against independent data sources. Low-level winds dominate the sampling, and agree to within ±3 ms-1 of collocated GOES and other observations. Low-level wind observations are of particular interest to weather forecasting, where there is a dearth of observations suitable for assimilation, in part due to reliability concerns associated with winds whose heights are assigned by the infrared brightness temperature technique. MISR cloud heights, on the other hand, are generated from stereophotogrammetric pattern matching of visible radiances. MISR winds also address data gaps in the latitude bands between geostationary satellite coverage and polar orbiting instruments that obtain winds from multiple overpasses (e.g. MODIS). Observational impact studies conducted by the Naval Research Laboratory (NRL) and by the German Weather Service (Deutscher Wetterdienst) have both demonstrated forecast improvements when assimilating MISR winds. An impact assessment using the GEOS-5 system is currently in progress. To benefit air quality forecasts, the MISR project is currently investigating the feasibility of generating near-real time aerosol products.

  19. JMISR INteractive eXplorer

    NASA Technical Reports Server (NTRS)

    Nelson, David L.; Diner, David J.; Thompson, Charles K.; Hall, Jeffrey R.; Rheingans, Brian E.; Garay, Michael J.; Mazzoni, Dominic

    2010-01-01

    MISR (Multi-angle Imaging SpectroRadiometer) INteractive eXplorer (MINX) is an interactive visualization program that allows a user to digitize smoke, dust, or volcanic plumes in MISR multiangle images, and automatically retrieve height and wind profiles associated with those plumes. This innovation can perform 9-camera animations of MISR level-1 radiance images to study the 3D relationships of clouds and plumes. MINX also enables archiving MISR aerosol properties and Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power along with the heights and winds. It can correct geometric misregistration between cameras by correlating off-nadir camera scenes with corresponding nadir scenes and then warping the images to minimize the misregistration offsets. Plots of BRF (bidirectional reflectance factor) vs. camera angle for points clicked in an image can be displayed. Users get rapid access to map views of MISR path and orbit locations and overflight dates, and past or future orbits can be identified that pass over a specified location at a specified time. Single-camera, level-1 radiance data at 1,100- or 275- meter resolution can be quickly displayed in color using a browse option. This software determines the heights and motion vectors of features above the terrain with greater precision and coverage than previous methods, based on an algorithm that takes wind direction into consideration. Human interpreters can precisely identify plumes and their extent, and wind direction. Overposting of MODIS thermal anomaly data aids in the identification of smoke plumes. The software has been used to preserve graphical and textural versions of the digitized data in a Web-based database.

  20. Mystery #16 Answer

    Atmospheric Science Data Center

    2013-04-22

    ... were acquired by the Multi-angle Imaging SpectroRadiometer (MISR) during October and November 2003. The two images represent about 310 ... obtain calcium from the seawater and carbon dioxide from cell respiration, and bring these products into the internal tissues of the ...

  1. Distinguishing remobilized ash from erupted volcanic plumes using space-borne multi-angle imaging.

    PubMed

    Flower, Verity J B; Kahn, Ralph A

    2017-10-28

    Volcanic systems are comprised of a complex combination of ongoing eruptive activity and secondary hazards, such as remobilized ash plumes. Similarities in the visual characteristics of remobilized and erupted plumes, as imaged by satellite-based remote sensing, complicate the accurate classification of these events. The stereo imaging capabilities of the Multi-angle Imaging SpectroRadiometer (MISR) were used to determine the altitude and distribution of suspended particles. Remobilized ash shows distinct dispersion, with particles distributed within ~1.5 km of the surface. Particle transport is consistently constrained by local topography, limiting dispersion pathways downwind. The MISR Research Aerosol (RA) retrieval algorithm was used to assess plume particle microphysical properties. Remobilized ash plumes displayed a dominance of large particles with consistent absorption and angularity properties, distinct from emitted plumes. The combination of vertical distribution, topographic control, and particle microphysical properties makes it possible to distinguish remobilized ash flows from eruptive plumes, globally.

  2. Radiometric stability of the Multi-angle Imaging SpectroRadiometer (MISR) following 15 years on-orbit

    NASA Astrophysics Data System (ADS)

    Bruegge, Carol J.; Val, Sebastian; Diner, David J.; Jovanovic, Veljko; Gray, Ellyn; Di Girolamo, Larry; Zhao, Guangyu

    2014-09-01

    The Multi-angle Imaging SpectroRadiometer (MISR) has successfully operated on the EOS/ Terra spacecraft since 1999. It consists of nine cameras pointing from nadir to 70.5° view angle with four spectral channels per camera. Specifications call for a radiometric uncertainty of 3% absolute and 1% relative to the other cameras. To accomplish this, MISR utilizes an on-board calibrator (OBC) to measure camera response changes. Once every two months the two Spectralon panels are deployed to direct solar-light into the cameras. Six photodiode sets measure the illumination level that are compared to MISR raw digital numbers, thus determining the radiometric gain coefficients used in Level 1 data processing. Although panel stability is not required, there has been little detectable change in panel reflectance, attributed to careful preflight handling techniques. The cameras themselves have degraded in radiometric response by 10% since launch, but calibration updates using the detector-based scheme has compensated for these drifts and allowed the radiance products to meet accuracy requirements. Validation using Sahara desert observations show that there has been a drift of ~1% in the reported nadir-view radiance over a decade, common to all spectral bands.

  3. MISR Stereo-heights of Grassland Fire Smoke Plumes in Australia

    NASA Astrophysics Data System (ADS)

    Mims, S. R.; Kahn, R. A.; Moroney, C. M.; Gaitley, B. J.; Nelson, D. L.; Garay, M. J.

    2008-12-01

    Plume heights from wildfires are used in climate modeling to predict and understand trends in aerosol transport. This study examines whether smoke from grassland fires in the desert region of Western and central Australia ever rises above the relatively stable atmospheric boundary layer and accumulates in higher layers of relative atmospheric stability. Several methods for deriving plume heights from the Multi-angle Imaging SpectroRadiometer (MISR) instrument are examined for fire events during the summer 2000 and 2002 burning seasons. Using MISR's multi-angle stereo-imagery from its three near-nadir-viewing cameras, an automatic algorithm routinely derives the stereo-heights above the geoid of the level-of-maximum-contrast for the entire global data set, which often correspond to the heights of clouds and aerosol plumes. Most of the fires that occur in the cases studied here are small, diffuse, and difficult to detect. To increase the signal from these thin hazes, the MISR enhanced stereo product that computes stereo heights from the most steeply viewing MISR cameras is used. For some cases, a third approach to retrieving plume heights from MISR stereo imaging observations, the MISR Interactive Explorer (MINX) tool, is employed to help differentiate between smoke and cloud. To provide context and to search for correlative factors, stereo-heights are combined with data providing fire strength from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, atmospheric structure from the NCEP/NCAR Reanalysis Project, surface cover from the Australia National Vegetation Information System, and forward and backward trajectories from the NOAA HYSPLIT model. Although most smoke plumes concentrate in the near-surface boundary layer, as expected, some appear to rise higher. These findings suggest that a closer examination of grassland fire energetics may be warranted.

  4. Status of the Multi-Angle SpectroRadiometer Instrument for EOS- AM1 and Its Application to Remote Sensing of Aerosols

    NASA Technical Reports Server (NTRS)

    Diner, D. J.; Abdou, W. A.; Bruegge, C. J.; Conel, J. E.; Kahn, R. A.; Martonchik, J. V.; Paradise, S. R.; West, R. A.

    1995-01-01

    The Multi-Angle Imaging SpectroRadiometer (MISR) is being developed at JPL for the AM1 spacecraft in the Earth Observing System (EOS) series. This paper reports on the progress of instrument fabrication and testing, and it discusses the strategy to use the instrument for studying tropospheric aerosols.

  5. Ten Years of MISR Observations from Terra: Looking Back, Ahead, and in Between

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Ackerman, Thomas P.; Braverman, Amy J.; Bruegge, Carol J.; Chopping, Mark J.; Clothiaux, Eugene E.; Davies, Roger; Di Girolamo, Larry; Kahn, Ralph A.; Knyazikhin, Yuri; hide

    2010-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global Earth data from NASA's Terra satellite since February 2000. With its nine along-track view angles, four visible/near-infrared spectral bands, intrinsic spatial resolution of 275 m, and stable radiometric and geometric calibration, no instrument that combines MISR's attributes has previously flown in space. The more than 10-year (and counting) MISR data record provides unprecedented opportunities for characterizing long-term trends in aerosol, cloud, and surface properties, and includes 3-D textural information conventionally thought to be accessible only to active sensors.

  6. Texas Fires

    Atmospheric Science Data Center

    2014-05-15

    ... one-year drought on record and the warmest month in Texas history. The Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra spacecraft passed over the wildfires at 12:05 p.m. CDT on ...

  7. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    ...     View Larger Image Multi-angle views of the Appalachian Mountains, March 6, 2000 . ... Center Atmospheric Science Data Center in Hampton, VA. Photo credit: NASA/GSFC/LaRC/JPL, MISR Science Team Other formats ...

  8. Hurricane Lilli

    Atmospheric Science Data Center

    2014-05-15

    article title:  Hurricane Lili Heads for Louisiana Landfall     ... Image Characteristics of a strengthening Category 3 Hurricane Lili are apparent in these images from the Multi-angle Imaging ... (MISR), including a well-developed clearing at the hurricane eye. When these views were acquired on October 2, 2002, Lili was ...

  9. Tomographic reconstruction of an aerosol plume using passive multiangle observations from the MISR satellite instrument

    NASA Astrophysics Data System (ADS)

    Garay, Michael J.; Davis, Anthony B.; Diner, David J.

    2016-12-01

    We present initial results using computed tomography to reconstruct the three-dimensional structure of an aerosol plume from passive observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. MISR views the Earth from nine different angles at four visible and near-infrared wavelengths. Adopting the 672 nm channel, we treat each view as an independent measure of aerosol optical thickness along the line of sight at 1.1 km resolution. A smoke plume over dark water is selected as it provides a more tractable lower boundary condition for the retrieval. A tomographic algorithm is used to reconstruct the horizontal and vertical aerosol extinction field for one along-track slice from the path of all camera rays passing through a regular grid. The results compare well with ground-based lidar observations from a nearby Micropulse Lidar Network site.

  10. Morocco and Algeria

    Atmospheric Science Data Center

    2013-04-15

    ... mosaic of southwestern Europe and northwestern Morocco and Algeria. The image extends from 48°N, 16°W in the northwest to 32°N, 8°E in ... corner. The rugged Atlas Mountain ranges traverse northern Algeria and Morocco. The Multi-angle Imaging SpectroRadiometer (MISR) ...

  11. Informing Aerosol Transport Models With Satellite Multi-Angle Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.

    2011-01-01

    As the aerosol products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the aerosol amount and type data products, and aerosol plume heights, to constrain aerosol transport models. We have demonstrated the ability to map aerosol air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the aerosol type information content, that varies depending upon retrieval conditions. We have shown that MISR aerosol type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution aerosol components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS aerosol optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining aerosol transport models, planet-wide.

  12. Aerosol Airmass Type Mapping Over the Urban Mexico City Region From Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Patadia, F.; Kahn, R. A.; Limbacher, J. A.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2013-01-01

    Using Multi-angle Imaging SpectroRadiometer (MISR) and sub-orbital measurements from the 2006 INTEX-B/MILAGRO field campaign, in this study we explore MISR's ability to map different aerosol air mass types over the Mexico City metropolitan area. The aerosol air mass distinctions are based on shape, size and single scattering albedo retrievals from the MISR Research Aerosol Retrieval algorithm. In this region, the research algorithm identifies dust-dominated aerosol mixtures based on non-spherical particle shape, whereas spherical biomass burning and urban pollution particles are distinguished by particle size. Two distinct aerosol air mass types based on retrieved particle microphysical properties, and four spatially distributed aerosol air masses, are identified in the MISR data on 6 March 2006. The aerosol air mass type identification results are supported by coincident, airborne high-spectral-resolution lidar (HSRL) measurements. Aerosol optical depth (AOD) gradients are also consistent between the MISR and sub-orbital measurements, but particles having single-scattering albedo of approx. 0.7 at 558 nm must be included in the retrieval algorithm to produce good absolute AOD comparisons over pollution-dominated aerosol air masses. The MISR standard V22 AOD product, at 17.6 km resolution, captures the observed AOD gradients qualitatively, but retrievals at this coarse spatial scale and with limited spherical absorbing particle options underestimate AOD and do not retrieve particle properties adequately over this complex urban region. However, we demonstrate how AOD and aerosol type mapping can be accomplished with MISR data over complex urban regions, provided the retrieval is performed at sufficiently high spatial resolution, and with a rich enough set of aerosol components and mixtures.

  13. Burn Scar Near the Hanford Nuclear Reservation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Multi-angle Imaging Spectroradiometer (MISR) image pair shows 'before and after' views of the area around the Hanford Nuclear Reservation near Richland, Washington. On June 27, 2000, a fire in the dry sagebrush was sparked by an automobile crash. The flames were fanned by hot summer winds. By the day after the accident, about 100,000 acres had burned, and the fire's spread forced the closure of highways and loss of homes. These images were obtained by MISR's vertical-viewing (nadir) camera. Compare the area just above and to the right of the line of cumulus clouds in the May 15 image with the same area imaged on August 3. The darkened burn scar measures approximately 35 kilometers across. The Columbia River is seen wending its way around Hanford. Image courtesy NASA/GSFC/JPL, MISR Science Team

  14. Empirical Corrections for MISR Calibration Temporal Trends, Point-Spread Function, Flat-Fielding, and Ghosting

    NASA Astrophysics Data System (ADS)

    Limbacher, J.; Kahn, R. A.

    2015-12-01

    MISR aerosol optical depth retrievals are fairly robust to small radiometric calibration artifacts, due to the multi-angle observations. However, even small errors in the MISR calibration, especially structured artifacts in the imagery, have a disproportionate effect on the retrieval of aerosol properties from these data. Using MODIS, POLDER-3, AERONET, MAN, and MISR lunar images, we diagnose and correct various calibration and radiometric artifacts found in the MISR radiance (Level 1) data, using empirical image analysis. The calibration artifacts include temporal trends in MISR top-of-atmosphere reflectance at relatively stable desert sites and flat-fielding artifacts detected by comparison to MODIS over bright, low-contrast scenes. The radiometric artifacts include ghosting (as compared to MODIS, POLDER-3, and forward model results) and point-spread function mischaracterization (using the MISR lunar data and MODIS). We minimize the artifacts to the extent possible by parametrically modeling the artifacts and then removing them from the radiance (reflectance) data. Validation is performed using non-training scenes (reflectance comparison), and also by using the MISR Research Aerosol retrieval algorithm results compared to MAN and AERONET.

  15. Updated MISR Dark Water Research Aerosol Retrieval Algorithm - Part 1: Coupled 1.1 km Ocean Surface Chlorophyll a Retrievals with Empirical Calibration Corrections

    NASA Technical Reports Server (NTRS)

    Limbacher, James A.; Kahn, Ralph A.

    2017-01-01

    As aerosol amount and type are key factors in the 'atmospheric correction' required for remote-sensing chlorophyll alpha concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chl(sub in situ) less than 1.5 mg m(exp -3), the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov- Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p greater than 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl less than 1.5 mg m(exp -3), MISR and MODIS show very good agreement: r = 0.96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.

  16. Updated MISR dark water research aerosol retrieval algorithm - Part 1: Coupled 1.1 km ocean surface chlorophyll a retrievals with empirical calibration corrections

    NASA Astrophysics Data System (ADS)

    Limbacher, James A.; Kahn, Ralph A.

    2017-04-01

    As aerosol amount and type are key factors in the atmospheric correction required for remote-sensing chlorophyll a concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chlin situ < 1.5 mg m-3, the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov-Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p > 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl < 1.5 mg m-3, MISR and MODIS show very good agreement: r = 0. 96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.

  17. Multiangle Imaging Spectroradiometer (MISR) Global Aerosol Optical Depth Validation Based on 2 Years of Coincident Aerosol Robotic Network (AERONET) Observations

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Gaitley, Barbara J.; Martonchik, John V.; Diner, David J.; Crean, Kathleen A.; Holben, Brent

    2005-01-01

    Performance of the Multiangle Imaging Spectroradiometer (MISR) early postlaunch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers. There are sufficient coincident observations to stratify the data set by season and expected aerosol type. In addition to reporting uncertainty envelopes, we identify trends and outliers, and investigate their likely causes, with the aim of refining algorithm performance. Overall, about 2/3 of the MISR-retrieved AOT values fall within [0.05 or 20% x AOT] of Aerosol Robotic Network (AERONET). More than a third are within [0.03 or 10% x AOT]. Correlation coefficients are highest for maritime stations (approx.0.9), and lowest for dusty sites (more than approx.0.7). Retrieved spectral slopes closely match Sun photometer values for Biomass burning and continental aerosol types. Detailed comparisons suggest that adding to the algorithm climatology more absorbing spherical particles, more realistic dust analogs, and a richer selection of multimodal aerosol mixtures would reduce the remaining discrepancies for MISR retrievals over land; in addition, refining instrument low-light-level calibration could reduce or eliminate a small but systematic offset in maritime AOT values. On the basis of cases for which current particle models are representative, a second-generation MISR aerosol retrieval algorithm incorporating these improvements could provide AOT accuracy unprecedented for a spaceborne technique.

  18. Global Albedo

    Atmospheric Science Data Center

    2013-04-19

    ... the albedo. Bright surfaces have albedo near unity, and dark surfaces have albedo near zero. The DHR refers to the amount of spectral ... Atmospheric Science Data Center's  MISR Level 3 Imagery web site . The Multi-angle Imaging SpectroRadiometer observes the daylit ...

  19. Assessing the Altitude and Dispersion of Volcanic Plumes Using MISR Multi-angle Imaging from Space: Sixteen Years of Volcanic Activity in the Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    Flower, Verity J. B.; Kahn, Ralph A.

    2017-01-01

    Volcanic eruptions represent a significant source of atmospheric aerosols and can display local, regional and global effects, impacting earth systems and human populations. In order to assess the relative impacts of these events, accurate plume injection altitude measurements are needed. In this work, volcanic plumes generated from seven Kamchatka Peninsula volcanoes (Shiveluch, Kliuchevskoi, Bezymianny, Tolbachik, Kizimen, Karymsky and Zhupanovsky), were identified using over 16 years of Multi-angle Imaging SpectroRadimeter (MISR) measurements. Eighty-eight volcanic plumes were observed by MISR, capturing 3-25% of reported events at individual volcanoes. Retrievals were most successful where high intensity events persisted over a period of weeks to months. Compared with existing ground and airborne observations, and alternative satellite-based reports compiled by the Global Volcanism Program (GVP), MISR plume height retrievals showed general consistency; the comparison reports appear to be skewed towards the region of highest concentration observed in MISR-constrained vertical plume extent. The report observations display less discrepancy with MISR toward the end of the analysis period, with improvements in the suborbital data likely the result of the deployment of new instrumentation. Conversely, the general consistency of MISR plume heights with conventionally reported observations supports the use of MISR in the ongoing assessment of volcanic activity globally, especially where other types of volcanic plume observations are unavailable. Differences between the northern (Shiveluch, Kliuchevskoi, Bezymianny and Tolbachik) and southern (Kizimen, Karymsky and Zhupanovsky) volcanoes broadly correspond to the Central Kamchatka Depression (CKD) and Eastern Volcanic Front (EVF), respectively, geological sub-regions of Kamchatka distinguished by varying magma composition. For example, by comparison with reanalysis-model simulations of local meteorological conditions, CKD plumes generally were less constrained by mid-tropospheric (< 6 km) layers of vertical stability above the boundary layer, suggesting that these eruptions were more energetic than those in the EVF

  20. Smoke from Fires in Southern Mexico

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 2, 2002, numerous fires in southern Mexico sent smoke drifting northward over the Gulf of Mexico. These views from the Multi-angle Imaging SpectroRadiometer illustrate the smoke extent over parts of the Gulf and the southern Mexican states of Tabasco, Campeche and Chiapas. At the same time, dozens of other fires were also burning in the Yucatan Peninsula and across Central America. A similar situation occurred in May and June of 1998, when Central American fires resulted in air quality warnings for several U.S. States.

    The image on the left is a natural color view acquired by MISR's vertical-viewing (nadir) camera. Smoke is visible, but sunglint in some ocean areas makes detection difficult. The middle image, on the other hand, is a natural color view acquired by MISR's 70-degree backward-viewing camera; its oblique view angle simultaneously suppresses sunglint and enhances the smoke. A map of aerosol optical depth, a measurement of the abundance of atmospheric particulates, is provided on the right. This quantity is retrieved using an automated computer algorithm that takes advantage of MISR's multi-angle capability. Areas where no retrieval occurred are shown in black.

    The images each represent an area of about 380 kilometers x 1550 kilometers and were captured during Terra orbit 12616.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  1. Chesapeake Bay

    Atmospheric Science Data Center

    2016-06-13

    ... including NASA's high-altitude ER-2 rocket plane and the University of Washington's Convair-580. At the same time, the Multi-angle ... of Cape Henry at the southern end of Chesapeake Bay, though it is not visible at the MISR resolution. The lower right image is a ...

  2. MAPPING ANNUAL MEAN GROUND-LEVEL PM2.5 CONCENTRATIONS USING MULTIANGLE IMAGING SPECTRORADIOMETER AEROSOL OPTICAL THICKNESS OVER THE CONTIGUOUS UNITED STATES

    EPA Science Inventory

    We present a simple approach to estimating ground-level fine particle (PM2.5, particles smaller than 2.5 um in diameter) concentration using global atmospheric chemistry models and aerosol optical thickness (AOT) measurements from the Multi- angle Imaging SpectroRadiometer (MISR)...

  3. What We are Learning about Airborne Particles from MISR Multi-angle Imaging

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph

    The NASA Earth Observing System’s Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global observations in 36 angular-spectral channels about once per week for over 14 years. Regarding airborne particles, MISR is contributing in three broad areas: (1) aerosol optical depth (AOD), especially over land surface, including bright desert, (2) wildfire smoke, desert dust, and volcanic ash injection and near-source plume height, and (3) aerosol type, the aggregate of qualitative constraints on particle size, shape, and single-scattering albedo (SSA). Early advances in the retrieval of these quantities focused on AOD, for which surface-based sun photometers provided a global network of ground truth, and plume height, for which ground-based and airborne lidar offered near-coincident validation data. MSIR monthly, global AOD products contributed directly to the advances in modeling aerosol impacts on climate made between the Inter-governmental Panel on Climate Change (IPCC) third and fourth assessment reports. MISR stereo-derived plume heights are now being used to constrain source inventories for the AeroCom aerosol-climate modeling effort. The remaining challenge for the MISR aerosol effort is to refine and validate our global aerosol type product. Unlike AOD and plume height, aerosol type as retrieved by MISR is a qualitative classification derived from multi-dimensional constraints, so evaluation must be done on a categorical basis. Coincident aerosol type validation data are far less common than for AOD, and, except for rare Golden Days during aircraft field campaigns, amount to remote sensing retrievals from suborbital instruments having uncertainties comparable to those from the MISR product itself. And satellite remote sensing retrievals of aerosol type are much more sensitive to scene conditions such as surface variability and AOD than either AOD or plume height. MISR aerosol type retrieval capability and information content have been demonstrated in case studies using the MISR Operational as especially the MISR Research aerosol retrieval algorithms. Refinements to the Operational algorithm, as indicated by these studies, are required to generate a high-quality next-generation aerosol type product from the MISR data. This presentation will briefly review the MISR AOD and plume height product attributes, and will then focus on the MISR aerosol type product: validation, data quality, and refinements.

  4. James Bay

    Atmospheric Science Data Center

    2013-04-17

    article title:  Hudson Bay and James Bay, Canada   ... which scatters more light in the backward direction. This example illustrates how multi-angle viewing can distinguish physical structures ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  5. MISR CMVs and Multiangular Views of Tropical Cyclone Inner-Core Dynamics

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Diner, David J.; Garay, Michael J; Jovanovic, Veljko M.; Lee, Jae N.; Moroney, Catherine M.; Mueller, Kevin J.; Nelson, David L.

    2010-01-01

    Multi-camera stereo imaging of cloud features from the MISR (Multiangle Imaging SpectroRadiometer) instrument on NASA's Terra satellite provides accurate and precise measurements of cloud top heights (CTH) and cloud motion vector (CMV) winds. MISR observes each cloudy scene from nine viewing angles (Nadir, +/-26(sup o), +/-46(sup o), +/-60(sup o), +/-70(sup o)) with approximatel 275-m pixel resolution. This paper provides an update on MISR CMV and CTH algorithm improvements, and explores a high-resolution retrieval of tangential winds inside the eyewall of tropical cyclones (TC). The MISR CMV and CTH retrievals from the updated algorithm are significantly improved in terms of spatial coverage and systematic errors. A new product, the 1.1-km cross-track wind, provides high accuracy and precision in measuring convective outflows. Preliminary results obtained from the 1.1-km tangential wind retrieval inside the TC eyewall show that the inner-core rotation is often faster near the eyewall, and this faster rotation appears to be related linearly to cyclone intensity.

  6. MISR at 15: Multiple Perspectives on Our Changing Earth

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Ackerman, T. P.; Braverman, A. J.; Bruegge, C. J.; Chopping, M. J.; Clothiaux, E. E.; Davies, R.; Di Girolamo, L.; Garay, M. J.; Jovanovic, V. M.; Kahn, R. A.; Kalashnikova, O.; Knyazikhin, Y.; Liu, Y.; Marchand, R.; Martonchik, J. V.; Muller, J. P.; Nolin, A. W.; Pinty, B.; Verstraete, M. M.; Wu, D. L.

    2014-12-01

    Launched aboard NASA's Terra satellite in December 1999, the Multi-angle Imaging SpectroRadiometer (MISR) instrument has opened new vistas in remote sensing of our home planet. Its 9 pushbroom cameras provide as many view angles ranging from 70 degrees forward to 70 degrees backward along Terra's flight track, in four visible and near-infrared spectral bands. MISR's well-calibrated, accurately co-registered, and moderately high spatial resolution radiance images have been coupled with novel data processing algorithms to mine the information content of angular reflectance anisotropy and multi-camera stereophotogrammetry, enabling new perspectives on the 3-D structure and dynamics of Earth's atmosphere and surface in support of climate and environmental research. Beginning with "first light" in February 2000, the nearly 15-year (and counting) MISR observational record provides an unprecedented data set with applications to multiple disciplines, documenting regional, global, short-term, and long-term changes in aerosol optical depths, aerosol type, near-surface particulate pollution, spectral top-of-atmosphere and surface albedos, aerosol plume-top and cloud-top heights, height-resolved cloud fractions, atmospheric motion vectors, and the structure of vegetated and ice-covered terrains. Recent computational advances include aerosol retrievals at finer spatial resolution than previously possible, and production of near-real time tropospheric winds with a latency of less than 3 hours, making possible for the first time the assimilation of MISR data into weather forecast models. In addition, recent algorithmic and technological developments provide the means of using and acquiring multi-angular data in new ways, such as the application of optical tomography to map 3-D atmospheric structure; building smaller multi-angle instruments in the future; and extending the multi-angular imaging methodology to the ultraviolet, shortwave infrared, and polarimetric realms. Such advances promise further enhancements to the observational power of the remote sensing approaches that MISR has pioneered.

  7. Height and Motion of the Chikurachki Eruption Plume

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The height and motion of the ash and gas plume from the April 22, 2003, eruption of the Chikurachki volcano is portrayed in these views from the Multi-angle Imaging SpectroRadiometer (MISR). Situated within the northern portion of the volcanically active Kuril Island group, the Chikurachki volcano is an active stratovolcano on Russia's Paramushir Island (just south of the Kamchatka Peninsula).

    In the upper panel of the still image pair, this scene is displayed as a natural-color view from MISR's vertical-viewing (nadir) camera. The white and brownish-grey plume streaks several hundred kilometers from the eastern edge of Paramushir Island toward the southeast. The darker areas of the plume typically indicate volcanic ash, while the white portions of the plume indicate entrained water droplets and ice. According to the Kamchatkan Volcanic Eruptions Response Team (KVERT), the temperature of the plume near the volcano on April 22 was -12o C.

    The lower panel shows heights derived from automated stereoscopic processing of MISR's multi-angle imagery, in which the plume is determined to reach heights of about 2.5 kilometers above sea level. Heights for clouds above and below the eruption plume were also retrieved, including the high-altitude cirrus clouds in the lower left (orange pixels). The distinctive patterns of these features provide sufficient spatial contrast for MISR's stereo height retrieval to perform automated feature matching between the images acquired at different view angles. Places where clouds or other factors precluded a height retrieval are shown in dark gray.

    The multi-angle 'fly-over' animation (below) allows the motion of the plume and of the surrounding clouds to be directly observed. The frames of the animation consist of data acquired by the 70-degree, 60-degree, 46-degree and 26-degree forward-viewing cameras in sequence, followed by the images from the nadir camera and each of the four backward-viewing cameras, ending with the view from the 70-degree backward camera.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 17776. The panels cover an area of approximately 296 kilometers x 216 kilometers (still images) and 185 kilometers x 154 kilometers (animation), and utilize data from blocks 50 to 51 within World Reference System-2 path 100.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

    [figure removed for brevity, see original site

  8. Snowstorm Along the China-Mongolia-Russia Borders

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Heavy snowfall on March 12, 2004, across north China's Inner Mongolia Autonomous Region, Mongolia and Russia, caused train and highway traffic to stop for several days along the Russia-China border. This pair of images from the Multi-angle Imaging SpectroRadiometer (MISR) highlights the snow and surface properties across the region on March 13. The left-hand image is a multi-spectral false-color view made from the near-infrared, red, and green bands of MISR's vertical-viewing (nadir) camera. The right-hand image is a multi-angle false-color view made from the red band data of the 46-degree aftward camera, the nadir camera, and the 46-degree forward camera.

    About midway between the frozen expanse of China's Hulun Nur Lake (along the right-hand edge of the images) and Russia's Torey Lakes (above image center) is a dark linear feature that corresponds with the China-Mongolia border. In the upper portion of the images, many small plumes of black smoke rise from coal and wood fires and blow toward the southeast over the frozen lakes and snow-covered grasslands. Along the upper left-hand portion of the images, in Russia's Yablonovyy mountain range and the Onon River Valley, the terrain becomes more hilly and forested. In the nadir image, vegetation appears in shades of red, owing to its high near-infrared reflectivity. In the multi-angle composite, open-canopy forested areas are indicated by green hues. Since this is a multi-angle composite, the green color arises not from the color of the leaves but from the architecture of the surface cover. The green areas appear brighter at the nadir angle than at the oblique angles because more of the snow-covered surface in the gaps between the trees is visible. Color variations in the multi-angle composite also indicate angular reflectance properties for areas covered by snow and ice. The light blue color of the frozen lakes is due to the increased forward scattering of smooth ice, and light orange colors indicate rougher ice or snow, which scatters more light in the backward direction.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire Earth between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 22525. The panels cover an area of about 355 kilometers x 380 kilometers, and utilize data from blocks 50 to 52 within World Reference System-2 path 126.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  9. Seasonal Surface Changes in Namibia and Central Angola

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Brightness variations in the terrain along a portion of southwestern Africa are displayed in these views from the Multi-angle Imaging SpectroRadiometer (MISR). The panels portray an area that includes Namibia's Skeleton Coast and Etosha National Park as well as Angola's Cuando Cubango. The top panels were acquired on March 6, 2001, during the region's wet season, and the bottom panels were acquired on September 1, 2002, during the dry season. Corresponding changes in the abundance of vegetation are apparent. The images on the left are natural color (red, green, blue) images from MISR's vertical-viewing (nadir) camera. The images on the right represent one of MISR's derived surface products.

    The radiance (light intensity) in each pixel of the so-called 'top-of-atmosphere' images on the left includes light that is reflected by the Earth's surface in addition to light that is transmitted and reflected by the atmosphere. The amount of radiation reflected by the surface into all upward directions, as opposed to any single direction, is important when studying Earth's energy budget. A quantity called the surface 'directional hemispherical reflectance' (DHR), sometimes called the 'black-sky albedo', captures this information, and is depicted in the images on the right. MISR's multi-angle views lead to more accurate estimates of the amount of radiation reflected into all directions than can be obtained as a result of looking at a single (e.g., vertically downward) view angle. Furthermore, to generate this surface product accurately, it is necessary to compensate for the effects of the intervening atmosphere, and MISR provides the ability to characterize and account for scattering of light by airborne particulates (aerosols).

    The DHR is called a hemispherical reflectance because it measures the amount of radiation reflected into all upward directions, and which therefore traverses an imaginary hemisphere situated above each surface point. The 'directional' part of the name describes the illumination geometry, and indicates that in the absence of an intervening atmosphere, light from the Sun illuminates the surface from a single direction (that is, there is no diffuse skylight, hence the 'black-sky' terminology). The DHR is retrieved over land surfaces in each of MISR's four wavelength bands, and the images on the right are red, green, blue spectral composites. Regions where DHR could not be derived, either due to an inability to retrieve the necessary atmospheric characteristics or due to the presence of clouds, are shown in dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 6466 and 14388. The panels cover an area of about 380 kilometers x 760 kilometers, and utilize data from blocks 102 to 107 within World Reference System-2 path 181.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center,Greenbelt, MD. JPL is a division of the California Institute of Technology.

  10. Two Perspectives on Forest Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Multi-angle Imaging Spectroradiometer (MISR) images of smoke plumes from wildfires in western Montana acquired on August 14, 2000. A portion of Flathead Lake is visible at the top, and the Bitterroot Range traverses the images. The left view is from MISR's vertical-viewing (nadir) camera. The right view is from the camera that looks forward at a steep angle (60 degrees). The smoke location and extent are far more visible when seen at this highly oblique angle. However, vegetation is much darker in the forward view. A brown burn scar is located nearly in the exact center of the nadir image, while in the high-angle view it is shrouded in smoke. Also visible in the center and upper right of the images, and more obvious in the clearer nadir view, are checkerboard patterns on the surface associated with land ownership boundaries and logging. Compare these images with the high resolution infrared imagery captured nearby by Landsat 7 half an hour earlier. Images by NASA/GSFC/JPL, MISR Science Team.

  11. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  12. MISR Instrument Data Visualization

    NASA Technical Reports Server (NTRS)

    Nelson, David; Garay, Michael; Diner, David; Thompson, Charles; Hall, Jeffrey; Rheingans, Brian; Mazzoni, Dominic

    2008-01-01

    The MISR Interactive eXplorer (MINX) software functions both as a general-purpose tool to visualize Multiangle Imaging SpectroRadiometer (MISR) instrument data, and as a specialized tool to analyze properties of smoke, dust, and volcanic plumes. It includes high-level options to create map views of MISR orbit locations; scrollable, single-camera RGB (red-greenblue) images of MISR level 1B2 (L1B2) radiance data; and animations of the nine MISR camera images that provide a 3D perspective of the scenes that MISR has acquired. NASA Tech Briefs, September 2008 55 The plume height capability provides an accurate estimate of the injection height of plumes that is needed by air quality and climate modelers. MISR provides global high-quality stereo height information, and this program uses that information to perform detailed height retrievals of aerosol plumes. Users can interactively digitize smoke, dust, or volcanic plumes and automatically retrieve heights and winds, and can also archive MISR albedos and aerosol properties, as well as fire power and brightness temperatures associated with smoke plumes derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Some of the specialized options in MINX enable the user to do other tasks. Users can display plots of top-of-atmosphere bidirectional reflectance factors (BRFs) versus camera-angle for selected pixels. Images and animations can be saved to disk in various formats. Also, users can apply a geometric registration correction to warp camera images when the standard processing correction is inadequate. It is possible to difference the images of two MISR orbits that share a path (identical ground track), as well as to construct pseudo-color images by assigning different combinations of MISR channels (angle or spectral band) to the RGB display channels. This software is an interactive application written in IDL and compiled into an IDL Virtual Machine (VM) ".sav" file.

  13. Desert Dust Aerosol Air Mass Mapping in the Western Sahara, Using Particle Properties Derived from Space-Based Multi-Angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Mueller, Detlef; hide

    2008-01-01

    Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  14. Desert Dust Air Mass Mapping in the Western Sahara, using Particle Properties Derived from Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Fiebig, Marcus; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the SAhara Mineral dUst experiMent (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from Multi-angle Imaging SpectroRadiometer (MISR) observations, and to place the sub-orbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days for which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 to 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape, and single-scattering albedo. For the three study days, the satellite observations (a) highlight regional gradients in the mix of dust and background spherical particles, (b) identify a dust plume most likely part of a density flow, and (c) show an air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometers away.

  15. MISR Decadal Observations of Mineral Dust: Property Characterization and Climate Applications

    NASA Technical Reports Server (NTRS)

    Kalashnikova, Olga V.; Garay, Michael J.; Sokolik, Irina; Kahn, Ralph A.; Lyapustin, A.; Diner, David J.; Lee, Jae N.; Torres, Omar; Leptoukh, Gregory G.; Sabbah, Ismail

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) provides a unique, independent source of data for studying dust emission and transport. MISR's multiple view angles allow the retrieval of aerosol properties over bright surfaces, and such retrievals have been shown to be sensitive to the non-sphericity of dust aerosols over both land and water. MISR stereographic views of thick aerosol plumes allow height and instantaneous wind derivations at spatial resolutions of better than 1.1 km horizontally and 200m vertically. We will discuss the radiometric and stereo-retrieval capabilities of MISR specifically for dust, and demonstrate the use of MISR data in conjunction with other available satellite observations for dust property characterization and climate studies.First, we will discuss MISR non-spherical (dust) fraction product over the global oceans. We will show that over the Atlantic Ocean, changes in the MISR-derived non-spherical AOD fraction illustrate the evolution of dust during transport. Next, we will present a MISR satellite perspective on dust climatology in major dust source regions with a particular emphasis on the West Africa and Middle East and discuss MISR's unique strengths as well as current product biases. Finally, we will discuss MISR dust plume product and climatological applications.

  16. Wildfires Rage in Southern California

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Large plumes of smoke rising from devastating wildfires burning near Los Angeles and San Diego on Sunday, October 26, 2003, are highlighted in this set of images from the Multi-angle Imaging SpectroRadiometer (MISR). These images include a natural color view from MISR's nadir camera (left) and an automated stereo height retrieval (right). The tops of the smoke plumes range in altitude from 500 - 3000 meters, and the stereo retrieval clearly differentiates the smoke from patches of high-altitude cirrus. Plumes are apparent from fires burning near the California-Mexico border, San Diego, Camp Pendleton, the foothills of the San Bernardino Mountains, and in and around Simi Valley. The majority of the smoke is coming from the fires near San Diego and the San Bernardino Mountains.

    The Multiangle Imaging Spectro Radiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 20510. The panels cover an area of 329 kilometers x 543 kilometers, and utilize data from blocks 62 to 66 within World Reference System-2 path 40.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  17. ESTIMATING GROUND LEVEL PM 2.5 IN THE EASTERN UNITED STATES USING SATELLITE REMOTE SENSING

    EPA Science Inventory

    An empirical model based on the regression between daily average final particle (PM2.5) concentrations and aerosol optical thickness (AOT) measurements from the Multi-angle Imaging SpectroRadiometer (MISR) was developed and tested using data from the eastern United States during ...

  18. MISR Global Images See the Light of Day

    NASA Technical Reports Server (NTRS)

    2002-01-01

    As of July 31, 2002, global multi-angle, multi-spectral radiance products are available from the MISR instrument aboard the Terra satellite. Measuring the radiative properties of different types of surfaces, clouds and atmospheric particulates is an important step toward understanding the Earth's climate system. These images are among the first planet-wide summary views to be publicly released from the Multi-angle Imaging SpectroRadiometer experiment. Data for these images were collected during the month of March 2002, and each pixel represents monthly-averaged daylight radiances from an area measuring 1/2 degree in latitude by 1/2 degree in longitude.

    The top panel is from MISR's nadir (vertical-viewing) camera and combines data from the red, green and blue spectral bands to create a natural color image. The central view combines near-infrared, red, and green spectral data to create a false-color rendition that enhances highly vegetated terrain. It takes 9 days for MISR to view the entire globe, and only areas within 8 degrees of latitude of the north and south poles are not observed due to the Terra orbit inclination. Because a single pole-to-pole swath of MISR data is just 400 kilometers wide, multiple swaths must be mosaiced to create these global views. Discontinuities appear in some cloud patterns as a consequence of changes in cloud cover from one day to another.

    The lower panel is a composite in which red, green, and blue radiances from MISR's 70-degree forward-viewing camera are displayed in the northern hemisphere, and radiances from the 70-degree backward-viewing camera are displayed in the southern hemisphere. At the March equinox (spring in the northern hemisphere, autumn in the southern hemisphere), the Sun is near the equator. Therefore, both oblique angles are observing the Earth in 'forward scattering', particularly at high latitudes. Forward scattering occurs when you (or MISR) observe an object with the Sun at a point in the sky that is in front of you. Relative to the nadir view, this geometry accentuates the appearance of polar clouds, and can even reveal clouds that are invisible in the nadir direction. In relatively clear ocean areas, the oblique-angle composite is generally brighter than its nadir counterpart due to enhanced reflection of light by atmospheric particulates.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  19. Development and Applications of a New, High-Resolution, Operational MISR Aerosol Product

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Diner, D. J.; Kalashnikova, O.

    2014-12-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution. Capitalizing on the capabilities provided by multi-angle viewing, the operational MISR algorithm performs well, with about 75% of MISR AOD retrievals falling within 0.05 or 20% × AOD of the paired validation data from the ground-based Aerosol Robotic Network (AERONET), and is able to distinguish aerosol particles by size and sphericity, over both land and water. These attributes enable a variety of applications, including aerosol transport model validation and global air quality assessment. Motivated by the adverse impacts of aerosols on human health at the local level, and taking advantage of computational speed advances that have occurred since the launch of Terra, we have implemented an operational MISR aerosol product with 4.4 km spatial resolution that maintains, and sometimes improves upon, the quality of the 17.6 km resolution product. We will describe the performance of this product relative to the heritage 17.6 km product, the global AERONET validation network, and high spatial density AERONET-DRAGON sites. Other changes that simplify product content, and make working with the data much easier for users, will also be discussed. Examples of how the new product demonstrates finer spatial variability of aerosol fields than previously retrieved, and ways this new dataset can be used for studies of local aerosol effects, will be shown.

  20. Greener Pastures in Northern Queensland, Australia

    NASA Technical Reports Server (NTRS)

    2004-01-01

    After a 19 month rainfall deficiency, heavy rainfall during January 2004 brought drought relief to much of northern Queensland. Local graziers hope for good long-term responses in pasture growth from the heavy rains. These images and maps from the Multi-angle Imaging SpectroRadiometer (MISR) portray part of Australia's Mitchell Grasslands bioregion before summer rainfall, on October 18, 2003 (left) and afterwards, on February 7, 2004 (right).

    The top pair of images are natural color views from MISR's nadir camera. The green areas in the post-rainfall image highlight the growth of vegetation. The middle panels show the reflectivity of the surface over the photosynthetically active region (PAR) of visible light (400 - 700 nm), expressed as a directional-hemispherical reflectance (DHR-PAR), or albedo. That portion of the radiation that is not reflected back to the atmosphere or space is absorbed by either the vegetation or the soil. The fraction of PAR radiation absorbed by green vegetation, known as FPAR, is shown in the bottom panels. FPAR is one of the quantities that establishes the photosynthetic and carbon uptake efficiency of live vegetation. MISR's FPAR product makes use of aerosol retrievals to correct for atmospheric scattering and absorption effects, and uses plant canopy structural models to determine the partitioning of solar radiation. Both of these aspects are facilitated by the multiangular nature of the MISR measurements.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 20397 and 22028. The panels cover an area of about 290 kilometers x 228 kilometers, and utilize data from blocks 106 to 108 within World Reference System-2 path 96.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  1. A strategy for compression and analysis of massive geophysical data sets

    NASA Technical Reports Server (NTRS)

    Braverman, A.

    2001-01-01

    This paper describes a method for summaraizing data in a way that approximately preserves high-resolution data structure while reducing data volume and maintaining global integrity of very large, remote sensing data sets. The method is under development for one of Terra's instruments, the Multi-angle Imaging SpectroRadiometer (MISR).

  2. Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX)

    NASA Technical Reports Server (NTRS)

    Nelson, D.L.; Garay, M.J.; Kahn, Ralph A.; Dunst, Ben A.

    2013-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra satellite acquires imagery at 275-m resolution at nine angles ranging from 0deg (nadir) to 70deg off-nadir. This multi-angle capability facilitates the stereoscopic retrieval of heights and motion vectors for clouds and aerosol plumes. MISR's operational stereo product uses this capability to retrieve cloud heights and winds for every satellite orbit, yielding global coverage every nine days. The MISR INteractive eXplorer (MINX) visualization and analysis tool complements the operational stereo product by providing users the ability to retrieve heights and winds locally for detailed studies of smoke, dust and volcanic ash plumes, as well as clouds, at higher spatial resolution and with greater precision than is possible with the operational product or with other space-based, passive, remote sensing instruments. This ability to investigate plume geometry and dynamics is becoming increasingly important as climate and air quality studies require greater knowledge about the injection of aerosols and the location of clouds within the atmosphere. MINX incorporates features that allow users to customize their stereo retrievals for optimum results under varying aerosol and underlying surface conditions. This paper discusses the stereo retrieval algorithms and retrieval options in MINX, and provides appropriate examples to explain how the program can be used to achieve the best results.

  3. Summer Harvest in Saratov, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Russia's Saratov Oblast (province) is located in the southeastern portion of the East-European plain, in the Lower Volga River Valley. Southern Russia produces roughly 40 percent of the country's total agricultural output, and Saratov Oblast is the largest producer of grain in the Volga region. Vegetation changes in the province's agricultural lands between spring and summer are apparent in these images acquired on May 31 and July 18, 2002 (upper and lower image panels, respectively) by the Multi-angle Imaging SpectroRadiometer (MISR).

    The left-hand panels are natural color views acquired by MISR's vertical-viewing (nadir) camera. Less vegetation and more earth tones (indicative of bare soils) are apparent in the summer image (lower left). Farmers in the region utilize staggered sowing to help stabilize yields, and a number of different stages of crop maturity can be observed. The main crop is spring wheat, cultivated under non-irrigated conditions. A short growing season and relatively low and variable rainfall are the major limitations to production. Saratov city is apparent as the light gray pixels on the left (west) bank of the Volga River. Riparian vegetation along the Volga exhibits dark green hues, with some new growth appearing in summer.

    The right-hand panels are multi-angle composites created with red band data from MISR's 60-degree backward, nadir and 60-degree forward-viewing cameras displayed as red, green and blue respectively. In these images, color variations serve as a proxy for changes in angular reflectance, and the spring and summer views were processed identically to preserve relative variations in brightness between the two dates. Urban areas and vegetation along the Volga banks look similar in the two seasonal multi-angle composites. The agricultural areas, on the other hand, look strikingly different. This can be attributed to differences in brightness and texture between bare soil and vegetated land. The chestnut-colored soils in this region are brighter in MISR's red band than the vegetation. Because plants have vertical structure, the oblique cameras observe a greater proportion of vegetation relative to the nadir camera, which sees more soil. In spring, therefore, the scene is brightest in the vertical view and thus appears with an overall greenish hue. In summer, the soil characteristics play a greater role in governing the appearance of the scene, and the angular reflectance is now brighter at the oblique view angles (displayed as red and blue), thus imparting a pink color to much of the farmland and a purple color to areas along the banks of several narrow rivers. The unusual appearance of the clouds is due to geometric parallax which splits the imagery into spatially separated components as a consequence of their elevation above the surface.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. These images are a portion of the data acquired during Terra orbits 13033 and 13732, and cover an area of about 173 kilometers x 171 kilometers. They utilize data from blocks 49 to 50 within World Reference System-2 path 170.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  4. MISR Interactive Explorer (MINX) : Production Digitizing to Retrieve Smoke Plume Heights and Validating Heights Against Lidar Data

    NASA Technical Reports Server (NTRS)

    Dunst, Ben

    2011-01-01

    The height at which smoke from a wildfire is injected into the atmosphere is an important parameter for climatology, because it determines how far the smoke can be transported. Using the MINX program to analyze MISR (Multi-angle Imaging Spectro-Radiometer) data, I digitized wildfire smoke plumes to add to an existing database of these heights for use by scientists studying smoke transport and plume dynamics. In addition to using MINX to do production digitizing of heights, I assisted in gathering lidar data for an ongoing validation of MINX and helped evaluate those data.

  5. Detecting Thin Cirrus in Multiangle Imaging Spectroradiometer Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Pierce, Jeffrey R.; Kahn, Ralph A.; Davis, Matt R.; Comstock, Jennifer M.

    2010-01-01

    Thin cirrus clouds (optical depth (OD) < 03) are often undetected by standard cloud masking in satellite aerosol retrieval algorithms. However, the Mu]tiangle Imaging Spectroradiometer (MISR) aerosol retrieval has the potential to discriminate between the scattering phase functions of cirrus and aerosols, thus separating these components. Theoretical tests show that MISR is sensitive to cirrus OD within Max{0.05 1 20%l, similar to MISR's sensitivity to aerosol OD, and MISR can distinguish between small and large crystals, even at low latitudes, where the range of scattering angles observed by MISR is smallest. Including just two cirrus components in the aerosol retrieval algorithm would capture typical MISR sensitivity to the natural range of cinus properties; in situations where cirrus is present but the retrieval comparison space lacks these components, the retrieval tends to underestimate OD. Generally, MISR can also distinguish between cirrus and common aerosol types when the proper cirrus and aerosol optical models are included in the retrieval comparison space and total column OD is >-0.2. However, in some cases, especially at low latitudes, cirrus can be mistaken for some combinations of dust and large nonabsorbing spherical aerosols, raising a caution about retrievals in dusty marine regions when cirrus is present. Comparisons of MISR with lidar and Aerosol Robotic Network show good agreement in a majority of the cases, but situations where cirrus clouds have optical depths >0.15 and are horizontally inhomogeneous on spatial scales shorter than 50 km pose difficulties for cirrus retrieval using the MISR standard aerosol algorithm..

  6. Assessing the accuracy of MISR and MISR-simulated cloud top heights using CloudSat- and CALIPSO-retrieved hydrometeor profiles

    NASA Astrophysics Data System (ADS)

    Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.; Mace, Gerald G.; Benson, Sally

    2017-03-01

    Satellite retrievals of cloud properties are often used in the evaluation of global climate models, and in recent years satellite instrument simulators have been used to account for known retrieval biases in order to make more consistent comparisons between models and retrievals. Many of these simulators have seen little critical evaluation. Here we evaluate the Multiangle Imaging Spectroradiometer (MISR) simulator by using visible extinction profiles retrieved from a combination of CloudSat, CALIPSO, MODIS, and AMSR-E observations as inputs to the MISR simulator and comparing cloud top height statistics from the MISR simulator with those retrieved by MISR. Overall, we find that the occurrence of middle- and high-altitude topped clouds agrees well between MISR retrievals and the MISR-simulated output, with distributions of middle- and high-topped cloud cover typically agreeing to better than 5% in both zonal and regional averages. However, there are significant differences in the occurrence of low-topped clouds between MISR retrievals and MISR-simulated output that are due to differences in the detection of low-level clouds between MISR and the combined retrievals used to drive the MISR simulator, rather than due to errors in the MISR simulator cloud top height adjustment. This difference highlights the importance of sensor resolution and boundary layer cloud spatial structure in determining low-altitude cloud cover. The MISR-simulated and MISR-retrieved cloud optical depth also show systematic differences, which are also likely due in part to cloud spatial structure.

  7. America National Parks Viewed in 3D by NASA MISR Anaglyph 2

    NASA Image and Video Library

    2016-08-25

    Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite is releasing four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. Shown in the annotated image are Grand Teton National Park, John D. Rockefeller Memorial Parkway, Yellowstone National Park, and parts of Craters of the Moon National Monument. MISR views Earth with nine cameras pointed at different angles, giving it the unique capability to produce anaglyphs, stereoscopic images that allow the viewer to experience the landscape in three dimensions. The anaglyphs were made by combining data from MISR's vertical-viewing and 46-degree forward-pointing camera. You will need red-blue glasses in order to experience the 3D effect; ensure you place the red lens over your left eye. The images have been rotated so that north is to the left in order to enable 3D viewing because the Terra satellite flies from north to south. All of the images are 235 miles (378 kilometers) from west to east. These data were acquired June 25, 2016, Orbit 87876. http://photojournal.jpl.nasa.gov/catalog/PIA20890

  8. America National Parks Viewed in 3D by NASA MISR Anaglyph 4

    NASA Image and Video Library

    2016-08-25

    Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite is releasing four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. Shown in the annotated image are Sequoia National Park, Kings Canyon National Park, Manzanar National Historic Site, Devils Postpile National Monument, Yosemite National Park, and parts of Death Valley National Park. MISR views Earth with nine cameras pointed at different angles, giving it the unique capability to produce anaglyphs, stereoscopic images that allow the viewer to experience the landscape in three dimensions. The anaglyphs were made by combining data from MISR's vertical-viewing and 46-degree forward-pointing camera. You will need red-blue glasses in order to experience the 3D effect; ensure you place the red lens over your left eye. The images have been rotated so that north is to the left in order to enable 3D viewing because the Terra satellite flies from north to south. All of the images are 235 miles (378 kilometers) from west to east. These data were acquired July 7, 2016, Orbit 88051. http://photojournal.jpl.nasa.gov/catalog/PIA20892

  9. Karymsky volcano eruptive plume properties based on MISR multi-angle imagery and the volcanological implications

    NASA Astrophysics Data System (ADS)

    Flower, Verity J. B.; Kahn, Ralph A.

    2018-03-01

    Space-based operational instruments are in unique positions to monitor volcanic activity globally, especially in remote locations or where suborbital observing conditions are hazardous. The Multi-angle Imaging SpectroRadiometer (MISR) provides hyper-stereo imagery, from which the altitude and microphysical properties of suspended atmospheric aerosols can be derived. These capabilities are applied to plumes emitted at Karymsky volcano from 2000 to 2017. Observed plumes from Karymsky were emitted predominantly to an altitude of 2-4 km, with occasional events exceeding 6 km. MISR plume observations were most common when volcanic surface manifestations, such as lava flows, were identified by satellite-based thermal anomaly detection. The analyzed plumes predominantly contained large (1.28 µm effective radius), strongly absorbing particles indicative of ash-rich eruptions. Differences between the retrievals for Karymsky volcano's ash-rich plumes and the sulfur-rich plumes emitted during the 2014-2015 eruption of Holuhraun (Iceland) highlight the ability of MISR to distinguish particle types from such events. Observed plumes ranged from 30 to 220 km in length and were imaged at a spatial resolution of 1.1 km. Retrieved particle properties display evidence of downwind particle fallout, particle aggregation and chemical evolution. In addition, changes in plume properties retrieved from the remote-sensing observations over time are interpreted in terms of shifts in eruption dynamics within the volcano itself, corroborated to the extent possible with suborbital data. Plumes emitted at Karymsky prior to 2010 display mixed emissions of ash and sulfate particles. After 2010, all plumes contain consistent particle components, indicative of entering an ash-dominated regime. Post-2010 event timing, relative to eruption phase, was found to influence the optical properties of observed plume particles, with light absorption varying in a consistent sequence as each respective eruption phase progressed.

  10. Karymsky volcano eruptive plume properties based on MISR multi-angle imagery, and volcanological implications.

    PubMed

    Flower, Verity J B; Kahn, Ralph A

    2018-01-01

    Space-based, operational instruments are in unique positions to monitor volcanic activity globally, especially in remote locations or where suborbital observing conditions are hazardous. The Multi-angle Imaging SpectroRadiometer (MISR) provides hyper-stereo imagery, from which the altitude and microphysical properties of suspended atmospheric aerosols can be derived. These capabilities are applied to plumes emitted at Karymsky volcano from 2000 to 2017. Observed plumes from Karymsky were emitted predominantly to an altitude of 2-4 km, with occasional events exceeding 6 km. MISR plume observations were most common when volcanic surface manifestations, such as lava flows, were identified by satellite-based thermal anomaly detection. The analyzed plumes predominantly contained large (1.28 µm effective radius), strongly absorbing particles indicative of ash-rich eruptions. Differences between the retrievals for Karymsky volcano's ash-rich plumes and the sulfur-rich plumes emitted during the 2014-2015 eruption of Holuhraun (Iceland) highlight the ability of MISR to distinguish particle types from such events. Observed plumes ranged from 30 to 220 km in length, and were imaged at a spatial resolution of 1.1 km. Retrieved particle properties display evidence of downwind particle fallout, particle aggregation and chemical evolution. In addition, changes in plume properties retrieved from the remote-sensing observations over time are interpreted in terms of shifts in eruption dynamics within the volcano itself, corroborated to the extent possible with suborbital data. Plumes emitted at Karymsky prior to 2010 display mixed emissions of ash and sulfate particles. After 2010, all plumes contain consistent particle components, indicative of entering an ash-dominated regime. Post-2010 event timing, relative to eruption phase, was found to influence the optical properties of observed plume particles, with light-absorption varying in a consistent sequence as each respective eruption phase progressed.

  11. MISR Science Data Validation Plan Summary Charts

    NASA Technical Reports Server (NTRS)

    Conel, J.; Ledeboer, W.; Ackerman, T.; Marchand, R.; Clothiaux, E.

    2000-01-01

    The purpose of the MISR experiment is to acquire systematic multi-angle imagery for global monitoring over a multi-year period of top-of-atmosphere and surface albedos and to measure the shortwave radiative properties of aerosols, clouds, and surface scenes.

  12. A Summer View of Russia's Lena Delta and Olenek

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These views of the Russian Arctic were acquired by NASA's Multi-angle Imaging SpectroRadiometer (MISR) instrument on July 11, 2004, when the brief arctic summer had transformed the frozen tundra and the thousands of lakes, channels, and rivers of the Lena Delta into a fertile wetland, and when the usual blanket of thick snow had melted from the vast plains and taiga forests. This set of three images cover an area in the northern part of the Eastern Siberian Sakha Republic. The Olenek River wends northeast from the bottom of the images to the upper left, and the top portions of the images are dominated by the delta into which the mighty Lena River empties when it reaches the Laptev Sea. At left is a natural color image from MISR's nadir (vertical-viewing) camera, in which the rivers appear murky due to the presence of sediment, and photosynthetically-active vegetation appears green. The center image is also from MISR's nadir camera, but is a false color view in which the predominant red color is due to the brightness of vegetation at near-infrared wavelengths. The most photosynthetically active parts of this area are the Lena Delta, in the lower half of the image, and throughout the great stretch of land that curves across the Olenek River and extends northeast beyond the relatively barren ranges of the Volyoi mountains (the pale tan-colored area to the right of image center).

    The right-hand image is a multi-angle false-color view made from the red band data of the 60o backward, nadir, and 60o forward cameras, displayed as red, green and blue, respectively. Water appears blue in this image because sun glitter makes smooth, wet surfaces look brighter at the forward camera's view angle. Much of the landscape and many low clouds appear purple since these surfaces are both forward and backward scattering, and clouds that are further from the surface appear in a different spot for each view angle, creating a rainbow-like appearance. However, the vegetated region that is darker green in the natural color nadir image, also appears to exhibit a faint greenish hue in the multi-angle composite. A possible explanation for this subtle green effect is that the taiga forest trees (or dwarf-shrubs) are not too dense here. Since the the nadir camera is more likly to observe any gaps between the trees or shrubs, and since the vegetation is not as bright (in the red band) as the underlying soil or surface, the brighter underlying surface results in an area that is relatively brighter at the nadir view angle. Accurate maps of vegetation structural units are an essential part of understanding the seasonal exchanges of energy and water at the Earth's surface, and of preserving the biodiversity in these regions.

    The Multiangle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 24273. The panels cover an area of about 230 kilometers x 420 kilometers, and utilize data from blocks 30 to 34 within World Reference System-2 path 134.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  13. Stereoscopic Retrieval of Smoke Plume Heights and Motion from Space-Based Multi-Angle Imaging, Using the MISR INteractive eXplorer(MINX)

    NASA Technical Reports Server (NTRS)

    Nelson, David L.; Kahn, Ralph A.

    2014-01-01

    Airborne particles desert dust, wildfire smoke, volcanic effluent, urban pollution affect Earth's climate as well as air quality and health. They are found in the atmosphere all over the planet, but vary immensely in amount and properties with season and location. Most aerosol particles are injected into the near-surface boundary layer, but some, especially wildfire smoke, desert dust and volcanic ash, can be injected higher into the atmosphere, where they can stay aloft longer, travel farther, produce larger climate effects, and possibly affect human and ecosystem health far downwind. So monitoring aerosol injection height globally can make important contributions to climate science and air quality studies. The Multi-angle Imaging Spectro-Radiometer (MISR) is a space borne instrument designed to study Earths clouds, aerosols, and surface. Since late February 2000 it has been retrieving aerosol particle amount and properties, as well as cloud height and wind data, globally, about once per week. The MINX visualization and analysis tool complements the operational MISR data products, enabling users to retrieve heights and winds locally for detailed studies of smoke plumes, at higher spatial resolution and with greater precision than the operational product and other space-based, passive remote sensing techniques. MINX software is being used to provide plume height statistics for climatological studies as well as to investigate the dynamics of individual plumes, and to provide parameterizations for climate modeling.

  14. A Strengthening Eastern Pacific Storm

    NASA Technical Reports Server (NTRS)

    2006-01-01

    These July 11, 2006 images are from the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra Satellite. They show then Tropical Storm Bud as it was intensifying into a hurricane, which it became later that day. The true-color image at left is next to an image of cloud heights on the right. Two-dimensional maps of cloud heights such as these give scientists an opportunity to compare their models against actual hurricane observations.

    At the time of these images, Bud was located near 14.4 degrees north latitude and 112.5 degrees west longitude, or about 620 miles (1000 kilometers) southwest of Cabo San Lucas, Baja California, Mexico.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena,Calif. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, Md. JPL is a division of the California Institute of Technology.

  15. Deep Ocean Tsunami Waves off the Sri Lankan Coast

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The initial tsunami waves resulting from the undersea earthquake that occurred at 00:58:53 UTC (Coordinated Universal Time) on December 26, 2004, off the island of Sumatra, Indonesia, took a little over 2 hours to reach the teardrop-shaped island of Sri Lanka. Additional waves continued to arrive for many hours afterward. At approximately 05:15 UTC, as NASA's Terra satellite passed overhead, the Multi-angle Imaging SpectroRadiometer (MISR) captured this image of deep ocean tsunami waves about 30-40 kilometers from Sri Lanka's southwestern coast. The waves are made visible due to the effects of changes in sea-surface slope on the reflected sunglint pattern, shown here in MISR's 46-degree-forward-pointing camera. Sunglint occurs when sunlight reflects off a water surface in much the same way light reflects off a mirror, and the position of the Sun, angle of observation, and orientation of the sea surface determines how bright each part of the ocean appears in the image. These large wave features were invisible to MISR's nadir (vertical-viewing) camera. The image covers an area of 208 kilometers by 207 kilometers. The greatest impact of the tsunami was generally in an east-west direction, so the havoc caused by the tsunami along the southwestern shores of Sri Lanka was not as severe as along the eastern coast. However, substantial damage did occur in this region' as evidenced by the brownish debris in the water' because tsunami waves can diffract around land masses. The ripple-like wave pattern evident in this MISR image roughly correlates with the undersea boundary of the continental shelf. The surface wave pattern is likely to have been caused by interaction of deep waves with the ocean floor, rather than by the more usually observed surface waves, which are driven by winds. It is possible that this semi-concentric pattern represents wave reflection from the continental land mass; however, a combination of wave modeling and detailed bathymetric data is required to fully understand the dynamics. Examination of other MISR images of this area, taken under similar illumination conditions, has not uncovered any surface patterns resembling those seen here. This image is an example of how MISR's multi-angular capability provides unique information for understanding how tsunamis propagate. Another application of MISR data enabled scientists to measure the motion of breaking tsunami waves along the eastern shores of Andhra Pradesh, India. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees North and 82 degrees South latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 26720 and utilize data from within blocks 85 to 86 within World Reference System-2 path 142. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team. Text by Clare Averill (Raytheon ITSS/JPL); Michael Garay and David J. Diner (JPL, California Institute of Technology); and Vasily Titov (NOAA/Pacific Marine Environmental Laboratory and University of Washington/Joint Institute for the Study of the Atmosphere and Oceans).

  16. Characterizing error distributions for MISR and MODIS optical depth data

    NASA Astrophysics Data System (ADS)

    Paradise, S.; Braverman, A.; Kahn, R.; Wilson, B.

    2008-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's EOS satellites collect massive, long term data records on aerosol amounts and particle properties. MISR and MODIS have different but complementary sampling characteristics. In order to realize maximum scientific benefit from these data, the nature of their error distributions must be quantified and understood so that discrepancies between them can be rectified and their information combined in the most beneficial way. By 'error' we mean all sources of discrepancies between the true value of the quantity of interest and the measured value, including instrument measurement errors, artifacts of retrieval algorithms, and differential spatial and temporal sampling characteristics. Previously in [Paradise et al., Fall AGU 2007: A12A-05] we presented a unified, global analysis and comparison of MISR and MODIS measurement biases and variances over lives of the missions. We used AErosol RObotic NETwork (AERONET) data as ground truth and evaluated MISR and MODIS optical depth distributions relative to AERONET using simple linear regression. However, AERONET data are themselves instrumental measurements subject to sources of uncertainty. In this talk, we discuss results from an improved analysis of MISR and MODIS error distributions that uses errors-in-variables regression, accounting for uncertainties in both the dependent and independent variables. We demonstrate on optical depth data, but the method is generally applicable to other aerosol properties as well.

  17. April Showers Bring May Flowers to the Southern United States

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Vigorous vegetation growth in the Southern United States after heavy rains fell during April and early May, 2004, is quantified in these images and data products from the Multi-angle Imaging SpectroRadiometer (MISR). The images were acquired on April 1 (top set) and May 3 (bottom set), and extend through Kansas and Missouri, Oklahoma and Arkansas, and eastern Texas, with the Texas-Louisiana border at the bottom right-hand corner.

    The left-hand images are natural-color views from MISR's nadir camera. In the month between the April and May images, the overall greenness is enhanced, and the Boston and Ouachita Mountains are transformed from brownish hues to vivid green. The city of Dallas, Texas, appears as the pale gray area at lower left and the Red River (which corresponds with the Texas-Oklahoma border) is apparent as the yellowish feature flowing toward the lower left-hand edge. Scattered clouds appear in the upper right-hand corners of both images. Quantitative values for the vegetation changes are provided by the center and right-hand images. The middle panels show Leaf Area Index (LAI), or the area of leaves per unit area of ground below them, as measured from above. The right-hand panels show FPAR, which is the fraction of the photosynthetically active region (PAR) of visible light (400 - 700 nm) absorbed by green vegetation. LAI and FPAR are two important quantities for monitoring the photosynthetic activity and carbon uptake efficiency of live vegetation. MISR's LAI and FPAR products make use of aerosol retrievals to correct for atmospheric scattering and absorption effects, and use plant canopy structural models to determine the partitioning of solar radiation. Both of these aspects are facilitated by the multiangular nature of the MISR measurements.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 22810 and 23276. The panels cover an area of about 380 kilometers x 704 kilometers, and utilize data from blocks 61 to 65 within World Reference System-2 path 26.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  18. Quantitative assessment of AOD from 17 CMIP5 models based on satellite-derived AOD over India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Amit; Kanawade, Vijay P.; Tripathi, Sachchida Nand

    Aerosol optical depth (AOD) values from 17 CMIP5 models are compared with Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) derived AODs over India. The objective is to identify the cases of successful AOD simulation by CMIP5 models, considering satellite-derived AOD as a benchmark. Six years of AOD data (2000–2005) from MISR and MODIS are processed to create quality-assured gridded AOD maps over India, which are compared with corresponding maps of 17 CMIP5 models at the same grid resolution. Intercomparison of model and satellite data shows that model-AOD is better correlated with MISR-derived AOD than MODIS. The correlation between model-AOD andmore » MISR-AOD is used to segregate the models into three categories identifying their performance in simulating the AOD over India. Maps of correlation between model-AOD and MISR-/MODIS-AOD are generated to provide quantitative information about the intercomparison. The two sets of data are examined for different seasons and years to examine the seasonal and interannual variation in the correlation coefficients. In conclusion, latitudinal and longitudinal variations in AOD as simulated by models are also examined and compared with corresponding variations observed by satellites.« less

  19. Quantitative assessment of AOD from 17 CMIP5 models based on satellite-derived AOD over India

    DOE PAGES

    Misra, Amit; Kanawade, Vijay P.; Tripathi, Sachchida Nand

    2016-08-03

    Aerosol optical depth (AOD) values from 17 CMIP5 models are compared with Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) derived AODs over India. The objective is to identify the cases of successful AOD simulation by CMIP5 models, considering satellite-derived AOD as a benchmark. Six years of AOD data (2000–2005) from MISR and MODIS are processed to create quality-assured gridded AOD maps over India, which are compared with corresponding maps of 17 CMIP5 models at the same grid resolution. Intercomparison of model and satellite data shows that model-AOD is better correlated with MISR-derived AOD than MODIS. The correlation between model-AOD andmore » MISR-AOD is used to segregate the models into three categories identifying their performance in simulating the AOD over India. Maps of correlation between model-AOD and MISR-/MODIS-AOD are generated to provide quantitative information about the intercomparison. The two sets of data are examined for different seasons and years to examine the seasonal and interannual variation in the correlation coefficients. In conclusion, latitudinal and longitudinal variations in AOD as simulated by models are also examined and compared with corresponding variations observed by satellites.« less

  20. Where on Earth...? MISR Mystery Image Quiz #6

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here's another chance to play geographical detective! This Multi-angle Imaging SpectroRadiometer (MISR) image covers an area of about 298 kilometers x 358 kilometers, and was captured by the instrument's vertical-viewing (nadir) camera on December 27, 2001. Use any reference materials you like and answer the following five questions: The large lagoon in the image is named for a particular type of bird. Name the bird. Note the sediment plume emanating from the southern end of the lagoon. Sailors in the 16th century imagined this outlet to be the mouth of a large river. What did they call the river? A series of wave-like points and curls form 'cusps' on the inner shores of the lagoon. Which ONE of the following is most responsible for the formation of these cusps? Violent storm impacts on erosion and accretion Wind and tide-driven sediment transport and circulation Tectonic folding associated with nearby mountain ridges Bathymetric effects of dredging operations True or false: Changes in regional precipitation associated with large scale atmospheric circulation patterns have no effect on the salinity of the lagoon's water. Which one of these is NOT distributed within the area covered by this image? Ruppia maritima Chelonia mydas Tapirus bairdii Microcystis aeruginosa E-mail your answers, name (initials are acceptable if you prefer), and your hometown by Tuesday, February 19, 2002 to suggestions@mail-misr.jpl.nasa.gov. Answers will be published on the MISR web site in conjunction with the next weekly image release. The names and home towns of respondents who answer all questions correctly by the deadline will also be published in the order responses were received. The first 3 people on this list who are not affiliated with NASA, JPL, or MISR and who did not win a prize in the last quiz will be sent a print of the image. A new 'Where on Earth...?' mystery appears as the MISR 'image of the week' approximately once per month. A new image of the week is released every Wednesday at noon Pacific time on the MISR home page http://www-misr.jpl.nasa.gov. The image also appears on the Atmospheric Sciences Data Center home page, http://eosweb.larc.nasa.gov, though usually with a several-hour delay. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  1. Multi-layer Clouds Over the South Indian Ocean

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The complex structure and beauty of polar clouds are highlighted by these images acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on April 23, 2003. These clouds occur at multiple altitudes and exhibit a noticeable cyclonic circulation over the Southern Indian Ocean, to the north of Enderbyland, East Antarctica.

    The image at left was created by overlying a natural-color view from MISR's downward-pointing (nadir) camera with a color-coded stereo height field. MISR retrieves heights by a pattern recognition algorithm that utilizes multiple view angles to derive cloud height and motion. The opacity of the height field was then reduced until the field appears as a translucent wash over the natural-color image. The resulting purple, cyan and green hues of this aesthetic display indicate low, medium or high altitudes, respectively, with heights ranging from less than 2 kilometers (purple) to about 8 kilometers (green). In the lower right corner, the edge of the Antarctic coastline and some sea ice can be seen through some thin, high cirrus clouds.

    The right-hand panel is a natural-color image from MISR's 70-degree backward viewing camera. This camera looks backwards along the path of Terra's flight, and in the southern hemisphere the Sun is in front of this camera. This perspective causes the cloud-tops to be brightly outlined by the sun behind them, and enhances the shadows cast by clouds with significant vertical structure. An oblique observation angle also enhances the reflection of light by atmospheric particles, and accentuates the appearance of polar clouds. The dark ocean and sea ice that were apparent through the cirrus clouds at the bottom right corner of the nadir image are overwhelmed by the brightness of these clouds at the oblique view.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 17794. The panels cover an area of 335 kilometers x 605 kilometers, and utilize data from blocks 142 to 145 within World Reference System-2 path 155.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  2. Western United States and Southwestern Canada

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This natural-color image from the Multi-angle Imaging SpectroRadiometer (MISR) captures the beauty of the western United States and Canada. Data from 45 swaths from MISR's vertical-viewing (nadir) camera were combined to create this cloud-free mosaic. The image extends from 48o N 128o W in the northwest, to 32oN, 104o W in the southeast, and has been draped over a shaded relief Digital Terrain Elevation Model from the United States Geological Survey.

    The image area includes much of British Columbia, Alberta and Saskatchewan in the north, and extends southward to California, Arizona and New Mexico. The snow-capped Rocky Mountains are a prominent feature extending through British Columbia, Montana, Wyoming, Colorado and New Mexico. Many major rivers originate in the Columbia Plateau region of Washington, Oregon and Idaho. The Colorado Plateau region is characterized by the vibrant red-colored rocks of the Painted Desert in Utah and Arizona, and in New Mexico, White Sands National Park is the large white feature in the Southeast corner of the image with the Malpais lava flow just to its North. The southwest is dominated by the Mojave Desert of California and Nevada, California's San Joaquin Valley, the Los Angeles basin and the Pacific Ocean.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. This data product was generated from a portion of the imagery acquired during 2000-2002. The panels utilize data from blocks 45 to 65 within World Reference System-2 paths 31 to 53.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  3. Tropical Cyclone Monty Strikes Western Australia

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) acquired these natural color images and cloud top height measurements for Monty before and after the storm made landfall over the remote Pilbara region of Western Australia, on February 29 and March 2, 2004 (shown as the left and right-hand image sets, respectively). On February 29, Monty was upgraded to category 4 cyclone status. After traveling inland about 300 kilometers to the south, the cyclonic circulation had decayed considerably, although category 3 force winds were reported on the ground. Some parts of the drought-affected Pilbara region received more than 300 millimeters of rainfall, and serious and extensive flooding has occurred.

    The natural color images cover much of the same area, although the right-hand panels are offset slightly to the east. Automated stereoscopic processing of data from multiple MISR cameras was utilized to produce the cloud-top height fields. The distinctive spatial patterns of the clouds provide the necessary contrast to enable automated feature matching between images acquired at different view angles. The height retrievals are at this stage uncorrected for the effects of the high winds associated with cyclone rotation. Areas where heights could not be retrieved are shown in dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 22335 and 22364. The panels cover an area of about 380 kilometers x 985 kilometers, and utilize data from blocks 105 to 111 within World Reference System-2 paths 115 and 113.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  4. Casting Light and Shadows on a Saharan Dust Storm

    NASA Technical Reports Server (NTRS)

    2003-01-01

    On March 2, 2003, near-surface winds carried a large amount of Saharan dust aloft and transported the material westward over the Atlantic Ocean. These observations from the Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA's Terra satellite depict an area near the Cape Verde Islands (situated about 700 kilometers off of Africa's western coast) and provide images of the dust plume along with measurements of its height and motion. Tracking the three-dimensional extent and motion of air masses containing dust or other types of aerosols provides data that can be used to verify and improve computer simulations of particulate transport over large distances, with application to enhancing our understanding of the effects of such particles on meteorology, ocean biological productivity, and human health.

    MISR images the Earth by measuring the spatial patterns of reflected sunlight. In the upper panel of the still image pair, the observations are displayed as a natural-color snapshot from MISR's vertical-viewing (nadir) camera. High-altitude cirrus clouds cast shadows on the underlying ocean and dust layer, which are visible in shades of blue and tan, respectively. In the lower panel, heights derived from automated stereoscopic processing of MISR's multi-angle imagery show the cirrus clouds (yellow areas) to be situated about 12 kilometers above sea level. The distinctive spatial patterns of these clouds provide the necessary contrast to enable automated feature matching between images acquired at different view angles. For most of the dust layer, which is spatially much more homogeneous, the stereoscopic approach was unable to retrieve elevation data. However, the edges of shadows cast by the cirrus clouds onto the dust (indicated by blue and cyan pixels) provide sufficient spatial contrast for a retrieval of the dust layer's height, and indicate that the top of layer is only about 2.5 kilometers above sea level.

    Motion of the dust and clouds is directly observable with the assistance of the multi-angle 'fly-over' animation (Below). The frames of the animation consist of data acquired by the 70-degree, 60-degree, 46-degree and 26-degree forward-viewing cameras in sequence, followed by the images from the nadir camera and each of the four backward-viewing cameras, ending with 70-degree backward image. Much of the south-to-north shift in the position of the clouds is due to geometric parallax between the nine view angles (rather than true motion), whereas the west-to-east motion is due to actual motion of the clouds over the seven minutes during which all nine cameras observed the scene. MISR's automated data processing retrieved a primarily westerly (eastward) motion of these clouds with speeds of 30-40 meters per second. Note that there is much less geometric parallax for the cloud shadows owing to the relatively low altitude of the dust layer upon which the shadows are cast (the amount of parallax is proportional to elevation and a feature at the surface would have no geometric parallax at all); however, the westerly motion of the shadows matches the actual motion of the clouds. The automated processing was not able to resolve a velocity for the dust plume, but by manually tracking dust features within the plume images that comprise the animation sequence we can derive an easterly (westward) speed of about 16 meters per second. These analyses and visualizations of the MISR data demonstrate that not only are the cirrus clouds and dust separated significantly in elevation, but they exist in completely different wind regimes, with the clouds moving toward the east and the dust moving toward the west.

    [figure removed for brevity, see original site]

    (Click on image above for high resolution version)

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 17040. The panels cover an area of about 312 kilometers x 242 kilometers, and use data from blocks 74 to 77 within World Reference System-2 path 207.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  5. Flooding in the Aftermath of Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These views of the Louisiana and Mississippi regions were acquired before and one day after Katrina made landfall along the Gulf of Mexico coast, and highlight many of the changes to the rivers and vegetation that occurred between the two views. The images were acquired by NASA's Multi-angle Imaging SpectroRadiometer (MISR) on August 14 and August 30, 2005. These multiangular, multispectral false-color composites were created using red band data from MISR's 46o backward and forward-viewing cameras, and near-infrared data from MISR's nadir camera. Such a display causes water bodies and inundated soil to appear in blue and purple hues, and highly vegetated areas to appear bright green. The scene differentiation is a result of both spectral effects (living vegetation is highly reflective at near-infrared wavelengths whereas water is absorbing) and of angular effects (wet surfaces preferentially forward scatter sunlight). The two images were processed identically and extend from the regions of Greenville, Mississippi (upper left) to Mobile Bay, Alabama (lower right).

    There are numerous rivers along the Mississippi coast that were not apparent in the pre-Katrina image; the most dramatic of these is a new inlet in the Pascagoula River that was not apparent before Katrina. The post-Katrina flooding along the edges of Lake Pontchartrain and the city of New Orleans is also apparent. In addition, the agricultural lands along the Mississippi floodplain in the upper left exhibit stronger near-infrared brightness before Katrina. After Katrina, many of these agricultural areas exhibit a stronger signal to MISR's oblique cameras, indicating the presence of inundated soil throughout the floodplain. Note that clouds appear in a different spot for each view angle due to a parallax effect resulting from their height above the surface.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe between 82o north and 82o south latitude every nine days. Each image covers an area of about 380 kilometers by 410 kilometers. The data products were generated from a portion of the imagery acquired during Terra orbits 30091 and 30324 and utilize data from blocks 64-67 within World Reference System-2 path 22.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is managed for NASA by the California Institute of Technology.

  6. Sensitivity analysis of observed reflectivity to ice particle surface roughness using MISR satellite observations

    NASA Astrophysics Data System (ADS)

    Bell, A.; Hioki, S.; Wang, Y.; Yang, P.; Di Girolamo, L.

    2016-12-01

    Previous studies found that including ice particle surface roughness in forward light scattering calculations significantly reduces the differences between observed and simulated polarimetric and radiometric observations. While it is suggested that some degree of roughness is desirable, the appropriate degree of surface roughness to be assumed in operational cloud property retrievals and the sensitivity of retrieval products to this assumption remains uncertain. In an effort to extricate this ambiguity, we will present a sensitivity analysis of space-borne multi-angle observations of reflectivity, to varying degrees of surface roughness. This process is two fold. First, sampling information and statistics of Multi-angle Imaging SpectroRadiometer (MISR) sensor data aboard the Terra platform, will be used to define the most coming viewing observation geometries. Using these defined geometries, reflectivity will be simulated for multiple degrees of roughness using results from adding-doubling radiative transfer simulations. Sensitivity of simulated reflectivity to surface roughness can then be quantified, thus yielding a more robust retrieval system. Secondly, sensitivity of the inverse problem will be analyzed. Spherical albedo values will be computed by feeding blocks of MISR data comprising cloudy pixels over ocean into the retrieval system, with assumed values of surface roughness. The sensitivity of spherical albedo to the inclusion of surface roughness can then be quantified, and the accuracy of retrieved parameters can be determined.

  7. MISR Images Forest Fires and Hurricane

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These images show forest fires raging in Montana and Hurricane Hector swirling in the Pacific. These two unrelated, large-scale examples of nature's fury were captured by the Multi-angle Imaging SpectroRadiometer(MISR) during a single orbit of NASA's Terra satellite on August 14, 2000.

    In the left image, huge smoke plumes rise from devastating wildfires in the Bitterroot Mountain Range near the Montana-Idaho border. Flathead Lake is near the upper left, and the Great Salt Lake is at the bottom right. Smoke accumulating in the canyons and plains is also visible. This image was generated from the MISR camera that looks forward at a steep angle (60 degrees); the instrument has nine different cameras viewing Earth at different angles. The smoke is far more visible when seen at this highly oblique angle than it would be in a conventional, straight-downward (nadir)view. The wide extent of the smoke is evident from comparison with the image on the right, a view of Hurricane Hector acquired from MISR's nadir-viewing camera. Both images show an area of approximately 400 kilometers (250 miles)in width and about 850 kilometers (530 miles) in length.

    When this image of Hector was taken, the eastern Pacific tropical cyclone was located approximately 1,100 kilometers (680 miles) west of the southern tip of Baja California, Mexico. The eye is faintly visible and measures 25 kilometers (16 miles) in diameter. The storm was beginning to weaken, and 24hours later the National Weather Service downgraded Hector from a hurricane to a tropical storm.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

    For more information: http://www-misr.jpl.nasa.gov

  8. MISR 17.6 KM Gridded Cloud Motion Vectors: Overview and Assessment

    NASA Technical Reports Server (NTRS)

    Mueller, Kevin; Garay, Michael; Moroney, Catherine; Jovanovic, Veljko

    2012-01-01

    The MISR (Multi-angle Imaging SpectroRadiometer) instrument on the Terra satellite has been retrieving cloud motion vectors (CMVs) globally and almost continuously since early in 2000. In February 2012 the new MISR Level 2 Cloud product was publicly released, providing cloud motion vectors at 17.6 km resolution with improved accuracy and roughly threefold increased coverage relative to the 70.4 km resolution vectors of the current MISR Level 2 Stereo product (which remains available). MISR retrieves both horizontal cloud motion and height from the apparent displacement due to parallax and movement of cloud features across three visible channel (670nm) camera views over a span of 200 seconds. The retrieval has comparable accuracy to operational atmospheric motion vectors from other current sensors, but holds the additional advantage of global coverage and finer precision height retrieval that is insensitive to radiometric calibration. The MISR mission is expected to continue operation for many more years, possibly until 2019, and Level 2 Cloud has the possibility of being produced with a sensing-to-availability lag of 5 hours. This report compares MISR CMV with collocated motion vectors from arctic rawinsonde sites, and from the GOES and MODISTerra instruments. CMV at heights below 3 km exhibit the smallest differences, as small as 3.3 m/s for MISR and GOES. Clouds above 3 km exhibit larger differences, as large as 8.9 m/s for MISR and MODIS. Typical differences are on the order of 6 m/s.

  9. America National Parks Viewed in 3D by NASA MISR Anaglyph 3

    NASA Image and Video Library

    2016-08-25

    Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite is releasing four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. Shown in the annotated image are Lewis and Clark National Historic Park, Mt. Rainier National Park, Olympic National Park, Ebey's Landing National Historical Reserve, San Juan Island National Historic Park, North Cascades National Park, Lake Chelan National Recreation Area, and Ross Lake National Recreation Area (also Mt. St. Helens National Volcanic Monument, administered by the U.S. Forest Service) MISR views Earth with nine cameras pointed at different angles, giving it the unique capability to produce anaglyphs, stereoscopic images that allow the viewer to experience the landscape in three dimensions. The anaglyphs were made by combining data from MISR's vertical-viewing and 46-degree forward-pointing camera. You will need red-blue glasses in order to experience the 3D effect; ensure you place the red lens over your left eye. The images have been rotated so that north is to the left in order to enable 3D viewing because the Terra satellite flies from north to south. All of the images are 235 miles (378 kilometers) from west to east. These data were acquired May 12, 2012, Orbit 65960. http://photojournal.jpl.nasa.gov/catalog/PIA20891

  10. America National Parks Viewed in 3D by NASA MISR Anaglyph 1

    NASA Image and Video Library

    2016-08-25

    Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite is releasing four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. Shown in the annotated image are Walnut Canyon National Monument, Sunset Crater Volcano National Monument, Wupatki National Monument, Grand Canyon National Park, Pipe Spring National Monument, Zion National Park, Cedar Breaks National Monument, Bryce Canyon National Park, Capitol Reef National Park, Navajo National Monument, Glen Canyon National Recreation Area, Natural Bridges National Monument, Canyonlands National Park, and Arches National Park. MISR views Earth with nine cameras pointed at different angles, giving it the unique capability to produce anaglyphs, stereoscopic images that allow the viewer to experience the landscape in three dimensions. The anaglyphs were made by combining data from MISR's vertical-viewing and 46-degree forward-pointing camera. You will need red-blue glasses in order to experience the 3D effect; ensure you place the red lens over your left eye. The images have been rotated so that north is to the left in order to enable 3D viewing because the Terra satellite flies from north to south. All of the images are 235 miles (378 kilometers) from west to east. These data were acquired June 18, 2016, Orbit 87774. http://photojournal.jpl.nasa.gov/catalog/PIA20889

  11. Introducing MISR Version 23: Resolution and Content Improvements to MISR Aerosol and Land Surface Product

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Bull, M. A.; Witek, M. L.; Diner, D. J.; Seidel, F.

    2017-12-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing operational Level 2 (swath-based) aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution and atmospherically corrected land surface products at 1.1 km resolution. A major, multi-year development effort has led to the release of updated operational MISR Level 2 aerosol and land surface retrieval products. The spatial resolution of the aerosol product has been increased to 4.4 km, allowing more detailed characterization of aerosol spatial variability, especially near local sources and in urban areas. The product content has been simplified and updated to include more robust measures of retrieval uncertainty and other fields to benefit users. The land surface product has also been updated to incorporate the Version 23 aerosol product as input and to improve spatial coverage, particularly over mountainous terrain and snow/ice-covered surfaces. We will describe the major upgrades incorporated in Version 23, present validation of the aerosol product, and describe some of the applications enabled by these product updates.

  12. ISSARS Aerosol Database : an Incorporation of Atmospheric Particles into a Universal Tool to Simulate Remote Sensing Instruments

    NASA Technical Reports Server (NTRS)

    Goetz, Michael B.

    2011-01-01

    The Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) entered its third and final year of development with an overall goal of providing a unified tool to simulate active and passive space borne atmospheric remote sensing instruments. These simulations focus on the atmosphere ranging from UV to microwaves. ISSARS handles all assumptions and uses various models on scattering and microphysics to fill the gaps left unspecified by the atmospheric models to create each instrument's measurements. This will help benefit mission design and reduce mission cost, create efficient implementation of multi-instrument/platform Observing System Simulation Experiments (OSSE), and improve existing models as well as new advanced models in development. In this effort, various aerosol particles are incorporated into the system, and a simulation of input wavelength and spectral refractive indices related to each spherical test particle(s) generate its scattering properties and phase functions. These atmospheric particles being integrated into the system comprise the ones observed by the Multi-angle Imaging SpectroRadiometer(MISR) and by the Multiangle SpectroPolarimetric Imager(MSPI). In addition, a complex scattering database generated by Prof. Ping Yang (Texas A&M) is also incorporated into this aerosol database. Future development with a radiative transfer code will generate a series of results that can be validated with results obtained by the MISR and MSPI instruments; nevertheless, test cases are simulated to determine the validity of various plugin libraries used to determine or gather the scattering properties of particles studied by MISR and MSPI, or within the Single-scattering properties of tri-axial ellipsoidal mineral dust particles database created by Prof. Ping Yang.

  13. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of Multi-angle Imaging Spectroradiometer (MISR) nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001. Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. Image courtesy NASA/JPL/GSFC/LaRC, MISR Team

  14. Ice Types in the Beaufort Sea, Alaska

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Determining the amount and type of sea ice in the polar oceans is crucial to improving our knowledge and understanding of polar weather and long term climate fluctuations. These views from two satellite remote sensing instruments; the synthetic aperture radar (SAR) on board the RADARSAT satellite and the Multi-angle Imaging SpectroRadiometer (MISR), illustrate different methods that may be used to assess sea ice type. Sea ice in the Beaufort Sea off the north coast of Alaska was classified and mapped in these concurrent images acquired March 19, 2001 and mapped to the same geographic area.

    To identify sea ice types, the National Oceanic and Atmospheric Administration (NOAA) National Ice Center constructs ice charts using several data sources including RADARSAT SAR images such as the one shown at left. SAR classifies sea ice types primarily by how the surface and subsurface roughness influence radar backscatter. In the SAR image, white lines delineate different sea ice zones as identified by the National Ice Center. Regions of mostly multi-year ice (A) are separated from regions with large amounts of first year and younger ice (B-D), and the dashed white line at bottom marks the coastline. In general, sea ice types that exhibit increased radar backscatter appear bright in SAR and are identified as rougher, older ice types. Younger, smoother ice types appear dark to SAR. Near the top of the SAR image, however, red arrows point to bright areas in which large, crystalline 'frost flowers' have formed on young, thin ice, causing this young ice type to exhibit an increased radar backscatter. Frost flowers are strongly backscattering at radar wavelengths (cm) due to both surface roughness and the high salinity of frost flowers, which causes them to be highly reflective to radar energy.

    Surface roughness is also registered by MISR, although the roughness observed is at a different spatial scale. Older, rougher ice areas are predominantly backward scattering to the MISR cameras, whereas younger, smoother ice types are predominantly forward scattering. The MISR map at right was generated using a statistical classification routine (called ISODATA) and analyzed using ice charts from the National Ice Center. Five classes of sea ice were found based upon the classification of MISR angular data. These are described, based on interpretation of the SAR image, by the image key. Very smooth ice areas that are predominantly forward scattering are colored red. Frost flowers are largely smooth to the MISR visible band sensor and are mapped as forward scattering. Areas mapped as blue are predominantly backward scattering, and the other three classes have statistically distinct angular signatures and fall within the middle of the forward/backward scattering continuum. Some areas that may be first year or younger ice between the multi year ice floes are not discernible to SAR, illustrating how MISR potentially can make a unique contribution to sea ice mapping.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. This data product was generated from a portion of the imagery acquired during Terra orbit 6663. The MISR image has been cropped to include an area that is 200 kilometers wide, and utilizes data from blocks 30 to 33 within World Reference System-2 path 71.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  15. NASA MISR Studies Smoke Plumes from California Sand Fire

    NASA Image and Video Library

    2016-08-02

    39,000 acres (60 square miles, or 160 square kilometers). Thousands of residents were evacuated, and the fire claimed the life of one person. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed over the region on July 23 around 11:50 a.m. PDT. At left is an image acquired by MISR's 60-degree forward-viewing camera. The oblique view angle makes the smoke more apparent than it would be in a more conventional vertical view. This cropped image is about 185 miles (300 kilometers) wide. Smoke from the Sand Fire is visible on the right-hand side of the image. Stereoscopic analysis of MISR's multiple camera angles is used to compute the height of the smoke plume from the Sand Fire. In the right-hand image, these heights are superimposed on the underlying image. The color scale shows that the plume extends up to about 4 miles (6 kilometers) above its source in Santa Clarita, but rapidly diminishes in height as winds push it to the southwest. The data compare well with a pilot report issued at Los Angeles International Airport on the evening of July 22, which reported smoke at 15,000-18,000 feet altitude (4.5 to 5.5 kilometers). Air quality warnings were issued for the San Fernando Valley and the western portion of Los Angeles due to this low-hanging smoke. However, data from air quality monitoring instruments seem to indicate that the smoke did not actually reach the ground. These data were captured during Terra orbit 88284. http://photojournal.jpl.nasa.gov/catalog/PIA20724

  16. Gravity Waves Ripple over Marine Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this natural-color image from the Multi-angle Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar to the ripples that occur when a pebble is thrown into a still pond, such 'gravity waves' sometimes appear when the relatively stable and stratified air masses associated with stratocumulus cloud layers are disturbed by a vertical trigger from the underlying terrain, or by a thunderstorm updraft or some other vertical wind shear. The stratocumulus cellular clouds that underlie the wave feature are associated with sinking air that is strongly cooled at the level of the cloud-tops -- such clouds are common over mid-latitude oceans when the air is unperturbed by cyclonic or frontal activity. This image is centered over the Indian Ocean (at about 38.9o South, 80.6o East), and was acquired on October 29, 2003.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 20545. The image covers an area of 245 kilometers x 378 kilometers, and uses data from blocks 121 to 122 within World Reference System-2 path 134.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  17. Spatial Statistical Data Fusion for Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Hai

    2010-01-01

    Data fusion is the process of combining information from heterogeneous sources into a single composite picture of the relevant process, such that the composite picture is generally more accurate and complete than that derived from any single source alone. Data collection is often incomplete, sparse, and yields incompatible information. Fusion techniques can make optimal use of such data. When investment in data collection is high, fusion gives the best return. Our study uses data from two satellites: (1) Multiangle Imaging SpectroRadiometer (MISR), (2) Moderate Resolution Imaging Spectroradiometer (MODIS).

  18. An Unusual View: MISR sees the Moon

    NASA Image and Video Library

    2017-08-17

    The job of the Multiangle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite is to view Earth. For more than 17 years, its nine cameras have stared downward 24 hours a day, faithfully collecting images used to study Earth's surface and atmosphere. On August 5, however, MISR captured some very unusual data as the Terra satellite performed a backflip in space. This maneuver was performed to allow MISR and the other instruments on Terra to catch a glimpse of the Moon, something that has been done only once before, in 2003. Why task an elderly satellite with such a radical maneuver? Since we can be confident that the Moon's brightness has remained very constant over the mission, MISR's images of the Moon can be used as a check of the instrument's calibration, allowing an independent verification of the procedures used to correct the images for any changes the cameras have experienced over their many years in space. If changes in the cameras' responses to light aren't properly accounted for, the images captured by MISR would make it appear as if Earth were growing darker or lighter, which would throw off scientists' efforts to characterize air pollution, cloud cover and Earth's climate. Because of this, the MISR team uses several methods to calibrate the data, all of which involve imaging something with a known (or independently measured) brightness and correcting the images to match that brightness. Every month, MISR views two panels of a special material called Spectralon, which reflects sunlight in a very particular way, onboard the instrument. Periodically, this calibration is checked by a field team who measures the brightness of a flat, uniformly colored surface on Earth, usually a dry desert lakebed, as MISR flies overhead. The lunar maneuver offers a third opportunity to check the brightness calibration of MISR's images. While viewing Earth, MISR's cameras are fixed at nine different angles, with one (called An) pointed straight down, four canted forwards (Af, Bf, Cf, and Df) and four angled backwards (Aa, Ba, Ca, and Da). The A, B, C, and D cameras have different focal lengths, with the most oblique (D) cameras having the longest focal lengths in order to preserve spatial resolution on the ground. During the lunar maneuver, however, the spacecraft rotated so that each camera saw the almost-full Moon straight on. This means that the different focal lengths produce images with different resolutions. The D cameras produce the sharpest images. These grayscale images were made with raw data from the red spectral band of each camera. Because the spacecraft is constantly rotating while these images were taken, the images are "smeared" in the vertical direction, producing an oval-shaped Moon. These have been corrected to restore the Moon to its true circular shape. https://photojournal.jpl.nasa.gov/catalog/PIA21876

  19. MISR Aerosol Product Attributes and Statistical Comparisons with MODIS

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Nelson, David L.; Garay, Michael J.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Paradise, Susan R.; Hansen, Earl G.; Remer, Lorraine A.

    2009-01-01

    In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.

  20. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: Part III. Using Combined PCA to Compare Spatiotemporal Variability of MODIS, MISR and OMI Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Satellite measurements of global aerosol properties are very useful in constraining aerosol parameterization in climate models. The reliability of different data sets in representing global and regional aerosol variability becomes an essential question. In this study, we present the results of a comparison using combined principal component analysis (CPCA), applied to monthly mean, mapped (Level 3) aerosol optical depth (AOD) product from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Ozone Monitoring Instrument (OMI). This technique effectively finds the common space-time variability in the multiple data sets by decomposing the combined AOD field. The results suggest that all of the sensors capture the globally important aerosol regimes, including dust, biomass burning, pollution, and mixed aerosol types. Nonetheless, differences are also noted. Specifically, compared with MISR and OMI, MODIS variability is significantly higher over South America, India, and the Sahel. MODIS deep blue AOD has a lower seasonal variability in North Africa, accompanied by a decreasing trend that is not found in either MISR or OMI AOD data. The narrow swath of MISR results in an underestimation of dust variability over the Taklamakan Desert. The MISR AOD data also exhibit overall lower variability in South America and the Sahel. OMI does not capture the Russian wild fire in 2010 nor the phase shift in biomass burning over East South America compared to Central South America, likely due to cloud contamination and the OMI row anomaly. OMI also indicates a much stronger (boreal) winter peak in South Africa compared with MODIS and MISR.

  1. Determining Aerosol Plume Height from Two GEO Imagers: Lessons from MISR and GOES

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    Aerosol plume height is a key parameter to determine impacts of particulate matters generated from biomass burning, wind-blowing dust, and volcano eruption. Retrieving cloud top height from stereo imageries from two GOES (Geostationary Operational Environmental Satellites) have been demonstrated since 1970's and the principle should work for aerosol plumes if they are optically thick. The stereo technique has also been used by MISR (Multiangle Imaging SpectroRadiometer) since 2000 that has nine look angles along track to provide aerosol height measurements. Knowing the height of volcano aerosol layers is as important as tracking the ash plume flow for aviation safety. Lack of knowledge about ash plume height during the 2010 Eyja'rjallajokull eruption resulted in the largest air-traffic shutdown in Europe since World War II. We will discuss potential applications of Asian GEO satellites to make stereo measurements for dust and volcano plumes.

  2. New NASA Images of Irma's Towering Clouds (Anaglyph)

    NASA Image and Video Library

    2017-09-08

    On Sept. 7, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite passed over Hurricane Irma at approximately 11:20 am local time. The MISR instrument comprises nine cameras that view the Earth at different angles, and since it takes roughly seven minutes for all nine cameras to capture the same location, the motion of the clouds between images allows scientists to calculate the wind speed at the cloud tops. This stereo anaglyph combines two of the MISR angles to show a three-dimensional view of Irma. You will need red-blue glasses to view the anaglyph; place the red lens over your left eye. At this time, Irma's eye was located approximately 60 miles (100 kilometers) north of the Dominican Republic and 140 miles (230 kilometers) north of its capital, Santo Domingo. Irma was a powerful Category 5 hurricane, with wind speeds at the ocean surface up to 185 miles (300 kilometers) per hour. The MISR data show that at cloud top, winds near the eye wall (the most destructive part of the storm) were approximately 90 miles per hour (145 kilometers per hour), and the maximum cloud-top wind speed throughout the storm calculated by MISR was 135 miles per hour (220 kilometers per hour). While the hurricane's dominant rotation direction is counter-clockwise, winds near the eye wall are consistently pointing outward from it. This is an indication of outflow, the process by which a hurricane draws in warm, moist air at the surface and ejects cool, dry air at its cloud tops. https://photojournal.jpl.nasa.gov/catalog/PIA21945

  3. Analysis of fine-mode aerosol retrieval capabilities by different passive remote sensing instrument designs.

    PubMed

    Knobelspiesse, Kirk; Cairns, Brian; Mishchenko, Michael; Chowdhary, Jacek; Tsigaridis, Kostas; van Diedenhoven, Bastiaan; Martin, William; Ottaviani, Matteo; Alexandrov, Mikhail

    2012-09-10

    Remote sensing of aerosol optical properties is difficult, but multi-angle, multi-spectral, polarimetric instruments have the potential to retrieve sufficient information about aerosols that they can be used to improve global climate models. However, the complexity of these instruments means that it is difficult to intuitively understand the relationship between instrument design and retrieval success. We apply a Bayesian statistical technique that relates instrument characteristics to the information contained in an observation. Using realistic simulations of fine size mode dominated spherical aerosols, we investigate three instrument designs. Two of these represent instruments currently in orbit: the Multiangle Imaging SpectroRadiometer (MISR) and the POLarization and Directionality of the Earths Reflectances (POLDER). The third is the Aerosol Polarimetry Sensor (APS), which failed to reach orbit during recent launch, but represents a viable design for future instruments. The results show fundamental differences between the three, and offer suggestions for future instrument design and the optimal retrieval strategy for current instruments. Generally, our results agree with previous validation efforts of POLDER and airborne prototypes of APS, but show that the MISR aerosol optical thickness uncertainty characterization is possibly underestimated.

  4. Tinder Fire in Arizona Viewed by NASA's MISR

    NASA Image and Video Library

    2018-05-02

    On April 27, 2018, the Tinder Fire ignited in eastern Arizona near the Blue Ridge Reservoir, about 50 miles (80 kilometers) southeast of Flagstaff and 20 miles (32 kilometers) northeast of Payson. During the first 24 hours it remained relatively small at 500 acres (202 hectares), but on April 29, during red flag wind conditions, it exploded to 8,600 acres (3,480 hectares). Residents of rural communities in the area were forced to evacuate and an unknown number of structures were burned. As of April 30, the Tinder Fire had burned a total of 11,400 acres (4,613 hectares). On April 30 at 11:15 a.m. local time, the Multi-angle Imaging SpectroRadiometer (MISR) captured imagery of the Tinder Fire as it passed overhead on NASA's Terra satellite. The MISR instrument has nine cameras that view Earth at different angles. This image shows the view from MISR's nadir (downward-pointing) camera. The angular information from MISR's images is used to calculate the height of the smoke plume, results of which are superimposed on the right-hand image. This shows that the plume top near the active fire was at approximately 13,000 feet altitude (4,000 meters). In general, higher-altitude plumes transport smoke greater distances from the source, impacting communities downwind. A stereo anaglyph providing a three-dimensional view of the plume is also shown. Red-blue glasses with the red lens placed over your left eye are required to observe the 3D effect. These data were acquired during Terra orbit 97691. An annotated figure and anaglyph are available at https://photojournal.jpl.nasa.gov/catalog/PIA00698

  5. Determination of Ice Cloud Models Using MODIS and MISR Data

    NASA Technical Reports Server (NTRS)

    Xie, Yu; Yang, Ping; Kattawar, George W.; Minnis, Patrick; Hu, Yongxiang; Wu, Dong L.

    2012-01-01

    Representation of ice clouds in radiative transfer simulations is subject to uncertainties associated with the shapes and sizes of ice crystals within cirrus clouds. In this study, we examined several ice cloud models consisting of smooth, roughened, homogeneous and inhomogeneous hexagonal ice crystals with various aspect ratios. The sensitivity of the bulk scattering properties and solar reflectances of cirrus clouds to specific ice cloud models is investigated using the improved geometric optics method (IGOM) and the discrete ordinates radiative transfer (DISORT) model. The ice crystal habit fractions in the ice cloud model may significantly affect the simulations of cloud reflectances. A new algorithm was developed to help determine an appropriate ice cloud model for application to the satellite-based retrieval of ice cloud properties. The ice cloud particle size retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data, collocated with Multi-angle Imaging Spectroradiometer (MISR) observations, is used to infer the optical thicknesses of ice clouds for nine MISR viewing angles. The relative differences between view-dependent cloud optical thickness and the averaged value over the nine MISR viewing angles can vary from -0.5 to 0.5 and are used to evaluate the ice cloud models. In the case for 2 July 2009, the ice cloud model with mixed ice crystal habits is the best fit to the observations (the root mean square (RMS) error of cloud optical thickness reaches 0.365). This ice cloud model also produces consistent cloud property retrievals for the nine MISR viewing configurations within the measurement uncertainties.

  6. Oil Fire Plumes Over Baghdad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dark smoke from oil fires extend for about 60 kilometers south of Iraq's capital city of Baghdad in these images acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on April 2, 2003. The thick, almost black smoke is apparent near image center and contains chemical and particulate components hazardous to human health and the environment.

    The top panel is from MISR's vertical-viewing (nadir) camera. Vegetated areas appear red here because this display is constructed using near-infrared, red and blue band data, displayed as red, green and blue, respectively, to produce a false-color image. The bottom panel is a combination of two camera views of the same area and is a 3-D stereo anaglyph in which red band nadir camera data are displayed as red, and red band data from the 60-degree backward-viewing camera are displayed as green and blue. Both panels are oriented with north to the left in order to facilitate stereo viewing. Viewing the 3-D anaglyph with red/blue glasses (with the red filter placed over the left eye and the blue filter over the right) makes it possible to see the rising smoke against the surface terrain. This technique helps to distinguish features in the atmosphere from those on the surface. In addition to the smoke, several high, thin cirrus clouds (barely visible in the nadir view) are readily observed using the stereo image.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 17489. The panels cover an area of about 187 kilometers x 123 kilometers, and use data from blocks 63 to 65 within World Reference System-2 path 168.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  7. New NASA Images of Irma's Towering Clouds

    NASA Image and Video Library

    2017-09-08

    On Sept. 7, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite passed over Hurricane Irma at approximately 11:20 a.m. local time. The MISR instrument comprises nine cameras that view the Earth at different angles, and since it takes roughly seven minutes for all nine cameras to capture the same location, the motion of the clouds between images allows scientists to calculate the wind speed at the cloud tops. The animated GIF shows Irma's motion over the seven minutes of the MISR imagery. North is toward the top of the image. This composite image shows Hurricane Irma as viewed by the central, downward-looking camera (left), as well as the wind speeds (right) superimposed on the image. The length of the arrows is proportional to the wind speed, while their color shows the altitude at which the winds were calculated. At the time the image was acquired, Irma's eye was located approximately 60 miles (100 kilometers) north of the Dominican Republic and 140 miles (230 kilometers) north of its capital, Santo Domingo. Irma was a powerful Category 5 hurricane, with wind speeds at the ocean surface up to 185 miles (300 kilometers) per hour, according to the National Oceanic and Atmospheric Administration. The MISR data show that at cloud top, winds near the eye wall (the most destructive part of the storm) were approximately 90 miles per hour (145 kilometers per hour), and the maximum cloud-top wind speed throughout the storm calculated by MISR was 135 miles per hour (220 kilometers per hour). While the hurricane's dominant rotation direction is counter-clockwise, winds near the eye wall are consistently pointing outward from it. This is an indication of outflow, the process by which a hurricane draws in warm, moist air at the surface and ejects cool, dry air at its cloud tops. These data were captured during Terra orbit 94267. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21946

  8. Constraints on Global Aerosol Types: Past, Present, and Near-Future

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph

    2014-05-01

    Although the recent IPCC fifth assessment report (AR5) suggests that confidence in estimated direct aerosol radiative forcing (DARF) is high, indications are that there is little agreement among current climate models about the global distribution of aerosol single-scattering albedo (SSA). SSA must be associated with specific surface albedo and aerosol optical depth (AOD) values to calculate DARF with confidence, and global-scale constraints on aerosol type, including SSA, are poor at present. Yet, some constraints on aerosol type have been demonstrated for several satellite instruments, including the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR). The time-series of approximately once-weekly, global MISR observations has grown to about 14 years. The MISR capability amounts to three-to-five bins in particle size, two-to-four bins in SSA, and spherical vs. non-spherical particle distinctions, under good retrieval conditions. As the record of coincident, suborbital validation data has increased steadily, it has become progressively more feasible to assess and to improve the operational algorithm constraints on aerosol type. This presentation will discuss planned refinements to the MISR operational algorithm, and will highlight recent efforts at using MISR results to help better represent wildfire smoke, volcanic ash, and urban pollution in climate models.

  9. Quantification of Asian Dust Plume Seasonal Dynamics and Regional Features

    NASA Technical Reports Server (NTRS)

    Goetz, Michael

    2011-01-01

    Dust is but one of many aerosols that are analyzed at the Jet Propulsion Laboratory in Pasadena. The purpose of this paper is to describe the process in analyzing and digitizing dust within a source region to better explain the work achieved by my internship. This paper will go over how to view collected data by Multi-angle Imaging SpectroRadiometer (MISR) [1] and the procedure of downloading data to be analyzed. With this data, one can digitize dust plumes using two methods called plume lines and plume polygons with the help of the software MISR INteractive eXplorer (MINX)[3]; thus, the theory of MINX's[3] algorithm and these methods are discussed in detail. Research was gathered from these techniques and emphasis is also focused on the obtained data and results.

  10. Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer

    NASA Technical Reports Server (NTRS)

    Broderick, Daniel

    2012-01-01

    This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.

  11. Fluctuations of Lake Eyre, South Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Eyre is a large salt lake situated between two deserts in one of Australia's driest regions. However, this low-lying lake attracts run-off from one of the largest inland drainage systems in the world. The drainage basin is very responsive to rainfall variations, and changes dramatically with Australia's inter-annual weather fluctuations. When Lake Eyre fills,as it did in 1989, it is temporarily Australia's largest lake, and becomes dense with birds, frogs and colorful plant life. The Lake responds to extended dry periods (often associated with El Nino events) by drying completely.

    These four images from the Multi-angle Imaging SpectroRadiometer contrast the lake area at the start of the austral summers of 2000 and 2002. The top two panels portray the region as it appeared on December 9, 2000. Heavy rains in the first part of 2000 caused both the north and south sections of the lake to fill partially and the northern part of the lake still contained significant standing water by the time these data were acquired. The bottom panels were captured on November 29, 2002. Rainfall during 2002 was significantly below average ( http://www.bom.gov.au/ ), although showers occurring in the week before the image was acquired helped alleviate this condition slightly.

    The left-hand panels portray the area as it appeared to MISR's vertical-viewing (nadir) camera, and are false-color views comprised of data from the near-infrared, green and blue channels. Here, wet and/or moist surfaces appear blue-green, since water selectively absorbs longer wavelengths such as near-infrared. The right-hand panels are multi-angle composites created with red band data from MISR's 60-degree forward, nadir and 60-degree backward-viewing cameras, displayed as red, green and blue, respectively. In these multi-angle composites, color variations serve as a proxy for changes in angular reflectance, and indicate textural properties of the surface related to roughness and/or moisture content.Data from the two dates were processed identically to preserve relative variations in brightness between them. Wet surfaces or areas with standing water appear green due to the effect of sunglint at the nadir camera view angle. Dry, salt encrusted parts of the lake appear bright white or gray. Purple areas have enhanced forward scattering, possibly as a result of surface moistness. Some variations exhibited by the multi-angle composites are not discernible in the nadir multi-spectral images and vice versa, suggesting that the combination of angular and spectral information is a more powerful diagnostic of surface conditions than either technique by itself.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 5194 and 15679. The panels cover an area of 146 kilometers x 122 kilometers, and utilize data from blocks 113 to 114 within World Reference System-2 path 100.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  12. A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chatterjee, Abhishek; Michalak, Anna M.; Kahn, Ralph A.; Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.

    2010-01-01

    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling of the varying AOD. These results demonstrate how the MISR and MODIS aerosol products are complementary. The underlying technique also provides one method for combining these products in such a way that takes advantage of the strengths of each, in the places and times when they are maximal, and in addition, yields an estimate of the associated uncertainties in space and time.

  13. Hurricane Debby and the Appalachians Highlight New MISR Data Products

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The MISR team has developed new methods for retrieving information about clouds, airborne particles, and surface properties that capitalize on the instrument's unique, multi-angle imaging approach. This illustration, based upon results contained in sample products that have just been publicly released at the Atmospheric Sciences Data Center (ASDC), highlights some of these new capabilities. The ASDC, located at NASA's Langley Research Center, is the primary processing and archive center for MISR data (http://eosweb.larc.nasa.gov/).

    On August 21, 2000, during Terra orbit 3600, MISR imaged Hurricane Debby in the Atlantic Ocean. The first panel on the left is the MISR downward-looking (nadir) view of the storm's eastern edge. The next two panels show the results of a new approach that uses MISR's stereoscopic observations to retrieve cloud heights and winds. In the middle panel of this set, gradations from low to high cloud are depicted in shades ranging from blue to red. Since it takes seven minutes for all nine MISR cameras to view any location on Earth, and the clouds moved during this time, the data also contain information about wind speed and direction. Derived wind vectors, shown in the third panel, reveal Hurricane Debby's cyclonic motion. The highest wind speed measured is nearly 100 kilometers/hour. MISR obtains this type of information on a global basis, which will help scientists study the relationship between climate change and the three-dimensional characteristics of clouds.

    MISR imaged the eastern United States on March 6, 2000, during Terra orbit 1155. The first panel in the righthand set is the downward-looking (nadir) view, covering the region from Lake Ontario to northern Georgia, and spanning the Appalachian Mountains. The middle panel is the image taken by the forward-viewing 70.5-degree camera. At this increased slant angle, the line-of-sight through the atmosphere is three times longer, and a thin haze over the Appalachians is significantly more apparent. MISR uses this enhanced sensitivity along with the variation of brightness with angle to monitor particulate pollution and to measure haze properties. The third panel shows the airborne particle (aerosol) amount, derived using new methods that take advantage of MISR's moderately high spatial resolution at very oblique angles. The aerosol results are obtained at coarser resolution than the underlying images; gradations from blue to red indicate increasing aerosol abundance. These data indicate how airborne particles are interacting with sunlight, a measure of their impact on Earth's climate.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  14. Clouds and Ice of the Lambert-Amery System, East Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These views from the Multi-angle Imaging SpectroRadiometer (MISR) illustrate ice surface textures and cloud-top heights over the Amery Ice Shelf/Lambert Glacier system in East Antarctica on October 25, 2002.

    The left-hand panel is a natural-color view from MISR's downward-looking (nadir) camera. The center panel is a multi-angular composite from three MISR cameras, in which color acts as a proxy for angular reflectance variations related to texture. Here, data from the red-band of MISR's 60o forward-viewing, nadir and 60o backward-viewing cameras are displayed as red, green and blue, respectively. With this display technique, surfaces which predominantly exhibit backward-scattering (generally rough surfaces) appear red/orange, while surfaces which predominantly exhibit forward-scattering (generally smooth surfaces) appear blue. Textural variation for both the grounded and sea ice are apparent. The red/orange pixels in the lower portion of the image correspond with a rough and crevassed region near the grounding zone, that is, the area where the Lambert and four other smaller glaciers merge and the ice starts to float as it forms the Amery Ice Shelf. In the natural-color view, this rough ice is spectrally blue in color.

    Clouds exhibit both forward and backward-scattering properties in the middle panel and thus appear purple, in distinct contrast with the underlying ice and snow. An additional multi-angular technique for differentiating clouds from ice is shown in the right-hand panel, which is a stereoscopically derived height field retrieved using automated pattern recognition involving data from multiple MISR cameras. Areas exhibiting insufficient spatial contrast for stereoscopic retrieval are shown in dark gray. Clouds are apparent as a result of their heights above the surface terrain. Polar clouds are an important factor in weather and climate. Inadequate characterization of cloud properties is currently responsible for large uncertainties in climate prediction models. Identification of polar clouds, mapping of their distributions, and retrieval of their heights provide information that will help to reduce this uncertainty.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire Earth between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 15171. The panels cover an area of 380 kilometers x 984 kilometers, and utilize data from blocks 145 to 151 within World Reference System-2 path 127.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center,Greenbelt, MD. JPL is a division of the California Institute of Technology.

  15. MISR Images Northeastern Botswana

    NASA Technical Reports Server (NTRS)

    2000-01-01

    MISR images of the Ntwetwe and Sua Pans in northeastern Botswana, acquired on August 18, 2000 (Terra orbit 3553). The left image is a color view from the vertical-viewing (nadir) camera. On the right is a composite of red band imagery in which the 45-degree aft camera data are displayed in blue, 45-degree forward as green, and vertical as red. This combination causes wet areas to appear blue because of the glint-like reflection from water and damp surfaces. Clouds are visible in the upper left corner and right center of each image. The clouds look peculiar in the multi-angle view because geometric parallax resulting from their elevation above the surface causes a misregistration of the individual images making up the composite. This stereoscopic effect provides a way of distinguishing clouds from bright surfaces.

    The images are approximately 250 kilometers across. Ntwetwe and Sua pans are closed interior basins that catch rainwater and surface runoff during the wet season. Seasonal lakes form that may reach several meters in depth. During the dry season the collected waters rapidly evaporate leaving behind dissolved salts that coat the surface and turn it bright ('sua' means salt). The mining town of Sowa is located where the Sua Spit (a finger of grassland extending into the pan) attaches to the shore. Sowa represents headquarters for a JPL contingent carrying out MISR field experiments using the evaporite surface and the grasslands as targets and for Botswana scientists studying migration of groundwaters beneath the pans and surrounding areas. These efforts support the Southern Africa Regional Science Initiative (SAFARI-2000), which is now underway.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

    For more information: http://www-misr.jpl.nasa.gov

  16. Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.

  17. Evaluation of AirMSPI photopolarimetric retrievals of smoke properties with in-situ observations collected during the ImPACT-PM field campaign

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F.; Diner, D. J.; Seinfeld, J.; Bates, K. H.; Kong, W.; Kenseth, C.; Cappa, C. D.

    2017-12-01

    We introduce and evaluate an approach for obtaining closure between in situ and polarimetric remote sensing observations of smoke properties obtained during the collocated CIRPAS Twin Otter and ER-2 aircraft measurements of the Lebec fire event on July 8, 2016. We investigate the utility of multi-angle, spectropolarimetric remote sensing imagery to evaluate the relative contribution of organics, non-organic and black carbon particles to smoke particulate composition. The remote sensing data were collected during the Imaging Polarimetric and Characterization of Tropospheric Particular Matter (ImPACT-PM) field campaign by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), which flew on NASA's high-altitude ER-2 aircraft. The ImPACT-PM field campaign was a joint JPL/Caltech effort to combine measurements from the Terra Multi-angle Imaging SpectroRadiometer (MISR), AirMSPI, in situ airborne measurements, and a chemical transport model to validate remote sensing retrievals of different types of airborne particulate matter with a particular emphasis on carbonaceous aerosols. The in-situ aerosol data were collected with a suite of Caltech instruments on board the CIRPAS Twin Otter aircraft and included the Aerosol Mass Spectrometer (AMS), the Differential Mobility Analyzer (DMA), and the Single Particle Soot Photometer (SP-2). The CIRPAS Twin Otter aircraft was also equipped with the Particle Soot Absorption Photometer (PSAP), nephelometer, a particle counter, and meteorological sensors. We found that the multi-angle polarimetric observations are capable of fire particulate emission monitoring by particle type as inferred from the in-situ airborne measurements. Modeling of retrieval sensitivities show that the characterization of black carbon is the most challenging. The work aims at evaluating multi-angle, spectropolarimetric capabilities for particulate matter characterization in support of the Multi-Angle Imager for Aerosols (MAIA) satellite investigation, which is currently in development under NASA's third Earth Venture Instrument Program.

  18. Tropical Atlantic Dust and Smoke Aerosol Variations Related to the Madden-Julian Oscillation in MODIS and MISR Observations

    NASA Technical Reports Server (NTRS)

    Guo, Yanjuan; Tian, Baijun; Kahn, Ralph A.; Kalashnikova, Olga; Wong, Sun; Waliser, Duane E.

    2013-01-01

    In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) fine mode fraction and Multi-angle Imaging SpectroRadiometer (MISR) nonspherical fraction data are used to derive dust and smoke aerosol optical thickness (T(sub dust) and T(sub smoke)) over the tropical Atlantic in a complementary way: due to its wider swath, MODIS has 3-4 times greater sampling than MISR, but MISR dust discrimination is based on particle shape retrievals, whereas an empirical scheme is used for MODIS. MODIS and MISR show very similar dust and smoke winter climatologies. T(sub dust) is the dominant aerosol component over the tropical Atlantic, accounting for 40-70 percent of the total aerosol optical thickness (AOT), whereas T(sub smoke) is significantly smaller than T(sub dust). The consistency and high correlation between these climatologies and their daily variations lends confidence to their use for investigating the relative dust and smoke contributions to the total AOT variation associated with the Madden-Julian Oscillation (MJO). The temporal evolution and spatial patterns of the tdus anomalies associated with the MJO are consistent between MODIS and MISR: the magnitude of MJO-realted T(sub dust) anomalies is comparable to or even larger than that of the total T, while the T(sub smoke) anomaly represents about 15 percent compared to the total, which is quite different from their relative magnitudes to the total T on the climatological time scale. This suggests that dust and smoke are not influenced by the MJO in the same way. Based on correlation analysis, dust is strongly influenced by the MJO-modulated trade wind and precipitation anomalies, and can last as long as one MJO phase, whereas smoke is less affected.

  19. Smoke from California Sand and Soberanes Fires Observed by NASA MISR

    NASA Image and Video Library

    2016-07-26

    The Sand Fire in the Santa Clarita Valley area of Southern California erupted on Friday, July 22, 2016, and rapidly grew to more than 37,000 acres (58 square miles, or 150 square kilometers) over the weekend. As of Tuesday, July 26, hundreds of residents still remain under evacuation orders, and the fire claimed the life of a local resident. The fire is currently 25 percent contained. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed over the region on July 23 around 11:50 a.m. PDT. At left is an image acquired by MISR's 60-degree forward-viewing camera. The oblique view angle makes the smoke more apparent than it would be in a more conventional vertical view. Smoke from the Sand Fire is visible on the right-hand side of the image, and a long streamer of smoke from the Soberanes Fire near Big Sur in Central California is visible over the ocean near the left-hand side of the image. Like the Sand Fire, the Soberanes Fire also broke out on July 22, and quickly grew to more than 19,000 acres (30 square miles, or 77 square kilometers), causing the evacuation of hundreds of people and closure of several state parks. The Soberanes Fire is currently only 10 percent contained. The swath width of the MISR image is 257 miles (414 kilometers). At right is a map of aerosol optical depth, a quantitative measure of the smoke abundance in the atmosphere, derived from the images acquired by MISR's nine differently angled cameras. The thick smoke from both fires is apparent. Individual squares making up this map measure 2.7 miles (4.4 kilometers) on a side. The product shown here is a prototype of a new version of the MISR aerosol product to be publicly released in the near future, and increases the spatial resolution of the aerosol information by a factor of 16 compared to the currently available product, making it possible to discern finer details in the distribution of the smoke. These data were captured during Terra orbit 88284. http://photojournal.jpl.nasa.gov/catalog/PIA20720

  20. Scandinavia and the Baltic Region

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Data from the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera were combined to create this cloud-free natural-color mosaic of Scandinavia and the Baltic region. The image extends from 64oN, 0oE in the northwest to 56oN, 32oE in the southeast, and has been draped over a shaded relief Digital Terrain Elevation Model from the United States Geological Survey. It is displayed in an equidistant conic projection.

    The image area includes southern Norway, Sweden and Finland, northern Denmark, Estonia, Latvia and part of western Russia. Norway's rugged western coastline is deeply indented by fjords. Elongated lakes, formed by glacial erosion and deposition, are characteristic of the entire region, and are particularly dense throughout Finland and Sweden. Numerous islands are present, and a virtually continuous chain of small, scattered islands occur between Sweden and Finland. The northern and eastern waters of the Baltic Sea are almost fresh, since the Baltic receives saltwater only from the narrow and shallow sounds between Denmark and Sweden that connect it to the North Sea. Most of the major cities within the image area are coastal, including St. Petersburg, Stockholm, Helsinki, Riga, and Oslo.

    The Multi-angle Imaging SpectroRadiometer (MISR) observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  1. Waves on White: Ice or Clouds?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    As it passed over Antarctica on December 16, 2004, the Multi-angle Imaging SpectroRadiometer (MISR) on NASA's Terra satellite captured this image showing a wavy pattern in a field of white. At most other latitudes, such wavy patterns would likely indicate stratus or stratocumulus clouds. MISR, however, saw something different. By using information from several of its multiple cameras (each of which views the Earth's surface from a different angle), MISR was able to tell that what looked like a wavy cloud pattern was actually a wavy pattern on the ice surface. One of MISR's cloud classification products, the Angular Signature Cloud Mask (ASCM), correctly identified the rippled area as being at the surface.

    In this image pair, the view from MISR's most oblique backward-viewing camera is on the left, and the color-coded image on the right shows the results of the ASCM. The colors represent the level of certainty in the classification. Areas that were classed as cloudy with high confidence are white, and areas where the confidence was lower are yellow; dark blue shows confidently clear areas, while light blue indicates clear with lower confidence. The ASCM works particularly well at detecting clouds over snow and ice, but also works well over ocean and land. The rippled area on the surface which could have been mistaken for clouds are actually sastrugi -- long wavelike ridges of snow formed by the wind and found on the polar plains. Usually sastrugi are only several centimeters high and several meters apart, but large portions of East Antarctica are covered by mega-sastrugi ice fields, with dune-like features as high as four meters separated by two to five kilometers. The mega-sastrugi fields are a result of unusual snow accumulation and redistribution processes influenced by the prevailing winds and climate conditions. MISR imagery indicates that these mega sastrugi were stationary features between 2002 and 2004.

    Being able to distinguish clouds from snow or ice-covered surfaces is important in order to adequately characterize the radiation balance of the polar regions. However, detecting clouds using spaceborne detectors over snow and ice surfaces is notoriously difficult, because the surface may often be as bright and as cold as the overlying clouds, and because polar atmospheric temperature inversions sometimes mean that clouds are warmer than the underlying snow or ice surface. The Angular Signature Cloud Mask (ASCM) was developed based on the Band-Differenced Angular Signature (BDAS) approach, introduced by Di Girolamo and Davies (1994) and updated for MISR application by Di Girolamo and Wilson (2003). BDAS uses both spectral and angular changes in reflectivity to distinguish clouds from the background, and the ASCM calculates the difference between the 446 and 866 nanometer reflectances at MISR's two most oblique cameras that view forward-scattered light. New land thresholds for the ASCM are planned for delivery later this year.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. This image area covers about 277 kilometers by 421 kilometers in the interior of the East Antarctic ice sheet. These data products were generated from a portion of the imagery acquired during Terra orbit 26584 and utilize data from within blocks 159 to 161 within World Reference System-2 path 63.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  2. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  3. Forest Canopy Cover and Height from MISR in Topographically Complex Southwestern US Landscape Assessed with High Quality Reference Data

    NASA Technical Reports Server (NTRS)

    Chopping, Mark; North, Malcolm; Chen, Jiquan; Schaaf, Crystal B.; Blair, J. Bryan; Martonchik, John V.; Bull, Michael A.

    2012-01-01

    This study addresses the retrieval of spatially contiguous canopy cover and height estimates in southwestern USforests via inversion of a geometric-optical (GO) model against surface bidirectional reflectance factor (BRF) estimates from the Multi-angle Imaging SpectroRadiometer (MISR). Model inversion can provide such maps if good estimates of the background bidirectional reflectance distribution function (BRDF) are available. The study area is in the Sierra National Forest in the Sierra Nevada of California. Tree number density, mean crown radius, and fractional cover reference estimates were obtained via analysis of QuickBird 0.6 m spatial resolution panchromatic imagery usingthe CANopy Analysis with Panchromatic Imagery (CANAPI) algorithm, while RH50, RH75 and RH100 (50, 75, and 100 energy return) height data were obtained from the NASA Laser Vegetation Imaging Sensor (LVIS), a full waveform light detection and ranging (lidar) instrument. These canopy parameters were used to drive a modified version of the simple GO model (SGM), accurately reproducing patterns ofMISR 672 nm band surface reflectance (mean RMSE 0.011, mean R2 0.82, N 1048). Cover and height maps were obtained through model inversion against MISR 672 nm reflectance estimates on a 250 m grid.The free parameters were tree number density and mean crown radius. RMSE values with respect to reference data for the cover and height retrievals were 0.05 and 6.65 m, respectively, with of 0.54 and 0.49. MISR can thus provide maps of forest cover and height in areas of topographic variation although refinements are required to improve retrieval precision.

  4. Nicaraguan Volcanoes, 26 February 2000

    NASA Image and Video Library

    2000-04-19

    The true-color image at left is a downward-looking (nadir) view of the area around the San Cristobal volcano, which erupted the previous day. This image is oriented with east at the top and north at the left. The right image is a stereo anaglyph of the same area, created from red band multi-angle data taken by the 45.6-degree aftward and 70.5-degree aftward cameras on the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. View this image through red/blue 3D glasses, with the red filter over the left eye. A plume from San Cristobal (approximately at image center) is much easier to see in the anaglyph, due to 3 effects: the long viewing path through the atmosphere at the oblique angles, the reduced reflection from the underlying water, and the 3D stereoscopic height separation. In this image, the plume floats between the surface and the overlying cumulus clouds. A second plume is also visible in the upper right (southeast of San Cristobal). This very thin plume may originate from the Masaya volcano, which is continually degassing at as low rate. The spatial resolution is 275 meters (300 yards). http://photojournal.jpl.nasa.gov/catalog/PIA02600

  5. Longwave Radiative Forcing of Saharan Dust Aerosols Estimated from MODIS, MISR and CERES Observations on Terra

    NASA Technical Reports Server (NTRS)

    Zhang, Jiang-Long; Christopher, Sundar A.

    2003-01-01

    Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth's Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean LW forcing for September 2000 is 7 W/sq m and the LW forcing efficiency' (LW(sub eff)) is 15 W/sq m. Using radiative transfer calculations, we also show that the vertical distribution of aerosols and water vapor are critical to the understanding of dust aerosol forcing. Using well calibrated, spatially and temporally collocated data sets, we have combined the strengths of three sensors from the same satellite to quantify the LW radiative forcing, and show that dust aerosols have a "warming" effect over the Saharan desert that will counteract the shortwave "cooling effect" of aerosols.

  6. Self-Organizing-Map Program for Analyzing Multivariate Data

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Jacob, Joseph C.; Block, Gary L.; Braverman, Amy J.

    2005-01-01

    SOM_VIS is a computer program for analysis and display of multidimensional sets of Earth-image data typified by the data acquired by the Multi-angle Imaging Spectro-Radiometer [MISR (a spaceborne instrument)]. In SOM_VIS, an enhanced self-organizing-map (SOM) algorithm is first used to project a multidimensional set of data into a nonuniform three-dimensional lattice structure. The lattice structure is mapped to a color space to obtain a color map for an image. The Voronoi cell-refinement algorithm is used to map the SOM lattice structure to various levels of color resolution. The final result is a false-color image in which similar colors represent similar characteristics across all its data dimensions. SOM_VIS provides a control panel for selection of a subset of suitably preprocessed MISR radiance data, and a control panel for choosing parameters to run SOM training. SOM_VIS also includes a component for displaying the false-color SOM image, a color map for the trained SOM lattice, a plot showing an original input vector in 36 dimensions of a selected pixel from the SOM image, the SOM vector that represents the input vector, and the Euclidean distance between the two vectors.

  7. Typhoon Sinlaku

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the more destructive cyclones to emerge from the northern hemisphere 2002 summer storm season was Typhoon Sinlaku. Several attributes of this storm event are portrayed in these data products from the Multi-angle Imaging SpectroRadiometer. The images were acquired on September 5, when the western portion of the storm was situated over the Okinawan island chain. Over the next few days it moved west-northwest, sweeping over Taiwan before making landfall along China's Zhejian province on the 7th. The typhoon forced hundreds of thousands of people from their homes, caused major power outages, and at least 26 people were reported dead or missing before the storm weakened as it moved inland.

    While the nature and formation of individual storm events is relatively well understood, the influence of clouds on climate is difficult to assess due to the variable nature of cloud cover at various altitudes. MISR's data products are designed to help understand these influences. Typhoon Sinlaku is shown at left as a natural-color view observed by MISR's vertical-viewing (nadir)camera. The center panel shows the cloud-top height field derived using automated stereoscopic processing of data from multiple MISR cameras. Relative height variations, such as the clearing within the storm's eye, are well represented. Areas where heights could not be retrieved are shown in dark gray.

    Clouds have a significant influence on the global radiation balance of the Earth's atmosphere, and the improvement of climate models requires more accurate information on how different types of clouds influence Earth's energy budget. One measure of this influence is albedo, which is the amount of sunlight reflected back to space divided by amount of incident sunlight. Bright objects have high albedo. Retrieved local albedo values for Typhoon Sinlaku are shown at right. Generation of this product is dependent on observed cloud radiances as a function of viewing angle and the cloud height field. Over the short distances (2.2 kilometers) that MISR's local albedo product is generated, values can be greater than 1.0 due to the contributions from the sides of the clouds. Areas where albedo could not be retrieved are shown in dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 14442, and covers an area of about 380 kilometers x 1408 kilometers. It utilizes data from blocks 65 to 74 within World Reference System-2 path 113.

  8. Mexico Fires

    Atmospheric Science Data Center

    2013-04-18

    ... on the right. This quantity is retrieved using an automated computer algorithm that takes advantage of MISR's multi-angle capability. Areas ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  9. America's National Parks 3d (1)

    Atmospheric Science Data Center

    2016-12-30

    article title:  America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 1)   ...         Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle ...

  10. America's National Parks 3d (3)

    Atmospheric Science Data Center

    2016-12-30

    article title:  America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 3)   ... for larger version   Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle ...

  11. America's National Parks 3d (4)

    Atmospheric Science Data Center

    2017-04-11

    article title:  America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 4)   ...         Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle ...

  12. Fires in the Australian Capital Territory

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The height and extent of billowing smoke plumes from bushfires near Canberra, the Australian capital, are illustrated by these views from the Multi-angle Imaging SpectroRadiometer (MISR). The images were acquired on January 18, 2003. Never before had fires of this magnitude come so close to Australia's capital. Four people lost their lives and over 500 homes were destroyed, mostly in the southwestern suburbs. Australia's famous Mount Stromlo Observatory, located immediately west of the city, was also incinerated by the fires.

    The top panel portrays a natural-color view from MISR's nadir camera, in which the eastern portion of the Australian Capital Territory is located south of a pale, ephemeral lake in the upper left-hand corner (Lake George). Several smoke plumes originate within the eastern part of the Australian Capital Territory, while the major plumes originate to the west of the image area. The Australian Capital Territory and much of New South Wales are completely obscured by the smoke, which is driven by fierce westerly winds and extends eastward to the coast and over the Pacific Ocean.

    The lower panel provides a stereoscopically retrieved height field of the clouds and smoke plumes. The greenish areas indicate where smoke plumes extend several kilometers above a bank of patchy stratus clouds below. A few high clouds appear near the bottom of the image. Wind retrievals were excluded from this image in order to generate a smooth and continuous field. Although relative height variations are well-represented here, the inclusion of wind retrievals for this scene reduces the actual cloud height results by 1 to 2 kilometers. Areas where heights could not be retrieved are shown as dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuouslyand every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. This data product was generated from a portion of the imagery acquired during Terra orbit 16421. The panels cover an area of 380 kilometers x 253 kilometers, and utilize data from blocks 118 to 120 within World Reference System-2 path 89.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  13. Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors

    NASA Technical Reports Server (NTRS)

    Bruegge, Carol J.; Stiegman, Albert E.; Rainen, Richard A.; Springsteen, Arthur W.

    1993-01-01

    Spectralon, a commercially available diffuse reflectance material made from polytetrafluoroethylene (PTFE), is being evaluated for the multiangle imaging spectroradiometer (MISR), currently under development for the Earth Observing System. Results of a series of environmental exposure tests indicate that no degradation of the optical properties was apparent following proton bombardment, and stability through UV illumination was satisfactory, provided simple cleaning and handling procedures were implemented. A buildup of several thousand volts of static charge was found to develop while simulating a rare pass through an auroral storm.

  14. Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.

    2017-12-01

    The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.

  15. The Clouds of Isidore

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These views of Hurricane Isidore were acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on September 20, 2002. After bringing large-scale flooding to western Cuba, Isidore was upgraded (on September 21) from a tropical storm to a category 3hurricane. Sweeping westward to Mexico's Yucatan Peninsula, the hurricane caused major destruction and left hundreds of thousands of people homeless. Although weakened after passing over the Yucatan landmass, Isidore regained strength as it moved northward over the Gulf of Mexico.

    At left is a colorful visualization of cloud extent that superimposes MISR's radiometric camera-by-camera cloud mask (RCCM) over natural-color radiance imagery, both derived from data acquired with the instrument's vertical-viewing (nadir) camera. Using brightness and statistical metrics, the RCCM is one of several techniques MISR uses to determine whether an area is clear or cloudy. In this rendition, the RCCM has been color-coded, and purple = cloudy with high confidence, blue = cloudy with low confidence, green = clear with low confidence, and red = clear with high confidence.

    In addition to providing information on meteorological events, MISR's data products are designed to help improve our understanding of the influences of clouds on climate. Cloud heights and albedos are among the variables that govern these influences. (Albedo is the amount of sunlight reflected back to space divided by the amount of incident sunlight.) The center panel is the cloud-top height field retrieved using automated stereoscopic processing of data from multiple MISR cameras. Areas where heights could not be retrieved are shown in dark gray. In some areas, such as the southern portion of the image, the stereo retrieval was able to detect thin, high clouds that were not picked up by the RCCM's nadir view. Retrieved local albedo values for Isidore are shown at right. Generation of the albedo product is dependent upon observed cloud radiances as a function of viewing angle as well as the height field. Note that over the short distances (2.2 kilometers) that the local albedo product is generated, values can be greater than 1.0 due to contributions from cloud sides. Areas where albedo could not be retrieved are shown in dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 14669. The panels cover an area of about 380 kilometers x 704 kilometers, and utilize data from blocks 70 to 79within World Reference System-2 path 17.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  16. [The research on bidirectional reflectance computer simulation of forest canopy at pixel scale].

    PubMed

    Song, Jin-Ling; Wang, Jin-Di; Shuai, Yan-Min; Xiao, Zhi-Qiang

    2009-08-01

    Computer simulation is based on computer graphics to generate the realistic 3D structure scene of vegetation, and to simulate the canopy regime using radiosity method. In the present paper, the authors expand the computer simulation model to simulate forest canopy bidirectional reflectance at pixel scale. But usually, the trees are complex structures, which are tall and have many branches. So there is almost a need for hundreds of thousands or even millions of facets to built up the realistic structure scene for the forest It is difficult for the radiosity method to compute so many facets. In order to make the radiosity method to simulate the forest scene at pixel scale, in the authors' research, the authors proposed one idea to simplify the structure of forest crowns, and abstract the crowns to ellipsoids. And based on the optical characteristics of the tree component and the characteristics of the internal energy transmission of photon in real crown, the authors valued the optical characteristics of ellipsoid surface facets. In the computer simulation of the forest, with the idea of geometrical optics model, the gap model is considered to get the forest canopy bidirectional reflectance at pixel scale. Comparing the computer simulation results with the GOMS model, and Multi-angle Imaging SpectroRadiometer (MISR) multi-angle remote sensing data, the simulation results are in agreement with the GOMS simulation result and MISR BRF. But there are also some problems to be solved. So the authors can conclude that the study has important value for the application of multi-angle remote sensing and the inversion of vegetation canopy structure parameters.

  17. MISR Observations of Etna Volcanic Plumes

    NASA Technical Reports Server (NTRS)

    Scollo, S.; Kahn, R. A.; Nelson, D. L.; Coltelli, M.; Diner, D. J.; Garay, M. J.; Realmuto, V. J.

    2012-01-01

    In the last twelve years, Mt. Etna, located in eastern Sicily, has produced a great number of explosive eruptions. Volcanic plumes have risen to several km above sea level and created problems for aviation and the communities living near the volcano. A reduction of hazards may be accomplished using remote sensing techniques to evaluate important features of volcanic plumes. Since 2000, the Multiangle Imaging SpectroRadiometer (MISR) on board NASA s Terra spacecraft has been extensively used to study aerosol dispersal and to extract the three-dimensional structure of plumes coming from anthropogenic or natural sources, including volcanoes. In the present work, MISR data from several explosive events occurring at Etna are analyzed using a program named MINX (MISR INteractive eXplorer). MINX uses stereo matching techniques to evaluate the height of the volcanic aerosol with a precision of a few hundred meters, and extracts aerosol properties from the MISR Standard products. We analyzed twenty volcanic plumes produced during the 2000, 2001, 2002-03, 2006 and 2008 Etna eruptions, finding that volcanic aerosol dispersal and column height obtained by this analysis is in good agreement with ground-based observations. MISR aerosol type retrievals: (1) clearly distinguish volcanic plumes that are sulphate and/or water vapor dominated from ash-dominated ones; (2) detect even low concentrations of volcanic ash in the atmosphere; (3) demonstrate that sulphate and/or water vapor dominated plumes consist of smaller-sized particles compared to ash plumes. This work highlights the potential of MISR to detect important volcanic plume characteristics that can be used to constrain the eruption source parameters in volcanic ash dispersion models. Further, the possibility of discriminating sulphate and/or water vapor dominated plumes from ash-dominated ones is important to better understand the atmospheric impact of these plumes.

  18. America's National Parks 3d (2)

    Atmospheric Science Data Center

    2016-12-30

    article title:  America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 2)   ...           Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle ...

  19. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data

    NASA Astrophysics Data System (ADS)

    Bibi, Humera; Alam, Khan; Chishtie, Farrukh; Bibi, Samina; Shahid, Imran; Blaschke, Thomas

    2015-06-01

    This study provides an intercomparison of aerosol optical depth (AOD) retrievals from satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), Ozone Monitoring Instrument (OMI), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) instrumentation over Karachi, Lahore, Jaipur, and Kanpur between 2007 and 2013, with validation against AOD observations from the ground-based Aerosol Robotic Network (AERONET). Both MODIS Deep Blue (MODISDB) and MODIS Standard (MODISSTD) products were compared with the AERONET products. The MODISSTD-AERONET comparisons revealed a high degree of correlation for the four investigated sites at Karachi, Lahore, Jaipur, and Kanpur, the MODISDB-AERONET comparisons revealed even better correlations, and the MISR-AERONET comparisons also indicated strong correlations, as did the OMI-AERONET comparisons, while the CALIPSO-AERONET comparisons revealed only poor correlations due to the limited number of data points available. We also computed figures for root mean square error (RMSE), mean absolute error (MAE) and root mean bias (RMB). Using AERONET data to validate MODISSTD, MODISDB, MISR, OMI, and CALIPSO data revealed that MODISSTD data was more accurate over vegetated locations than over un-vegetated locations, while MISR data was more accurate over areas close to the ocean than over other areas. The MISR instrument performed better than the other instruments over Karachi and Kanpur, while the MODISSTD AOD retrievals were better than those from the other instruments over Lahore and Jaipur. We also computed the expected error bounds (EEBs) for both MODIS retrievals and found that MODISSTD consistently outperformed MODISDB in all of the investigated areas. High AOD values were observed by the MODISSTD, MODISDB, MISR, and OMI instruments during the summer months (April-August); these ranged from 0.32 to 0.78, possibly due to human activity and biomass burning. In contrast, high AOD values were observed by the CALIPSO instrument between September and December, due to high concentrations of smoke and soot aerosols. The variable monthly AOD figures obtained with different sensors indicate overestimation by MODISSTD, MODISDB, OMI, and CALIPSO instruments over Karachi, Lahore, Jaipur and Kanpur, relative to the AERONET data, but underestimation by the MISR instrument.

  20. Tropical Storm Harvey Spotted by NASA's MISR

    NASA Image and Video Library

    2017-08-29

    On Aug. 27, 2017, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite passed over then-Tropical Storm Harvey about noon local time, the day after the storm first made landfall in Texas as a Category 4 hurricane. The MISR instrument is equipped with nine cameras that observe Earth at different angles over a time period of seven minutes. Geometric information from the multiple camera views is used to compute the cloud top heights, and motion of the clouds during the image sequence is used to calculate wind speed. This composite image shows the storm as viewed by the central, downward-looking camera (left), as well as the cloud top heights in kilometers (center) and the wind speeds (right) superimposed on the image. The length of the arrows is proportional to the wind speed, while their color shows the altitude at which the winds were calculated. Also included is an animation made by combining all nine images from the MISR cameras, showing the motion of the storm during the seven-minute period. At this time, the center of the tropical storm was located just northwest of the city of Victoria and maximum wind speeds on the ground were around 40 miles per hour (65 kilometers per hour) according to the National Oceanic and Atmospheric Administration (NOAA), which matches well with the near-surface winds calculated by MISR to the west of Corpus Christi. In the 36 hours or so since it had made landfall, Harvey had weakened considerably -- these images show that the eye had disappeared and much of the circular motion of storm had dissipated, as shown by the calculated wind directions. However, the area of very high clouds and strong winds near Houston shows that the storm was continuing to produce powerful rain bands. At this point, hydrographs managed by NOAA in downtown Houston were already recording flood stage at both the Buffalo Bayou (28 feet or 8.5 meters as of 12:15 p.m. CDT August 27) and the White Oak Bayou (40 feet or 12 meters at last record that morning). The MISR data show the storm clouds reaching an altitude of about 10 miles (16 kilometers). These data were captured during Terra orbit 94108. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21927

  1. Multi-angle Imaging SpectroRadiometer

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    MISR views the sunlit Earth simultaneously at nine widely spaced angles and provides ongoing global coverage with high spatial detail. Its imagery is carefully calibrated to provide accurate measures of the brightness, contrast, and color of reflected sunlight. MISR provides new types of information for scientists studying Earth's climate, such as the regional and global distribution of different types of atmospheric particles and aerosols. The change in reflection at different view angles provides the means to distinguish aerosol types, cloud forms, and land surface cover. Combined with stereoscopic techniques, this enables construction of 3-D cloud models and estimation of the total amount of sunlight reflected by Earth's diverse environments. MISR was built for NASA by the Jet Propulsion Laboratory (JPL) in Pasadena, California. It is part of NASA's first Earth Observing System (EOS) spacecraft, the Terra spacecraft, which was launched into polar orbit from Vandenberg Air Force Base on December 18, 1999. MISR has been continuously providing data since February 24, 2000. [Mission Objectives] The MISR instrument acquires systematic multi-angle measurements for global monitoring of top-of-atmosphere and surface albedos and for measuring the shortwave radiative properties of aerosols, clouds, and surface scenes in order to characterize their impact on the Earth's climate. The Earth's climate is constantly changing -- as a consequence of both natural processes and human activities. Scientists care a great deal about even small changes in Earth's climate, since they can affect our comfort and well-being, and possibly our survival. A few years of below-average rainfall, an unusually cold winter, or a change in emissions from a coal-burning power plant, can influence the quality of life of people, plants, and animals in the region involved. The goal of NASA's Earth Observing System (EOS) is to increase our understanding of the climate changes that are occurring on our planet, and the reasons for these changes, so we are better equipped to anticipate and prepare for the future. The MISR instrument is a part of EOS. Its role is to measure the amount of sunlight scattered in different directions under natural conditions. These measurements will help quantify the amount of solar energy that heats the Earth's surface and atmosphere, and the changes that occur in them over the lifetime of the MISR instrument. From the MISR observations, we are also learning more about those components of the Earth's environment that scatter sunlight: particles in the atmosphere, the planet's surface, and clouds. MISR monitors changes in surface reflection properties, in atmospheric aerosol content and composition, and in cloudiness. Scientists use these data to study land use changes, air pollution, volcanic eruptions, as well as processes such as desertification, deforestation, and soil erosion. As part of the EOS program, computer models that predict future climate will be improved by the results of these studies. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  2. Southern Quebec in Late Winter

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images of Canada's Quebec province were acquired by the Multi-angle Imaging SpectroRadiometer on March 4, 2001. The region's forests are a mixture of coniferous and hardwood trees, and 'sugar-shack' festivities are held at this time of year to celebrate the beginning of maple syrup production. The large river visible in the images is the northeast-flowing St. Lawrence. The city of Montreal is located near the lower left corner, and Quebec City, at the upper right, is near the mouth of the partially ice-covered St. Lawrence Seaway.

    Both spectral and angular information are retrieved for every scene observed by MISR. The left-hand image was acquired by the instrument's vertical-viewing (nadir) camera, and is a false-color spectral composite from the near-infrared, red, and blue bands. The right-hand image is a false-color angular composite using red band data from the 60-degree backward-viewing, nadir, and 60-degree forward-viewing cameras. In each case, the individual channels of data are displayed as red, green, and blue, respectively.

    Much of the ground remains covered or partially covered with snow. Vegetation appears red in the left-hand image because of its high near-infrared brightness. In the multi-angle composite, vegetated areas appear in shades of green because they are brighter at nadir, possibly as a result of an underlying blanket of snow which is more visible from this direction. Enhanced forward scatter from the smooth water surface results in bluer hues, whereas urban areas look somewhat orange, possibly due to the effect of vertical structures which preferentially backscatter sunlight.

    The data were acquired during Terra orbit 6441, and cover an area measuring 275 kilometers x 310 kilometers.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  3. Aerosol Optical Depths over Oceans: a View from MISR Retrievals and Collocated MAN and AERONET in Situ Observations

    NASA Technical Reports Server (NTRS)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Smirnov, Alexander

    2013-01-01

    In this study, aerosol optical depths over oceans are analyzed from satellite and surface perspectives. Multiangle Imaging SpectroRadiometer (MISR) aerosol retrievals are investigated and validated primarily against Maritime Aerosol Network (MAN) observations. Furthermore, AErosol RObotic NETwork (AERONET) data from 19 island and coastal sites is incorporated in this study. The 270 MISRMAN comparison points scattered across all oceans were identified. MISR on average overestimates aerosol optical depths (AODs) by 0.04 as compared to MAN; the correlation coefficient and root-mean-square error are 0.95 and 0.06, respectively. A new screening procedure based on retrieval region characterization is proposed, which is capable of substantially reducing MISR retrieval biases. Over 1000 additional MISRAERONET comparison points are added to the analysis to confirm the validity of the method. The bias reduction is effective within all AOD ranges. Setting a clear flag fraction threshold to 0.6 reduces the bias to below 0.02, which is close to a typical ground-based measurement uncertainty. Twelve years of MISR data are analyzed with the new screening procedure. The average over ocean AOD is reduced by 0.03, from 0.15 to 0.12. The largest AOD decrease is observed in high latitudes of both hemispheres, regions with climatologically high cloud cover. It is postulated that the screening procedure eliminates spurious retrieval errors associated with cloud contamination and cloud adjacency effects. The proposed filtering method can be used for validating aerosol and chemical transport models.

  4. A High-Resolution Aerosol Retrieval Method for Urban Areas Using MISR Data

    NASA Astrophysics Data System (ADS)

    Moon, T.; Wang, Y.; Liu, Y.; Yu, B.

    2012-12-01

    Satellite-retrieved Aerosol Optical Depth (AOD) can provide a cost-effective way to monitor particulate air pollution without using expensive ground measurement sensors. One of the current state-of-the-art AOD retrieval method is NASA's Multi-angle Imaging SpectroRadiometer (MISR) operational algorithm, which has the spatial resolution of 17.6 km x 17.6 km. While the MISR baseline scheme already leads to exciting research opportunities to study particle compositions at regional scale, its spatial resolution is too coarse for analyzing urban areas where the AOD level has stronger spatial variations. We develop a novel high-resolution AOD retrieval algorithm that still uses MISR's radiance observations but has the resolution of 4.4km x 4.4km. We achieve the high resolution AOD retrieval by implementing a hierarchical Bayesian model and Monte-Carlo Markov Chain (MCMC) inference method. Our algorithm not only improves the spatial resolution, but also extends the coverage of AOD retrieval and provides with additional composition information of aerosol components that contribute to the AOD. We validate our method using the recent NASA's DISCOVER-AQ mission data, which contains the ground measured AOD values for Washington DC and Baltimore area. The validation result shows that, compared to the operational MISR retrievals, our scheme has 41.1% more AOD retrieval coverage for the DISCOVER-AQ data points and 24.2% improvement in mean-squared error (MSE) with respect to the AERONET ground measurements.

  5. Use of MISR measurements to study the radiative transfer of an isolated convective cloud: Implications for cloud optical thickness retrieval

    NASA Astrophysics Data System (ADS)

    Cornet, C.; Davies, R.

    2008-02-01

    Radiative transfer simulations of an isolated deep convective cloud reconstructed with stereo-techniques from the Multiangle Imaging Spectroradiometer (MISR) are compared with the reflectances measured at the nine MISR viewing angles. The simulations were done using a three dimensional Monte Carlo model, in which ocean reflectance, aerosol and Rayleigh scattering were prescribed to match the surrounding clear-sky MISR measurements. Making reasonable assumptions regarding the vertical and horizontal distribution of the volume extinction coefficient, we were able to reproduce the MISR measurements with the 3D radiative calculations. While the uniqueness of the these distributions cannot be proven, they all lead to retrievals of much larger cloud optical thickness and cloud water content than for a 1D retrieval. Averaged over the cloud, the difference was a factor of about 3, rising to 9 locally. This is a consequence of horizontal photon transport that serves to highlight the inadequacy of 1D retrievals for the case of deep convective cloud. Concerning the internal cloud properties, we noticed the angular distribution of modeled radiances did not match the measured radiances when an ice crystal phase function was applied. Better estimates of the optical depths and water contents of deep convective clouds appear to be obtainable by integrating an estimate of the extinction coefficient over the vertical cloud extent (when this can assessed) than by attempting to invert the radiance measured from a single-angle view using 1D theory.

  6. MISR GoMACCS Products

    Atmospheric Science Data Center

    2016-11-25

    Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) is an intensive ... study area encompasses Texas and the northwestern Gulf of Mexico during July, August, September, and October, 2006. The Multi-angle ...

  7. Distinguishing Clouds from Ice over the East Siberian Sea, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    As a consequence of its capability to retrieve cloud-top elevations, stereoscopic observations from the Multi-angle Imaging SpectroRadiometer (MISR) can discriminate clouds from snow and ice. The central portion of Russia's East Siberian Sea, including one of the New Siberian Islands, Novaya Sibir, are portrayed in these views from data acquired on May 28, 2002.

    The left-hand image is a natural color view from MISR's nadir camera. On the right is a height field retrieved using automated computer processing of data from multiple MISR cameras. Although both clouds and ice appear white in the natural color view, the stereoscopic retrievals are able to identify elevated clouds based on the geometric parallax which results when they are observed from different angles. Owing to their elevation above sea level, clouds are mapped as green and yellow areas, whereas land, sea ice, and very low clouds appear blue and purple. Purple, in particular, denotes elevations very close to sea level. The island of Novaya Sibir is located in the lower left of the images. It can be identified in the natural color view as the dark area surrounded by an expanse of fast ice. In the stereo map the island appears as a blue region indicating its elevation of less than 100 meters above sea level. Areas where the automated stereo processing failed due to lack of sufficient spatial contrast are shown in dark gray. The northern edge of the Siberian mainland can be found at the very bottom of the panels, and is located a little over 250 kilometers south of Novaya Sibir. Pack ice containing numerous fragmented ice floes surrounds the fast ice, and narrow areas of open ocean are visible.

    The East Siberian Sea is part of the Arctic Ocean and is ice-covered most of the year. The New Siberian Islands are almost always covered by snow and ice, and tundra vegetation is very scant. Despite continuous sunlight from the end of April until the middle of August, the ice between the island and the mainland typically remains until August or September.

    The Multi-angle Imaging SpectroRadiometer views almost the entire Earth every 9 days. These images were acquired during Terra orbit 12986 and cover an area of about 380 kilometers x 1117 kilometers. They utilize data from blocks 24 to 32 within World Reference System-2 path 117.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  8. Icebergs Adrift in the Amundsen Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Thwaites Ice Tongue is a large sheet of glacial ice extending from the West Antarctic mainland into the southern Amundsen Sea. A large crack in the Thwaites Tongue was discovered in imagery from Terra's Moderate Resolution Imaging Spectroradiometer (MODIS). Subsequent widening of the crack led to the calving of a large iceberg. The development of this berg, designated B-22 by the National Ice Center, can be observed in these images from the Multi-angle Imaging SpectroRadiometer, also aboard Terra. The two views were acquired by MISR's nadir (vertical-viewing) camera on March 10 and 24, 2002. The B-22 iceberg, located below and to the left of image center, measures approximately 82 kilometers long x 62 kilometers wide. Comparison of the two images shows the berg to have drifted away from the ice shelf edge. The breakup of ice near the shelf edge, in the area surrounding B-22, is also visible in the later image. These natural-color images were acquired during Terra orbits 11843 and 12047, respectively. At the right-hand edge is Pine Island Bay, where the calving of another large iceberg (B-21) occurred in November 2001. B-21 subsequently split into two smaller bergs, both of which are visible to the right of B-22. Antarctic researchers have reported an increase in the frequency of iceberg calvings in recent years. Whether this is the result of a regional climate variation, or connected to the global warming trend, has not yet been established. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology. Image credit: NASA/GSFC/LaRC/JPL, MISR Team.

  9. A Hazy Day in Mexico City

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Mexico City has one of the world's most serious air pollution problems. The city is located atop a high plain at an altitude of 2200 meters, and is surrounded on three sides by mountains and snow-capped volcanoes. Since incident solar radiation does not vary significantly with season at tropical latitudes, photochemical smog is produced much of the year. In winter, air quality can worsen significantly when thermal inversions keep polluted air masses close to the surface.

    Atmospheric particulates (aerosols) are readily visible at oblique view angles, and differences in aerosol amount on two days are indicated by these images of central Mexico from the Multi-angle Imaging SpectroRadiometer (MISR). The images at left and center are natural color views acquired by MISR's 70-degree forward-viewing camera on April 9 and December 5, 2001, respectively. Mexico City can be identified in the center panel by the large area of haze accumulation above image center. Two small brighter patches within the hazy area indicate low fog. In the left-hand panel, the city basin appears significantly clearer, but some haze remains apparent across the Sierra Madre mountains in the lower portion of the images. On the right is an elevation field corresponding to the December 5 view. Automated MISR stereoscopic retrievals reveal the clouds at lower right to be at very high altitudes, in contrast to the low-lying haze and fog near Mexico City. When the stereo retrieval determines that a location is not covered by clouds, digital terrain elevation data are displayed instead. High clouds appear as the orange and red areas, and mountainous areas appear light blue and green. The position of the clouds within the 70-degree image are slightly southward of their location in the elevation map as a consequence of geometric parallax.

    Major sources of air pollutants within the basin enclosing the Mexico City urban area include exhaust from 3.5 million vehicles, thousands of industries, and mineral dust. The ancient lakebed valley in which Mexico City is situated became a major source of dust when it was drained in the 16th century. The city basin stretches approximately 70 kilometers wide; it is reported that the local air quality causes the surrounding mountains to be rarely visible from the urban center.

    The Multi-angle Imaging SpectroRadiometer views almost the entire Earth every 9 days. These images were acquired during Terra orbits 6966 and 10461 and cover an area of 330 kilometers x 464 kilometers. They utilize data from blocks 75 to 77 within World Reference System-2 path 26.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  10. AirMSPI Data and Information

    Atmospheric Science Data Center

    2018-05-09

    AirMSPI Data and Information   Airborne Multi-angle Spectro Polarimetric ... where 3-D radiative transfer may dominate, and (b) enable retrieval of aerosol and cloud macrophysical properties (distribution, height), ... MISR Home Page DISCOVER-AQ Information AirMSPI Announcements MISR Data Table ...

  11. Multi-Sensor Approach for Assessing the Taiga-Tundra Boundary

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, G.; Kharuk, V. I.; Kovacs, K.

    2003-01-01

    Monitoring the dynamics of the tundra-taiga boundary is critical for our understanding of the causes and consequences of the changes in this area. Because of its inaccessibility, remote sensing data will play an important role. In this study we examined the use of several remote sensing techniques for identifying the existing tundra-taiga ecotone. These include Landsat, MISR and RADARSAT data. High-resolution IKONOS images were used for local ground truth. It was found that on Landsat ETM+ summer images, reflectance from tundra and taiga at band 4 (NIR) is similar, but different at other bands such as red, and MIR bands. When the incidence angle is small, C-band HH-pol backscattering coefficients from both tundra and taiga are relatively high. The backscattering from tundra targets decreases faster than taiga targets when the incidence angle increases, because the tundra targets look smoother than taiga. Because of the shading effect of the vegetation, the MISR data, both multi-spectral data at nadir looking and multi-angle data at red and NIR bands, clearly show the transition zone.

  12. Drought and Burn Scars in Southeastern Australia

    NASA Technical Reports Server (NTRS)

    2003-01-01

    More than 2 million acres were consumed by hundreds of fires between December 2002 and February 2003 in southeastern Australia's national parks, forests, foothills and city suburbs. These images were acquired on February 14, 2002 (left) and February 17, 2003 (right) by the Multi-angle Imaging SpectroRadiometer (MISR) instrument onboard NASA's Terra satellite. The year 2002 was one of Australia's hottest and driest on record, and the acreage burnt during the summer 2002-2003 fire season in Victoria, the Australian Capital Territory and southern New South Wales, is the largest since 1938-1939, when more than 3 million acres were scorched.

    The extent of the burnt area and the dry conditions as of February 2003 are indicated by these contrasting false-color views. Both image panels display data from the near-infrared, red and blue spectral bands of MISR's downward-viewing (nadir) camera, as red, green and blue, respectively. This display technique causes healthy vegetation to appear red and burnt areas to show as dark brown. The data displayed from the two dates were processed identically to preserve relative brightness variations. Vegetation changes related to the dry conditions (not related to the brown burn scars) are also indicated in the February 2003 panel, where many previously red areas exhibit instead the pale yellow-brown of the underlying soils and geology. Significant reduction in the surface area of several large and important water bodies are also apparent. The diminished extent of Lake Hume (along the left-hand edge) in the later date provides a good example.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 14999 and 16858. The panels cover an area of about 208 kilometers x 286 kilometers, and utilize data from blocks 118 to 121 within World Reference System-2 path 91.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  13. Cloud Spirals and Outflow in Tropical Storm Katrina

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On Tuesday, August 30, 2005, NASA's Multi-angle Imaging SpectroRadiometer retrieved cloud-top heights and cloud-tracked wind velocities for Tropical Storm Katrina, as the center of the storm was situated over the Tennessee valley. At this time Katrina was weakening and no longer classified as a hurricane, and would soon become an extratropical depression. Measurements such as these can help atmospheric scientists compare results of computer-generated hurricane simulations with observed conditions, ultimately allowing them to better represent and understand physical processes occurring in hurricanes.

    Because air currents are influenced by the Coriolis force (caused by the rotation of the Earth), Northern Hemisphere hurricanes are characterized by an inward counterclockwise (cyclonic) rotation towards the center. It is less widely known that, at high altitudes, outward-spreading bands of cloud rotate in a clockwise (anticyclonic) direction. The image on the left shows the retrieved cloud-tracked winds as red arrows superimposed across the natural color view from MISR's nadir (vertical-viewing) camera. Both the counter-clockwise motion for the lower-level storm clouds and the clockwise motion for the upper clouds are apparent in these images. The speeds for the clockwise upper level winds have typical values between 40 and 45 m/s (144-162 km/hr). The low level counterclockwise winds have typical values between 7 and 24 m/s (25-86 km/hr), weakening with distance from the storm center. The image on the right displays the cloud-top height retrievals. Areas where cloud heights could not be retrieved are shown in dark gray. Both the wind velocity vectors and the cloud-top height field were produced by automated computer recognition of displacements in spatial features within successive MISR images acquired at different view angles and at slightly different times.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe between 82o north and 82o south latitude every nine days. This image covers an area of about 380 kilometers by 1970 kilometers. These data products were generated from a portion of the imagery acquired during Terra orbit 30324 and utilize data from blocks 55-68 within World Reference System-2 path 22.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is managed for NASA by the California Institute of Technology.

  14. Trend analysis of the aerosol optical depth from fusion of MISR and MODIS retrievals over China

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Gu, Xingfa; Yu, Tao; Cheng, Tianhai; Chen, Hao

    2014-03-01

    Atmospheric aerosol plays an important role in the climate change though direct and indirect processes. In order to evaluate the effects of aerosols on climate, it is necessary to have a research on their spatial and temporal distributions. Satellite aerosol remote sensing is a developing technology that may provide good temporal sampling and superior spatial coverage to study aerosols. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) have provided aerosol observations since 2000, with large coverage and high accuracy. However, due to the complex surface, cloud contamination, and aerosol models used in the retrieving process, the uncertainties still exist in current satellite aerosol products. There are several observed differences in comparing the MISR and MODIS AOD data with the AERONET AOD. Combing multiple sensors could reduce uncertainties and improve observational accuracy. The validation results reveal that a better agreement between fusion AOD and AERONET AOD. The results confirm that the fusion AOD values are more accurate than single sensor. We have researched the trend analysis of the aerosol properties over China based on nine-year (2002-2010) fusion data. Compared with trend analysis in Jingjintang and Yangtze River Delta, the accuracy has increased by 5% and 3%, respectively. It is obvious that the increasing trend of the AOD occurred in Yangtze River Delta, where human activities may be the main source of the increasing AOD.

  15. Pine Island Glacier, Antarctica, MISR Multi-angle Composite

    NASA Image and Video Library

    2013-11-15

    NASA Terra satellite passed over the Pine Island Glacier in Antarctica around Oct. 27, 2013, just days before iceberg B-31 broke completely free. B-31 is finally moving away from the coast, with open water between the iceberg and the glacier.

  16. Drought in the Black Hills

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Color-Coded Map

    Despite good rainfall and record-setting snowstorms in the spring of 2005, most of northeastern Wyoming, the Black Hills, and western South Dakota remain in the midst of a severe drought. This set of images and maps from NASA's Multi-angle Imaging SpectroRadiometer (MISR) contrast the appearance of the Black Hills region of northwestern South Dakota on July 12, 2000 (left column), with views acquired four years later, on July 14, 2004 (right column). The natural-color images along the top are from MISR's nadir (downward-looking) camera. The browning that appears in 2004 compared with 2000 indicates that the vigor of green vegetation was significantly diminished in 2004.

    The color-coded maps (along the bottom) provide a quantitative measurement of the sunlight reflected from these surfaces, and the loss of sunlight-absorbing vegetation between the 2000 and 2004 dates. As the vegetation faded with the drought, the albedo at the surface increased. Albedo measures the fraction of incident sunlight that is reflected by a surface, and can vary between zero (if all the incident sunlight is absorbed and none is reflected) and one (if all sunlight is reflected and none is absorbed). Dense forest has a low albedo; bright desert, snow and clouds, have a high albedo. Here, albedo is provided for the wavelengths of sunlight that plants use for photosynthesis (400 - 700 nanometers). This measurement is known as the albedo for Photosynthetically Active Radiation (PAR). Surfaces with greater absorption of PAR appear here in blue hues, whereas surfaces with lower absorption appear as green, yellow, orange or red. Black pixels indicate areas where albedo could not be derived, usually due to the presence of clouds. In July 2004, low albedo areas (blue pixels) are notably reduced in extent, and higher albedo areas (yellow, orange and red pixels) have increased.

    Because incoming sunlight is scattered by tiny particles in the atmosphere, satellite measurements of albedo and other surface properties must correct for the effects of the intervening atmosphere. These albedo retrievals make use of MISR's simultaneously derived aerosol properties to make these corrections. The multiangular nature of MISR data is also used to account for the fact that most surfaces reflect sunlight into all upward directions, with intensities that vary with angle of view.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. This image area covers about 243 kilometers by 259 kilometers. These data products were generated from a portion of the imagery acquired during Terra orbits 3020 and 24325 and utilize data from within blocks 54 to 56 within World Reference System-2 paths 33 and 34.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  17. Site of the 2016 Summer Olympic Games viewed by NASA MISR

    NASA Image and Video Library

    2016-08-10

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed directly over Rio de Janeiro, Brazil, on Aug. 2, 2016, just prior to the opening of the Summer Olympic Games. On the left is an image from MISR's nadir (downward-looking) camera; the width of the image is 235 miles (378 kilometers), and Rio de Janeiro is visible as the large gray area on the coast in the center. The black asterisk marks the location of the Maracanã Stadium in downtown, where the opening ceremonies were held. In the weeks leading up to the Aug. 5 opening ceremonies in Rio de Janeiro, there have been reports of elevated levels of particulate matter in the region. Particulate matter refers to tiny airborne droplets or pieces of soot and dust that can end up in the lungs, comprising an all-too-common problem for many cities around the world. MISR data are routinely used to estimate the amount of air pollution via measurements of aerosol optical depth, which is a measure of how much incoming light from the sun is blocked by particles in the atmosphere. On the right, a map of aerosol optical depth is superimposed on the image. Individual squares making up this map measure 2.7 miles (4.4 kilometers) on a side, and holes in the map occur where an aerosol amount could not be determined, such as where clouds are present. Optical depth over Rio is slightly elevated compared to its surroundings, most likely due to the presence of air pollution, with values from 0.15-0.25. For reference, an optical depth of 0.2 corresponds to light haze. The product shown here is a prototype of a new version of the MISR aerosol product to be publicly released in the near future, and increases the spatial resolution of the aerosol information by a factor of 16 compared to the currently available product, making it possible to observe the fine details of optical depth over urban areas. These data were captured during Terra orbit 88426. http://photojournal.jpl.nasa.gov/catalog/PIA20885

  18. Deadly Fires Engulfing Madeira seen by NASA MISR

    NASA Image and Video Library

    2016-08-12

    A wildfire spread to the capital city of Funchal on the island of Madeira, an autonomous region of Portugal, over the nighttime hours of Tuesday, Aug. 9, 2016, with three deaths reported and hundreds of others hospitalized. Several homes and a luxury hotel have burned, and a thousand people have been evacuated. The three fatalities are reported to be elderly people who were unable to escape when their homes caught fire. The fire ignited Monday, Aug. 8, after several weeks of scorching temperatures topping 95 degrees Fahrenheit and very dry weather. The entire island is only 30 miles (48 kilometers) from end to end, which naturally makes protecting the island's 270,000 residents and many tourists more difficult. The MISR (Multi-angle Imaging SpectroRadiometer) instrument aboard NASA's Terra satellite passed directly over the island of Madeira on Wednesday, Aug. 10, 2016. The left image is a true-color image taken by MISR's 60-degree forward-pointing camera. This oblique view gives a better view of the smoke than a downward-pointing view. The island of Madeira is the only land within the field of view, and the smoke from the wildfire is being blown to the southwest. The city of Funchal is located on the southeastern coast of the island. MISR's nine cameras, each viewing Earth at a different angle, can be used to determine the height of clouds and smoke above the surface in much the same way that our two eyes, pointing in slightly different directions, give us depth perception. The right-hand image shows MISR's publically available standard cloud top height product. These data show that the main body of clouds is indeed very low, less than 0.6 miles (1 kilometer) above sea level, while the smoke plume is about 1.9 miles (3 kilometers) high at the source, dropping lower as it is blown to the southwest. A stereo "anaglyph" of this scene is also available at PIA20886. As can be seen from both the MISR height product and the 3D anaglyph, the isolated clouds to the south are much higher than either the low clouds or the plume. Interestingly, the low clouds drop to almost sea level and then die out near where the smoke is present. These data were acquired during Terra orbit 88524. http://photojournal.jpl.nasa.gov/catalog/PIA20887

  19. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  20. Assessing the Tundra-taiga Boundary with Multi-Sensor Satellite Data

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, G.; Kharuk, V. I.; Kovacs, K.

    2004-01-01

    Monitoring the dynamics of the circumpolar boreal forest (taiga) and Arctic tundra boundary is important for understanding the causes and consequences of changes observed in these areas. This ecotone, the world's largest, stretches for over 13,400 km and marks the transition between the northern limits of forests and the southern margin of the tundra. Because of the inaccessibility and large extent of this zone, remote sensing data can play an important role for mapping the characteristics and monitoring the dynamics. Basic understanding of the capabilities of existing space borne instruments for these purposes is required. In this study we examined the use of several remote sensing techniques for identifying the existing tundra- taiga ecotone. These include Landsat-7, MISR, MODIS and RADARSAT data. Historical cover maps, recent forest stand measurements and high-resolution IKONOS images were used for local ground truth. It was found that a tundra-taiga transitional area can be characterized using multi- spectral Landsat ETM+ summer images, multi-angle MISR red band reflectance images, RADARSAT images with larger incidence angle, or multi-temporal and multi-spectral MODIS data. Because of different resolutions and spectral regions covered, the transition zone maps derived from different data types were not identical, but the general patterns were consistent.

  1. Comparative Analysis of Aerosol Retrievals from MODIS, OMI and MISR Over Sahara Region

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Hsu, C.; Terres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.

    2011-01-01

    MODIS is a wide field-of-view sensor providing daily global observations of the Earth. Currently, global MODIS aerosol retrievals over land are performed with the main Dark Target algorithm complimented with the Deep Blue (DB) Algorithm over bright deserts. The Dark Target algorithm relies on surface parameterization which relates reflectance in MODIS visible bands with the 2.1 micrometer region, whereas the Deep Blue algorithm uses an ancillary angular distribution model of surface reflectance developed from the time series of clear-sky MODIS observations. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS. MAIAC uses a time series and an image based processing to perform simultaneous retrievals of aerosol properties and surface bidirectional reflectance. It is a generic algorithm which works over both dark vegetative surfaces and bright deserts and performs retrievals at 1 km resolution. In this work, we will provide a comparative analysis of DB, MAIAC, MISR and OMI aerosol products over bright deserts of northern Africa.

  2. Saskatchewan and Manitoba

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Surface brightness contrasts accentuated by a thin layer of snow enable a network of rivers, roads, and farmland boundaries to stand out clearly in these MISR images of southeastern Saskatchewan and southwestern Manitoba. The lefthand image is a multi-spectral false-color view made from the near-infrared, red, and green bands of MISR's vertical-viewing (nadir) camera. The righthand image is a multi-angle false-color view made from the red band data of the 60-degree aftward camera, the nadir camera, and the 60-degree forward camera. In each image, the selected channels are displayed as red, green, and blue, respectively. The data were acquired April 17, 2001 during Terra orbit 7083, and cover an area measuring about 285 kilometers x 400 kilometers. North is at the top.

    The junction of the Assiniboine and Qu'Apelle Rivers in the bottom part of the images is just east of the Saskatchewan-Manitoba border. During the growing season, the rich, fertile soils in this area support numerous fields of wheat, canola, barley, flaxseed, and rye. Beef cattle are raised in fenced pastures. To the north, the terrain becomes more rocky and forested. Many frozen lakes are visible as white patches in the top right. The narrow linear, north-south trending patterns about a third of the way down from the upper right corner are snow-filled depressions alternating with vegetated ridges, most probably carved by glacial flow.

    In the lefthand image, vegetation appears in shades of red, owing to its high near-infrared reflectivity. In the righthand image, several forested regions are clearly visible in green hues. Since this is a multi-angle composite, the green arises not from the color of the leaves but from the architecture of the surface cover. Progressing southeastward along the Manitoba Escarpment, the forested areas include the Pasquia Hills, the Porcupine Hills, Duck Mountain Provincial Park, and Riding Mountain National Park. The forests are brighter in the nadir than at the oblique angles, probably because more of the snow-covered surface is visible in the gaps between the trees. In contrast, the valley between the Pasquia and Porcupine Hills near the top of the images appears bright red in the lefthand image (indicating high vegetation abundance) but shows a mauve color in the multi-angle view. This means that it is darker in the nadir than at the oblique angles. Examination of imagery acquired after the snow has melted should establish whether this difference is related to the amount of snow on the surface or is indicative of a different type of vegetation structure.

    Saskatchewan and Manitoba are believed to derive their names from the Cree words for the winding and swift-flowing waters of the Saskatchewan River and for a narrows on Lake Manitoba where the roaring sound of wind and water evoked the voice of the Great Spirit. They are two of Canada's Prairie Provinces; Alberta is the third.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  3. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data. Part II: Using Maximum Covariance Analysis to Effectively Compare Spatiotemporal Variability of Satellite and AERONET Measured Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging Spectroradiomater (MISR) provide regular aerosol observations with global coverage. It is essential to examine the coherency between space- and ground-measured aerosol parameters in representing aerosol spatial and temporal variability, especially in the climate forcing and model validation context. In this paper, we introduce Maximum Covariance Analysis (MCA), also known as Singular Value Decomposition analysis as an effective way to compare correlated aerosol spatial and temporal patterns between satellite measurements and AERONET data. This technique not only successfully extracts the variability of major aerosol regimes but also allows the simultaneous examination of the aerosol variability both spatially and temporally. More importantly, it well accommodates the sparsely distributed AERONET data, for which other spectral decomposition methods, such as Principal Component Analysis, do not yield satisfactory results. The comparison shows overall good agreement between MODIS/MISR and AERONET AOD variability. The correlations between the first three modes of MCA results for both MODIS/AERONET and MISR/ AERONET are above 0.8 for the full data set and above 0.75 for the AOD anomaly data. The correlations between MODIS and MISR modes are also quite high (greater than 0.9). We also examine the extent of spatial agreement between satellite and AERONET AOD data at the selected stations. Some sites with disagreements in the MCA results, such as Kanpur, also have low spatial coherency. This should be associated partly with high AOD spatial variability and partly with uncertainties in satellite retrievals due to the seasonally varying aerosol types and surface properties.

  4. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  5. Analysis of MAIAC Dust Aerosol Retrievals from MODIS Over North Africa

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Hsu, C.; Torres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.

    2011-01-01

    An initial comparison of aerosol optical thickness over North Africa for year 2007 was performed between the Deep Blue and Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithms complimented with MISR and OMI data. The new MAIAC algorithm has a better sensitivity to the small dust storms than the DB algorithm, but it also has biases in the brightest desert regions indicating the need for improvement. The quarterly averaged AOT values in the Bodele depression and western downwind transport region show a good agreement among MAIAC, MISR and OMI data, while the DB algorithm shows a somewhat different seasonality.

  6. Hurricane Matthew over Haiti seen by NASA MISR

    NASA Image and Video Library

    2016-10-04

    On the morning of October 4, 2016, Hurricane Matthew passed over the island nation of Haiti. A Category 4 storm, it made landfall around 7 a.m. local time (5 a.m. PDT/8 a.m. EDT) with sustained winds over 145 mph. This is the strongest hurricane to hit Haiti in over 50 years. On October 4, at 10:30 a.m. local time (8:30 a.m. PDT/11:30 a.m. EDT), the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed over Hurricane Matthew. This animation was made from images taken by MISR's downward-pointing (nadir) camera is 235 miles (378 kilometers) across, which is much narrower than the massive diameter of Matthew, so only the hurricane's eye and a portion of the storm's right side are visible. Haiti is completely obscured by Matthew's clouds, but part of the Bahamas is visible to the north. Several hot towers are visible within the central part of the storm, and another at the top right of the image. Hot towers are enormous thunderheads that punch through the tropopause (the boundary between the lowest layer of the atmosphere, the troposphere, and the next level, the stratosphere). The rugged topography of Haiti causes uplift within the storm, generating these hot towers and fueling even more rain than Matthew would otherwise dump on the country. MISR has nine cameras fixed at different angles, which capture images of the same point on the ground within about seven minutes. This animation was created by blending images from these nine cameras. The change in angle between the images causes a much larger motion from south to north than actually exists, but the rotation of the storm is real motion. From this animation, you can get an idea of the incredible height of the hot towers, especially the one to the upper right. The counter-clockwise rotation of Matthew around its closed (cloudy) eye is also visible. These data were acquired during Terra orbit 89345. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21070

  7. Space-based Observational Constraints for 1-D Plume Rise Models

    NASA Technical Reports Server (NTRS)

    Martin, Maria Val; Kahn, Ralph A.; Logan, Jennifer A.; Paguam, Ronan; Wooster, Martin; Ichoku, Charles

    2012-01-01

    We use a space-based plume height climatology derived from observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the NASA Terra satellite to evaluate the ability of a plume-rise model currently embedded in several atmospheric chemical transport models (CTMs) to produce accurate smoke injection heights. We initialize the plume-rise model with assimilated meteorological fields from the NASA Goddard Earth Observing System and estimated fuel moisture content at the location and time of the MISR measurements. Fire properties that drive the plume-rise model are difficult to estimate and we test the model with four estimates for active fire area and four for total heat flux, obtained using empirical data and Moderate Resolution Imaging Spectroradiometer (MODIS) re radiative power (FRP) thermal anomalies available for each MISR plume. We show that the model is not able to reproduce the plume heights observed by MISR over the range of conditions studied (maximum r2 obtained in all configurations is 0.3). The model also fails to determine which plumes are in the free troposphere (according to MISR), key information needed for atmospheric models to simulate properly smoke dispersion. We conclude that embedding a plume-rise model using currently available re constraints in large-scale atmospheric studies remains a difficult proposition. However, we demonstrate the degree to which the fire dynamical heat flux (related to active fire area and sensible heat flux), and atmospheric stability structure influence plume rise, although other factors less well constrained (e.g., entrainment) may also be significant. Using atmospheric stability conditions, MODIS FRP, and MISR plume heights, we offer some constraints on the main physical factors that drive smoke plume rise. We find that smoke plumes reaching high altitudes are characterized by higher FRP and weaker atmospheric stability conditions than those at low altitude, which tend to remain confined below the BL, consistent with earlier results. We propose two simplified parameterizations for computing injection heights for fires in CTMs and discuss current challenges to representing plume injection heights in large scale atmospheric models.

  8. MISR Views Northern Australia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    MISR images of tropical northern Australia acquired on June 1, 2000 (Terra orbit 2413) during the long dry season. Left: color composite of vertical (nadir) camera blue, green, and red band data. Right: multi-angle composite of red band data only from the cameras viewing 60 degrees aft, 60 degrees forward, and nadir. Color and contrast have been enhanced to accentuate subtle details. In the left image, color variations indicate how different parts of the scene reflect light differently at blue, green, and red wavelengths; in the right image color variations show how these same scene elements reflect light differently at different angles of view. Water appears in blue shades in the right image, for example, because glitter makes the water look brighter at the aft camera's view angle. The prominent inland water body is Lake Argyle, the largest human-made lake in Australia, which supplies water for the Ord River Irrigation Area and the town of Kununurra (pop. 6500) just to the north. At the top is the southern edge of Joseph Bonaparte Gulf; the major inlet at the left is Cambridge Gulf, the location of the town of Wyndham (pop. 850), the port for this region. This area is sparsely populated, and is known for its remote, spectacular mountains and gorges. Visible along much of the coastline are intertidal mudflats of mangroves and low shrubs; to the south the terrain is covered by open woodland merging into open grassland in the lower half of the pictures.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  9. Severe Air Pollution in New Delhi View by NASA MISR

    NASA Image and Video Library

    2016-11-16

    New Delhi, India's capital city, is currently suffering though a period of particularly poor air quality. In early November 2016, monitors at various locations in the area posted air quality index measurements as high as the 900s (the most severe ranking, "hazardous," is any air quality index measurement over 300). Thousands of schools have been closed, and a survey by the Associate Chambers of Commerce and Industry of India reports that 10 percent of the city's workers called in sick due to air-pollution-related health issues. According to several published news reports, the extreme air pollution may be due to a combination of nearby agricultural burning after harvest, urban construction and solid-waste burning, as well as remnants of firecracker smoke and additional car emissions after the celebration of Diwali, the Hindu festival of lights, on October 30. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed over the region on Saturday, Nov. 5, 2016, at around 11:05 a.m. local time. At left is an image acquired from MISR's vertical viewing camera. The Himalayas stretch across the northern portion of the image. This towering mountain range tends to concentrate pollution in the region immediately to the south, including New Delhi, by preventing pollutants from blowing northwards. New Delhi, whose location is indicated on the image, is under a patch of especially thick haze. At 6:00 a.m. local time on that date, the U.S. Mission India NowCast Air Quality Index for New Delhi was reported at 751, more than twice the threshold for hazardous air quality. At right, a map of aerosol optical depth is superimposed on the image. Optical depth is a quantitative measure of the abundance of aerosols (tiny particles in the atmosphere). Optical depths for the area around New Delhi have not been calculated because the haze is so thick that the algorithm has classified the area as a cloud. In the region immediately surrounding the thick haze, optical depths approach 1.0. An optical depth of 1.0 means that only about 37 percent of direct sunlight reaches the surface due to interactions with particles in the atmosphere. These data were acquired during Terra orbit 89805. Other MISR data are available through the NASA Langley Research Center; for more information, go to https://eosweb.larc.nasa.gov/project/misr/misr_table. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, California, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed by NASA's Goddard Space Flight Center, Greenbelt, Maryland. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center, Hampton, Virginia. JPL is a division of the California Institute of Technology in Pasadena. http://photojournal.jpl.nasa.gov/catalog/PIA21100

  10. New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water

    NASA Astrophysics Data System (ADS)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Bull, Michael A.; Seidel, Felix C.

    2018-01-01

    A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture and then used a combination of these values to compute the final, best estimate AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of (a) the absolute values of the cost functions for each aerosol mixture, (b) the widths of the cost function distributions as a function of AOD, and (c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on empirical thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new aerosol retrieval confidence index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI ≥ 0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.

  11. New Approach to the Retrieval of AOD and its Uncertainty from MISR Observations Over Dark Water

    NASA Astrophysics Data System (ADS)

    Witek, M. L.; Garay, M. J.; Diner, D. J.; Bull, M. A.; Seidel, F.

    2017-12-01

    A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous Version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture, then used a combination of these values to compute the final, "best estimate" AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of a) the absolute values of the cost functions for each aerosol mixture, b) the widths of the cost function distributions as a function of AOD, and c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on arbitrary thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new Aerosol Retrieval Confidence Index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI≥0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.

  12. Multi-Angle Imager for Aerosols (MAIA) Investigation of Airborne Particle Health Impacts

    NASA Astrophysics Data System (ADS)

    Diner, D. J.

    2016-12-01

    Airborne particulate matter (PM) is a well-known cause of heart disease, cardiovascular and respiratory illness, low birth weight, and lung cancer. The Global Burden of Disease (GBD) Study ranks PM as a major environmental risk factor worldwide. Global maps of PM2.5concentrations derived from satellite instruments, including MISR and MODIS, have provided key contributions to the GBD and many other health-related investigations. Although it is well established that PM exposure increases the risks of mortality and morbidity, our understanding of the relative toxicity of specific PM types is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. The satellite instrument that is part of the investigation is a multiangle, multispectral, and polarimetric camera system based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA was selected for funding in March 2016. Estimates of the abundances of different aerosol types from the WRF-Chem model will be combined with MAIA instrument data. Geostatistical models derived from collocated surface and MAIA retrievals will then be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents, including sulfate, nitrate, organic carbon, black carbon, and dust. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. MAIA launch is planned for early in the next decade. The MAIA instrument incorporates a pair of cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. Primary Target Areas (PTAs) on five continents are chosen to include major population centers covering a range of PM concentrations and particle types, surface-based aerosol sunphotometers, PM size discrimination and chemical speciation monitors, and access to geocoded health datasets. The MAIA investigation brings together an international team of researchers and policy specialists with expertise in remote sensing, aerosol science, air quality, epidemiology, and public health.

  13. Ash from Kilauea Eruption Viewed by NASA's MISR

    NASA Image and Video Library

    2018-05-09

    On May 3, 2018, a new eruption began at a fissure of the Kilauea volcano on the Island of Hawaii. Kilauea is the most active volcano in the world, having erupted almost continuously since 1983. Advancing lava and dangerous sulfur dioxide gas have forced thousands of residents in the neighborhood of Leilani Estates to evacuate. A number of homes have been destroyed, and no one can say how soon the eruption will abate and evacuees can return home. On May 6, 2018, at approximately 11 a.m. local time, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite captured this view of the island as it passed overhead. Much of the island was shrouded by clouds, including the fissure on its eastern point. However, an eruption plume is visible streaming southwest over the ocean. The MISR instrument is unique in that it has nine cameras that view Earth at different angles: one pointing downward, four at various angles in the forward direction, and four in the backward direction. This image shows the view from one of MISR's forward-pointing cameras (60 degrees), which shows the plume more distinctly than the near-vertical views. The information from the images acquired at different view angles is used to calculate the height of the plume, results of which are superimposed on the right-hand image. The top of the plume near the fissure is at approximately 6,500 feet (2,000 meters) altitude, and the height of the plume decreases as it travels south and west. These relatively low altitudes mean that the ash and sulfur dioxide remained near the ground, which can cause health issues for people on the island downwind of the eruption. The "Ocean View" air quality monitor operated by the Clean Air Branch of the State of Hawaii Department of Health recorded a concentration of 18 μg/m3 of airborne particles less than 2.5 micrometers in diameter at 11 a.m. local time. This amount corresponds to an air quality rating of "moderate" and supports the MISR results indicating that ash was most likely present at ground level on this side of the island. These data were acquired during Terra orbit 97780. An annotated version is available at https://photojournal.jpl.nasa.gov/catalog/PIA22451

  14. Birth of a Large Iceberg in Pine Island Bay, Antarctica

    NASA Image and Video Library

    2001-11-14

    A large tabular iceberg (42 kilometers x 17 kilometers) broke off Pine Island Glacier, West Antarctica (75ºS latitude, 102ºW longitude) sometime between November 4 and 12, 2001. Images of the glacier were acquired by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra spacecraft. This event was preceded by the formation of a large crack across the glacier in mid 2000. Data gathered by other imaging instruments revealed the crack to be propagating through the shelf ice at a rate averaging 15 meters per day, accompanied by a slight rotation of about one percent per year at the seaward margin of the rift. The image set shows three views of Pine Island Glacier acquired by MISR's vertical-viewing (nadir) camera. The first was captured in late 2000, early in the development of the crack. The second and third views were acquired in November 2001, just before and just after the new iceberg broke off. The existence of the crack took the glaciological community by surprise, and the rapid rate at which the crack propagated was also not anticipated. Glaciologists predicted that the rift would reach the other side of the glacier sometime in 2002. However, the iceberg detached much sooner than anticipated, and the last 10-kilometer segment that was still attached to the ice shelf snapped off in a matter of days. http://photojournal.jpl.nasa.gov/catalog/PIA03431

  15. Identifying Communities of Vulnerability: Using NASA's Multiangle Imaging Spectroradiometer to Enhance Public Health Tracking of Particle Exposure in Los Angeles - An Empirical Approach to Examining L1 MISR Radiance Measurements and PM2.5 Relationships

    NASA Astrophysics Data System (ADS)

    Laygo, K.; Kontgis, C.; Hollins, A.

    2011-12-01

    Los Angeles is consistently ranked as one of the most polluted cities in the United States, exhibiting high levels of both ozone and particulate matter. Particulate matter with an aerodynamic diameter of 2.5 microns or less, or PM2.5, is of special concern for health professionals, since it is fine enough to be inhaled into the lungs. Additionally, studies show that it is associated with respiratory disease risks such as asthma. Remote sensing technologies have the potential to be useful in air pollution health studies, but have so far been sparsely implemented. Satellite-derived measurements would be especially useful in air pollution studies, since the concentrations of interest can change by orders of magnitude over small distances. However, with current remote sensing technologies, it is difficult to predict pollution levels within small areas. This study utilizes remote sensing information in combination with a ground-based network of data to create a more comprehensive approach to tracking public health concerns. According to the 2007 NRC Decadal Survey, there is a continued need for research that establishes the relationship between remotely sensed data and predicting public health risks related to environmental factors. For this study, we conducted linear regression models using Multi-Angle Imaging SpectroRadiometer (MISR) L1 radiance data and ground-based PM2.5 measurements from 13 EPA stations within the Los Angeles Metropolitan Statistical Area. MISR senses in 4 bands (visible blue, green, red and near infrared) and 9 separate angles, producing a total of 36 bands. Using all 36 bands, we generated models for each station individually and for all stations combined. Two time periods were assessed: June, July and August from 2000 - 2009, and all months from 2009. Summer months were looked at specifically, since pollution levels tend to be higher than other parts of the year due to strong inversion layers and low rainfall levels. Generally, the models performed well, suggesting that MISR radiances are able to accurately predict levels of PM2.5. For 2009 data, all models had R-squared values over 0.93. For summer month data, the model R-square values were markedly lower and more varied than for the 2009 data, ranging from 0.33 - 0.92. When looking at the 2009 data, non-summer month models performed better than did summer-month models. A brief analysis of temperature data indicates that temperature and deviation from the norm are not associated with model predictability. All 36 MISR channels were plotted against their weights for each model, but no band combination obviously weighed more than other bands. Further research needs to be conducted to understand why models were able to predict 2009 PM2.5 levels, but were unable to accurately fit summer data from 2000 - 2009.

  16. The Size of Dust and Smoke

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Desert dust particles tend to be larger in size than aerosols that originate from the processes of combustion. How precisely do the size of the aerosol particles comprising the dust that obscured the Red Sea on July 26, 2005, contrast with the size of the haze particles that obscured the United States eastern seaboard on the same day? NASA's Multi-angle Imaging SpectroRadiometer (MISR), which views Earth at nine different angles in four wavelengths, provides information about the amount, size, and shape of airborne particles. Here, MISR aerosol amount and size is presented for these two events. These MISR results distinguish desert dust, the most common non-spherical aerosol type, from pollution and forest fire particles. Determining aerosol characteristics is a key to understanding how aerosol particles influence the size, abundance, and rate of production of cloud droplets, and to a better understanding of how aerosols influence clouds and climate.

    The left panel of each of these two image sets (Red Sea, left; U.S. coastline, right) is a natural-color view from MISR's 70-degree forward viewing camera. The color-coded maps in the central panels show aerosol optical depth; the right panels provide a measure of aerosol size, expressed as the 'Angstrom exponent.' For the optical depth maps, yellow pixels indicate the most optically-thick aerosols, whereas the red, green and blue pixels represent progressively decreasing aerosol amounts. For this dramatic dust storm over the Red Sea, the aerosol is quite thick, and in some places, the dust over water is too optically thick for MISR to retrieve the aerosol amount. For the eastern seaboard haze, the thickest aerosols have accumulated over the Atlantic Ocean off the coasts of South Carolina and Georgia. Cases where no successful retrieval occurred, either due to extremely high aerosol optical thickness or to clouds, appear as dark gray pixels.

    For the Angstrom exponent maps, the blue and green pixels (smaller values) correspond with more large particles, whilst the yellow and red pixels, representing higher Angstrom exponents, correspond with more small particles. Angstrom exponent is related to the way the aerosol optical depth (AOD) changes with wavelength -- a more steeply decreasing AOD with wavelength indicates smaller particles. The greater the magnitude of the Angstrom exponent, the greater the contribution of smaller particles to the overall particle distribution. For optically thick desert dust storms, as in this case, the Angstrom exponent is expected to be relatively low -- likely below 1. For the eastern seaboard haze, the Angstrom exponent is significantly higher, indicating the relative abundance of small pollution particles, especially over the Atlantic where the aerosol optical depth is also very high.

    With a nearly simultaneous data acquisition time, the MODIS instrument also collected data for these events, and image features for both the dust storm and the haze are available.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe between 82 north and 82 south latitude every nine days. This image covers an area of about 1,265 kilometers by 400 kilometers. These data products were generated from a portion of the imagery acquired during Terra orbits 29809 and 29814 and utilize data from blocks 60 to 67 and 71 to 78 within World Reference System-2 paths 17 and 170, respectively.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is managed for NASA by the California Institute of Technology.

  17. Tracking Hurricane Wilma Across the Caribbean

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Information on cloud top heights at different stages in the life cycle of the rapidly intensifying Hurricane Wilma may prove useful for evaluating the ability of numerical weather models to predict the intensity changes of hurricanes. NASA's Multi-angle Imaging SpectroRadiometer (MISR) acquired this sequence of images and cloud-top height observations for Hurricane Wilma as it progressed across the Caribbean in October 2005. Each pair in the sequence has a photo-like view of the storm on the left and a matching color-coded image of cloud-top height on the right. Cloud-top heights range from 0 (purple) to 18 (red) kilometers altitude. Areas where cloud heights could not be determined are shown in dark gray.

    The pair on the left show Wilma on Tuesday, October 18, when Hurricane watches were posted for Cuba and Mexico. The central pair shows the eye of Hurricane Wilma just hours before the storm began to cross the Yucatan Peninsula on Friday, October 21. At that time, Wilma was a powerful Category 4 Hurricane on the Saffir-Simpson scale, and had a minimum recorded central pressure of 930 millibars. Hurricane Wilma surged from tropical storm to Category 5 hurricane status in record time, but the storm slowed and weakened considerably after battering Mexico's Yucatan Peninsula and the Caribbean. The right-hand image pair displays the eastern edges of a weakened Wilma, when Wilma had been reduced to Category 2 status and was just starting to reach southern Florida on the morning of Sunday, October 23. Wilma gathered speed and strengthened on Sunday night, crossing Florida as a Category 3 storm on Monday, October 24.

    On the 18th, Wilma looked a bit ragged. Its eye is located at the center of the left edge, and its outer bands of clouds appear to be dominated by a rather loose collection of thunderstorms. In the photo-like images, these look like areas of 'boiling clouds,' and in the cloud-height image, these appear as orange blobs, sometimes topped with pinkish-red. On October 21 (center), when Wilma was a Category 4 storm, cloud-top height on the eastern side of the storm near the eye reached 18 kilometers in altitude, with lower heights on the western side. The image from the 23rd shows the eastern edge of Wilma as it approached Florida (upper right) and Cuba (center right).

    MISR has nine different cameras which view the Earth from a variety of angles. Shifts in the clouds' apparent position from one camera's perspective to another's allows MISR to measure the height of the cloud-tops. MISR scientists have programmed computers to compare the different views, identify features that appear to shift from view to view, and use that information to calculate cloud height automatically. The height fields pictured have not been corrected for the effects of cloud motion. Wind-corrected heights (which have higher accuracy but sparser spatial coverage) are within about 1 kilometer of the heights shown here.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe between 82o north and 82o south latitude every nine days. Each image covers an area of about 380 kilometers by 1830 kilometers. The data products were generated from a portion of the imagery acquired during Terra orbits 31037, 31081 and 31110, and utilize data from within blocks 68-83 within World Reference System-2 paths 13, 16 and 18, respectively.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is managed for NASA by the California Institute of Technology.

  18. Constraining the Global, Cloud-Free Reflected Solar Radiation Flux (RSRF) with Earth Observing System (EOS) Instruments

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    1999-01-01

    Variations in the top-of-atmosphere reflected solar radiation flux, and in the factors that determine its value, are among the most important diagnostic indicators of changes in Earth's energy balance. Data from the MISR (Multi-angle Imaging SpectroRadiometer), MODIS (Moderate-resolution Imaging Spectroradiometer), SAGE-3 (Stratospheric Aerosol and Gas Experiment), and CERES (Clouds and Earth's Radiant Energy System), all of which are spacecraft instruments scheduled for launch in 1999, will each constrain pieces of the RSRF budget. Prior to launch, we are performing studies to determine the sensitivity of these instruments to key factors that influence the cloud-free RSRF: aerosol optical depth, aerosol scattering properties, and surface visible bidirectional reflectance distribution function (BRDF). We are also assessing the ability of the aggregate of instruments to constrain the overall RSRF budget under natural conditions over the globe. Consider the MISR retrieval of aerosols: according to simulations over cloud-free, calm ocean, for pure particles with natural ranges of optical depth, particle size, and indices of refraction, MISR can retrieve column aerosol optical depth for all but the darkest particles, to an uncertainty of at most 0.05 or 20%, whichever is larger, even if the particle properties are poorly known. For one common particle type, soot, constraints on the optical depth over dark ocean are very poor. The simulated measurements also allow us to distinguish spherical from non-spherical particles, to separate two to four compositional groups based on indices of refraction, and to identify three to four distinct size groups between 0. 1 and 2.0 microns characteristic radius at most latitudes. Based on these results, we expect to distinguish air masses containing different aerosol types, routinely and globally, with multiangle remote sensing data. Such results far exceed current satellite aerosol retrieval capabilities, which provide only total optical depth for assumed particle properties; the new information will complement in situ data, which give details about aerosol size and composition locally. In addition, our team is using climatologies that reflect the constraints each instrument is expected to provide, along with ERBE (Earth Radiation Budget Experiment) data and a radiative transfer code, to study overall sensitivity to RSRF, helping us prepare for similar studies with new data from the EOS-era instruments.

  19. NASA MISR Spots Hurricane Hermine Approaching Florida

    NASA Image and Video Library

    2016-09-01

    On the afternoon of Sept. 1, 2016, Tropical Storm Hermine strengthened into a Category 1 hurricane as it approached the coast of Florida. Hermine began life as Tropical Depression Nine, originating off the coast of Cuba on Aug. 28. After heading northwest into the Gulf of Mexico, it took a right turn toward Florida and on Wednesday, Aug. 31, was upgraded to a tropical storm before strengthening to a hurricane a day later. Winds are currently sustained near 75 miles (121 kilometers) per hour, and the storm is expected to make landfall tonight or early tomorrow. Florida Governor Rick Scott has declared a state of emergency in 51 counties, while Georgia Governor Nathan Deal has done the same for 56 counties in his state. Localized flooding is already occurring in some areas of Florida, which has not had a direct landfall by a hurricane in 11 years. After moving across Florida and Georgia, the storm is currently forecast to continue northward along the coast of the Eastern seaboard. On Sept. 1, at 12:30 p.m. EDT, the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra spacecraft passed over the area. This natural-color image from MISR's vertical-pointing camera shows the large, loosely organized hurricane. At the time, the center of the storm was located about 200 miles (325 kilometers) to the west of Sarasota on the Florida coast. The image is 235 miles (378 kilometers) in width. Also included is a 3D stereo anaglyph, made by combining data from MISR's vertical-pointing and 46-degree forward-pointing camera. The image has been rotated so that north is to the left in order to enable stereo viewing. With the aid of red-blue glasses (with the red lens over the left eye), it is possible to observe the storm in three dimensions. Note the towering central thunderstorms around the eye in comparison to the low clouds visible within it. These data were acquired during Terra orbit 88865. http://photojournal.jpl.nasa.gov/catalog/PIA20898

  20. Southern California Wildfires Observed by NASA MISR

    NASA Image and Video Library

    2016-06-24

    The Los Angeles area is currently suffering the effects of three major wildfires that are blanketing the area with smoke. Over the past few days, Southern California has experienced record-breaking temperatures, topping 110 degrees Fahrenheit in some cities. The heat, in combination with offshore winds, helped to stoke the Sherpa Fire west of Santa Barbara, which has been burning since June 15, 2016. Over the weekend of June 18-19, this fire rapidly expanded in size, forcing freeway closures and evacuations of campgrounds and state beaches. On Monday, June 20, two new fires ignited in the San Gabriel Mountains north of Azusa and Duarte, together dubbed the San Gabriel Complex Fire. They have burned more than 4,900 acres since June 20, sending up plumes of smoke visible to many in the Los Angeles basin and triggering air quality warnings. More than 1,400 personnel have been battling the blazes in the scorching heat, and evacuations were ordered for neighborhoods in the foothills. On June 21, the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite captured this view of the San Gabriel Mountains and Los Angeles Basin from its 46-degree forward-viewing camera, which enhances the visibility of the smoke compared to the more conventional nadir (vertical) view. The width of this image is about 75 miles (120 kilometers) across. Smoke from the San Gabriel Complex Fire is visible at the very right of the image. Stereoscopic analysis of MISR's multiple camera angles is used to compute the height of the smoke plume from the San Gabriel Complex Fire. In the right-hand image, these heights are superimposed on the underlying image. The color scale shows that the plume is not much higher than the surrounding mountains. As a result, much of the smoke is confined to the local area. http://photojournal.jpl.nasa.gov/catalog/PIA20718

  1. The Multi-Angle Imager for Aerosols (MAIA) Instrument, the Satellite-Based Element of an Investigation to Benefit Public Health

    NASA Astrophysics Data System (ADS)

    Diner, D. J.

    2016-12-01

    Maps of airborne particulate matter (PM) derived from satellite instruments, including MISR and MODIS, have provided key contributions to many health-related investigations. Although it is well established that PM exposure increases the risks of cardiovascular and respiratory disease, adverse birth outcomes, and premature deaths, our understanding of the relative toxicity of specific PM types—mixtures having different size distributions and compositions—is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. MAIA was selected for funding in March 2016. The satellite-based MAIA instrument is one element of the scientific investigation, which will combine WRF-Chem transport model estimates of the abundances of different aerosol types with the data acquired from Earth orbit. Geostatistical models derived from collocated surface and MAIA retrievals will be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. The MAIA instrument obtains its sensitivity to particle type by building upon the legacies of many satellite sensors; observing in the UV, visible, near-IR, and shortwave-IR regions of the electromagnetic spectrum; acquiring images at multiple angles of view; determining the degree to which the scattered light is polarized; and integrating these capabilities at moderately high spatial resolution. The instrument concept is based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA incorporates a pair of pushbroom cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. A set of Primary Target Areas (PTAs) on five continents includes major population centers covering a range of PM concentrations and particle types. MAIA will also collect aerosol and cloud observations over regions of interest to the radiation science, climate, and environmental science communities. Launch of the MAIA instrument is planned for early in the next decade.

  2. Amery Ice Shelf's 'Loose Tooth' Gets Looser

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Amery Ice Shelf is an important dynamic system responsible for draining about 16% of the grounded East Antarctic ice sheet through only 2% of its coastline. Most of the mass input to the system occurs from the Lambert and several other glaciers. Mass loss from the system occurs through basal melting and iceberg calving. These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray the ice shelf front on October 6, 2001 (top) and September 29, 2002 (bottom), and illustrate changes that took place over the year elapsed between the two views.

    Two longitudinal rifts, oriented roughly parallel to the direction of ice flow and measuring about 25 and 15 kilometers in length, are apparent near the seaward edge of the ice shelf. Between them, a transverse fracture extends eastward from the base of the western rift. This rift system is colloquially named the Amery 'loose tooth.' Over the course of the one-year interval between these two MISR images, the ice front has advanced approximately 1.6 - 1.7 kilometers, and the transverse fracture and a three-way fissure at the juncture of the rifts have widened. When the transverse fracture eventually reaches the eastern rift, a large iceberg (25 kilometers x 25 kilometers) will be released.

    These false-color multi-angle composites combine red-band data from MISR's 60o forward, nadir, and 60o aftward viewing cameras, displayed as red, green and blue, respectively. Different colors represent angular reflectance variations. Since generally smooth surfaces predominantly forward-scatter sunlight, these appear in shades of blue. Rough surfaces tend to backward-scatter sunlight, and these appear in shades of red or orange. Low clouds appear bright purple, since they exhibit both forward and backward-scattering. Using this technique, textural variations among ice types are revealed, and clouds can be easily distinguished from ice. Illumination conditions on the two dates are nearly identical.

    Understanding the 'normal' frequency of calving events from a particular ice shelf is necessary before it can be determined whether calving rates are changing. As part of an effort to determine the normal rate of ice flow and iceberg calving events, the Amery Ice Shelf front has been monitored by various remote sensing instruments for many years. The Amery Ice Shelf is currently considered to be about two-thirds of the way through a calving cycle. The last major calving event occurred in the early 1960's, when a massive iceberg (measuring about 140 kilometers x 70 kilometers) was released.

    The Amery 'loose tooth' is the subject of a joint field experiment during the 2002 austral summer, partially funded by NASA and undertaken by the Scripps Institution of Oceanography and the Australian Antarctic Division. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 9579 and 14807. The panels cover an area of about 204 kilometers x 110 kilometers, and utilize data from blocks 146 to 147 within World Reference System-2 paths 127 and 128, respectively. Data from the two orbital paths have been remapped to identical polar projections, and were cropped to include the same geographic area.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center,Greenbelt, MD. JPL is a division of the California Institute of Technology.

  3. Highlights from Johannesburg, Gauteng Province, South Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although the extraction of mineral wealth has been the major influence in the history of Johannesburg and the surrounding Witwatersrand regions (with about 45% of all gold ever mined coming from there), the discovery of now-famous hominid fossils at the Sterkfontein Caves, and the convening of the world's largest-ever conference on environment and development, are setting a new stage for the future. The United Nations began the second Development and Environment Conference in Johannesburg on August 26, 2002. This meeting addresses the implementation of international goals to fight poverty and protect the global environment that were established at the first such conference held in Rio de Janeiro in 1992. The Johannesburg summit involves about forty thousand participants, and perhaps 100 world leaders. One of several official opening ceremonies for the conference was held at the Sterkfontein Caves to recognize the outstanding universal value of the paleo-anthropological fossils found there.

    These views from the Multi-angle Imaging SpectroRadiometer (MISR) highlight a number of the land use, vegetation, and geological features found within Gauteng Province (including the urban center of Johannesburg and the capital city Pretoria) and parts of the North West and Free State Provinces. The image on the right displays vegetation in red hues and is a false-color view utilizing data from MISR's near-infrared, red and blue bands. Both the natural-color view (left) and the false-color version were acquired by MISR's nadir camera on June 16, 2002. The urban areas appear as gray-colored pixels in the natural-color view, and exhibit colors corresponding with the relative abundance of vegetation found in the urban parts of this arid region.

    The mountains trending east-west near the center of the images extend from Pretoria in the east to Rustenberg in the west. These ranges, the Magaliesberg and Witwatersberg, separate the low-lying, hotter bushveld to the north from the cooler highveld to the south. The large round feature near the north-west corner indicates an ancient volcanic crater in the Pilanesberg National Park. Many bright, buff-colored rectangular patches around Johannesburg are associated with mining activities, and at least two of these areas (situated 40 kilometers southeast of the city) hold large amounts of water. The Sterkfontein Caves (now included within the recently created 'Cradle of Humankind' World Heritage Site) are located about 35 kilometers northwest of Johannesburg. In the southern portion of the images, a section of the Vredefort Hills are apparent to the west, and to the east the Vaal River and a large water body contained by the Vaal Dam delineate the border between the Gauteng and Free State provinces.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 13266, and covers an area of about 190 kilometers x 221 kilometers. It utilizes data from blocks 111 to 112 within World Reference System-2 path 170.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  4. Airborne Sea of Dust over China

    NASA Technical Reports Server (NTRS)

    2002-01-01

    TDust covered northern China in the last week of March during some of the worst dust storms to hit the region in a decade. The dust obscuring China's Inner Mongolian and Shanxi Provinces on March 24, 2002, is compared with a relatively clear day (October 31, 2001) in these images from the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera aboard NASA's Terra satellite. Each image represents an area of about 380 by 630 kilometers (236 by 391 miles). In the image from late March, shown on the right, wave patterns in the yellowish cloud liken the storm to an airborne ocean of dust. The veil of particulates obscures features on the surface north of the Yellow River (visible in the lower left). The area shown lies near the edge of the Gobi desert, a few hundred kilometers, or miles, west of Beijing. Dust originates from the desert and travels east across northern China toward the Pacific Ocean. For especially severe storms, fine particles can travel as far as North America. The Multi-angle Imaging SpectroRadiometer, built and managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is one of five Earth-observing instruments aboard the Terra satellite, launched in December 1999. The instrument acquires images of Earth at nine angles simultaneously, using nine separate cameras pointed forward, downward and backward along its flight path. The change in reflection at different view angles affords the means to distinguish different types of atmospheric particles, cloud forms and land surface covers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team

  5. NASA MISR Tracks Growth of Rift in the Larsen C Ice Shelf

    NASA Image and Video Library

    2017-04-11

    A rift in Antarctica's Larsen C ice shelf has grown to 110 miles (175 km) long, making it inevitable that an iceberg larger than Rhode Island will soon calve from the ice shelf. Larsen C is the fourth largest ice shelf in Antarctica, with an area of almost 20,000 square miles (50,000 square kilometers). The calving event will remove approximately 10 percent of the ice shelf's mass, according to the Project for Impact of Melt on Ice Shelf Dynamics and Stability (MIDAS), a UK-based team studying the ice shelf. Only 12 miles (20 km) of ice now separates the end of the rift from the ocean. The rift has grown at least 30 miles (50 km) in length since August, but appears to be slowing recently as Antarctica returns to polar winter. Project MIDAS reports that the calving event might destabilize the ice shelf, which could result in a collapse similar to what occurred to the Larsen B ice shelf in 2002. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite captured views of Larsen C on August 22, 2016, when the rift was 80 miles (130 km) in length; December 8, 2016, when the rift was approximately 90 miles (145 km) long; and April 6, 2017. The MISR instrument has nine cameras, which view the Earth at different angles. The overview image, from December 8, shows the entire Antarctic Peninsula -- home to Larsen A, B, and C ice shelves -- in natural color (similar to how it would appear to the human eye) from MISR's vertical-viewing camera. Combining information from several MISR cameras pointed at different angles gives information about the texture of the ice. The accompanying GIF depicts the inset area shown on the larger image and displays data from all three dates in false color. These multiangular views -- composited from MISR's 46-degree backward-pointing camera, the nadir (vertical-viewing) camera, and the 46-degree forward-pointing camera -- represent variations in ice texture as changes in color, such that areas of rough ice appear orange and smooth ice appears blue. The Larsen C shelf is on the left in the GIF, bordered by the Weddell Sea on the upper right. The ice within the rift is orange, indicating movement, and the end of the rift can be tracked across the shelf between images. In addition, between December and April, the rift widened, pushing the future iceberg away from the shelf at its southern end. These data were acquired during Terra orbits 88717, 90290 and 92023. https://photojournal.jpl.nasa.gov/catalog/PIA21581

  6. Islands in the Midst of the World

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Greek islands of the Aegean Sea, scattered across 800 kilometers from north to south and between Greece and western Turkey, are uniquely situated at the intersection of Europe, Asia and Africa. This image from the Multi-angle Imaging SpectroRadiometer includes many of the islands of the East Aegean, Sporades, Cyclades, Dodecanese and Crete, as well as part of mainland Turkey. Many sites important to ancient and modern history can be found here. The largest modern city in the Aegean coast is Izmir, situated about one quarter of the image length from the top, southeast of the large three-pronged island of Lesvos. Izmir can be located as a bright coastal area near the greenish waters of the Izmir Bay, about one quarter of the image length from the top, southeast of Lesvos. The coastal areas around this cosmopolitan Turkish city were a center of Ionian culture from the 11th century BC, and at the top of the image (north of Lesvos), once stood the ancient city of Troy.

    The image was acquired before the onset of the winter rains, on September 30, 2001, but dense vegetation is never very abundant in the arid Mediterranean climate. The sharpness and clarity of the view also indicate dry, clear air. Some vegetative changes can be detected between the western or southern islands such as Crete (the large island along the bottom of the image) and those closer to the Turkish coast which appear comparatively green. Volcanic activities are evident by the form of the islands of Santorini. This small group of islands shaped like a broken ring are situated to the right and below image center. Santorini's Thera volcano erupted around 1640 BC, and the rim of the caldera collapsed, forming the shape of the islands as they exist today.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This natural-color image was acquired by MISR's nadir (vertical-viewing) camera, and is a portion of the data acquired during Terra orbit 9495. The image covers an area of 369 kilometers x 567 kilometers, and utilizes data from blocks 58 to 64 within World Reference System-2 path 181.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  7. Volga Delta and the Caspian Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Russia's Volga River is the largest river system in Europe, draining over 1.3 million square kilometers of catchment area into the Caspian Sea. The brackish Caspian is Earth's largest landlocked water body, and its isolation from the world's oceans has enabled the preservation of several unique animal and plant species. The Volga provides most of the Caspian's fresh water and nutrients, and also discharges large amounts of sediment and industrial waste into the relatively shallow northern part of the sea. These images of the region were captured by the Multi-angle Imaging SpectroRadiometer on October 5, 2001, during Terra orbit 9567. Each image represents an area of approximately 275 kilometers x 376 kilometers.

    The left-hand image is from MISR's nadir (vertical-viewing) camera, and shows how light is reflected at red, green, and blue wavelengths. The right-hand image is a false color composite of red-band imagery from MISR's 60-degree backward, nadir, and 60-degree forward-viewing cameras, displayed as red, green, and blue, respectively. Here, color variations indicate how light is reflected at different angles of view. Water appears blue in the right-hand image, for example, because sun glitter makes smooth, wet surfaces look brighter at the forward camera's view angle. The rougher-textured vegetated wetlands near the coast exhibit preferential backscattering, and consequently appear reddish. A small cloud near the center of the delta separates into red, green, and blue components due to geometric parallax associated with its elevation above the surface.

    Other notable features within the images include several linear features located near the Volga Delta shoreline. These long, thin lines are artificially maintained shipping channels, dredged to depths of at least 2 meters. The crescent-shaped Kulaly Island, also known as Seal Island, is visible near the right-hand edge of the images.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  8. Inter-Comparison of WRF Model Simulated Winds and MISR Stereoscopic Winds Embedded within Mesoscale von Kármán Wake Vortices

    NASA Astrophysics Data System (ADS)

    Horvath, A.; Nunalee, C. G.; Mueller, K. J.

    2014-12-01

    Several distinct wake regimes are possible when considering atmospheric flow past a steep mountainous island. Of these regimes, coherent vortex shedding in low-Froude number flow is particularly interesting because it can produce laterally focused paths of counter rotating eddies capable of extending downstream for hundreds of kilometers (i.e., a von Kármán vortex street). Given the spatial scales of atmospheric von Kármán vortices, which typically lies on the interface of the meso-scale and the micro-scale, they are uniquely challenging to model using conventional numerical weather prediction platforms. In this presentation, we present high resolution (1-km horizontally) numerical modeling results using the Weather Research and Forecasting (WRF) model, of multiple real-world von Kármán vortex shedding events associated with steep islands (e.g., Madeira island, Gran Canaria island, etc.). In parallel, we also present corresponding cloud-motion wind and cloud-top height measurements from the satellite-based Multiangle Imaging SpectroRadiometer (MISR) instrument. The MISR stereo algorithm enables experimental retrieval of the horizontal wind vector (both along-track and cross-track components) at 4.4-km resolution, in addition to the operational 1.1-km resolution cross-track wind and cloud-top height products. These products offer the fidelity appropriate for inter-comparison with the numerically simulated vortex streets. In general, we find an agreement between the instantaneous simulated cloud level winds and the MISR stereoscopic winds; however, discrepancies in the vortex street length and localized horizontal wind shear were documented. In addition, the simulated fields demonstrate sensitivity to turbulence closure and input terrain height data.

  9. Identification of dust source regions and dust emission trends across North Africa and the Middle East using MISR satellite observations

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Kalashnikova, O. V.; Garay, M. J.; Notaro, M.

    2017-12-01

    Global arid and semi-arid regions supply 1100 to 5000 Tg of Aeolian dust to the atmosphere each year, primarily from North Africa and secondarily from the Middle East. Previous dust source identification methods, based on either remotely-sensed aerosol optical depth (AOD) or dust activity, yield distinct dust source maps, largely due to the limitations in each method and remote-sensing product. Here we apply a novel motion-based method for dust source identification. Dust plume thickness and motion vectors from Multi-angle Imaging SpectroRadiometer (MISR) Cloud Motion Vector Product (CMVP) are examined to identify the regions with high frequency of fast moving-dust plumes, by season. According to MISR CMVP, Bodele depression is the most important dust source across North Africa, consistent with previous studies. Seasonal variability of dust emission across the North Africa is largely driven by climatology of wind and precipitation, featuring the influence of Sharav Cyclone and western African monsoon. In the Middle East, Iraq, Kuwait, and eastern Saudi Arabia are identified as dust source regions, especially during summer months, when the Middle Eastern Shamal wind is active. Furthermore, dust emission trend at each dust source are diagnosed from the motion-based dust source dataset. Increase in dust emission from the Fertile Crescent, Sahel, and eastern African dust sources are identified from MISR CMVP, implying potential contribution from these dust sources to the upward trend in AOD and dust AOD over the Middle East in the 21st century. By comparing with various dust source identification studies, we conclude that the motion-based identification of dust sources is an encouraging alternative and compliment to the AOD-only source identification method.

  10. Does Management Matter?: Using MISR to Assess the Effects of Charcoal Production and Management on Woodland Regeneration

    NASA Astrophysics Data System (ADS)

    Wurster, K.

    2008-12-01

    In much of Sub-Saharan Africa, more than 75 percent of a rapidly growing urban population depends on charcoal as their primary source of energy for cooking. The high demand for charcoal has led many to believe that charcoal harvesting catalyzes widespread deforestation. The Senegalese government and international donors have initiated projects within protected areas to combat deforestation and created land management plans to sustainably harvest charcoal. To date, the effects of forest management techniques on forest sustainability are still in question. This research uses a multiphase approach integrating satellite analysis with field surveys to assess the effect of varying forest management strategies on forest regeneration and sustainability after charcoal harvesting. Phase I involved testing the Multiangle Imaging SpectroRadiometer (MISR) satellites capability in detecting structural changes in vegetative cover caused by charcoal harvesting and production. Analysis of the MISR derived k(red) parameter showed MISR can consistently differentiate between forest cover types and successfully differentiates between sites at pre- and post-charcoal harvest stages. Phase II conducted forestry and social surveys comparing and contrasting local effects of land management, land use, and charcoal production on forest regeneration. Phase III uses the local surveys to validate and train the regional remote sensing data to assess the effectiveness of land management in promoting forest regeneration and sustainability after charcoal harvesting. Combining detailed local knowledge with the regional capabilities of MISR provide valuable insight into the factors that control woodland regeneration and sustainability. Preliminary results from phases II and III indicate that both field and remotely sensed variations in forest cover, tree regeneration, and land use change does not vary when compared against land management type. Final results will provide managers with additional information to create more effective land management strategies that can be implemented across sub- Saharan Africa, ensuring the long-term sustainability of woodland ecosystems and local livelihoods.

  11. Cloud Height Maps for Hurricanes Frances and Ivan

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Multi-angle Imaging SpectroRadiometer (MISR) captured these images and cloud-top height retrievals of Hurricane Frances on September 4, 2004, when the eye sat just off the coast of eastern Florida, and Hurricane Ivan on September 5th, after this cyclone had devastated Grenada and was heading toward the central and western Caribbean. Hurricane Frances made landfall in the early hours of September 5, and was downgraded to Tropical Storm status as it swept inland through the Florida panhandle and continued northward. On the heels of Frances is Hurricane Ivan, which is on record as the strongest tropical cyclone to form at such a low latitude in the Atlantic, and was the most powerful hurricane to have hit the Caribbean in nearly a decade.

    The ability of forecasters to predict the intensity and amount of rainfall associated with hurricanes still requires improvement, especially on the 24 to 48 hour timescale vital for disaster planning. To improve the operational models used to make hurricane forecasts, scientists need to better understand the multi-scale interactions at the cloud, mesoscale and synoptic scales that lead to hurricane intensification and dissipation, and the various physical processes that affect hurricane intensity and rainfall distributions. Because these uncertainties with regard to how to represent cloud processes still exist, it is vital that the model findings be evaluated against hurricane observations whenever possible. Two-dimensional maps of cloud height such as those shown here offer an unprecedented opportunity for comparing simulated cloud fields against actual hurricane observations.

    The left-hand panel in each image pair is a natural color view from MISR's nadir camera. The right-hand panels are cloud-top height retrievals produced by automated computer recognition of the distinctive spatial features between images acquired at different view angles. These results indicate that at the time that these images were acquired, clouds within Frances and Ivan had attained altitudes of 15 kilometers and 16 kilometers above sea level, respectively. The height fields pictured here are uncorrected for the effects of cloud motion. Wind-corrected heights (which have higher accuracy but sparser spatial coverage) are within about 1 kilometer of the heights shown here.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 25081 and 25094. The panels cover an area of 380 kilometers x 924 kilometers, and utilize data from within blocks 65 to 87 within World Reference System-2 paths 14 and 222, respectively.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California In

  12. Intercomparison of clumping index estimates from POLDER, MODIS, and MISR satellite data over reference sites

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Govind, Ajit; Arndt, Stefan K.; Hocking, Darren; Wardlaw, Timothy J.; Fang, Hongliang; Matteucci, Giorgio; Longdoz, Bernard

    2015-03-01

    Clumping index is the measure of foliage grouping relative to a random distribution of leaves in space. It is a key structural parameter of plant canopies that influences canopy radiation regimes and controls canopy photosynthesis and other land-atmosphere interactions. The Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ˜6 km resolution and the Bidirectional Reflectance Distribution Function (BRDF) product from Moderate Resolution Imaging Spectroradiometer (MODIS) at 500 m resolution. Most recently the algorithm was also applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this study for the first time we characterized and compared the three products over a set of sites representing diverse biomes and different canopy structures. The products were also directly validated with both in-situ vertical profiles and available seasonal trajectories of clumping index over several sites. We demonstrated that the vertical distribution of foliage and especially the effect of understory need to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements responded to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can propagate into the foliage clumping maps. Our results indicate that MODIS data and MISR data, with 275 m in particular, can provide good quality clumping index estimates at spatial scales pertinent for modeling local carbon and energy fluxes.

  13. Sensitivity of multiangle photo-polarimetry to absorbing aerosol vertical layering and properties: Quantifying measurement uncertainties for ACE requirements

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Davis, A. B.; Natraj, V.; Diner, D. J.; Tanelli, S.; Martonchik, J. V.; JPl Team

    2011-12-01

    The impact of tropospheric aerosols on climate can vary greatly based upon relatively small variations in aerosol properties, such as composition, shape and size distributions, as well as vertical layering. Multi-angle polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol radiative forcing on climate. The central concern of this work is the assessment of the effects of absorbing aerosol properties under measurement uncertainties achievable for future generation multi-angle, polarimetric imaging instruments under ACE mission requirements. As guidelines, the on-orbit performance of MISR for multi-angle intensity measurements and the reported polarization sensitivities of a MSPI prototype were adopted. In particular, we will focus on sensitivities to absorbing aerosol layering and observation-constrained refractive indices (resulting in various single scattering albedos (SSA)) of both spherical and non-spherical absorbing aerosol types. We conducted modeling experiments to determine how the measured Stokes vector elements are affected in UV-NIR range by the vertical distribution, mixing and layering of smoke and dust aerosols, and aerosol SSA under the assumption of a black and polarizing ocean surfaces. We use a vector successive-orders-of-scattering (SOS) and VLIDORT transfer codes that show excellent agreement. Based on our sensitivity studies we will demonstrate advantages and disadvantages of wavelength selection in UV-NIR range to access absorbing aerosol properties. Polarized UV channels do not show particular advantage for absorbing aerosol property characterization due to dominating molecular signal. Polarimetric SSA sensitivity is small, however needed to be considered in the future polarimetric retrievals under ACE-defined uncertainty.

  14. EOSDIS Terra Data Sampler #1: Western US Wildfires 2000. 1.1

    NASA Technical Reports Server (NTRS)

    Perkins, Dorothy C. (Technical Monitor)

    2000-01-01

    This CD-ROM contains sample data in HDF-EOS format from the instruments on board the Earth Observing System (EOS) Terra satellite: (1) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER); (2) Clouds and the Earth's Radiant Energy System (CERES); (3) Multi-angle Imaging Spectroradiometer (MISR); and (4) Moderate Resolution Imaging Spectroradiometer (MODIS). Data from the Measurements of Pollution in the Troposphere (MOPITT) instrument were not available for distribution (as of October 17, 2000). The remotely sensed, coincident data for the Western US wildfires were acquired August 30, 2000. This CD-ROM provides information about the Terra mission, instruments, data, and viewing tools. It also provides the Collage tool for viewing data, and links to Web sites containing other digital data processing software. Full granules of the data on this CD-ROM and other EOS Data and Information System (EOSDIS) data products are available from the NASA Distributed Active Archive Centers (DAACs).

  15. Estimating PM2.5 speciation concentrations using prototype 4.4 km-resolution MISR aerosol properties over Southern California

    NASA Astrophysics Data System (ADS)

    Meng, Xia; Garay, Michael J.; Diner, David J.; Kalashnikova, Olga V.; Xu, Jin; Liu, Yang

    2018-05-01

    Research efforts to better characterize the differential toxicity of PM2.5 (particles with aerodynamic diameters less than or equal to 2.5 μm) speciation are often hindered by the sparse or non-existent coverage of ground monitors. The Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA's Terra satellite is one of few satellite aerosol sensors providing information of aerosol shape, size and extinction globally for a long and continuous period that can be used to estimate PM2.5 speciation concentrations since year 2000. Currently, MISR only provides a 17.6 km product for its entire mission with global coverage every 9 days, a bit too coarse for air pollution health effects research and to capture local spatial variability of PM2.5 speciation. In this study, generalized additive models (GAMs) were developed using MISR prototype 4.4 km-resolution aerosol data with meteorological variables and geographical indicators, to predict ground-level concentrations of PM2.5 sulfate, nitrate, organic carbon (OC) and elemental carbon (EC) in Southern California between 2001 and 2015 at the daily level. The GAMs are able to explain 66%, 62%, 55% and 58% of the daily variability in PM2.5 sulfate, nitrate, OC and EC concentrations during the whole study period, respectively. Predicted concentrations capture large regional patterns as well as fine gradients of the four PM2.5 species in urban areas of Los Angeles and other counties, as well as in the Central Valley. This study is the first attempt to use MISR prototype 4.4 km-resolution AOD (aerosol optical depth) components data to predict PM2.5 sulfate, nitrate, OC and EC concentrations at the sub-regional scale. In spite of its low temporal sampling frequency, our analysis suggests that the MISR 4.4 km fractional AODs provide a promising way to capture the spatial hotspots and long-term temporal trends of PM2.5 speciation, understand the effectiveness of air quality controls, and allow our estimated PM2.5 speciation data to be linked with common spatial units such as census tract or zip code in epidemiological studies. This modeling strategy needs to be validated in other regions when more MISR 4.4 km data becoming available in the future.

  16. Floodwaters Renew Zambia's Kafue Wetland

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Not all floods are unwanted. Heavy rainfall in southern Africa between December 2003 and April 2004 provided central Zambia with floodwaters needed to support the diverse uses of water within the Kafue Flats area. The Kafue Flats are home to about one million people and provide a rich inland fishery, habitat for an array of unique wildlife, and the means for hydroelectricity production. The Flats falls between two dams: Upstream to the west (not visible here) is the Izhi-tezhi, and downstream (middle right of the images) is the Kafue Gorge dam. Since the construction of these dams, the flooded area has been reduced and the timing and intensity of the inundation has changed. During June 2004 an agreement was made with the hydroelectricity company to restore water releases from the dams according to a more natural flooding regime. These images from NASA's Multi-angle Imaging SpectroRadiometer (MISR) illustrate surface changes to the wetlands and other surfaces in central Zambia resulting from an unusually lengthy wet season. The Kafue Flats appear relatively dry on July 19, 2003 (upper images), with the Kafue River visible as a slender dark line that snakes from east to west on its way to join the Zambezi (visible in the lower right-hand corner). On July 21, 2004 (lower images), well into the dry season, much of the 6,500-square kilometer area of the Kafue Flats remains inundated. To the east of the Kafue Flats is Lusaka, the Zambian capital, visible as a pale area in the middle right of the picture, north of the river. In the upper portions of these images is the prominent roundish shape of the Lukanga Swamp, another important wetland.

    The images along the left are natural-color views from MISR's nadir camera, and the images along the right are angular composites in which red band data from MISR's 46o forward, nadir, and 46o backward viewing cameras is displayed as red, green and blue, respectively. In order to preserve brightness variations among the various cameras, the data from each camera were processed identically. Here, color changes indicate surface texture, and are influenced by terrain, vegetation structure, soil type and soil moisture content. Wet surfaces or areas with standing water appear blue in this display because sun glitter makes smooth, wet surfaces look brighter at the backward camera's view angle. Mostly the landscape appears somewhat purple, indicating that most of the surfaces scatter sunlight in both backward and forward directions. Areas that appear with a slight greenish hue can indicate sparce vegetation, since the nadir camera is more likely to sight the gaps between the trees or shrubs, and since vegetation is darker (in the red band) than the underlying soil surface. Areas which preferentially exhibit a red or pink hue correspond with wetland vegetation. The plateau of the Kafue National Park, to the west of Lukanga Swamp, appears brighter in 2004 compared with 2003, which indicates weaker absorption at the red band. Overall, the 2004 image exhibits a subtle blue hue (preference for forward-scattering) compared with 2003, which indicates overall surface changes that may be a result of enhanced surface wetness.

    The Multiangle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 19072 and 24421. The panels cover an area of 235 kilometers x 239 kilometers, and utilize data from blocks 100 to 103 within World Reference System-2 path 172.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  17. Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005-2015)

    NASA Astrophysics Data System (ADS)

    Banks, Jamie R.; Brindley, Helen E.; Stenchikov, Georgiy; Schepanski, Kerstin

    2017-03-01

    The inter-annual variability of the dust aerosol presence over the Red Sea and the Persian Gulf is analysed over the period 2005-2015. Particular attention is paid to the variation in loading across the Red Sea, which has previously been shown to have a strong, seasonally dependent latitudinal gradient. Over the 11 years considered, the July mean 630 nm aerosol optical depth (AOD) derived from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) varies between 0.48 and 1.45 in the southern half of the Red Sea. In the north, the equivalent variation is between 0.22 and 0.66. The temporal and spatial pattern of variability captured by SEVIRI is also seen in AOD retrievals from the MODerate Imaging Spectroradiometer (MODIS), but there is a systematic offset between the two records. Comparisons of both sets of retrievals with ship- and land-based AERONET measurements show a high degree of correlation with biases of < 0.08. However, these comparisons typically only sample relatively low aerosol loadings. When both records are stratified by AOD retrievals from the Multi-angle Imaging SpectroRadiometer (MISR), opposing behaviour is revealed at high MISR AODs ( > 1), with offsets of +0.19 for MODIS and -0.06 for SEVIRI. Similar behaviour is also seen over the Persian Gulf. Analysis of the scattering angles at which retrievals from the SEVIRI and MODIS measurements are typically performed in these regions suggests that assumptions concerning particle sphericity may be responsible for the differences seen.

  18. Icebergs Adrift in the Amundsen Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Thwaites Ice Tongue is a large sheet of glacial ice extending from the West Antarctic mainland into the southern Amundsen Sea. A large crack in the Thwaites Tongue was discovered in imagery from Terra's Moderate Resolution Imaging SpectroRadiometer (MODIS). Subsequent widening of the crack led to the calving of a large iceberg. The development of this berg, designated B-22 by the National Ice Center, can be observed in these images from the Multi-angle Imaging SpectroRadiometer, also aboard Terra. The two views were acquired by MISR's nadir (vertical-viewing)camera on March 10 and 24, 2002.

    The B-22 iceberg, located below and to the left of image center, measures approximately 82 kilometers long x 62 kilometers wide. Comparison of the two images shows the berg to have drifted away from the ice shelf edge. The breakup of ice near the shelf edge, in the area surrounding B-22, is also visible in the later image.

    These natural-color images were acquired during Terra orbits 11843 and 12047, respectively. At the right-hand edge is Pine Island Bay, where the calving of another large iceberg (B-21) occurred in November 2001. B-21 subsequently split into two smaller bergs, both of which are visible to the right of B-22.

    Antarctic researchers have reported an increase in the frequency of iceberg calvings in recent years. Whether this is the result of a regional climate variation, or connected to the global warming trend, has not yet been established.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  19. Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xu, Xiaoguang; Henze, Daven K.; Zeng, Jing; Ji, Qiang; Tsay, Si-Chee; Huang, Jianping

    2012-04-01

    Predicting the influences of dust on atmospheric composition, climate, and human health requires accurate knowledge of dust emissions, but large uncertainties persist in quantifying mineral sources. This study presents a new method for combined use of satellite-measured radiances and inverse modeling to spatially constrain the amount and location of dust emissions. The technique is illustrated with a case study in May 2008; the dust emissions in Taklimakan and Gobi deserts are spatially optimized using the GEOS-Chem chemical transport model and its adjoint constrained by aerosol optical depth (AOD) that are derived over the downwind dark-surface region in China from MODIS (Moderate Resolution Imaging Spectroradiometer) reflectance with the aerosol single scattering properties consistent with GEOS-chem. The adjoint inverse modeling yields an overall 51% decrease in prior dust emissions estimated by GEOS-Chem over the Taklimakan-Gobi area, with more significant reductions south of the Gobi Desert. The model simulation with optimized dust emissions shows much better agreement with independent observations from MISR (Multi-angle Imaging SpectroRadiometer) AOD and MODIS Deep Blue AOD over the dust source region and surface PM10 concentrations. The technique of this study can be applied to global multi-sensor remote sensing data for constraining dust emissions at various temporal and spatial scales, and hence improving the quantification of dust effects on climate, air quality, and human health.

  20. Top-down Estimate of Dust Emissions Through Integration of MODIS and MISR Aerosol Retrievals With the Geos-chem Adjoint Model

    NASA Technical Reports Server (NTRS)

    Wang, Jun; Xu, Xiaoguang; Henze, Daven K.; Zeng, Jing; Ji, Qiang; Tsay, Si-Chee; Huang, Jianping

    2012-01-01

    Predicting the influences of dust on atmospheric composition, climate, and human health requires accurate knowledge of dust emissions, but large uncertainties persist in quantifying mineral sources. This study presents a new method for combined use of satellite-measured radiances and inverse modeling to spatially constrain the amount and location of dust emissions. The technique is illustrated with a case study in May 2008; the dust emissions in Taklimakan and Gobi deserts are spatially optimized using the GEOSChem chemical transport model and its adjoint constrained by aerosol optical depth (AOD) that are derived over the downwind dark-surface region in China from MODIS (Moderate Resolution Imaging Spectroradiometer) reflectance with the aerosol single scattering properties consistent with GEOS-chem. The adjoint inverse modeling yields an overall 51% decrease in prior dust emissions estimated by GEOS-Chem over the Taklimakan-Gobi area, with more significant reductions south of the Gobi Desert. The model simulation with optimized dust emissions shows much better agreement with independent observations from MISR (Multi-angle Imaging SpectroRadiometer) AOD and MODIS Deep Blue AOD over the dust source region and surface PM10 concentrations. The technique of this study can be applied to global multi-sensor remote sensing data for constraining dust emissions at various temporal and spatial scales, and hence improving the quantification of dust effects on climate, air quality, and human health.

  1. Remote Sensing of Radiative and Microphysical Properties of Clouds During TC (sup 4): Results from MAS, MASTER, MODIS, and MISR

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, G. Thomas; Dominguez, Roseanne T.

    2010-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) and MODIS/Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.2 microns (12.9 microns for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Cloud and Climate Coupling (TC4) experiment conducted over Central America and surrounding Pacific and Atlantic Oceans between 17 July and 8 August 2007. Multispectral images in eleven distinct bands were used to derive a confidence in clear sky (or alternatively the probability Of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). The cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm to that implemented operationally to process MODIS Cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER data in TC(sup 4), is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals use five distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of marine liquid water clouds from MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to Multiangle Imaging SpectroRadiometer (MISR) data to infer the cloud optical thickness Of liquid water clouds from MISR. Results of this analysis are compared and contrasted.

  2. The 2010 Eyjafjallajokull Eruptions: The NASA Applied Sciences Perspective for Aviation

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Haynes, J. A.; Trepte, C. R.; Krotkov, N. A.; Krueger, A. J.

    2010-12-01

    The volcanic ash from the eruption of the Eyjafjallajokull volcano in Iceland which began on March 17, 2010 was closely monitored by NASA Earth Observing System satellites. A wide variety of applications and techniques developed by the NASA Science Mission Directorate’s Applied Science Program were employed. These included information from imager data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua and Terra spacecraft. Horizontal distribution of the ash cloud and column amount of volcanic sufur dioxide gas was accurately mapped by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. Highly precise retrievals of the vertical distribution of volcanic aerosols were obtained by the Caliop instrument onboard the Calipso satellite. The Multi-angle Imaging SpectroRadiometer (MISR) satellite also provided stereo-derived plume heights at 1km horizontal and ~0.5km vertical resolutions. All of this information was employed to assist in airspace management during the eruptive period. It will continue to be used to improve dispersion models and procedures for dealing with volcanic ash.

  3. MISR Watches Motion of the Moon's Shadow During Total Solar Eclipse

    NASA Image and Video Library

    2017-09-19

    On Aug. 21, 2017, a total solar eclipse swept across the United States -- the first such eclipse in the contiguous 48 states since 1979, and the first cross-country eclipse since 1918. A partial eclipse was visible in all 50 states, and initial estimates suggest that upwards of 20 million people observed the Moon completely obscuring the Sun in the 70-mile-wide (113-kilometer-wide) path of totality. While viewing a total solar eclipse from the ground is an amazing experience, satellites orbiting Earth see the eclipse from a unique perspective. As the Moon's shadow passed through the United States, the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite was capturing images of eastern Wyoming and western Nebraska from its altitude of 438 miles (705 kilometers) above the surface. MISR gathers images on a strip about 249 miles (400 kilometers) wide directly below the path of the satellite. Incredibly, given that the shadow of the Moon took only 90 minutes to cross the entire United States, and Terra itself moves at a brisk 16,700 miles per hour from north to south, MISR happened to be in exactly the right place at the right time to capture totality. From the ground, the moment of totality appears suddenly, sweeping over the sky in just a few seconds. "I was unprepared for just how dark it actually was," says Mika Tosca, a researcher who works with MISR data and who observed the eclipse in Nebraska. "The streetlights even turned on. Everything fell silent, and I swear the temperature dropped." From the vantage point of space, however, it’s possible to see the entire shadow of the Moon, with the completely dark, circular umbra and the more diffuse penumbra. MISR contains nine cameras oriented at different angles, viewing forward, downward, and backward along the flight path, resulting in an approximate seven-minute interval for all nine cameras to image a single location on Earth's surface. This animation combines these nine images into a movie showing the motion of the Moon's shadow during this seven-minute period. In the first image, captured by the camera pointing farthest ahead of the satellite, totality has not quite begun in the area seen by MISR. From the second camera onward, totality sweeps across the image area from west to east, beginning just west of the town of Jay Em, Wyoming, and proceeding about halfway across the MISR swath to the town of Alliance, Nebraska. The motion of the lunar shadow in different pairs of images leads to estimates of the local ground speed ranging between 1,480 and 1,820 miles per hour (2,382 and 2,929 kilometers per hour). The spread in values is a measure of the uncertainty of the estimate. At this location, the predicted speed of the eclipse calculated from lunar orbital motion is about 1,658 miles per hour (2,668 kilometers per hour), which falls in the middle of the range estimated from the MISR images. Tosca's observation that the temperature dropped during the eclipse is a well-known phenomenon. The GLOBE Observer, a phone application dedicated to citizen science and sponsored by NASA, encouraged eclipse-goers to record the local air temperature at regular intervals. Data collected by nearby observers in the path of totality show that, on average, temperatures dropped by 9.3 degrees Fahrenheit (5.2 degrees Celsius) during the eclipse. This compares to an average of 5.4 degrees Fahrenheit drop measured at several Nebraska Mesonet weather stations within the path of totality. The decrease in the amount of sunlight reaching Earth affected more than temperatures. Areas that get a large portion of their power from solar energy were naturally concerned about shortages during the eclipse -- the state of California, though not in the path of totality, estimated that 6,000 megawatts of solar power would be lost during the eclipse. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21957

  4. Cloud Arcs in the Western Pacific

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Small cumulus clouds in this natural-color view from the Multi-angle Imaging SpectroRadiometer have formed a distinctive series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the interior of each arc.

    The interior clouds are thicker and likely to be more convectively active than the other clouds, causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and continues to spread out as it begins to sink back to the surface. This pushes any existing small cumulus clouds away from the central region of convection.

    As the air sinks, it also warms, preventing other small clouds from forming, so that the regions just inside the arcs are kept clear. At the arcs, the horizontal flow of sinking air is now quite weak and on meeting the undisturbed air it can rise again slightly -- possibly assisting in the formation of new small cumulus clouds. Although examples of the continuity of air, in which every rising air motion must be compensated by a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events form a quasi-periodic pattern, probably also requires a relatively uncommon combination of wind, temperature and humidity conditions for it to occur.

    The image was acquired by MISR's nadir camera on March 11, 2002, and is centered west of the Marshall Islands. Enewetak Atoll is discernible through thin cloud as the turquoise band near the right-hand edge of the image.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 11863, and covers an area of about 380 kilometers x 345 kilometers. It utilizes data from blocks 80 to 82 within World Reference System-2 path 90.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  5. Growing Crack in Antarctica Larsen C Ice Shelf Spotted by NASA MISR

    NASA Image and Video Library

    2016-08-31

    Project MIDAS, a United Kingdom-based group that studies the Larsen Ice Shelf in Antarctica, reported Aug. 18, 2016, that a large crack in the Larsen C shelf has grown by another 13 miles (22 kilometers) in the past six months. The crack is now more than 80 miles (130 kilometers) long. Larsen C is the fourth largest ice shelf in Antarctica, with an area of about 19,300 square miles (50,000 square kilometers), greater than the size of Maryland. Computer modeling by Project MIDAS predicts that the crack will continue to grow and eventually cause between nine and twelve percent of the ice shelf to collapse, resulting in the loss of 2,300 square miles (6,000 square kilometers) of ice -- more than the area of Delaware. This follows the collapse of the Larsen B shelf in 2002 and the Larsen A shelf in 1995, which removed about 1,255 square miles (3,250 square kilometers) and 580 square miles (1,500 square kilometers) of ice, respectively. The Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite flew over Larsen C on Aug. 22, 2016. The MISR instrument views Earth with nine cameras pointed at different angles, which provides information about the texture of the surface. On the left is a natural-color image of the shelf from MISR's vertical-viewing camera. Antarctica is slowly emerging from its polar night, and the low light gives the scene a bluish tint. The Larsen C shelf is on the left, while thinner sea ice is present on the right. A variety of cracks are visible in the Larsen C shelf, all appearing roughly the same. The image is about 130 by 135 miles (210 by 220 kilometers) in size. On the right is a composite image made by combining data from MISR's 46-degree backward-pointing camera (plotted as blue), the vertical-pointing camera (plotted as green), and the 46-degree forward-pointing camera (plotted as red). This has the effect of highlighting surface roughness; smooth surfaces appear as blue-purple, while rough surfaces appear as orange. Clouds near the upper left appear multi-hued because their elevation above the surface causes the different angular views to be slightly displaced. In this composite, the difference between the rough sea ice and the smoother ice shelf is immediately apparent. An examination of the cracks in the ice shelf shows that the large crack Project MIDAS is tracking (indicated by an arrow) is orange in color, demonstrating that it is actively growing. These data were acquired during Terra orbit 88717 http://photojournal.jpl.nasa.gov/catalog/PIA20894

  6. Fire in the Land of 100,000 Lakes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Fire season in Manitoba, Canada lasts from April until October, and numerous smoke plumes caused by lightning strikes are captured in these Multi-angle Imaging SpectroRadiometer (MISR) views of the northwestern part of the province. The data were acquired on June 20, 2001 during Terra orbit 8015.

    On the left is a true-color image acquired by MISR's vertical-viewing (nadir) camera. The area covered measures 232 kilometers X 80 kilometers. The greenish area on the right-hand side of the image, partially obscured by clouds, is Southern Indian Lake. This landscape is predominantly boreal, and contains deciduous and evergreen conifer forests, deciduous broadleaved forests, fens, and lakes. Tree species found within the area include white and black spruce, jack pine, tamarack, willow, and birch. Human population density is sparse, averaging about 1 person per 10 square kilometers.

    During the fire season, information is updated daily on the Manitoba Conservation website (http://www.gov.mb.ca/natres/fire/). The large plume northwest of Big Sand Lake, above image center, was reported to be under control on June 20, whereas the plume at lower left, to the west of Gold Sand Lake, was classified 'out of control.' In the next two days, an additional 27 out-of-control fires in the area were started by lightning strikes arriving with as low-moving northerly cold front. By June 29, all but six of the fires had been brought under control.

    The picture on the right is a height field derived using automated computer processing of the data from several of MISR's cameras. The results indicate that the smoke plumes reach altitudes a few kilometers above the surface terrain, nearly as high as the cumulus cloud field in the lower right quadrant. The height retrievals make use of geometric parallax associated with observing the features at multiple angles. A few artifacts are visible in this early version of the MISR stereoscopic product, e.g., linear discontinuities in the elevation field, isolated elevation 'spikes' (appearing as red), and black areas where no result was obtained. Nevertheless, this first version of the algorithm, which is designed to operate autonomously and rapidly without human intervention, is doing a good job at detecting the smoke plumes and cloud field. Improvements are anticipated in the future. The product was generated as part of operational processing at the NASA Langley Atmospheric Sciences Data Center.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  7. Smoke from Colorado Wildfires

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hayman fire, situated about 65 kilometers southwest of Denver, Colorado, is the largest fire ever recorded in that state. The amount and distribution of smoke from the Hayman fire and from the Ponil Complex fires south of the New Mexico-Colorado border are portrayed in these views from the Multi-angle Imaging SpectroRadiometer (MISR). The images were captured on June 9, 2002, on the second day of the Hayman fire, when only about 13 percent of the total 137,000 acres eventually consumed had been scorched.

    The image at top-left was acquired by MISR's most oblique (70-degree) forward-viewing camera, and the view at bottom-left was captured by MISR's 26-degree forward-viewing camera. Both left-hand panels are 'false color' views, utilizing near-infrared, red, and blue spectral bands displayed as red, green and blue respectively. With this spectral combination, highly vegetated areas appear red. At top right is a map of aerosol optical depth. This map utilizes the capability of the oblique view angles to measure the abundance of particles in the atmosphere. Haze distributed across the eastern part of the state is indicated by a large number of green pixels, and areas where no retrieval occurred are shown in dark grey. The more oblique perspective utilized within the top panels enhances the appearance of smoke and reveals the haze. In the lower left-hand panel the view is closer to nadir (downward-looking). Here the smoke plumes appear more compact and the haze across eastern Colorado is not detected. The lower right-hand panel is a stereoscopically derived height field that echoes the compact shape of the smoke plumes in the near-nadir image. Results indicate that the smoke plumes reached altitudes of a few kilometers above the surface terrain, or about the same height as the small clouds that appear orange along the bottom edge to the left of center.

    Data used in these visualizations were generated as part of operational processing at the Atmospheric Sciences Data Center at NASA Langley Research Center. The images were acquired during Terra orbit 13170 and cover an area of about 400 kilometers x 565 kilometers. They utilize data from blocks 58 to 61 within World Reference System-2 path 32.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  8. Quantifying the microphysical impacts of fire aerosols on clouds in Indonesia using remote sensing observations

    NASA Astrophysics Data System (ADS)

    Tosca, M. G.; Diner, D. J.; Garay, M. J.; Kalashnikova, O. V.

    2012-12-01

    Fire-emitted aerosols modify cloud and precipitation dynamics by acting as cloud condensation nuclei in what is known as the first and second aerosol indirect effect. The cloud response to the indirect effect varies regionally and is not well understood in the highly convective tropics. We analyzed nine years (2003-2011) of aerosol data from the Multi-angle Imaging SpectroRadiometer (MISR), and fire emissions data from the Global Fire Emissions Database, version 3 (GFED3) over southeastern tropical Asia (Indonesia), and identified scenes that contained both a high atmospheric aerosol burden and large surface fire emissions. We then collected scenes from the Cloud Profiling Radar (CPR) on board the CLOUDSAT satellite that corresponded both spatially and temporally to the high-burning scenes from MISR, and identified differences in convective cloud dynamics over areas with varying aerosol optical depths. Differences in overpass times (MISR in the morning, CLOUDSAT in the afternoon) improved our ability to infer that changes in cloud dynamics were a response to increased or decreased aerosol emissions. Our results extended conclusions from initial studies over the Amazon that used remote sensing techniques to identify cloud fraction reductions in high burning areas (Koren et al., 2004; Rosenfeld, 1999) References Koren, I., Y.J. Kaufman, L.A. Remer and J.V. Martins (2004), Measurement of the effect of Amazon smoke on inhibition of cloud formation, Science, 303, 1342-1345 Rosenfeld, D. (1999), TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Gephys. Res. Lett., 26, 3105.

  9. Greenland's Coast in Holiday Colors

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Vibrant reds, emerald greens, brilliant whites, and pastel blues adorn this view of the area surrounding the Jakobshavn Glacier on the western coast of Greenland. The image is a false-color (near-infrared, green, blue) view acquired by the Multi-angle Imaging SpectroRadiometer's nadir camera. The brightness of vegetation in the near-infrared contributes to the reddish hues; glacial silt gives rise to the green color of the water; and blue-colored melt ponds are visible in the bright white ice. A scattering of small icebergs in Disco Bay adds a touch of glittery sparkle to the scene.

    The large island in the upper left is called Qeqertarsuaq. To the east of this island, and just above image center, is the outlet of the fast-flowing Jakobshavn (or Ilulissat) glacier. Jakobshavn is considered to have the highest iceberg production of all Greenland glaciers and is a major drainage outlet for a large portion of the western side of the ice sheet. Icebergs released from the glacier drift slowly with the ocean currents and pose hazards for shipping along the coast.

    The Multi-angle Imaging SpectroRadiometer views the daylit Earth continuously and the entire globe between 82 degrees north and 82 degrees south latitude is observed every 9 days. These data products were generated from a portion of the imagery acquired on June 18, 2003 during Terra orbit 18615. The image cover an area of about 254 kilometers x 210 kilometers, and use data from blocks 34 to 35 within World Reference System-2 path 10.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  10. Comparison of MISR and Meteosat-9 cloud-motion vectors

    NASA Astrophysics Data System (ADS)

    Lonitz, Katrin; HorváTh, ÁKos

    2011-12-01

    Stereo motion vectors (SMVs) from the Multiangle Imaging SpectroRadiometer (MISR) were evaluated against Meteosat-9 cloud-motion vectors (CMVs) over a one-year period. In general, SMVs had weaker westerlies and southerlies than CMVs at all latitudes and levels. The E-W wind comparison showed small vertical variations with a mean difference of -0.4 m s-1, -1 m s-1, -0.7 m s-1 and corresponding rmsd of 2.4 m s-1, 3.8 m s-1, 3.5 m s-1for low-, mid-, and high-level clouds, respectively. The N-S wind discrepancies were larger and steadily increased with altitude, having a mean difference of -0.8 m s-1, -2.9 m s-1, -4.4 m s-1 and rmsd of 3.5 m s-1, 6.9 m s-1, 9.5 m s-1at low, mid, and high levels. The best overall agreement was found in marine stratocumulus off Namibia, while differences were larger in the Tropics and convective clouds. The SMVs were typically assigned to higher altitudes than CMVs. Attributing each observed height difference to MISR and/or Meteosat-9 retrieval biases will require further research; nevertheless, we already identified a few regions and cloud types where CMV height assignment seemed to be the one in error. In thin mid- and high-level clouds over Africa and Arabia as well as in broken marine boundary layer clouds the 10.8-μm brightness temperature-based heights were often biased low due to radiance contributions from the warm surface. Contrarily, low-level CMVs in the South Atlantic were frequently assigned to mid levels by the CO2-slicing method in multilayer situations. We also noticed an apparent cross-swath dependence in SMVs, whereby retrievals were less accurate on the eastern side of the MISR swath than on the western side. This artifact was traced back to sub-pixel MISR co-registration errors, which introduced cross-swath biases in E-W wind, N-S wind, and height of 0.6 m s-1, 2.6 m s-1, and 210 m.

  11. Experiences with Transitioning Science Data Production from a Symmetric Multiprocessor Platform to a Linux Cluster Environment

    NASA Astrophysics Data System (ADS)

    Walter, R. J.; Protack, S. P.; Harris, C. J.; Caruthers, C.; Kusterer, J. M.

    2008-12-01

    NASA's Atmospheric Science Data Center at the NASA Langley Research Center performs all of the science data processing for the Multi-angle Imaging SpectroRadiometer (MISR) instrument. MISR is one of the five remote sensing instruments flying aboard NASA's Terra spacecraft. From the time of Terra launch in December 1999 until February 2008, all MISR science data processing was performed on a Silicon Graphics, Inc. (SGI) platform. However, dramatic improvements in commodity computing technology coupled with steadily declining project budgets during that period eventually made transitioning MISR processing to a commodity computing environment both feasible and necessary. The Atmospheric Science Data Center has successfully ported the MISR science data processing environment from the SGI platform to a Linux cluster environment. There were a multitude of technical challenges associated with this transition. Even though the core architecture of the production system did not change, the manner in which it interacted with underlying hardware was fundamentally different. In addition, there are more potential throughput bottlenecks in a cluster environment than there are in a symmetric multiprocessor environment like the SGI platform and each of these had to be addressed. Once all the technical issues associated with the transition were resolved, the Atmospheric Science Data Center had a MISR science data processing system with significantly higher throughput than the SGI platform at a fraction of the cost. In addition to the commodity hardware, free and open source software such as S4PM, Sun Grid Engine, PostgreSQL and Ganglia play a significant role in the new system. Details of the technical challenges and resolutions, software systems, performance improvements, and cost savings associated with the transition will be discussed. The Atmospheric Science Data Center in Langley's Science Directorate leads NASA's program for the processing, archival and distribution of Earth science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry. The Data Center was established in 1991 to support NASA's Earth Observing System and the U.S. Global Change Research Program. It is unique among NASA data centers in the size of its archive, cutting edge computing technology, and full range of data services. For more information regarding ASDC data holdings, documentation, tools and services, visit http://eosweb.larc.nasa.gov

  12. Mixing Waters and Moving Ships off the North Carolina Coast

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The estuarine and marine environments of the United States' eastern seaboard provide the setting for a variety of natural and human activities associated with the flow of water. This set of Multi-angle Imaging SpectroRadiometer images from October 11, 2000 (Terra orbit 4344) captures the intricate system of barrier islands, wetlands, and estuaries comprising the coastal environments of North Carolina and southern Virginia. On the right-hand side of the images, a thin line of land provides a tenuous separation between the Albemarle and Pamlico Sounds and the Atlantic Ocean. The wetland communities of this area are vital to productive fisheries and water quality.

    The top image covers an area of about 350 kilometers x 260 kilometers and is a true-color view from MISR's 46-degree backward-looking camera. Looking away from the Sun suppresses glint from the reflective water surface and enables mapping the color of suspended sediments and plant life near the coast. Out in the open sea, the dark blue waters indicate the Gulf Stream. As it flows toward the northeast, this ocean current presses close to Cape Hatteras (the pointed cape in the lower portion of the images), and brings warm, nutrient-poor waters northward from equatorial latitudes. North Carolina's Outer Banks are often subjected to powerful currents and storms which cause erosion along the east-facing shorelines. In an effort to save the historic Cape Hatteras lighthouse from the encroaching sea, it was jacked out of the ground and moved about 350 meters in 1999.

    The bottom image was created with red band data from the 46-degree backward, 70-degree forward, and 26-degree forward cameras displayed as red, green, and blue, respectively. The color variations in this multi-angle composite indicate different angular (rather than spectral) signatures. Here, the increased reflection of land vegetation at the angle viewing away from the Sun causes a reddish tint. Water, on the other hand, appears predominantly in shades of blue and green due to the bright sunglint captured by the forward-viewing cameras. Contrasting angular signatures, most likely associated with variations in the orientation and slope of wind-driven surface waves, are apparent in the sunglint patterns.

    Details of human activities are visible in these images. Near the top center, the Chesapeake Bay Bridge-Tunnel complex, which links Norfolk with Virginia's eastern shore, can be seen. The locations of two tunnels which route automobiles below the water appear as gaps in the visible roadway. In the top image, the small white specks in the open waters of the Atlantic Ocean are ship wakes. The movements of the ships have been visualized by displaying the views from MISR's four backward-viewing cameras in an animated sequence (below). These cameras successively observe the same surface locations over a time interval of about 160 seconds. The large version of the animation covers an area of 135 kilometers x 130 kilometers. The land area on the left-hand side includes the birthplace of aviation, Kitty Hawk, where the Wright Brothers made their first sustained, powered flight in 1903.

    [figure removed for brevity, see original site]

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  13. Shrub Abundance Mapping in Arctic Tundra with Misr

    NASA Astrophysics Data System (ADS)

    Duchesne, R.; Chopping, M. J.; Wang, Z.; Schaaf, C.; Tape, K. D.

    2013-12-01

    Over the last 60 years an increase in shrub abundance has been observed in the Arctic tundra in connection with a rapid surface warming trend. Rapid shrub expansion may have consequences in terms of ecosystem structure and function, albedo, and feedbacks to climate; however, its rate is not yet known. The goal of this research effort is thus to map large scale changes in Arctic tundra vegetation by exploiting the structural signal in moderate resolution satellite remote sensing images from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped onto a 250m Albers Conic Equal Area grid. We present here large area shrub mapping supported by reference data collated using extensive field inventory data and high resolution panchromatic imagery. MISR Level 1B2 Terrain radiance scenes from the Terra satellite from 15 June-31 July, 2000 - 2010 were converted to surface bidirectional reflectance factors (BRF) using MISR Toolkit routines and the MISR 1 km LAND product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal BRDF model to retrieve kernel weights, model-fitting RMSE, and Weights of Determination. The reference database was constructed using aerial survey, three field campaigns (field inventory for shrub count, cover, mean radius and height), and high resolution imagery. Tall shrub number, mean crown radius, cover, and mean height estimates were obtained from QuickBird and GeoEye panchromatic image chips using the CANAPI algorithm, and calibrated using field-based estimates, thus extending the database to over eight hundred locations. Tall shrub fractional cover maps for the North Slope of Alaska were constructed using the bootstrap forest machine learning algorithm that exploits the surface information provided by MISR. The reference database was divided into two datasets for training and validation. The model derived used a set of 19 independent variables(the three kernel weights, ratios and interaction terms; white and black sky albedos; and blue, green, red, and NIR nadir camera BRFs), to grow a forest of decision trees. The final estimate is the average of the predicted values from each tree. Observations not used in constructing the trees were used in validation. The model was applied with a large volume of MISR data and the resulting fractional cover estimates were combined into annual maps using a compositing algorithm that flags results affected by cloud, cloud shadow, surface water, extreme outliers, topographic shading, and burned areas. The maps show that shrub cover is lower on the north slope in comparison to southern part, as expected, however, a preliminary assessment of the fractional cover change over the last decade, achieved by averaging fractional cover values for 2000-2002 and 2008-2010 and then calculating the change between the two periods, revealed that there are large areas for which we cannot determine the sign of the change with high confidence, as the precision of our estimate is close to the magnitude of the cover values. Additional research is thus required to reliably map shrub cover in this environment at annual intervals.

  14. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These images from the Multi-angle Imaging SpectroRadiometer portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.

    Parts of the Yorke Peninsula and a portion of the Murray-Darling River basin are visible between the clouds near the top of the left-hand image, a true-color view from MISR's nadir(vertical-viewing) camera. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes.

    Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for region allow-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation.

    These views were acquired on October 11, 2001 during Terra orbit 9650, and represent an area of about 380 kilometers x 1900 kilometers.

  15. Liquefaction Effects from the Bhuj earthquake

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These MISR images show the Kachchh region in the Gujarat province of western India. On January 26, 2001, a magnitude 7.7 earthquake devastated this area, killing 20,000 people and destroying buildings, dams, and port facilities. The two upper MISR images are pre- and post-earthquake scenes acquired on January 15 and January 31, 2001, respectively (Terra orbits 5736 and 5969). They are 'true-color' images made by combining the red, green and blue bands from the nadir (vertically down-looking) camera. The two lower views are 'false-color' images made by combining the red bands from three different cameras. Blue is assigned to the camera pointing 70 degrees forward (more sun-facing), green to the nadir camera, and red to the camera pointing 70 degrees aftward. Each of these images is about 275 kilometers wide by 218 kilometers high.

    The earthquake epicenter was just below the southern tip of the large, white area on the right-hand side of the images, and about 70 kilometers northeast of the city of Bhuj. The earthquake may have occurred on the Kachchh Mainland Fault, which extends from the region of the epicenter westward along the curved boundary between the darker brown region to the south and the lighter brown area north of it. The compressive stresses responsible for the earthquake are related to the collision of India with Asia and the resulting rise of the Himalayas to the northeast.

    That part of the Kachchh region which lies north of the Kachchh Mainland Fault includes the Banni Plains and the Rann of Kachchh. It is a low, flat basin characterized by salt pans and mud flats. The salt forms in the Rann of Kachchh as mineral-laden waters evaporate. The salt flats can be seen in the nadir images as highly reflective, white and gray areas. During the earthquake, strong shaking produced liquefaction in the fine silts and sands below the water table in the Rann of Kachchh. This caused the mineral grains to settle and expel their interstitial water to the surface. Field investigations have found abundant evidence of mud volcanos, sand boils, and fissures from which salty ground water erupted over an area exceeding 10,000 square kilometers. Evidence of the expelled water can also be seen on the MISR images.

    Notice the delicate, dendritic pattern of stream channels throughout many of the salt-flats on the post-earthquake image, especially due north of the epicenter. These carried water brought to the surface by liquefaction during the earthquake. Areas where shallow surface water is present are much easier to see on the false-color multi-angle composite images. Wet areas are exhibiting a combination of enhanced forward-scattered light due to the reflection by the water, and enhanced backward scattering due to surface roughness or the presence of sediments. This combination results in blue to purple hues.

    The region of sand dunes in the upper right and the Indus River valley and delta in the upper left are inside Pakistan. Near the top of the images, there is an east-west trending linear feature separating the Thar desert of Pakistan from the Rann of Kachchh. This is the Nagar Parkar Fault. On both pre-earthquake images, this feature is evident only from the contrasting brown colors on either side of it. On the post-earthquake images, a narrow ribbon defines the boundary between the two geologic provinces. However, only in the multi-angle composite do we see evidence that this ribbon may be a water-filled channel. Because this area is politically sensitive and fairly inaccessible, no field teams have been able to verify liquefaction effects or the presence of water there.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  16. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; hide

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  17. Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.

  18. Characterization, validation and intercomparison of clumping index maps from POLDER, MODIS, and MISR satellite data over reference sites

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; He, Liming; Chen, Jing; Govind, Ajit; Sprintsin, Michael; Ryu, Youngryel; Arndt, Stefan; Hocking, Darren; Wardlaw, Timothy; Kuusk, Joel; Oliphant, Andrew; Korhonen, Lauri; Fang, Hongliang; Matteucci, Giorgio; Longdoz, Bernard; Raabe, Kairi

    2015-04-01

    Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m in particular can provide good quality clumping index estimates at pertinent scales for modeling local carbon and energy fluxes.

  19. Characterization, Validation and Intercomparison of Clumping Index Maps from POLDER, MODIS, and MISR Satellite Data Over Reference Sites

    NASA Astrophysics Data System (ADS)

    Pisek, J.; He, L.; Chen, J. M.; Govind, A.; Sprintsin, M.; Ryu, Y.; Arndt, S. K.; Hocking, D.; Wardlaw, T.; Kuusk, J.; Oliphant, A. J.; Korhonen, L.; Fang, H.; Matteucci, G.; Longdoz, B.; Raabe, K.

    2015-12-01

    Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m resolution in particular can provide good quality clumping index estimates at pertinent scales for modeling local carbon and energy fluxes.

  20. Variability of Aerosol and its Impact on Cloud Properties Over Different Cities of Pakistan

    NASA Astrophysics Data System (ADS)

    Alam, Khan

    Interaction between aerosols and clouds is the subject of considerable scientific research, due to the importance of clouds in controlling climate. Aerosols vary in time in space and can lead to variations in cloud microphysics. This paper is a pilot study to examine the temporal and spatial variation of aerosol particles and their impact on different cloud optical properties in the territory of Pakistan using the Moderate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite data and Multi-angle Imaging Spectroradiometer (MISR) data. We also use Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for trajectory analysis to obtain origin of air masses in order to understand the spatial and temporal variability of aerosol concentrations. We validate data of MODIS and MISR by using linear correlation and regression analysis, which shows that there is an excellent agreement between data of these instruments. Seasonal study of Aerosol Optical Depth (AOD) shows that maximum value is found in monsoon season (June-August) over all study areas. We analyze the relationships between aerosol optical depth (AOD) and some cloud parameters like water vapor (WV), cloud fraction (CF), cloud top temperature (CTT) and cloud top pressure (CTP). We construct the regional correlation maps and time series plots for aerosol and cloud parameters mandatory for the better understanding of aerosol-cloud interaction. Our analyses show that there is a strong positive correlation between AOD and water vapor in all cities. The correlation between AOD and CF is positive for the cities where the air masses are moist while the correlation is negative for cities where air masses are relatively dry and with lower aerosol abundance. It shows that these correlations depend on meteorological conditions. Similarly as AOD increases Cloud Top Pressure (CTP) is decreasing while Cloud Top Temperature (CTT) is increasing. Key Words: MODIS, MISR, HYSPLIT, AOD, CF, CTP, CTT

  1. Fog and Haze in California's San Joaquin Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration features images of southern California and southwestern Nevada acquired on January 3, 2001 (Terra orbit 5569), and includes data from three of MISR's nine cameras. The San Joaquin Valley, which comprises the southern extent of California's Central Valley, covers much of the viewed area. Also visible are several of the Channel Islands near the bottom, and Mono and Walker Lakes, which stand out as darker patches near the top center, especially in the vertical and backward oblique images. Near the lower right of each image is the Los Angeles Basin, with the distinctive chevron shape of the Mojave Desert to its north.

    The Central Valley is a well-irrigated and richly productive agricultural area situated between the Coast Range and the snow-capped Sierra Nevadas. During the winter, the region is noted for its hazy overcasts and a low, thick ground fog known as the Tule. Owing to the effects of the atmosphere on reflected sunlight, dramatic differences in the MISR images are apparent as the angle of view changes. An area of thick, white fog in the San Joaquin Valley is visible in all three of the images. However, the pervasive haze that fills most of the valley is only slightly visible in the vertical view. At the oblique angles, the haze is highly distinguishable against the land surface background, particularly in the forward-viewing direction. Just above image center, the forward view also reveals bluish-tinged plumes near Lava Butte in Sequoia National Forest, where the National Interagency Coordination Center reported an active forest fire.

    The changing surface visibility in the multi-angle data allows us to derive the amount of atmospheric haze. In the lower right quadrant is a map of haze amount determined from automated processing of the MISR imagery. Low amounts of haze are shown in blue, and a variation in hue through shades of green, yellow, and red indicates progressively larger amounts of airborne particulates. Due to the topographically complex terrain, no results are obtained over the Sierra Nevada and Coastal mountains and these areas are shown in black. However, the enhanced haziness of the San Joaquin Valley is evident in this derived product. Within the yellow pixels, the Sun would look about 40% dimmer to an observer on the ground in comparison to its brightness on a much clearer day.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  2. A multi-sensor lidar, multi-spectral and multi-angular approach for mapping canopy height in boreal forest regions

    USGS Publications Warehouse

    Selkowitz, David J.; Green, Gordon; Peterson, Birgit E.; Wylie, Bruce

    2012-01-01

    Spatially explicit representations of vegetation canopy height over large regions are necessary for a wide variety of inventory, monitoring, and modeling activities. Although airborne lidar data has been successfully used to develop vegetation canopy height maps in many regions, for vast, sparsely populated regions such as the boreal forest biome, airborne lidar is not widely available. An alternative approach to canopy height mapping in areas where airborne lidar data is limited is to use spaceborne lidar measurements in combination with multi-angular and multi-spectral remote sensing data to produce comprehensive canopy height maps for the entire region. This study uses spaceborne lidar data from the Geosciences Laser Altimeter System (GLAS) as training data for regression tree models that incorporate multi-angular and multi-spectral data from the Multi-Angle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging SpectroRadiometer (MODIS) to map vegetation canopy height across a 1,300,000 km2 swath of boreal forest in Interior Alaska. Results are compared to in situ height measurements as well as airborne lidar data. Although many of the GLAS-derived canopy height estimates are inaccurate, applying a series of filters incorporating both data associated with the GLAS shots as well as ancillary data such as land cover can identify the majority of height estimates with significant errors, resulting in a filtered dataset with much higher accuracy. Results from the regression tree models indicate that late winter MISR imagery acquired under snow-covered conditions is effective for mapping canopy heights ranging from 5 to 15 m, which includes the vast majority of forests in the region. It appears that neither MISR nor MODIS imagery acquired during the growing season is effective for canopy height mapping, although including summer multi-spectral MODIS data along with winter MISR imagery does appear to provide a slight increase in the accuracy of resulting height maps. The finding that winter, snow-covered MISR imagery can be used to map canopy height is important because clear sky days are nearly three times as common during the late winter period as during the growing season. The increased odds of acquiring cloud-free imagery during the target acquisition period make regularly updated forest height inventories for Interior Alaska much more feasible. A major advantage of the GLAS–MISR–MODIS canopy height mapping methodology described here is that this approach uses only data that is freely available worldwide, making the approach potentially applicable across the entire circumpolar boreal forest region.

  3. Altering rainfall patterns through aerosol dispersion

    NASA Astrophysics Data System (ADS)

    Emetere, M. E.; Bakeko, M.; Onyechekwa, L.; Ayara, W.

    2017-05-01

    The possibility of recirculation mechanism on rainfall patterns is salient for sustenance of the human race through agricultural produce. The peculiarity of the lower atmosphere of south west region of Nigeria was explored using theoretical and experimental approach. In the theoretical approach, the reconstruction of 1D model as an extraction from the 3D aerosol dispersion model was used to examine the physics of the recirculation theory. The experimental approach which consists of obtaining dataset from ground instruments was used to provide on-site guide for developing the new recirculation theories. The data set was obtained from the Davis weather station, Nigeria Meteorological agency and Multi-angle Imaging Spectro-radiometer (MISR). We looked at the main drivers of recirculation and propounded that recirculation is a complex process which triggers a reordering of the mixing layer- a key factor for initiating the type of rainfall in this region.

  4. MISR Browse Images: Cold Land Processes Experiment (CLPX)

    Atmospheric Science Data Center

    2013-04-02

    ... MISR Browse Images: Cold Land Processes Experiment (CLPX) These MISR Browse images provide a ... over the region observed during the NASA Cold Land Processes Experiment (CLPX). CLPX involved ground, airborne, and satellite measurements ...

  5. Long Smoke Plumes from California Destructive Bluecut Fire Spotted by NASA MISR

    NASA Image and Video Library

    2016-08-17

    On Aug. 16, 2016, at around 10:30 a.m., a brush fire ignited in the Cajon Pass east of Los Angeles, just to the west of Interstate 15. Within a matter of hours, extreme temperatures, high winds and low humidity allowed the fire to spread rapidly, burning through brush left tinder-dry by years of drought. Firefighters quickly responded, ordering the evacuation of about 83,000 people in and around the Cajon Pass, Wrightwood, Lytle Creek, Oak Hills and surrounding areas. An as-yet uncounted number of homes and structures have burned, and Interstate 15 remains closed to downed power lines and barrier damage. By Aug. 17, the fire had expanded to more than 30,000 acres and remains zero percent contained as some 1,300 firefighters continue to battle to save homes and evacuate residents. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed over the region on Aug. 17 around 11:50 a.m. PDT and captured this natural-color image from MISR's 70-degree forward-viewing camera, which covers an areas about 257 miles (414 kilometers) wide. The oblique view angle makes the smoke more apparent than it would be in a more conventional vertical view. The Los Angeles metropolitan area is the large gray area on the coast in the center of the image. Three plumes from the Blue Cut Fire are clearly visible in the mountains to the north. This oblique view also shows an enormous cloud of smoke spreading northeastward over a significant portion of eastern California and Nevada. This smoke probably originated from the fire as it consumed almost 20,000 acres on the evening of the 16th and traveled north overnight. Also visible from this oblique view is considerable haziness filling California's Central Valley, to the northwest of the Blue Cut Fire. This haziness is most likely due to smoke from several other fires burning in California, including the Soberanes Fire near Monterey, the Clayton Fire that has destroyed 175 structures north of San Francisco, the Chimney Fire and the Cedar Fire, which is visible in the image in the southern Sierra Nevada. The total number of acres burned in California this year has tripled in just the past week. The 3D stereo anaglyph is made by combining data from MISR's 60-degree and 70-degree forward-viewing cameras. You will need red-blue glasses to view the 3D effect (ensure the red lens is over your left eye). In order to enable stereo viewing, the image has been rotated so north is to the left. These data were acquired during Terra orbit 88648. http://photojournal.jpl.nasa.gov/catalog/PIA20888

  6. MISR and AirMISR Simultaneously Observe African Grassland Fires

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These images of northeastern South Africa, near Kruger National Park, were acquired on September 7, 2000. The left image shows an 85-kilometer wide x 200-kilometer long area captured by MISR's aftward-viewing 45-degree camera. At lower left are the Drakensberg Mountains; to the east of this range a large burn scar with thin smoke plumes from still-smoldering fires is visible. Near the top of the image another large burn scar with an open-pit mine at its western edge can be seen. Other burn scars are scattered throughout the image.

    Just above the center of the lefthand image is a polygonal burn scar with a set of smoke plumes from actively burning fires at its southwestern tip. The righthand image, which is a 'zoomed-in' view of the area, was acquired almost simultaneously by MISR's airborne counterpart, AirMISR, aboard a NASA ER-2 high-altitude aircraft. AirMISR contains a single camera that rotates to different view angles; when this image was acquired the camera was pointed straight downward. Because the ER-2 aircraft flies at an altitude of 20 kilometers, whereas the Terra spacecraft orbits the Earth 700 kilometers above the ground, the AirMISR image has 35 times finer spatial resolution. The AirMISR image covers about 9 kilometers x 9 kilometers. Unlike the MISR view, the AirMISR data are in 'raw' form and processing to remove radiometric and geometric distortions has not yet been performed.

    Fires such as those shown in the images are deliberately set to burn off dry vegetation, and constitute a widespread agricultural practice in many parts of Africa. These MISR and AirMISR images are part of an international field, aircraft, and satellite data collection and analysis campaign known as SAFARI-2000, the Southern Africa Regional Science Initiative. SAFARI-2000 is designed, in part, to study the effects of large-scale human activities on the regional climate, meteorology, and ecosystems.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  7. Evaluation of ERA-interim and MERRA Cloudiness in the Southern Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.

    2014-01-01

    The Southern Ocean cloud cover modeled by the Interim ECMWF Re-Analysis (ERA-Interim) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) reanalyses are compared against Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) observations. ERA-Interim monthly mean cloud amounts match the observations within 5%, while MERRA significantly underestimates the cloud amount. For a compositing analysis of clouds in warm season extratropical cyclones, both reanalyses show a low bias in cloud cover. They display a larger bias to the west of the cyclones in the region of subsidence behind the cold fronts. This low bias is larger for MERRA than for ERA-Interim. Both MODIS and MISR retrievals indicate that the clouds in this sector are at a low altitude, often composed of liquid, and of a broken nature. The combined CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud profiles confirm these passive observations, but they also reveal that low-level clouds in other parts of the cyclones are also not properly represented in the reanalyses. The two reanalyses are in fairly good agreement for the dynamic and thermodynamic characteristics of the cyclones, suggesting that the cloud, convection, or boundary layer schemes are the problem instead. An examination of the lower-tropospheric stability distribution in the cyclones from both reanalyses suggests that the parameterization of shallow cumulus clouds may contribute in a large part to the problem. However, the differences in the cloud schemes and in particular in the precipitation processes, which may also contribute, cannot be excluded.

  8. Icebergs Adrift in the Amundsen Sea

    NASA Image and Video Library

    2002-03-27

    The Thwaites Ice Tongue is a large sheet of glacial ice extending from the West Antarctic mainland into the southern Amundsen Sea. A large crack in the Thwaites Tongue was discovered in imagery from Terra's Moderate Resolution Imaging SpectroRadiometer (MODIS). Subsequent widening of the crack led to the calving of a large iceberg. The development of this berg, designated B-22 by the National Ice Center, can be observed in these images from the Multi-angle Imaging SpectroRadiometer, also aboard Terra. The two views were acquired by MISR's nadir (vertical-viewing) camera on March 10 and 24, 2002. The B-22 iceberg, located below and to the left of image center, measures approximately 82 kilometers long x 62 kilometers wide. Comparison of the two images shows the berg to have drifted away from the ice shelf edge. The breakup of ice near the shelf edge, in the area surrounding B-22, is also visible in the later image. These natural-color images were acquired during Terra orbits 11843 and 12047, respectively. At the right-hand edge is Pine Island Bay, where the calving of another large iceberg (B-21) occurred in November 2001. B-21 subsequently split into two smaller bergs, both of which are visible to the right of B-22. http://photojournal.jpl.nasa.gov/catalog/PIA03700

  9. Western United States beyond the Four Corners

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The breathtaking beauty of the western United States is apparent in this image from the Multi-angle Imaging SpectroRadiometer on NASA's Terra spacecraft. Data from 16 different swaths acquired between April 2000 and September 2001by MISR's vertical-viewing (nadir) camera were used to create this cloud-free natural-color image mosaic. The image is draped over a 100-meter (328-foot)shaded relief Digital Terrain Elevation Model from the United States Geological Survey.

    Among the prominent features are the snow-capped Rocky Mountains traversing Montana, Wyoming, Colorado and New Mexico. In the northern portion of the image, the Columbia Plateau stretches across Washington, Oregon and Idaho. Many major rivers originate in this region, including the Missouri to the east of the Continental Divide, the Snake to the west, and the Colorado which wends across Utah and Arizona. The Colorado Plateau and vibrant red-colored rocks of the Painted Desert extend south from Utah into Arizona. In the southwestern portion of the image, California's San Joaquin Valley and the Mojave Desert of California and Nevada give way to the Los Angeles basin and the Pacific Ocean.

    The Terra spacecraft is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

  10. Huge Super Typhoon Meranti Over Taiwan Spotted by NASA MISR

    NASA Image and Video Library

    2016-09-14

    On Sept. 14, 2016, the eye of Super Typhoon Meranti passed just south of Taiwan. The enormous storm, classified as a Category 5 typhoon at the time, still caused much disruption on the island. Nearly 500,000 homes lost power, schools were closed, and most flights were cancelled. Maximum wind speeds were 180 miles per hour (290 kilometers per hour) as the storm passed, and more than 25 inches (64 centimeters) of rain fell on some areas of the country. However, the storm did not pass over Taiwan's mountainous landscape, which would have weakened it. That means it will remain strong as it heads toward mainland China, unlike Super Typhoon Nepartak in July, which weakened from a Category 5 typhoon to a tropical storm after crossing Taiwan. Meranti is currently maintaining Category 4 strength and is expected to make landfall near Shantou, Guangdong province, on Thursday, September 15. The coast of China is more vulnerable to storm surges than Taiwan due to shallower coastal waters and recent rainfall. There is risk of substantial flooding. On Sept. 14, at 10:45 AM local time, the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed directly over the eye of Meranti. On the left is a natural-color image from MISR's nadir-pointing camera. At this time the eye of Meranti was just off the southern tip of Taiwan, which is invisible under the clouds. The coast of China is barely visible through the clouds in the upper left portion of the image. The small eye and dense high clouds are both markers of the storm's power. MISR's nine cameras, each pointed at a different angle, can be used to determine the heights of clouds based on geometric shifts among the nine images. The middle panel shows these stereo-derived cloud top heights superimposed on the natural color image. The clouds of the central core of Typhoon Meranti have heights ranging between 16 and 20 kilometers (10 and 12.5 miles). It takes about seven minutes for all nine cameras to image the same location on the ground, and wind velocity can be calculated from the motion of the clouds over this seven-minute period. The right panel plots these wind velocities as vectors which indicate both direction and speed. The length of the arrow corresponds to the wind speed, which can be compared to the reference 20 meters per second (45 miles per hour) arrow in the key. Hurricanes and typhoons in the Northern Hemisphere rotate counterclockwise due to the Earth's rotation, but these wind vectors mainly show motion outward from the eye at the storm tops. This is due to the fact that hurricanes draw in moist air at low altitudes, which then flows upwards and outwards around the eye reversing direction. These data were acquired during Terra orbit 88865. http://photojournal.jpl.nasa.gov/catalog/PIA17309

  11. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska

    USGS Publications Warehouse

    Selkowitz, D.J.

    2010-01-01

    Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 ??N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10??, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets, an expected result for a study area where most shrub cover is concentrated in narrow patches associated with rivers, drainages, and slopes. Including the middle infrared bands available from Landsat and MODIS in the regression tree models (in addition to the four standard visible and near-infrared spectral bands) typically results in a slight boost in accuracy. Including the multi-angular red band data available from MISR in the regression tree models, however, typically boosts accuracy more substantially, resulting in moderate resolution fractional shrub canopy estimates approaching the accuracy of estimates derived from the much higher spatial resolution Landsat sensor. Given the poor availability of snow and cloud-free Landsat scenes in many areas of the Arctic and the promising results demonstrated here by the MISR sensor, MISR may be the best choice for large area fractional shrub canopy mapping in the Alaskan Arctic for the period 2000-2009.

  12. Airborne Spectral Measurements of Ocean Directional Reflectance

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, Michael D.; Lyapustin, Alexei; Arnold, G. Thomas; Redemann, Jens

    2004-01-01

    During summer of 2001 NASA's Cloud Absorption Radiometer (CAR) obtained measurement of ocean angular distribution of reflected radiation or BRDF (bidirectional reflectance distribution function) aboard the University of Washington Convair CV-580 research aircraft under cloud-free conditions. The measurements took place aver the Atlantic Ocean off the eastern seaboard of the U.S. in the vicinity of the Chesapeake Light Tower and at nearby National Oceanic and Atmospheric Administration (NOAA) Buoy Stations. The measurements were in support of CLAMS, Chesapeake Lighthouse and Aircraft Measurements for Satellites, field campaign that was primarily designed to validate and improve NASA's Earth Observing System (EOS) satellite data products being derived from three sensors: MODIS (MODerate Resolution Imaging Spectro-Radiometer), MISR (Multi-angle Imaging Spectro-Radiometer) and CERES (Clouds and Earth s Radiant Energy System). Because of the high resolution of the CAR measurements and its high sensitivity to detect weak ocean signals against a noisy background, results of radiance field above the ocean are seen in unprecedented detail. The study also attempts to validate the widely used Cox-Munk model for predicting reflectance from a rough ocean surface.

  13. AOD trends during 2001-2010 from observations and model simulations

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; de Meij, A.; Yoon, J.; Tost, H.; Georgoulias, A. K.; Astitha, M.

    2015-05-01

    The aerosol optical depth (AOD) trend between 2001 and 2010 is estimated globally and regionally from observations and results from simulations with the EMAC (ECHAM5/MESSy Atmospheric Chemistry) model. Although interannual variability is applied only to anthropogenic and biomass-burning emissions, the model is able to quantitatively reproduce the AOD trends as observed by the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite sensor, while some discrepancies are found when compared to MISR (Multi-angle Imaging SpectroRadiometer) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor) observations. Thanks to an additional simulation without any change in emissions, it is shown that decreasing AOD trends over the US and Europe are due to the decrease in the emissions, while over the Sahara Desert and the Middle East region, the meteorological changes play a major role. Over Southeast Asia, both meteorology and emissions changes are equally important in defining AOD trends. Additionally, decomposing the regional AOD trends into individual aerosol components reveals that the soluble components are the most dominant contributors to the total AOD, as their influence on the total AOD is enhanced by the aerosol water content.

  14. On-Orbit Cross-Calibration of AM Satellite Remote Sensing Instruments using the Moon

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Kieffer, Hugh H.; Barnes, Robert A.; Stone, Thomas C.

    2003-01-01

    On April 14,2003, three Earth remote sensing spacecraft were maneuvered enabling six satellite instruments operating in the visible through shortwave infrared wavelength region to view the Moon for purposes of on-orbit cross-calibration. These instruments included the Moderate Resolution Imaging Spectroradiometer (MODIS), the Multi-angle Imaging SpectroRadiometer (MISR), the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer on the Earth Observing System (EOS) Terra spacecraft, the Advanced Land Imager (ALI) and Hyperion instrument on Earth Observing-1 (EO-1) spacecraft, and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the SeaStar spacecraft. Observations of the Moon were compared using a spectral photometric mode for lunar irradiance developed by the Robotic Lunar Observatory (ROLO) project located at the United States Geological Survey in Flagstaff, Arizona. The ROLO model effectively accounts for variations in lunar irradiance corresponding to lunar phase and libration angles, allowing intercomparison of observations made by instruments on different spacecraft under different time and location conditions. The spacecraft maneuvers necessary to view the Moon are briefly described and results of using the lunar irradiance model in comparing the radiometric calibration scales of the six satellite instruments are presented here.

  15. MISR Browse Images: Puerto Rico Dust Experiment (PRiDE)

    Atmospheric Science Data Center

    2013-04-02

    MISR Browse Images: Puerto Rico Dust Experiment (PRiDE) These MISR Browse ... a quick visual overview of the region observed during the Puerto Rico Dust Experiment (PRiDE) field campaign. PRiDE was a study of the ...

  16. Retrieving Biome Types from Multi-angle Spectral Data

    NASA Astrophysics Data System (ADS)

    Schull, M. A.; Xu, L.; Latorre, P.; Samanta, A.; Myneni, R. B.; Knyazikhin, Y.

    2009-12-01

    Many studies have been conducted to demonstrate the ability of multi-angle spectral data to discriminate plant dominant species. Most have employed the use of empirically based techniques, which are site specific, requires some initial training based on characteristics of known leaf and/or canopy spectra and therefore may not be extendable to operational use or adapted to changing/unknown land cover. An ancillary objective of the MISR LAI/FPAR algorithm is classification of global vegetation into biome types. The algorithm is based on the 3D radiative transfer equation. Its performance suggests that is has valid LAI retrievals and correct biome identification in about 20% of the pixels. However with a probability of about 70%, uncertainties in LAI retrievals due to biome misclassification do not exceed uncertainties in the observations. In this poster we present an approach to improve reliability of the distribution of biomes and dominant species from multi angle spectral data. The radiative transfer theory of canopy spectral invariants underlies the approach, which facilitates parameterization of the canopy bidirectional reflectance factor in terms of the leaf spectrum and two spectrally invariant and structurally varying variables - recollision and directional escape probabilities. Theoretical and empirical analyses of ground and airborne data acquired by AVIRIS, AirMISR over two sites in New England and CHRIS/PROBA over BARAX site in Spain suggest that the canopy spectral invariants convey information about canopy structure at both the macro and micro scales. These properties allow for the natural separation of biome classes based on the location of points on the total escape probability vs the proportional escape ratio log-log plane.

  17. Smoke over Sumatra, Indonesia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At least once a year for a period lasting from a week to several months, northern Sumatra is obscured by smoke and haze produced by agricultural burning and forest fires. These data products from the Multi-angle Imaging SpectroRadiometer document the presence of airborne particulates on March 13, 2002, during Terra orbit 11880. On the left is an image acquired by MISR's 70-degree backward-viewing camera. On the right is a map of aerosol optical depth, a measure of the abundance of atmospheric particulates. This product utilized a test version of the MISR retrieval that incorporates an experimental set of aerosol mixtures. The haze has completely obscured northeastern Sumatra and part of the Strait of Malacca, which separates Sumatra and the Malaysian Peninsula. A northward gradient is apparent as the haze dissipates in the direction of the Malaysian landmass. Each panel covers an area of about 760 kilometers x 400 kilometers.

    Haze conditions had posed a health concern during late February (when schools in some parts of North Sumatra were closed), and worsened considerably in the first two weeks of March. By mid-March, local meteorology officials asked residents of North Sumatra's provincial capital, Medan, to minimize their outdoor activities and wear protective masks. Poor visibility at Medan airport forced a passenger plane to divert to Malaysia on March 14, and visibility reportedly ranged between 100 and 600 meters in some coastal towns southeast of Medan.

    The number and severity of this year's fires was exacerbated by dry weather conditions associated with the onset of a weak to moderate El Nino. The governments of Indonesia, Malaysia, and Brunei have agreed to ban open burning in plantation and forest areas. The enforcement of such fire bans, however, has proven to be an extremely challenging task.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  18. Sources, Sinks, and Transatlantic Transport of North African Dust Aerosol: A Multimodel Analysis and Comparison With Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Kim, Dongchul; Chin, Mian; Yu, Hongbin; Diehl, Thomas; Tan, Qian; Kahn, Ralph A.; Tsigaridis, Kostas; Bauer, Susanne E.; Takemura, Toshihiko; Pozzoli, Luca; hide

    2014-01-01

    This study evaluates model-simulated dust aerosols over North Africa and the North Atlantic from five global models that participated in the Aerosol Comparison between Observations and Models phase II model experiments. The model results are compared with satellite aerosol optical depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor, dust optical depth (DOD) derived from MODIS and MISR, AOD and coarse-mode AOD (as a proxy of DOD) from ground-based Aerosol Robotic Network Sun photometer measurements, and dust vertical distributions/centroid height from Cloud Aerosol Lidar with Orthogonal Polarization and Atmospheric Infrared Sounder satellite AOD retrievals. We examine the following quantities of AOD and DOD: (1) the magnitudes over land and over ocean in our study domain, (2) the longitudinal gradient from the dust source region over North Africa to the western North Atlantic, (3) seasonal variations at different locations, and (4) the dust vertical profile shape and the AOD centroid height (altitude above or below which half of the AOD is located). The different satellite data show consistent features in most of these aspects; however, the models display large diversity in all of them, with significant differences among the models and between models and observations. By examining dust emission, removal, and mass extinction efficiency in the five models, we also find remarkable differences among the models that all contribute to the discrepancies of model-simulated dust amount and distribution. This study highlights the challenges in simulating the dust physical and optical processes, even in the best known dust environment, and stresses the need for observable quantities to constrain the model processes.

  19. EOS Terra Validation Program

    NASA Technical Reports Server (NTRS)

    Starr, David

    2000-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community.

  20. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  1. 17 Years of Cloud Heights from Terra, and Beyond

    NASA Astrophysics Data System (ADS)

    Davies, R.

    2017-12-01

    The effective cloud height, H, is the integral of observed cloud-top heights, weighted by their frequency of occurrence. Here we look at changes in the effective cloud height, H', as measured by the Multiangle Imaging Spectroradiometer (MISR) on the first Earth Observing System platform, Terra. Terra was launched in December 1999, and now has over 17 years of consistently measured climate records. Globally, HG' has an important influence on Earth's climate, whereas regionally, HR' is a useful measure of low frequency changes in circulation patterns. MISR has a sampling error in the annual mean HG' of ≈11 m, allowing fairly small interannual variations to be detected. This paper extends the previous 15-year summary that showed significant differences in the long term mean hemispheric cloud height changes. Also of interest are the correlations in tropical cloud height changes and related teleconnections. The largest ephemeral values in the annual HR' [over 1.5 km] are noted over the Central Pacific and the Maritime Continent. These changes are strongly anticorrelated with each other, being directly related to changes in ENSO. They are also correlated with the largest ephemeral changes in HG'. Around the equator, we find at least four distinct centres of similar fluctuations in cloud height. This paper examines the relative time dependence of these regional height changes, separately for La Niña and El Niño events, and stresses the value of extending the time series of uniformly measured cloud heights from space beyond EOS-Terra.

  2. Northern California and San Francisco Bay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The left image of this pair was acquired by MISR's nadir camera on August 17, 2000 during Terra orbit 3545. Toward the top, and nestled between the Coast Range and the Sierra Nevadas, are the green fields of the Sacramento Valley. The city of Sacramento is the grayish area near the right-hand side of the image. Further south, San Francisco and other cities of the Bay Area are visible.

    On the right is a zoomed-in view of the area outlined by the yellow polygon. It highlights the southern end of San Francisco Bay, and was acquired by MISR's airborne counterpart, AirMISR, during an engineering check-out flight on August 25, 1997. AirMISR flies aboard a NASA ER-2 high-altitude aircraft and contains a single camera that rotates to different view angles. When this image was acquired, the AirMISR camera was pointed 70 degrees forward of the vertical. Colorful tidal flats are visible in both the AirMISR and MISR imagery.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

    For more information: http://www-misr.jpl.nasa.gov

  3. The Impact of Biogenic and Anthropogenic Atmospheric Aerosol on Climate in Egypt

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. I.; Zakey, A.; Steiner, A. L.; Shokr, M. E.; El-Raey, M.; Ahmed, Y.; Al-Hadidi, A.; Zakey, A.

    2014-12-01

    Aerosols are indicators of air quality as they reduce visibility and adversely affect public health. Aerosol optical depth (AOD) is a measure of the radiation extinction due to interaction of radiation with aerosol particles in the atmosphere. Using this optical measure of atmospheric aerosols we explore the seasonal and annual patterns of aerosols from both anthropogenic and biogenic sources over Egypt. Here, we use an integrated environment-climate-aerosol model in conjunction with inversion technique to identify the aerosol particle size distribution over different locations in Egypt. The online-integrated Environment-Climate-Aerosol model (EnvClimA), which is based on the International Center for Theoretical Physics Regional Climate Model (ICTP-RegCM), is used to study the emission of different aerosols and their impact on climate parameters for a long-term base line simulation run over Egypt and North Africa. The global emission inventory is downscaled and remapping them over Egypt using local factors such as population, traffic and industrial activities to identify the sources of anthropogenic and biogenic emission from local emission over Egypt. The results indicated that the dominant natural aerosols over Egypt are dust emissions that frequently occur during the transitional seasons (Spring and Autumn). From the local observation we identify the number of dust and sand storm occurrences over Egypt. The Multiangle Imaging SpectroRadiometer (MISR) is used to identify the optical characterizations of different types of aerosols over Egypt. Modeled aerosol optical depth and MISR observed (at 555 nm) are compared from March 2000 through November 2013. The results identify that the MISR AOD captures the maximum peaks of AOD in March/April that coincide with the Khamasin dust storms. However, peaks in May are either due to photochemical reactions or anthropogenic activities. Note: This presentation is for a Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htmwebsite: http://CleanAirEgypt.org

  4. Inter-comparison of model-simulated and satellite-retrieved componential aerosol optical depths in China

    NASA Astrophysics Data System (ADS)

    Li, Shenshen; Yu, Chao; Chen, Liangfu; Tao, Jinhua; Letu, Husi; Ge, Wei; Si, Yidan; Liu, Yang

    2016-09-01

    China's large aerosol emissions have major impacts on global climate change as well as regional air pollution and its associated disease burdens. A detailed understanding of the spatiotemporal patterns of aerosol components is necessary for the calculation of aerosol radiative forcing and the development of effective emission control policy. Model-simulated and satellite-retrieved aerosol components can support climate change research, PM2.5 source appointment and epidemiological studies. This study evaluated the total and componential aerosol optical depth (AOD) from the GEOS-Chem model (GC) and the Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART), and the Multiangle Imaging Spectroradiometer (MISR) from 2006 to 2009 in China. Linear regression analysis between the GC and AErosol RObotic NETwork (AERONET) in China yielded similar correlation coefficients (0.6 daily, 0.71 monthly) but lower slopes (0.41 daily, 0.58 monthly) compared with those in the U.S. This difference was attributed to GC's underestimation of water-soluble AOD (WAOD) west of the Heihe-Tengchong Line, the dust AOD (DAOD) in the fall and winter, and the soot AOD (SAOD) throughout the year and throughout the country. GOCART exhibits the strongest dust estimation capability among all datasets. However, the GOCART soot distribution in the Northeast and Southeast has significant errors, and its WAOD in the polluted North China Plain (NCP) and the South is underestimated. MISR significantly overestimates the water-soluble aerosol levels in the West, and does not capture the high dust loadings in all seasons and regions, and the SAOD in the NCP. These discrepancies can mainly be attributed to the uncertainties in the emission inventories of both models, the poor performance of GC under China's high aerosol loading conditions, the omission of certain aerosol tracers in GOCART, and the tendency of MISR to misidentify dust and non-dust mixtures.

  5. Mystery #6 Answer

    Atmospheric Science Data Center

    2013-04-22

    ... title:  MISR Mystery Image Quiz #6: Brazil's Duck Lagoon     View Larger Image ... Imaging SpectroRadiometer (MISR) image of Brazil's Duck Lagoon covers an area of about 298 kilometers x 358 kilometers, and was ...

  6. Smoke Blankets New South Wales, Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Australia's largest city of Sydney was clouded with smoke when more than 70 wildfires raged across the state of New South Wales. These images were captured on the morning of December 30, 2001, by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra spacecraft. The left-hand image is from the instrument's 26-degree forward-viewing camera, and the right-hand image is from the 60-degree forward-viewing camera. The vast extent of smoke from numerous fires is visible, particularly in the more oblique view. Sydney is located just above image center.

    Dubbed the 'black Christmas' fires, the blazes destroyed more than 150 homes and blackened over 5000 square kilometers (about 1.24 million acres) of farmland and wilderness between December 23, 2001 and January 3, 2002. Many of the fires are believed to have been caused by arsonists, with only one fire linked to natural causes. The fires were aggravated by gusty winds and hot dry weather conditions. Approximately 20,000 people have worked to contain the blazes. No people have lost their lives or been seriously injured. Nevertheless, the fires are considered to be the most prolonged and destructive of any in Australia since the Ash Wednesday conflagration of 1983 that claimed 72 lives.

    The images represent an area 322 kilometers x 374 kilometers and were captured during Terra orbit 10829.

  7. A Spaceborne Perspective on the Red, White, and Blue

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Philadelphia, where the Declaration of Independence was signed 225 years ago on July 4, 1776, lies in the center of this image from NASA's Multi-angle Imaging SpectroRadiometer (MISR). This true-color view of the northeastern United States, taken from the instrument's nadir, or downward-looking, camera includes a fitting display of the reddish colors of soils, grayish-whites of urban areas and clouds, and blue hues of water.

    Larger cities, including New York, Newark, Philadelphia, Wilmington, Baltimore and Washington D.C., are visible from upper right to lower left. The bright sands of the New Jersey shoreline and a pattern of highly reflective roads and bridges extend northward along the coast from Delaware Bay. A popular tourist destination for those wanting to avoid the crowds and main roads is the Coastal Heritage Trail, a 440-kilometer collection of historic and other points of interest developed by the National Park Service and the state of New Jersey.

    A portion of Pennsylvania's Appalachian Mountains are captured in the upper left corner. The effects of folding and erosion on these ancient, mostly sedimentary deposits are visible, and the reddish colors indicate ironstone and iron-rich sandstone. The southeast-flowing Susquehanna River cuts transversely across these folded formations toward the Chesapeake Bay in Havre de Grace, Maryland, where it provides 50 percent of all the freshwater entering the great estuary. The waters of the Susquehanna originate at Otsego Lake in New York and meander along 700 kilometers until reaching Chesapeake Bay and the sea.

    This image was acquired on October 11, 2000, during Terra orbit 4344. It covers an area 334 kilometers x 328 kilometers. North is at the top.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  8. Brazil The Duck Lagoon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Multi-angle Imaging SpectroRadiometer (MISR) image of Brazil covers an area of about 298 kilometers x 358 kilometers, and was captured by the instrument's vertical-viewing (nadir) camera on December 27, 2001. The 'Lagoa dos Patos', in the Brazilian state of Rio Grande do Sul, translates to 'the Duck Lagoon'. It was named by 16th century Jesuit settlers, who asked the King of Spain to grant them title to the lagoon so that they could breed ducks. The King consented, but revoked his edict when he discovered that the 'duck-pond' (measuring about 14,000 square kilometers) was one of the largest lagoonal systems in the world. Note the sediment plume emanating from the southern end of the lagoon. Sailors in the 16th century imagined this outlet to be the mouth of a large river. Early Portuguese explorers mistook the entrance to the lagoon for the mouth of a great river and called it the Rio Grande. A series of wave-like points and curls form 'cusps' on the inner shores of the lagoon. The lagoon's characteristics change with short-term tide-induced cyclic perturbations, and with longer term large scale meteorological conditions. The distinctive wavelike 'cusps' along the inner shores result from the circulation, erosion and accumulation of sediments driven by wind and tidal action. The El Nino Southern Oscillation (ENSO) circulation affects precipitation amount and continental runoff, thereby changing the contents of the lagoon waters. High rainfall and increased freshwater discharge during El Nino events correspond with elevated dissolved nutrient concentrations and increased phytoplankton growth. La Nina years are dry and the associated low rainfall reduces the freshwater recharge to the lagoon, causing an increase in salinity. Occasional blooms of toxic cyanobacteria (Microcystis aeruginosa), have been registered in the lagoon when nutrient concentrations are elevated. A number of reeds and grasses are important to the lagoon estuary, including widgeon grass (Ruppia maritima) which reaches peak production during summer. Sea turtles (Chelonia mydas) can be found in the lagoon during spring and summer. Although the lowland tapir (Tapirus terrestris) is found in some parts of Rio Grande do Sul, the Baird's tapir (Tapirus bairdii), is not distributed within the image area (it is restricted to Central America). MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology. Image credit: NASA/GSFC/LaRC/JPL, MISR Team.

  9. Mystery #11

    Atmospheric Science Data Center

    2013-04-22

    article title:  MISR Mystery Image Quiz #11     View Larger Image Here's another chance to play geographical detective! These images ... MISR Team. Text acknowledgment: Clare Averill, David J. Diner, Graham Bothwell (Jet Propulsion Laboratory). Other formats ...

  10. An Overview of SIMBIOS Program Activities and Accomplishments. Chapter 1

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; McClain, Charles R.

    2003-01-01

    The SIMBIOS Program was conceived in 1994 as a result of a NASA management review of the agency's strategy for monitoring the bio-optical properties of the global ocean through space-based ocean color remote sensing. At that time, the NASA ocean color flight manifest included two data buy missions, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Earth Observing System (EOS) Color, and three sensors, two Moderate Resolution Imaging Spectroradiometers (MODIS) and the Multi-angle Imaging Spectro-Radiometer (MISR), scheduled for flight on the EOS-Terra and EOS-Aqua satellites. The review led to a decision that the international assemblage of ocean color satellite systems provided ample redundancy to assure continuous global coverage, with no need for the EOS Color mission. At the same time, it was noted that non-trivial technical difficulties attended the challenge (and opportunity) of combining ocean color data from this array of independent satellite systems to form consistent and accurate global bio-optical time series products. Thus, it was announced at the October 1994 EOS Interdisciplinary Working Group meeting that some of the resources budgeted for EOS Color should be redirected into an intercalibration and validation program (McClain et al., 2002).

  11. Namibia and Central Angola

    Atmospheric Science Data Center

    2013-04-15

    ... The images on the left are natural color (red, green, blue) images from MISR's vertical-viewing (nadir) camera. The images on the ... one of MISR's derived surface products. The radiance (light intensity) in each pixel of the so-called "top-of-atmosphere" images on ...

  12. MISR Images Wildfires in Northwestern US

    NASA Technical Reports Server (NTRS)

    2000-01-01

    MISR image of smoke plumes from devastating wildfires in the northwestern US. This view of the Clearwater and Salmon River Mountains in Idaho was acquired on August 5, 2000 (Terra orbit 3370). The body of water to the left of image center is the Cascade Reservoir, located about 100 km north of Boise and 80 km east of the Snake River. North is at the top, and the image is approximately 380 km across.

    In addition to the huge plumes traversing the mountains in the northern part of the image, smoke accumulating in the lower elevation canyons and plains is visible. This image was generated using data from the MISR camera that looks forward at a steep angle (70.5 degrees). The smoke is far more visible when viewed at this highly oblique angle than it would be in a conventional, straight-downward view. In creating this color composite, data from the blue and green MISR bands, acquired at 1.1-km spatial resolution, were digitally 'sharpened' using 275-m resolution data acquired in the red band.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

    For more information: http://www-misr.jpl.nasa.gov

  13. MISR Regional UAE2 Products

    Atmospheric Science Data Center

    2013-04-29

    ... Basis Documents . Images available on this web site include the following parameters: Image Description ... DHR integrated over the Photosynthetically Active Radiation (PAR) band. For those familiar with the MISR Level 2 ...

  14. Where on Earth...? MISR Mystery Image Quiz #3:Lofoten Islands, Norway

    NASA Image and Video Library

    2001-09-26

    Lofoten Islands, Norway. Norway is deeply indented by fjords, rises precipitously to high plateaus, and is united with the ocean by numerous islands. This image from NASA Terra satellite is MISR Mystery Image Quiz #2.

  15. Where on Earth...? MISR Mystery Image Quiz #8:Yarlung Tsangpo River, China

    NASA Image and Video Library

    2002-05-15

    The mighty river featured in this image is called the Yarlung Tsangpo in China, and is then known as the Dikrong during its passage through India state of Arunachal Pradesh. This image from NASA Terra satellite is MISR Mystery Image Quiz #8.

  16. MAIA pathfinder: Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field campaign

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Seidel, F. C.; Xu, F.; Garay, M. J.; Wu, L.; Bruegge, C. J.; van Harten, G.; Val, S.; Diner, D. J.; Seinfeld, J.; Bates, K. H.; Cappa, C. D.; Bradley, C. L.; Kupinski, M.; Clements, C. B.; Camacho, C.; Yorks, J. E.

    2016-12-01

    The Multi-Angle Imager for Aerosols (MAIA) instrument, which was recently selected under NASA's third Earth Venture Instrument call, will improve aerosol particle type sensitivity through the atmospheric column as well as at the surface through the use of multiangular, multispectral, and polarimetric observations. MAIA will provide new information that enables estimates of speciated (size- and particle type classifications) surface particulate matter (PM) from space over major cities around the globe, and enable improved associations between particulate air pollution and human health. As a pathfinder to MAIA, the ImPACT-PM field campaign was a joint JPL/Caltech effort to combine measurements from MISR and AirMSPI with in situ airborne measurements and a chemical transport model to validate remote sensing retrievals of different types of airborne particulate matter. We will present highlights of the successfully completed ImPACT-PM field campaign which took place in the California Central Valley on July 5-8, 2016. We had two NASA ER-2/ CIRPAS Twin Otter collocated flights coincident with Terra/MISR overpasses on Tuesday and Thursday July 5 and 7; and two ER-2/Twin Otter collocations over local fires on Friday, July 8th. The AirMSPI, AirSPEX, and CPL instruments were integrated on the ER-2, and Caltech aerosol/cloud in-situ instruments were integrated on the CIRPAS Twin Otter aircraft in addition to the normal Twin Otter payload. We also deployed the JPL/University of Arizona GroundMSPI instrument and a ground-based lidar from San José State University at the Fresno California Air Resources Board super-site. While the overall aerosol and PM levels were low at this time, we were able to see a gradient of pollution in specially processed MISR high-resolution 4.4 km resolution aerosol data on both days. We will present initial results of AirMSPI WRF-Chem-constrained retrievals in comparison with EPA Speciation Trends Network stations in Fresno and Bakersfield, and with available AMS/DMA/SP2 instrument data from the Twin Otter. The SP2 instrument measured very high levels of carbon over the fire near Gorman on July 8 that was collocated with the AirMSPI/SPEX data. This provides a case to validate AirMSPI retrievals of absorbing particles.

  17. Kruger National Park

    Atmospheric Science Data Center

    2013-04-15

    ...     View Larger Image These images of northeastern South Africa, near Kruger National ... Unlike the MISR view, the AirMISR data are in "raw" form and processing to remove radiometric and geometric distortions has not yet been ...

  18. Where on Earth...? MISR Mystery Image Quiz #10:Pulau Kimaam, West Papua

    NASA Image and Video Library

    2002-09-04

    Pulau Kimaam, Pulau Dolok, Pulau Yos Sudarso, and Frederik Hendrik Island are all names used to refer to this island, which is part of the Indonesian province of West Papua. This image from NASA Terra satellite is MISR Mystery Image Quiz #10.

  19. How do I order cloud-free MISR data for my region?

    Atmospheric Science Data Center

    2016-02-19

    ... viewing the browse images for your region, note the orbit numbers of interest. The MISR Production Report lists the most currently available data for the selected orbits. Include those orbit numbers when submitting the search for data through the MISR Order and ...

  20. AOD trends during 2001-2010 from observations and model simulations

    NASA Astrophysics Data System (ADS)

    Pozzer, Andrea; de Meij, Alexander; Yoon, Jongmin; Astitha, Marina

    2016-04-01

    The trend of aerosol optical depth (AOD) between 2001 and 2010 is estimated globally and regionally from remote sensed observations by the MODIS (Moderate Resolution Imaging Spectroradiometer), MISR (Multi-angle Imaging SpectroRadiometer) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor) satellite sensor. The resulting trends have been compared to model results from the EMAC (ECHAM5/MESSy Atmospheric Chemistry {[1]}), model. Although interannual variability is applied only to anthropogenic and biomass-burning emissions, the model is able to quantitatively reproduce the AOD trends as observed by MODIS, while some discrepancies are found when compared to MISR and SeaWIFS. An additional numerical simulation with the same model was performed, neglecting any temporal change in the emissions, i.e. with no interannual variability for any emission source. It is shown that decreasing AOD trends over the US and Europe are due to the decrease in the (anthropogenic) emissions. On contrary over the Sahara Desert and the Middle East region, the meteorological/dynamical changes in the last decade play a major role in driving the AOD trends. Further, over Southeast Asia, both meteorology and emissions changes are equally important in defining AOD trends {[2]}. Finally, decomposing the regional AOD trends into individual aerosol components reveals that the soluble components are the most dominant contributors to the total AOD, as their influence on the total AOD is enhanced by the aerosol water content. {[1]}: Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717-752, doi:10.5194/gmd-3-717-2010, 2010. {[2]}: Pozzer, A., de Meij, A., Yoon, J., Tost, H., Georgoulias, A. K., and Astitha, M.: AOD trends during 2001-2010 from observations and model simulations, Atmos. Chem. Phys., 15, 5521-5535, doi:10.5194/acp-15-5521-2015, 2015.

  1. Mystery #24

    Atmospheric Science Data Center

    2016-12-22

    article title:  MISR Mystery Image Quiz #24   ... formed by the large sediment-laden river in the image is an example of a well preserved wetland ecosystem, and is used as a "transfer ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  2. MISR Regional VBBE Products

    Atmospheric Science Data Center

    2016-08-24

    ... parameters from one Level 1 or Level 2 product. Further information about the Level 1 and Level 2 data products can be found on the  ... the  MISR VBBE data table . Images available on this web site include the following parameters: Image Description ...

  3. MISR Regional GoMACCS Products

    Atmospheric Science Data Center

    2016-08-24

    ... parameters from one Level 1 or Level 2 product. Further information about the Level 1 and Level 2 data products can be found on the  ... MISR GoMACCS data table . Images available on this web site include the following parameters: Image Description ...

  4. MISR Regional SAMUM Products

    Atmospheric Science Data Center

    2016-08-24

    ... parameters from one Level 1 or Level 2 product. Further information about the Level 1 and Level 2 data products can be found on the  ... the  MISR SAMUM data table . Images available on this web site include the following parameters: Image Description ...

  5. Birth of a Large Iceberg in Pine Island Bay, Antarctica

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A large tabular iceberg (42 kilometers x 17 kilometers) broke off Pine Island Glacier, West Antarctica (75oS latitude, 102oW longitude) sometime between November 4 and 12, 2001. Images of the glacier were acquired by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra spacecraft. This event was preceded by the formation of a large crack across the glacier in mid 2000. Data gathered by other imaging instruments revealed the crack to be propagating through the shelf ice at a rate averaging 15 meters per day, accompanied by a slight rotation of about one percent per year at the seaward margin of the rift.

    The image set shows three views of Pine Island Glacier acquired by MISR's vertical-viewing (nadir) camera. The first was captured in late 2000, early in the development of the crack. The second and third views were acquired in November 2001, just before and just after the new iceberg broke off. The existence of the crack took the glaciological community by surprise, and the rapid rate at which the crack propagated was also not anticipated. Glaciologists predicted that the rift would reach the other side of the glacier sometime in 2002. However, the iceberg detached much sooner than anticipated, and the last 10-kilometer segment that was still attached to the ice shelf snapped off in a matter of days.

    The animated sequence consists of 11 snapshots acquired by MISR's nadir camera between September 16, 2000 and November 12, 2001. Due to frequent cloud cover, the time interval between successive frames is not uniform. The flow of the glacier, widening of the rift, and subsequent break-off of the iceberg are evident. A 'jump' in the position of the rift near the middle of the sequence is due to a gap in image acquisition during Antarctic winter, when the glacier was in continuous darkness.

    Pine Island Glacier is the largest discharger of ice in Antarctica and the continent's fastest moving glacier. This area of the West Antarctic Ice Sheet is also believed to be the most susceptible to collapse. The evolution of this glacier is therefore of great interest to the scientific community. 'The climatic significance of this calving event is not yet clear, but is taking place in an area of Antarctica which is experiencing rapid changes', said glaciologist Eric Rignot of the Jet Propulsion Laboratory. Rignot points out that the grounding line of Pine Island Glacier is retreating, the glacier is thinning rapidly, and its ice flow is accelerating. Additionally, the sea ice cover in front of the glacier has been decreasing steadily for several decades. The newly hatched berg represents nearly seven years of ice outflow from Pine Island Glacier released to the ocean in a single event. Although this has no effect on sea level (the ice is already afloat), it is an exceptional event for this glacier, and provides additional evidence that this area is undergoing rapid change.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  6. Spacebased Estimation of Moisture Transport in Marine Atmosphere Using Support Vector Regression

    NASA Technical Reports Server (NTRS)

    Xie, Xiaosu; Liu, W. Timothy; Tang, Benyang

    2007-01-01

    An improved algorithm is developed based on support vector regression (SVR) to estimate horizonal water vapor transport integrated through the depth of the atmosphere ((Theta)) over the global ocean from observations of surface wind-stress vector by QuikSCAT, cloud drift wind vector derived from the Multi-angle Imaging SpectroRadiometer (MISR) and geostationary satellites, and precipitable water from the Special Sensor Microwave/Imager (SSM/I). The statistical relation is established between the input parameters (the surface wind stress, the 850 mb wind, the precipitable water, time and location) and the target data ((Theta) calculated from rawinsondes and reanalysis of numerical weather prediction model). The results are validated with independent daily rawinsonde observations, monthly mean reanalysis data, and through regional water balance. This study clearly demonstrates the improvement of (Theta) derived from satellite data using SVR over previous data sets based on linear regression and neural network. The SVR methodology reduces both mean bias and standard deviation comparedwith rawinsonde observations. It agrees better with observations from synoptic to seasonal time scales, and compare more favorably with the reanalysis data on seasonal variations. Only the SVR result can achieve the water balance over South America. The rationale of the advantage by SVR method and the impact of adding the upper level wind will also be discussed.

  7. Appraising city-scale pollution monitoring capabilities of multi-satellite datasets using portable pollutant monitors

    NASA Astrophysics Data System (ADS)

    Aliyu, Yahaya A.; Botai, Joel O.

    2018-04-01

    The retrieval characteristics for a city-scale satellite experiment was explored over a Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city atmosphere. We utilized the MSA Altair 5× gas detector and CW-HAT200 particulate counter to investigate the city-scale monitoring capabilities of satellite pollution observing instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To achieve this, we employed the Kriging interpolation technique to collocate the satellite pollutant estimations over 19 ground sample sites for the period of 2015-2016. The portable pollutant devices were validated using the WHO air filter sampling model. To determine the city-scale performance of the satellite datasets, performance indicators: correlation coefficient, model efficiency, reliability index and root mean square error, were adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide (CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite measurements for ground equivalents in Zaria, Nigeria. Our findings were within the acceptable limits of similar studies that utilized reference stations. In conclusion, this study offers direction to Nigeria's air quality policy organizers about available alternative air pollution measurements for mitigating air quality effects within its limited resource environment.

  8. Smoke Dispersion Modeling Over Complex Terrain Using High-Resolution Meteorological Data and Satellite Observations: The FireHub Platform

    NASA Technical Reports Server (NTRS)

    Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F. I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R. A.; Kontoes, C.

    2015-01-01

    A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002e2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface.

  9. Mystery #14 Answer

    Atmospheric Science Data Center

    2017-03-16

    article title:  MISR Mystery Image Quiz #14: Anatahan Island ... to find another satellite image of Anatahan on May 14th. For example, the view of Anatahan from   the  Aqua satellite  shows that on ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  10. Red Tide Strands South African Rock Lobsters

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide. The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine. The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology. Image credit: NASA/GSFC/LaRC/JPL, MISR Team.

  11. Reconstruction of 3D Shapes of Opaque Cumulus Clouds from Airborne Multiangle Imaging: A Proof-of-Concept

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Bal, G.; Chen, J.

    2015-12-01

    Operational remote sensing of microphysical and optical cloud properties is invariably predicated on the assumption of plane-parallel slab geometry for the targeted cloud. The sole benefit of this often-questionable assumption about the cloud is that it leads to one-dimensional (1D) radiative transfer (RT)---a textbook, computationally tractable model. We present new results as evidence that, thanks to converging advances in 3D RT, inverse problem theory, algorithm implementation, and computer hardware, we are at the dawn of a new era in cloud remote sensing where we can finally go beyond the plane-parallel paradigm. Granted, the plane-parallel/1D RT assumption is reasonable for spatially extended stratiform cloud layers, as well as the smoothly distributed background aerosol layers. However, these 1D RT-friendly scenarios exclude cases that are critically important for climate physics. 1D RT---whence operational cloud remote sensing---fails catastrophically for cumuliform clouds that have fully 3D outer shapes and internal structures driven by shallow or deep convection. For these situations, the first order of business in a robust characterization by remote sensing is to abandon the slab geometry framework and determine the 3D geometry of the cloud, as a first step toward bone fide 3D cloud tomography. With this specific goal in mind, we deliver a proof-of-concept for an entirely new kind of remote sensing applicable to 3D clouds. It is based on highly simplified 3D RT and exploits multi-angular suites of cloud images at high spatial resolution. Airborne sensors like AirMSPI readily acquire such data. The key element of the reconstruction algorithm is a sophisticated solution of the nonlinear inverse problem via linearization of the forward model and an iteration scheme supported, where necessary, by adaptive regularization. Currently, the demo uses a 2D setting to show how either vertical profiles or horizontal slices of the cloud can be accurately reconstructed. Extension to 3D volumes is straightforward but the next challenge is to accommodate images at lower spatial resolution, e.g., from MISR/Terra. G. Bal, J. Chen, and A.B. Davis (2015). Reconstruction of cloud geometry from multi-angle images, Inverse Problems in Imaging (submitted).

  12. Where Europe meets Africa

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Data from a portion of the imagery acquired by the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera during 2000-2002 were combined to create this cloud-free natural-color mosaic of southwestern Europe and northwestern Morocco and Algeria. The image extends from 48oN, 16oW in the northwest to 32oN, 8oE in the southeast. It is displayed in Albers conic equal-area projection (a projection which is frequently used for equal-area maps of regions that are predominantly east-west in extent).

    From the northeast, the image traverses a portion of the Swiss Alps (partially snow-covered) and a small part of Italy's Po Valley. The northern portion of the image also includes the western coast of France and much of southern and southwestern France's undulating terrain, which continues until reaching the hills of the Pyrenees. The Pyrenees act as the natural frontier to the Iberian Peninsula -- a landmass comprised of Spain and Portugal. The Peninsular landscapes are extremely varied, with some almost desert-like, others green and fertile. About half of Spain is situated atop a high plain, known as the Central Plateau, and many mountain ranges, rivers, geological basement rock and vegetation types are found across this great plateau. The largest alluvial plain is Andalusia in the south, where the valley of the Guadalquivir River is shut in by mountain ranges on every side except the southwest, where the valley descends to the Atlantic. The islands of Mallorca, Menorca and Ibiza are Spanish territories in the western Mediterranean. At the Strait of Gibralter, Spain and Morocco very nearly kiss, and Morocco appears relatively verdant along its northern coastal corner. The rugged Atlas Mountain ranges traverse northern Algeria and Morocco.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. This data product was generated from a portion of the imagery acquired during 2000-2002. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  13. Mars Researchers Rendezvous on Remote Arctic Island

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Devon Island is situated in an isolated part of Canada's Nunavut Territory, and is usually considered to be the largest uninhabited island in the world. However, each summer since 1999, researchers from NASA's Haughton-Mars Project and the Mars Society reside at this 'polar desert' location to study the geologic and environmental characteristics of a site which is considered to be an excellent 'Mars analog': a terrestrial location wherein specific conditions approximate environmental features reported on Mars. Base camps established amidst the rocks and rubble surrounding the Haughton impact crater enable researchers to conduct surveys designed to test the habitat, equipment and technology that may be deployed during a human mission to Mars. One of the many objectives of the project scientists is to understand the ice formations around the Haughton area, in the hopes that this might ultimately assist with the recognition of areas where ice can be found at shallow depth on Mars.

    These images of Devon Island from NASA's Multi-angle Imaging SpectroRadiometer (MISR) instrument provide contrasting views of the spectral and angular reflectance 'signatures' of different surfaces within the region. The top panel is a natural color view created with data from the red, green and blue-bands of MISR's nadir (vertical-viewing) camera. The bottom panel is a false-color multiangular composite of the same area, utilizing red band data from MISR's 60-degree backward, nadir, and 60-degree forward-viewing cameras, displayed as red, green and blue, respectively. In this representation, colors highlight textural properties of elements within the scene, with blue tones indicating smooth surfaces (which preferentially forward scatter sunlight) and red hues indicating rougher surfaces (which preferentially backscatter). The angular reflectance 'signature' of low clouds causes them to appear purple, and this visualization provides a unique way of distinguishing clouds from snow and ice.

    The data were captured on June 28, 2001, during the early part of the arctic summer, when sea ice becomes thinner and begins to move depending upon localized currents and winds. In winter the entire region is locked with several meters of nearly motionless sea ice, which acts as a thermodynamic barrier to the loss of heat from the comparatively warm ocean to the colder atmosphere. Summer melting of sea ice can be observed at the two large, dark regions of open water; one is present in the Jones Sound (near the top to the left of center), and another appears in the Wellington Channel (left-hand edge). A large crack caused by tidal heaving has broken the ice cover over the Parry Channel (lower right-hand corner). A substantial ice cap permanently occupies the easternmost third of the island (upper right). Surface features such as dendritic meltwater channels incised into the island's surface are apparent. The Haughton-Mars project site is located slightly to the left and above image center, in an area which appears with relatively little surface ice, near the island's inner 'elbow.'

    The images were acquired during Terra orbit 8132 and cover an area of about 334 kilometers x 229 kilometers. They utilize data from blocks 27 to 31 within World Reference System-2 path 42.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  14. Access to MISR Aerosol Data and Imagery for the GoMACCS Field Study

    NASA Astrophysics Data System (ADS)

    Ritchey, N.; Watkinson, T.; Davis, J.; Walter, J.; Protack, S.; Matthews, J.; Smyth, M.; Rheingans, B.; Gaitley, B.; Ferebee, M.; Haberer, S.

    2006-12-01

    NASA Langley Atmospheric Science Data Center (ASDC) and NASA Jet Propulsion Laboratory (JPL) Multi- angle Imaging SpectroRadiometer (MISR) teams collaborated to provide special data products and images in an innovative approach for the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) field campaign. GoMACCS was an intensive field study focused on providing a better understanding of the sources and atmospheric processes responsible for the formation and distribution of ozone and aerosols in the atmosphere and the influence that these species have on the radiative forcing of regional and global climate, as well as their impact on human health and regional haze. The study area encompassed Texas and the northwestern Gulf of Mexico. Numerous U. S. Government agencies, universities and commercial entities participated in the field campaign which occurred August through September 2006. Aerosol and meteorological measurements were provided by a network of instruments on land, buoys and ships, by airborne in situ and remote instruments, and by satellite retrievals. MISR's role in GoMACCS was to provide satellite retrievals of aerosols and cloud properties and imagery as quickly as possible after data acquisition. The diverse group of scientific participants created unique opportunities for ASDC and MISR to develop special data products and images that were easily accessible by all participants. Examples of the data products, images and access methods as well as the data and imagery flow will be presented. Additional information about ASDC and MISR is available from the following web sites, http://eosweb.larc.nasa.gov and http://www-misr.jpl.nasa.gov/.

  15. Cloud Motion Vectors from MISR using Sub-pixel Enhancements

    NASA Technical Reports Server (NTRS)

    Davies, Roger; Horvath, Akos; Moroney, Catherine; Zhang, Banglin; Zhu, Yanqiu

    2007-01-01

    The operational retrieval of height-resolved cloud motion vectors by the Multiangle Imaging SpectroRadiometer on the Terra satellite has been significantly improved by using sub-pixel approaches to co-registration and disparity assessment, and by imposing stronger quality control based on the agreement between independent forward and aft triplet retrievals. Analysis of the fore-aft differences indicates that CMVs pass the basic operational quality control 67% of the time, with rms differences - in speed of 2.4 m/s, in direction of 17 deg, and in height assignment of 290 m. The use of enhanced quality control thresholds reduces these rms values to 1.5 m/s, 17 deg and 165 m, respectively, at the cost of reduced coverage to 45%. Use of the enhanced thresholds also eliminates a tendency for the rms differences to increase with height. Comparison of CMVs from an earlier operational version that had slightly weaker quality control, with 6-hour forecast winds from the Global Modeling and Assimilation Office yielded very low bias values and an rms vector difference that ranged from 5 m/s for low clouds to 10 m/s for high clouds.

  16. Observing a Severe Dust Storm Event over China using Multiple Satellite Data

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Xue, Yong; Guang, Jie; Mei, Linlu

    2013-04-01

    A severe dust storm (SDS) event occurred from 19 to 21 March 2010 in China, originated in western China and Mongolia and propagated into eastern/southern China, affecting human's life in a large area. As reported by National Meteorological Center of CMA (China Meteorological Administration), 16 provinces (cities) of China were hit by the dust storm (Han et al., 2012). Satellites can provide global measurements of desert dust and have particular importance in remote areas where there is a lack of in situ measurements (Carboni et al., 2012). To observe a dust, it is necessary to estimate the spatial and temporal distributions of dust aerosols. An important metric in the characterisation of aerosol distribution is the aerosol optical depth (AOD) (Adhikary et al., 2008). Satellite aerosol retrievals have improved considerably in the last decade, and numerous satellite sensors and algorithms have been generated. Reliable retrievals of dust aerosol over land were made using POLarization and Directionality of the Earth's Reflectance instrument-POLDER (Deuze et al., 2001), Moderate Resolution Imaging Spectroradiometer-MODIS (Kaufman et al., 1997; Hsu et al., 2004), Multiangle Imaging Spectroradiometer-MISR (Martonchik et al., 1998), and Cloud-aerosol Lidar and infrared pathfinder satellite observations (CALIPSO). However, intercomparison exercises (Myhre et al., 2005) have revealed that discrepancies between satellite measurements are particularly large during events of heavy aerosol loading. The reason is that different AOD retrieval algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. For MISR, POLDER and MODIS instrument, the multi-angle approaches, the polarization measurements and single-view approaches were used to retrieval AOD respectively. Combining of multi-sensor AOD data can potentially create a more consistent, reliable and complete picture of the space-time evolution of dust storms (Ehlers, 1991). In order to make use of all useful satellite data to observe one severe dust procedure, multi-sensor and multi-algorithm AOD data were combined. In this paper, the satellite instruments considered are MISR, MODIS, POLDER and CALIPSO. In addition, air pollution index (API) data were used to validate the satellite AOD data. We chose the study region with a longitude range from 76°N to 136°N and a latitude range from 15°E to 60°E. Index Terms—aerosol optical depth, dust, satellite REFERENCES Adhikary, B., Kulkarni, S., Dallura A., Tang, Y., Chai, T., Leung, L. R., Qian, Y., Chung, C. E., Ramanathan,V. and Carmichael, G. R., 2008, A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique, Atmospheric Environment, 42(37), 8600-8615. Carboni, E., Thomas, G. E., Sayer, A. M., Siddans, R., Poulsen, C. A., Grainger, R. G., Ahn, C., Antoine, D., Bevan, S., Braak, R., Brindley, H., DeSouza-Machado, S., Deuz'e, J. L., Diner, D., Ducos, F., Grey, W., Hsu, C., Kalashnikova, O. V., Kahn, R., North, P. R. J., Salustro, C., Smith, A., Tanr'e, D., Torres, O., and Veihelmann, B., 2012, Intercomparison of desert dust optical depth from satellite measurements, Atmospheric Measurement Techniques, 5, 1973-2002. Deuze', J. L., Bre'on, F. M., Devaux, C., Goloub, Herman, M., Lafrance, B., Maignan, F., Marchand, A.,Nadal, F., Perry, G., and Tanre', D., 2001, Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements, Journal of Geophysical Research, 106(D5), 4913-4926. Ehlers, M., 1991, Multisensor image fusion techniques in remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 46, 19-30. Han, X., Ge. C., Tao, J. H., Zhang, M. G., Zhang, R. J., 2012, Air Quality Modeling for a Strong Dust Event in East Asia in March 2010, Aerosol and Air Quality Research, 12: 615-628. Hsu, N. C., Tsay, S. C., King, M. D. and Herman, J. R., 2004, Aerosol Properties over Bright-Reflecting Source Regions, IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557-569. Martonchik, J. V., Diner, D. J., Kahn, R., Ackerman, T. P., Verstraete, M. M., Pinty, B., and Gordon, H. R., 1998, Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging, IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1212-1227. Myhre, G., Stordal, F., Johnsrud, M., Diner, D. J., Geogdzhayev, I. V., Haywood, J. M., Holben, B. N., Holzer-Popp, T., Ignatov, A., Kahn, R. A., Kaufman, Y. J., Loeb, N., Martonchik, J. V., Mishchenko, M. I., Nalli, N. R., Remer, L. A., Schroedter-Homscheidt, M., Tanr'e, D., Torres, O., and Wang, M., 2005, Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000, Atmospheric Chemistry and Physics, 5, 1697-1719. Kaufman, Y.J., Tanre', D., Remer, L.A., Vermote, E.F., Chu, A., and Holben, B.N., 1997, Operationalremote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, Journal of Geophysical Research, 102(D14), 17,051-17,067.

  17. Alaska: Beaufort Sea

    Atmospheric Science Data Center

    2014-05-15

    ... Imaging SpectroRadiometer (MISR), illustrate different methods that may be used to assess sea ice type. Sea ice in the Beaufort Sea ... March 19, 2001 - Illustration of different methods to assess sea ice type. project:  MISR ...

  18. Stars and Stripes

    Atmospheric Science Data Center

    2013-04-22

    ... some "dark current" data was acquired to assess instrument performance. The image at left represents 41 seconds of data taken during a ... MISR Team. February 12, 2000 - Instrument performance assessment - data obtained before MISR's covers were removed. ...

  19. Development of the algorithm of measurement data and tomographic section reconstruction results processing for evaluating the respiratory activity of the lungs using the multi-angle electric impedance tomography

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew

    2018-04-01

    Continuous monitoring of the patient's breathing by the method of multi-angle electric impedance tomography allows to obtain images of conduction change in the chest cavity during the monitoring. Direct analysis of images is difficult due to the large amount of information and low resolution images obtained by multi-angle electrical impedance tomography. This work presents a method for obtaining a graph of respiratory activity of the lungs based on the results of continuous lung monitoring using the multi-angle electrical impedance tomography method. The method makes it possible to obtain a graph of the respiratory activity of the left and right lungs separately, as well as a summary graph, to which it is possible to apply methods of processing the results of spirography.

  20. Monitoring the On-Orbit Calibration of Terra MODIS Reflective Solar Bands Using Simultaneous Terra MISR Observations

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng

    2016-01-01

    On December 18, 2015, the Terra spacecraft completed 16 years of successful operation in space. Terra has five instruments designed to facilitate scientific measurements of the earths land, ocean, and atmosphere. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectroradiometer (MISR) instruments provide information for the temporal studies of the globe. After providing over 16 years of complementary measurements, a synergistic use of the measurements obtained from these sensors is beneficial for various science products. The 20 reflective solar bands (RSBs) of MODIS are calibrated using a combination of solar diffuser and lunar measurements, supplemented by measurements from pseudoinvariant desert sites. MODIS views the on-board calibrators and the earth via a two-sided scan mirror at three spatial resolutions: 250 m using 40 detectors in bands 1 and 2, 500 m using 20 detectors in bands 3 and 4, and 1000 m using 10 detectors in bands 819 and 26. Simultaneous measurements of the earths surface are acquired in a push-broom fashion by MISR at nine view angles spreading out in the forward and backward directions along the flight path. While the swath width for MISR acquisitions is 360 km, MODIS scans a wider swath of 2330 km via its two-sided scan mirror. The reflectance of the MODIS scan mirror has an angle dependence characterized by the response versus scan angle (RVS). Its on-orbit change is derived using the gain from a combination of on-board and earth-view measurements. The on-orbit RVS for MODIS has experienced a significant change, especially for the short-wavelength bands. The on-orbit RVS change for the short-wavelength bands (bands 3, 8, and 9) at nadir is observed to be greater than 10 over the mission lifetime. Due to absence of a scanning mechanism, MISR can serve as an effective tool to evaluate and monitor the on-orbit performance of the MODIS RVS. Furthermore, it can also monitor the detector and scan-mirror differences for the MODIS bands using simultaneous measurements from earth-scene targets, e.g., North Atlantic Ocean and North African desert. Simultaneous measurements provide the benefit of minimizing the impact of earth-scene features while comparing the radiometric performance using vicarious techniques. Long-term observations of both instruments using select ground targets also provide an evaluation of the long-term calibration stability. The goal of this paper is to demonstrate the use of MISR to monitor and enhance the on-orbit calibration of the MODIS RSB. The radiometric calibration requirements for the MODIS RSB are +/- 2% in reflectance and +/- 5% in radiance at typical radiance levels within +/- 45 deg. of nadir. The results show that the long-term changes in the MODIS reflectance at nadir frames are generally within 1. The MODIS level 1B calibrated products, generated after correcting for the on-orbit changes in the gain and RVS, do not have any correction for changes in the instruments polarization sensitivity. The mirror-side-dependent polarization sensitivity exhibits an on-orbit change, primarily in the blue bands, that manifests in noticeable mirror side differences in the MODIS calibrated products. The mirror side differences for other RSB are observed to be less than 1%, therefore demonstrating an excellent on-orbit performance. The detector differences in the blue bands of MODIS exhibit divergence in recent years beyond 1%, and a calibration algorithm improvement has been identified to mitigate this effect. Short-term variations in the recent year caused by the forward updates were identified in bands 1 and 2 and are planned to be corrected in the next reprocess.

  1. A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data

    PubMed Central

    Crosbie, Ewan; Sorooshian, Armin; Monfared, Negar Abolhassani; Shingler, Taylor; Esmaili, Omid

    2014-01-01

    This study reports a multi-year (2000–2009) aerosol characterization for metropolitan Tehran and surrounding areas using multiple datasets (Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), Total Ozone Mapping Spectrometer (TOMS), Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART), and surface and upper air data from local stations). Monthly trends in aerosol characteristics are examined in the context of the local meteorology, regional and local emission sources, and air mass back-trajectory data. Dust strongly affects the region during the late spring and summer months (May–August) when aerosol optical depth (AOD) is at its peak and precipitation accumulation is at a minimum. In addition, the peak AOD that occurs in July is further enhanced by a substantial number of seasonal wildfires in upwind regions. Conversely, AOD is at a minimum during winter; however, reduced mixing heights and a stagnant lower atmosphere trap local aerosol emissions near the surface and lead to significant reductions in visibility within Tehran. The unique meteorology and topographic setting makes wintertime visibility and surface aerosol concentrations particularly sensitive to local anthropogenic sources and is evident in the noteworthy improvement in visibility observed on weekends. Scavenging of aerosol due to precipitation is evident during the winter when aconsistent increase in surface visibility and concurrent decrease in AOD is observed in the days after rain compared with the days immediately before rain. PMID:25083295

  2. Regional Changes in Earths Color and Texture as Observed From Space Over a 15-Year Period

    NASA Technical Reports Server (NTRS)

    Zhao, Guangyu; Di Girolamo, Larry; Diner, David J.; Bruegge, Carol J.; Mueller, Kevin J.; Wu, Dong L.

    2016-01-01

    Earth-observing satellites provide global observations of many geophysical variables. As these variables are derived from measured radiances, the underlying radiance data are the most reliable sources of information for change detection. Here, we identify statistically significant trends in the color and spatial texture of the Earth as viewed from multiple directions from the Multi-angle Imaging SpectroRadiometer (MISR), which has been sampling the angular distribution of scattered sunlight since 2000. Globally, our results show that the Earth has been appearing relatively bluer (up to 1.6 % per decade from both nadir and oblique views) and smoother (up to 1.5 % per decade only from oblique views) over the past 15 years. The magnitude of the global blueing trends is comparable to that of uncertainties in radiometric calibration stability. Regional shifts in color and texture, which are significantly larger than global means, are observed, particularly over polar regions, along the boundaries of the subtropical highs, the tropical western Pacific, Southwestern Asia, and Australia. We demonstrate that the large regional trends cannot be explained either by uncertainties in radiometric calibration or variability in total or spectral solar irradiance; hence, they reflect changes internal to the Earths climate system. The 15-year-mean true color composites and texture images of the Earth at both nadir and oblique views are also presented for the first time.

  3. NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE): Changing patterns in the use of NRT satellite imagery

    NASA Astrophysics Data System (ADS)

    Davies, D.; Michael, K.; Schmaltz, J. E.; Harrison, S.; Ding, F.; Durbin, P. B.; Boller, R. A.; Cechini, M. F.; Rinsland, P. L.; Ye, G.; Mauoka, E.

    2015-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery approximately 3 hours from satellite observation, to monitor natural events globally and to meet the needs of the near real-time (NRT) applications community. This article describes LANCE, and how the use of NRT data and imagery has evolved. Since 2010 there has been a four-fold increase in both the volume of data and the number of files downloaded. Over the last year there has been a marked shift in the way in which users are accessing NRT imagery; users are gravitating towards Worldview and the Global Imagery Browse Services (GIBS) and away from MODIS Rapid Response, in part due to the increased exposure through social media. In turn this is leading to a broader range of users viewing NASA NRT imagery. This article also describes new, and planned, product enhancements to LANCE. Over the last year, LANCE has expanded to support NRT products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Multi-angle Imaging SpectroRadiometer (MISR). LANCE elements are also planning to ingest and process NRT data from the Visible Infrared Imager Radiometer Suite (VIIRS), and the advanced Ozone Mapping and Profiler Suite (OMPS) instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite in the near future.

  4. MISR Views a Fire-Scarred Landscape

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This MISR image pair shows 'before and after' views of the area around the Hanford Nuclear Reservation near Richland, Washington. On June 27, 2000, a fire in the dry sagebrush was sparked by an automobile crash. The flames were fanned by hot summer winds. By the day after the accident, about 100,000 acres had burned, and the fire's spread forced the closure of highways and loss of homes.

    These images, from Terra orbits 2176 and 3341, were obtained by MISR's vertical-viewing (nadir) camera. Compare the area just above and to the right of the line of cumulus clouds in the May 15 image with the same area imaged on August 3. The darkened burn scar measures approximately 35 kilometers across. The Columbia River is seen wending its way around the area, and the Snake River branches off to the right.

    According to Idaho's National Interagency Fire Center, the US has been experiencing the worst fire season since 1996.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  5. A target field design of open multi-purpose RF coil for musculoskeletal MR imaging at 3T.

    PubMed

    Gao, Fei; Zhang, Rui; Zhou, Diange; Wang, Xiaoying; Huang, Kefu; Zhang, Jue

    2016-10-01

    Musculoskeletal MR imaging under multi-angle situations plays an increasingly important role in assessing joint and muscle tissues system. However, there are still limitations due to the closed structures of most conventional RF coils. In this study, a time-harmonic target-field method was employed to design open multi-purpose coil (OMC) for multi-angle musculoskeletal MR imaging. The phantom imaging results suggested that the proposed OMC could achieve homogeneously distributed magnetic field and high signal-to-noise ratio (SNR) of 239.04±0.83 in the region of interest (ROI). The maximum temperature in the heating hazard test was 16°C lower than the standard regulation, which indicated the security of the designed OMC. Furthermore, to demonstrate the effectiveness of the proposed OMC for musculoskeletal MR imaging, especially for multi-angle imaging, a healthy volunteer was examined for MR imaging of elbow, ankle and knee using OMC. The in vivo imaging results showed that the proposed OMC is effective for MR imaging of musculoskeletal tissues at different body parts, with satisfied B1 field homogeneity and SNR. Moreover, the open structure of the OMC could provide a large joint movement region. The proposed open multi-purpose coil is feasible for musculoskeletal MR imaging, and potentially, it is more suitable for the evaluation of musculoskeletal tissues under multi-angle conditions. Copyright © 2016. Published by Elsevier Inc.

  6. A study of 15-year aerosol optical thickness and direct shortwave aerosol radiative effect trends using MODIS, MISR, CALIOP and CERES

    NASA Astrophysics Data System (ADS)

    Alfaro-Contreras, Ricardo; Zhang, Jianglong; Reid, Jeffrey S.; Christopher, Sundar

    2017-11-01

    By combining Collection 6 Moderate Resolution and Imaging Spectroradiometer (MODIS) and Version 22 Multi-angle Imaging Spectroradiometer (MISR) aerosol products with Cloud and Earth's Radiant Energy System (CERES) flux products, the aerosol optical thickness (AOT, at 0.55 µm) and shortwave (SW) aerosol radiative effect (SWARE) trends are studied over ocean for the near-full Terra (2000-2015) and Aqua (2002-2015) data records. Despite differences in sampling methods, regional SWARE and AOT trends are highly correlated with one another. Over global oceans, weak SWARE (cloud-free SW flux) and AOT trends of 0.5-0.6 W m-2 (-0.5 to -0.6 W m-2) and 0.002 AOT decade-1 are found using Terra data. Near-zero AOT and SWARE trends are also found for using Aqua data, regardless of the angular distribution models (ADMs) used. Regionally, positive AOT and cloud-free SW flux (negative SWARE) trends are found over the Bay of Bengal, the Arabian Sea, the Arabian/Persian Gulf and the Red Sea, while statistically significant negative trends are derived over the Mediterranean Sea and the eastern US coast. In addition, the global mean instantaneous SW aerosol direct forcing efficiencies are found to be ˜ -60 W m-2 AOT-1, with corresponding SWARE values of ˜ -7 W m-2 from both Aqua and Terra data, again regardless of CERES ADMs used. Regionally, SW aerosol direct forcing efficiency values of ˜ -40 W m-2 AOT-1 are found over the southwest coast of Africa where smoke aerosol particles dominate in summer. Larger (in magnitude) SW aerosol direct forcing efficiency values of -50 to -80 W m-2 AOT-1 are found over several other dust- and pollutant-aerosol-dominated regions. Lastly, the AOT and SWARE trends from this study are also intercompared with aerosol trends (such as active-based ones) from several previous studies. Findings suggest that a cohesive understanding of the changing aerosol skies can be achieved through the analysis of observations from both passive- and active-based analyses, as well as from both narrowband and broadband datasets.

  7. Assessment of OMI Near-UV Aerosol Optical Depth over Land

    NASA Technical Reports Server (NTRS)

    Ahn, Changwoo; Torres, Omar; Jethva, Hiren

    2014-01-01

    This is the first comprehensive assessment of the aerosol optical depth (AOD) product retrieved from the near-UV observations by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. The OMI-retrieved AOD by the ultraviolet (UV) aerosol algorithm (OMAERUV version 1.4.2) was evaluated using collocated Aerosol Robotic Network (AERONET) level 2.0 direct Sun AOD measurements over 8 years (2005-2012). A time series analysis of collocated satellite and ground-based AOD observations over 8 years shows no discernible drift in OMI's calibration. A rigorous validation analysis over 4 years (2005-2008) was carried out at 44 globally distributed AERONET land sites. The chosen locations are representative of major aerosol types such as smoke from biomass burning or wildfires, desert mineral dust, and urban/industrial pollutants. Correlation coefficient (p) values of 0.75 or better were obtained at 50 percent of the sites with about 33 percent of the sites in the analysis reporting regression line slope values larger than 0.70 but always less than unity. The combined AERONET-OMAERUV analysis of the 44 sites yielded a p of 0.81, slope of 0.79, Y intercept of 0.10, and 65 percent OMAERUV AOD falling within the expected uncertainty range (largest of 30 percent or 0.1) at 440 nanometers. The most accurate OMAERUV retrievals are reported over northern Africa locations where the predominant aerosol type is desert dust and cloud presence is less frequent. Reliable retrievals were documented at many sites characterized by urban-type aerosols with low to moderate AOD values, concentrated in the boundary layer. These results confirm that the near-ultraviolet observations are sensitive to the entire aerosol column. A simultaneous comparison of OMAERUV, Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue, and Multiangle Imaging Spectroradiometer (MISR) AOD retrievals to AERONET measurements was also carried out to evaluate the OMAERUV accuracy in relation to those of the standard aerosol satellite products. The outcome of the comparison indicates that OMAERUV, MODIS Deep Blue, and MISR retrieval accuracies in arid and semiarid environments are statistically comparable.

  8. Idaho Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wildfires in Northwestern United States     ... (MISR) image of smoke plumes from devastating wildfires in the northwestern United States. This view of the Clearwater and ... at JPL August 5, 2000 - Smoke plumes from wildfires in Idaho. project:  MISR category:  ...

  9. 2016 Summer Olympic Games Site

    Atmospheric Science Data Center

    2016-12-30

    article title:  Site of the 2016 Summer Olympic Games viewed by NASA's MISR     ... 2, 2016, just prior to the opening of the Summer Olympic Games. On the left is an image from MISR's nadir (downward-looking) camera; the ...

  10. Supertyphoon Nepartak Barreling Toward Taiwan Viewed by NASA MISR

    NASA Image and Video Library

    2016-07-08

    Typhoon Nepartak, the first large typhoon in the northwest Pacific this season, is currently taking aim at the east coast of Taiwan. Over the past few days, Nepartak has rapidly gained strength, growing from a tropical storm to the equivalent of a Category 5 hurricane with sustained wind speeds of more than 160 miles (258 kilometers) per hour. Taiwan's Central Weather Bureau has issued a torrential rain warning, bracing for likely flooding as 5 to 15 inches (13 to 38 centimeters) of rain are expected to fall over Taiwan during the storm's passage. Waves of up to 40 feet (12 meters) are predicted on the coast as the typhoon approaches, and air and train travel have been severely impacted. The typhoon is currently moving at about 10 miles per hour (16 kilometers) to the west-northwest, and is predicted to pass over Taiwan within the next day and then hit the coast of mainland China. Central and eastern China are poorly situated to absorb the rainfall from Nepartak after suffering the effects of severe monsoon flooding, which has killed at least 140 people in the past week. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite captured this view of Typhoon Nepartak on July 7, 2016, at 10:30 a.m. local time (2:30 a.m. UTC). On the left is an image from the nadir (vertical pointing) camera, which shows the central portion of Nepartak and the storm's eye. The image is about 235 miles (378 kilometers) across. The island of Manila in the Philippines, about 250 miles (400 kilometers) south of Taiwan, is visible to the southwest of the eye. The image shows that Nepartak's center is extremely compact, rather than broken up into spiral bands as is more typical of typhoons. This means that the storm may retain more of its strength as it passes over land. MISR uses nine cameras to capture images of the typhoon from different angles. This provides a stereographic view, which can be used to determine the height of the storm's cloud tops. These heights are plotted in the middle panel, superimposed on the image. This shows that the cloud tops are relatively low, about 2.5 miles (4 kilometers), in the eye, but much higher, up to 12.5 miles (20 kilometers), just outside it. By tracking the motion of clouds as they are viewed by each of the nine cameras over about seven minutes, it is possible to also derive how fast the clouds are moving due to wind. These wind vectors are superimposed on the image in the right panel. The length of each arrow shows the wind speed at that location (compare to the 45 miles per hour or 20 meters per second arrow in the legend), and the color shows the height at which the wind is being computed. The motion of the low-level winds (red and yellow arrows) is counterclockwise, while the motion of the high winds (blue and purple arrows) is mostly clockwise. This is because hurricanes draw in warm, moist air at low altitudes, which then flows upward around the eye, releases its moisture as rain, and moves outward at high altitudes. As is typical of these types of storm systems, the inflowing low winds and the outflowing high winds spin in different directions. http://photojournal.jpl.nasa.gov/catalog/PIA20719

  11. A method for automatic grain segmentation of multi-angle cross-polarized microscopic images of sandstone

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Gu, Qing; Hao, Huizhen; Li, Na; Wang, Bingqian; Hu, Xiumian

    2018-06-01

    Automatic grain segmentation of sandstone is to partition mineral grains into separate regions in the thin section, which is the first step for computer aided mineral identification and sandstone classification. The sandstone microscopic images contain a large number of mixed mineral grains where differences among adjacent grains, i.e., quartz, feldspar and lithic grains, are usually ambiguous, which make grain segmentation difficult. In this paper, we take advantage of multi-angle cross-polarized microscopic images and propose a method for grain segmentation with high accuracy. The method consists of two stages, in the first stage, we enhance the SLIC (Simple Linear Iterative Clustering) algorithm, named MSLIC, to make use of multi-angle images and segment the images as boundary adherent superpixels. In the second stage, we propose the region merging technique which combines the coarse merging and fine merging algorithms. The coarse merging merges the adjacent superpixels with less evident boundaries, and the fine merging merges the ambiguous superpixels using the spatial enhanced fuzzy clustering. Experiments are designed on 9 sets of multi-angle cross-polarized images taken from the three major types of sandstones. The results demonstrate both the effectiveness and potential of the proposed method, comparing to the available segmentation methods.

  12. Utility of BRDF Models for Estimating Optimal View Angles in Classification of Remotely Sensed Images

    NASA Technical Reports Server (NTRS)

    Valdez, P. F.; Donohoe, G. W.

    1997-01-01

    Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.

  13. Analysis of Accuracy of Modis BRDF Product (MCD43 C6) Based on Misr Land Surface Brf Product - a Case Study of the Central Part of Northeast Asia

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, S.; Qin, W.; Murefu, M.; Wang, Y.; Yu, Y.; Zhen, Z.

    2018-04-01

    EOS/MODIS land surface Bi-directional Reflectance Distribution Function (BRDF) product (MCD43), with the latest version C6, is one of the most important operational BRDF products with global coverage. The core sub-product MCD43A1 stores 3 parameters of the RossThick-LiSparseR semi-empirical kernel-driven BRDF model. It is important for confident use of the product to evaluate the accuracy of bi-directional reflectance factor (BRF) predicted by MCD43A1 BRDF model (mBRF). A typical region in the central part of Northeast Asia is selected as the study area. The performance of MCD43A1 BRDF model is analyzed in various observation geometries and phenological phases, using Multi-angle Imaging SpectroRadiometer (MISR) land-surface reflectance factor product (MILS_BRF) as the reference data. In addition, MODIS products MCD12Q1 and MOD/MYD10A1 are used to evaluate the impacts of land cover types and snow covers on the model accuracy, respectively. The results show an overall excellent performance of MCD43A1 in representing the anisotropic reflectance of land surface, with root mean square error (RMSE) of 0.0262 and correlation coefficient (R) of 0.9537, for all available comparable samples of MILS_BRF and mBRF pairs. The model accuracy varies in different months, which is related to the phenological phases of the study area. The accuracy for pixels labelled as `snow' by MCD43 is obviously low, with RMSE/R of 0.0903/0.8401. Ephemeral snowfall events further decrease the accuracy, with RMSE/R of 0.1001/0.7715. These results provide meaningful information to MCD43 users, especially those, whose study regions are subject to phenological cycles as well as snow cover and change.

  14. Seasonal variability of ice nuclei over Central Europe

    NASA Astrophysics Data System (ADS)

    Klein, Holger; Nickovic, Slobodan; Schuetz, Lothar; Weinbruch, Stephan; Levin, Zev; Andreae, Meinrat; Barrie, Leonard; Ebert, Martin; Bundke, Ulrich; Bingemer, Heinz

    2010-05-01

    The abundance of ice nuclei (IN) has been measured every day since April 2008 at the Taunus Observatory on Mt. Kleiner Feldberg (50.22°N, 8.45°E, 825 m. above sea level) at 20 km north of Frankfurt / M., Germany. Aerosol samples were collected on silicon wafers by an electrical aerosol precipitator and analyzed for IN number concentration (condensation and deposition freezing modes) using the static vapor diffusion chamber FRIDGE (Klein et al., Atmos. Res, doi:10.1016/j.atmosres.2009.08.002, 2009). Around 800 samples were analyzed so far. The IN number concentration shows a pronounced seasonal signal with about a factor of 10 higher ice nuclei in summer than in winter. Desert dust transported over long distances appears to be the dominant contributor to IN at the site. Episodes of Sahara dust transport are well represented by individual peaks in the IN record and identified by airmass trajectories, transport modelling and mineralogical analysis. The contribution of mineral dust to IN is further corroborated by the covariance of the individual IN concentrations with the aerosol optical depth (AOD) due to extinction by large particles, which was measured simultaneously at the AERONET site (Max-Planck-Institute for Chemistry) at Mainz, 20 km southwest of our site. The relation between IN and AOD not only holds for our individual daily measurements, but is also valid for the monthly means of our IN record, which are highly correlated to the multi-year monthly means of coarse and middle-sized dust AOD which is derived from the Multi-angle Imaging SpectroRadiometer (MISR) satellite instrument (http://eosweb.larc.nasa.gov/cgi-bin/misr_tools/clim_likely.cgi ) for the grid point closest to our site. Acknowledgements: We gratefully acknowledge funding of this work by the Deutsche Forschungsgemeinschaft (DFG) as part of the collaborative research centre Die troposphärische Eisphase (SFB641) and by the German-Israeli Foundation (GIF).

  15. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    NASA Astrophysics Data System (ADS)

    Liu, B.; Cong, Z.; Wang, Y.; Xin, J.; Wan, X.; Pan, Y.; Liu, Z.; Wang, Y.; Zhang, G.; Kang, S.

    2016-12-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at Ngari, Qomolangma (QOMS), Nam Co, and SouthEastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Combining surface aerosols data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from barren to forest, in inverse relation to the PM2.5 ratios. The seasonality of aerosol mass parameters was land-cover dependent. Over forest and grassland areas, TSP mass, PM2.5 mass, MISR-AOD and fine-mode AOD were higher in spring and summer, followed by relatively lower values in autumn and winter. At the barren site (the QOMS station), there were inconsistent seasonal variations between surface TSP mass (PM2.5 mass) and atmospheric column AOD (fine-mode AOD). Our findings implicate that, HTP aerosol masses (especially their reginal characteristics and fine particle emissions) need to be treated sensitively in relation to assessments of their climatic effect

  16. Bathymetric mapping of submarine sand waves using multiangle sun glitter imagery: a case of the Taiwan Banks with ASTER stereo imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-guo; Yang, Kang; Lou, Xiu-lin; Li, Dong-ling; Shi, Ai-qin; Fu, Bin

    2015-01-01

    Submarine sand waves are visible in optical sun glitter remote sensing images and multiangle observations can provide valuable information. We present a method for bathymetric mapping of submarine sand waves using multiangle sun glitter information from Advanced Spaceborne Thermal Emission and Reflection Radiometer stereo imagery. Based on a multiangle image geometry model and a sun glitter radiance transfer model, sea surface roughness is derived using multiangle sun glitter images. These results are then used for water depth inversions based on the Alpers-Hennings model, supported by a few true depth data points (sounding data). Case study results show that the inversion and true depths match well, with high-correlation coefficients and root-mean-square errors from 1.45 to 2.46 m, and relative errors from 5.48% to 8.12%. The proposed method has some advantages over previous methods in that it requires fewer true depth data points, it does not require environmental parameters or knowledge of sand-wave morphology, and it is relatively simple to operate. On this basis, we conclude that this method is effective in mapping submarine sand waves and we anticipate that it will also be applicable to other similar topography types.

  17. Angular difference feature extraction for urban scene classification using ZY-3 multi-angle high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Chen, Huijun; Gong, Jianya

    2018-01-01

    Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed ADF features can effectively improve the accuracy of urban scene classification, with a significant increase in overall accuracy (3.8-11.7%) compared to using the spectral bands alone. Furthermore, the results indicated the superiority of the proposed ADFs in distinguishing between the spectrally similar and complex man-made classes, including roads and various types of buildings (e.g., high buildings, urban villages, and residential apartments).

  18. Russian Arctic

    Atmospheric Science Data Center

    2013-04-16

    ... faint greenish hue in the multi-angle composite. This subtle effect suggests that the nadir camera is observing more of the brighter ... energy and water at the Earth's surface, and for preserving biodiversity. The Multi-angle Imaging SpectroRadiometer observes the daylit ...

  19. A Cloud Hydrology and Albedo Synthesis Mission (CHASM)

    NASA Technical Reports Server (NTRS)

    Davies, Roger

    2004-01-01

    This slide presentation reviews the Cloud Hydrology and Albedo Synthesis Mission (CHASM). The interaction of clouds with radiation and the hydrological cycle represents a huge uncertainty in our understanding of climate science and the modeling of climate system feedbacks. Despite the recognized need for a unified treatment of cloud processes, the present global average values of remotely sensed cloud liquid water and theoretically accepted values used for cloud physics and precipitation modeling differ by an order of magnitude. This is due in part to sampling and saturation effects, as well as to threedimensional cloud structure effects. In recent work with the Multiangle Imaging SpectroRadiometer (MISR) on Terra, we have gained new insights as to how the remote sensing approach could be significantly improved using a new instrument that combines passive optical (visible and near infrared) and microwave measurements, both as pushbroom scanners with multiple viewing angles, to the degree that measurements of liquid water path over deep convective clouds over land also become possible. This instrument would also have the ability of measuring height-resolved cloud-tracked winds using a hyper stereo retrieval technique. Deployment into a precessing low earth orbit would be optimal for measuring diurnal cloud activity. We have explored an instrument design concept for this that looks promising if we can establish partnerships that provide launch and bus capabilities.

  20. MISR Views New York and Southern New England

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This MISR nadir-camera image includes New York City, site of the recently completed baseball playoff between the American League's Yankees and the National League's Mets. The Yankees defeated the Mets, 4 games to 1, in the first 'Subway Series' to be held since 1956. The image was acquired on October 20, 2000 (Terra orbit 4475), one day prior to the opening game of the Series.

    The Hudson River Valley and portions of southern New England, resplendent in fall colors, are visible in this image. Southwest of Albany are New York's Catskill Mountains, a popular wilderness and recreation area. The Catskills are part of the Appalachian chain.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  1. Method of lungs regional ventilation function assessment on the basis of continuous lung monitoring results using multi-angle electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew

    2018-04-01

    With continuous monitoring of the lungs using multi-angle electric impedance tomography method, a large array of images of impedance changes in the patient's chest cavity is accumulated. This article proposes a method for evaluating the regional ventilation function of lungs based on the results of continuous monitoring using the multi-angle electric impedance tomography method, which allows one image of the thoracic cavity to be formed on the basis of a large array of images of the impedance change in the patient's chest cavity. In the presence of pathologies in the lungs (neoplasms, fluid, pneumothorax, etc.) in these areas, air filling will be disrupted, which will be displayed on the generated image. When conducting continuous monitoring in several sections, a three-dimensional pattern of air filling of the thoracic cavity is possible.

  2. MISR Stereo Imaging Distinguishes Smoke from Cloud

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These views of western Alaska were acquired by MISR on June 25, 2000 during Terra orbit 2775. The images cover an area of about 150 kilometers x 225 kilometers, and have been oriented with north to the left. The left image is from the vertical-viewing (nadir) camera, whereas the right image is a stereo 'anaglyph' that combines data from the forward-viewing 45-degree and 60-degree cameras. This image appears three-dimensional when viewed through red/blue glasses with the red filter over the left eye. It may help to darken the room lights when viewing the image on a computer screen.

    The Yukon River is seen wending its way from upper left to lower right. A forest fire in the Kaiyuh Mountains produced the long smoke plume that originates below and to the right of image center. In the nadir view, the high cirrus clouds at the top of the image and the smoke plume are similar in appearance, and the lack of vertical information makes them hard to differentiate. Viewing the righthand image with stereo glasses, on the other hand, demonstrates that the scene consists of several vertically-stratified layers, including the surface terrain, the smoke, some scattered cumulus clouds, and streaks of high, thin cirrus. This added dimensionality is one of the ways MISR data helps scientists identify and classify various components of terrestrial scenes.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  3. Quantifying the radiative and microphysical impacts of fire aerosols on cloud dynamics in the tropics using temporally offset satellite observations

    NASA Astrophysics Data System (ADS)

    Tosca, M. G.; Diner, D. J.; Garay, M. J.; Kalashnikova, O.

    2013-12-01

    Anthropogenic fires in Southeast Asia and Central America emit smoke that affects cloud dynamics, meteorology, and climate. We measured the cloud response to direct and indirect forcing from biomass burning aerosols using aerosol retrievals from the Multi-angle Imaging SpectroRadiometer (MISR) and non-synchronous cloud retrievals from the MODerate resolution Imaging Spectroradiometer (MODIS) from collocated morning and afternoon overpasses. Level 2 data from thirty-one individual scenes acquired between 2006 and 2010 were used to quantify changes in cloud fraction, cloud droplet size, cloud optical depth and cloud top temperature from morning (10:30am local time) to afternoon (1:30pm local time) in the presence of varying aerosol burdens. We accounted for large-scale meteorological differences between scenes by normalizing observed changes to the mean difference per individual scene. Elevated AODs reduced cloud fraction and cloud droplet size and increased cloud optical depths in both Southeast Asia and Central America. In mostly cloudy regions, aerosols significantly reduced cloud fraction and cloud droplet sizes, but in clear skies, cloud fraction, cloud optical thickness and cloud droplet sizes increased. In clouds with vertical development, aerosols reduced cloud fraction via semi-direct effects but spurred cloud growth via indirect effects. These results imply a positive feedback loop between anthropogenic burning and cloudiness in both Central America and Southeast Asia, and are consistent with previous studies linking smoke aerosols to both cloud reduction and convective invigoration.

  4. NASA's Terra Spacecraft Measures Height of California Rim Fire Smoke Plumes

    Atmospheric Science Data Center

    2014-05-15

    ... This MISR image, acquired Aug. 23, 2013, shows a 121-by-165-mile (194-by-266 kilometer) portion of the scene, where the smoke is the ... effects of wind, but have an uncertainty of less than 0.6 mile (1 kilometer). MISR was built and is managed by NASA's Jet Propulsion ...

  5. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in certain smoke-dominated regions, including broadleaf evergreens in Brazil and South-East Asia.

  6. A calibrated iterative reconstruction for quantitative photoacoustic tomography using multi-angle light-sheet illuminations

    NASA Astrophysics Data System (ADS)

    Wang, Yihan; Lu, Tong; Zhang, Songhe; Song, Shaoze; Wang, Bingyuan; Li, Jiao; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Quantitative photoacoustic tomography (q-PAT) is a nontrivial technique can be used to reconstruct the absorption image with a high spatial resolution. Several attempts have been investigated by setting point sources or fixed-angle illuminations. However, in practical applications, these schemes normally suffer from low signal-to-noise ratio (SNR) or poor quantification especially for large-size domains, due to the limitation of the ANSI-safety incidence and incompleteness in the data acquisition. We herein present a q-PAT implementation that uses multi-angle light-sheet illuminations and a calibrated iterative multi-angle reconstruction. The approach can acquire more complete information on the intrinsic absorption and SNR-boosted photoacoustic signals at selected planes from the multi-angle wide-field excitations of light-sheet. Therefore, the sliced absorption maps over whole body can be recovered in a measurementflexible, noise-robust and computation-economic way. The proposed approach is validated by the phantom experiment, exhibiting promising performances in image fidelity and quantitative accuracy.

  7. Severe Air Pollution in New Delhi

    Atmospheric Science Data Center

    2016-12-30

    ... depth is superimposed on the image. Optical depth is a quantitative measure of the abundance of aerosols (tiny particles in the ... Other MISR data are available through the NASA Langley Research Center; for more information, go to ... Maryland. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center, Hampton, Virginia. JPL is a ...

  8. The Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Charlock, Thomas; Wielicki, Bruce; Kahn, Ralph; Martins, J. Vanderlei; Gatebe, Charles; Hobbs, Peter V.; Purgold, G. Carl; Redemann, Jens; Remer, Lorraine

    2004-01-01

    NASA has developed an Earth Observing System (EOS) consisting of a series of satellites designed to study global change from space. The EOS flagship is the EOS TERRA satellite, launched in December 1999, equipped with five unique sensors to monitor and study the Earth s heat budget and many of the key controlling variables governing the Earth's climate system. CLAMS, the Chesapeake Lighthouse and Aircraft Measurements for Satellites field campaign was conducted from NASA Wallops Flight Facility and successfully executed over the middle Atlantic eastern seaboard from July 10 August 2, 2001. CLAMS is primarily a shortwave closure experiment designed to validate and improve EOS TERRA satellite data products being derived from three sensors: CERES (Clouds and Earth's Radiant Energy System), MISR (Multi-angle Imaging Spectro-Radiometer) and MODIS (MODerate Resolution Imaging Spectroradiometer). CLAMS is jointly sponsored by the CERES, MISR and MODIS instrument teams and the NASA GEWEX Global Aerosol Climatology Project (GACP). CLAMS primary objectives are to validate satellite-based retrievals of aerosol properties and vertical profiles of radiative flux, temperature and water vapor. Central to CLAMS measurement strategy is the Chesapeake Lighthouse, a stable sea platform located in the Atlantic Ocean, 13 miles east of Virginia Beach near the mouth of the Chesapeake Bay and the site of an ongoing CERES Ocean Validation Experiment (COVE). Six research aircraft were deployed to make detailed measurements of the atmosphere and ocean surface in the vicinity of COVE, over the surrounding ocean, over nearby NOAA buoys and over a few land sites. The measurements are used to validate and provide ground truth for simultaneous products being derived from TERRA data, a key step toward an improved understanding and ability to predict changes in the Earth's climate. One of the two CERES instruments on-board TERRA was programmed for Rotating Azimuth Plane Scans (RAPS) during CLAMS, increasing the CERES coverage over COVE by a factor of 10. Nine coordinated aircraft missions and numerous additional sorties were flown under a variety of atmospheric conditions and aerosol loadings. On one golden day, July 17, all six aircraft flew coordinated patterns, vertically stacked between 100 ft and 65,000 ft over the COVE site as the TERRA satellite orbited overhead. A summary of CLAMS measurement campaign and a description of the platforms and measurements is given.

  9. Decadal-scale trends in regional aerosol particle properties and their linkage to emission changes

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Jiang, Jonathan H.; Gu, Yu; Diner, David; Worden, John; Liou, Kuo-Nan; Su, Hui; Xing, Jia; Garay, Michael; Huang, Lei

    2017-05-01

    Understanding long-term trends in aerosol loading and properties is essential for evaluating the health and climatic effects of these airborne particulates as well as the effectiveness of pollution control policies. While many studies have used satellite data to examine the trends in aerosol optical depth (AOD), very few have investigated the trends in aerosol properties associated with particle size, morphology, and light absorption. In this study, we investigate decadal-scale (13-15 year) trends in aerosol loading and properties during 2001-2015 over three populous regions: the Eastern United States (EUS), Western Europe (WEU), and Eastern and Central China (ECC). We use observations from MISR (Multi-angle Imaging SpectroRadiometer) and MODIS (Moderate resolution Imaging Spectroradiometer). Relationships between aerosol property trends and air pollutant emission changes are examined. We find that annual mean AOD shows pronounced decreasing trends over EUS and WEU regions, as a result of considerable emission reductions in all major pollutants except for mineral dust and ammonia (NH3). Over the ECC region, AOD increases before 2006 due to emission increases induced by rapid economic development, fluctuates between 2006 and 2011, and subsequently decreases after 2011 in conjunction with effective emission reduction in anthropogenic primary aerosols, sulfur dioxide (SO2), and nitrogen oxides (NOx). The fraction of small-size AOD (<0.7 μm diameter), Ångstrom exponent and single-scattering albedo have generally decreased, while the fractions of large-size (>1.4 μm diameter), nonspherical and absorbing AOD have generally shown increasing trends over EUS and WEU regions, indicating that fine and light-scattering aerosol constituents have been more effectively reduced than coarse and light-absorbing constituents. These trends are consistent with the larger reduction ratios in SO2 and NOx emissions than in primary aerosols, including mineral dust and black carbon (BC). Over the ECC region, no significant trends are observed with respect to size distribution, morphology, or light absorption, which we attribute to a simultaneous increase in emissions of SO2, NOx, and primary aerosols including BC before 2006, and a simultaneous decrease after 2011. This study demonstrates the importance and usefulness of satellite-borne sensors, particularly MISR, in association with evaluating the effectiveness of air pollution control policies.

  10. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    NASA Astrophysics Data System (ADS)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region.

  11. Evaluation of Detector-to-Detector and Mirror Side Differences for Terra MODIS Reflective Solar Bands Using Simultaneous MISR Observations

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Angal, A.; Barnes, W.

    2011-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This study is part of the effort by the MODIS Characterization Support Team (MCST) in order to track the RSB on-orbit performance for MODIS collection 5 data products. To support MCST efforts for future data re-processing, this analysis will be extended to include more spectral bands and temporal coverage.

  12. Real-Time On-Board Processing Validation of MSPI Ground Camera Images

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.

    2010-01-01

    The Earth Sciences Decadal Survey identifies a multiangle, multispectral, high-accuracy polarization imager as one requirement for the Aerosol-Cloud-Ecosystem (ACE) mission. JPL has been developing a Multiangle SpectroPolarimetric Imager (MSPI) as a candidate to fill this need. A key technology development needed for MSPI is on-board signal processing to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's Advanced Information Systems Technology (AIST) Program, JPL is solving the real-time data processing requirements to demonstrate, for the first time, how signal data at 95 Mbytes/sec over 16-channels for each of the 9 multiangle cameras in the spaceborne instrument can be reduced on-board to 0.45 Mbytes/sec. This will produce the intensity and polarization data needed to characterize aerosol and cloud microphysical properties. Using the Xilinx Virtex-5 FPGA including PowerPC440 processors we have implemented a least squares fitting algorithm that extracts intensity and polarimetric parameters in real-time, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information.

  13. Transpacific Transport of Dust to North American High-Elevation Sites: Integrated Dataset and Model Outputs

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Pekour, M. S.; Flynn, C. J.; Berg, L. K.; Beranek, J.; Zelenyuk, A.; Zhao, C.; Leung, L. R.; Ma, P. L.; Riihimaki, L.; Fast, J. D.; Barnard, J.; Hallar, G. G.; McCubbin, I.; Eloranta, E. W.; McComiskey, A. C.; Rasch, P. J.

    2017-12-01

    Understanding the effects of dust on the regional and global climate requires detailed information on particle size distributions and their changes with distance from the source. Awareness is now growing about the tendency of the dust coarse mode with moderate ( 3.5 µm) volume median diameter (VMD) to be rather insensitive to complex removal processes associated with long-range transport of dust from the main sources. Our study, with a focus on the transpacific transport of dust, demonstrates that the impact of coarse mode aerosol (VMD 3µm) is well defined at the high-elevation mountain-top Storm Peak Laboratory (SPL, about 3.2 km MSL) and nearby Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) during March 2011. Significant amounts of coarse mode aerosol are also found at the nearest Aerosol Robotic Network (AERONET) site. Outputs from the high-resolution Weather Research and Forecasting (WRF) Model coupled with chemistry (WRF-Chem) show that the major dust event is likely associated with transpacific transport of Asian and African plumes. Satellite data, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) aerosol optical depth (AOD) and plume height from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar data provide the observational support of the WRF-Chem simulations. Our study complements previous findings by indicating that the quasi-static nature of the coarse mode appears to be a reasonable approximation for Asian and African dust despite expected frequent orographic precipitation over mountainous regions in the western United States.

  14. Global and Regional Evaluation of Over-Land Spectral Aerosol Optical Depth Retrievals from SeaWiFS

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M. J.; Holben, B. N.; Zhang, J.

    2012-01-01

    This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (Sea WiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-year (1997-2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where Sea WiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record should be suitable for quantitative scientific use.

  15. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  16. Wetlands of the Gulf Coast

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This set of images from the Multi-angle Imaging SpectroRadiometer highlights coastal areas of four states along the Gulf of Mexico: Louisiana, Mississippi, Alabama and part of the Florida panhandle. The images were acquired on October 15, 2001 (Terra orbit 9718)and represent an area of 345 kilometers x 315 kilometers.

    The two smaller images on the right are (top) a natural color view comprised of red, green, and blue band data from MISR's nadir(vertical-viewing) camera, and (bottom) a false-color view comprised of near-infrared, red, and blue band data from the same camera. The predominantly red color of the false-color image is due to the presence of vegetation, which is bright at near-infrared wavelengths. Cities appear as grey patches, with New Orleans visible at the southern edge of Lake Pontchartrain, along the left-hand side of the images. The Lake Pontchartrain Bridge runs approximately north-south across the middle of the lake. The distinctive shape of the Mississippi River Delta can be seen to the southeast of New Orleans. Other coastal cities are visible east of the Mississippi, including Biloxi, Mobile and Pensacola.

    The large image is similar to the true-color nadir view, except that red band data from the 60-degree backward-looking camera has been substituted into the red channel; the blue and green data from the nadir camera have been preserved. In this visualization, green hues appear somewhat subdued, and a number of areas with a reddish color are present, particularly near the mouths of the Mississippi, Pascagoula, Mobile-Tensaw, and Escambia Rivers. Here, the red color is highlighting differences in surface texture. This combination of angular and spectral information differentiates areas with aquatic vegetation associated with poorly drained bottom lands, marshes, and/or estuaries from the surrounding surface vegetation. These wetland regions are not as well differentiated in the conventional nadir views.

    Variations in ocean color are apparent in all three views, and represent the outflow of suspended sediment from the seabed shelf to the open waters of the Gulf of Mexico. Major features include the Mississippi Delta, where large amounts of land-derived sediments have been deposited in shallow coastal waters. These deltaic environments form a complex, interconnected web of estuarine channels and extensive coastal wetlands that provide important habitat for fisheries. The city of New Orleans is prone to flooding, with about 45% of the metropolitan core situated at or below sea level. The city is protected by levees, but the wetlands which also function as a buffer from storm surges have been disappearing.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  17. Imaging of earthquake faults using small UAVs as a pathfinder for air and space observations

    USGS Publications Warehouse

    Donnellan, Andrea; Green, Joseph; Ansar, Adnan; Aletky, Joseph; Glasscoe, Margaret; Ben-Zion, Yehuda; Arrowsmith, J. Ramón; DeLong, Stephen B.

    2017-01-01

    Large earthquakes cause billions of dollars in damage and extensive loss of life and property. Geodetic and topographic imaging provide measurements of transient and long-term crustal deformation needed to monitor fault zones and understand earthquakes. Earthquake-induced strain and rupture characteristics are expressed in topographic features imprinted on the landscapes of fault zones. Small UAVs provide an efficient and flexible means to collect multi-angle imagery to reconstruct fine scale fault zone topography and provide surrogate data to determine requirements for and to simulate future platforms for air- and space-based multi-angle imaging.

  18. Global Composite

    Atmospheric Science Data Center

    2013-04-19

    article title:  MISR Global Images See the Light of Day     View Larger Image ... camera and combines data from the red, green and blue spectral bands to create a natural color image. The central view combines ...

  19. Intercomparison of Desert Dust Optical Depth from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; hide

    2012-01-01

    This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify the differences between current datasets. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as assumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, it is important to note that differences in sampling, related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset can be an important issue.

  20. Desert Dust Satellite Retrieval Intercomparison

    NASA Technical Reports Server (NTRS)

    Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; hide

    2012-01-01

    This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify and understand the differences between current algorithms, and hence improve future retrieval algorithms. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as as20 sumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, at least as significant as these differences are sampling issues related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset.

  1. Arctic Refuge

    Atmospheric Science Data Center

    2014-05-15

    article title:  Summer in the Arctic National Wildlife Refuge     View Larger Image This colorful image of the Arctic National Wildlife Refuge and the Beaufort Sea was acquired by the Multi-angle Imaging ...

  2. Southern Florida's River of Grass

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Florida's Everglades is a region of broad, slow-moving sheets of water flowing southward over low-lying areas from Lake Okeechobeeto the Gulf of Mexico. In places this remarkable 'river of grass' is 80 kilometers wide. These images from the Multi-angle Imaging SpectroRadiometer show the Everglades region on January 16, 2002. Each image covers an area measuring 191 kilometers x 205 kilometers. The data were captured during Terra orbit 11072.

    On the left is a natural color view acquired by MISR's nadir camera. A portion of Lake Okeechobee is visible at the top, to the right of image center. South of the lake, whose name derives from the Seminole word for 'big water,' an extensive region of farmland known as the Everglades Agricultural Area is recognizable by its many clustered squares. Over half of the sugar produced in United States is grown here. Urban areas along the east coast and in the northern part of the image extend to the boundaries of Big Cypress Swamp, situated north of Everglades National Park.

    The image on the right combines red-band data from the 46-degree backward, nadir and 46-degree forward-viewing camera angles to create a red, green, blue false-color composite. One of the interesting uses of the composite image is for detecting surface water. Wet surfaces appear blue in this rendition because sun glitter produces a greater signal at the forward camera's view angle. Wetlands visible in these images include a series of shallow impoundments called Water Conservation Areas which were built to speed water flow through the Everglades in times of drought. In parts of the Everglades, these levees and extensive systems such as the Miami and Tamiami Canals have altered the natural cycles of water flow. For example, the water volume of the Shark River Slough, a natural wetland which feeds Everglades National Park, is influenced by the Tamiami Canal. The unique and intrinsic value of the Everglades is now widely recognized, and efforts to restore the natural water cycles are underway.

  3. Atmospheric Motion Vectors from INSAT-3D: Initial quality assessment and its impact on track forecast of cyclonic storm NANAUK

    NASA Astrophysics Data System (ADS)

    Deb, S. K.; Kishtawal, C. M.; Kumar, Prashant; Kiran Kumar, A. S.; Pal, P. K.; Kaushik, Nitesh; Sangar, Ghansham

    2016-03-01

    The advanced Indian meteorological geostationary satellite INSAT-3D was launched on 26 July 2013 with an improved imager and an infrared sounder and is placed at 82°E over the Indian Ocean region. With the advancement in retrieval techniques of different atmospheric parameters and with improved imager data have enhanced the scope for better understanding of the different tropical atmospheric processes over this region. The retrieval techniques and accuracy of one such parameter, Atmospheric Motion Vectors (AMV) has improved significantly with the availability of improved spatial resolution data along with more options of spectral channels in the INSAT-3D imager. The present work is mainly focused on providing brief descriptions of INSAT-3D data and AMV derivation processes using these data. It also discussed the initial quality assessment of INSAT-3D AMVs for a period of six months starting from 01 February 2014 to 31 July 2014 with other independent observations: i) Meteosat-7 AMVs available over this region, ii) in-situ radiosonde wind measurements, iii) cloud tracked winds from Multi-angle Imaging Spectro-Radiometer (MISR) and iv) numerical model analysis. It is observed from this study that the qualities of newly derived INSAT-3D AMVs are comparable with existing two versions of Meteosat-7 AMVs over this region. To demonstrate its initial application, INSAT-3D AMVs are assimilated in the Weather Research and Forecasting (WRF) model and it is found that the assimilation of newly derived AMVs has helped in reduction of track forecast errors of the recent cyclonic storm NANAUK over the Arabian Sea. Though, the present study is limited to its application to one case study, however, it will provide some guidance to the operational agencies for implementation of this new AMV dataset for future applications in the Numerical Weather Prediction (NWP) over the south Asia region.

  4. Variation of Arctic's Sea-ice Albedo between 2000 and 2016 by fusion of MISR and MODIS data

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter; Kharbouche, Said

    2017-04-01

    Many research studies have demonstrated that sea-ice plays a key role in climate change and global warming. Most of these studies are based either on ground in-situ data or on remotely sensed data. The latter data are provided mainly by active (SAR and LiDAR) sensors such as Cryosat2, ERS1/2, ENVISAT, Radarsat1/2, ICESat as well as passive sensors such as SSM/I. Nevertheless, the contribution of such active optical sensors data is limited to parameters such as thickness and sea-ice concentration from which albedo may be inferred. The creation of high quality albedo for sea-ice using optical satellites is confronted with two main obstacles: 1) the Arctic is a very cloudy region and, high quality albedo requires multi-angle observations over a relatively short period; 2) cloud masking over sea-ice is a very difficult task, especially for sensor with low spectral resolution. To overcome the above two obstacles, we discuss in a separate report the generation of this fused daily, weekly, fortnightly and monthly product at 1km and 5km resolution on a polar stereographic grid [1]. The limited swath (380km) of MISR means that not all of the Arctic is covered on a daily basis so composites on different time-steps were produced. The results show that sea-ice albedo has been in continuous decline since 2000 with thinner sea-ice and greater leads and open water as well as more ponding at earlier times in the year. The implications of these results are discussed in terms of the sea-ice climate feedback. Animated visualisations of the albedo patterns each year, the decline in average and the increase in standard deviation in albedo for every single day for all 17 years will be shown to demonstrate the effects of climate change over sea-ice albedo. References [1] Kharbouche & Muller, Production of Arctic sea-ice albedo by fusion of MISR and MODIS data. This conference. Acknowledgements This work was supported by www.QA4ECV.eu, a project of European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405.

  5. Celtic Sea

    Atmospheric Science Data Center

    2013-04-17

    article title:  Coccoliths in the Celtic Sea     View Larger Image As ... This image is a natural-color view of the Celtic Sea and English Channel regions, and was acquired by the Multi-angle Imaging ...

  6. Observational evidence of fire-driven changes to tropical cloudiness

    NASA Astrophysics Data System (ADS)

    Tosca, Michael; Diner, David; Garay, Michael; Kalashnikova, Olga

    2014-05-01

    Anthropogenic fires in the tropics emit smoke aerosols that affect cloud dynamics, meteorology and climate (Tosca et al., 2013). We developed a new technique to observationally quantify the cloud response to biomass burning aerosols using aerosol retrievals from the Multi-angle Imaging SpectroRadiometer (MISR) and non-coincident cloud retrievals from the MODerate resolution Imaging Spectroradiometer (MODIS) from collocated morning and afternoon overpasses. The Global Fire Emissions Database, version 3 and Level 2 data from scenes acquired between 2006 and 2010 were used to quantify changes in cloud fraction from morning (10:30am local time) to afternoon (1:30pm local time) in the presence of varying fire-aerosol burdens. This temporal offset allowed for analysis of the evolution of clouds in the presence of aerosols, something that previous methods using coincident observations could not produce. We controlled for large-scale meteorological differences between scenes using reanalysis data from the ERA-interim product and matching scenes with fire smoke to those with no smoke and similar initial (morning) meteorological conditions. Elevated aerosol optical depths (AODs) reduced cloud fraction from morning to afternoon in the Southeast Asia, Central America and northern Africa burning regions. In mostly cloudy conditions, aerosols significantly reduced cloud fraction, but in clear skies, cloud fraction increased. These results support the general hypothesis of a positive feedback loop between anthropogenic burning and cloudiness in tropical regions, and are consistent with previous studies linking smoke aerosols to convective cloud reduction. Tosca, M.G., J.T. Randerson and C.S. Zender (2013), Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation, Atmos. Chem. Phys., 13, 5227-5241, doi: 10.5194/acp-13-5227-2013.

  7. Investigation of the "elevated heat pump" hypothesis of the Asian monsoon using satellite observations

    NASA Astrophysics Data System (ADS)

    Wonsick, M. M.; Pinker, R. T.; Ma, Y.

    2014-08-01

    The "elevated heat pump" (EHP) hypothesis has been a topic of intensive research and controversy. It postulates that aerosol-induced anomalous mid- and upper-tropospheric warming in the Himalayan foothills and above the Tibetan Plateau leads to an early onset and intensification of Asian monsoon rainfall. This finding is primarily based on results from a NASA finite-volume general circulation model run with and without radiative forcing from different types of aerosols. In particular, black carbon emissions from sources in northern India and dust from Western China, Afghanistan, Pakistan, the Thar Desert, and the Arabian Peninsula drive the modeled anomalous heating. Since the initial discussion of the EHP hypothesis in 2006, the aerosol-monsoon relationship has been investigated using various modeling and observational techniques. The current study takes a novel observational approach to detect signatures of the "elevated heat pump" effect on convection, precipitation, and temperature for contrasting aerosol content years during the period of 2000-2012. The analysis benefits from unique high-resolution convection information inferred from Meteosat-5 observations as available through 2005. Additional data sources include temperature data from the NCEP/NCAR Reanalysis and the European Reanalysis (ERA-Interim) precipitation data from the Global Precipitation Climatology Project (GPCP), aerosol optical depth from the Multi-angle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), and aerosol optical properties from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) aerosol reanalysis. Anomalous upper-tropospheric warming and the early onset and intensification of the Indian monsoon were not consistently observed during the years with high loads of absorbing aerosols. Possibly, model assumptions and/or unaccounted semi-direct aerosol effects caused the disagreement between observed and hypothesized behavior.

  8. Long-term variations of aerosol optical depth and aerosol radiative forcing over Iran based on satellite and AERONET data.

    PubMed

    Arkian, F; Nicholson, S E

    2017-12-01

    In this study, three different sensors of satellites including the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR), and Total Ozone Mapping Spectrometer (TOMS) were used to study spatial and temporal variations of aerosols over ten populated cities in Iran. Also, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used for analyzing the origins of air masses and their trajectory in the area. An increasing trend in aerosol concentration was observed in the most studied cities in Iran during 1979-2016. The cities in the western part of Iran had the highest annual mean of aerosol concentration. The highest aerosol optical depth (AOD) value (0.76 ± 0.51) was recorded in May 2012 over Ahvaz, and the lowest value (0.035 ± 0.27) was recorded in December 2013 over Tabriz. After Ahvaz, the highest AOD value was found over Tehran (annual mean 0.11 ± 0.20). The results show that AOD increases with increasing industrial activities, but the increased frequency of aerosols due to land degradation and desertification is more powerful in Iran. The trajectory analysis by the HYSPLIT model showed that the air masses come from Egypt, Syria, and Lebanon and passed over the Iraq and then reached to Iran during summer. Aerosol radiative forcing (ARF) has been analyzed for Zanjan (Aerosol Robotic Network site) during 2010-2013. The ARF at surface and top of the atmosphere was found to be ranging from - 79 to - 10W m -2 (average - 33.45 W m -2 ) and from - 25 to 6 W m -2 (average - 12.80 W m -2 ), respectively.

  9. Evaluation of 3-D Air Quality System Remotely-Sensed Aerosol Optical Depth for the Baltimore/Washington Metropolitan Air Shed

    NASA Astrophysics Data System (ADS)

    Weber, S. A.; Engel-Cox, J. A.; Hoff, R. M.; Prados, A.; Zhang, H.

    2008-12-01

    Integrating satellite- and ground-based aerosol optical depth (AOD) observations with surface total fine particulate (PM2.5) and sulfate concentrations allows for a more comprehensive understanding of local- and urban-scale air quality. This study evaluates the utility of integrated databases being developed for NOAA and EPA through the 3D-AQS project by examining the relationship between remotely-sensed AOD and PM2.5 concentrations for each platform for the summer of 2004 and the entire year of 2005. We compare results for the Baltimore, MD/Washington, DC metropolitan air shed, incorporating AOD products from the Terra and GOES-12 satellites, AERONET sunphotometer, and ground-based lidar, and PM2.5 concentrations from five surface monitoring sites. The satellite-derived products include AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR), as well as the GOES Aerosol/Smoke Product (GASP). The vertical profile of lidar backscatter is used to retrieve the planetary boundary layer (PBL) height in an attempt to capture only that fraction of the AOD arising from near surface aerosols. Adjusting the AOD data using platform- and season-specific ratios, calculated using the parameters of the regression equations, for two case studies resulted in a more accurate representation of surface PM2.5 concentrations when compared to a constant ratio that is currently being used in the NOAA IDEA product. This work demonstrates that quantitative relationships between remotely-sensed and in-situ aerosol observations in an integrated database can be computed and applied to improve the use of remotely-sensed observations for estimating surface concentrations.

  10. Weekly Cycle of Lightning and Associated Patterns of Rainfall, Cloud, and Aerosols over Korea and Adjacent Oceans during Boreal Summer

    NASA Technical Reports Server (NTRS)

    Kim, Ji-In; Kim, Kyu-Myong

    2011-01-01

    In this study, we analyze the weekly cycle of lightning over Korea and adjacent oceans and associated variations of aerosols, clouds, precipitation, and atmospheric circulations, using aerosol optical depth (AOD) from the NASA Moderate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), cloud properties from MODIS, precipitation and storm height from Tropical Rainfall Measuring Mission (TRMM) satellite, and lightning data from the Korean Lightning Detection Network (KLDN) during 9-year from 2002 to 2010. Lightning data was divided into three approximately equal areas, land area of Korea, and two adjacent oceans, Yellow Sea and South Sea. Preliminary results show that the number of lightning increases during the middle of the week over Yellow Sea. AOD data also shows moderately significant midweek increase at about the same time as lightning peaks. These results are consistent with the recent studies showing the invigoration of storms with more ice hydrometeors by aerosols, and subsequently wash out of aerosols by rainfall. Frequency of lightning strokes tend to peak at weekend in land area and over South Sea, indicating local weekly anomalous circulation between land and adjacent ocean. On the other hand, lightning frequency over Yellow Sea appears to have very strong weekly cycle with midweek peak on around Wednesday. It is speculated that the midweek peak of lightning over Yellow Sea was related with aerosol transport from adjacent land area. AOD data also suggests midweek peak over Yellow Sea, however, the weekly cycle of AOD was not statistically significant. Changes in weekly cycle of lightning from pre-monsoon to monsoon season, as well as associated clouds and circulation patterns are also discussed.

  11. Impact of the Growing Population and Energy Demand on the Climatic Conditions of the Indo-Gangetic Basin

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Prasad, A. K.; Kafatos, M.

    2005-12-01

    The Indo-Gangetic (IG) basin is one of the largest basins in the world which is densely populated and suffers with dense fog, haze and smog during winter season. About 500 million people live in the IG basin and due to the dense fog, haze and smog day to day life suffers. India is the third largest producer of the coal in the world and a large share is used in power and industrial sector. The coal used in the power plants is of poor quality (mostly E-F grade or lignite) with high ash content (35-50%) and low calorific value. India's energy consumption has increased 208% from 4.16 quadrillion Btu (quads) in 1980 to 12.8 quads in 2001 with a coal share of ~50.9%. Recent studies using satellite (Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR)) and AERONET measurements show high aerosol optical depth (AOD) representing the intense air pollution over the IG basin that persists throughout the year. Such high concentrations of AOD show spatial and temporal variations which are controlled by the meteorological conditions (wind pattern, relative humidity, air temperature etc.) and topography. The high AOD observed over the IG basin is attributed to the emissions of fossil fuel SO2 and black carbon which has increased about 6 fold since 1930. The high AOD over the IG basin is attributed to the huge emission from the dense network of coal based thermal power plants in the IG basin and its surroundings that may be the probable cause for the atmospheric brown clouds (ABC). The impact of aerosol parameters on the climatic conditions will be discussed.

  12. Ross Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  Icebergs in the Ross Sea     View Larger Image Two ... (MISR) nadir camera view of the Ross Ice Shelf and Ross Sea in Antarctica. The image was acquired on December 10, 2000 during Terra ...

  13. Scandinavia

    Atmospheric Science Data Center

    2013-04-17

    ... Terrain Elevation Model from the United States Geological Survey. It is displayed in an equidistant conic projection. The image area ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  14. Mystery #12 Answer

    Atmospheric Science Data Center

    2013-04-22

    ... Imaging SpectroRadiometer (MISR) natural-color image of Russia's St. Petersburg was captured by the instrument's nadir camera on May ... The city in the south eastern portion of the image is Russia's St. Petersburg, which is the most northerly large city in the world at ...

  15. Anatahan Island

    Atmospheric Science Data Center

    2013-04-19

    ...     View Larger Image This natural-color image of Anatahan Island from the Multi-angle ... (Acro Service Corporation/Jet Propulsion Laboratory), David J. Diner (Jet Propulsion Laboratory). Other formats available at JPL ...

  16. Extension and statistical analysis of the GACP aerosol optical thickness record

    NASA Astrophysics Data System (ADS)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.; Li, Jing; Rossow, William B.; Liu, Li; Cairns, Brian

    2015-10-01

    The primary product of the Global Aerosol Climatology Project (GACP) is a continuous record of the aerosol optical thickness (AOT) over the oceans. It is based on channel-1 and -2 radiance data from the Advanced Very High Resolution Radiometer (AVHRR) instruments flown on successive National Oceanic and Atmospheric Administration (NOAA) platforms. We extend the previous GACP dataset by four years through the end of 2009 using NOAA-17 and -18 AVHRR radiances recalibrated against MODerate resolution Imaging Spectroradiometer (MODIS) radiance data, thereby making the GACP record almost three decades long. The temporal overlap of over three years of the new NOAA-17 and the previous NOAA-16 record reveals an excellent agreement of the corresponding global monthly mean AOT values, thereby confirming the robustness of the vicarious radiance calibration used in the original GACP product. The temporal overlap of the NOAA-17 and -18 instruments is used to introduce a small additive adjustment to the channel-2 calibration of the latter resulting in a consistent record with increased data density. The Principal Component Analysis (PCA) of the newly extended GACP record shows that most of the volcanic AOT variability can be isolated into one mode responsible for ~ 12% of the total variance. This conclusion is confirmed by a combined PCA analysis of the GACP, MODIS, and Multi-angle Imaging SpectroRadiometer (MISR) AOTs during the volcano-free period from February 2000 to December 2009. We show that the modes responsible for the tropospheric AOT variability in the three datasets agree well in terms of correlation and spatial patterns. A previously identified negative AOT trend which started in the late 1980s and continued into the early 2000s is confirmed. Its magnitude and duration indicate that it was caused by changes in tropospheric aerosols. The latest multi-satellite segment of the GACP record shows that this trend tapered off, with no noticeable AOT change after 2002. This result is consistent with the MODIS and MISR AOT records as well as with the recent gradual reversal from brightening to dimming revealed by surface flux measurements in many aerosol producing regions. Thus the robustness of the GACP record is confirmed, increasing our confidence in the validity of the negative trend. Although the nominal negative GACP AOT trend could partially be an artifact of increasing aerosol absorption, we argue that the time dependence of the GACP record, including the latest flat period, is more consistent with the actual decrease in the tropospheric AOT.

  17. Western USA and Canada

    Atmospheric Science Data Center

    2014-05-15

    ... Terrain Elevation Model from the United States Geological Survey. The image area includes much of British Columbia, Alberta and ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  18. Nicaraguan Volcanoes

    Atmospheric Science Data Center

    2013-04-18

    article title:  Nicaraguan Volcanoes     View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project:  MISR category:  gallery ...

  19. Larsen B Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    article title:  Unique Views of a Shattered Ice Shelf     View Larger Image ... views of the breakup of the northern section of the Larsen B ice shelf are shown in this image pair from the Multi-angle Imaging ...

  20. 10-year spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data

    PubMed Central

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2017-01-01

    Long-term PM2.5 exposure has been associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of the spatiotemporally continuous distribution of PM2.5 concentrations are important. Satellite-retrieved aerosol optical depth (AOD) has been increasingly used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, previous studies indicated that an inherent disadvantage of many AOD products is their coarse spatial resolution. For instance, the available spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) AOD products are 10 and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm based on MODIS measurements was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5–AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US centered at the Atlanta metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted annually, and we obtained model fitting R2 ranging from 0.71 to 0.85, mean prediction error (MPE) from 1.73 to 2.50 μg m−3, and root mean squared prediction error (RMSPE) from 2.75 to 4.10 μg m−3. In addition, we found cross-validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 μgm−3, and RMSPE from 3.12 to 5.00 μgm−3, indicating a good agreement between the estimated and observed values. Spatial trends showed that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. Our time-series analysis showed that, for the 10-year study period, the PM2.5 levels in the southeastern US have decreased by ∼20 %. The annual decrease has been relatively steady from 2001 to 2007 and from 2008 to 2010 while a significant drop occurred between 2007 and 2008. An observed increase in PM2.5 levels in year 2005 is attributed to elevated sulfate concentrations in the study area in warm months of 2005. PMID:28966656

  1. MISR Images Wildfires in Northwestern US

    NASA Image and Video Library

    2000-08-16

    These images from NASA Terra satellite are of smoke plumes from devastating wildfires in the northwestern U.S. This view of the Clearwater and Salmon River Mountains in Idaho was acquired on August 5, 2000 Terra orbit 3370.

  2. Larsen C Rift Growth

    Atmospheric Science Data Center

    2017-04-17

    ... NASA's MISR Tracks Growth of Rift in the Larsen C Ice Shelf     View Larger Image ... figures image   A rift in Antarctica's Larsen C ice shelf has grown to 110 miles (175 km) long, making it inevitable that an ...

  3. Southern Rains

    Atmospheric Science Data Center

    2014-05-15

    ... appear in the upper right-hand corners of both images. Quantitative values for the vegetation changes are provided by the center and ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  4. Andes

    Atmospheric Science Data Center

    2013-04-18

    ... Arequipa, provide a striking demonstration of the power of water erosion. This image pair was acquired by the Multi-angle Imaging ... stereo image in 3-D requires red/blue glasses with the red filter placed over your left eye. Two main erosion formations can be seen. ...

  5. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... Imaging SpectroRadiometer (MISR) image of the Red Sea was acquired on August 13, 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of algae,  Trichodesmium ...

  6. Hurricane Isabel

    Atmospheric Science Data Center

    2013-04-19

    article title:  Aspects of Hurricane Isabel     View Larger Image Cloud-top radiance and height characteristics of Hurricane Isabel are depicted in these data products and animations from the ... Imaging SpectroRadiometer (MISR). Isabel was upgraded to hurricane status a few hours after the top image panels in this set were ...

  7. Mystery #19

    Atmospheric Science Data Center

    2013-04-22

    ... camera in May, 2002. This mystery concerns a large body of water (the blue waters which dominate most of the image) and the region ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  8. Smoke and Clouds over Russia

    NASA Image and Video Library

    2001-05-23

    Several mountain ranges and a portion of the Amur River are visible in this set of stereo images of Russia far east Khabarovsk region taken by the MISR instrument aboard NASA Terra spacecraft. 3D glasses are necessary to view this image.

  9. Mystery #27

    Atmospheric Science Data Center

    2016-12-22

    ... of the image are natural geologic features that often carry descriptive names of their location.   What is the native word used to call ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  10. Mystery #27 Answer

    Atmospheric Science Data Center

    2013-04-22

    ... of the image are natural geologic features that often carry descriptive names of their location.  What is the native word used to call ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  11. The Hemisphere-scale Stratospheric Impact of the Chisholm (Alberta) PyroCumulonimbus Eruption

    NASA Astrophysics Data System (ADS)

    Fromm, M.; Barnes, J.; Blum, U.; Diner, D.; Fricke, K. H.; Gerding, M.; Giehl, H.; Kahn, R.; Lablanc, T.; Massie, S.; Stuart, M.; O'Neill, M.; Ritter, C.; Servranckx, R.; Shettle, E.; Torres, O.; Trickl, T.

    2006-12-01

    Extreme pyrocumulonimbus (pyroCb) blowups that polluted the lower stratosphere with smoke and other biomass burning emissions have been documented in the literature to have occurred on at least five separate occasions. However our understanding of the frequency and scale of these events is still far from complete. One pyroCb case study in the literature, the Chisholm Fire in Alberta in May 2001, was restricted to the convective phase and its immediate aftermath (Fromm and Servranckx, Geophys. Res. Lett., 2003). Here we describe the stratospheric impact of the Chisholm pyroCb. We present nadir and imaging satellite views of the post-pyroCb plume by the Multi-angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiomenter (MODIS), Total Ozone Mapping Spectrometer (TOMS), and a broad array of profile measurements, space- and ground-based. These include the Polar Ozone and Aerosol Measurement (POAM) III, Stratospheric Aerosol and Gas Experiment (SAGE) II, Halogen Occultation Experiment (HALOE), and seven ground-based lidars. We report that the Chisholm pyroCb was the singular cause of a hemispheric stratospheric aerosol increase in northern spring/summer of 2001. The smoke plume on the day after the pyro-eruption reached heights of 15 km, 4 km above the tropopause, was optically opaque at the tropopause, and caused unprecedented, large values of TOMS aerosol index. This plume eventually resulted in a doubling of zonal-average aerosol optical depth in the stratospheric middleworld and overworld. The meridional spread of the plume is confirmed from the tropics (20°N) to the high Arctic (79°N) within the first month. The stratospheric Chisholm smoke became a hemispheric phenomenon in midlatitudes and persisted for at least three months there and in the northern tropics. This work contains the first reported stratospheric smoke layers measured by lidar at Ny Älesund, Kühlungsborn, Garmisch Partenkirchen, Boulder, and Mauna Loa, and the second such reports from the Esrange lidar.

  12. New Mexico: Los Alamos

    Atmospheric Science Data Center

    2014-05-15

    article title:  Los Alamos, New Mexico     View Larger JPEG image ... kb) Multi-angle views of the Fire in Los Alamos, New Mexico, May 9, 2000. These true-color images covering north-central New Mexico ...

  13. The Nile River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the northern portion of the Nile River was captured by MISR's nadir camera on January 30, 2001 (Terra orbit 5956). The Nile is the longest river in the world, extending for about 6700 kilometers from its headwaters in the highlands of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids of Giza. North of here the Nile branches into two distributaries, the Rosetta to the west and the Damietta to the east. Also visible in this image is the Suez Canal, a shipping waterway connecting Port Said on the Mediterranean Sea with the Gulf of Suez. The Gulf is an arm of the Red Sea, and is located on the righthand side of the picture. Image credit: NASA/GSFC/LaRC/JPL, MISR Team.

  14. Axial superresolution via multiangle TIRF microscopy with sequential imaging and photobleaching

    PubMed Central

    Fu, Yan; Winter, Peter W.; Rojas, Raul; Wang, Victor; McAuliffe, Matthew; Patterson, George H.

    2016-01-01

    We report superresolution optical sectioning using a multiangle total internal reflection fluorescence (TIRF) microscope. TIRF images were constructed from several layers within a normal TIRF excitation zone by sequentially imaging and photobleaching the fluorescent molecules. The depth of the evanescent wave at different layers was altered by tuning the excitation light incident angle. The angle was tuned from the highest (the smallest TIRF depth) toward the critical angle (the largest TIRF depth) to preferentially photobleach fluorescence from the lower layers and allow straightforward observation of deeper structures without masking by the brighter signals closer to the coverglass. Reconstruction of the TIRF images enabled 3D imaging of biological samples with 20-nm axial resolution. Two-color imaging of epidermal growth factor (EGF) ligand and clathrin revealed the dynamics of EGF-activated clathrin-mediated endocytosis during internalization. Furthermore, Bayesian analysis of images collected during the photobleaching step of each plane enabled lateral superresolution (<100 nm) within each of the sections. PMID:27044072

  15. MISR Regional INTEX-B Products

    Atmospheric Science Data Center

    2016-08-24

    ... parameters from one Level 1 or Level 2 product. Further information about the Level 1 and Level 2 data products can be found on the  ... the  INTEX-B data table . Images available on this web site include the following parameters: Image Description ...

  16. Utah: Salt Lake City

    Atmospheric Science Data Center

    2014-05-15

    ... title:  Snow-Covered Peaks of the Wasatch and Uinta Mountains     View Larger ... edge of the Rocky Mountains and eastern rim of the Great Basin. This early-winter image pair was acquired by the Multi-angle Imaging ...

  17. Environmental Snapshots for Satellite Multi-Angle Aerosol Retrieval Validation During the ACE-Asia Field Campaign

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Anderson, Jim; Anderson, Theodore L.; Bates, Tim; Brechtel, Fred; Clarke, Antony; Dutton, Ellsworth; Flagan, Richard; Fouin, Robert; Fukushima, Hajime

    2003-01-01

    On five occasions spanning the ACE-Asia field experiment in spring 2001, the multi-angle imaging MISR instrument, flying aboard the NASA Earth Observing System s Terra satellite, took quarter-kilometer data over a 400-km-wide swath, coincident with high-quality observations by multiple instruments on two or more participating surface and airborne platforms. The cases capture a range of clean, polluted, and dusty aerosol conditions. They represent some of the best opportunities during ACE- Asia for comparative studies among intensive and extensive aerosol observations in their environmental context. We inter-compare related measurements and discuss the implications of apparent discrepancies for each case, at a level of detail appropriate to the analysis of satellite observations. With a three-stage optical modeling process, we synthesize data from multiple sources into layer-by-layer snapshots that summarize what we know about the state of the atmosphere and surface at key locations during each event, to be used for satellite vicarious calibration and aerosol retrieval validation. Aerosols within a few kilometers of the surface were composed primarily of pollution and Asian dust mixtures, as expected. Accumulation and coarse-mode particle size distributions varied little among the events studied, but column aerosol optical depth changed by more than a factor of four, and the near-surface proportion of dust ranged from about 25% to 50%. The amount of absorbing material in the sub-micron fraction was highest when near-surface winds crossed Beijing and the Korean Peninsula, and was considerably lower for all other cases. Ambiguities remain in segregating size distributions by composition; having simultaneous single scattering albedo measurements at more than a single wavelength would significantly reduce the resulting optical model uncertainties, as would integral constraints from surface and atmospheric radiative flux observations. The consistency of component particle micro-physical properties among the five events, even in this relatively complex aerosol environment, suggests that global, satellite-derived maps of aerosol-air-mass-type extent, combined with targeted in situ measurements, can provide a detailed global picture of aerosol behavior. Further joint satellite and in situ analysis is needed to assess the spatial variability of both intensive and extensive aerosol properties within aerosol air masses in two spatial dimensions.

  18. NASA MISR Images Gulf of Mexico Oil Slick

    NASA Image and Video Library

    2010-05-06

    This image from NASA Terra satellite was acquired on May 1, 2010. The red symbol indicates the approximate position of the Deepwater Horizon platform and the source of the oil slick which resulted in a significant oil spill in the Gulf of Mexico.

  19. NASA MISR Images Tsunami Inundation Along Japan Eastern Coast

    NASA Image and Video Library

    2011-03-12

    The extent of inundation from the destructive and deadly tsunami triggered by the March 11, 2011, magnitude 8.9 earthquake centered off Japan northeastern coast east of the city of Sendai is revealed in this image pair from NASA Terra spacecraft.

  20. Multi-angle lensless digital holography for depth resolved imaging on a chip.

    PubMed

    Su, Ting-Wei; Isikman, Serhan O; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-04-26

    A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over approximately 60 mm(2) field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems.

  1. MISBR

    Atmospheric Science Data Center

    2016-08-22

    MISBR MISR Browse Data: Color browse image of the Ellipsoid product for each camera resampled to 2.2 km resolution. ... Tool:  Order Data Readme Files:  Processing Status Production Report Read Software ...

  2. Florida

    Atmospheric Science Data Center

    2014-05-15

    ... eastern (Atlantic) coast, partially obscured by clouds, are Palm Beach, Fort Lauderdale, and Miami. Further to the east, the shallow waters ... MISR category:  gallery date:  Oct 18, 2000 Images:  Florida ...

  3. Eyjafjallajökull Ash Plume Particle Properties

    NASA Image and Video Library

    2010-04-21

    As NASA Terra satellite flew over Iceland erupting Eyjafjallajökull volcano, its Multi-angle Imaging SpectroRadiometer instrument acquired 36 near-simultaneous images of the ash plume, covering nine view angles in each of four wavelengths.

  4. Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF.

    PubMed

    Zheng, Cheng; Zhao, Guangyuan; Liu, Wenjie; Chen, Youhua; Zhang, Zhimin; Jin, Luhong; Xu, Yingke; Kuang, Cuifang; Liu, Xu

    2018-04-01

    Measuring three-dimensional nanoscale cellular structures is challenging, especially when the structure is dynamic. Owing to the informative total internal reflection fluorescence (TIRF) imaging under varied illumination angles, multi-angle (MA) TIRF has been examined to offer a nanoscale axial and a subsecond temporal resolution. However, conventional MA-TIRF still performs badly in lateral resolution and fails to characterize the depth image in densely distributed regions. Here, we emphasize the lateral super-resolution in the MA-TIRF, exampled by simply introducing polarization modulation into the illumination procedure. Equipped with a sparsity and accelerated proximal algorithm, we examine a more precise 3D sample structure compared with previous methods, enabling live cell imaging with a temporal resolution of 2 s and recovering high-resolution mitochondria fission and fusion processes. We also shared the recovery program, which is the first open-source recovery code for MA-TIRF, to the best of our knowledge.

  5. Evaluation of applicability of high-resolution multiangle imaging photo-polarimetric observations for aerosol atmospheric correction

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Olga; Garay, Michael; Xu, Feng; Diner, David; Seidel, Felix

    2016-07-01

    Multiangle spectro-polarimetric measurements have been advocated as an additional tool for better understanding and quantifying the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of this work is the assessment of the effects of absorbing aerosol properties on remote sensing reflectance measurement uncertainty caused by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. In this work a vector Markov Chain radiative transfer code including bio-optical models was used to quantitatively evaluate in water leaving radiances between atmospheres containing realistic UV-enhanced and non-spherical aerosols and the SEADAS carbonaceous and dust-like aerosol models. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach developed for modeling dust for the AERONET network of ground-based sunphotometers. As a next step, we have developed a retrieval code that employs a coupled Markov Chain (MC) and adding/doubling radiative transfer method for joint retrieval of aerosol properties and water leaving radiance from Airborne Multiangle SpectroPolarimetric Imager-1 (AirMSPI-1) polarimetric observations. The AirMSPI-1 instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI typically acquires observations of a target area at 9 view angles between ±67° at 10 m resolution. AirMSPI spectral channels are centered at 355, 380, 445, 470, 555, 660, and 865 nm, with 470, 660, and 865 reporting linear polarization. We tested prototype retrievals by comparing the retrieved aerosol concentration, size distribution, water-leaving radiance, and chlorophyll concentrations from Airborne Multiangle SpectroPolarimetric Imager-1 (AirMSPI-1) observations to values reported by the USC SeaPRISM AERONET-OC site off the coast of California. The retrieval was then applied to a variety of costal regions in California to evaluate variability in the water-leaving radiance under different atmospheric conditions. We will present results, and will discuss algorithm sensitivity and potential applications for future space-borne coastal monitoring.

  6. Uniting Satellite Data With Health Records to Address the Societal Impacts of Particulate Air Pollution: NASA's Multi-Angle Imager for Aerosols

    NASA Astrophysics Data System (ADS)

    Nastan, A.; Diner, D. J.

    2017-12-01

    Epidemiological studies have demonstrated convincingly that airborne particulate matter has a major impact on human health, particularly in urban areas. However, providing an accurate picture of the health effects of various particle mixtures — distinguished by size, shape, and composition — is difficult due to the constraints of currently available measurement tools and the heterogeneity of atmospheric chemistry and human activities over space and time. The Multi-Angle Imager for Aerosols (MAIA) investigation, currently in development as part of NASA's Earth Venture Instrument Program, will address this issue through a powerful combination of technologies and informatics. Atmospheric measurements collected by the MAIA satellite instrument featuring multiangle and innovative polarimetric imaging capabilities will be combined with available ground monitor data and a chemical transport model to produce maps of speciated particulate matter at 1 km spatial resolution for a selected set of globally distributed cities. The MAIA investigation is also original in integrating data providers (atmospheric scientists), data users (epidemiologists), and stakeholders (public health experts) into a multidisciplinary science team that will tailor the observation and analysis strategy within each target area to improve our understanding of the linkages between different particle types and adverse human health outcomes.

  7. Absorption Properties of Mediterranean Aerosols Obtained from Multi-year Ground-based and Satellite Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Leon, J. F.

    2013-01-01

    Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstrom Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996-2012 with most data being from 2003-2011 (approximately 89 percent of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm greater than 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstrom exponent less than 1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000-2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004-2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005-2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 +/- 0.01 (resp. 0.040 +/- 0.01) and 0.050 +/- 0.01 (0.055 +/- 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately" absorbing with values of SSA close to approximately 0.94-0.95 +/- 0.04 (at 440 nm) in most cases except over the large cities of Rome and Athens, where aerosol appears more absorbing (SSA approximately 0.89-0.90 +/- 0.04). The aerosol Absorption Angstrom Exponent (AAE, estimated using 440 and 870 nm) is found to be larger than 1 for most sites over the Mediterranean, a manifestation of mineral dust (iron) and/or brown carbon producing the observed absorption. AERONET level-2 sun-photometer data indicate the existence of a moderate East-West gradient, with higher values over the eastern basin (AAEEast. = 1.39/AAEWest. = 1.33) due to the influence of desert dust. The North-South AAE gradient is more pronounced, especially over the western basin. Our additional analysis of AERONET level-1.5 data also shows that organic absorbing aerosols significantly affect some Mediterranean sites. These results indicate that current climate models treating organics as nonabsorbing over the Mediterranean certainly underestimate the warming effect due to carbonaceous aerosols. Acomparative analysis of the regional SSA variability has been attempted using satellite data. OMI and MODIS data show an absorbing zone (SSA approximately 0.90 at 470-500 nm) over Northeastern Africa that does not appear in the MISR retrievals. In contrast, MISR seems able to observe the East-West SSA gradient during summer, as also detected by AERONET. Also, the analysis of SSA provided by satellites indicates that the aerosol over the Mediterranean Sea appears less absorbing during spring (MAM) than summer (JJA).

  8. Northern Australia

    Atmospheric Science Data Center

    2013-04-16

    article title:  Tropical Northern Australia   ... view. Water appears in blue shades in the right image, for example, because glitter makes the water look brighter at the aft camera's view ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  9. Gulf Coast Wetlands

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wetlands of the Gulf Coast     View Larger Image ... SpectroRadiometer (MISR) highlights coastal areas of four states along the Gulf of Mexico: Louisiana, Mississippi, Alabama and part of ...

  10. Maryland: La Plata

    Atmospheric Science Data Center

    2014-05-15

    article title:  Tornado Cuts Through La Plata, Maryland     View Larger Image A category F4 tornado tore through La Plata, Maryland on April 28, 2002, killing 5 and ... illustrates the strip of flattened vegetation left by the tornado. The lower image was acquired by MISR's nadir (vertical-viewing) ...

  11. Georgian Bay

    Atmospheric Science Data Center

    2013-04-17

    article title:  Georgian Bay in Ontario, Canada   ... Bright areas in the image are either cloud or ice; an example of the latter is the frozen Lake Simcoe. The eight monochrome ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  12. NASA's MISR Instrument Captures Stereo View of Mountain Fire Near Idyllwild, Calif.

    Atmospheric Science Data Center

    2016-09-27

    ... been produced. The image is best viewed with standard "red/blue" 3-D glasses with the red lens over the left eye. The image is oriented ... 2.5 to 3 miles (4 to 5 kilometers) above sea level with very light winds at this time. The image extends from about 34.8 degrees north ...

  13. Influence of Humidity On the Aerosol Scattering Coefficient and Its Effect on the Upwelling Radiance During ACE-2

    NASA Technical Reports Server (NTRS)

    Gasso, S.; Hegg, D. A.; Covert, D. S.; Collins, D.; Noone, K. J.; Oestroem, E.; Schmid, B.; Russell, P. B.; Livingston, J. M.; Durkee, P. A.

    2000-01-01

    Aerosol scattering coefficients (sigma(sub sp)) have been measured over the ocean at different relative humidities (RH) as a function of altitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions, absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sub sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands of the EOS (Earth Observing System) AM-1 (Terra) detectors, MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multi-angle Imaging Spectroradiometer). The UWPH measured sigma(sub sp) at two RHs, one below and the other above ambient conditions. Ambient sigma(sub sp) was obtained by interpolation of these two measurements. The data were stratified in terms of three types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., two- or one-day old polluted aerosols advected from Europe). An empirical relation for the dependence of sigma(sub sp) on RH, defined by sigma(sub sp)(RH) = k.(1 - RH/100)(sup gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 +/- 0.06. Based on the measured gammas, the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each of those aerosol models at several ambient humidities. For the prelaunch estimated precision of the sensors and the assumed viewing geometry of the instrument, the simulations suggest that the spectral and angular dependence of the reflectance measured by MISR is not sufficient to distinguish aerosol models with various different combinations of values for dry composition, gamma and ambient RH. A similar behavior is observed for MODIS at visible wavelengths. However, the 2100 nm band of MODIS appears to be able to differentiate between at least same aerosol models with different aerosol hygroscopicity given the MODIS calibration error requirements. This result suggests the possibility of retrieval of aerosol hygroscopicity by MODIS.

  14. Complex Clouds

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Multi-layer Clouds Over the South Indian Ocean     View Larger Image ... System-2 path 155. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...

  15. 10 Yr Spatial and Temporal Trends of PM2.5 Concentrations in the Southeastern US Estimated Using High-resolution Satellite Data

    NASA Technical Reports Server (NTRS)

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2013-01-01

    Long-term PM2.5 exposure has been reported to be associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of the true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of spatiotemporally continuous distribution of PM2.5 concentrations are essential. Satellite-retrieved aerosol optical depth (AOD) has been widely used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, an inherent disadvantage of current AOD products is their coarse spatial resolutions. For instance, the spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) are 10 km and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US, centered at the Atlanta Metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted for each year individually, and we obtained model fitting R2 ranging from 0.71 to 0.85, MPE from 1.73 to 2.50 g m3, and RMSPE from 2.75 to 4.10 g m3. In addition, we found cross validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 g m3, and RMSPE from 3.12 to 5.00 g m3, indicating a good agreement between the estimated and observed values. Spatial trends show that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. A time series analysis was conducted to examine temporal trends of PM2.5 concentrations in the study area from 2001 to 2010. The results showed that the PM2.5 levels in the study area followed a generally declining trend from 2001 to 2010 and decreased about 20 during the period. However, there was an exception of an increase in year 2005, which is attributed to elevated sulfate concentrations in the study area in warm months of 2005. An investigation of the impact of wild and prescribed fires on PM2.5 levels in 2007 suggests a positive relationship between them.

  16. Technology Readiness Level (TRL) Advancement of the MSPI On-Board Processing Platform for the ACE Decadal Survey Mission

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.; Wilson, Thor O.

    2011-01-01

    The Xilinx Virtex-5QV is a new Single-event Immune Reconfigurable FPGA (SIRF) device that is targeted as the spaceborne processor for the NASA Decadal Survey Aerosol-Cloud-Ecosystem (ACE) mission's Multiangle SpectroPolarimetric Imager (MSPI) instrument, currently under development at JPL. A key technology needed for MSPI is on-board processing (OBP) to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's ESTO1 AIST2 Program, JPL is demonstrating how signal data at 95 Mbytes/sec over 16 channels for each of the 9 multi-angle cameras can be reduced to 0.45 Mbytes/sec, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information. This is done via a least-squares fitting algorithm implemented on the Virtex-5 FPGA operating in real-time on the raw video data stream.

  17. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, R. S.; Spinhirne, J. D.; Manizade, K. F.

    2004-01-01

    Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. As technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle in 1997 and was the first earth- observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of +/- 620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  18. A single camera photogrammetry system for multi-angle fast localization of EEG electrodes.

    PubMed

    Qian, Shuo; Sheng, Yang

    2011-11-01

    Photogrammetry has become an effective method for the determination of electroencephalography (EEG) electrode positions in three dimensions (3D). Capturing multi-angle images of the electrodes on the head is a fundamental objective in the design of photogrammetry system for EEG localization. Methods in previous studies are all based on the use of either a rotating camera or multiple cameras, which are time-consuming or not cost-effective. This study aims to present a novel photogrammetry system that can realize simultaneous acquisition of multi-angle head images in a single camera position. Aligning two planar mirrors with the angle of 51.4°, seven views of the head with 25 electrodes are captured simultaneously by the digital camera placed in front of them. A complete set of algorithms for electrode recognition, matching, and 3D reconstruction is developed. It is found that the elapsed time of the whole localization procedure is about 3 min, and camera calibration computation takes about 1 min, after the measurement of calibration points. The positioning accuracy with the maximum error of 1.19 mm is acceptable. Experimental results demonstrate that the proposed system provides a fast and cost-effective method for the EEG positioning.

  19. The Roiling Clouds of Katrina

    NASA Image and Video Library

    2005-08-31

    This anaglyph from the MISR instrument aboard NASA Terra spacecraft shows the strong convective development of Hurricane Katrina as it moved west through the Gulf of Mexico. 3D glasses are necessary to view this image.

  20. Ross Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... Larger Image According to researchers funded by the National Science Foundation, several penguin colonies near the Ross Ice Shelf, ... Hut Point Peninsula. For a press release from the National Science Foundation containing additional details and MISR imagery ...

  1. Dust and Smoke

    Atmospheric Science Data Center

    2014-05-15

    ...     View Larger Image Desert dust particles tend to be larger in size than aerosols that originate ... for these two events. These MISR results distinguish desert dust, the most common non-spherical aerosol type, from pollution and ...

  2. New Zealand Southern Alps

    NASA Image and Video Library

    2001-06-20

    This anaglyph from the MISR instrument aboard NASA Terra spacecraft shows the rugged Southern Alps extending some 650 kilometers along the western side of New Zealand South Island. 3D glasses are necessary to view this image.

  3. Okefenokee Swamp Fire, Georgia

    NASA Image and Video Library

    2002-05-22

    Large smoke plumes were produced by the Blackjack complex fire in southeastern Georgia Okefenokee Swamp as seen by the MISR instrument aboard NASA Terra spacecraft May 8, 2002. 3D glasses are necessary to view this image.

  4. Japan: Shikoku Island

    Atmospheric Science Data Center

    2016-08-24

    ... and island stations in the waters surrounding Japan and Korea. They characterized meteorological conditions, measured the atmospheric ... flew overhead. These MISR images, centered just north of Shikoku Island in southwest Japan, were acquired on April 13, 2001 ...

  5. Production of Arctic Sea-ice Albedo by fusion of MISR and MODIS data

    NASA Astrophysics Data System (ADS)

    Kharbouche, Said; Muller, Jan-Peter

    2017-04-01

    We have combined data from the NASA MISR and MODIS spectro-radiometers to create a cloud-free albedo dataset specifically for sea-ice. The MISR (Multi-Angular Spectro-Radiometer) instrument on board Terra satellite has a unique ability to create high-quality Bidirectional Reflectance (BRF) over a 7 minute time interval per single overpass, thanks to its 9 cameras of different view angles (±70°,±60°,±45°,±26°). However, as MISR is limited to narrow spectral bands (443nm, 555nm, 670nm, 865nm), which is not sufficient to mask cloud effectively and robustly, we have used the sea-ice mask MOD09 product (Collection 6) from MODIS (Moderate resolution Imaging Spectoradiometer) instrument, which is also on board Terra satellite and acquiring data simultaneously. Only We have created a new and consistent sea-ice (for Arctic) albedo product that is daily, from 1st March to 22nd September for each and every year between 2000 to 2016 at two spatial grids, 1km x 1km and 5km x 5km in polar stereographic projection. Their analysis is described in a separate report [1]. References [1] Muller & Kharbouche, Variation of Arctic's Sea-ice Albedo between 2000 and 2016 by fusion of MISR and MODIS data. This conference. Acknowledgements This work was supported by www.QA4ECV.eu, a project of European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405. We thank our colleagues at JPL and NASA LaRC for processing these data, especially Sebastian Val and Steve Protack.

  6. Winter Snowfall Turns an Emerald White

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Ireland's climate is normally mild due to the nearby Gulf Stream, but the waning days of 2000 saw the Emerald Isle's green fields swathed in an uncommon blanket of white. The contrast between summer and winter is apparent in this pair of images of southwestern Ireland acquired by MISR's vertical-viewing (nadir) camera on August 23, 2000 (left) and December 29, 2000 (right). The corresponding Terra orbit numbers are 3628 and 5492, respectively.

    The year 2000 brought record-breaking weather to the British Isles. England and Wales experienced the wettest spring and autumn months since 1766. Despite being one of the warmest years in recent history, a cold snap arrived between Christmas and New Year's Day. According to the UK Meteorological Office, the 18 centimeters (7 inches) of snow recorded at Aldergrove, Northern Ireland, on December 27-28 was the deepest daily fall since 1930.

    Prominent geographical features visible in the MISR images include Galway Bay near the top left. Further south, the mouth of the River Shannon, the largest river in the British Isles, meets the Atlantic Ocean. In the lower portions of the images are the counties of Limerick, Kerry and Cork.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology

  7. New Versions of MISR Aerosol and Land Surface Products Available

    Atmospheric Science Data Center

    2018-02-14

    New Versions of MISR Aerosol and Land Surface Products Available Monday, February 12, ... the release of new versions of the MISR Level 2 (L2) Aerosol Product, the MISR L2 Land Surface Product, and the Level 3 (L3) Component Global Aerosol and Land Surface Products.   The new MISR L2 Aerosol Product ...

  8. Theory and Practice in Determining the Long-Term Spatial Productivity of Drylands: A California Blue Oak Case Study

    NASA Astrophysics Data System (ADS)

    Washington-Allen, R. A.; Therrell, M. D.; Emanuel, R. E.

    2007-12-01

    Herbivory, fire, and climatic events such as El Niño-Southern Oscillation (ENSO) and La Niña have been shown to have proximal and evolutionary effects on the dynamics of Dryland fauna, flora, and soils. However, spatially-explicit historical impacts of these climatic events on Dryland ecosystems is not known. Consequently, this paper has the purpose of presenting the theory and practical application for estimating the historical spatial impacts of these climatic events. We hypothesize that if remotely-sensed vegetation indices (VI) are correlated to historical tree ring data and also to functional ecosystem processes, specifically gross primary productivity (GPP) and net ecosystem production (NEP) as measured by eddy covariance flux towers, then VIs can be used to spatially and temporally distribute GPP and NEP within the species- or community-specific land cover extent over the length of the tree ring record of selected Dryland ecosystems. Secondly, the Shuttle Radar Topography Mission (SRTM) digital terrain model (DTM) data has been used to estimate tree height and in conjuction with plant allometric equations: biomass and standing carbon in various forest ecosystems. Tree height data in relation to tree ring age data and fire history can be used to reconstruct the spatial distribution of savanna demographic age structure, predict standing carbon and thus provide a complementary and independent dataset for comparison to DTMs from Multiangle Imaging Spectroradiometer (MISR), Interferometric Synthetic Aperture Radar (IFSAR), and Moderate Resolution Imaging Spectroradiometer (MODIS) derived GPP spatial maps. We developed a database consisting of a dendrochronology record, SRTM data, globa fre history data, Long term Data Record Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index (LTDR AVHRR NDVI, 1981 - 2003), contemporary gridded climate data, National Land Cover Data (NLCD), and short term eddy covariance flux tower data for the California Blue Oak woodland ecosystem to estimate both regional aboveground productivity and past disturbance history relative climate, particularly droughts, for the last 500 years.

  9. An advanced initiative for tracking operationally aerosol events over the last decade based on MSG/SEVIRI satellite observations

    NASA Astrophysics Data System (ADS)

    Carrer, Dominique; Ceamanos, Xavier; Moparthy, Suman; Six, Bruno; Roujean, Jean-Louis; Descloitres, Jacques

    2017-04-01

    The major difficulty to detect properly the aerosol signal by using remote sensing observations in the visible range relies on a clear separation of the scattering components between the atmospheric layer and the ground surface. This turns to be quite challenging over bright targets like deserts. We propose a method that combines the directional and temporal dimensions of the satellite signal through out the use of a semi-empirical BRDF kernel-driven model of the surface/atmosphere coupled system. As a result, a simultaneous retrieval of surface albedo and aerosol properties (optical thickness) is performed. The method proves to be meaningful to track anthropogenic aerosol emissions in the troposphere, to monitor volcanic ash release and above all to estimate dust events over bright targets. The proposed method is applied to MSG/SEVIRI slots in the three spectral bands (VIS, NIR, SWIR) at the frequency of 15min and for a geographic coverage that encompasses Europe, Africa, and South America regions. The SEVIRI-derived optical aerosol depth (AOD) estimates compare favourably with measurements carried on over well distributed AERONET stations. The comparison with state of art MODIS-derived (Moderate Resolution Imaging Spectro-radiometer), and MISR-derived (Multi-angle Imaging Spectro-Radiometer) AOD products falls within 20% of accuracy while it reveals the capability of AERUS-GEO to depict more aerosol events still quantitatively. Owing to that, more AOD products offers new insights to better estimate the aerosol radiative forcing (ARF) from GEO compared to low-orbit elevation orbit (LEO) satellite data. The AERUS-GEO algorithm was implemented in the ICARE/AERIS Data Center based in Lille (France) (http://www.icare.univ-lille1.fr). It disseminates operationally from 2014 a daily AOD product (AERUS-GEO) at 670 nm over the MSG disk. In addition to the NRT AOD product, a long term reprocessing is also available over the last decade.

  10. Trans-Pacific transport of Asian dust: the CESM model analysis and comparison with satellite observations

    NASA Astrophysics Data System (ADS)

    Wu, M.; Liu, X.; Luo, T.; Wang, Z.; Yang, K.; Wu, C.; Wang, H.; Zhang, K.

    2017-12-01

    Mineral dust plays an important role in the Earth's climate system due to its effects on radiation budgets, clouds, chemistry and biosphere. However, modeled dust aerosol is not well constrained and large uncertainties exist in modeled dust lifecycles. We evaluate dust spatial distributions in the Community Earth System Model (CESM) with new dust extinction retrievals (Luo et al., 2015a, b) based on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) and CloudSat measurement, with special focus on the Asian dust transport across the Pacific. It is shown that the default CESM underestimates the dust extinction over the Pacific by 1-2 order of magnitude. Especially, the model fails to capture the observed high values of dust extinction occurring from 850 to 500 hPa across the North Pacific (20°N-50°N). Modeled dust optical depth (DOD) decreases faster across the Pacific compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR) observations. Sensitivity experiments with altered emission, vertical transport and deposition schemes have been conducted to identify the key process impacting dust transport. For that purpose, two new dust emission schemes by Kok et al. (2014a, b) and Ginoux et al. (2001), a new dry deposition scheme by Petroff and Zhang (2010) are implemented to the CESM. In addition, a new unified scheme for convective transport and wet removal of aerosols (Wang et al., 2013) is implemented to the same version of CESM to examine the influence of convective transport and wet deposition on dust transport. It is found that changes in wet scavenging and convective transport can strongly impact dust transport over the Pacific compared to changes in other processes. One of the new emission schemes further decreases the dust extinction across the Pacific. Dust extinction across the Pacific slightly increases when dry deposition velocity for fine particles is reduced.

  11. Evolution of aerosol loading in Santiago de Chile between 1997 and 2014

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Gallardo, Laura

    2015-04-01

    While aerosols produced by major cities are a significant component of anthropogenic climate forcing as well as an important factor in public health, many South American cities have not been a major focus of aerosol studies due in part to relatively few long-term observations in the region. Here we present a synthesis of the available data for the emerging megacity of Santiago, Chile. We report new results from a recent NASA AERONET (AErosol RObotic NETwork) site in the Santiago basin, combining these with previous AERONET observations in Santiago as well as with a new assessment of the 11-station air quality monitoring network currently administered by the Chilean Environment Ministry (MMA, Ministerio del Medio Ambiente) to assess changes in aerosol composition since 1997. While the average surface concentration of pollution components (specifically PM2.5 and PM10) has decreased, no significant change in total aerosol optical depth was observed. However, changes in aerosol size and composition are suggested by the proxy measurements. Previous studies have revealed limitations in purely satellite-based studies over Santiago due to biases from high surface reflection in the region, particularly in summer months (e.g. Escribano et al 2014). To overcome this difficulty and certain limitations in the air quality data, we next incorporate analysis of aerosol products from the Multi-angle Imaging SpectroRadiometer (MISR) instrument along with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, both on NASA's Terra satellite, to better quantify the high bias of MODIS. Thus incorporating these complementary datasets, we characterize the aerosol over Santiago over the period 1997 to 2014, including the evolution of aerosol properties over time and seasonal dependencies in the observed trends. References: Escribano et al (2014), "Satellite Retrievals of Aerosol Optical Depth over a Subtropical Urban Area: The Role of Stratification and Surface Reflectance," Aerosol and Air Quality Research, doi:10.4209/aaqr.2013.03.0082.

  12. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application

    PubMed Central

    van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Kahn, Ralph; Levy, Robert; Verduzco, Carolyn; Villeneuve, Paul J.

    2010-01-01

    Background Epidemiologic and health impact studies of fine particulate matter with diameter < 2.5 μm (PM2.5) are limited by the lack of monitoring data, especially in developing countries. Satellite observations offer valuable global information about PM2.5 concentrations. Objective In this study, we developed a technique for estimating surface PM2.5 concentrations from satellite observations. Methods We mapped global ground-level PM2.5 concentrations using total column aerosol optical depth (AOD) from the MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model. Results We determined that global estimates of long-term average (1 January 2001 to 31 December 2006) PM2.5 concentrations at approximately 10 km × 10 km resolution indicate a global population-weighted geometric mean PM2.5 concentration of 20 μg/m3. The World Health Organization Air Quality PM2.5 Interim Target-1 (35 μg/m3 annual average) is exceeded over central and eastern Asia for 38% and for 50% of the population, respectively. Annual mean PM2.5 concentrations exceed 80 μg/m3 over eastern China. Our evaluation of the satellite-derived estimate with ground-based in situ measurements indicates significant spatial agreement with North American measurements (r = 0.77; slope = 1.07; n = 1057) and with noncoincident measurements elsewhere (r = 0.83; slope = 0.86; n = 244). The 1 SD of uncertainty in the satellite-derived PM2.5 is 25%, which is inferred from the AOD retrieval and from aerosol vertical profile errors and sampling. The global population-weighted mean uncertainty is 6.7 μg/m3. Conclusions Satellite-derived total-column AOD, when combined with a chemical transport model, provides estimates of global long-term average PM2.5 concentrations. PMID:20519161

  13. New South Wales

    Atmospheric Science Data Center

    2013-04-16

    ... city of Sydney was clouded with smoke when more than 80 wildfires raged across the state of New South Wales. These images were captured ... at JPL December 30, 2001 - Smoke from wildfires covers New South Wales. project:  MISR ...

  14. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    ... brightness and contrast at different view angles to obtain a quantitative measurement of aerosol amount. Here, an optically thick atmosphere ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  15. Black Hills

    Atmospheric Science Data Center

    2014-05-15

    ... 2004. The color-coded maps (along the bottom) provide a quantitative measurement of the sunlight reflected from these surfaces, and the ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  16. Brazil: Xingu River

    Atmospheric Science Data Center

    2013-04-18

    ... brightness and contrast at different view angles to obtain a quantitative measurement of aerosol amount. An optically thick atmosphere is ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  17. Queensland

    Atmospheric Science Data Center

    2013-04-16

    ... of a 157 kilometer x 210 kilometer area. The natural-color image is composed of data from the camera's red, green, and blue bands. In the ... MISR Team. Text acknowledgment: Clare Averill, David J. Diner, Graham Bothwell (Jet Propulsion Laboratory). Other formats ...

  18. MISR Aoba Volcano Plume

    Atmospheric Science Data Center

    2018-06-07

    ... in ongoing eruptions using parallax. View the MISR Active Aerosol Plume-Height (AAP) Project paper to see peak altitude and settling ... R. Kahn/NASA GSFC Access Project Paper: MISR Active Aerosol Plume-Height (AAP) Project Access and Order MISR Data and ...

  19. MISR Sees the Sierra Nevadas in Stereo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These MISR images of the Sierra Nevada mountains near the California-Nevada border were acquired on August 12, 2000 during Terra orbit 3472. On the left is an image from the vertical-viewing (nadir) camera. On the right is a stereo 'anaglyph' created using the nadir and 45.6-degree forward-viewing cameras, providing a three-dimensional view of the scene when viewed with red/blue glasses. The red filter should be placed over your left eye. To facilitate the stereo viewing, the images have been oriented with north toward the left.

    Some prominent features are Mono Lake, in the center of the images; Walker Lake, to its left; and Lake Tahoe, near the lower left. This view of the Sierra Nevadas includes Yosemite, Kings Canyon, and Sequoia National Parks. Mount Whitney, the highest peak in the contiguous 48 states (elev. 14,495 feet), is visible near the righthand edge. Above it (to the east), the Owens Valley shows up prominently between the Sierra Nevada and Inyo ranges.

    Precipitation falling as rain or snow on the Sierras feeds numerous rivers flowing southwestward into the San Joaquin Valley. The abundant fields of this productive agricultural area can be seen along the lower right; a large number of reservoirs that supply water for crop irrigation are apparent in the western foothills of the Sierras. Urban areas in the valley appear as gray patches; among the California cities that are visible are Fresno, Merced, and Modesto.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  20. MISR Scans the Texas-Oklahoma Border

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These MISR images of Oklahoma and north Texas were acquired on March 12, 2000 during Terra orbit 1243. The three images on the left, from top to bottom, are from the 70-degree forward viewing camera, the vertical-viewing (nadir) camera, and the 70-degree aftward viewing camera. The higher brightness, bluer tinge, and reduced contrast of the oblique views result primarily from scattering of sunlight in the Earth's atmosphere, though some color and brightness variations are also due to differences in surface reflection at the different angles. The longer slant path through the atmosphere at the oblique angles also accentuates the appearance of thin, high-altitude cirrus clouds.

    On the right, two areas from the nadir camera image are shown in more detail, along with notations highlighting major geographic features. The south bank of the Red River marks the boundary between Texas and Oklahoma. Traversing brush-covered and grassy plains, rolling hills, and prairies, the Red River and the Canadian River are important resources for farming, ranching, public drinking water, hydroelectric power, and recreation. Both originate in New Mexico and flow eastward, their waters eventually discharging into the Mississippi River.

    A smoke plume to the north of the Ouachita Mountains and east of Lake Eufaula is visible in the detailed nadir imagery. The plume is also very obvious at the 70-degree forward view angle, to the right of center and about one-fourth of the way down from the top of the image.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  1. West Africa

    Atmospheric Science Data Center

    2013-04-16

    ... (MISR) illustrate the abundance of atmospheric particulate matter across the region. The left-hand panels are natural-color views from ... across the region is noticeable. The distinctive area of dark green vegetation (apparent below and left of image center) are situated in ...

  2. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the ... in Hampton, VA. Image credit: NASA/GSFC/LaRC/JPL, MISR Team. Other formats available at JPL March 11, 2002 - ...

  3. Mystery #26 Answer

    Atmospheric Science Data Center

    2013-04-22

    ... area during the dry season, thus giving this area its descriptive name. Answer: TRUE.  The Cabo Blanco Nature Reserve is ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  4. Maryland: Baltimore

    Atmospheric Science Data Center

    2014-05-15

    ... They will then compare the derived aerosol distribution with survey data on health effects, such as the incidence of asthma, to complete ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  5. Smoke over Jackson Hole, Wyoming

    NASA Image and Video Library

    2001-08-01

    This anaglyph from the MISR instrument aboard NASA Terra spacecraft shows the area around Jackson Hole, Wyoming, where the Green Knoll forest fire raged for many days in July, 2001. 3D glasses are necessary to view this image.

  6. NASA MISR Tracks Massive Flooding in Pakistan

    NASA Image and Video Library

    2010-08-18

    In late July 2010, flooding caused by heavy monsoon rains began in several regions of Pakistan, including the Khyber Pakhtunkhwa, Sindh, Punjab and parts of Baluchistan. This image was acquired by NASA Terra spacecraft on August 11, 2010.

  7. Keyhole imaging method for dynamic objects behind the occlusion area

    NASA Astrophysics Data System (ADS)

    Hao, Conghui; Chen, Xi; Dong, Liquan; Zhao, Yuejin; Liu, Ming; Kong, Lingqin; Hui, Mei; Liu, Xiaohua; Wu, Hong

    2018-01-01

    A method of keyhole imaging based on camera array is realized to obtain the video image behind a keyhole in shielded space at a relatively long distance. We get the multi-angle video images by using a 2×2 CCD camera array to take the images behind the keyhole in four directions. The multi-angle video images are saved in the form of frame sequences. This paper presents a method of video frame alignment. In order to remove the non-target area outside the aperture, we use the canny operator and morphological method to realize the edge detection of images and fill the images. The image stitching of four images is accomplished on the basis of the image stitching algorithm of two images. In the image stitching algorithm of two images, the SIFT method is adopted to accomplish the initial matching of images, and then the RANSAC algorithm is applied to eliminate the wrong matching points and to obtain a homography matrix. A method of optimizing transformation matrix is proposed in this paper. Finally, the video image with larger field of view behind the keyhole can be synthesized with image frame sequence in which every single frame is stitched. The results show that the screen of the video is clear and natural, the brightness transition is smooth. There is no obvious artificial stitching marks in the video, and it can be applied in different engineering environment .

  8. ACE-Asia Aerosol Optical Depth and Water Vapor Measured by Airborne Sunphotometers and Related to Other Measurements and Calculations

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, P. B.; Schmid, B.; Redemann, J.; Eilers, J. A.; Ramirez, S. A.; Kahn, R.; Hegg, D.; Pilewskie, P.; Anderson, T.; hide

    2001-01-01

    In the Spring 2001 phase of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the 6-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) operated on 15 of the 19 research flights of the NCAR C-130, while its 14-channel counterpart (AATS- 14) flew successfully on all 18 research flights of the CIRPAS Twin Otter. ACE-Asia studied aerosol outflow from the Asian continent to the Pacific basin. It was designed to integrate suborbital and satellite measurements and models so as to reduce the uncertainty in calculations of the climate forcing due to aerosols. AATS-6 and AATS-14 measured solar beam transmission at 6 and 14 wavelengths (380-1021 and 354-1558 nm, respectively), yielding aerosol optical depth (AOD) spectra and column water vapor (CWV). Vertical differentiation in profiles yielded aerosol extinction spectra and water vapor concentration. The wavelength dependence of these AOD and extinction spectra indicates that supermicron dust was often a major component of the ACE-Asia aerosol. Frequently this dust-containing aerosol extended to high altitudes. For example, in AATS- 14 profiles analyzed to date, 36% of full-column AOD at 525 nm was above 3 km. In contrast, only 10% of CWV was above 3 km. Analyses and applications of AATS-6 and AATS-14 data to date include comparisons to (i) extinction products derived using in situ measurements, (ii) extinction profiles derived from lidar measurements, and (iii) AOD retrievals from the Multi-angle Imaging Spectro-Radiometer (MISR) aboard the TERRA satellite. Other planned collaborative studies include comparisons to results from size spectrometers, chemical measurements, other satellite sensors, flux radiometers, and chemical transport models. Early results of these studies will be presented.

  9. Effects of Large-Scale Solar Installations on Dust Mobilization and Air Quality

    NASA Astrophysics Data System (ADS)

    Pratt, J. T.; Singh, D.; Diffenbaugh, N. S.

    2012-12-01

    Large-scale solar projects are increasingly being developed worldwide and many of these installations are located in arid, desert regions. To examine the effects of these projects on regional dust mobilization and air quality, we analyze aerosol product data from NASA's Multi-angle Imaging Spectroradiometer (MISR) at annual and seasonal time intervals near fifteen photovoltaic and solar thermal stations ranging from 5-200 MW (12-4,942 acres) in size. The stations are distributed over eight different countries and were chosen based on size, location and installation date; most of the installations are large-scale, took place in desert climates and were installed between 2006 and 2010. We also consider air quality measurements of particulate matter between 2.5 and 10 micrometers (PM10) from the Environmental Protection Agency (EPA) monitoring sites near and downwind from the project installations in the U.S. We use monthly wind data from the NOAA's National Center for Atmospheric Prediction (NCEP) Global Reanalysis to select the stations downwind from the installations, and then perform statistical analysis on the data to identify any significant changes in these quantities. We find that fourteen of the fifteen regions have lower aerosol product after the start of the installations as well as all six PM10 monitoring stations showing lower particulate matter measurements after construction commenced. Results fail to show any statistically significant differences in aerosol optical index or PM10 measurements before and after the large-scale solar installations. However, many of the large installations are very recent, and there is insufficient data to fully understand the long-term effects on air quality. More data and higher resolution analysis is necessary to better understand the relationship between large-scale solar, dust and air quality.

  10. Meridional Distribution of Aerosol Optical Thickness over the Tropical Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Kishcha, P.; Silva, Arlindo M.; Starobinets, B.; Long, C. N.; Kalashnikova, O.; Alpert, P.

    2015-01-01

    Previous studies showed that, over the global ocean, there is hemispheric asymmetry in aerosols and no noticeable asymmetry in cloud fraction (CF). In the current study, we focus on the tropical Atlantic (30 Deg N 30 Deg S) which is characterized by significant amounts of Saharan dust dominating other aerosol species over the North Atlantic. We found that, by contrast to the global ocean, over a limited area such as the tropical Atlantic, strong meridional asymmetry in dust aerosols was accompanied by meridional CF asymmetry. During the 10-year study period (July 2002 June 2012), NASA Aerosol Reanalysis (aka MERRAero) showed that, when the meridional asymmetry in dust aerosol optical thickness (AOT) was the most pronounced (particularly in July), dust AOT averaged separately over the tropical North Atlantic was one order of magnitude higher than dust AOT averaged over the tropical South Atlantic. In the presence of such strong meridional asymmetry in dust AOT in July, CF averaged separately over the tropical North Atlantic exceeded CF averaged over the tropical South Atlantic by 20%. Our study showed significant cloud cover, up to 0.8 - 0.9, in July along the Saharan Air Layer which contributed to above-mentioned meridional CF asymmetry. Both Multi-Angle Imaging SpectroRadiometer (MISR) measurements and MERRAero data were in agreement on seasonal variations in meridional aerosol asymmetry. Meridional asymmetry in total AOT over the Atlantic was the most pronounced between March and July, when dust presence over the North Atlantic was maximal. In September and October, there was no noticeable meridional asymmetry in total AOT and meridional CF distribution over the tropical Atlantic was almost symmetrical.

  11. Amery Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... funded by NASA and undertaken by the Scripps Institution of Oceanography and the Australian Antarctic Division. The Multi-angle Imaging ... Laboratory), and Helen A. Fricker (Scripps Institution of Oceanography). Other formats available at JPL Oct 6, ...

  12. Johannesburg

    Atmospheric Science Data Center

    2013-04-15

    ... coming from there), the discovery of now-famous hominid fossils at the Sterkfontein Caves, and the convening of the world's ... the outstanding universal value of the paleo-anthropological fossils found there. These views from the Multi-angle Imaging ...

  13. Coccoliths in the Celtic Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    As the basis of the marine food chain, phytoplankton are important indicators of change in the oceans. These marine flora also extract carbon dioxide from the atmosphere for use in photosynthesis, and play an important role in global climate. Phytoplankton blooms that occur near the surface are readily visible from space, enabling a global estimation of the presence of chlorophyll and other pigments. There are more than 5,000 different species of phytoplankton however, and it is not always possible to identify the type of phytoplankton present using space-based remote sensing.

    Coccolithophores, however, are a group of phytoplankton that are identifiable from space. These microscopic plants armor themselves with external plates of calcium carbonate. The plates, or coccoliths, give the ocean a milky white or turquoise appearance during intense blooms. The long-term flux of coccoliths to the ocean floor is the main process responsible for the formation of chalk and limestone.

    This image is a natural-color view of the Celtic Sea and English Channel regions, and was acquired by the Multi-angle Imaging SpectroRadiometer's nadir (vertical-viewing) camera on June 4, 2001 during Terra orbit 7778. It represents an area of 380 kilometers x 445 kilometers, and includes portions of southwestern England and northwestern France. The coccolithophore bloom in the lower left-hand corner usually occurs in the Celtic Sea for several weeks in summer. The coccoliths backscatter light from the water column to create a bright optical effect. Other algal and/or phytoplankton blooms can also be discerned along the coasts near Portsmouth, England and Granville, France.

    At full resolution, evidence of human activity is also apparent in this image. White specks associated with ship wakes are present in the open water, and aircraft contrails are visible within the high cirrus clouds over the English Channel.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  14. MISR Center Block Time Tool

    Atmospheric Science Data Center

    2013-04-01

      MISR Center Block Time Tool The misr_time tool calculates the block center times for MISR Level 1B2 files. This is ... version of the IDL package or by using the IDL Virtual Machine application. The IDL Virtual Machine is bundled with IDL and is ...

  15. India

    Atmospheric Science Data Center

    2013-04-16

    article title:  Aerosols over India     View Larger Image ... particulates, over the low-lying plains of northeastern India appear in dramatic contrast with the relatively pristine air of the ... October 15, 2001 - High concentrations of aerosols over India. project:  MISR category:  gallery ...

  16. Mystery #26

    Atmospheric Science Data Center

    2016-12-22

    ... area during the dry season, thus giving this area its descriptive name. 6.   This animal, which can be found in the National ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  17. Pyrocumulus Clouds Tower Over Silver Fire in New Mexico

    NASA Image and Video Library

    2013-06-14

    NASA Terra satellite passed over the Silver Fire in New Mexico June 12, 2013. By combining information from different MISR cameras, scientists have produced a 3D image of the smoke plume associated with the Silver Fire.

  18. Baghdad

    Atmospheric Science Data Center

    2013-04-16

    article title:  Oil Fire Plumes Over Baghdad     View Larger Image Dark smoke from oil fires extend for about 60 kilometers south of Iraq's capital city of ... at JPL April 2, 2003 - Dark smoke from oil fires in Baghdad, Iraq. project:  MISR ...

  19. Oil Fire Plumes Over Baghdad

    NASA Image and Video Library

    2003-04-09

    Dark smoke from oil fires extend for about 60 kilometers south of Iraq capital city of Baghdad in this anaglyph acquired by the MISR instrument aboard NASA Terra spacecraft on April 2, 2003. 3D glasses are necessary to view this image.

  20. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... depth. A color scale is used to represent this quantity, and high aerosol amount is indicated by yellow or green pixels, and clearer skies ... out most clearly, whereas MISR's oblique cameras enhance sensitivity to even thin layers of aerosols. In the March image, the only ...

  1. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    ... erroneous impression that they are below the land surface. A quantitative computer analysis is necessary to separate out wind and height. ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  2. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    ... causes motion of the plume features between camera views. A quantitative computer analysis is necessary to separate out wind and height ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  3. China Dust

    Atmospheric Science Data Center

    2013-04-16

    ... SpectroRadiometer (MISR) nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a ... arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the ...

  4. Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Geogdzhayev, Igor V.; Travis, Larry D.; Cairns, Brian; Lacis, Andrew A.

    2010-01-01

    We use the full duration of collocated pixel-level MODIS-Terra and MISR aerosol optical thickness (AOT) retrievals and level 2 cloud-screened quality-assured AERONET measurements to evaluate the likely individual MODIS and MISR retrieval accuracies globally over oceans and land. We show that the use of quality-assured MODIS AOTs as opposed to the use of all MODIS AOTs has little effect on the resulting accuracy. The MODIS and MISR relative standard deviations (RSTDs) with respect to AERONET are remarkably stable over the entire measurement record and reveal nearly identical overall AOT performances of MODIS and MISR over the entire suite of AERONET sites. This result is used to evaluate the likely pixel-level MODIS and MISR performances on the global basis with respect to the (unknown) actual AOTs. For this purpose, we use only fully compatible MISR and MODIS aerosol pixels. We conclude that the likely RSTDs for this subset of MODIS and MISR AOTs are 73% over land and 30% over oceans. The average RSTDs for the combined [AOT(MODIS)+AOT(MISR)]/2 pixel-level product are close to 66% and 27%, respectively, which allows us to recommend this simple blend as a better alternative to the original MODIS and MISR data. These accuracy estimates still do not represent the totality of MISR and quality-assured MODIS pixel-level AOTs since an unaccounted for and potentially significant source of errors is imperfect cloud screening. Furthermore, many collocated pixels for which one of the datasets reports a retrieval, whereas the other one does not may also be problematic.

  5. Australia's Great Barrier Reef

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Great Barrier Reef extends for 2,000 kilometers along the northeastern coast of Australia. It is not a single reef, but a vast maze of reefs, passages, and coral cays (islands that are part of the reef). This nadir true-color image was acquired by the MISR instrument on August 26, 2000 (Terra orbit 3679), and shows part of the southern portion of the reef adjacent to the central Queensland coast. The width of the MISR swath is approximately 380 kilometers, with the reef clearly visible up to approximately 200 kilometers from the coast. It may be difficult to see the myriad details in the browse image, but if you retrieve the higher resolution version, a zoomed display reveals the spectacular structure of the many reefs.

    The more northerly coastal area in this image shows the vast extent of sugar cane cultivation, this being the largest sugar producing area in Australia, centered on the city of Mackay. Other industries in the area include coal, cattle, dairying, timber, grain, seafood, and fruit. The large island off the most northerly part of the coast visible in this image is Whitsunday Island, with smaller islands and reefs extending southeast, parallel to the coast. These include some of the better known resort islands such as Hayman, Lindeman, Hamilton, and Brampton Islands.

    Further south, just inland of the small semicircular bay near the right of the image, is Rockhampton, the largest city along the central Queensland coast, and the regional center for much of central Queensland. Rockhampton is just north of the Tropic of Capricorn. Its hinterland is a rich pastoral, agricultural, and mining region.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  6. Level 2 Ancillary Products and Datasets Algorithm Theoretical Basis

    NASA Technical Reports Server (NTRS)

    Diner, D.; Abdou, W.; Gordon, H.; Kahn, R.; Knyazikhin, Y.; Martonchik, J.; McDonald, D.; McMuldroch, S.; Myneni, R.; West, R.

    1999-01-01

    This Algorithm Theoretical Basis (ATB) document describes the algorithms used to generate the parameters of certain ancillary products and datasets used during Level 2 processing of Multi-angle Imaging SpectroRadiometer (MIST) data.

  7. India: Gujarat

    Atmospheric Science Data Center

    2013-04-16

    ... Gujarat), and in areas close to the earthquake epicenter.  Research uses the unique capabilities of the Multi-angle Imaging ... Indo-Pakistani border, which were not easily accessible to survey teams on the ground. Changes in reflection at different view angles ...

  8. Hurricane Katrina

    Atmospheric Science Data Center

    2014-05-15

    ... Katrina is one of the most powerful and destructive storms on record for the Atlantic Basin. The animation progresses from ... tops" are also characteristic of strong and rapidly growing storms. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth ...

  9. MISR Views Florida

    NASA Image and Video Library

    2000-06-20

    A plume from a large brush fire that burned about 15,000 acres in 2000 is visible at the western edge of the Big Cypress Swamp in southern Florida. NASA Terra satellite captured acquired this image on April 9, 2000. 3D glasses are necessary.

  10. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    ... or frontal activity. This image is centered over the Indian Ocean (at about 38.9° South, 80.6° East), and was acquired on October ... System-2 path 134. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...

  11. Tsunami: India

    Atmospheric Science Data Center

    2013-04-16

    ... Animation At 00:58:53 UTC (Coordinated Universal Time) on December 26, 2004, a magnitude 9.0 earthquake occurred off the west ... UTC, when the tide gauge indicated the arrival of another series of waves. Because MISR's nine cameras imaged the coast over a time span ...

  12. MISR Level 2 Cloud Product Versioning

    Atmospheric Science Data Center

    2017-10-11

    ... New ancillary files: MISR_AM1_ASCT_BDAS_(WIN,SPR,SUM,FALL)_DCCAM_ T<901-932>_F02_0005.hdf MISR_AM1_ASCT_BDAS_(WIN,SPR,SUM,FALL)_DBCAM_ T<901-932>_F02_0005.hdf MISR_AM1_ASCT_BDAS_(WIN,SPR,SUM,FALL)_CBCAM_ T<901-932>_F02_0005.hdf ...

  13. Multi-Angle Snowflake Camera Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkurko, Konstantin; Garrett, T.; Gaustad, K

    The Multi-Angle Snowflake Camera (MASC) addresses a need for high-resolution multi-angle imaging of hydrometeors in freefall with simultaneous measurement of fallspeed. As illustrated in Figure 1, the MASC consists of three cameras, separated by 36°, each pointing at an identical focal point approximately 10 cm away. Located immediately above each camera, a light aims directly at the center of depth of field for its corresponding camera. The focal point at which the cameras are aimed lies within a ring through which hydrometeors fall. The ring houses a system of near-infrared emitter-detector pairs, arranged in two arrays separated vertically by 32more » mm. When hydrometeors pass through the lower array, they simultaneously trigger all cameras and lights. Fallspeed is calculated from the time it takes to traverse the distance between the upper and lower triggering arrays. The trigger electronics filter out ambient light fluctuations associated with varying sunlight and shadows. The microprocessor onboard the MASC controls the camera system and communicates with the personal computer (PC). The image data is sent via FireWire 800 line, and fallspeed (and camera control) is sent via a Universal Serial Bus (USB) line that relies on RS232-over-USB serial conversion. See Table 1 for specific details on the MASC located at the Oliktok Point Mobile Facility on the North Slope of Alaska. The value-added product (VAP) detailed in this documentation analyzes the raw data (Section 2.0) using Python: images rely on OpenCV image processing library and derived aggregated statistics rely on some clever averaging. See Sections 4.1 and 4.2 for more details on what variables are computed.« less

  14. Appalachia Snow

    Atmospheric Science Data Center

    2014-05-15

    ... 7, 2002. The Appalachians are bounded by the Blue Ridge mountain belt along the east and the Appalachian Plateau along the west. ... tip, near the Great Smoky Mountains (the dark-colored range at lower right). The Multi-angle Imaging SpectroRadiometer observes ...

  15. South Africa

    Atmospheric Science Data Center

    2013-04-16

    ... blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they ... known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide. The Multi-angle Imaging ...

  16. California Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wildfires Rage in Southern California     ... Image Large plumes of smoke rising from devastating wildfires burning near Los Angeles and San Diego on Sunday, October 26, 2003, ... at JPL October 26, 2003 - Smoke from wildfires near Los Angeles and San Diego. project:  MISR ...

  17. Mystery #23 Answer

    Atmospheric Science Data Center

    2013-04-22

    ... Which one is true?   A.   There is an active uranium mining site within the image area.   B.   Coal has been in continuous ... NASA's Goddard Space Flight Center, Greenbelt, MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science ...

  18. Mystery #23

    Atmospheric Science Data Center

    2013-04-22

    ... Which one is true?   A.   There is an active uranium mining site within the image area.   B.   Coal has been in continuous ... NASA's Goddard Space Flight Center, Greenbelt, MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science ...

  19. Hurricane Matthew over Haiti seen by NASA's MISR

    Atmospheric Science Data Center

    2017-04-18

    ... but part of the Bahamas is visible to the north. Several hot towers are visible within the central part of the storm, and another at the top right of the image. Hot towers are enormous thunderheads that punch through the tropopause (the ...

  20. Pine Island Bay movie

    Atmospheric Science Data Center

    2014-08-01

    ... between successive frames is not uniform. The flow of the glacier, widening of the rift, and subsequent break-off of the iceberg are ... a gap in image acquisition during Antarctic winter, when the glacier was in continuous darkness. MISR was built and is managed by NASA's ...

  1. misr_view

    Atmospheric Science Data Center

    2018-03-21

    ... data files,  misr_view , was developed by NASA's Jet Propulsion Laboratory. misr_view, which includes a User's Guide, is available ... Processing Applications and Development Section at the Jet Propulsion Laboratory.   ...

  2. Relevant Links

    Atmospheric Science Data Center

    2018-06-15

    ... Theoretical Basis Document (ATBD) ADAM-M ADAM-M Information AirMISR AirMISR Home Page MISR Home Page Feature Article: Fiery Temperament KONVEX Information SAFARI Home Page AirMSPI Get Google Earth ...

  3. South African Particulates

    Atmospheric Science Data Center

    2013-04-16

    article title:  Airborne Particulates over Southern Africa ... correspond to places where a result was not obtained, for example, due to the presence of clouds. Extensive burning of grass and ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  4. NASA MISR Instrument Captures View of Mountain Fire Near Idyllwild, Calif.

    NASA Image and Video Library

    2013-07-20

    NASA Terra spacecraft passed over the Mountain Fire near Idyllwild, Calif., on Jul. 17, 2013. Los Angeles and the Pacific Ocean can been seen to the left and the Salton Sea is the dark feature in the right center of the image.

  5. Improving Aerosol and Visibility Forecasting Capabilities Using Current and Future Generations of Satellite Observations

    DTIC Science & Technology

    2015-08-27

    and 2) preparing for the post-MODIS/MISR era using the Geostationary Operational Environmental Satellite (GOES). 3. Improve model representations of...meteorological property retrievals. In this study, using collocated data from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geostationary

  6. MIL2ASAF

    Atmospheric Science Data Center

    2018-02-19

    MISR Level 2 First Look Aerosol Data (MIL2ASAF.002) MISR Level 2 First Look Aerosol Data Stage 2 & 3 Validated  Project Title:  ... MISR Browse Tool Parameters:  Aerosol optical depth Aerosol compositional model Ancillary ...

  7. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images.

    The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image.

    The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image.

    Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation.

    Each image covers a swath approximately 380 kilometers wide.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  8. MISR Level 3 Products

    Atmospheric Science Data Center

    2015-06-04

    ... nm), approximated from visible bands. Derived from a linear combination of MISR bands found in the Level 2 LAND, DHR field. Weiss et ... Level 2 ALBEDO, AlbedoRestrictive field. Local Albedo Local albedo, for 4 MISR spectral bands + broadband ...

  9. MISR Level 3 Cloud Motion Vector Versioning

    Atmospheric Science Data Center

    2016-11-04

    ... Versioning   Cloud Motion Vector Product (CMV) - Monthly, Quarterly, Yearly products Processing Status ... MI3MCMVN, MI3QCMVN, MI3YCMVN MISR_AM1_CMV Stage 1 Validated:  All parameters MISR maturity ...

  10. Missouri: St. Louis

    Atmospheric Science Data Center

    2014-05-15

    ... side, are highlighted with green vegetation. Meandering rivers in the verdant Ozark Plateau appear to the south and west. This ... data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image credit: ... October 15, 2005 - Green vegetation and meandering rivers. project:  MISR category:  gallery ...

  11. Fingerprints in the Dust

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These MISR nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a spectacularly dusty spring view from April 7, 2001 (middle). The left-hand and middle images are from Terra orbits 2967 and 6928, respectively, and extend from central Manchuria near the top to portions of North and South Korea at the bottom. They are approximately 380 kilometers in width.

    Asia's desert areas are prone to soil erosion, as underground water tables are lowered by prolonged drought and by industrial and agricultural water use. Heavy winds blowing eastward across the arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the April 2001 storm blew across the Pacific Ocean and were carried as far as North America. The minerals transported in this manner are believed to provide nutrients for both oceanic and land ecosystems.

    According to the Xinhua News Agency in China, nearly one million tons of Gobi Desert dust blow into Beijing each year. During a similar dust outbreak last year, the Associated Press reported that the visibility in Beijing had been reduced the point where buildings were barely visible across city streets, and airline schedules were significantly disrupted. The dust has also been implicated in adverse health effects such as respiratory discomfort and eye irritation.

    The image on the right is a higher resolution MISR nadir-camera view of a portion of the April 7, 2001 dust cloud. It covers an area roughly 250 kilometers wide by 470 kilometers high. When viewed at full magnification, a number of atmospheric wave features, like the ridges and valleys of a fingerprint, are apparent. These are probably induced by surface topography, which can disturb the wind flow. A few small cumulus clouds are also visible, and are casting shadows on the thick lower dust layer.

    Analyses of images such as these constitute one phase of MISR's participation in the Asian-Pacific Regional Aerosol Characterization Experiment, an international campaign aimed at studying the offshore transport of airborne particles from the Asian continent. For more about this international endeavor, see http://saga.pmel.noaa.gov/aceasia/.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  12. Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) Level 1B2 V006 Announcement

    Atmospheric Science Data Center

    2018-05-22

    The NASA Langley Atmospheric Science Data Center (ASDC) and Jet Propulsion Laboratory (JPL) announce the public ... SpectroPolarimetric Imager (AirMSPI) Level 1B2 V006 data for all targets acquired for flight campaigns: Radar Definition ... Experiment (RADEX) flight campaign was based out of Joint Base Lewis-McChord, Washington. The campaign focused on characterizing new ...

  13. MISR Toolkit

    Atmospheric Science Data Center

    2018-03-14

    ... which makes it very easy to extract and use MISR data sets. Reading a parameter requires the user to simply specify a file, grid, field, ... Automatically stitch, unpack and unscale MISR data while reading Performing coordinate conversions between lat/lon, SOM x/y, ...

  14. AirMISR WISCONSIN

    Atmospheric Science Data Center

    2014-04-25

    AirMISR WISCONSIN 2000 Project Title:  AirMISR Discipline:  ... Platform:  ER-2 Spatial Coverage:  Wisconsin (35.92, 43.79)(-97.94, -90.23) Spatial Resolution:  ... Order Data Readme Files:  Readme Wisconsin Read Software Files :  IDL Code ...

  15. A Three-Way Street: MISR and MODIS Provide Context, SEAC4RS Provides Detail and Validation, Models Complete the Picture

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2014-01-01

    The Transported Smoke Survey had three objectives: to evaluate imager and polarimeter sensitivity to smoke properties (remote sensing validation); to study characteristics of transported smoke (chemistry/transport); and to assess rediative impact of smoke layers (radiation closure).

  16. What is MISR? MISR Instrument? MISR Project?

    Atmospheric Science Data Center

    2014-12-08

    ... to improve our understanding of the Earth's environment and climate. Viewing the sunlit Earth simultaneously at nine widely-spaced angles, ... types of atmospheric particles and clouds on climate. The change in reflection at different view angles affords the means to distinguish ...

  17. How do I order MISR data?

    Atmospheric Science Data Center

    2017-10-12

    ... and archived at the NASA Langley Research Center Atmospheric Science Data Center (ASDC). A MISR Order and Customization Tool is ... Pool (an on-line, short-term data cache that provides a Web interface and FTP access). Specially subsetted and/or reformatted MISR data ...

  18. Multi-angle polarimeter inter-comparison: the PODEX and ACEPOL field campaigns

    NASA Astrophysics Data System (ADS)

    Knobelspiesse, K. D.; Tan, Q.; Redemann, J.; Cairns, B.; Diner, D. J.; Ferrare, R. A.; van Harten, G.; Hasekamp, O. P.; Kalashnikova, O. V.; Martins, J. V.; Yorks, J. E.; Seidel, F. C.

    2017-12-01

    A multi-angle polarimeter has been proposed for the NASA Aerosol-Cloud-Ecosystem (ACE) mission, recommended by the National Research Council's Decadal Survey. Such instruments are uncommon in orbit, and there is a great diversity of prototype instrument characteristics. For that reason, NASA funded two field campaigns where airborne polarimeter prototypes were deployed on the high altitude ER-2 aircraft. The first field campaign, POlarimeter DEfinition EXperiment (PODEX), was carried out in southern California in early 2013. Three polarimeters participated: the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). PACS, on its first deployment, suffered detector problems, while AirMSPI and RSP performed within expectations. Initial comparisons of AirMSPI and RSP observations found Degree of Linear Polarization (DoLP) biases. Following corrections to both instrument's calibration and/or geolocation techniques, these issues have improved. We will present the details of this comparison. The recent ACEPOL mission returned to southern California in October-November with a larger compliment of multi-angle polarimeters. This included AirMSPI and RSP, like in PODEX. Additional polarimetric instruments included AirHARP (Airborne HyperAngular Rainbow Polarimeter, a successor to PACS) and SPEX Airborne (SPectropolarimeter for Planetary Exploration). Two Lidars were also deployed: The High Spectral Resolution Lidar -2 (HSRL-2) and the Cloud Physics Lidar (CPL). While data processing is still underway, we will describe the objectives of this campaign and give a preview of what to expect in subsequent analysis.

  19. Tropical Atlantic Dust and Smoke Aerosol Variabilities Related to the Madden-Julian Oscillation in MODIS and MISR Observations

    NASA Technical Reports Server (NTRS)

    Guo, Yanjuan; Tian, Baijun; Kahn, Ralph A.; Kalashnikova, Olga; Wong, Sun; Waliser, Duane E.

    2012-01-01

    In this study, MODIS fine mode fraction and MISR non-spherical fraction are 2used to derive dust and smoke AOT components (tau(sub dust) and tau(sub smoke)) over the tropical Atlantic, and their variabilities related to the Madden-Julian Oscillation (MJO) are then investigated. Both MODIS and MISR show a very similar dust and smoke winter climatology. tau(sub dust) is found to be the dominant aerosol component over the tropical Atlantic while tau(sub smoke) is significantly smaller than tau(sub dust). The daily MODIS and MISR tau(sub dust) are overall highly correlated, with the correlation coefficients typically about 0.7 over the North Atlantic. The consistency between the MODIS and MISR dust and smoke aerosol climatology and daily variations give us confidence to use these two data sets to investigate their relative contributions to the total AOT variation associated with the MJO. However, unlike the MISR dust discrimination, which is based on particle shape retrievals, the smoke discrimination is less certain, based on assumed partitioning of maritime aerosol for both MISR and MODIS. The temporal evolution and spatial patterns of the tau(sub dust) anomalies associated with the MJO are consistent between MODIS and MISR. The tau(sub dust) anomalies are very similar to those of tau anomalies, and are of comparable magnitude. In contrast, the MJO-related tau(sub smoke) anomalies are rather small, and the tau(sub mar) anomalies are negligible. The consistency between the MODIS and MISR results suggests that dust aerosol is the dominant component on the intra-seasonal time scale over the tropical Atlantic Ocean.

  20. Red Tide Strands South African Rock Lobsters

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide.

    The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine.

    The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

Top